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Résumé

L’objectif de ce mémoire est de développer et optimiser un environnement d’entraînement

d’une politique pour un problème de gestion de richesse à un objectif d’investissement

(GBWM) en utilisant des méthodes d’apprentissage par renforcement (RL) où le

degré de réussite de l’implémentation est déterminé par sa capacité d’approcher la

solution cible déterminée par l’approche de programmation dynamique (DP). Bien

que le Q-Learning, une méthode de RL, fût en mesure d’approximer la politique op-

timale lors de projets de recherche précédents, cette approche ne fût pas en mesure

d’offrir de solution complète face à des inefficacités liées aux problèmes à grandes

dimensions qui surviennent lorsque l’environnement d’entraînement offre un nombre

d’actions abondant à l’agent. Le tout mène à considérer des méthodes approximant

la politique, qui elles permettent de prévenir des encombrements liés aux grandes di-

mensions tout en permettant à l’agent de naviguer dans un environnement continu,

chose désirable considérant la nature du probleme d’optimisation dans un environ-

nement de marchés financiers. Une méthode d’approximation de la politique est

donc utilisée par l’entremise de l’algorithme REINFORCE. L’application est faite

à l’aide de la librairie Python nommée «Pytorch» qui permet de bâtir un envi-

ronnement d’entraînement de manière efficace pour le modèle. Dans un but de

permettre la mise-en-oeuvre d’une méthode d’approximation de la politique dans

un contexte de problème GBWM, des approches de normalisation et centrage ont

été développées. D’ailleurs, la méthode de centrage s’est avérée supérieure quant à

l’amélioration de la vitesse d’apprentissage du modèle. Par la suite, une approche

d’approximation de la politique a été appliquée pour un problème de gestion d’actifs

à plusieurs objectifs d’investissements (MGWM). L’environnement d’entraînement

utilisé n’est pas parvenu à mener la politique à l’optimalité malgré des solutions qui

se sont approchées des solutions cibles.
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Abstract

The objective of this thesis is to develop and optimize a framework for the training

of a policy in the scope of a goal-based wealth management (GBWM) problem by

employing Reinforcement Learning (RL) techniques. The success level of a given

RL implementation is based on its ability to approach the benchmark solution es-

tablished by the Dynamic Programming (DP) algorithm developed for a GBWM

problem. While Q-Learning, an RL technique, was successful in approximating the

optimal policy in previous research projects, it did not offer a complete solution to

address the curse of dimensionality that becomes a concern when actions are abun-

dant within the training environment. Policy approximation methods, however, offer

a solution to this limitation and allow for training the policy in a continuous state-

space, which is a desirable feature given the nature of the optimization problem

in an environment replicating financial markets. A policy approximation method

is applied through the REINFORCE algorithm, which involves using the PyTorch

library in Python as it allows to practically construct the model’s training environ-

ment. The implementation of a policy gradient method to solve a GBWM problem

led to the development of frameworks to both normalize and center the model’s in-

put variables. In fact, an adjusted centering approach tailored for a GBWM problem

proved to maximize the model’s speed of convergence towards the optimal policy.

An attempt to apply a policy approximation approach is then made for a multi-

goals wealth management (MGWM) problem. The training environment used for

a MGWM problem was unable to fully guide the policy towards optimality despite

the fact that the resulting solutions approached their respective benchmark.

Keywords

Goal-Based Wealth Management, Dynamic Programming, Reinforcement Learning,

Policy Approximation, Multi Goals Wealth Management
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1 Introduction

In recent years, investment management and machine learning have been two attention-

grabbing fields due to prompt advancements in their own respect. These two fields

have been merged and placed at the center of multiple research projects across fi-

nancial and academic institutions. As technological capacities continue to expand,

additional changes with strong impacts can be expected in the near and long-term

future. In this thesis, reinforcement learning is used to solve a dynamic goal-based

wealth management (GBWM) problem. GBWM itself represents an alternative ap-

proach to the widely known Modern Portfolio Theory (MPT), developed by Harry

Markowitz (1952). Under mainstream investing methods that are for the most part

founded on the basis of MPT, portfolio performance is determined by returns earned

as a result of the amount of risk undertaken by an investor. By labeling risk as the

standard deviation of returns, MPT seeks to maximize the mean-variance return of

a given portfolio, which is synonymous with maximizing its Sharpe ratio. On the

other hand, GBWM aims to maximize the likelihood of attaining a predefined goal,

usually a wealth level, with the risk being falling short of this goal.

GBWM takes its roots in the work of Abraham Maslow (Parker, 2022). Maslow

studied the impact of psychological and physical needs on human behaviour, where

the hierarchy of one’s needs is referred to as mental accounting. Two decades later,

Jean L.P. Brunel examined the human tendency to structure financial planning

around short- and long-term life aspirations. In 2000, Hersh Shefrin and Meir Stat-

man (Parker, 2022) were able to build on Brunel’s work by introducing the be-

havioral portfolio theory (BPT). In contrast to the MPT, BPT redefines risk as the

probability of failing to obtain a minimum return or wealth level within a certain pe-

riod. These developments motivated Das, Scheid, Statman and Markowitz (Parker,

2022) to join their efforts and put forth the concept of GBWM with the objective of

solidifying the theoretical content behind investment approaches that identify the

source of risk as being the probability of failing to attain a financial goal (Das et al.,

2011).

Technological advances have spurred extensive efforts in leveraging Reinforce-
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ment Learning (RL) techniques to improve financial decision-making. RL is an ap-

proach where an algorithm leads an individual (or an agent) to understand a given

environment by interacting directly with it (Hambly et al., 2023). This approach

leverages computational tools as it requires to perform numerous computations to

complete optimization tasks in a scalable manner. In fact, RL algorithms have been

successfully used to optimize decisions relating to the execution of securities, hedging

strategies, market making and more (Hambly et al., 2023).

RL methods have the ability to learn optimal decision sequences by allowing the

agent to explore the environment without any interference, consequently allowing

such algorithms to gain a deep understanding of complex environments (Hambly

et al., 2023). RL has been linked to GBWM in previous works by Das and Varma

(2020), where a tabular Q-Learning algorithm was employed to estimate the se-

quence of optimal actions by the agent. Maxence Prémont (2021) improved the per-

formance of the original Q-Learning algorithm proposed by Das and Varma (2020)

by using decay functions that improved the learning process in the training phase.

In addition, Prémont introduced a Policy Approximation approach to estimate the

optimal policy, which ultimately led to identifying a series of limitations that will

serve as buildings blocks in this thesis as the downright objective is to develop a

Policy Gradient approach involving the use of an artificial neural network (ANN).

This thesis is organized as follows. Section 2 includes a literature review in which

key takeaways from previous research projects on GBWM are revisited. Section 3

includes a detailed description of the GBWM multi-period optimization problem,

followed by a section on the dynamic programming method to solve a multi-period

GBWM problem whose solution will serve as a benchmark in analyses included in

later chapters, and concludes with a numerical experiment to exemplify its contained

concepts. Section 4 shifts the focus to the exploration of a new approach to solve a

dynamic GBWM problem: the use of a Policy Gradient approach by leveraging the

REINFORCE algorithm to train a model that is capable of learning the environ-

ment’s optimal policy. In order to improve the model’s learning ability, two scaling

methods were used: normalization (a widely known scaling method to train neural

networks) and an adjusted centering approach adapted to a muti-period GBWM

2



problem. When combined with a baseline and batch training, the adjusted center-

ing application proved to be effective in supporting the model converge towards an

optimal policy while also maximizing the rigor of the training phase. Finally, Sec-

tion 5 applies the newly developed Policy Gradient (with REINFORCE) approach

onto a multiple goals wealth management (MGWM) environment, which considers

multiple goals all throughout the investment period as it optimizes the policy. The

model’s performance is compared to a set of benchmark solutions obtained using the

dynamic programming method. While the training environment used for a MGWM

problem showed an ability to improve the model’s policy, it revealed limitations with

respect to fully optimizing it.
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2 Literature Review

The desire to optimize risk-bearing investments is a priority to all portfolio managers.

In 1952, Harry Markovitz defined an optimal portfolio as one providing the highest

expected return for a given level of risk. Markowitz emphasized the importance of

diversifying portfolio funds to earn returns that are close to expected levels as the

law of big numbers comes into play (Markowitz, 1952). Markowitz introduced the

notion of an efficient frontier, which represents the set of optimal portfolios that

offer the highest returns for a given risk level (Markowitz, 1952). Investors can use

the efficient frontier to identify and select an optimal portfolio tailored to their risk

tolerance.

In an effort to enhance the use of the Markowitz Efficient Frontier, goal-based

wealth management (GBWM) was developed to be an investment approach that fo-

cuses on maximizing investors’ probability of achieving a predetermined wealth level

within a certain time horizon. The mean-variance efficient frontier of Markowitz is a

recurring theme in GBWM as the set of actions available to investors are represented

by portfolio allocations that lie on the efficient frontier, and where the definition of

risk is extended to the probability of not attaining an investment goal, rather than

limiting it to the standard deviation of returns (Das et al., 2018). In addition, Das et

al. (2018) propose a method to identify the portfolio that maximizes the probability

of attaining a financial goal under a single-period framework. This is demonstrated

through a series of numerical computations.

In the scope of multi period investment environment, Das et al. (2020) built

on the optimal portfolio selection framework detailed in A New Approach to Goals-

Based Wealth Management (Das et al., 2018) by introducing a dynamic program-

ming (DP) algorithm to optimize the probability of attaining an investment objec-

tive. The optimal policy is derived using the Bellman equation which expresses the

relationship between a state-action pair and the resulting expected future returns,

hence allowing the agent to select the return-maximizing action for every state in

the investment environment (Das et al., 2020). In GBWM, building a wealth grid is

an essential step when attempting to dynamically optimize the sequence of actions
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by backpropagating all the way to the initial period (Das et al., 2020). The wealth

grid is time-homogenous and subject to appropriate minimum and maximum wealth

levels, where all elements are equally spaced in their log-transformed form (Denault

and Simonato, 2022). Das et al. (2020) propose a wealth grid construction method

that assures the initial wealth value is included in the grid by exogenously selecting

a wealth grid density parameter, and then following a series of numerical steps to

fill the grid with values between its extrema. The wealth grid is sensitive to adjust-

ments to its foundational hyperparameters such as the density parameter and the

number of wealth levels it contains. An additional feature to the wealth grid was

introduced by Denault and Simonato (2022) to stabilize and smooth the convergence

of the optimal policy. The approach consists of assuring that the investment goal

G is exactly halfway amongst the elements contained in the wealth grid by shifting

the grid’s values. For wealth grids that exclude the portfolio’s initial wealth value,

Denault and Simonato (2022) propose an interpolation method. This approach in-

volves using neighboring values within the grid to provide additional flexibility to

the grid’s composition.

Das and Varma (2020) opened the door to RL methods applied to the problem

set forth in Das et al. (2020) by employing a tabular Q-Learning method with the

objective of converging to the solutions obtained from DP. The use of RL algorithms

helps mitigate the impact of the curse of dimensionality as their model-free nature

enables the extrapolation of solutions from resulting forward simulations (Das and

Varma, 2020). Given that the number of calculations in DP can explode when

increasing the number of wealth values, time increments, and actions, the use of RL

was a favorable step toward developing a scalable approach to optimize a dynamic

GBWM problem (Das and Varma, 2020).

An improved algorithm based on Das and Varma’s formulation of the Q-Learning

algorithm was introduced by Maxence Prémont (2021) with the objective of ac-

celerating the speed of convergence and stabilizing success rates when testing the

optimal policy. The improved algorithm consists of maintaining the structure of

the Q-Learning approach employed by Das and Varma (2020) with the addition

of gradually reducing the learning rate throughout the training process (Prémont,
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2021). Adjustments to the learning rate were made by using different versions of

decay functions; the exponential and linear decay functions were tested under both

the state and exponential methods (Prémont, 2021). Additionally, Prémont (2021)

attempted to replicate the results of the DP and Q-Learning methods by using a

policy gradient (PG) approach given the numerous advantages that can arise from

employing such methods. Policy-based methods estimate the optimal policy by

approximating a parametric function that is representative of the environment’s dy-

namics and specifications (Sutton and Barto, 2018). Using a PG approach allows

to move past the dependency on a wealth grid, which was a limitation in previ-

ous methods given the grid’s discrete nature and time-homogeneity. PG methods

can function in continuous state spaces which is desirable in GBWM as financial

markets are subject to continuous states. Another advantage of using PG methods

is their ability to visit unlikely states that would be otherwise unvisited under the

Q-Learning method, and approximate optimal actions in such situations (Sutton

and Barto, 2018). Prémont applied a PG approach by initializing the weights of

the model to pre-specified values. Despite the model’s success in approximating the

optimal policy in an oversimplified investment environment, it ultimately failed in

a more realistic environment (Prémont, 2021).

While GBWM is intuitive and represents a viable investment approach for many,

the use of a multi-goal approach where goals are competing amongst each other is

closer to the reality experienced by various investors (Das et al., 2022). Multi

goals wealth management (MGWM) can be an investment philosophy of interest

for investors who foresee having to meet financial obligations on a periodic basis

(e.g.: monthly mortgage payments) or for those who consider making several major

purchases during a given time horizon (e.g.: buying a house and a boat in the next

10 years). Das et al. (2022) introduce a framework to optimize the sequence of

investment decisions in a multi-goal investment environment with the objective of

maximizing the investor’s overall utility throughout the investment period. The

dynamic optimization process to solve a MGWM problem proposed by Das et al.

(2022) is utterly inspired by the original optimization framework developed for a

GBWM problem (containing a single investment goal). More precisely, just like

6



the GBWM problem, the optimization process consists of backwardly propagating

utility expectations in order to derive the optimal sequence of actions all the way

to the beginning of the investment period. The goals’ success probabilities derived

from the optimization process take into account actions that reflect the investor’s

preferences. Such an approach has proven to outperform static portfolio strategies

that are commonly used across the wealth management industry (Das et al., 2022).
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3 A Goal-Based Wealth Management Problem with

a Single Goal

Dynamic Programming was first introduced by Richard Bellman in 1954 in his pub-

lication entitled The Theory of Dynamic Programming (1954). Bellman developed

the DP framework to solve mathematical problems composed of multi-stage decision

processes (Bellman, 1954). While the development of the DP framework was an im-

portant step toward optimizing sequential decisions, when first developed, its level

of practicality was scant given the lack of computational power to perform large

amounts of repetitive calculations often arising when employing such frameworks.

Since 1954, breakthroughs in computational capabilities have led DP methods to

undergo numerous improvements that increased their rigor. The focus of this chap-

ter is on elucidating the application of the DP framework to dynamically solve a

multi-period GBWM problem with a single investment goal. A replication of re-

sults included in Das et. al (2020) is also detailed to have a clearer picture of the

approach which will serve as a benchmark in later sections as additional methods

will be subject to testing. In the description of concepts, a specific notation practice

is maintained all throughout: vectors are labelled in bold characters and elements

of finite sets are labelled using an upper index between parentheses. The number

of elements in these finite sets are labelled by using the letter n, followed by a

corresponding subscripted letter (e.g.: nk).

3.1 The Multi-Period Optimization Problem

The GBWM optimization problem is subject to a finite time horizon composed

of discrete time increments where the objective is to optimize xt, the fund’s asset

allocation, at different periods from a finite set of nx different allocations. The

allocations available to a given investor are a choice from na different assets that each

have expected levels of returns m(i) and volatility v(i) where i = 1 to na. Given that

the fund’s allocation is reevaluated at the beginning of every period, the optimization

problem is considered to be dynamic as the investor seeks to optimize the distribution

of funds among the na available assets. The basic case of the optimization problem

8



focuses on the objective of attaining a wealth level G by the end of the investment

term T by solely investing the fund’s initial balance, therefore ignoring the option

to consider cash inflows and outflows during the investment period. While the set

of asset allocations (or actions) available to the investor are subject to stochastic

periodic returns, each action is characterized by a constant expected return level

µ(i) and constant volatility σ(i) where i : 0, ..., nx. At a given period t, an action is

deemed to be optimal if it maximizes the investor’s probability of attaining its goal

G by time T , which can be expressed using the following expression:

max
{xt}T-h

t=0

Pr(WT > G), (1)

where time increments of h years are denoted as 0, h, . . . , nth . The set of available

asset allocations and the fund’s terminal wealth are expressed as xt and WT , respec-

tively. By repeating this condition all the way to the initial period, the sequence of

optimal actions derived from backpropagating is expected to maximize the investor’s

success probability with respect to the investment objective. Additionally, the set

of actions represented by unique asset allocations can be expressed as:

xt ∈ {x(1)
t ,x(1)

t , ...,x(nx)
t }. (2)

Each allocation is defined by a set of expected mean and volatility measures

{µ(i), σ(i)} that lies on the mean-variance efficient frontier. Furthermore, the wealth

level is assumed to follow a geometric Brownian motion defined as:

Wt+h = Wte
(µt− 1

2
σ2
t )h+σt

√
hZt , (3)

where µt and σt take the values of the expected mean and volatility of returns under

the selected allocation xt. Return dynamics, µt and σt, are explicit functions of xt

and are under the control of the investor. The stochastic component in (3) is defined

as a standard normal random variable Zt.
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3.2 The Benchmark Dynamic Programming Approach

The fully discrete muti-period DP algorithm requires the integration of a wealth

grid in the policy optimization process (Das et al., 2020). The grid contains nω

wealth levels, where the set of elements can be expressed as {W (1),W (2), ...,W (nω)}.

Neighboring elements in the grid are equally spaced in their log-transformed form

(Denault and Simonato, 2022). An important characteristic of the wealth grid is its

time-homogenous nature throughout the investment time horizon.

When expressing transition probabilities associated with moving from one wealth

point to another, w(i) represents the log-transformed wealth value of the agent at

the time of the decision (time t), and w(j) represents the log-transformed wealth

level to be potentially attained in the following period (time t+h).

Given the discrete and finite nature of the wealth grid, transition probabilities

are calculated using the following expression (Das et al., 2018):

p(i,j,k) =
ϕ(w(j)|w(i),x(k))∑nω

l=1 ϕ(w
(l)|w(i),x(k))

, (4)

with the normal conditional density function ϕ(·) being expressed as:

ϕ(w(j)|w(i),x(k)) =
1√

2πσ(k)
exp

(
−

1
2

(
w(j) − w(i) − µ(k)h+ h

2
(σ(k))2

)2
(σ(k))2h

)
, (5)

In GBWM, the investor’s primary focus is to attain its investment objective G.

At the final period T , if the investment goal is attained, a return of one is earned by

the agent, otherwise the return is zero. Regardless of whether the portfolio’s balance

meets or exceeds the investment objective at the end of the investment period, the

return attributed will remain identical. Since it is not possible to know whether a

portfolio has succeeded or fallen short of achieving a minimum value of G until the

end of the time horizon, all returns are equal to zero for periods t < T . The value

function at time T can therefore be expressed as:

V (T,i) =

0, if W (i) < G

1, if W (i) ≥ G.

(6)

10



To derive a sequence of optimal actions that maximize expected returns in subse-

quent periods, the Bellman equation can be utilized to determine the optimal action

x(k) to be taken in the current period (Denault and Simonato, 2022). The Bellman

equation can be expressed as:

V (T,i) = max
x(k)

[
nw∑
j=1

V (t+1,j) × p(i,j,k)

]
, (7)

As a result, for each state in the investment environment, an optimal action is

derived which ultimately forms the investor’s optimal policy denoted as I(t,i) for a

portfolio worth W (i) at time t. By distributing expected returns in accordance with

the Bellman equation and deriving the investment’s optimal policy all the way to

the initial period (time 0), the state value at time 0 will be representative of the

probability of attaining the investment goal when following the optimal policy.

3.3 Case Study: A Single Goal Problem

This section takes a look at an application of the DP framework in a GBWM en-

vironment that is detailed in Das et al. (2020). In this numerical example, the

state-space is subject to nω = 200 attainable values bounded by Wmin and Wmax.

Their values are a function of the lowest expected return µmin, highest expected

return µmax and highest expected return volatility σmax in the following expressions:

Wmin = W0e
(µmin−

σ2
max
2

)T−3σmax
√
T , (8)

Wmax = W0e
(µmax−

σ2
max
2

)T+3σmax
√
T . (9)

In Das et al. (2020), an analytical approach was used to determine the grid size

which is not the case in this section’s replication of results. The action-space vector

x(k) is composed of nx = 15 actions, each representing a unique asset mix available

to the investor, that lie on the efficient frontier. Allocations are subject to three

distinct asset classes (na = 3): U.S. bonds, international stocks, and U.S. stocks.
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Table 1: Asset characteristics table.

Asset class Mean return Covariance of returns
U.S. bonds 0.0493 0.0017 -0.0017 -0.0021

International stocks 0.0770 -0.0017 0.0396 0.0309
U.S. stocks 0.0886 -0.0021 0.0309 0.0392

Table 2, below, displays the different allocations between the three asset classes

detailed in Table 1 along with expected returns and volatility levels:

Table 2: Portfolio weights and expectations

Portfolio Weights
Portfolio
number
(k)

U.S.
bonds

International
stocks

U.S.
stocks

Mean
return
(µ(k))

Standard
deviation
(σ(k))

1 0.9098 0.0225 0.0677 0.0526 0.0370
2 0.8500 0.0033 0.1467 0.0552 0.0396
3 0.7903 -0.0160 0.2257 0.0577 0.0463
4 0.7305 -0.0352 0.3047 0.0604 0.0557
5 0.6707 -0.0545 0.3837 0.0629 0.0664
6 0.6110 -0.0737 0.4628 0.0655 0.0781
7 0.5512 -0.0930 0.5418 0.0680 0.0904
8 0.4915 -0.1122 0.6208 0.0706 0.1031
9 0.4317 -0.1315 0.6998 0.0732 0.1159
10 0.3719 -0.1507 0.7788 0.0757 0.1290
11 0.3122 -0.1700 0.8578 0.0783 0.1421
12 0.2524 -0.1892 0.9368 0.0809 0.1554
13 0.1927 -0.2085 1.0158 0.0834 0.1687
14 0.1329 -0.2277 1.0948 0.0860 0.1821
15 0.0731 -0.2470 1.1738 0.0886 0.1955

With the objective being to optimize the agent’s sequence of decisions and invest

in optimal asset mixes, all 15 actions are return-maximizing allocations for the

amount of risk borne by the investor as they lie on the efficient frontier of Markowitz.

In Figure 1, the efficient frontier is represented by the blue curve, and the points

represent each of the 15 asset mixes (or actions) available to a given investor.
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Figure 1: Efficient frontier illustration

Figure 2: Heatmap of the optimal policy for a 10-year investment period

Figure 2 illustrates the optimal policy’s evolution using a 10-year investment

horizon where the investor’s initial wealth W0 and goal G are 100 and 200, respec-

tively. The set of actions are displayed on the right-hand side of the figure. Dark

colors represent riskier actions by the agent, while lighter colors represent conserva-

tive investment allocations. The action numbers are representative of the portfolio

numbers in Table 2. As the agent approaches the end of the investment period,

riskier actions are taken in order to maximize the fund’s chances of attaining the

goal if it is below the desired threshold. On the other hand, if the goal is attained

prior to time 10, the agent’s preferred allocations involve reduced risk levels in order
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Figure 3: Heatmap of state values for a 10-year investment period

to minimize the likelihood of experiencing undesired decreases in wealth. Both of

the above heatmaps show that for lower state values, the agent favors allocations

that are increasingly riskier as it approaches the end of the investment period.

Obtaining the investment strategy’s success rate is done using out-of-sample

(OOS) simulations. In the scope of a GBWM problem, performing OOS simulations

consists of simulating paths where returns follow a normal random variable defined

by the optimal policy’s choice of action (in the form of a probability distribution

function) derived prior. The success rate among all paths generated in the OOS

simulations is then used to evaluate the current policy’s performance. The table

below indicates the success rate for a given period-and-goal combination where a

total of 100,000 OOS paths were simulated.

Table 3: Dynamic programming solutions

T G Success rate
10 200 0.6654

Since the agent’s initial fund value does not appear in this example’s wealth grid,

neighbouring values below and above W0 were used in the OOS simulations making it

possible to use an interpolation function to obtain a solution for the desired starting

point.
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4 Policy Approximation in GBWM

This section focuses on replicating the results of Das et al. (2020) by employing

a policy approximation approach to determine the optimal policy in goal-based in-

vesting. To achieve this, the REINFORCE algorithm is used to train the policy

using a neural network replicating the investment environment detailed in Das et

al. (2020). It is worth noting that this approach also involves revisiting some of

the results and conclusions from Reinforcement Learning Algorithms for a Dynamic

Goal-Based Wealth Management Problem by Maxence Prémont (2021). In Pré-

mont’s work, the PG REINFORCE algorithm was utilized to estimate a polynomial

representation of the optimal policy which is replaced by a neural network in this

thesis. By developing a well-implemented and robust PG algorithm, the environ-

ment’s optimal policy can be derived efficiently while benefiting from the additional

flexibility that neural networks provide. The potential upsides that can arise from

the trials in this section make it a worthwhile pursuit in the domain of goal-based

investing.

Policy approximation methods offer greater flexibility in stochastic forecasting,

as they allow attainable states to span a continuous range, hence effectively elim-

inating the limitations associated with discrete and finite state spaces that are re-

quired in DP and Q-learning (Prémont, 2021). Their ability to generalize optimal

actions to states not visited throughout the training process makes them applica-

ble for real-world situations as financial markets are often not constrained by finite

state spaces where unique market outcomes can always occur. Policy approximation

methods can be trained using neural networks, which have been at the forefront of

recent technological advances given their learning efficiency. They have the ability

to include numerous customizations in their training process making them a useful

tool that can be adapted to any learning environment. In addition, building and

implementing neural networks can be done through the use of well-known Python

libraries like PyTorch and Tensorflow, which provide generic training environments

that can be adapted to various problems. As a result, such implementations can be

efficiently developed while potentially excelling at estimating the optimal policy for
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a wide range of problems.

4.1 Policy Gradient Approach

The objective of policy gradient algorithms is to adjust the policy’s parameterization

with respect to action selection in a way that maximizes the agent’s expected returns

(Sutton and Barto, 2018). To maximize performance, the model’s parameters are

updated by approximating the gradient ascent in the performance measure J(πθ),

whose value is essentially the state-value at the starting point (t=0) of an episode

in the context of a GBWM problem (Sutton and Barto, 2018). The gradient form

of the performance measure serves as the objective function (also known as the loss

function) that guides the optimization process with respect to the model’s set of

parameters θ (Sutton and Barto, 2018). More specifically, the gradient form of the

performance measure J(πθ) for a model using a PG approach is used to derive the

optimized expected finite-horizon discounted returns of the policy:

∇θJ(πθ) = Eτ∼πθ

[
τ∑

t=0

∇θ log πθ(at|st)Aπθ(st, at)

]
, (10)

where τ represents the number of trajectories (or iterations) performed by the agent

in a given episode and πθ(at|st) denotes the probability of selecting action a in

state s at time t. The advantage function Aπθ(st, at) is used to express the sum

of discounted future returns from the agent’s point of view at time t and can be

reformulated as:

Aπθ(st, at) =
T∑

k=t+1

rkγ
k, (11)

with rk being the return earned by the agent at period k, and γk being the corre-

sponding discount factor.

Calculating the gradient of the performance measure J(πθ) is a mathematical

task that is automatically calculated by PyTorch or Tensorflow (depending on which

of the two libraries is used to build a neural network). The model’s parameters are

updated according to the expression below once the stochastic gradient ascent in
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the performance measure expressed in (10) is calculated:

θk+1 = θk + α∇θJ(πk). (12)

The policy’s parameters θ are updated using a learning rate expressed as α. For

a given optimization problem, a learning rate α can be kept constant or adjusted

during the training process. While there are different approaches to adjust a learning

rate, the objective always remains to enhance the model’s learning ability throughout

the training phase (Sutton and Barto, 2018).

4.2 REINFORCE Algorithm

The REINFORCE algorithm, also known as the vanilla PG method, is one of the

most common algorithms used in policy approximation. The policy, characterized

by a set of parameters θ, can be initialized with predetermined values or by random

assignment which is a common practice in neural networks (de Sousa, 2016). The

REINFORCE method enables the training of the policy’s parametric function by

generating Monte Carlo simulations in which the agent selects actions with respect

to the probability distribution function outputted by the model. In each epoch,

the performance measure’s gradient is calculated and used to update the policy

(Sutton and Barto, 2018). The policy’s set of parameters is iteratively updated

through this approach with the objective being to progressively improve performance

and ultimately reach the optimal policy that maximizes the investor’s likeliness of

attaining the predefined investment goal.

A key component of the vanilla PG algorithm is its use of the cross-entropy

method in the calculation of the log function, which consists of taking the loga-

rithm of the action selection probability multiplied by the action’s corresponding

reward (Sutton and Barto, 2018). Using the expressions detailed in section 4.1, the

REINFORCE algorithm goes as follows:
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Algorithm 1 REINFORCE pseudo-code
i) Initialization of the policy (θ).

ii) Loop N times (determined prior to launching the training process):

1. Generate a Monte Carlo simulation of states and actions according to the
current optimal policy π(·|·,θ) : S0, A0, R1, ..., ST−1, AT−1, RT .

2. Calculate the value of discounted returns for each time step.

3. Calculate the update component and apply it to the policy’s parameters θ
using equation (12).

4.3 Artificial Neural Network Implementation

Neural networks are responsible for the engineering behind advanced artificial intel-

ligence applications across a wide scope of industries and topics. The ease of access

and efficiency of machine learning frameworks like PyTorch and Tensorflow (Py-

Torch was used for the production of this thesis) make them ideal tools to train a

policy approximation model in the context of a GBWM problem. More specifically,

these tools free users from performing complex tasks such as initializing the model’s

set of parameters θ and calculating the performance measure’s gradient, therefore

offering a solution to some of the difficulties encountered by Prémont (2021) in

his attempt to implement a PG approach to solve a GBWM problem. The use of

feedforward artificial neural networks (ANN) allows the inclusion of several speci-

fications, also known as hyperparameters, in the training process that can support

the agent in its attempt to identify an environment’s optimal policy. In other words,

hyperparameters define the training environment in which the learning process takes

place. Examples of hyperparameters are the number of layers and weights that form

the neural network, learning rate, activation functions, batch size and exploration

rate.

For tests performed in this thesis, a series of initial learning rates were tested

to determine which one benefited the most the model’s learning ability (results are

available in Appendix - A). More specifically, the learning rate α is initialized prior

to the launch of the training process and is optimized using the ADAM approach,

which is an adaptive technique provided by the PyTorch library, whose objective

is to increase the policy’s speed of convergence towards the optimal policy during
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training.

4.4 Improving Robustness in the Training Process

In the context of RL, robustness refers to the model’s ability to perform its intended

task, which is to approximate the optimal policy of a given problem. Robustness is

an essential feature that is worth measuring and enhancing as it increases stability,

effectiveness, and reliability across a wide range of applications. Within the context

of this section which consists of solving a GBWM problem, the theme of robustness

is narrowed to the model’s ability to learn the optimal policy and the speed at which

it does so.

4.4.1 Scaling of the Artificial Neural Network’s Input Variables

In a GBWM investment environment, the agent’s action selection heavily depends

on the agent’s temporal positioning and the fund’s balance. Herein, time and the

fund’s balance serve as essential input variables for the model, which then results

in a set of probabilities forming the probability distribution function used as refer-

ence by the agent to select an asset allocation (or action) at the beginning of the

subsequent period. Neural networks typically require input variables to be scaled -

a practice commonly referred to as feature scaling (Subasi, 2020). Feature scaling

helps prevent model parameters from remaining in local extrema. By facilitating the

agent’s interpretation of its environment, feature scaling provides additional support

to enhance the agent’s ability to navigate within the environment (Subasi, 2020).

The most common scaling methods in neural networks are normalization and

standardization. Normalization scales input variable by subtracting each raw value

by the variable’s minimum value and dividing the resulting by the difference between

the variable’s maximum and minimum values. When normalized, input variables

take values between zero and one. A given input variable y is normalized using the

following approach:

ynormalized =
y − ymin

ymax − ymin
. (13)
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The implementation of a policy approximation approach to estimate the optimal

policy in the scope of a GBWM problem gives the agent the flexibility to navigate

through a continuous space of fund values across time increments. As a result, there

are not any known upper and lower bounds that can be inputted in expression (13)

to normalize a given fund value. To address this limitation, a large number of simu-

lations using random action sequences can be generated to establish the theoretical

values of Wmin and Wmax (to be inserted in (13)), enabling the normalization of the

portfolio’s wealth level which serves as an input variable to the model.

Standardization scales input variables by subtracting them by their mean value

and dividing the resulting by their respective standard deviation. Once scaled, the

set of values for each input variable has a mean of zero and standard deviation of

one. A given input variable y is standardized using the following approach:

ystandardized =
y − ȳ

σy

, (14)

with ȳ representing the variable’s mean and σy being its standard deviation.

Since the REINFORCE algorithm in an ANN environment trains the model

without a wealth grid, finding the mean and standard deviation of the fund’s wealth

would be a complex task given the infinite amount of potential states. The com-

plexity associated with identifying the mean and standard deviation in an effort to

standardize the model’s input variables makes standardization an unworthy scaling

method for a GBWM problem. On the other hand, finding minimum and maximum

attainable values, which are essential for normalization, can be obtained through

a series of simulations. Variations in their values have little to no impact on the

model’s ability to learn the optimal policy.

While normalization may at first glance appear to be the superior approach to

scale input variables in a goal-based investing context, a centering approach tailored

for a GBWM problem is explored. Traditional centering consists of subtracting a

variable’s value by its mean. Once centered, variables have a mean of zero. Using

a basic centering approach, a given input variable y is centered using the following

20



expression:

ycentered = y − ȳ. (15)

Given the continuous nature of the environment’s state space in PG algorithms,

an adjusted centering method where variables are centered around a target value

can be employed with the objective of avoiding the difficulties linked to estimating

the fund’s mean balance. In theory, to reach its investment objective by time T , the

fund should follow a certain progression towards the goal throughout the investment

period. By setting a specific target for a given period and centering the fund’s value

around it, the agent will have an indication of the fund’s positioning as a function of

time and the goal. The fund’s balance and investment goal are initially adjusted by

dividing both by the fund’s initial value. This step is done in an attempt to better

support the model in its learning of the optimal policy as such scaling approaches can

help PG models avoid remaining in suboptimal local extrema (the chance that this

occurs increases when large values are used to train a model). The scaled investment

goal gt and centered fund value W centered
t are obtained using the following expressions:

G∗ =
G

W0

, (16)

W ∗
t =

Wt

W0

, (17)

gt = G∗ t
T , (18)

W centered
t = W ∗

t − gt. (19)

The input variable relating to time, however, is centered using a traditional

centering approach. Since it is known that decisions are made at the beginning of

each period, the time variable is subtracted by the mean value of decision periods.
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The times at which the agent is making a decision are stored in a vector vdecision:

vdecision = [0, 1, ..., T − 1], (20)

tcentered
i = ti − v̄decision. (21)

Case Study: A Comparison of Scaling Methods

The method used to scale the model’s input variables can have an impact on the

training process’ ability to converge toward the optimal policy. In the result com-

parisons conducted in this section, the policy’s learning rate αpolicy is initialized to

0.001. The learning rate’s initialized value is selected according to a series of trials

that were performed using different learning rates. The objective of the trials was

to determine which learning rate enhanced the model’s convergence rate (refer to

Appendix-A).

To compare the performance of both scaling approaches, the model was trained

five separate times under both approaches. To ensure that both methods could be

compared on the same basis, the sequences of random numbers generated throughout

the training processes were maintained by setting seeds in the scripts.

In order to normalize input variables on an identical basis across training pro-

cesses, the fund’s minimum and maximum attainable values, Wmin and Wmax, are

obtained using a fixated seed to regenerate, once again, an identical sequence of ran-

dom actions and stochastic shocks to the wealth levels across all 100,000 simulated

paths.

The policy’s performance is evaluated using 10,000 OOS paths at a sequential

frequency throughout the training phase. The figures below display the OOS success

rate paths in cases where the model’s input variables were scaled using normalization

(Figure 4) and the adjusted centering approach (Figure 5).
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Figure 4: Individual paths: success rate evolution using normalization to scale input
variables

Figure 5: Individual paths: success rate evolution using an adjusted centering ap-
proach to scale input variables

Figures 4 and 5 display different trends as a result of different scaling methods in

the training process. In Figure 4, it is apparent that the various paths attain success

rates that are close to the DP solution, which is considered the optimal point. In

the final phase of the training process, the success rate paths remain volatile as

they tend to fluctuate, meaning that the policy struggles to converge to an optimal

level. In Figure 5, however, different observations can be made. Individual paths
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appear to attain success rates similar to the DP solution sooner than in Figure 4. As

the training process progresses, success rates also appear to be more stable, hence

indicating a superior ability to converge towards the optimal policy. The average

standard deviation in OOS success rate paths is 5.37% when using normalization

and 4.83% when using the adjusted centering approach.

A smoother progression of simulated success rates can be achieved by averaging

the success rates at each stage of the training processes displayed in Figures 4 and 5.

Figure 6 displays the average success rates under both normalization and adjusted

centering scaling methods as a result of their respective training process.

Figure 6: Success rate evolution

In Figure 6, it is clear that using an adjusted centering scaling approach results in

a higher speed of convergence towards the optimal policy. In the final 20 percent of

the training process, the average success rate under the adjusted centering method

shows a somewhat constant progression as it has narrowed its gap with the DP

solution, suggesting that the policy has converged. On the other hand, when using

a normalization approach, it can be determined that the policy has not converged

to the optimal policy after 50,000 training iterations given that the average of all

five paths (represented by the blue curve in Figure 6) is still progressing towards the

optimal policy established by the DP method.

Given the analysis detailed in this section, it appears that an adjusted centered
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scaling approach results in a more efficient learning process in the context of a

GBWM problem as it accelerates the model’s learning of the optimal policy while

maintaining stability.

4.4.2 Batch Training for a Goal-Based Wealth Management Problem

In addition to scaling input variables using a centering approach, batch training can

be considered a potential source of enhancement that improves the model’s speed of

convergence towards the optimal policy (Hambly et al., 2023). Training in batches

consists of generating multiple episodes (for each epoch) and then averaging the

resulting loss functions in the calculation of the model’s gradient. Batch training

has been commonly used in training NN models given its supposed ability to better

approximate the gradient in the steps leading to the weights’ (θ) update (Hambly

et al., 2023).

While batch training can improve stability and efficiency in the training process,

there is a delicate balance to be considered with respect to the number of episodes

generated for each batch and the total number of epochs used to train the model

as longer than desired running times can arise when increasing the value of one or

both hyperparameters.

Case Study: Comparing Results Under Different Batch Sizes

The effect of using batches in the context of a GBWM problem can be further

analyzed by comparing results following 50,000 training epochs where batches of

size 1, 5 and 10 are used. The resulting success rate evolution paths for different

batch sizes can be observed in Figure 7.

Figure 7 illustrates the effect of larger batch sizes on the model’s ability to con-

vergence towards the optimal policy. An obvious observation is the little difference

in the rate of convergence between training processes using batches of size 5 and

10. Given that batches of size 5 and 10 lead the model to learn the optimal policy

at similar rates, a determining factor in establishing the superior batch size is their

running times. While 50,000 epochs requires 21 minutes of running time when using

batches of size 5, the running time increases to 37 minutes when raising the size of
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Figure 7: Success rate evolution for different batch sizes in training

batches to 10. The runtime burden that comes with using batches of size 10 proves

to be inefficient considering the marginal improvement in the model’s convergence

towards the optimal policy.

While the policy’s success rate evolution path under an on-line approach (batches

of size 1) consistently lies below the trajectory of OOS success rates using batches of

size 5 after 50,000 training epochs, it remains unclear which of the two approaches

yields superior performance. To improve the basis of comparison between training

using an on-line approach and batches of size 5, the on-line method is used with

250,000 training epochs in order to have both approaches generate the same number

of episodes (250,000 each). Figure 8 illustrates the policy’s evolving dynamics under

both the on-line approach (with 250,000 training epochs) and training using batches

of size 5 (with 50,000 training epochs):
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Figure 8: Success rate evolution for training using batches of size 5 and the on-line
method

In the above figure, it can be observed that batches of size 5 improve the model’s

ability to converge toward the optimal policy. Despite using a larger amount of

training iterations, an on-line approach displays a lower ability to converge toward

optimality when compared to batch training, where the model is able to approach

the benchmark solution within 60% of the training progress.

4.4.3 Training with a Baseline

In reinforcement learning (RL), the learning process can be accelerated and stabi-

lized (subject to less variability) through the inclusion of a baseline in the model’s

training process. As detailed in section 4.1, the policy’s update is performed by

calculating the gradient of the performance measure:

∇θJ(πθ) = Eτ∼πθ

[
τ∑

t=0

∇θ log πθ(at|st)Aπθ(st, at)

]
. (22)

The use of a baseline, however, alters the calculation of the advantage function,

consequently impacting the policy’s update. For a given state st, the advantage

function is defined as the sum of discounted future returns (total rewards earned by
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the agent), minus the baseline’s state value b(st):

Aπθ(st, at) =
T∑

k=t+1

rkγ
k − b(st). (23)

Baselines are often used as an estimate of the policy model’s state value, and

therefore act as a benchmark solution to the model. The use of baselines in policy

approximation training processes has been found to often reduce variance in policy

evolution trajectories. By subtracting the estimated state value from the rewards

obtained in a training epoch, the model’s weights are adjusted in a way that ac-

celerates the model’s path towards the optimal policy. Additionally, the baseline is

trained using a distinct update function. It calculates the gradient of the mean-loss

errors (MSEs) obtained from simulated rewards (observed value) and the baseline’s

predicted values (forecasted value). Just like the model’s policy, all steps leading

to the baseline policy’s update have the benefit of being performed using the tools

available in Pytorch.

Case Study: Assessing The Impact Of A Baseline on Model Convergence

In an effort to build on the series of tests previously conducted in this section, the

effect of the baseline is tested using batches of size 5 and 50,000 training epochs.

Figure 9 illustrates the average success rate evolution of five training processes un-

der both with and without a baseline in the training process. The learning rates

of the policy’s model and baseline are initialized to 0.001 and 0.002, respectively.

Both learning rates are optimized throughout the training phase using the ADAM

optimization tool in PyTorch. Seeds were set in the scripts to ensure an equal

comparison basis of results:
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Figure 9: Success rate evolution: baseline comparison

The baseline shows obvious signs of improvement to the model given an accel-

erated ability to converge towards the optimal policy. The line representing the

model that includes a baseline (turquoise line) approaches the benchmark solution

established by the DP method within 20% of the training process, which is an out-

right improvement compared the blue line representing the model trained without a

baseline. Besides resulting in a superior speed of convergence relative to the model

trained without a baseline, the use of a baseline consistently generates solutions

that are closer to the benchmark solution, displaying an ability to generate stable

solutions as the training phase progresses. Additionally, incorporating a baseline in

the training process results in slightly higher runtimes than training processes that

exclude the use of a baseline. A training process using a baseline and performing

50,000 epochs results in a runtime of 27.5 minutes, up from 21 minutes when ex-

cluding a baseline. Considering the increased speed of convergence and stability in

results, the use of a baseline proves to enhance performance across all key measures.

4.4.4 An Attempt to Improve Convergence Through Exploration

In RL, determining the adequate exploration rate for training the model can be a

complex task. While the agent learns as training epochs are performed and the

model’s policy improves, exploration remains an integral source of consideration in
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order to support the agent in its search for potential reward maximizing actions. It

can occur that the agent finds itself trapped in a local optima that is suboptimal in

the overall scheme. Exploration can therefore help the agent identify an improved

set of parameters by allowing it to explore actions that would not be selected if the

greedy action was always the one of choice (Sutton and Barto, 2018). Exploration

can also help establish a generalized optimal policy where the agent is able to select

reward maximizing actions when encountering a state with no prior visit (Sutton

and Barto, 2018).

Case Study: Adding Exploration in the Training Process

To support the model’s comprehension of the environment in which it navigates, the

early stages of the training process can be solely focused on exploring the environ-

ment. Once the exploration phase is completed, an ϵ-greedy policy can be used to

continue exploring the environment on an occasional basis. In other words, under an

ϵ-greedy policy, the model selects its preferred action with a probability of (1-ϵ)%.

The base case consists of having the first 15% of the model’s training process be

in full exploration mode, and apply a 4% ϵ-greedy policy afterwards. The model

is trained using 50,000 training epochs where each epoch generates batches of five

episodes. The model was trained using the same model specifications and proce-

dures as in the case study of section 4.4.3 (including a baseline) with the addition

of exploration. Figure 10, below, compares success rate paths for methods with and

without exploration in the model’s training process. (X%, Y%) combinations are

to be interpreted as such: the inital X% of the model’s training process is subject

to a constant exploration of the environment (referred to as the exploration phase),

while Y% defines the ϵ-greedy policy (Y% indicates the percentage of actions that

do not take the greedy action once the initial exploration phase is completed).
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Figure 10: Success rate evolution: baseline comparison

It can be observed in Figure 10 that the model using a pure exploration approach

in the initial 15% of the training process (blue line) significantly underperforms the

model without any exploration (turquoise line) and the one using a 5%-greedy policy

(grey line). As for the model without exploration and the one using a 5%-greedy

policy, the speed of convergence is highly similar for both models, making it difficult

to identify either one as superior to solve a GBWM problem.
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5 A Goal-Based Wealth Management Problem with

Multiple Goals

The focus of this section is on applying the REINFORCE algorithm to solve a multi

goals wealth management (MGWM) problem. In comparison to GBWM where

there is a single investment objective that is used as a reference point in the training

of the policy, MGWM brings a new complexity to the optimization process as the

agent is faced with the option to purchase or forego a goal-oriented item with the

focus being on maximizing the investor’s total utility. In the context of MGWM,

goal-oriented items encompass a variety of consumable products or services.

The policy is derived with respect to maximizing the investor’s total expected utility

throughout the investment period. More precisely, an investor will seek to maximize

its probability of attaining a certain wealth level at specific time periods in order

to purchase goal-oriented items that will result in utility gains if purchased (Das

et al., 2022). This differs from the approach used for a GBWM problem, where

the policy is optimized with respect to maximizing the probability of attaining a

single predetermined investment goal G. While the REINFORCE implementation

was successful in estimating the optimal policy in a GBWM environment (as shown

in section 4), the additional complexities to the training process in MGWM led

to obtaining suboptimal solutions when reusing a similar training environment to

the one in section 4. While the resulting solutions make general sense as they are

somewhat aligned with benchmark solutions, the optimization process appears to be

lacking rigor as utility levels are trailing their benchmark. Given the time limitations

of this thesis, the research process to develop a framework leading to an optimized

policy in the context of a MGWM problem remains incomplete.

5.1 The Multi-period Optimization Problem for Multi Goals

Wealth Management

The investment environment studied by the agent is composed of a finite set of nb

investment objectives that represent a set of purchasing costs for corresponding goal-
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oriented items. Individual item costs are expressed as C(i) and utility levels earned

by the investor at the moment of purchase are expressed as U (i), where i= 1 to nb.

As it is the case for a GBWM problem with a single investment goal, the policy

is optimized using a finite set of available asset allocations xt (homogenous across

periods) that are defined by a constant expected return level µ(i) and volatility σ(i)

with i = 1 to nx. Given the agent’s option to purchase goal-oriented items, the

number of actions expands to 2nx. More specifically, the first nx actions forego

any purchase, and the following nx actions are used to complete purchases. Asset

allocations, again, are subject to na different assets where each asset’s expected

return and volatility dynamics are expressed as m(i) and v(i), respectively, where i

= 1 to na.

As detailed in section 3, return dynamics are defined by sets of expected returns

and volatility pairs {µ(i), σ(i)} that lie on the efficient frontier of Markowitz. Wealth

levels continue to follow a geometric Brownian motion in the simulated trajecto-

ries. If the agent selects an action resulting in a purchase (assuming that the fund

is appropriately funded), the fund’s wealth trajectory is subject to the following

expression:

Wt+h = (Wt − Ct)e
(µt− 1

2
σ2
t )h+σt

√
hZt , (24)

where µt and σt are the expected return and volatility associated with the action

selected by the agent. Ct takes the value of the purchase cost at time t. If the agent

forgoes the opportunity to purchase any goal-oriented item at time t, Ct takes a

value of zero.

5.2 The Benchmark Dynamic Programming Approach for a

MGWM Problem

The approach to establish the wealth grid’s maximum and minimum values, Wmax

and Wmin, slightly differs from the approach used for a GBWM problem, as a

MGWM problem requires taking purchasing costs into account. In a similar sense,

transition probabilities must take into account the option of purchasing goal-oriented
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items all throughout the investment period. In the realm of a MGWM problem, nor-

malized transition probabilities are therefore expressed as (Das et al., 2022):

p(i,j,k) =
ϕ(w(j)|w(i) − c(k),x(k))∑nω

l=1 ϕ(w
(l)|w(i) − c(k),x(k))

, (25)

with c(k) being the log-transformed purchasing cost in the current period for

action k, w(i) being the log-transformed wealth at the time of decision (time t), and

w(j) being the log-transformed wealth at the subsequent period (t+ h). The vector

of allocations k selected by the agent at time t is expressed as x(k). Given that the

log-transformed value of zero is undefined, c(k) is automatically set to zero if no cost

is borne by the investor at the time of decision. As a result of including purchasing

costs in the computation of transition probabilities, the normal density function is

defined as:

ϕ(w(j)|w(i),x(k)) =
1√

2πσ(k)
exp

(
−

1
2

(
w(j) − (w(i) − c(k))− µ(k)h+ h

2
(σ(k))2

)2
(σ(k))2h

)
.

(26)

With different investment goals allowing the purchase of various items and services,

the distribution of returns in the training process differs from the dynamic optimiza-

tion process detailed in section 3.2 for goal-based investing with a single goal. The

agent earns a return when a purchase is completed, with the return being equal to

the level of utility u(t) earned as a result of a purchase at time t. An outstand-

ing difference between goal-based investing with single and multiple goals is that

a MGWM environment allows the agent to earn returns in intermediate periods

whenever a purchase is completed.

5.2.1 Case Study: A Benchmark Solution for a Multi Goals Wealth

Management Problem

This section has the objective of deriving a series of optimal policies for different

sets of utilities whose solutions will serve as benchmarks in numerical case studies

involving the REINFORCE algorithm for a MGWM problem.

The investment environment used in this numerical experiment is subject to a
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wealth grid with nω = 200 values. The action-space vector x(k) includes the same 15

allocations from section 3.3 with and without the option to purchase (bringing the

total number of actions to 30). Additionally, two investment goals are included in

the investment environment. The below table details the different times and costs

associated to the different goal-oriented items available for purchase to the investor.

Table 4: Costs

t C(t)
5 100
10 150

While the timing and costs associated with the purchase of items remains static

in the scope of this case study, utility levels u(t) are subject to various values to help

analyze different investment behaviours by the agent. The below table details the

investor’s resulting expectations with respect to utility levels and success probability

dynamics following 100,000 OOS paths under each scenario:

Table 5: Dynamic programming solutions

Scenario u(5) u(10) E*[u] P(W (5) ⩾ 100) P({purchase at t=5}) P(W (10) ⩾ 150)
1 1000 1000 1164.6 0.8680 0.8680 0.2966
2 1000 2000 1895.9 0.9241 0.1260 0.8849
3 1000 3000 2817.6 0.9721 0.0167 0.9336
4 2000 1000 2095.5 0.9630 0.9630 0.1696
5 2000 2000 2334.3 0.8699 0.8699 0.2972
6 2000 3000 2938.4 0.8466 0.2630 0.8041
7 3000 1000 3072.7 0.9839 0.9839 0.1209
8 3000 2000 3242.8 0.9402 0.9402 0.2111
9 3000 3000 3499.2 0.8708 0.8708 0.2957

The second and third columns in Table 5 are utility levels at times 5 and 10,

respectively, inputted prior to the optimization process, and contain nine different

scenarios to better understand the optimal policy under varying settings. Solutions

obtained following the OOS simulations as a result of the optimized policy and are

displayed in columns 4 and on. The above table clearly indicates the impact of utility
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levels on the probabilities of purchasing a given item. When desired items in further

periods result in higher utility attainment by the agent, these goals are prioritized,

hence leading earlier goals to be ignored if this jeopardizes the investor’s chances of

attaining the preferred objective. On the other hand, when desired items in earlier

periods provide the investor with additional utility, these goal-oriented items are

prioritized (hence purchased) by the investor, and the later items are purchased if

the investment performance allows for the purchase of the desired items. Figures 11

and 12, below, present a narrowed look of scenarios 2 and 4 (from Table 5) to better

comprehend the investor’s course of actions:

Figure 11: Heatmap of the optimal policy: scenario 2
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Figure 12: Heatmap of the optimal policy: scenario 4

In comparing Figures 11 and 12, an outstanding difference is the investor’s utility

maximizing actions at the end of the fourth period. Given that scenario 4 offers

greater utility for the item at time 5, the investor would prioritize attaining the

investment objective associated with the item to move along with the purchase,

which explains the investor’s willingness to take on additional risk leading up to

the fifth period. As the agent gets closer to the second (and final) investment

objective, optimal actions are rather similar under scenarios 2 and 4; aggressive

actions are taken if the portfolio’s balance is below the minimum threshold while

more conservative actions are taken if the portfolio is well-funded.

5.3 A Policy Gradient Approach with REINFORCE to Solve

a Multi Goals Wealth Management Problem

While the benchmark solution was established in section 5.2, the ultimate objective

from a testing point of view is to solve a MGWM optimization problem using a

PG approach in conjunction with the REINFORCE algorithm. While the PG ap-

proach was able to efficiently approximate the optimal policy when the investment

environment was subject to a single investment objective, the model’s ability to ap-

proximate the optimal policy for a MGWM problem remains in question given the
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added complexity coming from the agent’s option to purchase multiple goal-oriented

items.

5.3.1 Scaling of the Artificial Neural Network’s Input Variables

Section 4.4 put forth an adjusted centering scaling approach tailored for GBWM,

ultimately increasing the model policy’s convergence towards the optimal policy.

The centering approach was viable given that a single investment objective formed

the training environment and acted as one of only two guiding factors for the model

throughout the training process. In cases where multiple goals are included in the

investment environment, using a centering method that scales input variables in

consideration of the various wealth objectives can be a non-trivial task. As a result

of the difficulties that surface from attempting to use a centering scaling method

in the context of a MGWM problem, employing a normalization approach to scale

input variables emerges as the most suitable technique.

5.3.2 Case Study: Attempt to Solve a Multi Goals Wealth Management

Problem Using the REINFORCE Algorithm

Applying the REINFORCE algorithm to solve a MGWM problem and comparing

the resulting solutions to the benchmark solutions established using the DP approach

will provide information on the implementation’s ability to estimate the optimal

policy.

The boundaries used as scaling parameters to normalize inputted portfolio bal-

ances, Wmin and Wmax, were obtained by generating 100,000 paths under a random

action selection process. Given the agent’s option to purchase, Wmin was subject to

negative values, which would be replaced by a wealth level of zero as the portfolio

is not subject to negative wealth levels. Since purchases shift the portfolio’s value

downward, the value of Wmax was obtained by rejecting the option to purchase any

of the targeted items in order to obtain the highest attainable portfolio value. Also,

as done for a GBWM problem, a seed was used to ensure that Wmin and Wmax

maintain their values in each training process in order to assure that results are

compared to each other on the same basis.
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A single neural network is employed to train the optimal policy, thus the model

is responsible for optimizing decisions related to asset allocation and the choice of

purchasing or foregoing a given goal-oriented item. If the portfolio is adequately

funded to complete a purchase, the model will consider each of nx possible asset

allocation, both with and without purchase (therefore all 2nx actions). On the other

hand, if the portfolio is not able to afford a targeted item, only actions foregoing the

option to purchase are considered (only nx of the 2nx actions). As it was the case in

the tests using an ANN in section 4, the policy network uses a learning rate of 0.001

while the baseline uses a learning rate of 0.002. Given the added complexity that

comes with having multiple goals throughout the investment period, the model’s

policy is training using 100,000 training epochs (rather than 50,000 as done for

section 4) with each epoch generating batches of five simulated paths. Additionally,

the training process is subject to an 5%-greedy policy (5% of actions taken by the

agent being random).

In order to test the model’s policy progression towards the optimal policy, 10,000

OOS simulations are generated to determine the model policy’s performance at

various points of the training phase. The set of weights that generated the highest

level of expected utility across OOS simulations was saved and considered to be

optimal for each of the nine scenarios of interest:

Table 6: Policy Gradient with REINFORCE solutions

Scenario u(5) u(10) E*[u] P(W (5) ⩾ 100) P({purchase at t=5}) P(W (10) ⩾ 150)
1 1000 1000 1082.1 0.8189 0.8189 0.2632
2 1000 2000 1792.8 0.9961 0.0136 0.8896
3 1000 3000 2639.4 0.9906 0.0000 0.8798
4 2000 1000 1998.7 0.9992 0.9992 0.0003
5 2000 2000 2163.8 0.8360 0.8360 0.2459
6 2000 3000 2790.7 0.8231 0.3143 0.7207
7 3000 1000 2999.9 0.9983 0.9983 0.0050
8 3000 2000 3050.4 0.9734 0.9734 0.0651
9 3000 3000 3265.2 0.8586 0.8586 0.2298
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Table 6 (continued)

Scenario P({purchase at t=10})
1 0.2632
2 0.8896
3 0.8798
4 0.0030
5 0.2459
6 0.7207
7 0.0050
8 0.0651
9 0.2298

The fourth column in Table 6 displays the agent’s highest expected utility level,

denoted as E∗[u], from the series of OOS simulations conducted throughout the

training process of all nine tested scenarios. Its results indicate that the training

process, as it is defined in the context of a MGWM problem, is unable to lead the

model’s policy to optimality, which is responsible for the lower levels of expected

utility earned by the agent than the ones presented in Table 5.

Figure 13: Expected utility progressions against benchmark solutions: scenarios 1,
2 & 3
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Figure 13 illustrates expected utility progression paths for scenarios 1, 2 and 3

against their respective benchmarks (which are DP solutions). For all three demon-

strated scenarios, utilities derived from the model’s optimal policy lay below the

benchmark solutions established by the DP framework. While the model’s policy

appears to improve in the initial half of the training process for scenarios 2 and 3, the

trajectories appear to be relatively stagnant for the remainder of the training pro-

cess. The training process appears to help the model improve its decision-making

within the investment environment it navigates, but struggles to converge to ex-

pected utility levels when following the optimal policy obtained through the DP

method (serving as the benchmark). A source of the model policy’s underperfor-

mance relative to the benchmark solution can be attributed to the model’s inability

to successfully derive optimal actions with respect to purchasing the first of the

two goal-oriented items. The training process, however, is able to recognize the

importance of purchasing the final item if the portfolio is adequately funded. This

demonstrates that the model is able to learn the optimal action when the decision

in question is for the most part obvious (since purchasing the final goal-oriented

item is the obvious optimal action as it guarantees to increase utility). On the other

hand, when there is more ambiguity around the optimal action, as it is the case for

intermediate time periods, the model policy’s action selection remains suboptimal.

Figure 14: Difference between attaining and purchasing probabilities at time 10
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The path evolution of the difference between the probabilities of attaining and

purchasing the final item at time 10 is illustrated in Figure 14 for all scenarios.

Values different from zero are an indication that the model struggles to identify the

optimal action to take at the final period. The two last columns of Table 6 provide

valuable insight as far as coming to the observation that the model favors actions

that purchase the targeted item at the final period if the fund can bare the cost. The

fact that differences between attaining and purchasing probabilities at time 10 are

zero in the entire second half of the training process for all studied scenarios leads

to the determination that the model is able to learn the optimal action sequence at

the final period.

5.4 An Attempt to Optimize the Model’s Policy Through

Additional Exploration

The results in section 5.3 show that under the current implementation of a policy

approximation approach to solve a MGWM problem, the model’s ability to converge

toward the optimal policy is limited. While the model’s policy still benefits from the

training process as it is shown to approach the optimal policy to a certain extent,

its inability to optimize its decisions relating to purchases in intermediate periods

can be an important factor for its shortfall relative to benchmark solutions. Given

the added complexity to the investment environment that comes with the inclusion

of goal-oriented items throughout the investment period, it is a possibility that

the model’s parameters remain trapped in a local optima and struggle to identify

an optimal parametrization within the global domain. Given the low amount of

exploration permitted by the training process in section 5.3 (5% greedy policy),

the lack of exploration could explain the model’s inability to escape suboptimal

positioning when calculating the performance measure’s gradient.

5.4.1 Case Study: Adding Exploration to the Training Process

To address the questions around exploration and the overall objective of supporting

the model in its training process to converge towards optimal levels, increasing the
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amount of exploration in the training process can be a viable option in supporting

the model expand its knowledge of the environment. Essentially, the objective is

to improve the model’s decision-making within the investment environment that is

defined. To increase exploration, the initial exploration phase will result in the agent

selecting random actions in the initial 15% of the training process, and then a 5%

ϵ-greedy policy will come into effect for the remaining training epochs.

Figure 15: Expected utility progressions against benchmark solutions: scenarios 1,
2 & 3

Figure 15 illustrates the evolution of expected utility levels for scenarios 1, 2 and

3 all throughout the training process of the MGWM problem under the different

exploration approaches used to train the model against their respective benchmark

solution. The curves representing OOS success rates for models trained using a pure

exploration approach in the initial 15% of the training phase do not display improved

convergence compared to models trained with a standard 5%-greedy policy. It is

not possible to draw any conclusion on the stability of results as neither of the two

approaches generate more stable solutions across all observed scenarios. As shown

in Figure 15, the additional exploration for scenario 3 results in high variations of

the policy, while the opposite is true for scenarios 1 and 2 as training progresses.
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6 Conclusion

The work presented in this thesis has the objective of developing a robust policy

approximation framework to solve a GBWM problem. More specifically, while rein-

forcement learning algorithms have been used to solve GBWM problems in previous

research projects, the environment in which the policy was trained was subject to a

number of limitations, opening the door to additional considerations with respect to

the use of a policy approximation method to solve the main drawbacks of previous

applications.

First, the implementation of a Policy Gradient approach using the REINFORCE

algorithm within an artificial neural network proved to be a capable training method

that led the model to learn the optimal policy and ultimately solve a GBWM prob-

lem. Various concepts were used and combined to optimize the training process’

efficiency, essentially supporting the model’s path towards the optimal policy. This

included adapting the scaling of parameters accordingly, using a baseline, and adding

exploration to the training process. In fact, two scaling approaches were developed to

better support the model’s training within an artificial neural network environment.

The first approach focused on generating theoretical minimum and maximum port-

folio values to allow the normalization of the fund’s value as an input variable. The

second scaling approach, which proved to significantly increase the speed at which

the policy converges towards optimality, is a centering approach tailored to solve a

GBWM problem. In addition to enhancing the policy’s convergence rate towards

the optimal policy, the adjusted centering approach proved to increase stability in

the process. The additional efficiency from utilizing such an approach increases its

usability for investors and decision-makers in the financial sector.

Second, with the application of a Policy Gradient approach in the scope of a

GBWM problem being successful, the focus shifted to extending such an application

onto a MGWM problem, where multiple investment goals can be included in the

environment. While the agent is aware of the goals that are at its disposal, the

selection of actions is further complexified as the objective is to maximize overall

utility throughout the investment period. A single neural network was utilized to
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estimate the optimal policy with respect to selecting the appropriate asset mix for

the investor and the option to purchase goal-oriented items. While the training

process showed an ability to improve the policy, it was unable to bring the trained

policy to converge to the benchmark solution. Additional efforts were made to

support the model learn the optimal policy through the addition of an exploratory

phase in the training process. While this approach did not improve the policy’s

performance against the benchmark solution, the objective of the additional freedom

provided (through additional exploration) was to help the agent develop a more

profound understanding of its environment.

The findings in this thesis open the door to additional work. In the context of

a MGWM problem, different adjustments should be made to the neural network’s

environment to provide the model with additional support in an attempt to improve

the policy and narrow the gap with the benchmark solution. A potential solution

is to employ two distinct neural networks within the policy model: one dedicated

to estimating the asset mix policy and another one focused on decisions related to

purchasing or foregoing targeted goals. Additionally, solving GBWM and MGWM

problems requires initializing the values of numerous hyperparameters. Selecting

the values of hyperparameters, in many policy approximation implementations, is

a sensitive task that often has an impact on a given model’s performance. For this

reason, hyperparameter optimization tools can be considered to improve the model’s

ability to learn the optimal policy.
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Appendix - A

Table A: Highest success probability for a GBWM problem: training using normal-
ization to scale input variables

Training epochs
αpolicy

init Weights per layer 50,000 100,000 150,000 200,000 250,000
10 0.5048 0.5402 0.5402 0.5485 0.5532

0.001 20 0.6278 0.6278 0.6278 0.6278 0.6278
40 0.6133 0.6133 0.6133 0.6133 0.6133
10 0.5370 0.5756 0.5756 0.5756 0.5756

0.002 20 0.5903 0.5903 0.5903 0.5903 0.5903
40 0.5406 0.5712 0.5712 0.5712 0.5712
10 0.5835 0.5835 0.5835 0.5835 0.5835

0.005 20 0.6093 0.6093 0.6093 0.6093 0.6093
40 0.6078 0.6078 0.6078 0.6078 0.6078
10 0.5502 0.6097 0.6097 0.6097 0.6097

0.01 20 0.6110 0.6110 0.6110 0.6110 0.6478
40 0.5150 0.5960 0.5960 0.5960 0.5960

1 Training performed under an on-line approach. Seeds were fixed to assure
an appropriate comparison basis between results.

2 The model’s policy is trained using a 5%-greedy policy (e.g.: the
probability that model’s preferred action is selected is 95%).
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Table B: Highest success probability for a GBWM problem: training using an ad-
justed centering approach to scale input variables

Training epochs
αpolicy

init Weights per layer 50,000 100,000 150,000 200,000 250,000
10 0.6451 0.663 0.663 0.663 0.6664

0.001 20 0.6642 0.6642 0.6642 0.6642 0.6642
40 0.6482 0.6532 0.6532 0.6619 0.6619
10 0.6487 0.6492 0.6492 0.6589 0.6589

0.002 20 0.6614 0.6614 0.6614 0.6614 0.6614
40 0.6308 0.6308 0.6427 0.6629 0.6629
10 0.6480 0.6591 0.6591 0.6591 0.6591

0.005 20 0.6264 0.6475 0.6475 0.6475 0.6475
40 0.6288 0.6288 0.6297 0.6407 0.6407
10 0.6330 0.6330 0.6490 0.6490 0.6490

0.01 20 0.6045 0.6060 0.6060 0.6152 0.6152
40 0.5329 0.5329 0.5609 0.5609 0.5612

1 Training performed under an on-line approach. Seeds were fixed to assure
an appropriate comparison basis between results.

2 The model’s policy is trained using a 5%-greedy policy (e.g.: the
probability that model’s preferred action is selected is 95%).

The results in Table C utilize an initial learning rate of 0.001 for the model’s

policy (αpolicy
init ) and an adjusted centering approach to scale input variables as their

combination has resulted in the fastest convergence speed towards the benchmark

amongst all solutions in Tables A and B.
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Table C: Highest success probability for a GBWM problem: training using an ad-
justed centering approach and baseline

αpolicy
init = 0.001 Training epochs

αbaseline
init Weights per layer 50,000 100,000 150,000 200,000 250,000

10 0.6611 0.6611 0.6625 0.6625 0.6625
0.001 20 0.6602 0.6661 0.6678 0.6678 0.6678

40 0.6474 0.6474 0.6474 0.6484 0.653
10 0.6594 0.6598 0.6598 0.6598 0.6598

0.002 20 0.6602 0.6624 0.664 0.664 0.6702
40 0.6406 0.6406 0.6406 0.6406 0.6524
10 0.6565 0.6627 0.6627 0.6627 0.6627

0.005 20 0.6557 0.6558 0.6586 0.6626 0.6631
40 0.6537 0.6537 0.6537 0.6537 0.6537
10 0.6663 0.6663 0.6663 0.6674 0.6689

0.01 20 0.6209 0.6399 0.6399 0.6399 0.6403
40 0.6603 0.6603 0.6603 0.6661 0.6661

1 Training performed under an on-line approach. Seeds were fixed to assure
an appropriate comparison basis between results.

2 The model’s policy is trained using a 5%-greedy policy (e.g.: the
probability that model’s preferred action is selected is 95%).
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Table D: Highest expected utility for a MGWM problem: training using normaliza-
tion to scale input variables

Scenario 1: u(5) = 1000, u(10) = 1000
Training epochs

αpolicy
init Weights per layer 50,000 100,000 150,000 200,000 250,000

10 1049.8 1049.8 1049.8 1049.8 1049.8
0.001 20 1041.0 1043.9 1043.9 1045.5 1049.8

40 1051.8 1051.8 1051.8 1051.8 1051.8
10 1045.2 1045.2 1047.6 1047.6 1047.6

0.002 20 1077.0 1077.0 1077.0 1077.0 1077.0
40 1044.8 1052.1 1055.2 1055.2 1055.2
10 1054.7 1054.7 1054.7 1054.7 1057.2

0.005 20 1043.7 1043.7 1049.0 1053.3 1053.3
40 1054.7 1054.7 1054.7 1054.7 1054.7
10 1054.7 1054.7 1054.8 1054.8 1054.8

0.01 20 1043.3 1043.3 1056.1 1056.1 1056.1
40 1053.9 1053.9 1054.7 1056.3 1056.3

Scenario 2: u(5) = 1000, u(10) = 2000
Training epochs

αpolicy
init Weights per layer 50,000 100,000 150,000 200,000 250,000

10 1438.4 1543.8 1682.4 1682.4 1682.4
0.001 20 1563.7 1720.2 1720.2 1720.2 1720.2

40 1530.3 1619.5 1705.8 1778.4 1778.4
10 1435.6 1707.4 1707.4 1707.4 1711.4

0.002 20 1634.6 1731.4 1731.4 1731.4 1731.4
40 1477.2 1477.2 1503.7 1645.2 1688.0
10 1587.2 1644.4 1730.4 1730.4 1730.6

0.005 20 1494.9 1730.4 1730.4 1730.4 1730.4
40 1631.2 1631.2 1631.2 1722.8 1730.4
10 1730.8 1730.8 1730.8 1730.8 1730.8

0.01 20 1730.6 1730.6 1730.6 1730.6 1730.6
40 1604.2 1713.2 1713.2 1713.2 1713.2

iv



Table D (continued)

Scenario 3: u(5) = 1000, u(10) = 3000
Training epochs

αpolicy
init Weights per layer 50,000 100,000 150,000 200,000 250,000

10 2296.8 2561.1 2561.1 2561.1 2561.1
0.001 20 2282.4 2561.1 2561.1 2561.1 2561.1

40 2461.8 2547.6 2547.6 2547.6 2564.7
10 2497.5 2542.5 2542.5 2564.7 2564.7

0.002 20 2561.1 2587.8 2587.8 2587.8 2587.8
40 2478.0 2551.2 2551.2 2595.9 2595.9
10 2550.0 2550.0 2586.6 2597.1 2597.1

0.005 20 2481.6 2481.6 2507.4 2558.4 2558.4
40 2413.6 2507.7 2507.7 2507.7 2535.3
10 2542.5 2595.9 2595.9 2595.9 2595.9

0.01 20 2457.0 2584.2 2584.2 2584.2 2598.6
40 2548.8 2548.8 2548.8 2548.8 2595.9

1 Training performed under an on-line approach. Seeds were fixed to assure
an appropriate comparison basis between results.

2 The model’s policy is trained using a 5%-greedy policy (e.g.: the
probability that model’s preferred action is selected is 95%).

v



Table E: Highest expected utility for a MGWM problem: training using normaliza-
tion and baseline

Scenario 1: u(5) = 1000, u(10) = 1000
αpolicy

init = 0.001 Training epochs

αbaseline
init Weights per layer 50,000 100,000 150,000 200,000 250,000

10 1050.8 1050.8 1056.8 1056.8 1083.4
0.001 20 1033.3 1058.8 1058.8 1058.8 1058.8

40 1052.6 1055.4 1058.9 1091.6 1091.6
10 1050.3 1050.3 1051.4 1052.0 1053.9

0.002 20 1032.4 1044.2 1070.4 1070.4 1070.4
40 1021.3 1042.1 1052.3 1052.3 1069.5
10 1051.7 1051.7 1041.7 1055.2 1055.2

0.005 20 1046.5 1053.1 1056.1 1088.8 1088.8
40 1030.6 1036.2 1041.9 1051.8 1070.7
10 1026.8 1026.8 1026.8 1026.8 1036.9

0.01 20 1002.3 1048.2 1056.7 1056.7 1062.1
40 1030.9 1046.4 1046.4 1059.7 1059.7
Scenario 2: u(5) = 1000, u(10) = 2000

αpolicy
init = 0.001 Training epochs

αpolicy
baseline Weights per layer 50,000 100,000 150,000 200,000 250,000

10 1451.8 1463.8 1661.4 1787.6 1793.6
0.001 20 1620.5 1738.6 1761.1 1766.7 1794.7

40 1640.3 1785.0 1791.0 1791.0 1791.0
10 1453.2 1497.8 1751.5 1781.2 1786.2

0.002 20 1651.8 1704.6 1726.2 1726.2 1760.4
40 1635.8 1701.6 1730.3 1758.2 1771.8
10 1424.4 1529.8 1603.0 1759.1 1780.5

0.005 20 1552.0 1801.2 1801.2 1801.2 1801.2
40 1679.9 1779.6 1779.6 1791.8 1791.8
10 1476.0 1538.2 1759.8 1768.4 1781.0

0.01 20 1574.6 1708.9 1763.8 1804.0 1804.0
40 1652.8 1786.9 1793.2 1821.6 1821.6

vi



Table E (continued)

Scenario 3: u(5) = 1000, u(10) = 3000
αpolicy

init = 0.001 Training epochs

αbaseline
init Weights per layer 50,000 100,000 150,000 200,000 250,000

10 2343.9 2497.5 2539.8 2539.8 2539.8
0.001 20 2455.2 2610.0 2619.0 2619.0 2638.8

40 2507.7 2698.2 2717.1 2717.1 2720.1
10 2303.4 2595.6 2595.6 2595.6 2595.6

0.002 20 2417.4 2601.6 2601.6 2628.9 2628.9
40 2590.5 2590.5 2590.5 2595.9 2595.9
10 2535.3 2585.7 2585.7 2590.8 2590.8

0.005 20 2456.7 2564.4 2596.5 2596.5 2650.2
40 2438.7 2637.0 2637.0 2646.3 2646.3
10 2423.4 2545.2 2553.0 2607.0 2649.9

0.01 20 2283.0 2628.9 2666.7 2715.6 2726.4
40 2598.6 2598.6 2629.5 2629.5 2661.9

1 Training performed under an on-line approach. Seeds were fixed to assure
an appropriate comparison basis between results.

2 The model’s policy is trained using a 5%-greedy policy (e.g.: the
probability that model’s preferred action is selected is 95%).
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