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Abstract

This thesis examines the relationship between unexpected changes in climate risk concerns and

the implied volatility (IV) surfaces of green and brown stocks. Using the Unexpected Media

Climate Change Concern (UMC) index developed by Ardia et al. (2023), the study analyzes the

temporal behavior of IV surfaces through a 5-factor model (François et al., 2022) and vector au-

toregressive (VAR) frameworks. The analysis draws on option data from 10 green and 10 brown

firms, selected based on greenhouse gas (GHG) emission intensity and market capitalization,

sourced from OptionMetrics. The results indicate no statistically significant linear association

between UMC and IV for either group of firms. Additionally, incorporating UMC as an ex-

ogenous variable in VAR models associates with reduced predictive performance across several

measures, including calibration accuracy and forecasting errors of surface parameters. These

findings underscore the complexity of characterizing the connection between sudden climate-

related concerns and implied volatility surfaces, and they suggest the need for more nuanced

modeling strategies.
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1 Introduction

Climate change has become an important source of systematic risk in the financial market. Its

effect and implication have been broadly discussed in the literature (Long et al., 2022). Not

only does it directly affect equities’ returns (Tankov and Tantet, 2019; Schlenker and Taylor,

2021), but growing evidence also shows the potential relevance between climate change risk and

the volatility of returns. Recent studies show that climate change leads to stricter regulations

introduced by the government, causing uncertainty in policy, and a significant impact towards

volatility has been detected (Lv and Li, 2023; Isah et al., 2023). Most existing research shows

evidence of a connection between climate change risk and the realized volatility (RV) of equities.

The option implied volatility (IV) is another standard measure for the return variation. Option

IV is the volatility of the underlying asset derived from the price of the option on which it is

written. It is typically computed by the inverse of the well-known Black-Scholes equation (Black

and Scholes, 1973). In contrast to the backward nature of RV (i.e., computed as the variance

of past returns), IV is regarded as forward-looking and reflective of the market’s perspective

on the underlying stock return volatility, extending from the moment of trade until the option

expires (Malliaris and Salchenberger, 1996). As a significant instrument for risk management

and a trading indicator, however, its association with climate risk remains under-documented.

The existing research is either very specific to the physical aspect of climate risk (Bertolotti et

al., 2019; Kruttli et al., 2023) or focuses only on the effect of policy (Ilhan et al., 2021). There

is a paucity of research examining the potential association between climate change risk and IV

across general contexts.

The potential risks of climate change may not equally distribute across all industries and cor-

porate entities. Regarding equity returns, Pástor et al. (2021) demonstrate that green stocks out-

perform brown stocks through the discount factor and cash flow channels in unexpected climate

deterioration. Furthermore, studies have shown that brown stocks are more sensitive to climate

risk change than green stocks, both in the short and long run (Li et al., 2023; Bouri et al. (2022)).

This evidence of an imbalanced impact raises questions about whether investment vehicles based
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on firms with different levels of ’greenness’ could respond to climate risk differently.

Climate change risk is an intangible and complex phenomenon, and in sectors such as in-

frastructure, the limitation of data has become a barrier to conducting further studies on climate

risk (Venturini, 2022). To address this issue, researchers and practitioners have developed vari-

ous types of indexes to capture climate change risk and implement them successfully in different

contexts, such as portfolio management and hedging (Ardia et al., 2023; Engle et al., 2020). Of

particular note is the index proposed by Ardia et al. (2023), which is based on textual informa-

tion collected from a corpus of news outlets at both the aggregate and thematic levels. Moreover,

it verifies the hypothesis proposed by Pástor et al. (2021) that green stocks outperform brown

stocks in the event of an unexpected escalation in climate change.

This paper investigates the effect of unexpected climate change risk on the IV surface of

green and brown stocks, respectively. We select 10 green and 10 brown firms based on their

greenhouse gas emission (GHG) intensity and then collect their corresponding option data from

OptionMetrics. We then calibrate the IV surface proposed by François et al. (2022) daily for the

loadings. Next, we study the temporal evolution of these loadings by estimating daily the AR,

VAR, and VAR-X models up to order 2, with the UMC index being included as the exogenous

variable and assessing models’ performance on various dimensions. Finally, a Bayesian VAR(X)

model is run on options from a single green and brown firm for robustness check to alleviate

concerns about the curse of dimensionality in the VAR model.

Our predictive analysis indicates the absence of a significant linear relation between option IV

and the UMC in both green and brown firms. The investigation reveals that incorporating UMC

as an exogenous variable led to a decline in prediction accuracy across diverse metrics, including

the prediction of IV surface parameters, the number of days that UMC results in improvement,

the number of contracts’ IV that have been enhanced, and the IV projected from the predicted

surface across all categories based on their moneyness and time to maturity. The study also

provides insights into the factors that should be considered in future research to explore the

association between IV and climate change risk.
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2 Literature review

2.1 Overview

In recent years, there has been a considerable increase in the discourse surrounding climate fi-

nance. A study by Long et al. (2022) reveals that most literature and publications were produced

after 2016, with a subsequent and accelerated increase in output. Their clustering study indicated

that publications related to green bonds and financial markets have dominated the field in recent

years. Existing literature demonstrates various solid patterns between climate change risk and

both asset returns (Tankov and Tantet, 2019; Schlenker and Taylor, 2021) and its volatility (Lv

and Li, 2023; Isah et al., 2023; Bonato et al., 2023). However, the majority of studies on volatility

focus on realized volatility. The paucity of literature focusing on the connection between climate

change risk and IV on a holistic level is, therefore, striking. This section will review the theory

behind the IV surface and existing approaches for its construction. Secondly, the existing lit-

erature exploring the connection between climate change risk, specifically with asset volatility,

is introduced. Thirdly, we examine how researchers make it possible to quantitatively study the

intangible and complex climate change risk by developing indices.

2.2 IV surface

2.2.1 Theory

Implied volatility (IV) usually refers to the volatility solved from the inverse of the Black-

Scholes formula (BS) (Black and Scholes, 1973) that compute European options price as O ≡

f (St, T,K, σ, r, y) where the five inputs are spot price of the underlying asset at time t (St), an-

nualized time to maturity (T), the strike price (K), volatility of return of St (σ), risk-free rate (r)

and dividend yield (y). Since O is an analytical function and, more importantly, IV is strictly

increasing in σ, a one-on-one mapping exists between price O and volatility σ. The IV is then

calculated by f −1(O) given the rest of the inputs. A notable distinction between European and

American options is the former’s ability to be exercised at any time prior to the expiry date,
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thereby rendering the final payoff path dependent on the evolution of the underlying asset price.

This characteristic precludes the existence of a direct, closed-form solution, thus making the

inverse function impossible to express in terms of the option price. Nevertheless, given that

most options written on a single stock are of the American type, the IV remains a challenging

concept to grasp, as demonstrated in Ekström (2004) the monotonic relationship between price

and volatility still holds under certain technical assumptions concerning the convexity of payoff

functions of American options with underlying asset price following a more general diffusion

process than GBM. Consequently, the computation of IV from American options is valid from

this perspective.

American options are usually priced using Monte Carlo (MC) simulation or path generation

discretely by tree model. For instance, Carriere (1996) proposed the first regression-based simu-

lation method based on MC simulation. The intuition is to determine the option’s value at each

node by comparing the continuous and intrinsic values and then taking the average discounted

option value as the option price at time zero. The most common method for solving for IV is

the tree method, and the most prevalent one is the Cox-Ross-Rubinstein (CRR) tree model, as

outlined in Cox et al. (1979). This tree model posits that underlying asset prices increase or de-

crease after each time step to generate the tree. Some paths rejoin at each step by establishing

a convenient scale factor. Once a tree has been generated, the option at time zero can be solved

backward using the same logic. OptionMetrics (2024) adapts the CRR tree model. Although not

explicitly mentioned, they search over discretization of sigma. For each given sigma, the price is

computed with a CRR tree. The algorithm repeats until convergence of the series of simulated

prices toward market price is observed.

IV surface is a volatility function σ(M, τ) of moneyness M and maturity τ . Once the func-

tion has been determined, users can price any options, regardless of whether they are observ-

able. For European options, the underlying asset price is assumed to be a geometric Brow-

nian motion in the BS model with fixed volatility. If this assumption holds, all input into

σ = f−1(Omarket;S, T,K, r, y) will generate the same volatility and consequently lead to a flat
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IV surface. In reality, this is hardly true. The IV empirically shows some stylized shapes in

the market and are already well documented (Rubinstein, 1985; Goncalves and Guidolin, 2006).

First, IV shows convexity over moneyness. This implies that the BM formula underestimates

the out-of-the-money (OTM) options and treats the price the same as at-the-money (ATM) op-

tions. Second, the convexity could be asymmetric at the ATM level, sometimes showing a blade

shape over the deep out-of-the-money (DOTM) call option. More precisely, this reflects a higher

volatility for the OTM put than for the OTM call option. Third, the smile curve gradually flattens

in maturity. The decrease in convexity is known as smile attenuation. Numerous studies aim to

rationalize these facts. First, some researchers suggest that the smile is caused by a distribution

of log-return other than normal law. For instance, Eberlein et al. (1998) imposed a hyperbolic

Levy motion of the price movement, resulting in a non-normal return and evidence of a smile

reduction relative to BS. Chen and Palmon (2005) use the index historical returns as an empirical

distribution to price the options and successfully eliminate the smile. Furthermore, Duan (1999)

hypothesizes that the underestimation of option price by BS is attributable to the fat-tail distribu-

tion of actual underlying returns. Merton (1976) introduces jumps with intensity and frequency

into the price process, thereby placing greater emphasis on the tail risk than BS. Furthermore,

other evidence has been presented which argues for BS’s incompatibility due to the volatility’s

stochastic nature. For example, Bates (1996) has shown that the smile with extra kurtosis could

be explained by modeling the volatility as a mean-reverting square root process embedded in the

price moment.

2.2.2 Models

Empirical observations were the foundation upon which researchers build surface models to de-

pict the distribution of IV over maturity and moneyness. Pioneering work was undertaken by

modeling volatility as a quadratic form of maturity and strike price Dumas et al. (1998). A series

of polynomial functions involving volatility and maturity up to the second order are tested. They

show that both time and strike are significant factors, and the model with a quadratic form of
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time appears to eliminate the most prediction errors along the maturity dimension. Building on

these findings, Goncalves and Guidolin (2006) proposed an alternative functional form for log-

IV which, instead of being a function of the strike price, takes moneyness and maturity as the

input and models the logarithm of IV to avoid obtaining negative values. Other than the paramet-

ric method, Fengler et al. (2007) developed a semi-parametric factor model (SFM) to describe

the surface. Innovations of this method lie in estimating the basis function that are solved nu-

merically from least square criteria in a neighborhood of points of maturity and moneyness. To

improve interoperability, based on surface form Goncalves and Guidolin (2006), Chalamandaris

and Tsekrekos (2011) introduced explicitly seven factors based on maturity and moneyness of

options, which are the level, left and right smile, short and medium term structure, and left and

right smile attenuation. Moreover, by extending the idea of non-constant volatility to random-

ness, Heston (1993) introduced the famous stochastic volatility model by setting volatility as a

mean-reverting process. Once the price is determined by a stochastic volatility model, the IV

surface is obtained by utilizing the inverse of the BS equation. The model we pick to describe the

IV surface is the one proposed by François et al. (2022). This factor model explicitly captures

the stylized facts discussed above for S&P 500 index options. Several advantageous properties

characterize the surface. Primarily, the expression is remarkably uncomplicated. The surface can

be constructed by a mere five parameters in a linear form. Moreover, as a factor model, the sur-

face can be calibrated irrespective of the underlying price stochastic process. The five factors are

also selected with their distinct meanings, facilitating interpretation and illustrating the potential

channels through which external variables could affect the IV surface. Last but not least, it is

smooth and twice differentiable with nice asymptotic behavior. The surface is detailed in Section

3.3.

The surfaces under discussion are all static in nature, as they can only be calibrated by collect-

ing observable data from the market at each point in time. Dumas et al. (1998) showed evidence

that the strike price and maturity have prediction power of the IV surface. It is convenient to use

Goncalves and Guidolin (2006) and Fengler et al. (2007)s’ model since if a parametric model
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is applied to the data, once the coefficients are determined, users are then able to pin down the

entire IV surface and to price any options with given maturity and moneyness. Thus, predicting

the surface is equivalent to predicting the coefficients in a factor model. Goncalves and Guidolin

(2006) used the vector autoregressive model (VAR) to describe the potential inner structure of

the loadings of their surface. The VAR model is also utilized by Fengler et al. (2007) on their

factor loadings. Predictable evidence is shown in both studies using VAR. In this paper, we rely

also on the VAR formulation to study the temporal dynamic of the factor loadings. For detail, see

Section 3.4.

2.3 Climate change risk, asset return and volatility

Effects of climate risk on equity returns are already extensively studied (Tankov and Tantet,

2019; Schlenker and Taylor, 2021; Pástor et al., 2021), and its connection with volatility is also

getting noticed. Many studies show effects towards equities RV. Recent studies show that stricter

regulations introduced by the government due to climate change bring policy uncertainty to the

market, and a significant impact towards volatility has been detected (Lv and Li, 2023; Isah et al.,

2023). Bonato et al. (2023) ’s study shows evidence of the prediction power of climate risk factor

over stock volatility even at the state level across the U.S. IV also saw solid climate change risk

effect through multiple channels in the option market. Ilhan et al. (2021)’s study directly uses

IV features to show evidence that policy uncertainty caused by climate change has been priced

in the option market and raised the hedging cost for carbon-intense business. Regarding physical

risk, Kruttli et al. (2023) found that unexpected extreme weather leads to IV surge of companies

having business in the impacted region and also evidence its persistent effect on slow IV recovery

back to its original level. According to Bertolotti et al. (2019), exposure to hurricanes and wildfire

leads to around 6% and 4% shock in option IV for equity in utility sectors.

Climate change issues are often related to the environment, which is easily affected by carbon

emissions, and its effects could be unbalanced by industries and firms. Regarding equity returns,

Pástor et al. (2021) shows that green stocks outperform brown stocks through discount factors
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and cash flow when climate conditions worsen unexpectedly. Investors will lower future cash

flow and require higher discount rates from brown firms, leading to an immediate decrease in

stock price. This statement is later verified by Ardia et al. (2023). Regarding volatility, Bouri

et al. (2022) shows that green stocks have lower volatility relative to brown stocks during times

of high policy uncertainty by regressing the climate policy uncertainty index on the green and

brown volatility ratio. In the long run, evidence shows volatility for brown stocks significantly

increases with climate factors, while this is not observed regarding green stocks, and the negative

climate news index has the most significant impact on green and brown return correlation (Li

et al., 2023). In this study, we empirically examine the relationship between climate change risk

and implied volatility (IV) in green versus brown stocks, testing whether the return differential

documented by Pástor et al. (2021) similarly manifests in volatility dynamics.

2.4 Climate risk measurement in financial market

Measuring climate risk presents significant methodological challenges due to the complex system

of interdependent variables characterizing climate change, compounded by its inherent external-

ity that complicates economic and financial impact assessments (Dawson, 2015). Sector-specific

data limitations further obstruct accurate measurement (Verschuur et al., 2024). The literature

broadly classifies climate risks into physical risks—such as operational disruptions from extreme

weather—and transitional risks stemming from technological shifts toward renewable energy

(Venturini, 2022). Recent methodological advances have developed two distinct approaches to

proxy climate risk in financial markets (Guo et al., 2023): Meteorology-based indices (Bressan

and Romagnoli, 2021), while valuable, exhibit inherent bias toward physical risks through their

reliance on environmental data like temperature records. Conversely, text-based indices (Engle

et al., 2020) leverage natural language processing of media content, employing lexicon-filtered

frequency analysis to quantify climate concerns. Engle et al. (2020) pioneers this approach us-

ing New York Times content to construct climate-hedged portfolios, while Gavriilidis (2021)’s

Climate Policy Uncertainty Index later enabled Bouri et al. (2022) to examine policy-volatility
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linkages. Building on this paradigm, we utilize the Media Climate Change Concerns (MCCC)

index from Ardia et al. (2023) to capture aggregate concern levels from where we derive the

UMC via residual analysis as detailed in Section 3.2.

3 Methodology

3.1 Overview

Aiming to empirically investigate the relation between unexpected climate risk change and IV

surface dynamic, we introduce the three main building blocks of our work in this section: UMC

index (Ardia et al., 2023) for the quantification of unexpected climate change concern, a five-

factor model for IV surface description (François et al., 2022) and the AR, VAR model for tem-

poral IV surface projection. The UMC index is construed from MCCC, a textual and thematic

news index based on news from leading U.S. newspapers and newswires. The IV surface model

proposed by François et al. (2022) is chosen for its interpretable factors and loadings. Finally, a

VAR structure allows us to capture the temporal interdependency among the five parameters and

predict the IV surface over time.

3.2 Unexpected Climate change concern: the UMC index

Ardia et al. (2023) proposed, in the same spirit as Engle et al. (2020), a novel news text-based

climate change index that capture a much broader and accurate news information about climate

change. Ardia et al. (2023) expand the sources of text to 10 highly circulated newspapers in-

cluding Los Angeles Times, New York Times, Wall Street Journal, USA Today, Washington Post,

Houston Chronicle, Chicago Tribune, Arizona Republic, New York Daily News, New York Post

and two other newswires that are Associated Press Newswires and Reuters News. For each arti-

cle, a concern score is computed using a lexicon-based measure, combining the risk level (by the

percentage of risk words) and negativity level (by a ratio between 0, most positive, and 1, most

negative). Then, the article scores are aggregated daily by source level. Finally, an increasing
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concave function is applied due to the decreasing rate of concern level increment. The MCCC

index proxy the overall level of climate change risk concerns. The author runs an AR-X model

with X as some control variables over rolling windows to obtain UMC and uses the one-day-

ahead prediction error as UMC.

The UMC index has its advantage transited from MCCC. First, as a text-based index, it ab-

sorbs information regarding climate change with no bias. The choice of news outlet covers het-

erogeneous topics. Consequently, the aggregated index captures all transition, physical, and lia-

bility risks well. Second, Ardia et al. (2023) already tested the hypothesis of Pástor et al. (2021)

using the UMC index that green firms outperform brown firms through the discount factor and

cash flow channel when climate change concern increases unexpectedly. This effect can poten-

tially be extended to the context of volatility modeling as well. Let the change in climate change

concern at time t be ∆CCt. The UMC can be represented as

UMCt = ∆CCt − E
(
∆CCt | It−1

)
(1)

where we follow Ardia et al. (2023)’s approach to approximate ∆CCt by the MCCC index that

is assumed to follow and AR(1) process

MCCCt = µ+ ρMCCCt−1+ϵt. (2)

We estimate (2) over a fixed-length rolling window of 1000 days and carry out a one-day-ahead forecast.

The daily prediction error is then defined as the UMC index.

3.3 Static surface depiction: five-factor model

3.3.1 Surface Expression

Motivated by Chalamandaris and Tsekrekos (2011), François et al. (2022) suggest the following linear

form of factorization

σ(M, τ) ≡ β1︸︷︷︸
long-term ATM level

+β2 exp
(
−
√

τ/Tconv

)
︸ ︷︷ ︸

Time-to-maturity slope

+β3

(
M1{M≥0} +

e
2M − 1

e
2M

+ 1
1{M<0}

)
︸ ︷︷ ︸

Moneyness slope

+ β4

(
1− exp

(
−M

2
))

log (τ/Tmax)︸ ︷︷ ︸
Smile attenuation

+β5

(
1− exp

(
(3M)

3
))

log (τ/Tmax)1{M<0}︸ ︷︷ ︸
Smirk

(3)
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where τ is the annualized maturity (i.e. in terms of 252 trading days a year τ = DTE/252 where DTE is

the number of trading days util expire) and M is the log moneyness defined as

M ≡ 1√
τ
log

(
Ft,τ

K

)
(4)

with Ft,τ as the forward price of underlying asset at time t in τ years and K as the strike price, Tmax and

Tconv are two constant chosen based empirical observation discussed below. Based on (4), M > 0 implies

OTM put, and M < 0 implies OTM call. Model (3) falls into the class of factor models where the five

factors are borrowed from Chalamandaris and Tsekrekos (2011), and each factor is assigned a specific role

in the parametrization. The entire surface can be determined once the loadings β1 to β5 are estimated.

(a) lim
M→0

lim
τ→∞

σ(M, τ) = β1

(b) lim
τ→0

lim
M→0

σ(M, τ) = β1 + β2

(c)
∂

∂M
σ(M, τ) =



β3 + β4(2M) log
(

τ
Tmax

)
e
−M

2

, M > 0 (OTM Put)

β3
4e

2M

(e
2M

+1)
2 + β4

(
2M log

(
τ

Tmax
e
−M

2
))

−β5

(
3
4
M

2
log( τ

Tmax
)e

(3M)
3
)

, M < 0 (OTM Call)

(d)
∂
2

∂M
2
σ(M, τ) = 2β4 log(

τ

Tmax
)e

−M
2(

1− 2M
2)

, M > 0 (OTM Put)

(5)

The role of βs can be interpreted by looking at its derivatives and asymptotic behavior. As shown in (5),

(a) β1 measures the long-term ATM time-to-maturity level, (b) β2 measures the time-to-maturity slope

of ATM IV, (c) β3 alone can measure the moneyness slope for ATM put options (d) β4 contribute to the

smile convexity. β5 specifically captures the loading of possible convexity of deep OTM call. Moreover,

∂3/∂2M∂τ ∝ 1/τ so the surface reflects that moneyness convexity is more pronounced for short-term

options. One dimension of time-to-maturity is convexity, which is usually more apparent for short-term

options. Scaling τ with Tconv thus provides more convexity to options with maturity less than Tconv. For

Tmax, it serves for the temporal extrapolation purpose since as τ → Tmax, both the smile attenuation and

smirk (i.e. the last two terms in (3)) fade away thus no stylized fact could be observed. In this paper, we

follow François et al. (2022) take Tconv = 0.25 and Tmax = 5 which is bigger than the average maximum

of the 20 firms option maturity 2.2 years.

3.3.2 Calibration

François et al. (2022) tested the validity of model (3) for options written on S&P500 index which are all

of European style. However, our analysis is carried out on single stocks, and the corresponding options
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are American style. Thus, we presume that the surface also works on American options. In Section 5.1,

we will show that its performance is comparable to the results proposed by François et al. (2022) on

S&P 500 index European options. Our calibration procedure closely follows François et al. (2022) using

Bayesian linear regression for daily calibration for regularization by assuming a normal and independent

likelihood and prior. The prior structure is implemented for regularization and to avoid identification

issues (i.e., different combinations of loadings might result in the same shape of the IV surface). Let Y

be the collection of observed σ(M, τ), βt = (β1,t, β2,t, β3,t, β4,t, β5,t)
⊤ for loadings in model (3), X be

the information matrix for factors. The Bayesian regression is set up as Y | β ∼ N
(
Xβ,Σϵ = σ2I

)
,

β ∼ N(βprior,Σδ) which is equivalent to Y

βprior

 =

 X

R

β +

 ϵ

δ

 ,

 ϵ

δ

 ∼ N(0,Ω),Ω ≡

 Σϵ 0

0 Σδ

 . (6)

In equation (6), βprior and Σδ are the hyper-parameters to be defined. βprior,t are based on the βt−1 and

the diagonals of Σδ are chosen based on construction of factor variance. More precisely, they are

βprior =


ATM1y,t

Slope t

β3,t−1

β5,t−1

 , R =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

 ,Σδ =


σ2
β1

0 0 0

0 σ2
β2

0 0

0 0 σ2
β3

0

0 0 0 σ2
β5

× 10−4 (7)

with ATM1y,t to be the observed one-year ATM IV and the Slopet is the time-to-maturity slope of ATM

option approximated by the one-month ATM IV observed (ATM1m,t) and ATM1y,t

Slopet =
∂

∂τ
σ(τ,M = 0) ≈ ATM1y,t −ATM1m,t

exp(−
√
4/12)

(8)

For prior variance Σδ, first the σ2
1 and σ2 are simply the sample analog estimation of ATM1y,t and Slopet

computed over the entire period. Second, the σ2
3 is defined as the variance of the moneyness slope variable,

which is approximated by the sample variance of the quantity (9)

σ(M = 0, τ = 20/252)− σ(0.4, τ = 20/252)

0.4
(9)

Finally, no prior is assigned to β4, and σ5 is set to half the parameters level. For the rationale, see appendix

of François et al. (2022). Since the system no longer has homogeneous variance due to the prior, β is

estimated by the general least square (GLS) estimator

β̂GLS =


 X

R

⊤

Ω−1

 X

R




−1  X

R

⊤

Ω−1

 Y

βprior

 . (10)
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The Σδ is fixed over the entire calibration period while βprior varies since it’s bounded around the βt-1. To

initialize the iterating of prior mean, we run a simple OLS model without any prior, which is β̂1 = β̂1,OLS,

then the Bayesian linear regression is carried out daily for each firm with its prior settings.

3.4 Surface dynamic: AR, VAR, and VAR-X

We use the following notations throughout this paper. We assume to have y ∈ Rk×1, p and px to be the

number of lags for endogenous and exogenous variables, x ∈ Rq×1 and our data has maximum T days of

observations.

3.4.1 General form

The autoregressive model (AR) of order p, denoted AR(p), is a common approach for time series modeling.

Its general form is given by:

yt = µ+

p∑
i=1

αiyt−i + ϵt, ϵt ∼ N (0, σ2) (11)

For a stationary AR(p) process, future realizations can be inferred from the variable’s own lagged values.

To ensure stationarity, the model requires all roots of its characteristic polynomial greater than 1, that is,∀λ

s.t. Φ(λ) = 1−∑p
i=1 λ

i = 0, its norm greater than 1. The coefficients α can be efficiently estimated via

ordinary least squares (OLS), as the model is linear in parameters. When analyzing multiple time series

jointly, cross-dependencies between processes require explicit consideration. The vector autoregressive

(VAR) model addresses this by combining multiple AR processes into a vectorized formulation, assuming

a multivariate normal distribution for the innovation terms. The VAR(p) model is

yt = θ +

p∑
i=1

Φiyt−i + ϵt, ϵt ∼ N(0,Σ) (12)

where Φ are the matrix includes lags from other variables in a linear form, Σ is the positive semi-definite

covariance matrix. If the independence of innovation is assumed between variables, Σ is diagonal. To

maintain stationarity, similar to AR(p), the eigenvalue of Φ(L) = IN −
∑p

i=1Φi L
i lie outside of the unit

circle of the complex plane. As can be seen from (12), only variables’ own lags are included in the system,

which is endogenous. Exogenous variables can be added to study the effect of other variables external

to the system but not vice versa, leading to the vector autoregressive with exogenous variable (VAR-X)
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model. A full setting of the VAR-X model is

yt = θ +

p∑
i=1

Φiyt−i +

px∑
j=1

Cxt−j + ϵt, ϵt ∼ N(0,Σ) (13)

where xt−j is the vector of exogenous variables of lag j and C is its coefficient vector. The exogenous

variables x are stochastic. The model can also be extended with deterministic variables like time trends.

3.4.2 Estimator

We estimate the AR model using maximum likelihood estimator (MLE) and the VAR and VAR-X models

using a generalized least square (GLS) estimator.

First, the conditional MLE for AR(p) models coincide with OLS estimator asymptotically by assuming

normal innovations. More precisely, rewrite model (11) into yt = Xα + ϵ where X is the information

matrix and α = (α1, · · · , αp)
⊤. Then α̂ =

(
X⊤X

)−1
X⊤Y. We carried out the MLE estimation above

using the arima module from package statsmodels (Seabold and Perktold, 2010). For details on

derivation, see Hamilton (2020). For VAR and VAR-X models, we need to rewrite the equations to show

how the GLS works. Here, we show the formulation for the VAR-X model, and the VAR is simply by

discarding the exogenous variable. Consider the transpose of equation (13). By staking all the row vectors

together, we obtain the system

Y = ZΦ+ ϵ (14)

More precisely the system is
y⊤
T

y⊤
T−1

· · ·
y⊤
p+1


︸ ︷︷ ︸

(T−p)×k

=


1 y⊤

T−1 · · · y⊤
T−p x⊤

T−1

1 y⊤
T−2 · · · yT−p+1 x⊤

T−2

· · ·
1 y⊤

P · · · y⊤
1 x⊤

p


︸ ︷︷ ︸

(T−p)×(1+kp+q)



µ⊤

Φ⊤
1

· · ·
Φ⊤

p

C⊤


︸ ︷︷ ︸
(1+kp+q)×k

+


ϵ⊤T

ϵ⊤T−1

· · ·
ϵ⊤p+1


︸ ︷︷ ︸

(T−p)×k

(15)

This is a so-called seemingly unrelated regression (SUE) equation. The SUE under the case of a VAR

model means the innovations are independent across time while they could correlate simultaneously.

That’s been said, we assume in the (15) that ϵi ∼ N(0,Σ),∀i = 1, 2, · · · , (p + 1) and simultaneously

ϵi ⊥ ϵj ∀i ̸= j. Considering the vectorization of system (14), the assumption results in

y = (I⊗ Z) vect(Φ) + vect(ϵ)

vect (ϵ) ∼ N
(
0,Σ⊗ IT−p

) (16)
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Then (16) allows for a neat form of GLS estimation which is

̂vect(Φ) =
[
Z′
∗

(
Σ̂

−1 ⊗ IT

)
Z∗

]−1
Z∗

(
Σ̂

−1 ⊗ IT

)
y (17)

where Z∗ = I ⊗ Z. Each element in the covariance matrix can be estimated by their sample analogue

estimator

Σ̂ij =
ϵ̂′iϵ̂j

T − (kp+ q)− 1
(18)

where ϵ̂· can be estimated from

ϵ̂i = yi − Zϕ̂i (19)

where ϕ̂i is the estimation of ith column of Φ from equation (14). The GLS approach is the same as

estimating each equation separately by OLS due to the same information matrix used for each equation,

even though no assumption of the diagonal covariance matrix is made. Consequently, its asymptotic

behavior mimics the OLS estimator. For a detailed discussion about the GLS and OLS estimator on the

VAR model, see A. Zellner (1962) and Moon and Perron (2016). We carry out GLS estimation using

vector_ar.VAR module in statsmodels (Seabold and Perktold, 2010) package.

3.4.3 Application

For the series of options quoted for each of the 20 firms, we estimate the following model on the first

difference of each calibrated β from (10) which are ∆βi,t = βi,t− βi,t−1, i = 1, 2, · · · , 5 since the raw βs

are not stationary for example the illustration for a single green and brown firm in Table 5. We conduct an

ex-ante analysis using VAR-X models in (20) over a fixed-length 1-year (252 days) rolling window. We

use the UMC index’s first leg to predict the loadings change. The highest lag we consider up to order two

because first, as shown in Table 5, the Ljung–Box test (Box and Pierce, 1970) shows the loadings’ own

lags are still significant even up to order 20 for all firms. Second, for VAR models, one more lag leads

to an entire extra five-by-five matrix to be estimated—the curse of dimensionality results in vast amounts

of unstable estimation results. The Bayesian VAR (BVAR) is another common approach to dealing with

dimension issues in estimation. We perform the BVAR on two single firms for extra exploration, detailed in

Section 5.5. The AR models are estimated using MLE, while VAR and VAR-X are estimated by OLS and
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GLS, respectively. After the ∆βs are estimated, we restore the estimation of beta by β̂i,t = βi,t−1+∆β̂i,t.

AR(1) ∆βi,t = µi + αi∆βi,t−1, i = 1, 2, · · · , 5

VAR(1) ∆βt = θ +Φ∆βt−1 + ϵt

VAR(1)-X ∆βt = θ +Φ∆βt−1 +DUMCt−1 + ϵt

AR(2) ∆βi,t = µi + αi,1∆βi,t−1 + αi,2∆βi,t−2, i = 1, 2, · · · , 5

VAR(2) ∆βt = θ +Φ1∆βt−1 +Φ2∆βt−2 + ϵt

VAR(2)-X ∆βt = θ +Φ1∆βt−1 +Φ2∆βt−2 +DUMCt−1 + ϵt

(20)

With the predicted loadings, we perform the analysis in the following directions. First, we show the

raw calibration performance of the surface and loadings in Section 5.1 to verify the validity of (3) over

American equity options. Second, we show in Section 5.2 the β̂ prediction performance of models in (20).

Since the approach is to price the options by constructing the IV surface in the first place, improvement or

any changes in loadings forecasting may not necessarily transfer to a better performance in IV prediction.

Then, investigate the daily performance of IV across the models and focus more on comparing the VAR

and VAR-X models in Section 5.3. Finally, shown in Section 5.4, we measure the performance of models

on various buckets of maturity and moneyness to explore if UMC has an unbalanced effect on the sub-

group of options.

4 Data

This section introduces in detail the data we use in the paper. Section 4.1 shows the MCCC and UMC

index we computed. Section 4.2 gives the scope of brown and green stocks on which the options are

written. Finally, Section 4.3 describes the synthesized option contracts we constructed after the necessary

filtration was applied.

4.1 MCCC and UMC Indices

Figure 1 shows the MCCC and UMC indices. The top figure shows the raw MCCC index (the black curve)

quoted from Ardia et al. (2020), which is already available, and the daily rolling forecast of MCCC (the
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orange curve) index using the AR(1) model (2). The bottom plot shows the UMC index using (1), which

is the daily difference between MCCC and its rolling window prediction.
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Figure 1: Daily MCCC and UMC index
The first figure shows the raw MCCC index (in black) and the one-day-ahead predicted MCCC index (in orange) by an AR(1) model. The second
figure illustrates the UMC index obtained by taking the difference between the two series in the first figure.

Table 1: Summary statistics of MCCC and UMC index

NOTE: This table presents the distribution statistics of MCCC and UMC indices from 2015 Jan 5th to 2022 Aug 30th. N+, N− and N0 are the

number of positive, negative, and zero values observed over the period.

Count Mean Std Min Median Max N+ N− N0

MCCC 2795 0.85 0.43 0.00 0.81 3.05 2724 n/a 71

UMC 2795 0.06 0.38 -1.12 0.03 1.71 1495 1300 0

It is worth noticing from Table 1 that the raw MCCC sometimes hits 0. However, this does not

necessarily imply zero concerns about climate change. The index itself does not differentiate between no

news and entirely positive news since the concern score on the article level is zero in both cases (Ardia

et al., 2023).

4.2 Green and brown firms

To investigate the differential response of options on green and brown stocks to unexpected changes in

climate risk, we pick 10 green and 10 brown stocks, respectively. We follow the definition proposed
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by Ardia et al. (2023), who measures the firms’ greenness level by the tons of greenhouse gas (GHG)

emission per 1 million dollars of revenue, which is called the GHG intensity. The data is available from

the ASSET4/Refinitivon database. We first rank all S&P 500 Index constituents firms by their GHG

emission intensity and pick the top (for brown) 20 and bottom 20 (for green) firms. Second, among the 20

green (brown) firms, we rank them by their market capitalization. Finally, the 10 largest ones are adopted

to ensure sufficient liquidity. As seen from Table 2, most green firms are from the financial industry, and

Table 2: Green and brown stocks utilized for analysis

NOTE: The table shows the top 10 largest firms by market capitalization from the 20 firms with the lowest (for green stocks) or highest (for brown

stocks) greenhouse gas (GHG) emissions intensity. GHG Emission Intensity is defined as the tons of GHG emission per 1 million $ revenue. Nt

is the daily average number of contracts observed to calibrate the IV surface after the filtration be applied.

Ticker Sector Division GHG Emission Intensity Market Cap. (M$) Nt

Green Firms

AIZ Multi-line Insurance Insurance 27.6 5194.7 43.4

TRV Property & Casualty Insurance 27.6 34735.8 48.8

HUM Managed Health Health Care Equipment 27.4 30462.7 329.9

AFL Life & Health Insurance Insurance 27.2 27029.0 91.1

CNC Managed Health Health Care Equipment 27.1 3261.1 131.7

FRC Regional Banks Banks 26.8 14009.3 39.7

LNC Life & Health Insurance Insurance 26.3 7029.3 66.6

ELV Managed Health Health Care Equipment 26.2 64715.9 263.8

SIVB Regional Banks Banks 25.9 8970.0 117.7

ZION Regional Banks Banks 25.0 7128.1 70.1

Brown Firms

AEP Electric Utilities Utilities 6409.3 30958.2 66.5

NRG Electric Utilities Utilities 5719.4 9073.1 93.8

SO Electric Utilities Utilities 4838.5 45404.0 84.1

CF Fertilizers & Agrichem Materials 4588.0 9924.0 153.1

DUK Multi-Utilities Utilities 4520.7 58877.0 75.1

PPL Electric Utilities Utilities 4227.0 21683.2 33.6

FE Electric Utilities Utilities 3437.4 16418.8 46.6

ETR Electric Utilities Utilities 3318.3 14692.4 33.5

APD Industrial Gases Materials 3282.1 32676.5 88.6

D Multi-Utilities Utilities 2777.1 48098.5 61.1

most brown firms are from the utility sector.
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4.3 Option contracts

For each of the firms in Table 2, we quote their corresponding option data from OptionMetrics database1.

OptionMetrics employs an advanced numerical algorithm based on the tree method developed by Cox et al.

(1979) to compute IV for American options. This algorithm performs a discrete search over σ, generating

multiple pricing trees until convergence to market prices is achieved, as documented in OptionMetrics,

2024. We apply the following procedures to build the working data. First, we quote the daily forward

price of underlying stocks for each option contract. We compute their moneyness by (4) and merge with

the options data, including the trade execution date, contract expiration date, call and put indicator, lowest

ask and highest bid price. The mid-price of the best ask and bid is used as the execution price for each

option. Second, we filter out options according to the same rules applied by François et al. (2022), which

are borrowed from G. Bakshi et al. (1997) and Azzone and Baviera (2022). More specifically, options of

the following type are filtered out: (1) In-the-money (ITM) options (2) expire in 6 trading days (3) price

less than 3
8$ (4) bid-ask spread larger than 175% of the mid-price (5) option with zero bid price. For each

Table 3: Descriptive statistics of green and brown OTM options data

NOTE: Summary statistics of the implied volatility of options listed in Table 2, spanning from January 5th, 2015 to Aug 30th, 2022 across

different buckets of expiration days τ (in days) and log moneyness M defined in (4). A positive M indicates ITM call or OTM put. A negative M

indicates OTM call or ITM put.

Expiration Days (τ ) Log Moneyness (M)

(−∞, 60] (60, 180] (180,∞) (−∞,−0.2] (−0.2, 0] (0, 0.2] (0.2, 0.6] (0.6,∞)

Green Options

Mean IV (%) 34.43 34.89 32.92 32.00 28.39 30.24 37.45 53.84

Standard deviation IV (%) 14.57 11.74 9.31 10.95 9.17 9.13 9.77 15.64

Median IV(%) 31.22 32.87 31.77 29.72 27.06 28.91 36.00 50.09

Number of contracts 831,578 697,844 485,212 381,989 458,455 438,726 558,727 176,737

Total number of contracts 2,014,634

Brown Options

Mean IV (%) 35.36 28.51 27.84 34.19 24.83 26.65 35.77 57.16

Standard deviation IV (%) 16.47 11.80 10.22 13.85 10.79 10.32 11.22 17.38

Median IV(%) 33.09 25.45 25.38 32.37 21.15 23.39 33.66 53.98

Number of contracts 373,091 447,432 412,247 175,327 368,880 353,577 294,585 40,601

Total number of contracts 1,232,770

1
OptionMetrics does not provide European options data for single stocks. Only indices have European-style options available on the ex-

change.
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firm, the average number of observed options after the above filters applied are shown in column Nt in

Table 2.

Although we select large-cap stocks to ensure liquidity, the number of available option contracts does

not increases directly with market capitalization, and substantial variation exists in data availability for

surface calibration across individual firms. The minimum daily contract count of 10 still exceeds our

six estimated parameters (e.g. five β coefficients and one σ parameter in (6)), while the normal prior

further safeguards against feasibility issues, ensuring reliable estimation. When constructing the β2 prior

mean in (7), occasional unobservable one-year or one-month ATM IV values—likely due to our data

filters—necessitated bilinear interpolation, with missing spatial reference points (e.g., clustered ATM vol

observations) addressed by carrying forward the previous day’s ATM IV. The combined data for green and

brown data is shown in Table 3 in different buckets of moneyness and maturity. Classification of maturity τ

is based on Goncalves and Guidolin (2006) borrowed from G. S. Bakshi and Chen (1997) with day 60 and

180 to separate short, medium, and long-term time-to-maturity options. For assortment in moneyness M ,

we follow François et al. (2022) while we adjust the threshold from 0.8 to 0.6 to avoid too few contracts

in DOTM put. As seen from Table 3, we have much more green options than brown options. Also, there

is more OTM put than call options.

Observed IV on three selected days are shown in Figure 2, which shows a similar stylized shape

as European option IV. In plots [1] and [3], the asymmetric IV smile (the smirk) is evident and more

pronounced for short-term options. Plots [2] and [3] show that the convexity over time-to-maturity is also

more prominent for short-maturity options and decreases as maturity gets longer. Plot [3] reflects the shape

of the hook on OTM call options, and finally [2] shows the almost eliminated smirk (the smile attenuation)

on the long-term options that expire in more than a year. We did not detect any evident jump between

spots by examining some other days. This can be crucial since the surface (3) is designed to be smooth

and twice differentiable. Model (3) is a sufficient and solid choice for American options IV surfaces. We

will show calibration performance in Section 5.1 to verify its validity.
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Figure 2: Observed American Option IV on 3 days with different level of UMC
The figure shows observed IVs on three days of CF, the brown firm with the highest number of average daily observations. [1] 2022-03-01 is the
day with the highest UMC equals 1.715 [2] 2017-10-09 is the day with almost no unexpected climate change concern, and UMC equals 10−4

[3] 2022-07-26 is the day with the lowest UMC equals -1.22. The lower three figures show the calibrated surface of model (3) on the same days
with observed IVs.

5 Empirical Results

5.1 Raw parameter series: β and ∆β calibration on American options

Recall (3) is designed according to the empirical shape of S&P 500 European options, we show evidence

it also captures well the IV derived from American equity options.

The calibration performance of model (3) over options on the 20 green and brown stocks are outlined

in Table 4 in terms of absolute mean percentage error (AMPE) and root mean square error (RMSE) defined

as

AMPEi =
1

Ni

Ni∑
j=1

∣∣∣∣∣ σ̂j − σobs
j

σobs

∣∣∣∣∣ , RMSEi =

√√√√ 1

Ni

Ni∑
j=1

(
σ̂j − σobs

j

)2
(21)

where i indexes the 20 firms. σ̂j and σobs
j are the jth calibrated and observed IV over total Ni options

across the entire period. Overall, the aggregate RMSE is 2.37%

The lower panel of Table 4 shows the mean and variance of the calibrated βs over time. We noticed

that the sign of means is relatively consistent across firms, whether green or brown, except for β2, which

measures the time-to-maturity slope of ATM IV. Furthermore, it is easy to detect the loadings, which could
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Table 4: Calibration performance of IV and raw β series of individual option

NOTE: The upper panel shows the RMSE and AMPE of the IV derived from the daily calibrated β in model (3). Agg refers to the performance

of all option contracts discarding the tickers. The lower panel concerns the mean (variance) of individual options’ daily calibrated βs.

Green Options Brown Options

AFL AIZ CNC ELV FRC HUM LNC SIVB TRV ZION Agg AEP APD CF D DUK ETR FE NRG PPL SO Agg

AMPE (%) 4.27 4.45 4.81 3.92 8.97 4.45 2.67 2.81 3.05 3.65 4.15 2.72 2.90 3.89 3.00 3.18 3.62 3.62 3.95 3.74 3.58 3.46

RMSE (%)

Overall 2.36 1.96 3.35 1.75 5.30 2.01 2.17 1.99 1.56 2.46 2.37 1.01 1.35 3.34 1.17 1.20 2.93 1.95 3.32 1.82 1.74 2.33

OTM C 1.83 1.66 2.79 1.61 6.93 1.89 1.56 1.66 1.36 1.98 2.24 0.78 1.30 2.72 0.88 0.89 2.66 1.67 2.73 1.60 1.30 1.84

DOTM C 3.89 2.14 3.57 1.79 4.85 2.05 2.24 1.79 2.02 2.74 2.48 1.36 1.34 3.40 1.39 1.38 3.71 2.70 3.69 2.76 3.30 2.95

OTM P 1.63 1.55 2.70 1.45 5.45 1.74 1.44 1.38 1.26 1.93 1.99 0.72 1.25 2.57 0.86 0.82 2.47 1.54 2.76 1.49 1.20 1.75

MOTM P 2.56 2.33 3.48 1.66 4.00 2.02 1.81 1.64 1.40 2.73 2.28 1.27 1.22 3.56 1.49 1.49 2.94 2.41 3.59 2.36 2.18 2.53

DOTM P 5.72 3.44 5.32 2.54 5.22 2.69 4.56 3.01 2.45 4.86 3.36 2.65 2.14 5.89 2.88 3.13 5.46 4.01 7.97 5.40 5.13 4.79

Calibrated β

β1 28.44 23.10 19.89 37.96 30.49 33.92 23.47 34.23 28.54 22.76 20.06 20.49 19.57 24.76 20.02 20.88 23.99 21.50 39.16 37.54

(.21) (.41) (.23) (.47) (.37) (1.05) (.25) (.15) (.18) (.42) (.11) (.14) (.20) (.18) (.12) (.22) (.39) (.51) (.38) (.68)

β2 -.38 -5.22 5.91 -2.74 -1.30 -.96 1.95 -2.23 -4.04 -6.74 -5.98 -5.04 -3.10 -6.10 -4.41 -3.24 -4.22 -3.20 1.52 .04

(2.16) (1.11) (.69) (2.05) (.69) (1.34) (1.11) (1.81) (1.36) (.29) (.75) (.65) (.72) (.60) (.61) (.71) (.49) (.42) (1.58) (1.49)

β3 15.29 22.71 17.99 13.69 14.92 15.00 12.40 12.46 16.34 20.97 22.26 20.13 19.30 16.86 19.39 16.95 16.05 13.04 10.22 12.92

(.19) (.26) (1.17) (.28) (.21) (.14) (.26) (.21) (.09) (.16) (.14) (.30) (.16) (.18) (.19) (.34) (.17) (.23) (.08) (.23)

β4 -4.82 -8.87 -17.53 -5.22 -6.94 -5.99 -12.10 -6.00 -3.35 -5.75 -4.88 -6.73 -10.16 -4.05 -6.52 -11.59 -10.09 -9.89 -4.18 -6.48

(.11) (.32) (10.57) (.19) (.41) (.14) (1.69) (.19) (.05) (.08) (.16) (.19) (.42) (.09) (.21) (2.03) (.57) (.29) (.18) (.31)

β5 -1.27 -5.57 -4.11 -0.57 -1.62 -0.45 -0.77 -0.88 -1.52 -3.25 -6.37 -4.32 -4.72 -1.74 -3.87 -3.70 -2.45 -0.31 -0.70 -0.88

(.01) (.14) (.18) (.02) (.04) (.02) (.03) (.02) (.01) (.04) (.11) (.07) (.12) (.02) (.08) (.35) (.07) (.03) (.01) (.02)

vary significantly for individual firms, even if they are all green (brown). To illustrate these patterns, Figure

3 displays the daily evolution of calibrated loadings β and their first differences ∆β for one representa-

tive green stock and one brown stock. Additionally, the lower panel of Figure 2 exhibits the calibrated

volatility surfaces for three characteristic trading days. Table 5 displays the summary statistics of ∆β and

comprehensive diagnostic testing. It reveals that all ∆β series exhibit pronounced long-memory while

satisfying stationarity conditions, as confirmed by Dickey-Fuller tests that uniformly reject the unit root

hypothesis at the 1% significance level. Furthermore, the persistence of autocorrelation patterns estab-

lished through Ljung-Box tests that maintain statistical significance up to 20 lags. These robust empirical

findings collectively justify adopting a first-order autoregressive specification in modeling the ∆β series.
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Figure 3: Calibrated β and ∆β of ZION and AEP
Figure shows the calibrated β (black curve by the left axis) and ∆β (gray curve by the right axis) of the brownest firm AEP and the greenest firm
ZION.
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Table 5: Summary statistics of ∆β calibration

NOTE: Tables shows the calibrated ∆βt = βt − βt−1 from January 6th, 2016 to Aug 30th, 2022. The first 5 measures concern the distribution

of 10 mean ∆β of individual firms. DF is the mean of 10 Dickey-Fuller test statistics of individual firms. LB(p) averages 10 order p Ljung–Box

test statistics. The ∗ suggests that ∆β is significant under the Ljung-Box test across all 10 firms at 1% significance level.

Mean (10
−4

) Variance (10
−8

) Min (10
−4

) Max (10
−4

) Skew DF LB(1) LB(2) LB(10) LB(20)

Green Options

∆β1 0.43 0.19 −0.01 1.49 1.67 −13.92
∗
193.84

∗
244.74

∗
302.49

∗
363.06

∗

∆β2 −0.28 0.05 −0.66 0.07 −0.35 −12.49
∗
165.72

∗
172.79

∗
292.33

∗
358.82

∗

∆β3 0.22 0.13 −0.52 0.82 −0.47 −18.33
∗
245.14

∗
250.85

∗
268.30

∗
284.56

∗

∆β4 0.11 4.68 −4.33 4.79 0.21 −14.02
∗
343.84

∗
354.11

∗
396.76

∗
428.11

∗

∆β5 0.11 0.25 −0.41 1.47 2.59 −15.06
∗
139.16

∗
152.88

∗
167.78

∗
181.33

∗

Brown Options

∆β1 0.22 0.08 −0.23 0.90 1.30 −11.13
∗
110.91

∗
140.70

∗
256.48

∗
322.31

∗

∆β2 −0.23 0.04 −0.42 0.30 2.09 −11.15
∗
147.97

∗
156.31

∗
260.29

∗
307.74

∗

∆β3 0.17 0.06 −0.26 0.46 −0.61 −18.31
∗
205.42

∗
211.01

∗
232.34

∗
244.24

∗

∆β4 −0.28 0.31 −1.75 0.05 −2.43 −14.58
∗
349.48

∗
354.58

∗
375.29

∗
392.45

∗

∆β5 0.19 0.09 −0.12 0.90 1.50 −19.25
∗

65.76
∗

71.84
∗

86.84
∗

99.60
∗

5.2 β : overall performance

Our first prediction study focuses on the performance concerning the loadings β. It is worth noting initially

that the prediction errors associated with ∆β and β are identical since βt − β̂t = βt − (βt−1 + ∆̂βt) =

∆βt − ∆̂βt. The prediction performance, measured in terms of RMSE and AMPE, is presented in Table

10. The results show that since the model with the best performance is either the AR(1) or AR(2) model,

the inter-variable structure does not contribute to accuracy. Second, the prediction performance is better on

brown firms except for β̂4. Third, the model with the UMC index does not outperform the pure VAR model

for orders 1 and 2. The performance difference between VAR and VAR-UMC models is relatively minor,

suggesting that the UMC index does not enhance the prediction of factor loadings in a linear framework

For illustration, we show the predicted surface on 4 days in Figure 4 for the greenest and brownest firms

by VAR1 and VAR1 UMC model. The first 3 days correspond to those shown in Figure 2. while the fourth

day was selected for its high UMC value while remaining pre-pandemic. The surface predicted using

whether or not UMC is visually indistinguishable. Notably, for AEP (the brownest firm), the VAR and

VAR-UMC surfaces become nearly identical post-pandemic, even during periods of high UMC values, as

evident from the top right plot.
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Figure 4: Calibrated and predicted IV surface on selected days
The figure shows the predicted and calibrated IV surface on four selected days. The first three rows are the days with the highest, lowest, and
almost zero UMC index. The last day, Nov 27th, 2018, has a large UMC but before the start of the pandemic.
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Table 6: Aggregated forecasting performance of β across models

NOTE: The table shows the prediction performance of β from January 6th, 2016, to August 30th, 2022. Each cell represents the average RMSE

(AMPE) across the 10 stock options. For each β̂, the model that produces the lowest RMSE (AMPE) is highlighted to be bold.

RMSE (10−2)

Model β̂1 β̂2 β̂3 β̂4 β̂5

Green

AR1 1.33 4.72 2.18 3.82 0.87

VAR1 1.35 4.85 2.21 3.89 0.89

VAR1 UMC 1.36 4.86 2.21 3.90 0.89

AR2 1.33 4.75 2.15 3.71 0.86

VAR2 1.39 5.01 2.22 3.85 0.89

VAR2 UMC 1.39 5.03 2.22 3.86 0.89

Brown

AR1 0.96 3.42 1.83 4.20 0.76

VAR1 0.98 3.54 1.87 4.27 0.76

VAR1 UMC 0.98 3.55 1.88 4.27 0.77

AR2 0.97 3.46 1.81 4.09 0.75

VAR2 1.08 3.73 1.89 4.20 0.77

VAR2 UMC 1.08 3.74 1.89 4.21 0.77

AMPE

Model β̂1 β̂2 β̂3 β̂4 β̂5

Green

AR1 2.05 2.20 2.97 4.56 3.05

VAR1 2.51 2.78 4.50 6.00 4.99

VAR1 UMC 2.57 2.77 4.49 6.14 4.63

AR2 2.03 2.24 2.82 6.16 2.78

VAR2 3.01 2.94 4.12 7.12 5.70

VAR2 UMC 3.08 2.92 4.18 6.99 5.31

Brown

AR1 2.17 3.27 2.23 2.70 2.37

VAR1 2.89 5.80 2.99 2.87 2.82

VAR1 UMC 2.87 6.71 3.01 2.88 3.14

AR2 2.43 3.12 2.41 3.06 2.86

VAR2 3.47 5.71 2.99 3.38 3.90

VAR2 UMC 3.43 6.31 3.03 3.39 4.19

5.3 IV: Daily and overall performance

We present the results of IV prediction performance. Figure 7 displays the initial findings regarding daily

performance. The gray and black bar (with scales on the right axis) represent

dt = RMSEVAR(p)
t − RMSEVAR(p)-UMC

t , p = 1, 2 (22)

the daily difference in RMSE between the VAR and VAR-UMC models computed over IV. A positive

value of dt indicates superior performance of the VAR-UMC model on day t, while a negative value

favors the VAR model. The total number of days and option contracts, denoted as Nt and N along with

their percentages, are summarized in Table 7. To illustrate the cumulative trend, we show the blue curve

defined by

st =

t∑
i=1

di (23)

which tracks the accumulated RMSE difference between the models. The first two plots compare the

VAR(1) and VAR(1)-UMC models for green and brown options, while the bottom two plots present results

for the VAR(2) and VAR(2)-UMC models. For options written on green firms, the UMC contribution to
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VAR(1) prediction accuracy is minimal, though slightly more apparent in VAR(2). In contrast, brown

firms demonstrate greater sensitivity to UMC, with the enhanced model outperforming VAR(1) on 44.3%

of days and VAR(2) on 45% of days. This consistent improvement across both model orders suggests

UMC contains particularly relevant information for brown firm volatility prediction, while its value for

green firms remains limited.

The comprehensive performance metrics are presented in Table 7, which include the mean and vari-

ance of prediction errors ϵ for each model. To facilitate the Diebold-Mariano test, we additionally report

transformed error metrics: ϵS (mean squared error) and ϵA (mean absolute error) computed across all

option contracts. Our analysis reveals that the VAR-UMC model does not demonstrate statistically signif-

icant superiority over the VAR model for either green or brown options, regardless of model order (1 or

2) or error metric (RMSE or AMPE). Notably, while the number of options demonstrating improvement

for green firms shows only marginal growth, we observe a substantial 30% increase in the number of days

with enhanced performance.
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Figure 5: Daily RMSE difference between models
Accumulated RMSE difference is defined in (22). A positive difference implies a better performance of the model that includes UMC as an
external regressor over the simple VAR model. The first two figures concern the VAR(1) model, and the bottom two concern the VAR(2), all
estimated by OLS.
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Table 7: Out of sample prediction performance across difference models

NOTE: Prediction performance comparison across models over the entire sample of green and brown options from January 6th, 2016 to Aug

30th, 2022. ϵ̄ is the error mean. ϵ̄s and ϵ̄A are then mean of square and absolute error respectively. N (N%) is the number (percentage) of

contracts that model outperform its benchmark, where we compare VAR1 to VAR1 UMC and VAR2 to VAR2 UMC. Similarly, NT (NT%) is

the number of days the model with UMC beat the pure VAR model. DM is the Diebold-Mariano statistics to justify the performance regarding

root mean square error (RMSE) and mean absolute error (MAE).

Model ϵ̄ (10
−4

) ϵ̄S (10
−4

) ϵ̄A(10
−2

) N NT RMSE(10−2
) MAE (10

−2
)

σ
2
(10

−4
) σ

2
(10

−4
) σ

2
(10

−2
) N% NT% DM DM

Green

AR1 -9.098 9.703 1.838 3.115 1.838

(9.695) (.553) ( .063)

VAR1 -8.734 9.934 1.853 3.152 1.853

(9.927) (.561) (.065)

VAR1 UMC -8.785 9.960 1.856 989,913 221 3.156 1.856

(9.953) (.554) (.652) (.491) (.132) (16.338) (41.154)

AR2 -9.418 9.735 1.840 3.120 1.840

(9.726) (.565) (.063)

VAR2 -8.729 10.163 1.865 3.187 1.866

(10.155) (.608) (.067)

VAR2 UMC -8.699 10.192 1.869 990,041 733 3.193 1.869

(10.185) (.603) (.067) (.491) (.438) (19.784) (43.061)

Brown

AR1 -2.980 9.170 1.475 3.028 1.475

(.917) (.120) (.699)

VAR1 -2.090 9.480 1.493 3.079 1.493

(.948) (.131) (.725)

VAR1 UMC -2.000 9.500 1.495 605,464 744 3.082 1.495

(.950) (.131) (.726) (.490) (.443) (7.17) (24.05)

AR2 -3.360 9.290 1.480 3.047 1.480

(.929) (.122) (.710)

VAR2 -2.200 9.880 1.511 3.144 1.511

(.988) (.145) (.760)

VAR2 UMC -2.030 9.900 1.513 605,328 748 3.147 1.513

(.990) (.145) (.761) (.491) (.450) (7.07) (23.91)

5.4 IV: RMSE in different maturity & log-moneyness buckets

Our next step takes a closer look at the RMSE performance of options in different buckets categorized by

maturity and (OTM) log-moneyness level. Results are summarized in Table 8. The results are consistent

with the performance of loadings’ prediction. First, the AR(1) and AR(2) specifications demonstrate su-

perior performance across all maturity-moneyness buckets. Notably, incorporating the UMC index fails to
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Table 8: Prediction RMSE (10−2) across difference buckets

NOTE: This table presents the performance (measured by RMSE) comparison across models for options on green/brown stocks from January

6th, 2016, to August 30th, 2022 by maturity and log-moneyness buckets. The lowest RMSE is in bold.

Option Type log Moneyness (M ) Maturity (τ ) Count AR1 VAR1 VAR1 UMC AR2 VAR2 VAR2 UMC

Green Options

Call −0.2 < M ≤ 0 180 < τ 117,116 1.476 1.487 1.490 1.487 1.505 1.507

60 < τ ≤ 180 141,583 2.260 2.275 2.275 2.257 2.290 2.290

τ ≤ 60 199,755 3.558 3.593 3.597 3.568 3.628 3.633

M ≤ −0.2 180 < τ 81,631 2.207 2.236 2.243 2.222 2.278 2.282

60 < τ ≤ 180 143,695 2.442 2.458 2.468 2.423 2.448 2.497

τ ≤ 60 156,663 4.889 4.955 4.956 4.904 5.011 5.015

Put 0 < M ≤ 0.2 180 < τ 109,174 1.558 1.567 1.570 1.563 1.580 1.582

60 < τ ≤ 180 133,216 1.970 1.988 1.988 1.968 2.005 2.005

τ ≤ 60 196,337 3.223 3.260 3.263 3.230 3.299 3.304

0.2 < M ≤ 0.6 180 < τ 145,417 2.008 2.020 2.022 2.010 2.034 2.036

60 < τ ≤ 180 195,538 2.132 2.152 2.156 2.127 2.170 2.172

τ ≤ 60 217,772 3.837 3.877 3.881 3.838 3.903 3.909

M > 0.6 180 < τ 31,875 3.430 3.439 3.444 3.431 3.466 3.470

60 < τ ≤ 180 83,812 3.176 3.227 3.236 3.170 3.260 3.267

τ ≤ 60 61,050 6.181 6.292 6.308 6.198 6.439 6.455

Brown Options

Call −0.2 < M ≤ 0 180 < τ 125,240 1.238 1.256 1.259 1.244 1.299 1.302

60 < τ ≤ 180 128,550 1.454 1.471 1.473 1.454 1.551 1.552

τ ≤ 60 114,890 3.689 3.722 3.721 3.719 3.764 3.763

M ≤ −0.2 180 < τ 59,916 2.094 2.123 2.126 2.137 2.213 2.219

60 < τ ≤ 180 61,289 2.846 2.867 2.875 2.883 3.088 3.101

τ ≤ 60 54,122 6.529 6.601 6.598 6.572 6.659 6.659

Put 0 < M ≤ 0.2 180 < τ 106,518 1.356 1.374 1.376 1.360 1.419 1.419

60 < τ ≤ 180 128,490 1.418 1.444 1.451 1.414 1.490 1.500

τ ≤ 60 118,569 3.279 3.317 3.318 3.300 3.336 3.337

0.2 < M ≤ 0.6 180 < τ 109,641 1.970 1.988 1.991 1.974 2.030 2.033

60 < τ ≤ 180 110,835 1.997 2.045 2.050 1.995 2.108 2.113

τ ≤ 60 74,109 5.181 5.247 5.252 5.215 5.306 5.310

M > 0.6 180 < τ 10,932 4.531 4.570 4.580 4.547 4.620 4.614

60 < τ ≤ 180 18,268 4.391 4.647 4.662 4.397 4.907 4.919

τ ≤ 60 11,401 9.592 10.070 10.090 9.639 10.342 10.360

enhance the predictive accuracy of VAR models for either green or brown options. Second, the prediction

errors for all models are much higher for options with shorter time-to-maturity than those that expire in

more than 180 days. The prediction error gets bigger on the moneyness dimension when options are more

OTM. This is more pronounced for deep OTM (i.e., with M > 0.6) put options on brown firms than on
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green firms. All models perform better in each bucket of brown options than green options with very few

exceptions.

5.5 A Bayesian VAR trail on options of two stocks

We present the empirical results from implementing a Bayesian VAR model for the firms with the highest

and lowest GHG intensity in our sample - AEP (brownest) and ZION (greenest). The methodological

framework and theoretical justification for this approach are thoroughly discussed in Appendix A.

The overall performance of IV is shown in Table 9. Due to computational efficiency, we only test

the model of order 1. We compare the BVAR and BVAR UMC models to the simple VAR(1) model

estimated by GLS. It can be seen that none of the VAR(1) UMC, BVAR(1) and BVAR(1)-UMC models

are significantly better than the VAR(1) model in terms of either RMSE or MAE regardless of options on

green or brown stock. Especially for the options on green stock ZION, the RMSE increased dramatically

after adding a normal-diffuse structure (e.g., compare BVAR1 UMC to VAR1 UMC, RMSE increases by

about 4% from 3.083 to 3.204).

Table 10 presents the β prediction performance across models. Key findings reveal that while the

AR(1) specification maintains superior RMSE performance for both ZION and AEP, the BVAR(1)-UMC

model demonstrates notable advantages. It achieves the lowest AMPE for all β coefficients in ZION, and

it shows better predictive accuracy for β2 and β3 in AEP. This AMPE advantage aligns with the model’s

hyperparameter calibration objective. Figure 6 illustrates the cumulative prediction differences for β1 to

β5 across three competing specifications (VAR(1), VAR(1)-UMC, and BVAR(1)-UMC). The COVID-19

market shock in March 2020 significantly impacted all models’ β1 and β2 predictions, with the BVAR-

UMC model exhibiting stronger post-shock recovery for both firms. However, the Bayesian prior structure

yields mixed results for AEP - while substantially improving β5 predictions, it simultaneously degrades

β3 estimation accuracy relative to alternative specifications.
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Table 9: Out of sample prediction performance on AEP and ZION

NOTE: Prediction performance comparison of the greenest firm, ZION and brownest firm, AEP January 6th, 2016 to Aug 30th, 2022. ϵ̄ is the

error mean. ϵ̄s and ϵ̄A are then mean of square and absolute error respectively. N (N%) is the number (percentage) of contracts that model

outperform the benchmark VAR1. Similarly, NT (NT%) is the number of days each model beats the VAR1 model. DM is the Diablo Mariano

statistics to justify the performance regarding root mean square error (RMSE) and mean absolute error (MAE).

Model ϵ̄ (10
−4

) ϵ̄S (10
−4

) ϵ̄A(10
−2

) N NT RMSE(10−2
) MAE (10

−2
)

σ
2
(10

−4
) σ

2
(10

−4
) σ

2
(10

−2
) N% NT% DM DM

ZION (green)

AR1 -.825 9.428 1.675 3.070 1.675

(9.428) (.980) (.066)

VAR1 -.277 9.480 1.686 3.079 1.686

(9.480) (.768) (.066)

VAR1 UMC -.310 9.504 1.689 57,519 771 3.083 1.689

(9.504) (.787) (.067) (.490) (.460) (5.681) (8.176)

BVAR1 -.718 10.392 1.748 52,424 648 3.224 1.748

(10.392) (1.309) (.073) (.462) (.387) (5.989) (20.154)

BVAR1 UMC -.786 10.265 1.742 54,562 647 3.204 1.742

(10.265) (1.538) (.072) (.464) (.386) (4.139) (18.436)

AEP (brown)

AR1 -.579 2.339 .847 1.530 0.847

(2.339) (.039) (.016)

VAR1 .037 2.423 .855 1.557 0.855

(2.423) (.038) (.017)

VAR1 UMC .199 2.429 .856 54,993 814 1.559 0.856

(2.430) (.038) (.017) (.494) (.486) (4.146) (7.763)

BVAR1 -.878 2.459 .867 53,604 728 1.568 0.867

(2.459 (.038) (.017) (.481) (.435) (2.048) (8.870)

BVAR1 UMC -.649 2.591 .898 50,804 609 1.610 0.898

(2.591) (.048) (.017) (.456) (.364) (7.674) (26.180)
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Table 10: Aggregated forecasting performance of β across models

NOTE: This table presents the out-of-sample prediction performance of factor loadings β for the period January 6, 2016 to August 30, 2022,

comparing options on green stock ZION and brown stock AEP. For each β̂, the model that produces the lowest RMSE (AMPE) is highlighted in

boldface.

RMSE (10−2)

Model β̂1 β̂2 β̂3 β̂4 β̂5

ZION (green)

AR1 1.33 4.29 2.45 5.39 0.94

VAR1 1.34 4.42 2.51 5.46 0.95

VAR1 UMC 1.34 4.43 2.52 5.47 0.95

BVAR1 UMC 1.46 4.65 2.70 6.14 0.99

AEP (brown)

AR1 0.47 2.50 1.24 2.83 0.72

VAR1 0.47 2.58 1.25 2.85 0.73

VAR1 UMC 0.48 2.59 1.26 2.86 0.73

BVAR1 UMC 0.51 2.71 1.40 3.28 0.77

AMPE

Model β̂1 β̂2 β̂3 β̂4 β̂5

ZION (green)

AR1 2.47 2.98 2.08 2.16 2.02

VAR1 3.57 2.97 2.22 2.25 2.35

VAR1 UMC 3.78 2.98 2.03 2.31 2.36

BVAR1 UMC 1.69 1.75 1.74 1.94 1.85

AEP (brown)

AR1 1.58 10.61 2.32 3.32 3.27

VAR1 2.09 19.27 2.40 3.65 4.01

VAR1 UMC 2.00 22.01 2.36 3.63 4.58

BVAR1 UMC 2.75 9.04 2.29 4.12 4.49
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Figure 6: Accumulated difference of β̂ − β for green firm ZION and brown firm AEP
Plot concerns the

∑
t β̂t − βt where the β̂ are computed by VAR1 (black curve), VAR1 UMC (dash red curve) and the BVAR UMC (blue

curve).
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6 Discussion

Our empirical results demonstrate several key findings regarding option pricing dynamics. The selected

implied volatility (IV) surface model shows satisfactory performance for American options, achieving

calibration accuracy comparable to the S&P 500 European options model in François et al. (2022) in terms

of RMSE, though with more pronounced discrepancies observed for DOTM put options. In examining

factor loading β predictions, we find that neither options written on green nor brown stocks benefit from

the enhanced VAR-UMC specification, as it fails to outperform the standard VAR model across all tested

scenarios. Notably, the simplest AR model consistently achieves the lowest RMSE and AMPE, suggesting

that the more complex VAR structure provides no meaningful improvement in β projection accuracy across

any dimension of our analysis. Further more, the IV surfaces predicted from β estimates reveals consistent

patterns with the previous findings. The VAR1-UMC specification demonstrates weaker performance than

the standard VAR1 model for green options while showing modest improvement for brown options -

the UMC-enhanced models deliver better predictions on approximately 45% of trading days for brown

firms. However, the overall results indicate that incorporating UMC factors fails to systematically enhance

model performance relative to the baseline VAR specification. This is evidenced by generally higher

RMSE values across most option categories, with only limited exceptions. Overall, the UMC model

does not outperform the pure VAR model. At the same time, it is worth noticing that the DM statistics

are much more significant for options on green than brown stocks. The Bayesian VAR extension yields

similarly mixed results: while the BVAR-UMC generally underperforms VAR-UMC and standard VAR

specifications, this outcome helps address concerns about dimensionality-related estimation instability.

We also observed that the β1 and β5 of the brown option, after some point in time, start to benefit from the

prior structure and then outperform the VAR UMC and VAR model. However, this is not observed from

green options.

Some possible reasons could lead to such insignificant results. In the first place, our prediction analysis

is carried out from January 6, 2016, to August 30, 2022, which spans the Covid-19 pandemic. Many

researches shows significant transformation and the entangled effect caused by pandemic and climate risk

(Karydas and Xepapadeas, 2022). Financial institutions started integrating climate risk into operations

in the pre-pandemic period. Evidence shows investors already decreased brown stocks in their portfolio,

hedging against climate risk while the COVID crisis abruptly broke in and shifted attention. Le Billon et
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al. (2021) show that the economy is recovering from the pandemic in a way with intensive carbon emission

from the perspective of the energy industry. Our calibration of β shows this unbiased effect as well. Not

only for ZION and AEP, all 20 firms, regardless of green or brown, showed the same hike in β1, β2

at the beginning of 2020 as shown in Figure 3 when the pandemic just burst. Notice that β1 measures

the long-term ATM IV; the plot shows a clear level shift until late 2022, two years after the pandemic.

Also, the MCCC shows very intensive zero values hit in the same period, as can be seen from Figure 1.

Thus, it is very likely that the correlation between climate risk and volatility changed due to the shift in

hedging demand from against climate risk to the potential price drop due to the pandemic. The VAR1 and

VAR1 UMC prediction of β starts to diverge after the pandemic, especially for brown options, as shown in

Figure 6. Therefore, before launching the research, finding a method to disentangle the climate risk from

the pandemic effect is necessary.

Next, the MCCC index underlying the construction of the UMC may suffer from measurement inaccu-

racies. Ardia et al. (2023) provides MCCC indexes disaggregated by cluster and topic across multiple lev-

els—for instance, separate indexes are developed for environmental effects, business impact, and societal

debate. Serafeim and Yoon (2022) demonstrates that stock market prices respond primarily to financially

material ESG (environmental, social, and governance) news. In the context of options, Ford et al. (2022)

finds that traders are particularly attentive to environmental issues over other ESG dimensions. There-

fore, constructing the UMC using the business impact and environmental components of the MCCC index

may be more appropriate than relying on an aggregate one. Additionally, constructing the MCCC index

omits control variables, raising concerns about potential endogeneity when the index is used in a VAR

framework. For example, the UMC could be confounded with broader market volatility measures such as

the VIX, which are often correlated with the options IV. Consequently, it is questionable whether a weak

correlation with market-wide measures truly explains the observed insignificance.

7 Conclusion

In recent years, there has been a growing body of research on climate risk and its implications for eq-

uity returns. Ardia et al. (2023) empirically validate the hypothesis proposed by Pástor et al. (2021) that

green stocks tend to outperform brown stocks when climate risk concerns rise unexpectedly. Building
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on this literature, the present study conducts an ex-ante analysis using VAR and VARX models to exam-

ine whether such effects extend to equity IV. Specifically, we assess whether unexpected climate change

concerns—proxied by the UMC index—enhance the prediction accuracy of the IV for brown options as

compared to green options.

Our findings indicate no significant linear relation of unexpected climate change concerns and the IV of

options on either green or brown stocks. Moreover, the observed effects from our model do not align with

the GHG-based classification of green and brown assets. This conclusion holds not only for the prediction

of IV surface factor loadings but also for the projected IV values derived from the surface. To ensure

robustness, we incorporate a normal diffuse prior into the VAR and VARX models expecting to address

concerns about increased dimensionality due to the inclusion of multiple lags and variables. Interestingly, a

simple AR model outperforms the VAR in predicting both factor loadings and IV, suggesting that the VAR

structure does not enhance forecasting power. We acknowledge a limitation of the analysis—namely, that

the optimal number of lags was not selected based on formal information criteria, owing to dimensional

constraints.

This study contribute to future research on exploring the link between climate change concerns and

option volatility in the following ways. First, the assumption of linearity warrants reconsideration and

alternative model specifications or transformations might be necessary. Second, the analysis period should

ideally exclude the COVID-19 pandemic or, at minimum, employ methodologies capable of disentangling

the distinct effects of the pandemic and climate change on volatility. Lastly, researchers must give careful

attention to the selection of control variables to mitigate potential endogeneity concerns.
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Appendices

A A Bayesian VAR trial

The curse of dimensionality in the VAR model has been extensively studied due to the increase in lag and

variables. For example, in our VAR(1) model, including five endogenous variables and one exogenous

available lead to more than 30 parameters to be estimated. In order to see if the insignificant effect of the

UMC index is due to the instability of large matrix estimation, we add a prior structure to the model for

regularization purposes. Due to the limitation of computational power, we only test on two options.

A.0.1 Theory

The notations and setup mostly follow the settings proposed by Kadiyala and Karlsson (1997). To allow

for a technical discussion of BVAR, we rewrite the VAR-X model (13) to be

yt = µ+ xtC+

p∑
i=1

yt−iAi + ut (24)

where y,x, µ are now row vectors. Equation (24) can be further converted to

yt = ztΓ+ ut (25)

where z =
{
1,xt,yt−1, . . . ,yt−p

}
is a row vector and Γ =

(
C,A1, · · · ,Ap

)⊤2. Then we stack the row

vectors of yt, zt and ut for t = 1, 2, · · · , T as

Y = ZΓ+U. (26)

Then for each column i of Y , Γ and U we can write yi = Zγi + ui. Stacking all columns yi results in

y = (Im ⊗ Z)γ + u (27)

where y = vect(Y), γ = vect(Γ) and u = vect(u). We assume as usual a multivariate normal distribu-

tion for u which is

u ∼ N(0,Ψ⊗ IT ) (28)

2The matrix C hereafter is cooperated with a row of µ on the top.
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which implies {ut} are i.i.d N(0,Ψ) (i.e. independent observations overtime with a fixed variance matrix).

Recall that a general Bayesian posterior distribution can be represented as

π(Ψ,γ | y)︸ ︷︷ ︸
posterior

∝ f(y | Ψ,γ)︸ ︷︷ ︸
likelihood

×π(Ψ,γ)︸ ︷︷ ︸
prior

For likelihood, assumption (28) results in y |γ,Ψ ∼ N((Im ⊗ Z)γ,Ψ⊗ IT ). The multivariate normal

density is common to be decomposed in to two part

f(y | γ,Ψ) ∝ |Ψ|−k/2
exp

{
−
1

2
(γ − γ̂)

′
(
Ψ

−1 ⊗ Z
′
Z
)
(γ − γ̂)

}
︸ ︷︷ ︸

N

(
γ̂,Ψ⊗

[
Z

T
Z
]−1

)
× |Ψ|−(T−k)/2 × exp

{
−
1

2
tr
[
Ψ

−1
(Y − ZΓ̂)

T
(Y − ZΓ̂)

]}
︸ ︷︷ ︸

IW
(
(Y−ZΓ̂)

T
(Y−ZΓ̂),T−(mp+q)−1−m

)
(29)

where γ̂ = vect(Γ̂), Γ̂ = (Z⊤Z)−1Z⊤Y is the OLS estimator of γ. That means the multivariate density

is proportional to the product of a normal density and inverse Wishart density. Researchers have also

developed many different priors to choose. The common one is the Normal-Wishart natural conjugate prior

(for normal likelihood) first proposed explicitly by Box and Tiao (2011), in which an inverse-Wishart prior

is assumed for the covariance matrix. However, its limitation is widely discussed; for example, it is too

rigid to control all variables’ variance using only one shrinkage parameter. Here, we choose the normal-

diffuse prior proposed by W. Zellner (1996) as follows. The normal-diffuse prior assumes an independent

innovation variance (i.e., π(Ψ,γ) = p(Ψ)p(γ)) which are

γ ∼ N(γ̃, Σ̃), p(Ψ) ∝ |Ψ|−(m+1)/2 (30)

where∼ indicates a prior setting of mean and variance. The advantage is that we usually do not have much

information about the covariance matrix of innovation. Imposing an inverse-Whishart type of distribution

seems too strong and arbitrary. Thus, we alleviate this issue by adopting an improper diffuse prior and

reasonably assuming its independence with the means. However, the trade-off of imposing a diffuse

prior is the absence of analytical posterior after joining together with the likelihood in (29). As stated

by Kadiyala and Karlsson (1997), the (marginal) posterior for γ is a kernel constituted by the product

of marginal normal prior and matricvariate t-distribution. Fortunately, the author provides us with two

marginal distributions, which are

γ | Ψ,y ∼ N

(
γ̄,
(
Σ̃−1 +Ψ−1 ⊗ Z′Z

)−1
)

(31)

Ψ−1 | γ,y ∼W

([
(Y − ZΓ̂)′(Y − ZΓ̂) + (Γ− Γ̂)′Z′Z(Γ− Γ̂)

]−1
, T

)
(32)
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where γ̄ =
(
Σ−1 +Ψ−1 ⊗ Z′Z

)−1 [
Σ−1γ̃ +

(
Ψ−1 ⊗ Z′Z

)
γ̂
]
. Equation (31) and (32) thus allow us

to utilize the Markov Chain Monte Carlo (MCMC) method to generate a sample of γ from the posterior

distribution. We describe our Gibbs sampling algorithm in algorithm 1.

Our ultimate goal is to come up with an estimate for γ from the posterior distribution. In time series,

when it comes to forecasting, it usually refers to the expectation conditioning on the latest information.

Following Kadiyala and Karlsson (1997), the collection of (24) can be written as a first-order system

y∗
t = y∗

t−1A + xt−1D + u∗
t , where y∗

t =
{
yt, . . . ,yt−p+1

}
, D = {C,0, . . . ,0},u∗

t = {ut, 0, . . . , 0}

and

A =



A1 I 0 · · · 0

A2 0 I · · · 0

· · · · · · · · · · · · 0

Ap−1 0 0 · · · I

Ap 0 · · · · · · 0


(33)

Since we perform one-step-ahead forecast, we are trying to compute the following quantity

ŷt+1 = E (yt+1 | It) =
∫

(ytA+ xtD) p (γ | It) dγ (34)

then the sample mean is used to approximate the integral which is

ŷt+1 ≈
1

N

N∑
i=1

(ytA(γi) + xtD(γi)) (35)

where A and D are reshaped matrix from each sample γi. To complete, the prior mean γ̃ variance Σ̃ still

needs to be provided in the first place. We then take the famous form of setting proposed by Litterman

(1986). First, regarding the prior mean, Litterman (1986) observes the unit-roots appear in many economic

variables (i.e., yt = yt−1 + ϵt), so he recommends setting the prior for parameters associating with its first

lag to be unit one, and all rest to be zero. However, in our case, the variable does not have a clear economic

meaning, and based on our empirical results in Table 5, the unit root is not seen in any of the ∆β. Thus,

we also impose a zero prior mean for those parameters. For prior variance, we follow Litterman (1986)’s

setting. Recall the columns of (26) consisting of equation yi = Zγi + ui. We then set the covariance
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matrix for γi as

(∑)γi
ij

=



π3σ
2
i , if i = 1, 2, . . . , q + 1

π1/k, if i = j

(π2σ
2
i )/(kσ

2
j ). if i ̸= j

0, 0 / w

(36)

where σi and σj are the residual standard error of a AR(p) process for variable i, k is the kth lag and π are

the hyper parameters to be calibrated in the first place. π1 is related to the prior variance of variables own

lags, π2 controls the prior variance of other variables and π3 concerns the variance for exogenous (e.g. our

UMC index) and deterministic variables (e.g. the µ). More precisely, we assume zero prior covariance

between variables, and the variance decreases with lag length. Also, σ is taken to scale the variance of

variables to different levels.

A.0.2 Application

We then apply the BVAR model on the greenest firm, ZION, and brownest firm, AEP. We analyze only the

VAR(1) and VAR(1)-UMC models. First, we calibrate the hyper-parameters of π in (36) using a rolling

window of 252 days and then predict the following year. By doing some sanity checks, the value suggested

by Kadiyala and Karlsson (1997) and Litterman (1986) does not fit the data. For the sake of computation

speed, we calibrate over a grid of (π1, π2) and set π3 = π1 to let the influence of exogenous variables

be as significant as the variables’ own lag. Considering the scale of different ∆β, we determine the π by

minimizing the mean square percentage error across all loading, which is

(π1, π2)
∗ = argmin(π1,π2)

1

N

5∑
j=1

N∑
i=1

(
∆̂βj,i −∆βj,i

∆βj,i

)2

(37)

We calibrate the VAR(2) and VAR(2)-UMC models separately on different ranges since a considerable

variance imposed on the exogenous variable might lead to a more minor variance for the endogenous

variable. Calibrating only over the VAR(2)-UMC model and assigning the same prior to VAR(2) is unfair

and results in a super tight prior with inadequate flexibility. The best calibration results are shown in Table

11. Next, we run again the rolling window of 252 days and do a prediction one day ahead. The Gibbs

sampling is detailed in Algorithm 1. On the first day, we draw 10,000 samples and discard the first 5000

draws to ensure the stationary state is reached. The starting points of Ψ are set to be the OLS estimate.
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Algorithm 1 Gibbs sampling of equation (31) and (32)
1: for t← (p+ 1) to T do

2: if t = p+ 1 then

3: N ← 10000 ▷ Number of samples

4: b← 5000 ▷ Burn-in, number of initial samples to discard

5: Ψ← ΨOLS ▷ Staring point for MCMC, OLS estimation of Ψ

6: else

7: N ← 1000

8: b← 500

9: Ψ← Ψt−1 ▷ Staring point for MCMC

10: {γ}, {Φ} ← {}, {} ▷ Vaults for simulations

11: for j ← 1 to N do

12: generate γj from γ | Ψ by equation (31) ▷ Multivariate normal draw

13: generate Ψj from Ψ−1 | γj by equation (32) ▷ Inverse-Wishart draw then inverse

14: Ψ← Ψj

15: append γj to {γ}, Ψj to {Φ}

16: Ψt ←
∑N

i=1Ψi/N ▷ Estimate the starting point for simulation on day t+ 1

17: end
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We then start from equation (31) and transit to (32) several times, and the simulated results are saved.

For the rest of the days, since the samples used to construct the distribution only differ by one single β

observation, the stationary state is expected to be close to the previous day. Thus, we start the chain from

the previous day’s expectation, Ψt, and use far fewer samples of 1000 to discard the first 500 as burn-in.

Even though no formal test is carried out for convergence check, we did not detect severe convergence

issues by looking at accumulated mean on some days. Our sanity check indicates the same case as found

by Kadiyala and Karlsson (1997) that the convergence is not sensitive to the starting points of Ψ.

Table 11: Out of sample prediction performance across difference models

NOTE: Table shows the hyper parameters used for BVAR in (33) by minimization in (37).

Tickers Parameters VAR(1) VAR(1)-UMC

AEP π1 16.7 23.3

π2 27.8 4.0

ZION π1 21.1 16.7

π2 2.0 2.0
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Figure 7: Hyper-parameter calibration results
Calibration results for VAR(1) and VAR(1)-UMC model targeting a minimized sum of square percentage error in (37).
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