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Résumé

La transmission de volatilité entre différents actifs est un sujet de recherche important en
finance. Cette thèse vérifie si l’inclusion de la volatilité des principales classes d’actifs (i.e.,
les actions, les obligations, les matières premières et les devises) améliore la précision des
modèles de prévision de volatilité sur le dollar canadien. Pour ce faire, nous utilisons la
variance réalisée sur différents contrats à terme comme mesure observable de la variance.
Nous introduisons des modèles multi-actifs permettant à la variance réalisée d’autres actifs
d’influencer nos prévisions. Nous établissons empiriquement que le modèle HAR classique
est difficile à battre avec les extensions HAR de la littérature. De plus, nous montrons que
la volatilité d’autres actifs influence la volatilité des contrats à terme sur le dollar canadien.
L’ajout de ces volatilités dans les modèles de prévision augmente leur performance.
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Abstract

Volatility spillovers are important research topics in finance. This thesis evaluates whether
including the volatilities of major asset classes (i.e., equities, bonds, commodities, and
currencies) improves the accuracy of volatility forecasting models on the Canadian dollar.
To do so, we use realized variance as an observable measure of the variance across different
futures contracts. We introduce multi-asset models allowing the realized variance of other
assets to influence our forecasts. We provide compelling empirical evidence that the classic
HAR model is hard to beat with HAR extensions from the literature. Furthermore, we show
that volatilities from other assets influence the CAD/USD futures volatility. Adding these
volatilities to volatility forecasting models increases their performance.
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1 Introduction

Having accurate volatility forecasts is of crucial importance in finance. Every significant
market participant needs the most precise volatility estimates, from traders to policymak-
ers and researchers. They use volatility or variance as an input in multiple applications.
These applications vary from decisions on which assets to actively trade for a given day to
volatility trading, option pricing, risk management, portfolio allocation, and model calibration.

Traditional models used by practitioners and academics to measure volatility, such as the
family of GARCH models and stochastic volatility models, consider volatility as a function
of observables or as a latent variable. This makes the measurement of volatility dependent
on the model parameters and assumptions. Most of these models are not able to properly
describe essential relations in the process of prices of financial assets. A growing amount of
literature empirically demonstrates that returns are not normally distributed and instead
have heavy-tails (see, Bates (1996); Begin, Dorion, and Gauthier (2020); Ornthanalai (2014)).
For this category of models, correctly describing the dynamics of the returns is of the utmost
importance to accurately forecast volatility.

With the advent of greater computing power, we can now fairly easily process high-frequency
data. This allows to directly measure volatility, giving life to Merton (1980) idea of using
the sum of squared returns at the high-frequency level for an accurate estimation of the
variance on any financial asset. Researchers from the start of the millennium have formalized
this idea into the current financial theory giving birth to the realized variance as a proxy
for the variance of an asset.1Volatility now becomes observable, which allows for the use of
econometric models more aligned with empirical evidence of price movements.

This thesis aims to study one-day-ahead log-realized variance forecasts for the Canadian
dollar futures using high-frequency data. We base our empirical study on the HAR model of
Corsi (2009), which is now the standard model for forecasting volatility when high-frequency
data is available. This model outperforms traditional models such as GARCH and is rivaling
with more advanced models while being easy to implement (see, Aganin (2017); L. Y. Liu,
Patton, and Sheppard (2015); Ma, Wei, Huang, and Chen (2014); Vortelinos (2017)).

1For a review of the first uses of realized variance see the following, Andersen, Bollerslev, Diebold, and
Labys (2003); Barndorff-Nielsen and Shephard (2002); Meddahi (2002); Poon and Granger (2003)
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CHAPTER 1. INTRODUCTION

The US dollar is the most traded currency against the Canadian dollar in the Canadian econ-
omy. Being our biggest trading partner, the United States of America explains this situation.
The US dollar is also the world’s reserve currency, and a large number of investments are
made with it. For these reasons, the CAD/USD exchange rate is of high importance to a
large group of stakeholders, such as traders, investors, business owners, and policymakers.
Correctly forecasting its volatility would help most actors in the Canadian financial market.
We are the first to study the forecast of the log-realized variance on the CAD/USD exchange
rate 2 with a wide range of different specifications of HAR models using high-frequency data
and incorporating a diversified intermarket analysis.

Intermarket analysis is a method of analyzing markets by examining the correlations between
different asset classes. Instead of looking at financial markets or asset classes individually,
intermarket analysis looks at several asset classes, such as stocks, bonds, currencies, and
commodities. This type of analysis expands on simply looking at each market or asset in
isolation by looking at other markets or assets that have a strong relationship to the market
or asset being considered. Traders have been using intermaket analysis for a long time, using
what academics call market spillovers.

Two main reasons stand out for using different asset classes to forecast the Canadian dollar
futures volatility. Firstly, the globalization of finance has created important interrelations
between asset classes (see, Greenspan (1997); Hausler (2002); Piffaut and Miro (2019)).
Secondly, other studies have shown the effects of yields, inflation, and other macroeco-
nomics data on the market (see, Fama (1981); Gjerde and Saettem (1999); Hashim, Ramlan,
Razali, and Nordin (2017); Naifar and Al Dohaiman (2013); Ratanapakorn and Sharma
(2007)). We use different assets such as bonds and the dollar index as the proxy of these vari-
ables, which gives us what we might consider high-frequency data on macroeconomic variables.

We provide compelling evidence that applying intermarket analysis using multi-asset models
increases the forecast accuracy of volatility. Furthermore, an expanding-window scheme for
training the models results in more accurate forecasts than the traditionally-used rolling-
window method. The main findings of this thesis should be of interest to the practitioners
and applied researchers who will be able to increase the accuracy of their models.

The remainder of this thesis is organized as follows. Section 2 presents the literature review,
Section 3 presents the data, Section 4 describes the models used for the forecast study, Section
5 details the empirical framework, Section 6 presents the results, and Section 7 concludes.

2We use the Canadian dollar futures, trading on the CME, as a good proxy of the CAD/USD spot
exchange rate
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2 Literature Review

2.1 Volatility Forecasting in Forex

Most research studies on volatility forecasting of exchange rates use models with daily data
instead of high-frequency data. So, Lam, and Li (1999) find that the stochastic volatility
models provide a notable improvement in volatility forecasting of different exchange rates.
The exchange rates with a performance improvement include the Canadian dollar against the
US dollar. Vilasuso (2002) forecasts volatility using the FIGARCH for different exchange
rates such as CAD/USD and observes gains in forecasting accuracy compared to the GARCH
and IGARCH models. Sadorsky (2005) compares the forecasting performance of different
low-frequency models on the CAD/USD foreign exchange rate. More recently, Pilbeam and
Langeland (2015) look at the implied volatility derived from currency options. They find that
it outperforms a series of different specifications of univariate GARCH models for forecasting
the volatility of exchange rates.

The literature on volatility forecasting with high-frequency data is rich for the equity and
commodity markets but almost non-existent for the foreign exchange market. Current
evidence suggests that high-frequency data increases accuracy for forecasting applications
over low-frequency data. Chortareas, Jiang, and Nankervis (2011) observe that high-frequency
data significantly enhances the performance of volatility forecasts on the euro against the
Swiss franc, UK pound, Japanese yen, and US dollar. Plíhal (2016) reviews the literature and
concludes that the HAR model of Corsi (2009) provides better results than the GARCH(1,1).
Lyócsa, Molnár, and Fedorko (2016) study various models for forecasting one-day-ahead
volatility of the Czech koruna, Hungarian forint, and Polish zloty against the euro. Their
findings are in agreement with other studies. The HAR model is rarely outperformed
even when considering its extensions. Vortelinos (2017) finds that the simple HAR model
outperforms a wide array of models such as GARCH and neural networks for forecasting
realized volatility on different financial markets, including foreign exchange rates.
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CHAPTER 2. LITERATURE REVIEW

2.2 Realized Variance - RV

For context, we review the realized variance starting with the theoretical foundation, followed
by the different sampling schemes, and conclude with the different types of estimators
proposed in the literature.

2.2.1 Theoretical foundation

Building on the literature arguing for non-normal market returns, we expose the theoretical
foundation of RV using the market model with jumps. There is already plenty of literature
reviewing the theoretical and practical foundation of the classical diffusion model without
jumps (see, Andersen et al. (2003); Barndorff-Nielsen and Shephard (2002); Bucci (2017);
McAleer and Medeiros (2008); Meddahi (2002); Poon and Granger (2003)). Let Pt be the
price of an asset and St = log(Pt) its log-transformation. We suppose that the following
stochastic differential equation characterizes the log-price dynamics of this asset:

dSt = µtdt+ σtdWt + dJt (2.1)

where Wt is a Brownian motion, Jt is a jump process. µt is the drift and σt the instantaneous
stochastic volatility, strictly positive and square integrable.

The quadratic variation of a stochastic process as shown in Protter (2004) is of the following:

[X]T = QVT = lim
n→∞

n∑
i=1

(Xsi −Xsi−1)
2 (2.2)

In the context of the market model with jumps, the quadratic variation is equivalent to the
following formulation for the whole duration of the process:

[S]T = QVT =

∫ T

0

σ2
sds+

NT∑
i=1

Y 2
i (2.3)

where Yi corresponds to the size of jump i, and NT to the total number of jumps on the
whole trajectory.

Let an intraday return between t and t+ τ be:

rt = St+i τ
n
− St+(i−1) τ

n
, i ∈ [1, n] (2.4)

and the realized variance, which is a good proxy for the quadratic variation:

RVt,t+τ =
n∑
i=1

r2t+i τ
n

(2.5)
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CHAPTER 2. LITERATURE REVIEW

It follows that the daily quadratic variance from t to t+ τ satisfies:

QVt,t+τ = [S]t+τ − [S]t

= lim
n→∞

n∑
i=1

(St+i τ
n
− St+(i−1) τ

n
)2

= lim
n→∞

n∑
i=1

r2t+i τ
n

' RVt,t+τ (2.6)

Therefore the daily quadratic variation for the jump process is:

QVt,t+τ =

∫ t+τ

t

σ2
sds+

Nt+τ∑
i=Nt

Y 2
i (2.7)

Barndorff-Nielsen and Shephard (2004) show that the quadratic variation attributable to the
continuous part of the process can be estimated by the bipower variation as follows:

BVt,t+τ =
π

2

n∑
i=2

|rt+i τ
n
rt+(i−2) τ

n
| (2.8)

This formulation allows for the isolation of the continuous part and the jump part of the
quadratic variation.

2.2.2 Sampling

The use of realized variance for the modelization of the variance allows us to be independent
of models by directly sampling from an observable variable. While this is an advantage, there
are some problems regarding the practical implementation of the method. Some literature
shows that microstructure noise is present in the markets coming from different sources such
as the bid-ask spread and the non-continuous process of price discovery (see, Amihud and
Mendelson (1987); Harris (1991); Madhavan (2000)). These effects can introduce a bias in
the estimation of RV.

To reduce the impact of microstructure effects on the estimation of RV, such as the bid-
ask spread, infrequent trading, price discreteness, and others (Bandi & Russell, 2008), the
literature has developed different sampling methods of intraday returns. We present the main
sampling schemes in the presence of a process with jumps as reported in Oomen (2005)

• Calendar time sampling (CTS) or sparse sampling: returns are selected at regular
spaced time intervals, such as every 15 minutes. Oomen (2005) points out that a vast
amount of the literature uses intervals between 5 and 15 minutes when using CTS.
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CHAPTER 2. LITERATURE REVIEW

• Business time sampling (BTS): calendar time is scaled in a way that the resulting jump
intensity is constant. This scheme is infeasible if the intensity of the jump process is
latent. Therefore, in practice, one can estimate the intensity process with standard
non-parametric smoothing methods using transactions times. The BTS scheme is based
on the expected number of transactions.

• Transaction time sampling (TTS): returns are selected at each n transactions

• Tick time sampling: returns are selected at each price movement

While Oomen (2005) shows that TTS is a better sampling scheme than CTS, especially on
low volume trading days, on average, using TTS on highly liquid stocks does not increase
the estimator’s accuracy markedly. While it can be useful for illiquid stocks or assets, ma-
jor futures are highly liquid products with relatively low noise. The practitioner should
prefer CTS since the precision gain using TTS would most likely not be worth the hassle.
Research seems clear that returns of liquid assets such as major commodities futures and
financial futures are noise-free above five-minute sampling. Couleau, Serra, and Garcia (2019)
find that even if market microstructure noise on live cattle futures increases observed price
variance, its effect is not large and do not last for more than four minutes coming to the
similar conclusion of Ait-Sahalia and Xiu (2019) for major stocks on the US market. Hu,
Serra, and Garcia (2020) also find an increased pricing efficiency, mitigation of short-term
volatility, and reduced spreads for most agricultural commodity futures with the increase
of algorithmic quoting in the limit order book. Ait-Sahalia and Xiu (2019) identify that
the common practice of treating five-minute returns as noise-free is a reasonably safe choice
for data sampled only after 2009 for the stocks in the Dow Jones and S&P 100, but not
for all the S&P 500 stocks. These results again show that market efficiency has improved
over the past decade and that realized variance estimators can be employed on liquid stocks.
Hansen and Lunde (2006b) show that the magnitude of the noise component has dramati-
cally decreased in recent years and is small relative to the daily return variation of liquid stocks.

A lot of research has been made to find the optimal sampling frequency of returns (see, for
instance, Ait-Sahalia, Mykland, and Zhang (2005); Bandi and Russell (2008)). However,
multiple practical issues arise from these approaches. First of all, the optimal sampling
frequency approaches are always based on the underlying assumptions of the noise process.
Secondly, the noise process is most likely not the same in time, as shown by Gatheral and
Oomen (2010). A simple ad hoc rule is much more robust because it does not imply any
model to the price and noise process.

2.2.3 Specific Methods

The estimator to compute the realized variance is also an important topic of study in the
literature. The microstructure noise can have a significant effect and create bias in the
estimator of the RV depending on the methodology used. Initially, sparse sampling was

13



CHAPTER 2. LITERATURE REVIEW

used for the RV estimator, but more recently, numerous alternative estimators have been
created. These alternative estimators make more efficient use of the data and reduce the
bias created by the microstructure noise (see, Andersen, Bollerslev, and Meddahi (2011);
Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008); Hansen and Lunde (2006a); Shep-
hard, Barndorff-Nielsen, and Lunde (2006); Zhang, Mykland, and Aït-Sahalia (2005)).

Although sparse sampling reduces the bias, the variance increases due to discretization. To
minimize this bias, Zhang et al. (2005) propose a method to use a more significant portion of
the data by subsampling, therefore reducing the bias and variance. The methodology consists
of dividing the trading day into different subsamples of x-minute returns. Doing the average
of the subsamples, we can compute the subsampled estimator as follows:

RV
(s)
t =

1

k

k∑
i=1

RV
(i)
t (2.9)

where RV (s)
t corresponds to the subsampled realized variance on day t, RV (i)

t to the realized
variance on day t of subsample i and k to the number of subsamples.

The practitioner is left confused choosing between numerous amount of estimators. Most
studies on the merits of the new estimators mainly focus on the speed of convergence to their
asymptotic distributions, which is not a reliable guide to finite sample performance. Gatheral
and Oomen (2010) show that, in practice, the best variance estimator is not always the
one suggested by theory. This can partly be explained by assumptions of the price process,
which could be incorrect. They find that the best estimators of RV based on efficiency,
implementation, practicality, and robustness are ad hoc implementation of a subsampling
estimator, realized kernel, or maximum likelihood realized variance.
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3 Data

For this study, we use high-frequency prices at the one-minute interval from FirstRate Data1

on seven futures contracts to forecast the one-day-ahead log-realized variance of the Canadian
dollar futures contract. Log-transformation of the realized variance is used for two main
reasons. Firstly, log-realized variance is much less skewed and displays significantly reduced
kurtosis making it easier to forecast with linear models (see, Bekaert and Hoerova (2014);
Oomen (2001)). Furthermore, it ensures that the values of the forecasts remain on the whole
real line (Wilms, Rombouts, & Croux, 2021). Table 3.1 gives information about the different
futures contracts used for this empirical application. For the rest of this study, we will
reference each futures contract by their product or ticker as presented in the following table.

Table 3.1 Futures contracts in the study

Product Ticker Asset Class Exchange

Canadian Dollar (CAD/USD) 6C Currencies CME

E-mini S&P 500 ES Equities CME

Euro (EUR/USD) 6E Currencies CME

Gold GC Commodities NYMEX

Japanese Yen (JPY/USD) 6J Currencies CME

10-Year T-Note ZN Bonds CBOT

WTI Crude Oil CL Commodities NYMEX

These assets are selected because of their supposed influence on the CAD/USD exchange rate
returns or volatility. All the chosen assets are part of the four main asset classes: equities,
commodities, currencies, and bonds. We limit ourselves to highly liquid futures to have an

1FirstRate Data is an organization providing high-resolution intraday stock market, crypto, futures, and
FX data used by traders, hedge funds, and academic institutions.
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CHAPTER 3. DATA

unbiased estimation of the log-realized variance for each product. We also are limited to US
futures for reasons of data availability.2

For the equities, we choose only the S&P 500 futures contract as it is the most significant
financial market index in the world, and it can have an impact on the US dollar, which is
often considered a safe-haven asset in times of financial turmoil (Maggiori, 2011).

Regarding the currencies, the euro (EUR/USD) and the Japanese yen (JPY/USD) have both
been shown to be net givers of volatility to other currencies in a large array of studies (see,
Inagaki (2007); Kitamura (2010); Nekhili, Mensi, and Vo (2021); Rajhans and Jain (2015);
Singh, Nishant, and Kumar (2018)). To both of them, they make approximately 70% of the
DXY index. The DXY index measures the value of the US dollar relative to the value of a
basket of currencies. Other currencies such as AUD/USD and CHF/USD are less traded and
do not have the characteristic of being net givers of volatility during long periods. We only
select EUR/USD and JPY/USD for these reasons.

Concerning the commodities, we use crude oil and gold. Crude oil has a direct effect on
crude exporting countries’ currencies such as the Canadian dollar, therefore, impacting the
CAD/USD exchange rate (Kemati (2018); Lizardo and Mollick (2010); Yang, Cai, and Hamori
(2017)). Crude oil is also the most traded commodity with extremely liquid futures contracts.
Gold has long been described as a safe-haven asset in times of financial turmoil and as a
hedge against the devaluation of fiat currencies (Baur and McDermott (2010, 2016); Capie,
Mills, and Wood (2005); Nguyen, Bedoui, Majdoub, Guesmi, and Chevallier (2020)). These
make crude oil and gold great commodities to add to our study for forecasting the CAD/USD
log-realized variance.

Finally, we use the U.S. 10 Year Treasury Note for the bonds. Yield differentials affect
the exchange rate of two countries. Using bonds, we are able to exploit this relation with
high-frequency data.

Our sample period ranges from 2008-04-07 to 2021-11-12. To remove inconsistencies in the
data, we apply the following cleaning procedure:

– Remove holidays for which the equities cash market is closed, otherwise known as NYSE
or Nasdaq holidays, since it leads to low volume on the futures market and reduced
trading hours. Realized variance on these days may not give us a representative value
of the actual variance.

– Remove days with more than 25% missing values or more than 5% of missing consecutive
data

2High-frequency data from the Canadian markets such as the S&P/TSX and the Canada 10 Year
Government Bond would have been a great addition to our list of futures contracts since we aim to forecast
the log-realized variance of CAD/USD.
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CHAPTER 3. DATA

– Impute missing values using linear interpolation

– After the preceding steps, keep only the days for which we have data for the whole set
of futures contracts

We start with 3,550 days in our sample. Following the cleaning procedure, we remove 244
days, 120 are holidays, and 124 are days where at least one futures have more than 25% of
missing data or 5% of missing consecutive data. Therefore, we have 3,306 full trading days
for our empirical study.

Calculation of the realized variance3 for each futures is done on five-minute subsampled
returns. As indicated earlier, a five-minute sampling frequency offers a good balance between
utilizing finely sampled high-frequency returns and reducing bias coming from microstructure
effects. By using subsampling, we are able to reduce the variance of our estimator compared
to a standard five-minute sampling frequency.

We calculate two realized variance estimators: one for the day-trading session (9:30 am to 4
pm EST) and the other for the overnight session (6 pm to 9:30 am EST). The day-trading
session realized variance shall be called RV, and the overnight realized variance ORV. The
choice of segmenting the realized variance in two is made in agreement with the literature.
Martens (2002) shows that the best daily volatility forecast is produced by modeling overnight
volatility differently from intraday volatility in the stock market. Dutta and Sharma (2012)
find that the trading day session behaves like a separate market from the overnight sessions
for the S&P 500 futures. We assume that this segmentation between the day session and the
overnight session is also proper for the other assets in our empirical application, such as the
CAD/USD for which the majority of volume comes during the New York session, similarly to
the S&P 500 futures.

3For convenience, we annualize the realized variance by multiplying by 252
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4 Models

4.1 Benchmarks

4.1.1 Naive

To make sure our models perform better than a naive approach. We consider a simple model
with no parameters, for which the best forecast for day t is the previous day value:

log(RVt) = log(RVt−1) + εt (4.1)

where RVt is the realized variance for day t, RVt−1 is the realized variance from the previous
trading day and εt is the error term.

4.1.2 HAR

Despite its simplicity, the HAR model proposed by Corsi (2009) can produce rich dynamics for
the variance that closely resemble the empirical data. The HAR is based on the heterogeneous
market hypothesis and the asymmetric propagation of variance between long and short-time
horizons. To be more precise, the HAR contains three components of variance. The short-time
component represents one-day variance, the medium time component corresponding to the
average variance over a week, and finally, the long-term component for the monthly average
variance. The heterogeneous market hypothesis claims that the three components represent
the behavior of different types of market participants with different investment time horizons.

We use this model as our benchmark model, which is now standard in the literature. The
following equation defines the model for the forecasting of the log-realized variance:

log(RVt) =β0 + β1 log(RVt−1) + β2 log(RVt−5) + β3 log(RVt−22) + εt (4.2)

where RVt is the realized variance for day t, RVt−1 is the realized variance from the previous
trading day, RVt−5 is the average realized variance from the previous five trading days, RVt−22
is the average realized variance from the previous 22 trading days.
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The average realized variance over the past n days is defined as follows:

RVt−n =
1

n

n∑
i=1

RVt−i (4.3)

In the HAR model, it is standard to estimate the betas by OLS.

4.2 Simple models

4.2.1 HAR-RSV

Patton and Sheppard (2015) find that the volatility associated with negative returns for
the S&P 500 and 105 individual stocks have better predictive information about the future
volatility than the volatility associated with positive returns. Realized semi-variances used in
the model are defined as follows :

RV+
t =

n∑
i=1

r2i I[ri>0] (4.4)

RV−t =
n∑
i=1

r2i I[ri<0]

To see if the relation between past negative realized variance and future realized variance is
still intact, we add the previous day’s negative realized variance as a regressor to the classical
HAR:

log(RVt) = β0 + β1 log(RVt−1) + β2 log(RVt−5) + β3 log(RVt−22) + γ log(RV−t−1) + εt (4.5)

where RV−t−1 represents the previous day negative realized variance, and the other predictive
variables correspond to the benchmark model. Patton and Sheppard (2015) more complex
models did not show significantly better performance in out-of-sample forecasts. To keep the
model parsimonious and less prone to noise, we only add the previous day’s negative realized
variance.

4.2.2 HAR-CJ

With the growing literature on jumps in asset prices, Andersen, Bollerslev, and Diebold (2007)
and Corsi, Pirino, and Reno (2010) decompose an asset’s price process into two components:
the continuous component C and the jump component J . In their study, Andersen et al.
(2007) rely on the bipower variation proposed by Barndorff-Nielsen and Shephard (2004,
2006):

BVt,t+τ =
π

2

n∑
i=2

|rt+i τ
n
rt+(i−2) τ

n
| (4.6)
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The jump component on day t, Jt, is estimated as the difference between the realized variance
and the realized bipower variation. In theory, the realized variance should always be greater
than the bipower variation, but since it is not always the case in practice, Jt should be limited
to positive numbers:

Jt = max(RVt − BVt, 0) (4.7)

The continuous part of the process is the difference between the quadratic variation, estimated
by the realized variance, and the jump component:

Ct = RVt − Jt (4.8)

By replacing the realized variance in our benchmark model with the continuous and jump
components, we get the equivalent of the HAR-CJ used by Andersen et al. (2007) for
forecasting log-realized variance:

log(RVt) =β0 + β1 log(Ct−1) + β2 log(Jt−1) + β3 log(Ct−5)

+ β4 log(Jt−5) + β5 log(Ct−22) + β6 log(Jt−22) + εt
(4.9)

where Jt−1 is defined by equation (4.7) and Ct−1 by equation (4.7). Ct−5, Jt−5, Ct−22 and
Jt−22 are the average of the continuous and jump components on their respective period:

Ct−n =
1

n

n∑
i=1

Ct−i (4.10)

Jt−n =
1

n

n∑
i=1

Jt−i (4.11)

4.2.3 HAR-ORV

Following the reasons exposed in the data section to separate the day-trading realized variance
and the overnight realized variance in two different estimators instead of one, we propose
a small variation to the benchmark HAR model to have a better forecast of variance. We
argue that the overnight variance might still have important information for the day-trading
session variance. We add the log-overnight realized variance as a regressor in the model to
test this assumption:

log(RVt) =β0 + β1 log(RVt−1) + β2 log(RVt−5) + β3 log(RVt−22)+

γ log(ORVt−1) + εt
(4.12)

ORVt−1 corresponds to the overnight realized variance preceding the day-trading session t,
which corresponds to the realized variance from the futures open at 6:00 pm EST until the
New York session at 9:30 am EST on the following day.
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4.2.4 HAR-X

With the globalization of markets, the interdependence of asset prices has increased in the
past years (see, Beirne and Gieck (2014); Gravelle, Kichian, and Morley (2003); Lam and
Ang (2006)). The financialization of commodity markets has made them highly linked to
equity markets and currency markets. Bond yields directly affect stock prices because of
the discounting of future cash flows and currencies because of interest rate spreads between
different countries. In addition, the US dollar is considered a safe-haven asset in periods of
global financial turmoil. For these reasons, we use various futures contracts representing the
main asset classes (i.e., equities, commodities, currencies, and bonds) to exploit the effects
of volatility transmission on the CAD/USD exchange rate. To be more precise, we create
a HAR-X model for each futures contract in our data giving us six different models. The
general specification is of the following:

log(RVt) =β0 + β1 log(RVt−1) + β2 log(RVt−5) + β3 log(RVt−22)+

γ log(RVXt−1) + εt
(4.13)

where RVXt−1 corresponds to the previous day’s realized variance of one of the futures
contracts in this study (i.e., 6E, ES, GC, 6J, ZN, CL). As can be noted, we only use the
previous day’s realized variance of the additional futures contracts because we expect the
longer-term variance trends to be similar across assets.

4.3 Multi-asset models

4.3.1 HAR-X-Boosted

To consider more than one asset in forecasting the log-realized variance on the CAD/USD
futures, we propose a model called HAR-X-Boosted. We use a lasso regression to remove
selection and look-ahead biases, which would allow us to choose the best regressors. This
type of regression is useful when having multiple regressors because it encourages simple and
sparse models by selecting a subsample of variables. This is especially important in finance
because of the small number of observations and high noise to signal ratio present in the data.
Lasso regression also makes it possible to interpret a model better since "low-value" variables
are deleted from the model. Although this gives us a dynamic model that can change for
each training period, the general form of the model remains the same:

log(RVt) =β0 + β1 log(RVt−1) + β2 log(RVt−5) + β3 log(RVt−22)

+
6∑
i=1

γi log(RVX
(i)
t−1) + εt

(4.14)

where RVX(i)
t−1 corresponds to the previous day’s realized variance of one of the futures

contracts in this study (i.e., 6E, ES, GC, 6J, ZN, CL).
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The betas and the gammas are estimated on each training set through quadratic programming.
In a context of standard regression with betas as coefficients, we can find the coefficients by
minimizing the following function:

n∑
i=1

(yi −
∑
j

xijβj)
2 + λ

p∑
j=1

|βj| (4.15)

where p is the number of predictors, n the number of observations, and λ a tuning parameter
that controls the penalty’s strength associated with high betas. The optimal lambda (i.e.,
λ∗) is usually found using k-fold cross-validation on the training set. The model is then
recalibrated on the whole training set using λ∗. In our case, we keep the serial dependence of
observations in the cross-validation process, which is crucial when working with time series.1
To do this, we manually assign the observations in each fold in such a way that the serial
dependence is always respected.

4.3.2 HAR-X-Averaging

Another approach to consider the information coming from the different assets consists of
producing the average forecast of all HAR-X models. Using this approach, we can capture the
information coming from each asset. Degiannakis and Filis (2017), C. Liu and Maheu (2009),
Lyócsa and Molnár (2016), and Wang and Nishiyama (2015) have all shown an increase in
performance when using a model averaging approach for forecasting realized variance. For a
review of techniques in model averaging for econometrics, see Steel (2020) and Nonejad (2021).
One of the features of model averaging is that it reduces model specification uncertainty.
The HAR-X-Averaging averages the forecasts coming from each basic HAR-X model. The
reason for excluding the HAR-X-Boosted is that we want to compare a complex model (i.e.,
HAR-X-Boosted) model with a combination of simpler models (i.e., HAR-X-Averaging).

1When working with time series, an alternative to cross-validation is using a BIC-type criterion to set the
parameter λ. For an example of application, see Ardia, Bluteau, and Boudt (2019)
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5 Empirical framework

5.1 Forecasting procedure

For this experiment, we use a rolling and an expanding window to forecast the one-day-ahead
log-realized variance. We train the models at the end of each day before predicting the next
day’s log-realized variance. A vast amount of studies using the rolling-window estimation
method use windows between 125 and 1,500 days (Cech and Baruník (2017); Corsi (2009);
Lyócsa and Molnár (2016); Wilms et al. (2021)). Changing the estimation length affects
the forecasting ability of the models presented. We consider windows of length 500 (two
years) and 1,000 (four years) days. We start with 1,000 days for the first training set for the
expanding-window method. The longest out-of-sample period possible with an estimation
window of 1,000 days is from 2012-07-12 to 2021-11-12, approximately 2,284 trading days.
Having the same out-of-sample period for all window sizes is important to compare results.
Therefore, we use this period for every window length and training scheme. All models except
the Naive model1 and the HAR-X-Boosted2 are estimated by OLS on each training set. Fig.
5.1 shows the rolling window scheme and the expanding window scheme used in our study.

Fig. 5.1 Rolling-window (left) and expanding-window (right) schemes

The HAR-X-Boosted has to some degree, a more complicated estimation process. To determine
the optimal lambda (i.e., λ∗) associated with the L1-penalty, we use five-fold cross-validation
robust to the serial dependence of observations on each training set. The lasso regression is
then calibrated on the whole training set before doing the forecast for the next day.

1The Naive model has no parameter to estimate
2The HAR-X-Boosted is estimated by minimizing equation (4.15) through quadratic programming
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5.2 Forecasting accuracy

5.2.1 Loss functions

We compare the forecast performance of the simple models and the multi-asset models on how
they can forecast the log-realized variance through the out-of-sample period. Comparing such
performance is usually of more interest to the practitioner than in-sample analysis because
it better represents models forecasting ability. The forecast performance of each model is
evaluated with the root mean squared error (RMSE) and mean absolute error (MAE):

RMSEt,T =

√√√√ 1

T

T∑
t=1

( ̂log(RVt)− log(RVt))2 (5.1)

MAEt,T =
1

T

T∑
t=1

| ̂log(RVt)− log(RVt)| (5.2)

where ̂log(RVt) is the log-realized variance forecast at day t, log(RVt) is the true value and
T is the total number of days in the out-of-sample period. The MAE is used to make sure
that a small amount of extreme errors does not drive up the RMSE, which could give wrong
information about a model performance in the case where the RMSE was the only used
performance measure.

5.2.2 Alternative evaluation

As an alternative to traditional performance measures and loss functions, we compute
the overvaluation frequency of the forecast value with the actual value OF , giving us the
proportion of forecasts above the real value:

OFt,T =
1

T

T∑
t=1

I
[( ̂log(RVt)>log(RVt)]

(5.3)

This metric reveals if a model tends to be biased towards over-forecasting or under-forecasting
the log-realized variance. Ideally, a model should have a value of 50% making the model
without a directional bias.

5.2.3 Model Confidence Set

To test if the proposed models significantly outperform the standard HAR model in regards to
the MAE and RMSE, we apply Hansen, Lunde, and Nason (2011) model confidence set (MCS)
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procedure. Given a set of modelsM0, we identify the model confidence set M̂∗
1−α ⊂ M0,

which corresponds to the set of models that contains the significantly better forecasting
models for a given loss function L and a given level of confidence α. The MCS procedure
repeatedly tests the null hypothesis of equal forecasting accuracy:

H0 : E[Li,t − Lj,t] = 0 (5.4)

where Li,t − Lj,t is the loss differential between model i and j. Starting with the full set of
modelsM =M0, this procedure sequentially eliminates the worst performing model from
M until the hypothesis cannot be rejected anymore. The set of final modelsM1−a is then
called the MCS.

Using this procedure, we compare each model with the benchmark with respect to the
MAE and RMSE. Therefore, we do pairwise tests for each loss function using the sets
M0 : {benchmark,modeli} where modeli is any model other than the benchmark. In
addition, to determine which models have the highest significantly better forecasting ability
in their category, we also compute the model confidence set (MCS) on the group of simple
models and multi-asset models.3

3All the MCS tests are performed using the Model Confidence Set Procedure package for R from Bernardi
and Catania (2018)
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6 Results

6.1 Realized variance

Fig. 6.1 plots the log-realized variance of every futures contract from April 2008 to November
2021. We observe periods of large fluctuations common to all assets, such as during the
financial crisis of 2008 and the March 2020 Covid-19 episode. We also observe the increase of
the log-realized variance for CAD/USD and crude oil around 2015. A significant collapse in
oil prices caused this increase in volatility. Prices fell by almost 75% in less than two years.

Fig. 6.1 Log-realized variances

Descriptive statistics are computed on each product and reported in Table 6.1. Results show
that crude oil, gold, and the S&P 500 are the most volatile products with a respective mean
log-realized variance of -3.101, -4.988, and -4.444. On the other hand, bonds and currencies are
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the least volatile. These results are in agreement with common knowledge in financial theory.
At the 99% confidence level, the Augmented Dickey-Fuller test confirms the stationarity of the
log-realized variances while the Jarque-Bera statistic rejects the null hypothesis of gaussian
distribution. Even though the Jarque-Bera test rejects the null hypothesis, the log-realized
variances show a kurtosis close to 3 with a slightly positive skewness. The distributions of
log-realized variance are closer to normal distributions than the realized variance distributions.
This is in agreement with other studies such as Oomen (2001) and Bekaert and Hoerova
(2014). Skewness and kurtosis for the realized variance series are exposed in Table 6.2.

Table 6.1 Descriptive statistics of the log-realized variance estimates

Statistics CAD CL EUR ES GC JPY ZN

Mean -5.960 -3.101 -6.303 -4.444 -4.988 -6.405 -6.632

Median -6.051 -3.186 -6.344 -4.604 -5.041 -6.460 -6.846

Std. Dev 0.897 0.980 0.873 1.269 0.937 0.934 0.996

Skewness 0.529 0.822 0.282 0.722 0.513 0.475 0.812

Kurtosis 3.307 5.183 3.208 3.794 3.423 3.601 3.368

ADF < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

JB < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Notes: The descriptive statistics correspond to the mean, median, standard deviation,
skewness, and kurtosis. The ADF and Jarque-Bera tests p-values are reported at less
than 1%, therefore rejecting their null hypothesis at the 99% confidence level.

Table 6.2 Skewness and kurtosis of the realized variance estimates

Statistics CAD CL EUR ES GC JPY ZN

Skewness 6.69 54.90 5.95 14.40 9.31 12.03 34.97

Kurtosis 74.38 3109.77 65.13 351.59 140.42 250.90 1654.46

6.2 Forecasting experiment

Fig. 6.2 plots the log-realized variance and the corresponding forecast of the best model
overall (i.e., HAR-X-Averaging). We can observe that our model is successful in predicting the
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general trend of the log-realized variance but has difficulty predicting sudden large increases
or decreases to their real extent.

Fig. 6.2 Forecasts of the log-realized variance on CAD/USD futures

The MAE and RMSE of the forecasting experiment for every model and window size are
reported in Table 6.5. The three models with the lowest value for every loss function and
window size have shaded cells in Table 6.5. Bold values denote the smallest loss function value
for each model. Asterisks indicate the statistical significance of the pairwise MCS procedure
between the HAR and the corresponding model. The overvaluation frequency (OF) is also
reported for additional information on the performance of the models.

6.2.1 Simple models

Simple models regroup all models, excluding the HAR-X-Boosted and the HAR-X-Averaging,
which are both part of multi-asset models. In our study, the vast majority of simple models
outperform the HAR on all training schemes in terms of MAE and RMSE. Still, the MCS
pairwise procedure mostly fails to reject the null hypothesis of equal predictive ability between
the benchmark and the corresponding model. This tells us that the outperformance might only
come from chance and sample choice. It is worth noting that specifically, for the expanding-
window scheme, most models’ outperformance is statistically confirmed by the MCS. The
HAR-X (ES) is the most consistent model in outperforming the HAR for all training schemes
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and often ranks in the top 3 of all models, even when including the multi-asset models. With
a p-value of 1 for all training schemes and loss functions, Table 6.3 confirms that the HAR-X
(ES) is the model of choice when considering only the simple models. Table 6.3 also validates
that, excluding the expanding-window scheme, the HAR is hard to statistically outperform
since it is part of the confidence set of the group best-performing models at a 75% confidence
level.

Table 6.3 Log-Realized Variance: MCS p-values for the set of simple models

500 days window 1,000 days window expanding window

Model MAE RMSE MAE RMSE MAE RMSE

Naive 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

HAR 0.7934 0.9986 0.8416 0.9994 0.0806 0.0746

HAR-RSV 0.7012 0.9934 0.9918 0.9998 0.8204 0.2508

HAR-CJ 0.9108 0.9682 1.0000 1.0000 0.9770 1.0000

HAR-ORV 0.7654 0.9986 0.9918 0.9998 0.9186 0.0858

HAR-X (ZN) 0.4672 0.9884 0.1276 1.0000 0.9606 0.5482

HAR-X (CL) 1.0000 1.0000 1.0000 1.0000 0.0768 0.8686

HAR-X (GC) 0.8858 0.9890 1.0000 1.0000 0.9988 0.9684

HAR-X (6E) 0.9858 1.0000 0.8418 0.9984 0.8160 0.2036

HAR-X (6J) 0.9998 1.0000 1.0000 1.0000 0.8920 0.5320

HAR-X (ES) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Notes: Values in bold denote that the model is part of the confidence set of best models at a
confidence level of 75%.

6.2.2 Multi-asset models

For the multi-asset models, the evidence is clear. Multi-asset models outperform the HAR
for all training schemes. This finding is confirmed by Table 6.4 which shows that the HAR is
never part of the confidence set of best-performing models. Furthermore, the simpler model
that averages the forecast of each HAR-X model tends to outperform the more complex one
based on a lasso regression. One reason for this result could be the high noise to signal ratio
in financial data as reported by Israel, Kelly, and Moskowitz (2020). Another reason given by
the same authors is the small amount of data available when training the model on a daily
timeframe. This second reason could explain why the HAR-X-Boosted competes better with
the HAR-X-Averaging when using the expanding window scheme, which includes the most
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data in the training set. The HAR-X-Averaging consistently ranks in the top 3 models for
the lowest MAE/RMSE in every training scheme. There is one exception, and that is for
the RMSE in the expanding window model where the model is 4th with an RMSE of 0.5389
behind the HAR-X-Boosted, HAR-X (ES) and the HAR-CJ all of which have an RMSE of
0.5386. The results are also statistically significant at a significance level of at least 10%. The
HAR-X-Averaging is the only model to rejects the null hypothesis of equal predictive ability
with the benchmark HAR for all loss functions and training schemes. For these reasons, we
claim that the HAR-X-Averaging is the best model in our study. Adding information about
the variance of other assets can help increase the forecasting performance of models.

Table 6.4 Log-Realized Variance: MCS p-values for the set of multi-asset models

500 days window 1,000 days window expanding window

Model MAE RMSE MAE RMSE MAE RMSE

Naive 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

HAR 0.0382 0.1744 0.1254 0.1930 0.0002 0.0230

HAR-X-Boosted 0.9582 1.0000 0.2800 0.8454 0.8278 1.0000

HAR-X-Averaging 1.0000 0.9954 1.0000 1.0000 1.0000 0.9212

Notes: Values in bold denote that the model is part of the confidence set of best models at a confidence
level of 75%.

6.2.3 Window size

Bold values in Table 6.5 clearly show that for all models except the HAR-X (CL), the
best performing training scheme corresponds to the expanding window. This result is not
surprising since log-realized variances tend to be close to gaussian. Having more data helps us
reduce the generalization error of our models since the larger sample gives us a more accurate
representation of the underlying distribution of the log-realized variance. Another important
result is that we can see an overall decrease in the forecasting error for both the MAE
and RMSE when increasing the window size for the rolling-window scheme. The 500 days
window has a larger error than the 1,000 days window for every model. The overvaluation of
forecasts also decreases with window size, which also points toward more precise forecasts
when increasing the calibration set size. In Table 6.5 The pairwise MCS procedure confirms
that the expanding window scheme is the best scheme for estimating the models. A good
amount of models statistically outperforms the HAR at a significance level of at least 15%
with that scheme. In contrast, other schemes cannot reject the null hypothesis of equal
predictive ability as strongly.
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Table 6.5 Log-Realized Variance: Forecasting Performance

500 days window 1,000 days window expanding window

Model MAE RMSE OF MAE RMSE OF MAE RMSE OF

Naive 0.5047 0.6861 0.5213

HAR 0.4031∗∗∗ 0.5424∗∗∗ 0.5821 0.3992∗∗∗ 0.5412∗∗∗ 0.5735 0.3990∗∗∗ 0.5413∗∗∗ 0.5748

HAR-RSV 0.4034 0.5426 0.5817 0.3990 0.5411 0.5709 0.3985 0.5410 0.5709

HAR-CJ 0.4061 0.5521 0.5843 0.3989 0.5406 0.5761 0.3975∗∗∗ 0.5386∗∗∗ 0.5774

HAR-ORV 0.4033 0.5426 0.5860 0.3989∗ 0.5412 0.5730 0.3980∗∗∗ 0.5411 0.5687

HAR-X (ZN) 0.4037 0.5419 0.5786 0.4002 0.5406 0.5769 0.3975∗∗∗ 0.5402∗ 0.5696

HAR-X (CL) 0.4008∗ 0.5412 0.5799 0.3991 0.5401 0.5860 0.4006 0.5408 0.5937

HAR-X (GC) 0.4030 0.5420 0.5847 0.3988 0.5406 0.5752 0.3966∗∗∗ 0.5400 0.5666

HAR-X (6E) 0.4025 0.5411 0.5812 0.3990 0.5408 0.5636 0.3982∗∗∗ 0.5405∗∗ 0.5709

HAR-X (6J) 0.4016 0.5409 0.5765 0.3980 0.5403 0.5636 0.3980 0.5403∗ 0.5761

HAR-X (ES) 0.4010 0.5405 0.5808 0.3984 0.5403 0.5752 0.3955∗∗∗ 0.5386∗ 0.5713

HAR-X-Boosted 0.4009 0.5393 0.5752 0.3999 0.5398 0.5756 0.3973 0.5386 0.5812

HAR-X-Averaging 0.4004∗∗∗ 0.5394∗∗ 0.5821 0.3977∗∗∗ 0.5390∗∗ 0.5765 0.3967∗∗∗ 0.5389∗∗∗ 0.5748

Notes: *, **, ***, , denote statistical significance of the pairwise MCS procedure between the benchmark model (HAR) and the corresponding model at a
significance level of 5%, 10%, 15%, and 50%. Take note that the benchmark model corresponds to the Naive model for the HAR results. Shaded cells show
the three models with the lowest value for every loss function and window size. Bold values denote the smallest loss function value for each model. RMSE,
MAE, and OF correspondingly stand for root mean squared error, mean absolute error, and overvaluation frequency.
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6.2.4 Overvaluation frequency

One result not discussed yet is the over-forecasting frequency metric. As shown in Table
6.5, the naive model does best in this measure. This means that our models tend to forecast
more often above the actual value than the naive model. Fig. 6.3 shows the squared errors
of forecasts of the HAR-X-Averaging model. The red points correspond to central banks’
rate statements, and the green points to special market events. It is interesting to observe
that the vast majority of large errors come from days where there is a central bank rate
statement. These statements are scheduled eight times per year for the Federal Reserve and
the Bank of Canada (BOC). Our models over-forecasting tendency is undoubtedly affected
by these important days for the foreign exchange market. The trained models are biased
towards higher forecasts because of the considerable variance on these days. In other words,
the distribution of variance differs greatly on days of central banks’ rate statements from
other days. Therefore, removing these days from our training sets and modelizing these
days differently, such as adding a fixed amount to the forecast of log-realized variance, could
correct the over-forecasting tendency and greatly increase the overall forecasting performance
of our models. Another alternative would be to use robust regression estimation methods
which would reduce sensitivity to outliers.

Fig. 6.3 Squared errors of the log-realized variance forecasts on CAD/USD futures
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6.2.5 Robustness checks

Even though log-realized variance has more desirable properties for forecasting purposes,
traders and investors work with volatility. Therefore, we validate our results by transforming
the log-realized variance forecasts into realized volatility forecasts. We transform the log-
realized variance into realized volatility as follows:

R̂V0.5
t = e

̂log(RVt)/2 (6.1)

where ̂log(RVt) is the log-realized variance forecast at day t and R̂V0.5
t is the transformation

of the forecast to realized volatility. We then, do the same analysis as on the log-realized
variance. Table A.1, A.2, A.3 with the results are available in the Appendix.

Findings remain broadly the same when evaluating forecasts of the realized volatility. Results
are also robust to different window sizes and loss functions as it is the case in section 6.2.
Overall the standard HAR is hard to beat with other models from the literature, such as
the HAR-RSV or HAR-CJ when using the rolling-window training method. Models with
one exogenous variable corresponding to another asset often outperform the HAR but not
enough to pass the pairwise MCS test. Multi-asset models outperform the HAR in terms of
MAE and RMSE. MCS procedures confirm these results, but to a lesser degree than when
forecasting log-realized variances.

6.2.6 Variable analysis

To determine what variables have the most effect on the log-realized variance forecasts, we
look at the evolution of variables chosen through time in the HAR-X-Boosted trained on an
expanding window. Fig. 6.4 shows the variables selected through days in the forecasting
sample. The color gray represents inclusion of the variable in the model, while the color white
represents a rejection of the variable (i.e., a beta of 0). The variables are displayed in the
same order as Table 6.6, which presents the mean and median value of the beta associated
with each variable for the whole forecasting sample.

We observe that not all variables are selected through time and that some variables have a
much larger effect than others on the following day log-realized variance. The three variables
with the most influence correspond to the one proposed by Corsi (2009) which are the daily,
weekly, and monthly log-realized variance of the Canadian dollar futures. The previous
day log-realized variance of the S&P 500 is the only variable selected through the whole
sample. With a median beta value of 0.0781, it has an important effect on the next day
log-realized variance of Canadian dollar futures. This could explain why the HAR-X (ES) has
a performance much closer to the multi-asset models than all the other simple models. Crude
oil and gold are also present in the HAR-X-Boosted for most of the sample, but their effect
of the next day log-realized variance is more limited with a corresponding beta of 0.0258 and
0.0145. The ten-year bonds, euro, and Japanese yen have almost no effect on the log-realized
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variance of the Canadian dollar futures. Furthermore, their effect is not constant through
time, as shown by their difference in mean and median.

Table 6.6 Mean and median value of abso-
lute betas in the HAR-X-Boosted

Variable Mean Median

CAD - daily 0.1159 0.1118
CAD - weekly 0.3049 0.3007
CAD - monthly 0.2927 0.2979
ZN - daily 0.0085 0.0000
CL - daily 0.0226 0.0258
GC - daily 0.0148 0.0145
EUR - daily 0.0025 0.0000
JPY - daily 0.0098 0.0066
ES - daily 0.0791 0.0781

Fig. 6.4 Variable selection through time in the HAR-X-Boosted
Note: Gray represents inclusion/White rejection. The x-axis corresponds to the number of days in

our forecasting sample. The y-axis corresponds to each variable in the model
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6.2.7 Recommendations

Overall there is weak evidence that traditional models can outperform the standard HAR
model using a fixed number of days rolling window for training(i.e. 500, 1,000 days) but
the evidence is stronger with an expanding-window scheme. The HAR-X (ES) is the best
model across training schemes when considering only the simple models. When considering
all models, the HAR-X-Averaging stands out above others. All the models have a higher
overvaluation frequency of forecasts compared to the naive model.

Following our results, we do the following useful recommendations to the practitioner:

– Using an expanding window training scheme which is not often considered in the
literature on high-frequency volatility forecasting.

– Incorporating in models the information about the volatility of different assets for
forecasting the log-realized variance of the CAD/USD exchange rate.

– Using the HAR-X (ES) as an alternative to the HAR if data for ES is available as it is
significantly outperforming the HAR model.

– Removing the central banks’ rate statements from the training procedure to reduce
bias in the estimation of the models or using a robust approach for linear regression
estimation.

35



7 Conclusion

This thesis investigates different models to outperform the classical HAR for one-day-ahead
forecasts of the log-realized variance of Canadian dollar futures. More specifically, we are
interested in knowing if adding information on the variance of different assets can improve
such forecasts. To do so, we use two types of models. First, we use models from the literature
such as the HAR-RSV, HAR-CJ, HAR-X. Second, we create models for modelizing the
log-realized variance of the Canadian dollar futures with different assets (i.e., multi-asset
models).

This thesis contributes to the literature in three important ways. First, we show that the HAR
is hard to beat when using other models from the current literature. Second, our out-of-sample
results demonstrate that multi-asset models consistently outperform the HAR over different
training schemes and loss functions. In addition, other assets’ past variance affects current
variance on the Canadian dollar futures. Therefore, adding this information in forecasting
models is crucial to have more accurate forecasts. Third and finally, we show that including
more data in model training results in better performance and that an expanding-window
scheme is preferred over a rolling-window scheme.

A significant proportion of the errors in our models’ forecasts comes from days of central
bank rate statements. Including these days in models’ estimation also inevitably leads to an
over-forecasting bias for "normal" days. Finding a way to correct this bias, such as removing
these days from the estimation process and correcting forecasts on these days or using models
robust to outliers (e.g., robust regressions), may increase the performance of the proposed
models. Another interesting subject to consider would be to extend the multi-asset models
approach to different assets hence confirming or refuting our hypothesis on the utility of
these models for the whole sphere of tradable assets. We leave these subjects open for future
research.
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Table A.1 Realized Volatility: MCS p-values for the set of simple models

500 days window 1,000 days window opening window

Model MAE RMSE MAE RMSE MAE RMSE

Naive 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

HAR 0.8908 0.9634 0.5516 0.8460 0.0084 0.4074

HAR-RSV 0.8436 0.9636 0.9740 0.9772 0.4734 0.7634

HAR-CJ 0.7806 0.8758 0.9998 1.0000 0.7368 1.0000

HAR-ORV 0.8802 0.9712 0.9760 0.9646 0.6418 0.4396

HAR-X (ZN) 0.7378 1.0000 0.1244 1.0000 0.8118 0.6518

HAR-X (CL) 1.0000 1.0000 0.9912 1.0000 0.0168 1.0000

HAR-X (GC) 0.8728 0.9582 0.9998 0.9048 0.9400 0.8240

HAR-X (6E) 0.9564 0.9642 0.7560 0.7658 0.4490 0.4152

HAR-X (6J) 0.9982 0.8942 1.0000 0.7324 0.6086 0.6022

HAR-X (ES) 1.0000 1.0000 1.0000 0.9996 1.0000 1.0000

Notes: Values in bold denote that the model is part of the confidence set of best models at a confidence
level of 75%.
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Table A.2 Realized Volatility: MCS p-values for the set of multi-asset models

500 days window 1,000 days window opening window

Model MAE RMSE MAE RMSE MAE RMSE

Naive 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

HAR 0.0360 0.2982 0.1346 0.2418 0.0006 0.1230

HAR-X-Boosted 1.0000 1.0000 0.5412 1.0000 1.0000 1.0000

HAR-X-Averaging 0.9712 0.9230 1.0000 0.6074 0.8904 0.5812

Notes: Values in bold denote that the model is part of the confidence set of best models at a confidence
level of 75%.
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Table A.3 Realized Volatility: Forecasting Performance

500 days window 1,000 days window opening window

Model MAE RMSE OF MAE RMSE OF MAE RMSE OF

Naive 1.2578 2.0683 0.5213

HAR 0.9666∗∗∗ 1.5926∗∗∗ 0.5821 0.9585∗∗∗ 1.5956∗∗∗ 0.5735 0.9603∗∗∗ 1.5918∗∗∗ 0.5748

HAR-RSV 0.9671 1.5924 0.5817 0.9577 1.5945∗ 0.5709 0.9587 1.5898∗ 0.5709

HAR-CJ 0.9719 1.5989 0.5843 0.9574 1.5884 0.5761 0.9564∗ 1.5845∗∗ 0.5774

HAR-ORV 0.9667 1.5923 0.5860 0.9575∗∗ 1.5949 0.5730 0.9573∗∗∗ 1.5909 0.5687

HAR-X (ZN) 0.9679 1.5855 0.5786 0.9607 1.5885 0.5769 0.9559∗∗∗ 1.5895 0.5696

HAR-X (CL) 0.9610 1.5873 0.5799 0.9586 1.5883 0.5860 0.9646 1.5860 0.5937

HAR-X (GC) 0.9666 1.5895 0.5847 0.9570 1.5923 0.5752 0.9537∗∗∗ 1.5899 0.5666

HAR-X (6E) 0.9654 1.5887 0.5812 0.9580 1.5928 0.5683 0.9582∗∗∗ 1.5901 0.5709

HAR-X (6J) 0.9637 1.5899 0.5765 0.9553∗ 1.5941 0.5636 0.9576∗ 1.5897 0.5761

HAR-X (ES) 0.9600∗ 1.5851 0.5808 0.9553 1.5901 0.5752 0.9489∗∗∗ 1.5849 0.5713

HAR-X-Boosted 0.9593∗ 1.5820 0.5752 0.9579 1.5851 0.5756 0.9527∗ 1.5813 0.5812

HAR-X-Averaging 0.9602∗∗∗ 1.5834∗ 0.5821 0.9546∗∗ 1.5879∗ 0.5765 0.9540∗∗∗ 1.5858∗∗ 0.5748

Notes: *, **, ***, , denote statistical significance of the pairwise MCS procedure between the benchmark model (HAR) and the corresponding model at a
significance level of 5%, 10%, 15%, and 50%. Take note that the benchmark model corresponds to the Naive model for the HAR results. Shaded cells
show the three models with the lowest value for every loss function and window size. Bold values denote the smallest loss function value for each model.
RMSE, MAE, and OF correspondingly stand for root mean squared error, mean absolute error, and overvaluation frequency.
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