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Abstract

Sugarcane supply chain planning has been a popular topic in recent years. This
thesis studies an integrated sugarcane harvesting and processing scheduling prob-
lem in a single-product supply chain focused exclusively on sugar production.
The challenge is how to coordinate harvesting and milling operations to achieve
both high economic profitability and optimal sucrose yield under limited har-
vesting and processing capacities. Variability adds complexity on multiple fronts.
First, both the sugarcane tonnage and the sucrose content vary over time, both
during crop maturation and after harvesting due to post-harvest deterioration.
Second, harvest start times differ across plots, affecting both biomass availability
and quality. Third, plot sizes are also varied for the heterogeneous model.

These challenges motivate the development of an optimization model, while
the presence of multiple stakeholders with differing objectives justifies the use
of a multi-objective optimization approach. With the e-constraint method,
Pareto frontiers are generated for both the base and the heterogeneous case
to examine trade-offs between profit and sugar yield under the variability of
harvesting windows and plot sizes. To evaluate solution stability, a robustness
check is performed by comparing extreme solutions of maximizing profit and
maximizing sugar yield across 10 instances of the base model. Furthermore, an
aggregated Pareto frontier for the base model is constructed by averaging across
10 instances, allowing the identification of stable diminishing-return regions and
the assessment of how broadly the base-case trade-offs hold under variability in
harvesting windows.

A comprehensive sensitivity analysis is conducted to evaluate the impact of
key parameters on performance. The tested parameters include the harvesting
capacity, harvesting cost, processing cost, disposal cost, selling price, and the
length of the allowable processing window. For each parameter, multiple levels
are examined to assess their effect on maximum profit solution and the sugar
output under the profit max solutions. The analysis identifies thresholds where

operational constraints begin to become binding, and how relaxing specific



constraints (such as the processing window) can shift the optimal operating
point by allowing greater flexibility in capacity expansion, cost variation, and
pricing shifts. The results show that modest relaxation of the processing window
constraint yields measurable operational benefits.

The results indicate stable, concave Pareto frontiers across robustness trials.
Allowing a limited relaxation of the processing window improves flexibility
near sugar-oriented solutions, reducing waste and enhancing profit without
compromising yield. These findings provide decision support for capacity-aware,

quality-preserving scheduling policies in perishable crop supply chains.



1 Introduction

1.1 Background

The sugar industry has played a significant role in the global economy, because
of its direct link to both sugar and ethanol supply. In 2023, global sugarcane
production reached 2,025.8 million tons, up from 1,877.8 million tons in 2020,
with Brazil, India, China, and Thailand as the top producers (FAO/OWID, 2025).
While production has risen, global sugar demand has remained relatively stable,
exerting downward pressure on prices (OECD/FAQ, 2022). This is especially
challenging for countries that have a big market share of their sugar production
in the global market. However, recent market forecasts point to short-term
volatility, with a projected deficit in 2024/25 due to the reduced production
estimate based on the decrease of global sugar price, followed by a rebound in
2025/26 as production expands, especially in Brazil (Asplund, 2025).

In addition to the economic uncertainty, the intrinsic perishability of sugar-
cane introduces significant challenges at the level of supply chain management.
The yield of sugarcane differs in terms of the harvest period, as the overall
biomass or fresh weight changes due to a change in growth rate and water
content (Lingle and Irvine, 1994). Sugarcane’s sugar content is commonly mea-
sured using Pol(%), a standard industry indicator of sucrose concentration. The
value (Pol%) in the sugar industry varies from 8-15% (Tewari & Irudayaraj,
2003). During the growing period, sucrose accumulates gradually, reaching a
peak maturity level before beginning to decline naturally if harvest is postponed.
Once the cane is cut, however, sugarcane experiences rapid sucrose deterioration
immediately (Solomon et al., 2006). Delays in harvesting or processing can thus
reduce sugar quality and overall profitability, emphasizing the importance of
just-in-time delivery to mills.

In the sugarcane supply chain, to achieve efficient plans and operations, two
main stages of the sugarcane supply chain should be considered in this thesis: 1)

sugarcane harvesting (harvesting), and 2) industrial processing of sugar mills



(Teixeira et al., 2023). The sugar industry also involves two main stakeholders,
primarily sugarcane growers, and milling companies, whose objectives often
diverge: growers seek to maximize cane yield and sucrose quality under agronomic
and contractual constraints, while mill operators focus on processing efficiency,
cost management and ethanol co-production.

However, in vertically integrated industries with mature ethanol markets,
such as Brazil, large mills often own or tightly contract plantations, coordinating
harvesting, transport, and processing to optimize both sugar and ethanol produc-
tion. Land rental agreements are typically time-based and independent of yield
or sucrose quality (Pol%), transferring production and quality risk to the mill. In
contrast, smallholder-dominated regions like India and parts of Southeast Asia
face fragmented landholdings and weaker logistics, making centralized schedul-
ing difficult and highlighting the need for flexible and decentralized harvesting
policies. Thailand represents an intermediate case, where contract farming and
cooperatives improve coordination but still require policies that can manage
numerous small fields.

The sugarcane harvesting and processing in agroindustrial units require a
complex and thorough plan and operation, to avoid sugar losses and balance
the benefits of growers and mills. Growers decide when and how to harvest
the sugarcane, while mills decide when and how to process the sugarcane.
Any delays and mismatches between harvesting and milling stages can cause
sugar loss. The growers aim to maximize the total sugar content from the
yield, and harvest at peak maturity. However, the objective of the mill is to
maintain steady throughput, avoid overcapacity, and process the cane with the
highest sugar content first in order to maximize their profit. The coordination
between harvesting and processing stages need to be considered to avoid quality
deterioration and balance stakeholder benefits.

As a result, the harvesting and processing stages are increasingly recognized
as critical points for optimization in the sugarcane industry. Developing mathe-
matical models that can integrate logistical and economic variables into a unified

planning framework is essential for improving system-wide efficiency, reducing



waste, and enhancing stakeholder alignment.

1.2 Research objectives

The primary objective of this research is to develop a multi-objective optimization
model that comprehensively addresses the complexities of sugarcane harvesting
and processing, integrating multiple stages of the supply chain while balancing
the interests of both mills and growers. While optimization models have been
used for sugarcane supply chain design and planning, most of these models
focus primarily on individual stages, such as harvesting, rather than integrating
multiple stages (Teixeira et al., 2023).

As discussed in the background, growers and mills often pursue different
objectives, which can create operational bottlenecks during peak maturity periods.
Building on this context, the focus is to simultaneously optimize harvesting and
processing schedules to maximize sugar yield obtained by farmers and maximize
total profit gained by mills, taking into account the temporal dynamics of sugar
content in sugarcane. By considering the conflicting objectives of maximizing
profit for mills and maximizing sugar yield for growers, the proposed model
provides a structured framework for decision making for multiple stakeholders.

A second objective is to apply this model in the comprehensive sensitivity
analysis, thereby enabling actionable managerial insights, such as identifying
binding capacity constraints, evaluating trade-offs under varying operational
conditions, and informing strategic scheduling decisions. The model seeks to
effectively manage costs associated with harvesting, transportation, processing,
and disposal while ensuring that the optimal harvesting windows are aligned

with processing capacities.

1.3 Methodology

This research begins with a literature review to understand current approaches
to sugarcane supply chain modeling, operational constraints, and sucrose ac-
cumulation and deterioration dynamics. Insights from this review inform the

model structure, parameter settings, and experimental design, ensuring that the



artificial instances used for computational testing reflect realistic conditions.

In this thesis, a Mixed Integer Programming (MIP) model is built over a finite
planning horizon. This framework enables us to incorporate both continuous
and binary decision variables that represent key choices of scheduling harvesting
activities and allocating processing capacities. An essential feature of the model
is the dynamic evolution of sugar content, which typically follows a nonlinear
trajectory increasing as the crop matures, reaching a peak, and subsequently
declining if harvest is delayed beyond the optimal window. In this thesis,
this dynamic behavior is approximated by a linear representation to facilitate
integration into the optimization framework. The MIP formulation incorporates
key capacity, processing, temporal, and logistical constraints to ensure feasible
and efficient harvesting and processing schedules.

For computational experiments, artificial instances will be generated based on
parameter settings found in the literature. These instances are meant to reflect
realistic scenarios regarding capacities, processing times, and post-harvesting
deteriorating challenges. The mathematical model will be implemented in
Python and solved using Gurobi. The computational study proceeds in four
phases: (1) defining base and heterogeneous instances solvable to optimality
within reasonable time; (2) generating the Pareto frontier of base model and
heterogeneous model using the e-constraint method to explore trade-offs between
profit and sugar yield, focusing on the return-diminishing region, the solution
structure, and the capacity utilization; (3) validating robustness by comparing
extreme profit-maximizing and sugar-maximizing solutions and averaging their
Pareto sets through averaged Pareto sets across 10 random instances; and (4)
conducting sensitivity analysis on key parameters.

The structure of the thesis is organized as follows. In Section 1, a brief
introduction to sugarcane harvesting and processing is provided. The related
literature of different operations in the sugar supply chain is presented in Section
2. In Section 3, we formally describe the problem and present a bi-objective
MILP mathematical model. In Section 4, we present computational experiments.

The Gurobi solver is utilized to check the robustness of the base model, show



the results in Section 5 and perform sensitivity analyses in Section 6. In the last

Section, we conclude the findings and limitations of the thesis.
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2 Literature review

This chapter critically reviews the literature on sugarcane supply chain optimiza-
tion, focusing on works that employ mathematical modeling and operational
research, as well as selected agronomic studies that directly inform model assump-
tions or operational constraints. We prioritize studies most relevant to integrated
harvesting and processing optimization, multi-objective supply chain model-
ing, and the handling of key sources of uncertainty. Rather than sequentially
summarizing each stage of the supply chain, we compare the main approaches,

synthesize their findings, and identify open research gaps.

2.1 Mathematical Optimization Models for Sugarcane Sup-
ply Chains

Mathematical optimization plays a central role in improving the efficiency of
sugarcane supply chains. While many studies employ mixed-integer program-
ming (MILP), stochastic programming, and multi-objective optimization, most
are restricted to single-stage problems of harvesting, transport, or processing,
and rarely integrate physiological dynamics explicitly (Teixeira et al., 2023).
Existing models typically target objectives such as cost reduction, throughput
maximization, or profitability, under simplifying assumptions regarding crop
physiology, particularly sucrose dynamics, and post-harvest quality deterioration.

Teixeira et al. (2023), in a systematic review of 56 optimization-focused
studies on sugarcane supply chains, show that mathematical programming is
widely applied to improve harvest scheduling, transport logistics, and mill pro-
cessing coordination. However, most models address these stages in isolation,
rather than integrating them into a unified framework. These models typically
seek to optimize objectives such as cost minimization, profit maximization, or
throughput, often under capacity and scheduling constraints. For instance, har-
vesting models determine the optimal timing and sequencing of field operations

to maximize sugar recovery and minimize delays, while transport models address
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fleet allocation, routing, and delivery timing to reduce logistic costs and product
deterioration. At the processing stage, models frequently focus on capacity
allocation, scheduling, and inventory management to ensure efficient use of mill
resources despite fluctuations in input quality and timing. Stray et al. (2012) de-
velop a seasonal scheduling system of harvesting, transportation, and processing
stages, using a time-dependent Traveling Salesman Problem (TSP) framework,
allowing adaptive field sequencing under changing climatic conditions. These
models typically incorporate capacity constraints, equipment scheduling, and
product quality considerations, but often make simplified or static assumptions
about crop physiology and maturation.

Multi-objective models are gaining traction for their ability to balance con-
flicting goals, such as profitability for mills versus sugar yield for growers. Notable
examples include the bi-objective MILP of Macowski et al. (2020), which si-
multaneously considers profit and environmental impact for Brazil’s sugar and
ethanol supply chain, and the stochastic multi-objective framework of Chavez et
al. (2020), which balances operational efficiency and sustainability, accounting
for variable yields and resource availability.

Despite these advances, several trends and limitations persist. Many existing
models focus on optimizing a single supply chain stage, with relatively few
integrating multiple stages. Models that do integrate harvesting, transport, and
processing, such as those by Gal et al. (2009) and Bezuidenhout & Baier (2011),
highlight significant computational complexity and data requirements, often
limiting their practical applicability. Furthermore, the explicit integration of
physiological crop characteristics, such as Pol dynamics, maturity curves, or
post-harvest deterioration, remains rare, with most operational models relying

on fixed or estimated yield parameters.
2.1.1 Sugarcane Planting Optimization

Effective management of the sugarcane supply chain begins with the planting
stage, which plays a decisive role in shaping downstream operations and overall

productivity. Although much of the literature emphasizes optimization of har-
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vesting, transport, and processing, there are relatively few studies that develop
explicit optimization models for planting (Teixeira et al., 2023).

Optimization models for the planting stage are uniquely strategic, focusing
on long-term decisions such as field selection, planting calendars, and varietal
choice to shape supply chain stability. Rather than optimizing daily operations,
these models often formulated as MILP, prioritize the alignment of planting with
climate cycles and land characteristics, which directly impacts the efficiency of
all downstream stages. For example, Rajput et al. (2023) and Gulati et al. (2015)
use such models to enhance yield and sustainability by selecting site-specific
planting techniques and optimizing resource deployment at the outset of the
supply chain.

Another major theme in the optimization literature is the alignment of
planting schedules with agro-climatic windows and varietal requirements, in order
to stabilize raw material supply to mills and reduce bottlenecks in subsequent
operations. Models incorporating climate and yield forecasting, sometimes
through scenario-based or stochastic optimization, are used to identify the best
timing for planting and harvesting different varieties, as shown by Viator et al.
(2005). Strategic planting density and row geometry decisions, often modeled
with MILP or simulation-based approaches, are also important for balancing
productivity against operational costs (Bhullar et al., 2002; Rana et al., 2023).

However, most optimization frameworks treat planting in isolation, without
fully integrating planting decisions with harvesting and processing schedules.
Integrated models, those that link planting-stage planning directly with down-
stream stages, are rare but increasingly recognized as essential for avoiding supply
chain bottlenecks. Studies such as Jena and Poggi (2013) highlight the value of
such integration, using advanced data-driven and optimization-based decision
support systems to coordinate planting with anticipated demand, harvesting

capacity, and processing logistics.
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2.1.2 Sugarcane Harvesting Optimization

The harvesting stage has attracted significant attention in the operations research
literature, where mixed-integer programming (MIP), metaheuristics, and hybrid
models are widely used to optimize harvest scheduling. These models aim to
maximize sugar yield, minimize losses from late or early harvesting, and maintain
a continuous flow to mills under operational and logistical constraints.

Optimization models for harvesting predominantly apply mix-integer linear
programming (MILP) and metaheuristics to maximize yield and minimize logis-
tical delays, with operational constraints such as machinery availability, labor,
and mill intake capacity. While agronomic studies establish ideal harvest timing
based on sugar content dynamics, operational models typically rely on simpli-
fied yield assumptions without fully capturing these dynamics. For example,
De Avila Ribeiro Junqueira & Morabito (2019) developed a MILP model that
explicitly considers sequence-dependent setup times for machinery and transport
equipment, enabling optimal large-scale harvest scheduling across multiple fields.
Similarly, De Avila Ribeiro Junqueira & Morabito (2019) introduced a hybrid
approach that combines heuristics with MIP to dynamically schedule harvest
fronts, balancing field readiness, transport availability, and mill processing capac-
ity in real-time. These models demonstrate that integrating multiple operational
constraints leads to more efficient and robust harvesting schedules compared to
traditional rule-based or sequential methods.

Network and routing models, such as the Traveling Salesman Problem (TSP)
or Vehicle Routing Problem (VRP), are central to optimizing sugarcane harvest-
ing, as they enable efficient scheduling of field operations and transport logistics
under operational constraints (Morales-Chdvez et al., 2016). Additionally, recent
research emphasizes the need to adapt harvesting plans to disruptions and uncer-
tainty in yields or logistics, employing robust and stochastic modeling approaches
to ensure continuous supply and stakeholder satisfaction (Amaruchkul, 2020).

Metaheuristics such as simulated annealing, genetic algorithms, and two-phase

heuristics are frequently used either as standalone approaches or in combination
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with mathematical programming. For instance, Afifah et al. (2018) applied sim-
ulated annealing to optimize harvest-mill matching, minimizing truck use, and
maximizing throughput under capacity constraints. Sethanan et al. (2014) de-
veloped a two-phase heuristic to optimize harvest front allocation while ensuring
both efficiency and equity among growers.

Recent optimization research has increasingly focused on multi-objective and
stakeholder-aware models. Beyond single-objective goals such as cost minimiza-
tion or throughput maximization, newer studies emphasize trade-offs between
sugar yield, profit, and operational fairness. As highlighted by Solomon et al.
(2006), delayed harvesting and inefficient supply chain coordination can have
severe consequences for both growers and mills, underscoring the importance of
integrated decision-making that accounts for the interests of multiple stakehold-
ers. Post-harvest sugarcane deterioration affects different actors in distinct ways:
farmers suffer from weight loss, millers encounter processing inefficiencies, con-
sumers face reduced sugar quality, and exporters risk penalties due to impurities
such as dextran.

To address these challenges, recent contributions have proposed more sophis-
ticated optimization frameworks. For instance, Florentino et al. (2018) developed
a multi-objective methodology for sugarcane harvest management that considers
varying maturation periods across different varieties. Their approach employs
goal programming and metaheuristic methods to balance conflicting objectives,
such as aligning harvest schedules with peak sucrose content while efficiently
allocating harvesting resources. Complementing this, Aliano Filho et al. (2023)
introduced a multi-objective framework for integrated cultivation and harvesting
planning, using Pareto-based methods to evaluate trade-offs between profitabil-
ity and resource utilization. These advances demonstrate how multi-objective
and stakeholder-aware models can significantly enhance the realism of harvest
planning, enabling more robust, resilient, and fair supply chain strategies.

Despite these advances, key challenges remain. Most models optimize a single
stage, often harvesting in isolation, while relatively few fully integrate harvesting

with downstream transport and processing operations. Additionally, while some
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models include simplified crop maturation or post-harvest deterioration effects,
the explicit integration of physiological crop dynamics and real-time data remains

limited in operational research.
2.1.3 Sugarcane Transportation Optimization

Transportation remains a persistent constraint in sugarcane supply chains, with
delays and inefficiencies often leading to increased costs and loss of cane quality.
Mathematical optimization, especially mixed-integer programming (MIP), has
been widely adopted to optimize truck allocation, route planning, and synchro-
nization between field and mill deliveries (De Avila Ribeiro Junqueira & Morabito,
2019; Morales-Chévez et al., 2016). Stochastic models further strengthen plan-
ning by capturing uncertainties in transport times, worker availability, and
crop yields, thus making logistics more adaptable under real-world variability
(Amaruchkul, 2020).

Despite these advances, challenges remain in aligning daily transport plans
with upstream harvesting and downstream mill operations. Integrated supply
chain models (Gal et al., 2009; Carvajal et al., 2019) and digital innovations such
as Internet of Things (IoT) tracking are improving coordination, but practical

implementation is still limited by system complexity and variable environments.
2.1.4 Sugarcane Processing Optimization

The processing stage is a central node in the sugarcane supply chain, directly
transforming raw cane into value-added products such as sugar, ethanol, and
bio-energy. Mathematical optimization models for this stage primarily focus
on scheduling mill operations, improving throughput, and optimally allocating
resources under constraints of quality, inventory, and processing capacity.

In general, sugarcane processing optimization models are formulated as
mixed-integer linear programs (MILP), stochastic programs, or simulation-based
frameworks. Multi-objective and integrated mathematical models have gained
prominence as mills seek to balance economic, quality, and environmental out-
comes. Macowski et al. (2020) introduced a bi-objective MILP that jointly

optimizes profit and environmental footprint for the Brazilian sugar and ethanol
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network, coordinating not only feedstock allocation and processing schedules, but
also co-product and by-product management across multiple facilities. Similarly,
Carvajal et al. (2019) developed a robust optimization framework for integrated
agricultural-processing systems, maximizing the net present value of bio-fuel
projects under multi-stage climatic and supply uncertainty.

In general, sugarcane processing optimization models are formulated as
mixed-integer linear programs (MILP), stochastic programs, or simulation-based
frameworks. Multi-objective and integrated mathematical models have gained
prominence as mills seek to balance economic, quality, and environmental out-
comes. Macowski et al. (2020) introduced a bi-objective MILP that jointly
optimizes profit and environmental footprint for the Brazilian sugar and ethanol
network, coordinating not only feedstock allocation and processing schedules, but
also co-product and by-product management across multiple facilities. Similarly,
Carvajal et al. (2019) developed a robust optimization framework for integrated
agricultural-processing systems, maximizing the net present value of bio-fuel
projects under multi-stage climatic and supply uncertainty. More recently, Aliano
Filho et al. (2023) advanced a multi-objective processing optimization model
that explicitly evaluates trade-offs between profitability and resource utilization,
incorporating constraints related to co-product generation and mill capacity.
These approaches underscore the importance of extending beyond single-product
formulations, enabling processing facilities to design resilient and sustainable
bio-refinery strategies that align economic performance with environmental
stewardship.

Stochastic and scenario-based programming have become important tools for
handling uncertainties in input supply, processing rates, and market conditions.
For instance, Chavez et al. (2020) proposed a multi-objective stochastic optimiza-
tion model that integrates harvesting, transport logistics, and mill operations,
generating Pareto-optimal solutions that account for variability in cane supply,
process efficiency, and sustainability goals. Scenario-based planning, as applied
by Shavazipour et al. (2020), supports resilient scheduling and investment de-

cisions for bio-ethanol supply chains, allowing planners to hedge against deep
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market and weather uncertainties.

In summary, recent research underscores the central role of mathematical
programming, simulation, and integrated data-driven models for improving effi-
ciency and resilience in sugarcane processing supply chains. These advancements
not only increase throughput and profitability, but also promote environmen-
tal sustainability and adaptability within increasingly complex and uncertain

production systems.

2.2  Multi-Stage Optimization in Sugarcane Supply Chains

The efficiency and resilience of sugarcane supply chains significantly depend
on effective coordination between different operational stages, especially har-
vesting and processing. Traditional single-stage optimization models, despite
their detailed representations, often overlook critical interactions between stages,
resulting in operational bottlenecks, unnecessary delays, and diminished prof-
itability. This has led researchers toward multi-stage optimization models that
explicitly integrate decisions across different stages, enabling more holistic,
adaptive, and realistic operational planning. This section reviews the existing
literature on integrated multi-stage models, focusing on harvesting-processing
synchronization, and identifies gaps that motivate the approach developed in

this research.
2.2.1 Integrating Harvesting and Processing Stages

Recent reviews, such as Patil et al. (2024), identify bottlenecks in mill processing
as the main sources of inefficiency and stress the need for integrated operational
and planning models. To address these challenges, researchers have developed
advanced optimization frameworks that synchronize upstream and downstream
decisions.

Building on these integrated frameworks, the integration of the harvesting
and processing stages has become a focal point in sugarcane supply chain opti-
mization, as decoupled decision-making between the field and the mill is widely

recognized to increase raw material losses, bottlenecks, and inefficiencies across
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the system. Modern mathematical optimization approaches thus increasingly
target the simultaneous coordination of these phases, moving beyond isolated
stage optimization toward comprehensive, system-wide planning.

One widely cited approach is the CAPCONN simulation model developed
by Stutterheim et al. (2008), which links field harvest schedules with factory
operations in a unified simulation environment. By modeling the dynamic in-
teractions between harvesting rates, transportation flows, and mill capacity,
CAPCONN enables real-time scenario analysis and adaptive scheduling, sup-
porting decision-makers in identifying and mitigating process bottlenecks as they
arise.

Beyond simulation, mathematical programming and multi-objective opti-
mization models have been increasingly used to explicitly integrate harvesting
and processing. For example, the multi-objective stochastic model proposed by
Chavez et al. (2020) captures uncertainties in crop yield, harvesting times, and
mill performance, jointly optimizing the scheduling of harvesting, maintenance,
and transportation activities. Their framework produces a Pareto frontier of so-
lutions that balance operational efficiency and sustainability, providing valuable
insights for managing trade-offs under real-world variability.

Metaheuristic and evolutionary algorithms also play an important role in
integrated planning. Jarumaneeroj et al. (2021), for instance, use a genetic
algorithm-based model to coordinate harvest allocation and mill intake, opti-
mizing not only for sugar output and processing efficiency but also for equity
among growers. Such models are capable of handling the complex, non-linear
interactions inherent in real-world sugarcane supply chains.

Several recent studies have extended these models to include more detailed
representations of crop physiology and post-harvest quality loss. For example,
robust optimization models by Gilani & Sahebi (2020) account for environmental
uncertainties such as temperature and rainfall, explicitly modeling how these
factors accelerate or slow sucrose deterioration after harvest with a non-linear
time-dependent decay function. Scenario-based planning tools by Shavazipour et

al. (2020), on the other hand, represent multiple post-harvest decay trajectories
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under different operational and climatic conditions, allowing the selection of
strategies that perform well in a range of possible futures. In contrast, our model
applies a constant-rate linear function in sugarcane tonnage, and in sucrose
content before harvest and after peak maturity. Aliano Filho et al. (2023b)
incorporated cumulative degree days (GDD) into an integrated harvesting and
processing optimization model, using thermal time as a proxy for biological
development. Degree days measure the accumulation of heat units above a base
temperature, which directly influences sugarcane growth, sucrose accumulation,
and post-harvest deterioration. By linking operational decisions to degree days
accumulation rather than calendar time, their model captures differences in
variety specific maturation and the impact of climatic variability on both field
scheduling and mill performance.

Despite these advances, few studies explicitly model the dynamic flow of the
sugar content, which are the temporal changes in sucrose concentration during
crop maturation and after harvest. Most existing integrated approaches rely
on fixed, average, or estimated yield parameters for tractability, rather than
tracking the continuous evolution of sugar quality over time. As a result, the
dynamic nature of the sugar content, which is central to both field management
and mill efficiency, is often simplified or omitted in current integrated planning
models.

2.2.2 Comparison of Optimization Models

This section provides a structured comparison of key optimization models and
approaches in the sugarcane supply chain literature. Table 1 summarizes repre-
sentative papers, highlighting modeling techniques, supply chain stages addressed,
major constraints and parameters, and the primary objectives targeted by each

study.
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2.3 Sugarcane Life Cycle and Physiology: Implications for
Supply Chain Modeling

A fundamental aspect of sugarcane supply chain optimization is the dynamic evo-
lution of sugar content (Pol%) throughout the plant’s life cycle. The physiological
processes governing biomass accumulation, sucrose storage, and post-harvest
quality loss are central to both agronomic management and supply chain per-
formance. However, most existing operational and optimization models treat
the sugar content as a fixed or average parameter, neglecting the temporal and
environmental variability that directly impacts the yield, timing, and economic
returns. In the following sections, we first examine the agronomic drivers of
biomass accumulation and sucrose dynamics, before outlining how our pro-
posed approach integrates these dynamics into harvest scheduling and processing

decisions.
2.3.1 Biomass Accumulation and Yield Potential

Sugarcane yield depends primarily on biomass accumulation, influenced by
cultivar, agronomic practices, and the environment. Coale et al. (1993) modeled
dry matter accumulation in Florida sugarcane, noting a typical grand growth
phase of rapid weight gain, with rates up to 0.15 t/ha/day. Donaldson et al.
(2008) observed that the planting season and varietal choice affect the final
yield and resilience, with some cultivars (such as N14, N21) sustaining high
productivity under varying conditions. These studies underscore that planting
date and field management fundamentally shape the harvestable mass available
for processing, making accurate yield forecasting a prerequisite for effective

scheduling.
2.3.2 Sucrose (Pol%) Accumulation Dynamics

A fundamental aspect of sugarcane supply chain optimization is the dynamic
evolution of sucrose content (Pol%) throughout the plant’s life cycle. Pol levels
rise during maturation and typically peak before harvest, tightly linked to both

genotype and environmental conditions. Studies show that Pol is a strong
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predictor of extractable sugar and is closely correlated with the commercial cane
sugar (CCS) yield (Sanghera et al., 2017; Patil et al., 2020). Figure 1 illustrates
the typical maturity curve of sugarcane, showing how Pol(%) gradually increases
during growth and peaks at time ¢ before beginning to decline. For example,
Lingle (1999) and Vijayaraghavan (1998) document peak Pol levels around 1012
months after planting, though timing varies by cultivar and climate. Despite
this, most operational and optimization models treat Pol as a fixed or average
parameter, neglecting its temporal dynamics and environmental variability.
This simplification may reduce accuracy in yield estimation and weaken the

effectiveness of decisions related to harvest timing and profitability.

POL (%) over Time
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Figure 1: Maturity curve of the sugarcane (adapted from Pimentel Ramos et al.,
2016).

2.3.3 Post-harvest Deterioration of Sugar Content

Sugarcane quality deteriorates rapidly after harvest due to biochemical and
microbial processes. As shown by Solomon (2009) and Solomon et al. (2006),
delays of more than 72 hours between cutting and milling can result in sucrose

losses of 8 to 30%, depending on conditions (Figure 2). Enzyme activation
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Decline of Pol % in cane over days after harvest
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Figure 2: Sugar content decrease due to post-harvest deterioration (adapted
from Solomon et al., 2006).

and microbial activity (such as dextran formation) are major drivers of post-
harvest losses (Shivalingamurthy et al., 2018). Genotype, storage method, and
temperature modulate deterioration rates, with some interventions (such as
foliar silicon, invertase inhibitors) reducing but not eliminating losses (Singh
et al., 2020). Supply chain decisions that fail to account for rapid post-harvest

deterioration risk significant reductions in sugar recovery and overall profitability.

2.4 Link to Current Research: Integrating Physiology with
Optimization Models

Despite extensive agronomic research, most existing supply chain optimization
models treat yield and quality parameters as static, neglecting the dynamic
interplay between biomass growth, sugar accumulation, and post-harvest losses.
Few studies explicitly model continuous changes in Pol or link quality dynamics
with operational decisions such as harvest timing or mill scheduling. This gap is
especially relevant as industry and research have repeatedly demonstrated the
economic consequences of delayed processing and non-optimal harvest scheduling.

The present research directly addresses this critical gap by explicitly modeling
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the continuous temporal evolution of the sugar content (Pol %), capturing both
accumulation during maturation and deterioration after harvest. By embedding
these physiological dynamics into a mathematical optimization framework, our
approach enables precise synchronization between harvesting and processing
schedules. The incorporation of these dynamics into the model is achieved by
determining the optimal harvesting window for each plot, with details provided
in later sections. This integration significantly improves the accuracy, economic
viability, and practical relevance of supply chain models compared to previous

static-parameter methods.
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3 Problem description and mathematical model

3.1 Problem description

This study focuses on the integrated harvesting and processing stage of certain
farms over a horizon with discrete time periods. In this section, we develop a
multi-objective optimization model for coordinating sugarcane harvesting and
processing. Therefore, we present a mathematical model as a tool for determining
this plan.

We assume that the problem involves a number of sugarcane plots owned
by a set of contract growers. The sugarcane is harvested and transported to
multiple sugar mills according to the respective capacity. The scope of the
planning comprises two primary stages: the initial harvesting at the farm level
and the subsequent transportation and processing at the mill level. Key decisions
include determining optimal harvesting schedules, capacity limitations, inventory
balances, and processing sequences. Our model aims to reconcile and optimize
the interests of both growers and mills, achieving a balanced solution that

considers profitability and sugar yield.
3.1.1 Harvesting phase

In this context, we only consider a single variety of sugarcane planted in all plots,
which has a one-year growth cycle. In the field, farmers aim to harvest all their
plots near the optimal maturity period within harvesting windows to achieve
maximum sugar content, directly influencing their revenue. However, since
planting times and growth cycles are similar across plots, optimal harvesting
periods often overlap, creating a concentrated demand for harvesting equipment,
transport vehicles, and processing capacities at the mills. We assume that each
plot must be harvested completely within the same period.

A central depot is located among the sugarcane fields, serving as a base for
harvesting machines, which are either owned or hired by the milling company.

Therefore, the harvesting cost is taken by mills, as a significant part of the profit
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calculation. The area and sugarcane yield are different for each plot. In the
model, harvesting time windows are defined based on the dynamic maturity
curves of sugarcane, which describe changes in sucrose content over time. These
curves allow the identification of periods in the life cycle of sugarcane when
sugar content exceeds a practical threshold for optimal extraction. While this
threshold is not implemented as an explicit constraint in the optimization model,
it is implicitly embedded through the predetermined harvesting windows: only
periods falling after the threshold point on the maturity curve are eligible
for harvesting. This ensures that harvesting schedules are synchronized with
the biological readiness of the crop, avoiding premature cutting that would
compromise yield quality. Each plot is limited to a single harvest per year to
preserve consistency in growth cycles, with peak maturity dates varying across

plots according to their specific growth trajectories.
3.1.2 Transportation phase

The harvested sugarcane is transported directly to the mills in the same harvesting
period using a fleet of vehicles owned by the milling companies. In each period,
the fleet of empty vehicles departs from the mill with sufficient capacity, travels
to the designated plot for loading, and then transports the harvested sugarcane
back to the mill for processing. These vehicles transport sugarcane exclusively
from a single plot to a single mill in each trip and can only carry sugarcane with
the same sugar content. Each vehicle can do a single back-and-forth trip in each

period.
3.1.3 Processing phase

After being harvested and transported in period ¢, the sugarcane can be immedi-
ately processed (in the same period), or it can be kept in storage to be processed
later, ensuring that the sugar content does not fall below the minimum acceptable
threshold defined by the deterioration curve. This curve, which captures the
progressive sucrose loss after harvesting, determines the permissible processing
time window for each batch. However, the mills operate under fixed processing

capacities, creating potential bottlenecks, especially during peak maturity peri-
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ods when large volumes of sugarcane are harvested simultaneously. In such cases,
only a portion of the available sugarcane can be processed within the designated
period, while the remaining quantity is designated as waste and excluded from

further processing, aligning with the operational capacity constraints.
3.1.4 Inventory phase

We introduce the inventory variable to represent the tonnage of harvested cane
held in store at the end of period ¢, prior to processing. A stock-balance
constraint ensures that, for each period, all harvested and transported cane is
either processed immediately or carried forward as inventory for later crushing.
Storage is permitted only within the allowable processing time window defined
by the post-harvest deterioration curve and the minimum sucrose threshold.
This ensures that any cane held in inventory can still be processed before its
sugar content falls below acceptable levels.

Holding inventory allows the model to smooth processing loads across adjacent
periods, and to moderate capacity bottlenecks during peak harvest, while avoiding
sugar content degradation beyond the threshold window. The sucrose loss over
time is presented by the deterioration curve, so that any delay in crushing reflects
a trade-off between operational feasibility and quality preservation. Storage is
restricted both by the mill’s physical capacity, to prevent spoilage, and by the
quality limits imposed by the deterioration profile.

In our numerical experiments, however, we adopt a just-in-time (JIT) assump-
tion, setting the inventory balance of 0 for all £. Under this regime, every unit
of harvested cane must be processed in the same period it arrives, eliminating
storage and thereby focusing the analysis on the direct interaction between

harvesting schedules and processing capacity.
3.1.5 Objectives

The optimization problem has two primary objectives:

1. To maximize the total profit by balancing revenue from processed sugar
against the costs of harvesting, transportation, and inventory, representing

the benefits of sugar mills.
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2. To maximize the total sugar content harvested at the plot, representing

the benefits of growers.

In our model, we make the following assumptions:

—

. Sugarcane from a plot can only be harvested once annually.

2. The harvested sugarcane is transported directly to the mills in the same
period ¢ of harvest and stored, waiting for processing in the same period ¢

or later.

3. Each vehicle can only transport sugarcane from one plot to one mill in a

single period and must carry sugarcane with the same sugar content.

4. Sugarcane must be harvested and processed before its sugar content declines

below the minimum threshold.

3.2 Notation and model

In

this section, the sets, parameters, and decision variables used in the proposed

mathematical model are defined as follows.

Sets:

J Set of sugarcane plots to be harvested.

1 Set of sugar mills.

T Set of time periods in the planning horizon.

H; Subset of time periods during which plot j € J can be harvested;

H; ={aj,a; +1,...,b; —1,b;}, with a; (b;) denoting the earliest
(latest) time period harvesting can begin (be completed) on plot j.

Subset of time periods during which the initial inventory can be
processed in mill ¢ € T;
K; ={1,2,...,d;}, with d; denoting the latest processing time period

for the initial inventory in mill 4.
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Py Subset of time periods during which the sugarcane plot j € J harvested

in period h € H can be processed at the mill;

Pp; ={h,...,cn;}, with ¢p; donating the latest possible processing time

period for plot j harvested in period h.

Parameters:

POL;pp

POL;,

initial
poL™

POLin

Mp;

qin

Viin

TVip,

CAPPTOC
(714}?§nv

harv
i

Percentage polarization (Pol %) at time period p of cane from plot

7, harvested in period h, and processed in period p.

Percentage polarization (Pol %) at time period h of cane from plot

7, harvested in period h.

Percentage polarization (Pol %) at time period p of the stored

sugarcane in the initial inventory level, processed at mill .

Minimum sugar content required in harvesting and processing

period.
Initial inventory level at mill <.

Total amount of sugarcane that can be harvested in period h by all

harvesting machines for mill i.

Quantity of sugarcane available in plot j if harvested during

period h.

Number of vehicles required to transport sugarcane from plot j to

mill ¢ during the harvest period h.

Total number of vehicles available for mill ¢ during harvest period

h.
Total milling capacity of mill ¢ per period.
Total inventory capacity of mill ¢ per period.

Total harvest cost for plot j in harvesting period h.
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trans
thi

Oproc
inv
¢

Cidisp

Total transportation cost per vehicle from plot j to mill 7 in

harvesting period h.
Total processing cost per quantity in mill 4.
Total inventory cost per quantity in mill i.

Total disposal cost per quantity in mill ¢, taking both positive and
negative values, depending on whether disposal results in a net

cost or a revenue-generating activity.

Selling price per quantity of sugar produced in the mill ¢ (in

dollars per unit of Pol).

Decision Variables:

Xjni

Zihpi

Wini

Binary decision variable, 1 if plot j is harvested in period h and

sent to mill 7.

Continuous variable for quantity harvested from plot j in period h,

and processed in period p at mill 7.

Continuous variable for inventory level at mill ¢ at the end of

period p.

Continuous variable for quantity taken from the initial inventory

to be processed in period p at mill .

Continuous variable for quantity of sugarcane waste harvested

from plot j during harvesting period h and transported to mill i.

The proposed model is therefore:

Maximize : Sugar Content = Z Z Z POL;1, qjn Xjni (1)

jeJ heH; iel
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Maximize: Profit = Z Z Z Z Zinpi - Si - POLjpy

JEJ heHj pEPy; i€l

+3 > Yy 8- POLI

i€l peEK;

IR

j€J heH; i€l

- Z Z Z Vini - C;Z(st * Xjni

j€J heH; i€l

2D 2 D T O

jeJ heH; pePy; i€l

_ Z Zypz . CZPTOC

peEK; i€l

— Z Z Iip . C;va

i€l peK;

=2 D Wik G

jeJ heH; icl

subject to:

SN Xpi=1 VjeJ (3)

hEHj el
Zth'ij'SMm VheT,iel (4)
JjeJ
S Vin - Xjn <TVi VheT,iel (5)
jedJ
I, <CAP™ Yiel,peT (6)

Iip = Ii’pfl + Z(iji *Qjp — iji) — Z Z Zjhpi — Ypi Vi € I,p eT
jeJ JEJ heT|h<p

S S Zju <CAP VielpeT ®)
jeJ he H;|h<p

Wini+ > Zjnpi = Xjni-qjn Vi€ JheTiel (9)
PEPhj
> Vi<l Viel (10)
pPEK;
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S>> Xjni=0 VjelJ (11)

hET\H; i€l

Zinpi =0, VieJheT\H;,peT,iel,
Zinpi =0, YjeJheT,peT\Py,icl, (12)
Zjhmzo, VjEJ,hET,pSh,iEI,

The objective function (1) assesses the profitability of the growers by max-
imizing the total amount of sucrose content harvested from sugarcane. The
objective function (2) maximizes the profit of sugar mills by balancing revenues
from sugar production against costs incurred during harvesting, transportation,
and processing. Constraints (3) impose that a plot must be harvested exactly
once during the planning horizon. Constraints (4), (5), (6), and (8) consider the
harvest, transport, inventory, and process capacity. Constraints (4) relate to the
harvesting machine capacity, ensuring that the total harvested quantity from
all plots does not exceed the machine’s operational capacity during any period.
The fleet of track and trail capacity relates to (5), considering that the quantity
of sugarcane transported does not exceed the available transportation fleet’s
capacity for a given mill and period. Constraints (6) ensure that the inventory
at mills remains within the defined storage limits. Constraints (8) limit the total
amount of sugarcane processed at any given mill during each period.

Constraints (7) are related to the inventory balance, dynamically updating
the inventory level over time, accounting for leftover stock, inflowing harvested
sugarcane, and outflowing processed quantities and waste. Constraints (9) couple
variables Wjns, Zjnpi, and Xjp,, making sure that harvested sugarcane is properly
tracked and processed. Waste arises from the interaction between the Just-In-
Time (JIT) processing constraint and limited mill capacity, which forces some
excess cane to be discarded unprocessed because of the time window imposed
by the minimum sugar content threshold. The initial inventory is tracked in
constraints (10), preventing unrealistic processing of the initial inventory levels
at the start of the planning period.

Constraints (11) and (12) define the harvesting variables X;;; and processing
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variables Z;pp;. Constraints (11) ensures that plot is only harvested within
its feasible harvesting periods, while constraints (12) prevent sugarcane from
being processed if it was not harvested or if it occurred before or during the

corresponding harvesting period.

3.3 Methodology and Implementation: e-constraint

method

In order to address the inherently conflicting goals of maximizing profit and
maximizing sugar content, this study adopts a multi-objective optimization
approach. The e-constraint method offers a transparent and systematic way to
generate the Pareto frontier, enabling clear insight into the trade-offs between
objectives. The e-constraint method is structured in two stages. The first
stage establishes the bounds for sugar content by identifying the maximum and
minimum attainable sugar content under the optimization framework. This is

achieved by solving two single-objective optimization problems:

1. Maximizing Profit: The first problem maximizes profit without explicitly
constraining sugar content. To determine the lower bound for e, we
calculate the maximum sugar yield achievable subject to the condition
that the profit equals the maximum profit obtained in this problem. This
requires solving a secondary optimization problem where sugar yield is
maximized while enforcing the profit-equality constraint. The resulting
sugar yield represents the highest sugar content compatible with maximum

profitability.

2. Maximizing Sugar Content: The second problem solely maximizes sugar
content without considering profit as an objective. This provides the upper
bound for €, representing the maximum attainable sugar content within

operational limits.

In the second stage, the e-constraint method is applied by treating sugar

content as a constraint and incrementally adjusting its lower bound. By iterating
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through a predefined set (20 number points) of e values, ranging from the
minimum to maximum sugar content values, the Pareto frontier is generated.

The modified mathematical formulation for each iteration is defined as follows:

Maximize: Profit =" > Y~ Zjppi - Si - POLjny (13)

j€J heH pePy; i€l

+ Z Z Yyi - S - pOL;‘gitml (14)

i€l peT

=D D> Xjni - O (15)

j€J heH; i€l

=D 0D Vi G - X (16)

jE€J heH; i€l

=20 DD i CP (17)

jE€J heH; pePyj i€l

=2 D Yu- Ol (18)

peT i€l

S, o (19)

i€l peT

=3 DD Wi G (20)

jEJ heH; i€l

Subject to:

Constraints (3)—(12) (21)

SN Xjni POLjy -qjn > e (22)

j€J heH; i€l
Constraints (22) ensure that any feasible allocation of harvest decisions must
produce a total sugar yield at least equal to the threshold e. By summing
Xjni -POLjp, -qjn over all possible plots, harvest periods, and mill assignments,
the left-hand side aggregates the total sugar harvested throughout the entire
planning horizon. Imposing this aggregated quantity to be at least € guarantees

that, in each run of the e-constraint method, the set of harvested plots and their
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scheduling decisions collectively satisfy a minimum sugar production requirement.
In the two-stage procedure, € is varied between the lower bound (the maximum
sugar yield associated with maximum profit) and the upper bound (the maximum
attainable sugar yield) to generate the Pareto sets, thereby tracing the trade-off

between profit and sugar content.
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4 Design of the instances

4.1 Base data instances

To ensure the realism and relevance of our analysis, the base instance is designed
to closely reflect typical operational patterns in small-scale sugarcane farming
systems. The following data instance setup is chosen to represent the scale
and structure most commonly observed in the industry, serving as a practical

foundation for scenario analysis and optimization.
4.1.1 Basic time and plot set

In many sugarcane producing regions, harvesting is coordinated among small
groups of growers, typically ranging from 2 to 8 per group (Jarumaneeroj et al.,
2021). This study focuses exclusively on theses small-scale production units. The
model considers a set of 65 plots (j = 65), which reflects the common structure
with a typical group of 2 to 8 small growers, each managing around 10 plots. In
our case, 65 represents the largest instance size that can be solved within the
available computational time.

Furthermore, the set of sugar mills under consideration is denoted as:
I1=11,2] (23)

representing two major mills that coordinate the intake and processing of
harvested sugarcane.

In this context, a 12-month sugar cane variety is considered, which can
be harvested early (10-months), mid-late (11-12 months), or late (13-months).
Selecting a semi-weekly interval as the time bucket for the 4-month harvesting

and planning horizon, we obtain a 32-period time horizon:

T=11,2,3,...,32 (24)

The processing window is assumed to be limited to the period in which the
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harvest is done. This is because the sugarcane operation requires the just-in-time
(JIT) strategy, which just restricts the same processing period with the harvesting
period. The set is shown by:

Phj:{p|p:h,h€Hj,p€T}, VjEJ,hGH]‘ (25)

This set is appropriate for planning decisions concerning sugarcane harvesting
and sucrose content management. The main parameters are summarized in

Table 2.
Table 2: Key Model Parameters.

Parameter Value
Number of sugarcane plots (J) 65
Number of sugar mills (1) 2

Planning horizon (time periods, T') 32 (semi-weekly periods)

4.1.2 Harvest window

The definition of the harvest window is crucial because it determines the feasible
time periods in which each plot can be harvested. It links crop maturity patterns
with operational scheduling decisions, ensuring that harvesting aligns with both
agronomic and logistical constraints.

The harvesting window for a plot can be formally expressed as:

Hj — {titart’ t;tart + 1’ t;tart + 2’ . 7t39'tart + 7} (26)

where h is an element of [; and represents a potential harvest time within that
window, and ¢5'*"* is the start period of harvest window of plot j.

In this modeling framework, each sugarcane plot j is assigned a harvesting
window of 8 consecutive semi-weekly periods, corresponding to a 4-week interval
within the overall 32-period (16-week) planning horizon. This 8-period window
was selected because, according to the sugar content accumulation function, the
period during which the sugar content in sugarcane remains above 13% lasts for

only 8 harvesting periods, as will be further discussed in Section 4.1.6, reflecting
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both the biological maturity profile and the practical requirements of harvest
scheduling within the model’s time horizon. Higher (or lower) thresholds for the
sugar content will result in smaller (or longer) harvesting windows.

For each plot j, this harvesting window, denoted by Hj, is generated by
selecting a valid starting time tjftm't at random from a pre-defined range of 1
to 25, in order to ensure the whole harvest window of each plot within the
time horizon. These factors inherently result in varied maturation and harvest
schedules across different plots. The model also specifies that highest sugar
content occurs around period 5 of the harvesting window, due to the sugar

content accumulation function, shown in 3.

Table 3: Harvest Window Parameters.

Parameter Value

Harvesting window length per plot (H;) 8 periods (semi-weekly periods)
Optimal harvesting maturity (POL %) Period 5 within the harvesting window

Due to natural variability in harvest timing across locations and the absence
of detailed field-level data, each plot’s harvest window H; is generated randomly
for our model instances.

The resulting set of random harvesting windows H; is shown below:
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Table 4: Harvesting Windows Hj.

Plots 1-25
1 [21, 28] 2 [4, 11] 3 1, 8] 4[24, 31]
5 [9, 16] 6 [8, 15] 7 [8, 15] 8 [5, 12]
9 [24,31] 10 [4, 11] 11 [22,29] 12 [24, 31]
13 [18,25] 14 [3,10) 15 [19,26] 16 [14, 21]
17 [2,9] 18 [1,8 19 [3,10] 20 [7, 14]
21 [8,15] 22 [17,24] 23 [20,27] 24 1, §]
25 [18, 25]

Plots 26-50
26 [7,14] 27 [23,30] 28 [21,28] 29 [23, 30]
30 [18,25] 31 [14,21] 32 [8, 15] 33 [15, 22]
34 [19,26] 35 [9, 16] 36 1,8 37 [25,32]
38 [6,13] 39 [23,30] 40 [14,21] 41 [11, 18]
42 [9, 16] 43 [5,12] 44 [7,14] 45 [25, 32]
46 [11, 18] 47 [4, 11] 48 [3, 10] 49 [13, 20]
50 [4, 11]

Plots 51-65
51 [12,19] 52 [12,19] 53 [20,27] 54 [9, 16]
55 [2,9] 56 [24,31] 57 [15,22] 58 [18, 25]
59 [4, 11] 60 [13,20] 61 [3,10] 62 [18, 25]
63 [10,17] 64 [21,28] 65 [20, 27]
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Table 4 provides the assigned harvesting windows for each plot in the base
instance. This variation in H; introduces heterogeneity in harvesting windows
affected by environmental and climatic factors in real-world sugarcane supply

chains.
4.1.3 Capacity information

In the basic instance setup, the harvesting capacity reflects the use of modern
two-row sugarcane chopper harvesters operating under typical field conditions.
We assume a group of harvesters working together, based on the standard
operational efficiency reported in the literature, which can harvest approximately
850 metric tons of sugarcane per semi-week (Ma et al., 2014, 2013).

The trailer truck used to transport between fields and mills, as described
in the product information from Sinotruk International (n.d.), is engineered to
support a load capacity in the range of 21 to 30 tons. Therefore, in the base
model, we choose 25 tons per trip. Crushing capacity refers to the maximum
amount of sugarcane that a sugar mill can crush (process) per unit of time,
commonly measured in TCD (tons of cane per day). It directly determines
how much sugarcane can be processed into sugar and by-products like ethanol,
molasses, and bagasse (Misra et al., 2016). The most common crushing capacity
in India falls within the range of 2,000 to 2,500 TCD (tons of cane per day)
for modern sugar mills, especially in Maharashtra and Uttar Pradesh (Bhatt
et al., 2021). However, since we only consider small-scale plot numbers, 1,000
tons of processing capacity and 500 tons of processing capacity per half-week
are assumed for mill 1 and 2 respectively, in Table 5.

Sugar mills aim to operate on a just-in-time (JIT) system, where harvested
cane is delivered and crushed within 24 hours, often within 12-18 hours. In line
with this operational practice, we assume there is no inventory capacity and no
holding cost at the mills; harvested cane is processed immediately upon arrival,
so there is no inventory at any point in the model. We assume there is no initial

inventory present at the start of the planning horizon.
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Table 5: Capacity Parameters.

Parameter Value

Harvesting capacity (per mill, per period) 850 tons

Processing capacity (Mill 1) 1,000 tons/period
Processing capacity (Mill 2) 500 tons/period
Initial inventory at each mill 0 tons

Vehicle capacity 25 tons/trip
Vehicles available (per mill, per period) 150

4.1.4 Cost and revenue information

The cost and revenue parameters applied in this model are directly aligned
with the operational context of the simulated instances and are summarized in
Table 6. For each instance, harvesting costs reflect contract rates commonly
observed in practice, with Mill 1 and Mill 2 incurring 13.33 and 15.67 CAD per
ton, respectively, based on recent field data (Bhatt et al., 2021). Transportation
expenses are set at 4.49 CAD per ton for both mills, representing the average
cost of moving sugarcane from the farm gate to the mill (Bhatt et al., 2021).
Processing costs are differentiated by mill: Mill 1 operates with a base
processing cost of 40 CAD per ton, while Mill 2 faces a higher cost of 55 CAD
per ton (Pippo et al., 2007). For disposal, the base scenario assumes that any
surplus or residue material incurs no additional cost, as it is either used for

energy, compost, or disposed of without significant expense.
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Table 6: Cost Parameters.

Cost Type Unit Cost ($/ton)
Harvesting cost (Mill 1) 13.33

Harvesting cost (Mill 2) 15.67
Transportation cost (both)  4.49

Processing cost (Mill 1) 40.00

Processing cost (Mill 2) 55.00

Disposal cost (both) 0.00

4.1.5 Sugarcane life cycle regarding weight

In this section, we introduce the sugarcane life cycle to track the weight changes
of sugarcane. During the establishment phase (first 2 months), the density of
the planting and the accumulation of the initial biomass determine the overall
productive potential of each hectare and guide early scheduling of machinery
and labor.

We establish a relationship between cane tonnage (tons per hectare) and
days after planting (DAP) with a linear function by incorporating empirical
data from Patil et al. (2004) and Dimov et al. (2022). The initial seed weight
per hectare, obtained from mechanized planting trials, is 9 tons/ha (Patil et al.,
2004), while the maximum recorded yield at maturity (360 DAP) is 315 tons/ha,
as reported in (Dimov et al., 2022).

A linear function was formulated to estimate cane tonnage over time since
planting (month 0 to month 13), assuming a constant growth rate throughout

the crop cycle. The general form of the function is:

Y(t)=Yo+r-t (27)
where:
e Y (t) = Cane tonnage (tons per hectare) at time ¢

e Yy = 9 tons/ha, representing the initial sugarcane weight at time of
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planting.
o 7 = 2.94, representing the growth rate in tons/ha per semi-week.
e t = Semi-weeks after planting

Therefore, the final equation governing cane yield accumulation over time
considering the whole planting period from month 0 to 13 with the time interval

of half-week is:

Y, = 2.94t + 9 (28)

The linear growth function described above, shown in Figure 3 provides
the foundation for determining the harvestable cane tonnage for each plot j
at every possible harvest period h. However, in the base model, harvesting
decisions are made only during the final stage of crop development, spanning
from the beginning of month 10 (¢ = 73) to the end of month 13 (t = 112),
which corresponds to 32 semi-weekly periods in our planning horizon. For
every plot, the parameter of sugarcane tonnage g;;, is calculated by aligning
each harvest period with the corresponding stage in the crop’s growth timeline,
ensuring that it reflects the actual tonnage accumulated up to that period in the
crop’s life cycle. As a result, the model’s yield input for each harvest window is
determined by looking up the crop’s total accumulated growth at the appropriate
stage, guaranteeing a realistic connection between biological development and

operational scheduling.
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Figure 3: Sugarcane life cycle.

4.1.6 Pre-Harvest sucrose accumulation

Understanding the accumulation of sugar content in sugarcane is essential for
optimizing crop management and maximizing yield. Among the various metrics
that reflect sugar content, Pol (%), which measures the purity of sugarcane, is
widely recognized as a crucial factor directly influencing commercial cane sugar
(CCS) (Sanghera et al., 2017; Patil et al., 2020).

The equation represents a piecewise linear model for the pre-harvest accumu-
lation of sugar content of the sugarcane, as a function of time since planting. In
this model, the independent variable x corresponds to the number of semi-weeks
from planting until harvest, and the model is based on empirical data reported
in Vijayaraghavan (1998).

Over the entire pre-harvest period with semi-weeks intervals 0 < x < 112, the
piecewise model captures two biologically distinct phases of sugar accumulation

in the cane:

o Accumulation Phase (0 < z < 104):
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In the first 104 semi-weeks after planting, sugar content (.S, ) rises approxi-
mately linearly:

S, =012z + 1.10 (29)

The slope 0.12 (units of sugar per semi-week) reflects steady synthesis of
soluble sugars as the stalk matures, and the intercept 1.10 ensures that
at x = 0 (just after planting) the baseline sugar content is nonzero, which
corresponds to the empirically observed peak reported in Vijayaraghavan

(1998).

o Decline Phase (104 < < 112):
After the physiological peak at period 104, sugar content begins to fall at

a faster rate, due to respiration and remobilization:

Sy =—-0.19z + 33.34 (30)

The negative slope —0.19 indicates a semi-weekly loss of sugar, and the

intercept 33.34 is chosen to guarantee continuity at the switch-over point.

Therefore, the equation of pre-harvesting sugar content accumulation since

planting shows below:

0.12z + 1.10, 0<z<104
S, = (31)

—0.192 + 33.34, 104 <z <112

The piecewise function .S, shown in Figure 4, which describes the sucrose
accumulation and decline in the sugarcane stalk over semi-weekly intervals from
planting through physiological maturity, forms the basis for estimating the
theoretical maximum sugar content available at each point in the crop cycle.
In the optimization model, this biologically driven trajectory is mapped to the
variable POL;j, which represents the percentage sugar content (POL %) of
plot j if harvested in semi-week h. For each plot, the corresponding z value is

determined by the time interval since planting to the scheduled harvest period h.
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Applying the piecewise function S, to this x yields the expected pre-harvest
sugar content for each pair (j,h). Table 7 illustrates this relationship, with
the overall peak occurring at period 24 within the 32-period planning horizon.
Knowing the peak period for each plot allows the model to determine POL;y,
for every period within its feasible harvest window. This linkage ensures that
plot-level harvesting decisions in the optimization framework are grounded in
realistic, stage-specific sugar yields that reflect both the natural maturation and

deterioration of sugarcane.

Table 7: Pre-harvesting Sugar Content (% POL) by Selected Semi-weekly Periods.

Period (t) POL (%)

1 10.82
4 11.18
8 11.66
12 12.14
16 12.62
20 13.10
24 13.58
25 13.39
28 12.82
32 12.06

To determine the effective harvesting period, a minimum sucrose threshold
of 13% is applied to this function. This threshold reflects the lower bound of
economically viable processing quality and is derived from industry practice.
Using the fitted S, function, the threshold is first crossed at approximately
x = 100, 4 semi-weekly periods before the observed peak, shown in Table 8. It
remains above this threshold until approximately = 107, three semi-weekly
periods after the peak. This produces a total optimal harvest window of eight

semi-weekly periods. Within this range, all harvested cane meets or exceeds
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the required quality standard, allowing for flexibility in scheduling without

compromising output quality.

Table 8: Sucrose levels near the peak and corresponding positions in the 8-period
harvest window.

Window position Time since planting z S, (%)

1 100 13.10
2 101 13.22
3 102 13.34
4 103 13.46
5 (peak) 104  13.58
6 105 13.39
7 106 13.20
8 107 13.01

Figure 4 illustrates the progression of pre-harvest sucrose accumulation,
highlighting the precise timing of peak quality. The sucrose content increases
steadily, surpassing the 13% threshold shortly before reaching its maximum
of 13.58% at semi-week 104. This peak occurs in the fifth semi-weekly period
of the harvest window, as indicated by the blue marker. The shaded region
represents the full 8 semi-week duration of the harvest window, providing a
visual frame for operational scheduling. By clearly marking the peak, the 13%
benchmark line, and the harvest window, the chart underscores the importance
of aligning harvesting activities with the exact biological maturity stage. This
alignment minimizes the risk of quality decline from delayed harvesting, thereby

maximizing both sugar content and processing efficiency.
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Figure 4: Pre-harvest sucrose accumulation.

4.1.7 Post-Harvest sucrose deterioration

The bio-deterioration in the harvested cane is caused by enzymatic, chemical,
and microbial agents and continues to increase with the passage of time. From
the four measured POL values at delays of 0 hour, 72 hours, 1 week, and 2 full
weeks (respectively 100%, 98.95%, 95%, and 86% (Solomon et al., 2006)), we
fixed the intercept at 1.00 and performed a simple least-squares fit to determine
a single slope of —0.03225 in the model. The sucrose content in the sugarcane

after post-harvest handling is given by, shown in Figure 5:

POLjhp = POLjh . [1 —0.03225 - (p — h)] (32)
where:

o POLjpy is the post-harvest POL percentage for the plot j if the harvest

is done at time h and the processing is done at time p.

e POL;y, is the POL percentage for plot j if harvested is done at time h.
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Figure 5: Post-harvest sucrose deterioration.

4.2 Heterogeneous instance setup

To better capture the heterogeneity observed in real-world sugarcane operations,
we explore alternative instance setups that extend the base modeling framework.
These setups are designed to test the robustness of model outcomes and to
examine how key operational and biological variations influence supply chain
performance. In the heterogeneous scenario, we retain the same randomized
harvest window configuration used in the base instance, while it further introduces
controlled randomness in plot size, allowing it to vary within a specified range
rather than remain fixed as in the base case. This combined variability in both
harvesting windows and plot sizes creates more diverse operational scenarios. By
systematically altering these aspects, we can provide deeper insights into decision
support for small-scale sugarcane farming, under diverse field and logistical

conditions.
4.2.1 Heterogeneous harvest window and plot size

In this section, in addition to the previously considered variability in harvest
windows, we introduce plot size as another key source of variability between
plots. In the base instance, all sugarcane plots were assumed to have a uniform

size, with a size factor of 1.0 applied to every plot; thus, the yield quantity for
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each plot, g;jn, was identical except for temporal growth effects. However, real-
world sugarcane production is characterized by significant heterogeneity among
field plots, driven by differences in land area, soil conditions, and management
practices.

Specifically, each plot j is assigned a randomly drawn size coefficient A; €
[0.8,1.2], reflecting variability in plot productivity, as shown in Table 9. This
means some plots are smaller (yielding only 80% of the baseline), while others
are larger (yielding up to 120%). For each plot j, this multiplier is applied
directly to its base yield trajectory, so the effective quantity harvested in each
period becomes A; X ¢;i, where A; is the plot’s randomly assigned size factor.

The heterogeneous plot size instance is shown below:

Table 9: Plot-Size Coefficients A; by Plot Range.

Plots 1-25

1 1.15 2 094 3 0.88 4 083 5 1.06
6 1.11 7 119 8§ 1.14 9 1.15 10 0.95
11 098 12 113 13 087 14 094 15 1.07
16 1.08 17 107 18 083 19 1.05 20 1.01
21 090 22 098 23 091 24 1.17v 25 1.08

Plots 26-50

26 089 27 093 28 111 29 0.82 30 1.13
31 112 32 096 33 083 34 117 35 1.03
36 109 37 089 38 100 39 1.15 40 1.06
41 086 42 086 43 1.10 44 1.02 45 1.10
46 097 47 1.03 48 094 49 120 50 0.86

Plots 51-65

51 1.00 52 1.10 53 1.14 54 0.86 55 0.86
56 1.07 57 1.04 58 095 59 1.04 60 0.99
61 090 62 1.02 63 118 64 1.07 65 0.85

This heterogeneous design captures the interactive effects of temporal and

o1



spatial heterogeneity among fields and allows us to evaluate how variability in
both maturation timing and field size jointly influences scheduling flexibility,

resource utilization, and system performance.
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5 Result analysis

This section evaluates the computational results of the proposed optimization
model, examining solution quality, performance, and trade-offs between objec-
tives. It begins with the solver configuration, followed by robustness check, and
scenario-based comparisons to assess how changes in parameters and constraints

affect profit, sugar yield, and resource utilization.

5.1 Computational Configuration and Solver Settings

The computational framework is configured using the Gurobi optimizer, with
key parameters adjusted to enhance computational efficiency.

In the run, the model was solved using eight parallel threads (Threads =
8) and setting Presolve = 2. MIPGap = le-6 demands a very tight optimality
tolerance (0.0001%), so Gurobi will continue branching until the best bound
and the incumbent solution differ by less than one millionth of the incumbent’s

objective value.

5.2 Base instance analysis of Pareto Frontier

The full MILP model initially comprises approximately 141, 568 decision variables,
including 4,160 binary and 137,408 continuous variables, together with over
134,000 constraints and 143, 838 non-zero parameters. After applying Gurobi’s
presolve routines, the problem size is dramatically reduced: the solver reduces
the model to about 3,250 variables and 1,350 constraints.

For the base model, Table 10 presents the two extreme point solutions
generated by the model: maximizing profit versus maximizing sugar content.

In the Max Profit Solution, the harvest and processing schedule is optimized
solely for economic return, resulting in the highest achievable profit ($582,265.55),
but at a slightly reduced total sugar output (2,726.03 tons). Conversely, the
Max Sugar Content Solution prioritizes maximizing the total sugar delivered to
the mills, which increases the aggregate sugar output to 2,779.57 tons, but at
the cost of a notably lower profit ($477,808.87).
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In the Max Profit Solution, the optimization prioritizes economic return by
aligning harvesting and processing schedules to maximize revenue. This results
in the highest profit ($582,265.55) but yields a slightly lower total sugar output
(2,726.03 tons). Structurally, nearly all plots are harvested and delivered to
Mill 1, which has a lower processing cost, and most are scheduled for early or
mid-period harvests to avoid deterioration and reduce disposal or loss. This
schedule minimizes transport and processing costs and tightly synchronizes field
activities with mill capacity, producing no waste and no disposal at the mills.

In contrast, the Max Sugar Content Solution adjusts the harvesting strategy
to extract the absolute maximum amount of sugar from the crop, raising total
sugar delivered to 2,779.57 tons, but at the cost of a significantly reduced profit
(8477,808.87). The structure of this solution is noticeably different: to reach
higher Pol% values, a substantial share of plots is harvested later in the planning
horizon, often just before or during peak maturity periods. This means that
part of the harvested plots is transferred to Mill 2, which has a higher processing
cost. This results in a more scattered and less synchronized harvest schedule,
with more plots delivered to Mill 2, especially during late periods. Additionally,
there is a marked increase in disposals, as plots harvested later risk exceeding
milling capacity, leading to some cane being left unprocessed or wasted.

The trade-off for this instance highlights a classic operational dilemma:
maximizing technical yield (sugar output) requires accepting higher operational
costs due to increased use of expensive processing and higher disposal, while
maximizing profit encourages earlier harvesting and prioritizes deliveries to the
lower-cost mill, resulting in a tighter, more cost-efficient logistical flow with
minimal disposals, even if this means not always harvesting at the absolute peak

Pol%.
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Table 10: Comparison of Max Profit and Max Sugar Content Solutions.

Solution Profit (§) Sugar Content (tons)
Max Profit Solution $582,265.55 2.726.03
Max Sugar Content Solution $477,808.87 2779.57

The Pareto frontier generated by employing the e-constraint method in Figure
6 reveals a clear trend: as sugar content harvested by farmers increases, total

profit obtained by the mills generally decreases.

Table 11: Pareto Frontier: Trade-off Between Profit and Sugar Content.

# Profit ($) Sugar (tons)

1 582,265.55 2,726.03
2 580,980.62 2,734.48
3 979,376.56 2,742.93
4 577,171.48 2,745.75
5 d77,171.48 2,748.57
6 577,171.48 2,751.39
7 9573,953.46 2,754.21
8  573,953.46 2,757.02
9  570,139.00 2,759.84
10 569,823.46 2,762.66
11 566,303.39 2,765.48
12 561,877.69 2,768.29
13 557,438.74 2,771.11
14 552,288.90 2,773.93
15 529,696.65 2,776.75
16 477,808.87 2,779.57

In Table 11, the Pareto frontier begins with the pure profit-maximization

scenario (Point 1), where profit is highest at $582,265.55 and sugar delivered totals
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2,726.03 tons. As the constraint on sugar content becomes tighter, only small
reductions in profit are required to achieve noticeable gains in sugar yield. For
example, at Point 2 (2,734.48 tons of sugar), profit remains at $580,980.62, a loss
of just about $1,285 (0.22%) compared to maximum profit. This demonstrates
that modest adjustments in harvesting schedules, such as reallocating a few
plots to periods of marginally higher Pol(%), can improve sugar output without
materially increasing operational costs.

Within the middle range of the frontier (Points 3 to 8), sugar content in-
creases from 2,742.93 to 2,757.02 tons, while profit declines from $579,376.56
to $573,953.46. Here, an additional 14.09 tons of sugar is gained for an approx-
imately $5,423 drop (0.94%) in profit. This moderate trade-off arises mainly
from increased mill utilization and higher transport or processing intensity, but
still reflects operational strategies that keep costs under control while supporting
both mill and grower interests.

As the model shifts further toward maximizing sugar content, profitability
decreases more steeply. For example, between Points 10 and 13, the sugar content
rises from 2,762.66 to 2,771.11 tons, while the profit drops from $569,823.46
to $557,438.74, a decline of about $12,385 (2.17% decrease) for an added 8.45
tons of sugar (0.31% increase). This sharper reduction reflects the diminishing
returns of sugar output: achieving maximum Pol requires pushing more cane to
later harvests, often resulting in higher processing costs at less efficient mills.

At the extreme end, the maximum sugar content solution (Point 16) delivers
2,779.57 tons, but profit drops significantly to $477,808.87, which is over $104,000
less than the pure profit solution. This steep decline highlights the costliness of
maximizing sugar yield at all costs, as it requires a substantial portion of the
crop to be processed under less favorable economic and logistical conditions.

Achieving maximum Pol requires pushing more cane to later harvests, but
according to the cost structure in Table 12, this shift leads to a slight increase in
processing cost share (from 69.42% in the profit maximizing solution to 69.54%
in the max sugar solution) and a minor rises in harvesting costs (from 22.92%

to 23.10%). Transport costs actually decrease slightly (from 7.66% to 7.36%).
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Thus, the pursuit of a higher sugar content increases total cost mostly through
small changes in harvesting and processing, rather than a substantial change in

cost structure or efficiency.

Table 12: Cost-structure breakdown (percentage of total cost).

Cost Component Max Profit Max Sugar

Harvesting 22.92% 23.10%
Transporting 7.66% 7.36%
Processing 69.42% 69.54%
Initial Processing 0.00% 0.00%
Inventory Holding 0.00% 0.00%
Disposal 0.00% 0.00%

For decision-makers, the Pareto set offers practical guidance. A mill focused
on profitability should operate near Point 1 or Point 2, where incremental sugar
gains are possible at minimal profit loss. If the goal is to incentivize higher sugar
content (POL %) for growers, intermediate solutions such as Point 8 may be
preferable: profit declines by about $8,312 (from $582,265.55 at maximum profit
to $573,953.46 at Point 8), while sugar content increases by approximately 31
tons (from 2,726.03 to 2,757.02 tons). Accepting this moderate revenue reduction
allows mills to reward growers for delayed harvesting, strengthening the supply
relationship.

In summary, the Pareto frontier demonstrates that while higher sugar content
can be achieved, it comes at the cost of lower profitability, especially when
pushing beyond the mid-range of possible solutions. Strategic compromise points
allow mills to balance economic objectives with grower incentives, supporting

sustainable and mutually beneficial supply chain operations.
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Figure 6: Pareto Frontier: single instance with random harvest window.

5.3 Heterogeneous instance analysis

5.3.1 Heterogeneous instance analysis and Solution Characteristics

In this section, we present the results for the heterogeneous instance setup in
Section 4.2, in which we introduce additional sources of real-world variability by
randomizing both the harvest window assignments and the plot sizes (within the
range [0.8, 1.2]) for each plot, shown in Table 13. Unlike the base instance, where
all plots have the same size, this setup reflects more realistic variability in field
conditions and harvesting window. The objective is to assess how these changes
affect the profit—sugar trade-off and operational pressures on harvesters, mills,
and transport fleet. We analyze changes in maximum profit and sugar output,
shifts in the Pareto frontier, the resulting capacity utilization in harvesting,

processing, and transport, and the structure of solutions.
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Table 13: Structural Comparison of Base and Heterogeneous Instances.

Model Feature Base Instance (In- Heterogeneous Instance (In-
stance #1) stance #2)

Plot Size Distribution (A;) Fixed: A; =1 for all j Randomized: A; € [0.8, 1.2

Harvest Window Assignment (H;) Randomized independently per Randomized independently per plot
plot

Processing Flexibility No inventory; immediate pro- No inventory; immediate processing
cessing

Number of Instance Realizations  Single deterministic case Heterogeneous realizations

Related Pareto Table Figure 6 Figure 7

The comparison between the base instance (Table 11) and the heterogeneous
instance with heterogeneity of harvest windows and plot size (Table 14) highlights
substantial performance improvements enabled by increased flexibility. In the
base case, the maximum achievable profit is $582,265.55 with 2,726.03 tons of
sugar delivered, whereas in the heterogeneous instance, the maximum profit rises
to $612,414.46 and the corresponding sugar output to 2,775.20 tons. At the
other extreme, maximizing sugar content yields 2,807.62 tons and $504,933.86
profit in the heterogeneous case, compared to 2,779.57 tons and $477,808.87 in
the base case.

Across both the base and heterogeneous instances, the general pattern of
solutions for the Max Profit and Max Sugar Content objectives remains consistent.
In both cases, maximizing profit encourages early harvesting and allocation of
the majority of plots to Mill 1, which is associated with lower processing costs
and greater profit margins. When the objective shifts to maximizing sugar
content, both instances exhibit a tendency to delay harvests, shifting more plots
toward the latest allowable periods to capitalize on higher sugar yields, with
an increasing number of assignments to Mill 2 as Mill 1 reaches its processing
limits.

The introduction of combined variability (via randomized harvest windows
and variable plot sizes) does not fundamentally alter these overarching strategies,

showing the same trajectory for the Pareto frontier in Figure 7, while it simply

99



increases the operational complexity. In the heterogeneous instance, assignments
to Mill 2 and the frequency of disposals both rise slightly (Table 15), reflecting
more fragmented harvesting schedules and tighter capacity constraints. However,
the core logic remains constant: profit-maximizing solutions cluster harvests
early and favor the more efficient mill, while sugar-maximizing solutions prioritize
late harvest and accept higher logistics and disposal costs as a trade-off.

Table 14: Pareto Frontier: Trade-off Between Profit and Sugar Content (Hetero-
geneous Harvest Window, Heterogeneous Plot Size).

#  Profit ($) Sugar (tons)

1 612,414.46 2,775.20
2 609,761.71 2,778.61
3 609,761.71 2,780.32
4 607,023.06 2,783.73
5 603,729.46 2,785.44
6  603,625.29 2,787.14
7 601,438.27 2,788.85
8 599,977.80 2,790.56
9 596,329.16 2,793.97

10 592,446.28 2,795.67

11 591,522.25 2,797.38

12 584,429.69 2,799.09

13 579,497.26 2,800.79

14 573,347.51 2,802.50

15 562,017.04 2,804.20

16 544,270.76 2,805.91

17 504,933.86 2,807.62
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Table 15: Comparison of Max Profit and Max Sugar Content Solutions: Base vs
Heterogeneous Instance.

Solution Instance Mill 1 Mill 2 Disposals
Assign. Assign. (# plots)
Max Profit Base 62/65 plots 3/65 plots 0
Max Profit Heterogeneous  59/65 plots 6/65 plots 0
Max Sugar Base 52/65 plots 13/65 plots 7
Max Sugar Heterogeneous  45/65 plots 20/65 plots 7
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Figure 7: Pareto Frontier of heterogeneous harvest window and plot size.

5.3.2 Capacity Utilization and Operational Bottlenecks

A comparison of capacity utilization between the base and heterogeneous in-
stances under the maximum sugar content objective reveals both stable patterns
and meaningful differences driven by increased heterogeneity. In both cases, har-

vesting and processing activities are highly synchronized with mill and transport
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capacities.

In the base instance, capacity usage is more variable. Mill 1 typically handles
the majority of harvest and processing load, with an average utilization of about
58% for harvesting and 60% for processing, in Table 17. Mill 2, on the other
hand, sees far more uneven usage, with average harvesting utilization around
29% and frequent periods of zero activity. However, when Mill 2 is used, it
often hits the binding (100%) processing capacity, indicating that sugarcane
is allocated to Mill 2 primarily when it is absolutely necessary to satisfy the
sugar-maximization goal. Vehicle utilization patterns are similarly uneven, with
frequent periods of zero usage, particularly for Mill 2.

In contrast, the heterogeneous instance leads to a more balanced operational
pattern. Based on Table 17, average utilization rates increase for both mills: har-
vesting averages rise to roughly 60% (Mill 1) and 43% (Mill 2), while processing
averages reach 63% (Mill 1) and 58% (Mill 2). The periods of zero utilization
decrease, reflecting a more consistent workload for all resources. The frequency
of binding (100%) utilization at Mill 2 remains similar, underscoring its role as
a bottleneck for high-sugar solutions, but overall, the loads are distributed more
evenly across time and facilities.

These shifts are a direct consequence of introducing variability into harvest
windows and plot sizes, which forces the model to smooth activities across
available periods and resources. The operational result is a less concentrated
and more resilient use of capacity, potentially reducing idle time and improving

fleet and mill efficiency.
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Table 17: Summary of Capacity Utilization Under Max Sugar Content Solution.

Base Instance Heterogeneous Instance

Metric

Mill1 Mill2 Mill 1 Mill 2
Avg. Harvest Utilization (%) 57.8 29.2 59.6 42.8
Max Harvest Utilization (%) 85.3 100.0 74.4 100.0
Periods at Binding (100%) 0 7 0 7
Avg. Processing Utilization (%)  60.5 39.6 63.0 58.2
Max Processing Utilization (%)  85.3 100.0 74.4 100.0
Avg. Vehicle Utilization (%) 36.7 25.1 38.8 29.6
Periods of Zero Utilization (#) 12 17 8 10

Note: “Avg.” denotes the average across all periods; “Max” is the highest single-period
utilization. "Periods at Binding" counts periods when capacity is fully used. All numbers

are based on the specific max sugar solution for each scenario.

5.4 Robustness check of base model on multiple instances

To evaluate the stability of the base multi-objective optimization model and
assess the sensitivity of results to variability in initial harvesting schedules, a
robustness analysis was conducted by generating 10 random instances of the
base model. Each instance used the same structural formulation and parameter
values but differed in the randomly assigned harvest window for each plot, shown
in Appendix A. This procedure accounts for potential variability in operational
timing by incorporating such factors into the instance generation. While the
optimization model itself remains deterministic, these variations in the input data
allow the analysis to reflect realistic operational variability. For each instance,
both the profit-maximizing and sugar-maximizing solutions were obtained, and
the complete Pareto frontier between the two objectives was computed. The
aggregated results were then compared to assess consistency in performance

metrics and trade-off structures.
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5.4.1 Summary of Extreme Solutions

Across the 10 instances, the profit-maximizing solutions yielded a mean profit of
$557,459.28 with a standard deviation of $12,021.11, and a range from $546,542.01
to $577,613.87. The corresponding sugar outputs averaged 2,740.29 tons (std:
13.89 tons), with a range of 2,712.99 tons to 2,752.33 tons, show in Table 18.

In contrast, the sugar-maximizing solutions achieved an average sugar output
of 2,778.11 tons (std = 0.98 tons), representing an average increase of 1.38%
relative to the profit-maximizing case. However, this gain in the sucrose yield
came at an economic cost: the mean profit declined to $456,054.94 (std =
$17,275.60), corresponding to a reduction of 18.2% in profit, with the decrease
ranging between 12.1% and 20.6% across all instances (Table 19).

This stability indicates that the observed trade-offs between revenue and

sucrose yield are robust to such operational variability.

Table 18: Per-instance comparison: Max Profit vs. Max Sugar solutions.

Instance MaxProfit_ Profit MaxProfit_ Sugar MaxSugar_Profit MaxSugar_Sugar

1 563,089.10 2,750.31 470,790.71 2,777.72
2 547,693.75 2,712.99 434,485.54 2,776.75
3 550,543.61 2,728.84 433,177.34 2,778.75
4 573,142.28 2,747.69 465,602.89 2,777.36
5 568,921.56 2,750.17 457,365.84 2,778.95
6 547,258 81 2,746.86 462,221.90 2,777.20
7 548,406.65 2,752.33 474,678.84 2,777.52
8 577,613.87 2,745.22 477,505.81 2,779.36
9 546,542.01 2,746.92 433,219.14 2,779.57

10 551,381.19 2,721.59 451,486.17 2,777.97

Table 19: Summary statistics and 95% confidence intervals over 10 instances.

Summary statistics 95% CI
Metric Mean Std. Dev. Variance Min Max Ccv Lower 95% Upper 95%
MaxProfit_ Profit 557,459.28 12,021.11  144,507,132.78 546,542.01 577,613.87 0.02 550,008.52 564,910.05
MaxProfit_ Sugar 2,740.29 13.89 192.81 2,712.99 2,752.33 0.01 2,731.69 2,748.90
MaxSugar_ Profit 456,053.42 17,275.60  298,446,286.10 433,177.34 477,505.81  0.04 445,345.89 466,760.95
MaxSugar_ Sugar 2,778.11 0.98 0.95 2,776.75 2,779.57  0.00 2,777.51 2,778.72
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5.4.2 Aggregated Pareto Frontier

The aggregated Pareto frontier represents the mean trade-off curve between
profit and sugar content, obtained by averaging the non-dominated solutions
at equivalent positions across all 10 independently generated instances. This
averaging approach, rather than focusing on a single run, reduces the influence of
instance-specific irregularities and highlights trends that are more representative
of the system’s general behavior, thereby strengthening the applicability of the
results to different field configurations and operational conditions.

For each of 10 instances, we first determine its Pareto end—points: the
profit-maximizing solution (shown in Section 3.3), which yields a corresponding
sugar level that we treat as the lower bound, and the sugar-maximizing solution
as the upper bound. We then generate Npoints €venly spaced sugar thresholds
between these bounds and solve the e—constrained model at each threshold.
To align frontiers across instances of different scales, we index points by their

relative position:

k—1

POS(k) = m,
points

k=1,... 7Np0ints~

The subtraction by 1 in numerator and denominator anchors k=1 at 0 (the
max-profit endpoint) and k=Npeints at 1 (the max—sugar endpoint), leaving
Npoints — 1 equal intervals in between. Averaging solutions at the same k therefore
combines equivalent trade—off positions (same percentile along each instance’s

sugar range), yielding a representative aggregated Pareto curve.
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Table 20: Relative positions for Npgints = 20.

Point index &  Relative position (%)

1 0.00%

2 5.26%

3 10.53%

4 15.79%
5 21.05%
6 26.32%
7 31.58%
8 36.84%
9 42.11%
10 47.37%
11 52.63%
12 57.89%
13 63.16%
14 68.42%
15 73.68%
16 78.95%
17 84.21%
18 89.47%
19 94.74%
20 100.00%

At the profit-maximizing extreme, the average solution yields 2,740.29 tons
of sugar with a profit of $557,459.28. Moving along the frontier toward sugar
maximization gradually increases sucrose output while reducing profit. At the
sugar-maximizing extreme, the average solution reaches 2,778.11 tons of sugar
(about 1.38% more than the profit-maximizing case), while profit declines to

$456,053.42, representing an average loss of 18.2%, shown in Table 21.
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Table 21: Averaged frontier (non-dominated) across all instances.

# Sugar (tons) Profit ($)

1 2,740.29 557,459.28
2 2,746.48 545,153.24
3 2,747.61 544,101.44
4 2,757.97 542,682.18
) 2,759.87 538,470.81
6 2,763.61 933,766.75
7 2,765.41 531,365.01
8 2,767.29 530,425.93
9 2,769.25 526,222.20
10 2,771.15 523,213.22
11 2,772.61 518,496.99
12 2,774.49 509,198.07
13 2,776.37 493,229.27
14 2,778.11 456,053.42

The averaged frontier exhibits the expected concave shape (Figure 8), with
a relatively flat profit decline for small sugar gains near the profit-maximizing
point, followed by a sharper drop as sugar approaches its maximum. The point
of diminishing returns, at approximately 2,766.17 tons of sugar and $530,425.93
profit, offers a balanced compromise where further gains in sugar incur dispro-
portionately large profit losses. The preservation of concave shape, diminishing
return region, and trade-off pattern across averaged and individual frontiers
confirms that the model produces consistent and stable Pareto structures across

different instances.
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Averaged Pareto Frontier across 10 instances
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Figure 8: Aggregated Pareto frontier across 10 instances.

Overall, the aggregated Pareto frontier provides a robust and generalizable
representation of the trade-off between profit and sugar content. Averaging
across 10 independent instances reduces noise from run-specific variability and
reveals the central tendency of the optimization outcomes. This consistency
across instances highlights the stability of the model and offers decision-makers

a clear reference for selecting balanced operational strategies.
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6 Parameters sensitivity analysis

Sensitivity analysis is used to test the robustness of a model’s conclusions by
exploring how changes in assumptions or parameters might influence the results
(Goldsmith, 2016). In this chapter, sensitivity analysis is applied to assess the
influence of different key parameters on the basic multi-objective optimization
model. Specifically, input parameters such as capacities of harvesting machines,
cost units and selling prices over the planning horizon are varied within predefined
ranges. Then, the results of the sensitivity analysis are compared with those of

the base model.

6.1 Parameters Tested

The parameters selected for the sensitivity analysis, along with their tested
ranges and baseline values, are shown in Table 22. The baseline scenario is
aligned with the parameter settings described earlier in the instance description,
reflecting representative values from the heterogeneous model. This configuration
provides a realistic operational reference point for all subsequent comparisons.
The choice of parameters and ranges is motivated by both operational sig-
nificance and insights from the baseline results in Chapter 5, where processing
capacity was identified as the principal bottleneck. Consequently, the harvesting
capacity was selected for testing instead of the transport capacity, as the latter
is less sensitive due to the rounding-up effect in vehicle number calculations.
Cost parameters (harvesting, processing, and disposal) and the selling price of
sugar were included because they directly affect profitability and influence the
trade-offs between the harvesting, processing, and disposal decisions. The tested
ranges for each parameter were designed to capture realistic variability in market
and operational conditions, while also allowing for the detection of threshold

effects where system behavior changes abruptly.
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Table 22: Parameter Ranges and Baselines Used in Sensitivity Analysis

Parameter Description Tested Values Baseline
Harvesting capacity Masimum cane 1500, 1,100
per period T 850t /period
harvested per period (increments of 100t)
(7j1}%harv

Harvesting cost

harv
C;

Cost to harvest one

tonne of cane

[0, 80]
(increments of $10,

same for both mills)

Mill 1:$13.33/t;
Mill 2:$15.67 /t

Processing cost

QProe

3

Cost to process one

tonne of cane

(40, 100]
(increments of $10,

same for both mills)

Mill 1:340/¢;
Mill 2: $55/¢

Disposal cost

Net cost or subsidy for

[-60, 10]

cion disposing one tonne of (increments of $5, $0/t
cane same for both mills)
Selling price Revenue per tonne of [300, 1,500] $650/t

}jse”

sugar

(increments of $150)

In the sensitivity analysis, each parameter is varied independently across

its range while all others remain fixed at baseline. For every such parameter

setting, the full optimization model is solved to maximize total profit and get

the sugar content under the maximize profit solution, with the resulting solution

structure comprehensively extracted and recorded. This includes not only main

performance metrics such as maximum attainable profit and total sugar produced
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at optimal profit, but also detailed measures such as the marginal or average profit
per ton of cane and sugar. In addition, the plot-level assignments for harvest
and processing, as well as the quantities and assignments for any disposal, are
all systematically output. The analysis also tracks abrupt changes in structure,
such as sudden changes in harvested plots or disposal patterns, to pinpoint the
operational thresholds where optimal strategies fundamentally change.

When such breakpoints are identified, typically indicated by sudden drops in
profit, stepwise losses in sugar output, or shifts in which plots are harvested or
disposed, the corresponding solutions are compared in detail. By systematically
applying this approach, the analysis provides an insight of how each operational or
market parameter influences the optimal strategy, as well as a clear identification

of the points at which system behavior fundamentally shifts.

6.2 Harvesting capacity

In this subsection, we vary the per-period harvesting capacity parameter,
CAPlM™ ¢ [500,1100] tons per period. The resulting solution in Table 23
reveals a clear, non-linear relationship between per-period harvesting capacity
and both total sugar content under maximum profit solution and total profit,

with a computation time of 17.48 seconds.

Table 23: Sensitivity of Max Profit and Sugar Content to Harvesting Capacity

Harvest Capacity Max Profit ($) Sugar At Max Profit (t)

500 428,999.46 2,721.10
600 537,735.71 2,725.58
700 592,416.84 2,757.68
800 602,293.17 2,750.07
900 619,643.02 2,790.20
1,000 625,688.82 2,803.80
1,100 625,688.82 2,803.80

As presented in Figure 9 and 10, both curves climb steeply from 500 tons to
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roughly 900 tons. Sugar content increases from 2,721 tons at 500 tons capacity
to 2,790 tons at 900 tons capacity, and profit rises from $429k to $619k. This
increasing phase demonstrates that harvesting capacity is a binding constraint,
indicating that every additional ton admitted is fully processed, boosting both
total sugar content and total profit. Beyond a harvesting capacity of about 1,000
tons/period, however, both sugar (peaking at 2,803 tons) and profit (leveling off
at $625k) flatten. The plateau clearly marks the point at which milling capacity
becomes the system bottleneck: additional harvested canes cannot be milled and

hence contribute neither to sugar output nor to profit beyond this threshold.

Sugar at Max-Profit vs Harvesting Capacity

2800
2780
2760

2740

Sugar Content at Max-Profit (tons)

2720

500 600 700 800 900 1000 1100
Harvesting Capacity (tons per period)

Figure 9: Sensitivity analysis of harvesting capacity to sugar
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Figure 10: Sensitivity analysis of harvesting capacity to profit

A closer examination of the shift from 700 to 800 tons capacity (Table 24)
reveals why sugar output slightly decreases even as profit grows. At 700 tons of
harvesting capacity, the model admits only the highest-Pol plots, yielding 2,757.68
tons sugar output and $592.4k profit. Expanding to 800 tons of harvesting
capacity increases profit by 1.7% to $602.3k, but sugar falls by 0.3% to 2,750.07
tons. The additional 100 tons at 800 tons capacity comes from lower-Pol fields,
which dilutes the overall sugar yield while generating higher unit margins and

thus greater profit.

Table 24: Comparison of 700 tons vs. 800 tons Harvesting Capacity Solutions

Metric 700 t/period 800 t/period

Max. profit ($) 592,416.84 602,293.17

Total sugar (t) 2,757.68 2,750.07

Tons of cane harvested (t) 700 800

Additional cane admitted (t) - 100

Profit per tonne of cane ($/t) 846.31 752.87

Profit per tonne of sugar ($/t) 214.77 219.08

Primary shift in harvest assignment  Only highest-Pol plots Adds lower-Pol plots
Net effect on sugar vs. profit Maximizes sugar +1.7% profit / —0.3% sugar

73



6.3 Harvesting cost

In this section, we span the harvesting cost from $0 to $80 per ton for both
mills. In Table 25, there is a near-linear decrease in profit as costs rise, and the
harvested sugar tonnage remains remarkably stable over a wide range of low
to moderate harvesting costs, only beginning to fall once the cost passes key
breakpoints, within the run time of 23.29 seconds. The almost-linear decline in
profit with rising harvest cost reflects the underlying linearity of the objective
function. The Figure 11 shows that, each $10/ton increase in harvesting cost
corresponds to an approximately 23% reduction in maximum profit over the
whole range. At a critical cost of $43.1/ton, the project crosses the break-even
threshold; beyond this point, profitability becomes negative. The cost-profit

relationship remains nearly linear throughout the examined range.

Table 25: Sensitivity of Maximum Profit to Harvesting Cost

Harvest Cost Max Profit Sugar Content

($/ton) (%) (tons)
0.0 887,158.56 2,775.68
10.0 681,037.65 2,775.68
20.0 474,970.22 2,775.14
30.0 269,181.47 2,771.93
40.0 63,439.04 2,771.93
43.1 0.00 2,771.93
50.0 -142,303.40 2,771.93
60.0 -347,958.07 2,763.57
70.0 -553,003.99 2,760.10
80.0 -758,006.28 2,760.10

74



Sensitivity of Profit to Harvesting Cost
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Figure 11: Sensitivity analysis of harvesting cost to profit

The sensitivity of the total sugar yield to the rising harvest costs is char-
acterized by a distinct stepwise pattern. Specifically, the model maintains a
constant output of 2,775.68 tons at $0 and $10/ton, falls only marginally to
2,775.14 tons at $20, then steps down to 2,71.93 tons from $30 to $50, before
further discrete reductions to 2,763.57 tons at $60 and 2,760.10 tons at $70
and $80, according to Figure 12. These plateaus arise from the all-or-none
constraint of harvesting decisions: until a cost threshold is crossed, high-sugar
plots remain profitable and so sugar yield is inelastic to cost increases; as costs
increase, once the harvest cost of the least profitable remaining plot exceeds
its revenue potential, the model continues to harvest and transport the cane to
the mill, but it is not processed and thus contributes nothing to sugar output
(to satisfy harvest scheduling constraints). This unprocessed cane is effectively
wasted from a sugar-production perspective, leading to a discrete drop in total
sugar. Thus, the piecewise-constant sugar curve directly reflects the underlying
integer optimization structure and the sequential exclusion of lower-yield plots

as harvesting becomes more expensive.
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Figure 12: Sensitivity analysis of harvesting cost to sugar

6.4 Processing cost

In this section, we test the sensitivity of processing cost, by changing it between
40 and 100 at the same time for both mills, within the run time of 15.82 seconds.
When processing cost increases, maximum profit declines in an almost-linear
style in Table 26, indicating the trend observed under harvesting cost sensitivity.
As processing cost rises from $40/t to $100/t for both mills simultaneously,
profit falls with a near-constant slope of 69.3%, in Figure 13. This near-linear
decline underscores the dominant influence of per-ton processing costs on overall
profitability, in the same way that increases in harvesting costs similarly reduce

returns.
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Table 26: Sensitivity of Max-Profit and Sugar Content to Processing Cost

Proc. Cost ($/t) Max Profit ($) Sugar (t)

40 618469.17 2797.33
50 411851.48 2796.87
60 205 248.16 2796.87
70 -1327.63 2795.50
80 -207625.08 2792.63
90 -351450.79 2551.14
100 -351450.79 2551.14

Sensitivity of Profit to Processing Cost

600000

400000

200000

Max Profit ($)

-200000

40 50 60 70 80 920 100
Processing Cost ($ per ton)

Figure 13: Sensitivity analysis of profit to processing cost

Sugar output, by contrast, remains remarkably inelastic for moderate cost
inflation, based on Figure 14: retaining over 99.8% of its baseline (2,797 tons)
for processing costs up to $60/t and falling only marginally (to 2,792.6 tons, a
0.16% reduction) at $80/t. Negative profit scenarios emerge once processing

costs exceed $70/t, with increasingly steep losses as costs rise.
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Sensitivity of Sugar to Processing Cost
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Figure 14: Sensitivity analysis of sugar to processing cost

At $80/t, the operation still processes the cane from all the plots, resulting
in a modest negative margin of —$74.42/t but maintaining throughput at 2,792.6
tons. However, the critical threshold is reached at $90/t: here, two low-yield
plots become uneconomical to process. While these plots are still harvested,
their cane is fully disposed of rather than milled. This selective abandonment
reduces sugar production by 241.5 tons (-8.65%) and worsens the margin to
—-$137.75/t, pushing total losses to —$351,451 (Table 27). The $100/t scenario
repeats these outcomes, confirming that the decision change occurs precisely at
the $90/t breakpoint. The abrupt drop between $80/t and $90/t in Figure 14
marks the model’s structural shift: the optimizer excludes marginal plots to
reduce processing losses, sacrificing volume to improve unit economics under

high-cost conditions.
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Table 27: Comparison of Solutions at Processing Costs of $80/t vs. $90/t

Metric $80/t $90/t

Max. profit ($) —207 625.08 —351450.79

Sugar produced (t) 2792.63 2551.14

Profit per tonne of sugar ($/t) —74.42 —-137.75

Percentage change in profit — —69.3%

Percentage change in sugar — —8.65%

Primary shift in processing All plots remain Two marginal low-yield

decision profitable plots abandoned

Net effect on sugar vs. profit Moderate throughput Severe throughput
loss, moderate loss reduction, large loss

6.5 Disposal cost

This section examines the sensitivity of the optimal harvesting and processing
decisions by changing the disposal cost, varying from a significant revenue (-
$60/t, representing a payment or subsidy received per ton disposed for alternative
uses such as ethanol production or other by-products) to moderate disposal
expense ($10/t, assuming that the mill must pay to dispose of any excess cane
over the offsetting revenue, such as land-filling, composting, or other waste
management options). Here, negative disposal costs represent not only subsidies
for waste removal, but also the net economic gain from utilizing residues into
co-products such as ethanol, bio-energy, or animal feed. Positive disposal costs
reflect situations where the mill must pay to remove surplus cane (e.g., landfill,
composting, or other waste management). In this scenario, disposal becomes
a financial penalty rather than a potential source of income. When disposal
provides high returns (large negative values), the optimizer actively disposes of
lower-quality or excess cane to capture this revenue, prioritizing high-POL plots
for processing. As disposal becomes less lucrative and then costly, the model
increasingly favors processing all available cane to avoid penalties, even if that
means harvesting at sub-optimal sugar maturity.

Across this wide cost range, the maximum achievable profit decreases mono-

tonically and exhibits a piecewise-linear trend within the run time of 39.32
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seconds (Figure 15). Specifically, in Table 28, at highly negative disposal costs
(-$60/t), the profit reaches its peak ($872,101), since disposing of excess or
lower-quality sugarcane yields additional revenue. As the disposal cost increases
(less negative or more positive), profitability gradually declines and stabilizes
from -$40/t onward at a minimum profit of $612,414. Sugar production dis-
plays minimal variability initially, remaining relatively stable between -$55 and
-$50/t (around 2,781 tons), but exhibits fluctuations between -$45/t and $-40/t,
indicating shifts in harvesting and disposal strategies (Figure 16).

Because solution structures are identical across most intermediate values,
Table 28 lists only points where changes occur. For example, between —$55 and
—$50/t, the harvest/disposal assignment is identical; profit changes solely because
of the lower subsidy rate. In addition, the maximum profit and sugar output

keep the same, starting from -$40/t of disposal cost.

Table 28: Sensitivity of Maximum Profit and Sugar Content to Disposal Cost

Disposal Cost ($/ton) Max Profit ($) Sugar at Max Profit (t)

-60 872,100.57 2,789.26
-50 664,748.72 2,781.91
-45 614,129.84 2,786.55
-40 612,414.46 2,775.20
-20 612,414.46 2,775.20
0 612,414.46 2,775.20
10 612,414.46 2,775.20
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Figure 15: Sensitivity analysis of disposal cost to profit

Comparing the detailed solutions at disposal costs of -$55/t and -$50/t, an
identical harvesting and disposal assignment is observed. Although the total
profits differ notably (declining from $768,391 to $664,749 only due to the
lower disposal subsidy), the sugar yield remains constant at 2,781.91 tons. This
consistency arises because both disposal costs lie within the same sensitivity
range, where the optimal solution maintains its structure. Therefore, the solution
retains the same plots allocated for disposal, resulting in no change in harvested

sugarcane or total sugar produced.
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Sugar Content at Max-profit vs Disposal Cost
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Figure 16: Sensitivity analysis of disposal cost to sugar

A distinct shift occurs at a disposal cost of -$45/t, where the total sugar yield
unexpectedly increases slightly to 2,786.55 tons. This rise in sugar production
occurs because the increased disposal cost now incentivizes processing over
disposal for certain borderline-quality plots. Specifically, several previously
disposed plots are reallocated for processing due to reduced profitability in
disposal. Consequently, the harvested tonnage that was previously discarded
now contributes to additional sugar yield, optimizing overall performance at this
specific disposal cost.

This transition between -$50 and -$45/t is driven by the increased penalty
associated with disposal, shown in Table 29: as the cost of disposing cane rises, it
surpasses the marginal processing profit for borderline plots (specifically, plots 2,
10, 21, 35, and 65). Consequently, the model reallocates these plots for harvest at
their earliest feasible periods to maximize sugar before maturity declines further.
This adjustment results in all plots being processed, leading to a modest but
notable increase in total sugar yield (from 2,781.91 to 2,786.55 tons, a 0.17%
gain), despite an overall reduction in profit (-7.6%), due to higher associated
costs. The underlying reason is a shift in the economic trade-off: as disposal
becomes less attractive, the optimizer broadens its selection criteria, moving from

a selective processing strategy where only high-value plots are accepted, to a
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more inclusive strategy that captures the marginal value of previously abandoned
plots. This dynamic highlights how the disposal policy directly influences the

extent of resource utilization and sugarcane throughput in the system.
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Table 29: Comparison of Decisions under Two Disposal-Cost Scenarios

Metric Disposal Cost = Disposal Cost = Difference / Explanation
-50 —45

Max. profit (%) 664,748.72 614,129.84 —7.6% decreases as disposal

becomes more expensive

Max. sugar 2,781.91 2,786.55 +0.17% increase as more cane

produced under is processed

Max. profit (t)

Plots originally 2, 10, 21, 35, 65 None All previously disposed plots are

disposed

Plots newly

processed

Harvest and
milling time for

switched plots

Processing

decisions

Total cane

processed

Rationale for

change

General trend

Not harvested

Lower throughput
(less cane

processed)

Lower

Disposal cost not
punitive enough;
borderline plots

disposed

More selective, only
high-value plots

processed

2, 10, 21, 35, 65

All at earliest

feasible period

Higher throughput
(more cane

processed)

Higher

Higher disposal cost
makes disposal less
attractive;
processing

threshold crossed

Broader inclusion,

more plots accepted

now harvested and processed

These five plots switch from
disposal to being harvested and

processed

Model shifts to earliest feasible
harvest to capture sugar before

maturity loss

Switched plots contribute to

increased processing

Inclusion of switched plots

increases total throughput

As disposal becomes less
lucrative, processing is now the
optimal economic choice for this

plot

Model becomes less selective as

disposal cost increases
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At a disposal cost of -$40/t, the system enters a regime where the profit
plateaus at its lowest observed value of $612,414, following a sharp decline from
the previous threshold at -$45/t. Although disposal costs continue to increase,
the model’s ability to further reduce actual disposal events is almost impossible,
since almost all plots are already being processed rather than disposed of. As
a result, any additional increases in disposal cost do not result in new gains
in throughput or resource utilization. Instead, the model must adjust harvest
timing more aggressively, shifting plots to earlier or later periods, often at the
expense of optimal sucrose maturity. This results in only marginal reductions in
sugar yield (from 2,786.55 to 2,775.20 tons, a 0.4% decrease), but the overall
profit remains depressed because higher operational and processing costs cannot
be offset by increased sugar revenue. In effect, profit remains at its lowest value,
because the system can no longer change which plots to dispose of or process. All
the things left is to make less efficient timing decisions, which cannot compensate
for the now-high disposal penalties. This also causes a small drop in sugar yield,
as plots are not always harvested at the best time.

In conclusion, varying disposal costs drive significant changes in the optimal
sugarcane harvest and processing strategy, particularly at specific threshold
points. While highly negative disposal costs incentivize aggressive disposal to
maximize revenue, increasing costs shift the strategy toward greater processing,
influencing harvest timing and plot assignments, and thereby affecting both

profit and sugar yield.

6.6 Selling price

The sensitivity analysis of the max-profit solution relative to the selling price
demonstrates a distinct shift in system behavior as the price increases. In
Table 30, under the run time of 24.53 seconds, when the selling price is below
approximately $600 per ton, profit remains low or even negative (—$349,886 at
$300/t), as the revenue generated is insufficient to cover the costs of processing.
In this range, only a small fraction of the available sugarcane is processed, or in

some cases, the system may choose not to process any cane at all even though
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it has been harvested, resulting in a restrained sugar output (2,587.5 tons at

$300/1).

Table 30: Sensitivity of Maximum Profit and Sugar Content to Selling Price

Sell Price ($/t) Max Profit (8) Sugar at Max Profit (t)

300 —349,886.40 2,5687.47
450 57,767.38 2,771.93
600 473,654.40 2,775.20
750 889,967.20 2,775.68
900 1306,319.00 2,775.68
1050 1722,670.00 2,775.68
1200 2139,273.00 2,775.68
1350 2556,429.00 2,781.12
1500 2973,598.00 2,781.12
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Figure 17: Sensitivity analysis of selling price to profit

Once the selling price surpasses the break-even point (around $600 per ton
in this scenario), profit transitions to a linear increase with respect to the selling
price. Above this threshold, all feasible plots are harvested and processed to
maximize throughput. For example, when the selling price is raised to $750/t,
profit rises sharply to $889,967, and remains proportional to further increases
(till $2,973,598 at $1,500/t), shown in Figure 18. In this upper regime, the total

sugar produced stabilizes around 2,775 to 2,781 tons, indicating that all available
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capacity is being utilized.
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Figure 18: Sensitivity analysis of selling price to sugar

In summary, profit increases approximately linearly with selling price across
the full range. At low price levels, the system engages in selective processing
of only the most profitable cane. However, once the selling price exceeds the
break-even threshold, profit rises more steeply as the model fully utilizes all
available sugarcane resources. This pattern highlights the critical role of market

price in unlocking the supply chain’s productive capacity and optimizing profit.

6.7 Processing window

The processing window, which defines the permissible lag between sugarcane
harvest and processing, is a key operational constraint in sugarcane supply
chain management. In many real-world systems, sugarcane is ideally processed
immediately after harvest to minimize sucrose loss, often by enforcing a just-in-
time (JIT) inventory policy, which requires that all harvested canes are crushed
within the same period. However, the strict JIT operation strategy may limit the
system’s flexibility and hinder the ability to optimize sugar output, particularly
under fluctuating field and factory conditions. To investigate the impact of
increased operational flexibility, we relax the processing window constraint,

allowing harvested sugarcane to be stored for up to one additional period before
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processing. This adjustment more closely reflects real-world scenarios where
limited in-plant inventory is available and can address short-term mismatches

between harvesting and milling schedules.
6.7.1 New sets and parameters

In the expanded processing window scenario, we introduce updated sets and
parameters to reflect the operational realities of short-term inventory in sugarcane
milling. Most notably, we define the set Py; = {h, h + 1}, subject to the overall
planning horizon, which specifies the set of feasible processing periods for each
plot j harvested in period h. This adjustment allows harvested cane to be
processed either immediately or within one additional period, thereby capturing
the operational benefit of limited buffer storage while still prioritizing rapid
throughput.

To enforce this buffer, we assign a strict inventory capacity to each mill:
CAP{™ =175 tons and CAP"" = 100 tons, shown in Table 31. These values are
purposely kept low, underlining industrial practice, where perishable crops like
sugarcane are rarely stored in large quantities due to rapid quality deterioration
and logistical constraints. In conjunction with the new inventory allowance,
an inventory holding cost is applied at a rate of Ci"? = C&" = $1 per ton
per period. This value is selected, because holding costs of perishable products
typically represent less than 10% of the product price. Together, these parameters
realistically constrain the system to maintain just-in-time flow, while granting

the flexibility needed to optimize processing and harvest synchronization.

Table 31: Inventory-Related Parameters for Relaxed Processing Window

Inventory Capacity (CAP/™", t) Inventory Cost (Ci", $/t/period)

Mill 1 175 1
Mill 2 100 1
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6.7.2 Result analysis

Allowing a more relaxed processing window, permitting harvested sugarcane to be
stored and processed in the subsequent period, rather than requiring immediate
just-in-time processing, yields significant benefits for sugar maximization, while
leaving the maximum profit solution essentially unchanged. This modification
fundamentally alters the system’s operational dynamics, as reflected in the
changes in disposal volumes, the multi-period processing patterns, and the
endpoint performance of the Pareto frontier.

The most striking finding is that both the maximum achievable profit and
the absolute maximum sugar output remain unchanged between the two models,
with values plateauing at $612,414.46 and 2,807.62 tons, respectively. This
indicates that, under both configurations, the system already fully utilizes the
critical capacity and resource constraints. Thus, allowing a modest degree of
inventory does not expand the absolute production frontier, as the bottlenecks
imposed by milling or harvest capacity are already binding at the optimum.

However, the structure of the solutions at the endpoint of the Pareto frontier
does differ. In the relaxed processing window scenario, the profit at the maximum-
sugar point is higher ($517,509.97 compared to $504,933.86 in the heterogeneous
case). This gain reflects improved operational flexibility: by allowing one-period
delay before processing, the model can schedule harvests and mill operations in a
way that achieves the same sugar yield but at lower overall cost, by reducing idle
capacity, avoiding unnecessary disposals, and smoothing processing loads. As a
result, the solution at the maximum sugar endpoint becomes more profitable,
reflecting the optimizer’s ability to sequence and batch process cane more
efficiently across time.

Operationally, the looser processing window leads to a marked reduction in
both the number of plots requiring disposal and the total volume of cane disposed
at the sugar-maximizing solution. The heterogeneous model necessitates disposal
from seven plots, totaling 561.29 tons, whereas the relaxed-window configuration

reduces this to only three plots and 125.8 tons. This improvement reflects greater
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system flexibility: cane from marginal plots that would otherwise be discarded
due to temporal or capacity conflicts can now be stored and processed in the

subsequent period.
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Table 32: Comparison of Base and Looser Processing Window

Metric Base Alternative Looser Change /
Model Processing Commentary
Window

Operational Just-in-time only  Inventory allowed More flexible

structure for 1 period

Max. profit ($) 612,414.46 612,414.46 No change (plateau
reached)

Max. sugar at max 2,775.20 2,775.20 No change

profit (t)

Max. sugar (t) 2,807.62 2,807.62 No change (plateau
reached)

Max. profit at max 504,933.86 517,509.97 Higher profit

sugar ($) possible at
max-sugar solution

Sugar increase at - +2-5 tons Slightly higher

same profit level

Disposals at max

sugar
62

Total disposed cane 561.29

at max sugar (t)

Plots processed over No

multiple periods

7 plots disposed: 2,
18, 32, 42, 56, 61,

3 plots disposed:
32, 61, 62

125.8

Yes (plot 2, 4, 14,
18, 21, 54, 62)

In summary, allowing a one-period processing window does not extend the

system’s absolute profit or sugar yield, but it significantly improves operational
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efficiency at key points along the Pareto frontier. By allowing for strategic
storage and phased processing, the model achieves higher profit at the sugar-
maximizing endpoint and reduces both the volume and number of disposals,
meaning that benefits underscore the value of even modest inventory flexibility

in highly constrained agricultural supply chains.
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7 Conclusion

7.1 Conclusions

This study developed and analyzed a detailed multi-objective optimization
model for the sugarcane supply chain, integrating harvest scheduling, processing
allocation, and disposal decisions at the plot level, while also capturing the
dynamic interaction between harvested tonnage and sucrose content over time.
By combining operational constraints including harvesting, transportation and
milling capacities, time windows, and plot heterogeneity, with economic drivers
such as costs, selling prices, and disposal penalties, the model provides a robust
framework for evaluating real-world management trade-offs, upon the existing
literature on agricultural supply chain optimization. From the literature review,
the study identified that while many previous works address isolated stages of
the sugarcane chain (for example, harvest scheduling, transportation routing, or
processing), few integrate them into a single multi-objective framework capable
of capturing profit—sugar trade-offs, by embedding both tonnage and sucrose
dynamics.

The mixed integer programming model (MIP) developed here incorporates
harvesting window and plot size heterogeneity, dynamics of sucrose over time, and
capacity limits across harvesting, transportation, and milling, while optimizing
for both profit and sugar output. Application to two types of instances, a base
instance with solely randomized harvesting windows and a heterogeneous case
combined with randomized plot sizes and harvest window at the same time,
enabled examination of how variability in the field alters operational bottlenecks
and attainable performance. Analysis of Pareto frontiers for each scenario
revealed stable concave trade-off curves between profit and sugar content, with
clear efficient regions where modest profit sacrifices yield substantial sugar output
gains. Robustness checks confirmed that these patterns and threshold behaviors
persist under stochastic variation in plot attributes.

A key contribution of this work is the systematic exploration of parameter
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sensitivities. By varying harvesting capacities, the analysis demonstrates how
physical system bottlenecks shape the attainable frontier between profit and
sugar content. Profit and sugar output increase sharply with rising capacity, but
plateau once the more restrictive resource (bottleneck) is reached, highlighting the
necessity for balanced investments across the supply chain. Disposal cost emerged
as one of the most influential levers. When disposal incurs a penalty, the model
prioritizes resource utilization, maximizing processed cane and minimizing waste,
even if this means accepting a lower overall average sugar content. Conversely,
when disposal is subsidized or low-cost, selective processing becomes optimal,
with marginal plots being excluded to maximize per-unit profitability.

Another major finding concerns inventory and timing flexibility. Allowing a
relaxation of the processing window, permitting harvested cane to be stored and
processed in the subsequent period, demonstrates that even modest inventory
capacity can significantly increase operational flexibility. While the absolute
maximum profit and sugar yield remain unchanged, the system achieves higher
profits at the high-sugar solutions, and waste (disposal) is substantially reduced.
These results suggest that limited storage investments can yield notable benefits,
particularly for supply chains managing highly perishable products under variable
field and mill constraints.

The model also uncovers the interaction between market conditions and
operational strategy. Sensitivity analysis with respect to the selling price illus-
trates a pronounced regime change at the break-even threshold, above which the
system fully utilizes all available capacity. Below this point, selective harvesting
dominates, and both profit and sugar yield remain suboptimal. This reinforces
the importance of market intelligence and adaptive planning to capture value in
volatile price environments.

In summary, this research advances the state of knowledge in sugarcane
supply chain optimization by providing a comprehensive, scenario-driven anal-
ysis of operational and economic situation. The results offer clear guidance
for practitioners: balanced capacity expansion, targeted waste policy, modest

inventory flexibility, and responsive planning are all critical to achieving both
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economic and production objectives in complex, perishable supply chains.

7.2 Limitations and future research

Despite providing a structured framework for sugarcane harvest and processing
optimization, the present study is subject to several important limitations. First,
the modeling of sucrose accumulation, post-harvest deterioration, and yield
progression is based on linear approximations. In reality, sugarcane growth and
maturation are governed by complex, non-linear biological processes, often better
captured by sigmoid, polynomial, or logistic functions that account for dynamic
changes in physiological development. Environmental variability, including
temperature fluctuations, rainfall patterns, soil fertility, and pest pressures, can
induce significant deviations from the assumed deterministic growth trajectories.
As such, the use of simple linear functions, while enhancing tractability and
interpretability, inevitably sacrifices accuracy, especially when extrapolating
beyond average-case scenarios.

One promising direction for future work is to incorporate the concept of
thermal time or growing degree days (GDD) into the modeling of growth and
post-harvest deterioration. Degree day accumulation integrates the effect of
temperature over time by summing daily deviations above a base threshold,
providing a biologically meaningful measure of crop development. In sugarcane
systems, Lofton et al. (2012) demonstrated that cumulative GDD, when combined
with normalized difference vegetation index (NDVT), substantially improves the
accuracy of yield predictions, highlighting its value as a predictor of physiological
progress. Similarly, Han et al. (2022) used GDD as a key input in data-driven
early- to mid-season forecasting models, showing that thermal time enhances the
reliability of predictions compared with calendar-based metrics. More recently,
Dimov et al. (2022) emphasized the importance of integrating temperature-driven
variables such as GDD into remote sensing—based time series approaches for yield
estimation, rewarding the role of degree days accumulation in capturing nonlinear
responses to environmental conditions. The integration of degree-day driven

functions and the current optimization framework, would provide a more robust
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link between environmental variability and sugarcane performance, ultimately
enhancing the realism of harvest and processing optimization models.

Secondly, the current model adopts a deterministic framework, with key
parameters such as growth rates, harvesting yields, and operational costs treated
as known and fixed throughout the planning horizon. In practice, these parame-
ters are subject to considerable uncertainty arising from unpredictable weather,
market price volatility, labor availability, and equipment failures. Although
randomization is introduced through variations in harvest windows and plot
sizes, the model does not explicitly incorporate probabilistic or scenario-based
uncertainty.

Another notable limitation is the focus on a single-product supply chain, with
sugar identified as the sole output of the system. However, modern sugarcane
processing facilities often pursue integrated bio-refinery concepts, producing
multiple co-products such as ethanol, molasses, electricity, or bio-based chemicals.
By excluding multi-product planning, the model overlooks important economic
trade-offs and process synergies that could significantly influence both operational
schedules and overall profitability.

Future research could therefore extend the framework in several directions.
First, incorporating multi-product optimization with explicit demand, pricing,
and process constraints for co-products, would better reflect the realities of
contemporary sugarcane industries. Second, the framework could be enriched by
considering alternative cane types, such as energy cane, which has a higher fiber
content, greater biomass potential, and increased resistance to pests, while being
more adaptable to different soil conditions. Third, the model could integrate
variety-specific maturation profiles, since sucrose-rich cane cultivars reach their
peak at different periods. Optimizing harvest schedules according to variety-
specific maturity would allow mills to align processing with peak sucrose content
while also mitigating risk through diversification. Finally, considering the spatial
arrangement of different sugarcane varieties in adjacent plots could capture
agronomic benefits, such as reducing vulnerability to pests and diseases, thereby

linking supply chain optimization to long-term sustainability and resilience in
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sugarcane production systems.

Furthermore, while this study explores the harvesting and processing stages, it
adopts a highly simplified treatment of the transportation stage. The movement
of harvested cane from fields to mills is typically subject to constraints related
to vehicle capacities, routing, loading and unloading times, and travel distances,
all of which impact both the timing and cost structure of the supply chain. By
abstracting these complexities, the model may underestimate bottlenecks or
inefficiencies that arise in real-world logistics operations. Future research should
explicitly model transportation decisions, potentially using vehicle routing or
network flow formulations, to achieve more holistic and practical optimization.

Finally, the planning horizon and decisions are limited to a single season and
aggregated plot-level schedules. Long-term effects such as field rotation, ratoon
management, land preparation, and investment in equipment or infrastructure are
not considered, nor are the potential benefits of inter-annual planning or multi-
seasonal coordination. Integrating these dimensions would further strengthen
the model’s strategic value for growers, millers, and supply chain managers.

In summary, while the present model offers useful insights for operational
planning, its simplifying assumptions and scope constraints should be recognized.
Addressing these limitations in future work will enhance both the realism and

applicability of sugarcane supply chain optimization in research and practice.
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Appendix

A: Instances of robustness check

Table 34: Harvest windows (start—end) for three instances. Five plots per row.

Instance 1, Seed 12345

1: [14, 21]
6: [7, 14]
11: [12, 19]
16: [21, 28]
21: [12, 19]
26: [24, 31]
31: [5, 12]
36: [11, 18]
41: [1, 8]
46: [1, 8]
51: [19, 26]
56: [14, 21]
61: [24, 31]

2: [24, 31]
7: 19, 16]

12: [4, 11]
17: [6, 13]
22: [24, 31]
27: [14, 21]
32: [7, 14]
37: [11, 18]
42: [17, 24]
47 [1, §]

52: [6, 13]
57: (4, 11]
62: [13, 20]

Instance 2, Seed 12346

1: [15, 22]
6: [3, 10]
11: [11, 18]
16: [9, 16]
21: [13, 20]

2: [24, 31]
7: [24, 31]
12: [19, 26]
17: [4, 11]
22: [7, 14]

3: [1, 8]
8: [19, 26]
13: [14, 21]
18: [20, 27]
23: [24, 31]
28: [19, 26]
33: [24, 31
38: [1, §]
43: [23, 30]
48: [22, 29]
53: [10, 17]
58: [22, 29]
63: [8, 15]

3: [15, 22]
8: [8, 15]
13: [18, 25]
18: [13, 20]
23: [9, 16]

111

4: [10, 17]
9: [14, 21]
14: [9, 16]
19: [18, 25]
24: [3, 10]
29: [17, 24]
34: [3, 10]
39: [15, 22]
44: [24, 31]
49: [6, 13]
54: [4, 11]
59: [19, 26]
64: [17, 24]

4: [13, 20]
9: [10, 17]
14: [15, 22|
19: [18, 25]
24: [14, 21]

5: [12, 19]
10: [6, 13]
15: [18, 25]
20: [6, 13]
25: [17, 24]
30: [6, 13]
35: [7, 14]
40: [11, 18]
45: [14, 21]
50: [25, 32]
55: [21, 28]
60: [6, 13]
65: [20, 27]

5: 23, 30]
10: [9, 16]
15: [22, 29]
20: [9, 16]
25: [1, §]



Harvest windows (continued)

26: [8, 15]
31: [12, 19]
36: [10, 17]
41: [17, 24]
46: [24, 31]
51: [17, 24]
56: [14, 21]
61: [24, 31]

27: [10, 17]
32: [3, 10]
37: [11, 18]
42: [1, 8]
47: [6, 13]
52: [20, 27]
57: [3, 10]
62: [16, 23]

Instance 3, Seed 12347

1: [12, 19]
6: [10, 17]
11: 1, §]
16: [14, 21]
21: [9, 16]
26: [7, 14]
31: 2, 9]
36: [20, 27]
41: [14, 21]
46: [4, 11]
51: [4, 11]
56: [18, 25|
61: [18, 25|

2: [3, 10]
7: [22, 29]
12: [4, 11]
17: [10, 17]
22: [22, 29]
27: [3, 10]
32: [1, §]
37: [22, 29]
42: [4, 11]
47: [19, 26]
52: [21, 28]
57: [4, 11]
62: [14, 21]

Instance 4, Seed 12348

1: 2, 9]
6: [9, 16]

2: [21, 28]
7: [14, 21]

28: [9, 16]
33: [7, 14]
38: [8, 15]
43: [1, §]
48: [7, 14]
53: [12, 19]
58: [24, 31]
63: [24, 31]

3: [16, 23]
8: [11, 18]
13: [21, 28]
18: [6, 13]
23: [8, 15]
28: [14, 21]
33: [8, 15]
38: [21, 28]
43: [9, 16]
48: [7, 14]
53: [8, 15]
58: [4, 11]
63: [19, 26]

3: 25, 32]
8: [10, 17]
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29: [13, 20]
34: [18, 25]
39: [9, 16]
44: [3, 10]
49: [13, 20]
54: [9, 16]
59: [6, 13]
64: [6, 13]

4: [11, 18]
9: [15, 22]
14: [21, 28]
19: [9, 16]
24: [22, 29]
29: [3, 10]
34: [11, 18]
39: [8, 15]
44: [14, 21]
49: [10, 17)
54: [18, 25]
59: [11, 18]
64: [7, 14]

4: [6, 13]
9: [11, 18]

30: [25, 32|
35: [12, 19]
40: [10, 17]
45: [17, 24]
50: [15, 22|
55: [4, 11]
60: [9, 16]
65: [12, 19]

5: [15, 22]
10: [14, 21]
15: [20, 27]
20: [7, 14]
25: [24, 31]
30: [22, 29]
35: 2, 9]
40: [4, 11]
45: [18, 25]
50: [5, 12]
55: [3, 10]
60: [9, 16]
65: [17, 24]

5: [16, 23]
10: 22, 29



Harvest windows (continued)

11: [4, 11]
16: [18, 25]
21: [7, 14]
26: [7, 14]
31: [22, 29]
36: [5, 12]
41: [12, 19]
46: [3, 10]
51: [17, 24]
56: [11, 18]
61: [24, 31]

12: 2, 9]
17: [18, 25]
22: [25, 32]
27: [3, 10]
32: [9, 16]
37: [22, 29]
42: [18, 25]
47: [1, 8]
52: [12, 19]
57: [25, 32|
62: [14, 21]

Instance 5, Seed 12349

1: 2, 9]
6: [25, 32]
11: [1, §]
16: [24, 31]
21: [21, 28]
26: [5, 12]
31: [6, 13]
36: [9, 16]
41: [14, 21]
46: [6, 13]
51: [18, 25]
56: [2, 9]
61: [24, 31]

22: [23, 30]
27: [13, 20]
32: [22, 2]
37: 16, 13]
42: [10, 17]
AT7: [16, 23]
52: [18, 25|
57: [22, 29]
62: [15, 22]

13: [20, 27]
18: [16, 23]
23: [20, 27]
28: [18, 25|
33: [3, 10]
38: [16, 23]
43: [3, 10]
48: [7, 14]
53: [22, 29]
58: [2, 9]
63: [13, 20]

3: [21, 28]
8: [22, 29]
13: [3, 10]
18: [7, 14]
23: [13, 20]
28: [19, 26]
33: 23, 30]
38: [5, 12]
43: [21, 28]
48: [18, 25|
53: [13, 20]
58: [19, 26]
63: [19, 26]
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14: [5, 12]
19: [14, 21]
24: [14, 21]
29: [18, 25]
34: 21, 28]
39: [8, 15|
44: [4, 11]
49: [12, 19]
54: [14, 21]
59: [25, 32]
64: [4, 11]

4: [1, 8]
9: [25, 32|
14: [13, 20]
19: [6, 13]
24: [4, 11]
29: [22, 29]
34: [1, 8]
39: [1, §]
44: [2, 9]
49: [5, 12]
54: [19, 26]
59: [20, 27]
64: [20, 27]

15: [4, 11]
20: [4, 11]
25: [2, 9]
30: [18, 25|
35: [2, 9]
40: [22, 29]
45: [9, 16]
50: [11, 18]
55: [20, 27]
60: [3, 10]
65: [4, 11]

5: [11, 18]
10: [1, §]
15: [15, 22]
20: [6, 13]
25: [25, 32]
30: [20, 27]
35: [17, 24]
40: [22, 29]
45: [8, 15]
50: [14, 21]
55: [22, 29]
60: [21, 28]
65: [8, 15]



Harvest windows (continued)

Instance 6, Seed 12350

1: [7, 14]
6: [17, 24]
11: [23, 30]
16: [14, 21]
21: [23, 30]
26: 23, 30]
31: [11, 18]
36: [6, 13]
41: [23, 30]
46: [11, 18]
51: [3, 10]
56: [2, 9]
61: [8, 15]

2: [16, 23]
7: 25, 32]
12: [22, 29]
17: [15, 22|
22: [3, 10]
27: [13, 20]
32: [15, 22]
37: [20, 27)
42: [10, 17)
47: [16, 23]
52: [19, 26]
57: [21, 28]
62: [12, 19]

Instance 7, Seed 12351

1: [12, 19]
6: [19, 26]
11: [15, 22|
16: [8, 15]
21: [19, 26]
26: [7, 14]
31: [17, 24]
36: [12, 19]
41: [18, 25]
46: [10, 17]
51: [18, 25|

2: [22, 29]
7: (8, 15]
12: [10, 17]
17: [10, 17]
22: [25, 32]
27: [10, 17]
32: [12, 19]
37: 23, 30]
42: (14, 21]
AT: [25, 32]
52: [20, 27]

3: [21, 28]
8: [10, 17]
13: [24, 31]
18: [3, 10]
23: [18, 25]
28: [5, 12]
33: [25, 32|
38: [16, 23]
43: 2, 9]
48: [18, 25]
53: [22, 29]
58: [22, 29]
63: [13, 20]

3: [19, 26]
8: [6, 13]
13: [2, 9]
18: ]9, 16]
23: [15, 22]
28: [24, 31]
33: [5, 12]
38: [19, 26]
43: [14, 21]
48: [10, 17]
53: [18, 25|
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4: [23, 30]
9: [16, 23]
14: [3, 10]
19: [3, 10]
24: [3, 10]
29: [8, 15]
34: [22, 29]
39: [13, 20]
44: [24, 31]
49: [6, 13]
54: [21, 28]
59: [6, 13]
64: [9, 16]

4: [14, 21]
9: [15, 22|
14: [16, 23]
19: [3, 10]
24: [9, 16]
29: [20, 27]
34: 23, 30]
39: [15, 22]
44: [11, 18]
49: [18, 25]
54: [15, 22]

5: [18, 25]
10: [15, 22|
15: [1, §]
20: [7, 14]
25: [18, 25|
30: [24, 31]
35: [3, 10]
40: [17, 24]
45: [7, 14]
50: 23, 30]
55: [24, 31]



Harvest windows (continued)

56: [2, 9]

61: [20, 27

57: [19, 26]
62: [6, 13]

Instance 8, Seed 12352

1: [12, 19]
6: [25, 32]
11: 3, 10]

16: [16, 23]

21: [8, 15]
26: [4, 11]

31: [18, 25]

36: [5, 12]

41: [23, 30]

46: [1, 8]

51: [15, 22|
56: [19, 26]

61: [3, 10]

2: [6, 13]

7: [11, 1]
12: [19, 26]
17: [4, 11]
22: [22, 29]
27: [3, 10]
32: [4, 11]
37: [7, 14]
42: [1, §]

47: [25, 32]
52: [20, 27]
57: [7, 14]
62: [8, 15]

Instance 9, Seed 12353

1: [12, 19]
6: [7, 14]

11: [12, 19]

16: [4, 11]
21: [5, 12]
26: [7, 14]
31: [2, 9]
36: [9, 16]

2: [7, 14]
7. [17, 24]
12: [15, 22]
17: 22, 29]
22: [6, 13]
27: (20, 27]
32: [13, 20]
37: [4, 11]

58: [3, 10]
63: [2, 9]

3: [4, 11]
8: [10, 17]
13: [10, 17]
18: [5, 12]
23: [7, 14]
28: [12, 19]
33: [25, 32]
38: [20, 27|
43: [14, 21]
48: [22, 29]
53: [25, 32|
58: [2, 9]
63: [17, 24]

3: [20, 27]
8: [8, 15]
13: [5, 12]
18: [10, 17]
23: [18, 25|
28: [8, 15]
33: [23, 30]
38: [13, 20]
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59: [21, 28
64: [24, 31]

4: [8, 15]
9: [16, 23]
14: [6, 13]
19: [19, 26]
24: [9, 16]
29: [3, 10]
34: [15, 22]
39: [10, 17]
44: [21, 28]
49: [21, 28]
54: [14, 21]
59: [11, 18]
64: [22, 29]

4: [19, 26]
9: [19, 26]
14: [19, 26]
19: [23, 30]
24: [21, 28]
29: [21, 28]
34: [5, 12]
39: [5, 12]

60: [19, 26]
65: [4, 11]

5: [19, 26]
10: [2, 9]
15: [25, 32]
20: [18, 25|
25: [10, 17]
30: [3, 10]
35: [20, 27|
40: [21, 28]
45: [1, §]
50: [20, 27]
55: [2, 9]
60: [8, 15]
65: [15, 22]

5: [22, 29]
10: [17, 24]
15: [16, 23]
20: [4, 11]
25: [7, 14]
30: [18, 25
35: [16, 23]
40: [22, 29]



Harvest windows (continued)

41: [21, 28]
46: [8, 15]
51: [25, 32|
56: [20, 27]
61: [10, 17]

42: [18, 25]
47: [23, 30]
52: [11, 18]
57: [6, 13]
62: [16, 23]

Instance 10, Seed 12354

1: [5, 12]
6: [22, 29]
11: [20, 27]
16: [9, 16]
21: [18, 25]
26: [11, 18]
31: (24, 31]
36: 8, 15]
41: [8, 15]
46: [14, 21]
51: [22, 29]
56: [13, 20]
61: [17, 24|

2: [9, 16]
7: [3, 10]
12: [15, 22|
17: [13, 20]
22: [19, 26]
27: [21, 28]
32: [20, 27]
37: [11, 18]
42: [12, 19]
47: [6, 13]
52: [17, 24]
57: [10, 17]
62: [10, 17]

43: [13, 20]
48: [2, 9]
53: [12, 19]
58: [19, 26]
63: [20, 27]

3: [8, 15]
8: [21, 28]
13: [6, 13]
18: [7, 14]
23: [10, 17]
28: [3, 10]
33: [7, 14]
38: [8, 15]
43: [1, 8]
48: [1, 8]
53: [3, 10]
58: [2, 9]
63: [6, 13]

44: 19, 26]
49: [4, 11]
54: [16, 23]
59: [25, 32]
64: [17, 24]

4: 12, 19]
9: [8, 15]
14: 2, 9]
19: [8, 15]
24: [12, 19]
29: [11, 18]
34: [6, 13]
39: [10, 17]
44: [, 12]
49: [2, 9]
54: [14, 21]
59: [5, 12]
64: [6, 13]

45: [12, 19]
50: [2, 9]
55: [22, 29]
60: [2, 9]
65: [23, 30]

5: [19, 26]
10: [25, 32]
15: [2, 9]
20: [11, 18]
25: [13, 20]
30: [22, 29]
35: [14, 21]
40: [7, 14]
45: [1, §]
50: [6, 13]
55: [18, 25|
60: [9, 16]
65: [17, 24]
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B: Optimal solution under max sugar content of

base model

Table 35: Optimal solution under max sugar content of base model

Plot Harvest Mill Process Processed Disposed (t)
(t)
1 27 1 27 314.94 —
2 10 2 10 314.94 —
3 7 2 7 314.94 —
4 30 1 30 314.94 —
5 15 2 15 185.06 129.88 (mill 2)
6 14 2 14 314.94 —
7 14 1 14 314.94 —
8 11 1 11 314.94 —
9 30 2 30 185.06 129.88 (mill 2)
10 10 1 10 314.94 —
11 28 1 28 314.94 —
12 30 1 30 314.94 —
13 24 2 24 185.06 129.88 (mill 2)
14 9 1 9 314.94 —
15 25 1 25 317.88 —
16 20 2 20 314.94 —
17 8 1 8 314.94 —
18 7 1 7 314.94 —

Continued on next page
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Table 35: Optimal solution under max sugar content of base model (continued)

Plot Harvest Mill Process Processed Disposed (t)
(t)
19 9 2 9 185.06 129.88 (mill 2)
20 13 1 13 314.94 —
21 14 1 14 314.94 —
22 23 1 23 314.94 —
23 26 2 26 314.94 —
24 7 1 7 314.94 —
25 25 1 25 314.94 —
26 13 2 13 314.94 —
27 29 2 29 314.94 —
28 27 2 27 314.94 —
29 29 1 29 314.94 —
30 24 2 24 314.94 —
31 20 1 20 314.94 —
32 14 2 14 185.06 129.88 (mill 2)
33 21 1 21 314.94 —
34 25 2 25 314.94 —
35 15 1 15 314.94 —
36 7 2 7 185.06 129.88 (mill 2)
37 31 1 31 314.94 —
38 12 1 12 314.94 —
39 29 1 29 314.94 —
40 20 1 20 314.94 —
41 17 1 17 314.94 —

Continued on next page
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Table 35: Optimal solution under max sugar content of base model (continued)

Plot Harvest Mill Process Processed Disposed (t)
(t)
42 15 2 15 314.94 —
43 11 2 11 314.94 —
44 13 1 13 314.94 —
45 31 1 31 314.94 —
46 17 1 17 314.94 —
47 11 1 11 317.88 —
48 9 1 9 314.94 —
49 19 1 19 314.94 —
50 10 1 10 314.94 —
51 18 1 18 314.94 —
52 18 1 18 314.94 —
53 26 1 26 314.94 —
54 15 1 15 314.94 —
55 8 1 8 314.94 —
56 30 2 30 314.94 —
57 21 1 21 314.94 —
58 24 1 24 314.94 —
59 10 2 10 185.06 129.88 (mill 2)
60 19 1 19 314.94 —
61 9 2 9 314.94 —
62 24 1 24 314.94 —
63 16 1 16 314.94 —
64 27 1 27 314.94 —

Continued on next page
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Table 35: Optimal solution under max sugar content of base model (continued)

Plot Harvest Mill Process Processed Disposed (t)
(t)
65 26 1 26 314.94 —

— indicates no disposal.

— indicates no disposal.
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C: Capacity usage under max sugar content of

base model

Table 36: Capacity utilization (%) for e = 2779.57

Group A Group B

Period Mill 1 (%) Mill 2 (%) Period Mill1 (%) Mill 2 (%)

Harvesting Capacity Utilization

1 0.0 0.0 2 0.0 0.0
3 0.0 0.0 4 0.0 0.0
5 0.0 0.0 6 0.0 0.0
7 74.1 74.1 8 74.1 0.0
9 74.1 74.1 10 74.1 74.1
11 74.4 37.1 12 37.1 0.0
13 74.1 37.1 14 74.1 74.1
15 74.1 74.1 16 37.1 0.0
17 74.1 0.0 18 74.1 0.0
19 74.1 0.0 20 74.1 37.1
21 74.1 0.0 22 0.0 0.0
23 37.1 0.0 24 74.1 74.1
25 74.4 37.1 26 74.1 37.1
27 74.1 37.1 28 37.1 0.0
29 74.1 37.1 30 74.1 74.1
31 74.1 0.0 32 0.0 0.0

Transport (Vehicle) Capacity Utilization

1 0.0 0.0 2 0.0 0.0
3 0.0 0.0 4 0.0 0.0
5 0.0 0.0 6 0.0 0.0
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7 52.0 52.0 8 52.0 0.0
9 52.0 52.0 10 52.0 52.0
11 52.0 26.0 12 26.0 0.0
13 52.0 26.0 14 52.0 52.0
15 52.0 52.0 16 26.0 0.0
17 52.0 0.0 18 52.0 0.0
19 52.0 0.0 20 52.0 26.0
21 52.0 0.0 22 0.0 0.0
23 26.0 0.0 24 52.0 52.0
25 52.0 26.0 26 52.0 26.0
27 52.0 26.0 28 26.0 0.0
29 52.0 26.0 30 52.0 52.0
31 52.0 0.0 32 0.0 0.0
Processing Capacity Utilization
1 0.0 0.0 2 0.0 0.0
3 0.0 0.0 4 0.0 0.0
5 0.0 0.0 6 0.0 0.0
7 63.0 100.0* 8 63.0 0.0
9 63.0 100.0* 10 63.0 100.0*
11 63.3 63.0 12 31.5 0.0
13 63.0 63.0 14 63.0 100.0%*
15 63.0 100.0* 16 31.5 0.0
17 63.0 0.0 18 63.0 0.0
19 63.0 0.0 20 63.0 63.0
21 63.0 0.0 22 0.0 0.0
23 31.5 0.0 24 63.0 100.0%*
25 63.3 63.0 26 63.0 63.0
27 63.0 63.0 28 31.5 0.0
29 63.0 63.0 30 63.0 100.0%*

122



31 63.0 0.0 32 0.0 0.0

Note: Asterisk (*) indicates the capacity constraint is binding (100% utilization).
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D: Optimal Solution under max sugar of hetero-

geneous model

Table 37: Optimal Solution under max sugar of alternative model

Plot Harvested Delivered Processed Processed Disposed
period Mill period amount(t) amount(t)

1 27 1 27 363.50 —

2 10 2 10 200.16 97.35 (mill 2)

3 7 2 7 276.18 —

4 30 2 30 260.71 —

5 15 1 15 335.26 —

6 14 1 14 349.34 —

7 14 1 14 376.07 —

8 11 1 11 359.70 —

9 30 1 30 361.11 —

10 10 2 10 299.84 —

11 28 1 28 309.07 —

12 30 1 30 357.03 —

13 25 2 25 274.99 —

14 9 2 9 296.71 —

15 25 1 25 336.38 —

16 20 1 20 340.36 —

17 8 1 8 338.06 —

18 7 2 7 223.82 37.12 (mill 2)

19 9 1 9 331.94 —

20 13 1 13 319.24 —
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Table 37 continued

Plot Harvest Mill Process Processed Disposed (t)

(t)
21 14 2 14 282.79 —
22 23 1 23 310.19 —
23 26 1 26 285.96 —
24 7 1 7 368.53 —
25 24 1 24 338.64 —
26 13 2 13 279.62 —
27 29 1 29 292.80 —
28 27 1 27 348.74 —
29 29 2 29 259.00 —
30 24 1 24 355.48 —
31 20 1 20 353.37 —
32 14 2 14 217.21 85.28 (mill 2)
33 21 1 21 260.29 —
34 25 1 25 366.99 —
35 15 1 15 323.40 —
36 7 1 7 342.39 —
37 31 1 31 278.74 —
38 12 1 12 314.84 —
39 29 1 29 363.40 —
40 20 2 20 332.94 —
41 17 1 17 269.95 —
42 15 2 15 228.79 40.75 (mill 2)
43 11 1 11 345.80 —
44 13 1 13 319.85 —
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Table 37 continued

Plot Harvest Process Processed Disposed (t)
(t)
45 31 31 346.06 —
46 17 17 305.92 —
47 10 10 325.46 —
48 9 9 297.55 —
49 19 19 377.59 —
50 11 11 271.89 —
ol 18 18 314.12 —
52 18 18 347.16 —
53 26 26 360.43 —
54 15 15 271.21 —
55 8 8 272.11 —
56 30 30 239.29 98.39 (mill 2)
57 21 21 327.09 —
o8 24 24 300.42 —
59 10 10 327.02 —
60 19 19 310.92 —
61 9 9 203.29 80.33 (mill 2)
62 24 24 199.58 122.07 (mill 2)
63 16 16 370.68 —
64 27 27 337.65 —
65 26 26 266.38 —

— indicates no disposal.
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E: Capacity usage under max sugar content of

heterogeneous model

Table 38: Capacity utilization (%) for € = 2807.62

Group A Group B
Period Mill1 (%) Mill 2 (%) | Period Mill1l (%) Mill 2 (%)
Harvesting Capacity Utilization
1 0.0 0.0 2 0.0 0.0
3 0.0 0.0 4 0.0 0.0
5 0.0 0.0 6 0.0 0.0
7 83.6 63.2 8 71.8 0.0
9 74.1 68.3 10 76.8 70.3
11 83.0 32.0 12 37.0 0.0
13 75.2 32.9 14 85.3 68.9
15 77.5 63.6 16 43.6 0.0
17 67.7 0.0 18 77.8 0.0
19 81.0 0.0 20 81.6 39.2
21 69.1 0.0 22 0.0 0.0
23 36.5 0.0 24 81.7 73.2
25 82.7 324 26 76.0 31.3
27 83.8 39.7 28 36.4 0.0
29 77.2 30.5 30 84.5 70.4
31 73.5 0.0 32 0.0 0.0
Transport (Vehicle) Capacity Utilization
1 0.0 0.0 2 0.0 0.0
3 0.0 0.0 4 0.0 0.0
5 0.0 0.0 6 0.0 0.0
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7 58.0 46.0 8 50.0 0.0
9 52.0 48.0 10 56.0 48.0
11 58.0 22.0 12 26.0 0.0
13 52.0 24.0 14 60.0 50.0
15 54.0 44.0 16 30.0 0.0
17 48.0 0.0 18 54.0 0.0
19 58.0 0.0 20 58.0 28.0
21 50.0 0.0 22 0.0 0.0
23 26.0 0.0 24 58.0 52.0
25 58.0 22.0 26 54.0 22.0
27 58.0 28.0 28 26.0 0.0
29 54.0 22.0 30 60.0 50.0
31 52.0 0.0 32 0.0 0.0
Processing Capacity Utilization
1 0.0 0.0 2 0.0 0.0
3 0.0 0.0 4 0.0 0.0
5 0.0 0.0 6 0.0 0.0
7 71.1 100.0* 8 61.0 0.0
9 62.9 100.0* 10 65.2 70.6
11 70.6 31.5 12 31.5 0.0
13 63.9 55.9 14 72.5 100.0%*
15 65.9 0.0 16 37.1 0.0
17 57.6 0.0 18 66.1 0.0
19 68.9 0.0 20 69.4 66.6
21 58.7 0.0 22 0.0 0.0
23 31.0 0.0 24 69.4 100.0*
25 70.3 55.0 26 64.6 53.3
27 71.2 67.5 28 30.9 0.0
29 65.6 51.8 30 71.8 100.0*
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31 62.5 0.0 32 0.0 0.0

Note: Asterisk (*) indicates the capacity constraint is binding (100% utilization).
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