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Abstract

This paper proposes a new parametric model for the daily implied volatility surface of VIX
options. The model diverges from traditional methods by using a parametric structure that directly
describes the daily surface of VIX options. It leverages interpretable regression factors to capture
changes in maturity and moneyness dimensions. The proposed model contributes in three specific
ways: an extrapolation capability for illiquid contracts through stable factors, the construction of
a twice continuously differentiable surface to extract the VIX risk-neutral density function for
pricing purposes, and a pricing framework for a wide range of VIX derivatives which is coherent
with quoted options on that day. Compared to the benchmark Heston model, the proposed model
demonstrates superior performance in fitting implied volatilities, particularly for deep out-of-the-
money and shorter maturity options. The model’s stability makes it well-suited to limit arbitrage
opportunities.

Keywords: VIX Options, Implied volatility surfaces, Incomplete Markets, Derivatives pric-
ing, Factor models.
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1 Introduction

In the decades since their introduction to financial markets, derivatives have become an integral

component of financial markets. In today’s financial environment, volatility trading has significantly

grown in recent years, playing a crucial role in risk management and portfolio diversification. A no-

table development in this field occurred in 1993 when the Chicago Board Options Exchange (CBOE)

introduced the VIX, its primary volatility index. This index approximates expected market volatility

implied by the S&P 500 index options over a one-month horizon. The CBOE subsequently expanded

its offerings, launching VIX futures in 2004 and options in 2006. These introductions have gained

popularity among market participants, providing new opportunities to manage volatility risk. This

thesis aims to estimate the implied volatility surface of VIX options to enable the pricing of other

volatility derivatives by applying the Breeden and Litzenberger (1978) formula. By doing so, it also

becomes possible to retrieve the risk-neutral density function of the VIX for a given horizon, thereby

facilitating the pricing of these derivatives using the risk-neutral density.

The financial crisis has led to extensive research into stochastic volatility models to price VIX

derivatives, highlighting the growing importance of volatility risk. Two primary approaches have

emerged for the valuation of these instruments. The first approach views the VIX as a portfolio of

S&P 500 options. This structural approach involves modeling the return of the S&P 500 in a risk-

neutral measure to calculate the index options price. The option prices are used to calculate the VIX

dynamics under the real measure, which are then used to price VIX options. However, this method

involves multiple complex steps, making the model difficult to estimate and potentially leading to

significant differences between theoretical VIX option prices and their observed market prices. This

method includes the works of Lian and Zhu (2013), Pacati et al. (2018), and Bardgett et al. (2019).

The second approach treats the VIX independently of the S&P 500, considering it as having its own

dynamic, and includes the works by Mencia and Sentana (2013), Park (2016), and Yuan (2022). This

method often requires a complex stochastic model to capture the VIX dynamics. These models have

numerous parameters and latent variables, such as volatility and jumps, that must be estimated using

robust statistical filtering techniques.

Our method diverges from these two approaches by taking a different route to model option
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prices. We build on recent literature based on the work of Francois et al. (2022), which suggests

using the implied volatility (IV) surface not as a model output but instead as an input. We propose an

extension of the authors’ parametric IV surface for VIX options. To our knowledge, we are the first

to propose this type of model for VIX options. Traditional pricing models for derivatives propose a

coherent internal dynamic model that allows the creation of option prices free of arbitrage given a

set of parameters. However, this does not guarantee that the generated option prices reproduce the

observable prices on the surface. Our model takes a different approach by constructing a daily surface

that best explains the daily options via regression. Instead of capturing a dynamic, we focus on the

daily informational content of the options through interpretable regression factors.

This paper has three significant contributions to the field of derivative pricing on the VIX. First,

the paper contributes by identifying and assigning interpretable factors to the implied volatility sur-

face. These factors are designed to reflect changes in both the maturity and moneyness dimensions.

They capture the curvature and convexity related to time-to-maturity in the maturity dimension. In the

moneyness dimension, they capture the slope and extension of the smile, both of which recreate the

convexity of the implied volatility smile. Additionally, the smirk is captured as an additional factor

on the implied volatility surface. Second, the factors are designed to be asymptotically stable, allow-

ing for reliable and easy extrapolation beyond the quoted moneyness levels and maturities. This is

particularly useful for pricing illiquid options, like over-the-counter transactions, which often involve

maturities and moneyness that differ from those of publicly quoted options. Third, these factors are

set up to ensure that the surface is twice continuously differentiable, allowing for the extraction of the

risk-neutral density function for each time horizon. This makes it possible to price a wide range of

derivatives on the VIX. The IV surface specification outlined in this paper has successfully passed the

static arbitrage detection test by using vertical and butterfly spreads. These spreads provide necessary

conditions in our case for preventing static arbitrage.

The paper is organized as follows. Section 2 describes the data. Section 3 outlines the model

specification and evaluates its fitting performance against its benchmark. Section 4 examines the

presence of arbitrage opportunities in the smoothed IV surface. Section 5 discusses the applications

of the IV surface model in derivatives pricing. Finally, Section 6 concludes the paper.
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2 Data Description

The dataset extracted from the OptionMetrics database consists of daily quotes for European

call and put options on the volatility index (VIX), traded on the CBOE exchange, spanning from

January 6, 2006, to December 31, 2022. Each quote contains bid and ask prices, which are used to

calculate mid-prices as option prices. Additionally, the dataset includes each option’s strike price and

expiration date. The maturity is calculated based on a 365 trading days basis and is annualized.

The risk-free rate is calculated daily from the Discount Bond Database1, using the method ex-

plained in Filipovic et al. (2022). This method estimates the values of zero-coupon Treasury bonds

by minimizing the difference between observed bond prices and their theoretical values, given by the

discount curve. The bond value is calculated using kernel ridge regression. This machine learning

approach provides a closed-form solution that is represented as a linear combination of kernel func-

tions. The dataset includes daily estimates of annualized, continuously compounded zero-coupon

yields for a vast range of daily maturities. We retrieve rates matching the option’s time-to-maturity

to determine the risk-free rate associated with each quoted option. This ensures that each option is

paired with its appropriate risk-free rate. For days that rates are not available but quoted options are,

we take the closest previous trading day in which rates were available.

2.1 Data Cleaning

We use multiple criteria to filter options from our dataset. We exclude :

1. options with a bid price of zero

2. options with a dollar spread greater or equal to $2

3. options with a time-to-maturity of less than 7 days

Additionally, we excluded data from the year 2006 as it marks the introduction of VIX options

data. Therefore, our analysis focuses on data from 2007 onwards. The original dataset comprised

2,288,789 daily observations. After applying our filtration criteria, the dataset was reduced to 1,817,775

observations, representing approximately 79.42% of the original dataset. Figure 1 shows how the

daily filtration of the original dataset evolved, while Table 1 presents the number of options per time-

1Data retrieved from Discount Bond Data: https://www.discount-bond-data.org/
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to-maturity buckets. Table 1 demonstrates that most of the options that were removed had a bid price

of 0$ which is also confirmed by Figure 1. The majority of the discarded contracts, regardless of the

criteria, had a short time-to-maturity. Figure 1 also supports this finding over time, showing that the

majority of removed observations belonged to contracts with a bid price of 0$. On rare occasions,

many observations were removed due to their large spread causing downward spikes in the data re-

tained. A comprehensive analysis of these specific days is presented in Table 9 in Appendix A.1.

Starting from 2016, more observations with a maturity of less than 7 days were removed since they

began to be traded more frequently.

0 < τ ≤ 30
365

30
365 < τ ≤

90
365

90
365 < τ ≤

180
365

180
365 < τ ≤ 1 τ > 1 All

Excluded observations
2006 Observations 4,290 6,576 3,525 5,890 0 20,281
Bid price = 0$ 192,512 71,368 44,440 7,741 61 316,122
Spread ≥ 2$ 36,555 9,006 4,357 1,772 16 51,706
Time-to-maturity ≤ 6/365 82,825 0 0 0 0 82,825

Observations retained 461,214 515,218 694,952 144,566 1,825 1,817,775
Total Observations 777,396 602,168 747,274 159,969 1,902 2,288,709

Summary of the data cleaning procedure for VIX options based on their time-to-maturity. The following categories of
observations have been excluded: (i) Observations from the year 2006, (ii) observations with a bid price of 0$, (iii)
observations with a spread equal to or greater than 2$, and (iv) observations with a time-to-maturity of 6 days or less.
Observations retained represents the observations that are kept in the sample after the data cleaning procedure, and total
observations represents the total number of raw observations belonging to each bucket. For clarity, τ is reported in days
on a 365-day scale.

Table 1: Filtered data by time-to-maturity

2.2 Forward Price

The OptionMetrics forward price for the S&P 500 is computed as Ft,τ = Se(rt,τ−qt)τ where rt,τ is

the time-t continuously compounded risk-free rate (annualized) for time-to-maturity τ, and qt is the

annualized dividend yield. As the VIX is not an asset that can be directly traded, one cannot use

the no-arbitrage principle to establish a simple relationship between VIX forward and the VIX, as

one can with stock forward and stock prices. This makes pricing the VIX forward using the cost of

carry method not suitable. CBOE (2023) computes the VIX forward price F using put-call parity. As

outlined in the CBOE white paper,

Ft,τ = K +
1
D t,τ

(Ct(K, τ) − Pt(K, τ)) (1)
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Panel A: Number of Daily Observations
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Panel B: Proportion of Daily Observations
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Each surface represents the number of options excluded based on the following criteria: (i) Bid price = 0$, (ii) spread ≥
2$, and (iii) time-to-maturity ≤ 6/365. The grey surface represents the data retained after the data-cleaning procedure.

Figure 1: OptionMetrics data from January 2007 to December 2023

where Dt,τ = e−rt,ττ is the discount factor, rt,τ represents the risk-free rate obtained from the Discount

Bond Database, τ is the annualized time-to-maturity of the option, K is the strike price, and Ct(K, τ)

and Pt(K, τ) represent the call and put option prices, which are the midpoints between bid and ask

prices from OptionMetrics. To compute Equation (1), we need the pair Ct(K, τ) and Pt(K, τ). Among

the 1,817,775 observations, the majority of Ct(K, τ) and Pt(K, τ) have their pair. However, a subset of

248,613 observations lacked a put-call parity counterpart. These counterparts were removed during

the data cleaning process, as outlined in Section 2.1.

Furthermore, for a given time-to-maturity, many strike prices are traded. Let Kt,τ = {K1,K2, ...,Kn}

be the set of available strike prices for that particular time-to-maturity. Each of these strike prices

induces its own implied forward price through the put-call parity. To get a unique forward price for

a respective date and maturity, we utilize a two-step optimization procedure that involves calculating

the forward price that minimizes the put-call parity violation across all strike prices associated with

the same date and expiration. Let

ϵK
t,τ(F) = K +

1
Dt,τ

(Ct(K, τ) − Pt(K, τ)) − F (2)
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be a measure of the put-call parity violation. The forward price minimizes the sum of squared put-call

parity violation:

Ft,τ = argmin
F

n∑
i=1

(ϵKi
t,τ(F))2 (3)

In the two-step optimization, the initial pass computes Equation (3) using all available pairs of put and

call options. The residuals of Equation (2) are calculated for each contract from which we compute a

z-score :

z-scoreϵKt,τ =
ϵK

t,τ(Ft,τ) − ϵt,τ
Sϵt,τ

(4)

where

ϵt,τ =
1
n

n∑
i=1

ϵKi
t,τ(Ft,τ) (5)

is the residual mean and

Sϵt,τ =

√√
1

n − 1

n∑
i=1

(ϵKi
t,τ(Ft,τ) − ϵt,τ)2 (6)

is the standard deviation.

If a z-score is greater than an absolute threshold of 3, it suggests a significant deviation from

the rest of the sub-sample and is considered to violate the put-call parity. Contracts associated with

residuals having absolute z-scores greater than 3 are identified as outliers and removed from our data

sample. In the second optimization pass, we compute the forward value again using Equation (3), but

this time, we only consider the contracts that were retained from the first pass.

During the first pass, observations without a counterpart are excluded from the calculation and

reintroduced after the second pass. Each observation is attributed its forward value from the second

pass, matching its date and expiration. 1,949 observations were discarded because no forward value

couldn’t be attributed to them. This occurs when all observations for a specific date and expiration

were lacking their counterpart and no implied forward could be calculated. Another 2,754 observa-

tions were discarded due to the fact that their absolute z-score was higher than 3. Table 2 summarizes

the exclusions made across various maturities. It can be observed that the majority of the removed

observations are associated with a short maturity. Figure 8 in the Appendix A.2 displays the daily

residual mean for both passes of the forward optimization.
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6
365 < τ ≤

30
365

30
365 < τ ≤

90
365

90
365 < τ ≤

180
365

180
365 < τ ≤ 1 τ > 1 All

Excluded observations

Missing Counterpart 1,470 368 36 74 1 1,949
|Z-score|>3 1,406 774 484 90 0 2,754

Proportion (%) 0.62 0.22 0.07 0.11 0.05 0.26
Total Observations 461,214 515,218 694,952 144,566 1,825 1,817,775
Summary of the exclusion process used in the two-pass forward optimization for VIX options across different time-to-
maturity buckets. Observations with an absolute z-score greater than 3 are excluded in the second pass and the dataset.
Observations that cannot be attributed a forward price are also excluded. The price of the forward is calculated to
minimize the put-call parity violation using the equation referred to as Equation (3). For each time-to-maturity bucket,
the proportion (%) of excluded observations is calculated by dividing the sum of excluded observations by the total
observations.

Table 2: Descriptive statistics of exclusions in two-pass forward optimization

2.3 Moneyness

The moneyness associated with each option quote is defined as stated in Francois et al. (2022) :

M =
1
√
τ

log
(

Ft,τ

K

)
, for τ > 0. (7)

where Ft,τ represents the forward price estimated from the two-pass optimization process. Due to

the volatility scaling property, the range of traded strike prices widens as time-to-maturity increases,

resulting in a broader range of strike prices as time-to-maturity increases. Therefore, scaling the

moneyness by
√

1
τ

creates a consistent range of moneyness across various maturities. The value of M

being zero indicates at-the-money (ATM) options, while M < 0 represents out-of-the-money (OTM)

calls, and M > 0 signifies OTM puts.

2.4 Data Sample

The sample used to compute put-call parity violation requires both ITM and OTM options. For

the rest of this study, our data sample only includes out-of-the-money options. (i.e., puts with M

≥ 0 and calls with M < 0). The sample consists of 792,318 OTM option quotes over a period of

4,028 days, where the implied volatility σt(M, τ) of each option is computed by inverting the Black

(1976) equation. The put and call price formulas utilize the implied forward from Equation (3) and

the moneyness from Equation (7). The moneyness can be inverted to retrieve the actual strike price
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through K = Ft,τe−M
√
τ. The call and put prices can be expressed as:

Ct(M, τ) = e−rτFt,τ

(
Φ(d1(M, τ)) − e−M

√
τΦ(d2(M, τ))

)
, (8)

Pt(M, τ) = e−rτFt,τ

(
e−M

√
τΦ(−d2(M, τ)) − Φ(−d1(M, τ))

)
. (9)

where d1(M, τ) and d2(M, τ) are

d1(M, τ) =
M

σt(M, τ)
+

1
2
σt(M, τ)

√
τ,

d2(M, τ) =
M

σt(M, τ)
−

1
2
σt(M, τ)

√
τ,

and Φ(·) is the standard normal cumulative distribution function.

Descriptive statistics for option implied volatilities (IV) across different moneyness and time-to-

maturity are presented in Table 3. The implied volatility surfaces display a significant asymmetry in

its smile. Table 3 shows a smaller number of options with short maturities (≤ 30 days) than those

with long maturities (>30 days).

Calls Puts
M ≤ −2 −2 < M ≤ −1 −1 < M ≤ 0 0 < M ≤ 1 M > 1 All

Average IV(%) 152.53 105.25 84.01 67.03 88.85 96.64
Std. dev. IV(%) 39.80 23.87 20.76 18.65 28.76 38.30
No. of contracts 134,501 189,116 251,876 195,917 20,908 792,318

6
365 < τ ≤

30
365

30
365 < τ ≤

90
365

90
365 < τ ≤

180
365

180
365 < τ ≤ 1 τ > 1 All

Average IV(%) 134.79 103.37 78.03 69.05 41.79 96.64
Std. dev. IV(%) 46.59 31.31 19.52 16.54 3.50 38.30
No. of contracts 170,960 224,609 326,989 68,873 887 792,318
Summary of the implied volatility (IV) daily data for VIX options across various time to maturity and moneyness buckets.
The data spans from January 3, 2007, to December 30, 2022. M denotes the moneyness, as defined in Equation (7).

Table 3: Descriptive statistics of the VIX options data

Figure 2 displays the surface of all option IV values considered on four different days, which

shows specific features of the VIX IV surface. Upon comparing the first day of the sample with sub-

sequent days, it is observed that the number of quoted options has significantly increased over time.

This increase in the number of quoted options has primarily resulted in much lower strike intervals

between the quotes of a given maturity and additional traded maturities. In Panel B, the surface shows

the slope of the moneyness curve decreases as time-to-maturity increases. This indicates a decrease

in the level of smile as maturity increases. Panel C presents the implied volatility surface during the
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COVID-19 crisis, illustrating a decrease in the IV as the option’s time-to-maturity increases. During

times of crisis, the moneyness slope is inverted. Toward the end of the sampling period, Panel D

displays the smirk of the volatility where OTM calls tend to have a higher IV than ATM options. The

implied volatility surface of the VIX, unlike that of the S&P 500, exhibits an inverted shape due to the

predominance of call options in its most traded contracts. This inversion intensifies the smirk effect

on the call side, contrasting with the traditional skew in the S&P 500. As a result, the VIX usually

has more liquidity for OTM calls, which is contrary to what is seen in the S&P 500 implied volatility

surface.

Panel A: January 3, 2007
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Panel B: January 10, 2014
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Panel C: March 17, 2020
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Panel D: December 30, 2022
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The four selected days’ retained option quotes are displayed in panels, exhibiting their associated set of implied volatil-
ities. The sample includes four significant dates. The first day of the sample is January 3, 2007. January 10, 2014, is a
day with low volatility. March 17, 2020, marks the beginning of a crisis, specifically the COVID-19. The last day in the
sample is December 30, 2022. The moneyness is defined in Equation (7).

Figure 2: Observed Implied Volatility (IV) surfaces for different dates
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3 Parametric Model Specification and Performance

We choose a static representation of the IV surface using six factors that capture the main empiri-

cal characteristics. We consider three requirements : (i) factor interpretability, (ii) twice differentiable

and continuous, and (iii) extrapolation ability.

Our factors are crafted to match the observed patterns on IV surfaces using moneyness and time-

to-maturity as functions. Each factor plays a specific role and contributes to accurately calibrating

the observed IV surfaces with clear financial interpretation. The factors have functional expressions

that are twice continuously differentiable, which limits the presence of arbitrage opportunities. More

precisely, Breeden and Litzenberger (1978) demonstrated the risk-neutral probability density function

at time t + τ given the time t information satisfies

φt+τ(νt, τ) = exp(rt,τ, τ)
∂2Ct(K, τ)
∂K2

∣∣∣∣∣∣
K=νt

(10)

where, in our case, νt represents the VIX level at time t. For this density to exist, the function must

be twice continuously differentiable.2

In the following sections, we introduce our IV model and demonstrate its superiority over the

Heston model benchmark. We conduct a screening process that identifies the presence of theoretical

arbitrage opportunities. This process is applied to both the raw data and the collection of IV surfaces

calibrated by our model. Our IV model, with its asymptotically stable factors, has significant practical

implications. It enhances various applications, including option pricing and risk management, by

allowing for extrapolation beyond observed moneyness levels and maturities.

2The price of a VIX call option with a strike price of K and time-to-maturity τ is

Ct(K, τ) =
∫ ∞

K e−rt,ττ(νt − K)φt+τ(νt, τ)dνt

11



3.1 Factorized IV Approach

The IV σ(M, τ) observed on a given day for an option with moneyness M defined in Equation (7)

and time-to-maturity τ is modeled as

σ(M, τ) = β1︸︷︷︸
Long-term ATM level

+β2 e
−τ

TConv︸︷︷︸
Time-to-maturity convexity

+β3 e
τ

THump

(
1− τ

THump

)︸          ︷︷          ︸
Time-to-maturity curvature

(11)

+ β4

(
−M1M≤0 −

e2M − 1
e2M + 1

1M>0

)
︸                             ︷︷                             ︸

Moneyness slope

+β5

(
e2(M−1) − 2
e2(M−1) + 2

−
e−2 − 2
e−2 + 2

)
︸                        ︷︷                        ︸

Smile extension

+β6

(
1 − e

M
MMax

)
log

(
τ

TConv
+ α

)
︸                             ︷︷                             ︸

Smirk

The values of MMax, TConv, THump and ϵ are fixed and are used as scaling factors. These values

are selected based on empirical observations. The scaling factor MMax corresponds to the maximum

absolute moneyness represented by the model. Even though the sample’s furthest absolute moneyness

for options is around 16, the model is set to MMax= 20 to allow for extrapolation beyond the observed

moneyness. The parameter TConv = 1/12 (1 month) denotes the point in the IV term structure where

there is a rapid shift in convexity concerning time-to-maturity. Furthermore, the parameter THump =

3/12 (3 months) determines the peak position and declining speed of the hump-shaped component of

the IV term structure concerning time-to-maturity. Both of these values were optimized by selecting

the value that minimizes the average root mean square error (RMSE) over the sample. The parameter

α is set to the smallest maturity allowed in the model, which is 1
365 . This is done despite the fact that

options with a maturity of less than 7/365 are excluded from the dataset. The primary purpose of this

approach is to enable the model to extrapolate for options that have a maturity period of less than

seven days.

Equation (11) represents the six-factor model designed to capture the key characteristics of the

IV surface. We denote this model as the Parametric VIX Implied Volatility Surface (PVIVS) model.

Figure 3 displays each factor function in relation to time-to-maturity and moneyness. The coefficent

β1 is interpreted as the long-term ATM implied volatility because lim
τ→∞
σ(0, τ) = β1. 3 The coefficient

β2 is used to measure the convexity of ATM IV in relation to the time-to-maturity. Since the shape

of IV is more accentuated for options with shorter maturities, the convexity adjustment is amplified

for options with maturities less than 1 month by associating β2 to a nonlinear function of τ
TConv

. The

3The proofs for the limits, the function’s continuity, and the continuity of the first two derivatives are presented in the
Appendix B.1
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Panel A: Long-tern ATM Level
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Figure 3: Model Factors
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coefficient β3 capture the time-to-maturity curvature of the IV. This curvature is characterized by

a "hump" shape. The hump shape typically peaks between 0-3 months of maturity and decays as

maturity passes 3 months. This curvature correction is achieved by relating β3 with the scaling factor

THump. While β2 affects the short term component of the time-to-maturity, β3 contributes on the

medium part of the IV time-to-maturity as it starts out at one and decay overtime at zero. The

expression lim
τ→0
σ(0, τ) = β1 + β2 + β3 can be interpreted as the ATM Short Term IV. Furthermore,

the time-to-maturity slope of the ATM IV can be characterized as the difference between the short-

term and long-term ATM implied volatilities : lim
τ→0
σ(0, τ) − lim

τ→∞
σ(0, τ) = β2 + β3. The fourth factor

captures the moneyness slope for call and near-the-money put options. Our dataset shows there is

a nearly linear increase in call IV as moneyness decrease. Conversely, put IV initially decreases as

moneyness increases, but then starts rising for deeper OTM puts, as illustrated in Panel D of Figure 2.

The coefficient β5 is responsible for measuring the moneyness slope, particularly for deep out-of-the-

money put options. As observed in Figure 2, put contracts are exhibiting increased activity over time.

This trend extends the previous moneyness slope, evolving it into a more traditional smile-shaped

surface. The smile extension factor adjusts the observed increase in IV for deep OTM put options.

The last coefficient β6 is responsible for capturing the tilt in the smile for deep OTM puts, also known

as the IV smirk. The smirk factor diminishes as the time-to-maturity lengthens.

3.2 Daily Estimation

To estimate the daily set of coefficients βt = (βt,1, βt,2, βt,3, βt,4, βt,5, βt,6), a two-pass optimization

approach is used. This approach minimizes the sum of the squared fitting errors between the model

and observed IVs since they are in the same order of magnitude across moneyness and maturity. In

the first pass, all observations are taken into account to estimate βt. In the second pass, we calculate

a z-score of the daily fitting errors from the first pass and exclude any with a z-score greater than

3. The details of this exclusion process are presented in Figure 9 in Appendix B.2. The model’s

performance and stability are improved by excluding temporarily a small number of outliers, corre-

sponding to 9,657 observations out of 792,318 observations. It results in reduced daily variations in

the coefficients.

More precisely, for each σ{(Mi, τi)}ni=1 representing the pairs of moneyness and time-to-maturity
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available on a specific day, we compute the z-score:

z-scoreϵt,Mi ,τi
=
ϵt,Mi,τi − ϵt

S t
(12)

where

ϵt,Mi,τi = σ
Obs
t (Mi, τi) − σPVIVS

t (Mi, τi, β̂t) (13)

is the fitting error on the implied volatility,

ϵt =
1
n

n∑
i=1

ϵt,Mi,τi (14)

is the daily mean, and

St =

√√
1

n − 1

n∑
i=1

(ϵt,Mi,τi − ϵt)2 (15)

is the daily standard deviation. The Equations (14) and (15) are calculated using all IV observations

on a specific day. We then recalibrate the model by minimizing the sum of the squared fitting errors.

The time series of the estimated coefficients obtained through the second pass are shown in Fig-

ure 4.4 The results between the two passes are similar, but the second pass improves coefficient

variability. The ATM IV level typically fluctuates between 40% and 70%, but spikes during pe-

riods of uncertainty such as the financial crisis of 2008, flash crash of 2010, "Volmageddon"5 of

2018, and COVID-19 crisis of 2020. The time-to-maturity convexity coefficient β2 exhibits increased

volatility in the latter half of the sample period, characterized by a higher frequency of spikes. This

increased volatility is particularly clear after 2020, a period during which reflects market participants

expectations of central bank decisions and economic outcomes in turbulent market conditions. The

coefficient of the time-to-maturity curvature appears to remain stable and consistent throughout most

of the sample period. During the COVID-19 crisis, its stability was temporarily disrupted, exhibiting

large variations on both sides, after which it returned to its previous normal level. The slope coef-

ficient of moneyness is typically positive; however, certain volatility events can cause sudden drops

(e.g., the flash crash of 2010, the "Volmageddon" in 2018) and even temporary inversions (e.g., the

COVID-19 crisis of 2020). The first part of the dataset shows a lot of variation in the coefficient for

smile extension, which is due to the lack of put options. For most of the time, this coefficient stays

4The results of the first and second pass processes are presented in the Appendix B.2.
5"Volmageddon" refers to the event on February 5, 2018, when a sudden spike in market volatility led to over a 90%

loss in value of short volatility exchange-traded products (ETPs).
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Daily estimation of the coefficients βt = (βt,1, βt,2, βt,3, βt,4, βt,5, βt,6) for the IV model. Each of the factor coefficient time
series are illustrated above capturing respectively the long-term ATM level, the moneyness slope, the time-to-maturity
convexity, the time-to-maturity curvature, the smile extension and the smirk from January 1, 2007 to December 30, 2022.

Figure 4: Daily coefficients calibration of the IV model
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negative. Towards the end of the dataset, there is a clear rise in the value of β5, indicating that there

are more put options active on the market. The smirk coefficient shows decreased stability in the

beginning of the dataset, with significant fluctuations around 2013 and early 2014. However, in the

later part of the dataset, there is a notable increase in the coefficient’s stability.

3.3 Benchmarking

To evaluate the calibration performance of the PVIVS model, we use a stochastic volatility model

(SV) to calibrate the implied volatility surface, comparing the results with the parametric model

proposed by Heston (1993). As introduced in Heston (1993), the stochastic volatility framework

has gained widespread acceptance in derivative valuation models, particularly for the S&P 500. The

benchmark model fundamentally differs from the PVIVS model, as it belongs to a distinct family of

models characterized by temporal dynamics in the absence of arbitrage. For a fair comparison, the

estimation of the benchmark is performed with daily calibration of the parameters. The risk-neutral

dynamic of the Heston model is

dFt,τ =
√

VtFt,τdWQ
t (16)

dVt = κ(θ − Vt)dt + σV

√
VtdBQt (17)

where d⟨W, B⟩t = ρdt capture part of the dependence between the underlying forward price Ft,τ and its

instantaneous variance Vt. The parameters are explained in detail in the Appendix B.3. With Heston

(1993) framework, the European options prices are available in a quasi-analytical form and can be

transformed into implied volatilities by inverting the Black (1976) formula. The model’s parameters,

including its instantaneous variance, are calibrated daily. A two-pass optimization approach, similar

to that used in the PVIVS model, is adopted for daily calibration. The daily calibration aims to

determine the best combination of parameters each day to best fit the IV surface. This approach

ensures a consistent and fair comparison of the fitting performance with the proposed PVIVS model.

In the first pass, all available observations are used to estimate the Heston model parameters. In the

second pass, z-scores of the daily fitting errors from the first pass are computed. Observations with

absolute z-scores exceeding 3, as well as negative prices, are temporarily set aside. Negative prices

that persist after the second pass are set to zero. An analysis of these negative prices is presented in
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Appendix B.3.

Rather than calibrating directly on the sum of squared residuals of implied volatilities, the cali-

bration procedure instead minimizes the sum of squared residuals of call prices, scaled by the inverse

of their vega. The objective function is

Θ̂t = argmin
Θt

n∑
i=1

(
CObs

t (Mi, τi) −CHeston
t (Mi, τi,Θt)

ζObs
t (Mi, τi)

)2

(18)

where CObs
t (Mi, τi) and CHeston

t (Mi, τi,Θt) represent the observed and model call prices for the i-th

option, respectively, ζObs
t (Mi, τi) is the vega of the i-th option, Θt denotes the set of model parameters

and is equal to Θt = {Vt, θt, κt, ρt, σt}. With the optimal parameter set Θ̂t, model prices are retrieved.

Put prices are computed using forward put-call parity and the implied volatilities are estimated from

the model-derived prices.

PHeston
t (K, τ) = CHeston

t (K, τ) + Dt,τ(K − Ft,τ), (19)

Equation (18) is not a fully equivalent to directly calibrating on implied volatilities. By calibrating

on call prices rather than implied volatilities, this approach enhances computational efficiency. It pro-

vides only an approximation of IV calibration by normalizing residuals using the vega corresponding

to each call price.

3.4 Calibration Performance

To assess the calibration performance of each model over the entire sample, we compute the daily

RMSE :

RMS Et =

√√
1
n

n∑
i=1

(
σModel

t (Mi, τi) − σObs
t (Mi, τi)

)2
, (20)

where σObs
t (Mi, τi) represents the observed IV for the ith option contract on a specific day, and

σModel
t (Mi, τi) is the model option IV with respect to its moneyness Mi and its time-to-maturity τi.

We also compute the daily absolute relative pricing error (ARPE):

ARPEt =
1
n

n∑
i=1

|OModel
t (Mi, τi) − OObs

t (Mi, τi)|
OObs

t (Mi, τi)
, (21)
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where OObs
t (Mi, τi) denotes the observed price for the ith option contract with respect to its moneyness

Mi and its time-to-maturity τi, while OModel
t (Mi, τi) represents the model option price on a specific day.

Panel A of Figure 5 exhibits the daily RMSE for the PVIVS model alongside the benchmark. Panel

B of Figure 5 presents the daily ARPE for both the PVIVS and Heston model. The PVIVS model

demonstrates consistent performance throughout the sample period, characterized by smaller errors in

the estimated implied volatility (IV) and pricing, leading to fewer fluctuations in both the RMSE and

ARPE metrics. This indicates that the model is robust and stable across diverse market conditions.

Panel A: RMSE of IV
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Daily RMSE and ARPE. Panel A presents the root mean square error (RMSE) on the IV for our model and its benchmark.
The Panel B presents the absolute relative pricing error (ARPE) between the Heston model and the PVIVS model.

Figure 5: Performance metrics comparaison

Table 4 displays the average RMSE across the whole sample over different subregions of the

IV surface. The average RMSE for the PVIVS model across the entire surface exhibits superior

performance compared to the benchmark. This is consistent across all buckets of moneyness M

and time-to-maturity τ. The average RMSEs corresponding to the PVIVS model are observed to be

relatively uniform across all categories of moneyness and time-to-maturity. In contrast, the Heston

model demonstrates a decreased fit quality for options with short-term maturity and deep OTM call

options. Table 5 illustrates the average ARPE over the entire sample across various subregions of
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the IV surface. The results indicate that the PVIVS model outperforms the benchmark in terms of

average ARPE across the full surface. This superior performance is consistently observed across

different buckets of moneyness M and time-to-maturity τ.

Calls Puts
M ≤ −2 −2 < M ≤ −1 −1 < M ≤ 0 0 < M ≤ 1 M > 1 All

PVIVS 0.0572 0.0316 0.0244 0.0356 0.1172 0.0407
Heston 0.1083 0.0579 0.0536 0.0780 0.1487 0.0761
No. of contracts 134,501 189,116 251,876 195,917 20,908 792,318

6
365 < τ ≤

30
365

30
365 < τ ≤

90
365

90
365 < τ ≤

180
365

180
365 < τ ≤ 1 τ > 1 All

PVIVS 0.0680 0.0351 0.0215 0.0272 0.0537 0.0407
Heston 0.1240 0.0632 0.0520 0.0643 0.0552 0.0761
No. of contracts 170,960 224,609 326,989 68,873 887 792,318
Summary of the average RMSE (ARMSE) for both PVIVS and Heston models across various time to maturity and
moneyness buckets. The data spans from January 3, 2007, to December 30, 2022.

Table 4: Average RMSE (ARMSE) of Calibrated IV Surfaces

Calls Puts
M ≤ −2 −2 < M ≤ −1 −1 < M ≤ 0 0 < M ≤ 1 M > 1 All

PVIVS 0.0276 0.0438 0.0617 0.0619 0.0387 0.0511
Heston 0.0473 0.0925 0.1395 0.1405 0.0735 0.1111
No. of contracts 134,501 189,116 251,876 195,917 20,908 792,318

6
365 < τ ≤

30
365

30
365 < τ ≤

90
365

90
365 < τ ≤

180
365

180
365 < τ ≤ 1 τ > 1 All

PVIVS 0.0400 0.0473 0.0499 0.0942 0.2443 0.0511
Heston 0.0698 0.1001 0.1174 0.2128 0.2289 0.1111
No. of contracts 170,960 224,609 326,989 68,873 887 792,318
Summary of the average ARPE (AARPE) for both PVIVS and Heston models across various time to maturity and mon-
eyness buckets. The data spans from January 3, 2007, to December 30, 2022.

Table 5: Average ARPE (AARPE) of Calibrated IV Surfaces

Figure 6 displays the fitting of the PVIVS model and the benchmark to the IV data points for the

four dates selected in Figure 2. This demonstrates the smooth extrapolation of the IV surface using the

PVIVS model. Specifically, the shape of the IV surface remains consistent with the limited implied

volatilities observed in regions of far time-to-maturity and moneyness. Accurately representing the

surface shape with deeper OTM options becomes challenging as the benchmark approaches its limits,

leading to pricing difficulties for deep OTM options. However, the PVIVS model remains stable in

areas with extreme moneyness.
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Panel D: December 30, 2022
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Panel G: March 17, 2020
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Panel H: December 30, 2022
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PVIVS model’s surfaces fitted on four distinct days with its benchmark. SV parameters are calibrated daily. The first day
of the sample is January 3, 2007. January 10, 2014, is a day with low volatility. March 17, 2020, marks the beginning of
a crisis, specifically the COVID-19. The last day in the sample is December 30, 2022.

Figure 6: Model Factors
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4 Arbitrage Opportunities

We examine prices that violate the no-arbitrage constraints on both the calibrated surfaces and

sample observations. The goal is to either produce prices that are inconsistent with the no-arbitrage

condition or rectify any arbitrage opportunities present in the data. To determine if the PVIVS model

generates prices that adhere to the no-arbitrage principle, we follow a similar method used by Carr

and Madan (2005). The authors established certain conditions that prevent the existence of static

arbitrage opportunities within a given set of call option prices for multiple strikes and maturities on a

single underlying asset. They showed that the absence of arbitrage violations in the prices of a group

of vertical spreads, butterfly spreads, and calendar spreads is a sufficient condition for the entire

set of option prices to be free from arbitrage. In our case, we exclude the test on calendar spread

arbitrage. Unlike calendar spread arbitrage, vertical and butterfly spreads have their cash flows on

the same day at maturity, making detecting true static arbitrage opportunities possible. The term

structure of these instruments can occasionally result in situations where calendar spreads appear to

offer credit opportunities. However, these apparent opportunities do not necessarily represent real

static arbitrage. Instead, they may be attributed to the varying forward levels of the volatility index

across different maturities. Furthermore, the uncertainty surrounding the payoff in calendar spreads

of volatility options is a significant consideration. The profit from calendar spreads is not riskless

and, therefore, cannot be treated as a static arbitrage opportunity. We view the absence of arbitrage

violations in the prices of all vertical spreads and butterfly spreads as a necessary condition, but not

a sufficient one, to eliminate all static arbitrages from a group of option price quotes across different

strikes and maturities.

For each trading day t, every time-to-maturity τ is characterized by a set of all available strike

prices. These strike prices are arranged in ascending order such that, K(τ)
0 < K(τ)

1 < · · · < K(τ)
n(τ).

The term n(τ) denotes the total number of strike prices associated with the specific maturity τ. The

vertical spread, butterfly spread and calendar spread are defined as in Carr and Madan (2005). For

the value of the vertical spread VS (τ)
i , i = 1, ..., n(τ) can be define as :

VS (K(τ)
i , τ) =

C(K(τ)
i−1, τ) −C(K(τ)

i , τ)

K(τ)
i − K(τ)

i−1

(22)
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C(K, τ) denotes the call price for a given time-to-maturity τ and strike price K. The value of VS (τ)
i

needs to be bounded between 0 and 1 to prevent vertical spread arbitrage. The butterfly spread value

BS (τ)
i , i = 1, ..., n(τ) − 1 is defined as

BS (K(τ)
i , τ) = C(K(τ)

i−1, τ) −
K(τ)

i+1 − K(τ)
i−1

K(τ)
i+1 − K(τ)

i

C(K(τ)
i , τ) +

K(τ)
i − K(τ)

i−1

K(τ)
i+1 − K(τ)

i

C(K(τ)
i+1, τ) (23)

and needs to be positive to ensure there’s no butterfly spread arbitrage opportunity.

For observed data, we incorporate both mid-prices and the bid-ask prices of the observed data.

Furthermore, both bid and ask prices provide a better approach to determining the spread when work-

ing with option quotes. This approach aligns more closely with realistic conditions, as using mid

prices could potentially identify unattainable arbitrage opportunities due to the limitations of trading

within the bid-ask range. Specifically, we use the ask price when buying a call option and the bid

price when selling a call option. For calibrated surfaces, we utilize the prices generated by the PVIVS

model with the same characteristics as the observed quotes to ensure a fair and practical assessment

of potential arbitrage opportunities. In addition, we only use call option prices following the method-

ology outlined in Carr and Madan (2005). We convert the put options from the PVIVS model into

calls using the put-call parity. The observed call options with matching dates, expiration, and strike

prices to those in the sample during the second pass, excluding outliers identified in the first pass, are

retained.

The total number of vertical spread arbitrage opportunities identified in the entire dataset and

on fitted surfaces is presented in Table 6. These numbers represent the total across all dates in the

dataset.
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Observed mid prices Observed bid-ask prices Fitted surfaces

Arbitrage % Arbitrage Arbitrage % Arbitrage Arbitrage % Arbitrage Total
detected detected detected detected detected detected checks

6/365 < τ ≤ 30/365
M ≤ −2 1,739 3.14 1 0.00 0 0.00 55,317
-2 <M ≤ −1 622 1.78 0 0.00 0 0.00 34,883
-1 <M ≤ 0 229 0.63 0 0.00 0 0.00 36,066
0 <M ≤ 1 106 0.35 0 0.00 0 0.00 29,961
M > 1 11 0.17 0 0.00 0 0.00 6,553

30/365 < τ ≤ 90/365
M ≤ −2 178 0.37 0 0.00 0 0.00 48,412
-2 <M ≤ −1 132 0.24 1 0.00 0 0.00 54,438
-1 <M ≤ 0 74 0.12 0 0.00 0 0.00 62,894
0 <M ≤ 1 20 0.04 0 0.00 0 0.00 46,546
M > 1 0 0.00 0 0.00 0 0.00 3,788

90/365 < τ ≤ 180/365
M ≤ −2 31 0.11 0 0.00 0 0.00 27,066
-2 <M ≤ −1 205 0.25 0 0.00 0 0.00 83,582
-1 <M ≤ 0 18 0.01 1 0.00 0 0.00 126,167
0 <M ≤ 1 6 0.01 0 0.00 0 0.00 77,254
M > 1 0 0.00 0 0.00 0 0.00 1,588

180/365 < τ ≤ 1
M ≤ −2 35 0.94 0 0.00 0 0.00 3,706
-2 <M ≤ −1 97 0.60 0 0.00 0 0.00 16,213
-1 <M ≤ 0 31 0.12 0 0.00 0 0.00 26,197
0 <M ≤ 1 4 0.02 0 0.00 0 0.00 20,398
M > 1 0 0.00 0 0.00 0 0.00 235

τ > 1
M ≤ −2 0 0.00 0 0.00 0 0.00 0
-2 <M ≤ −1 0 0.00 0 0.00 0 0.00 0
-1 <M ≤ 0 0 0.00 0 0.00 0 0.00 551
0 <M ≤ 1 0 0.00 0 0.00 0 0.00 273
M > 1 0 0.00 0 0.00 0 0.00 0

Summary statistics on violations per time-to-maturity and moneyness buckets of no-arbitrage constraints on vertical
spreads based on Carr and Madan (2005) methodology. The numbers and proportions of violations, aggregated across
all sample dates, are reported for both the data sample and the fitted surfaces of the PVIVS model.

Table 6: Detected vertical arbitrage opportunities

The cumulative count of butterfly spread arbitrage opportunities detected throughout the dataset

and on the fitted surfaces is also shown in Table 7. The table represents the aggregate across all dates

included in the dataset.
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Observed mid prices Observed bid-ask prices Fitted surfaces

Arbitrage % Arbitrage Arbitrage % Arbitrage Arbitrage % Arbitrage Total
detected detected detected detected detected detected checks

6/365 < τ ≤ 30/365
M ≤ −2 12,742 26.90 1 0.00 0 0.00 47,367
-2 <M ≤ −1 8,697 25.10 1 0.00 0 0.00 34,656
-1 <M ≤ 0 5,806 16.10 0 0.00 0 0.00 36,064
0 <M ≤ 1 3,501 11.69 1 0.00 0 0.00 29,960
M > 1 1,013 15.46 1 0.01 0 0.00 6,553

30/365 < τ ≤ 90/365
M ≤ −2 10,169 24.75 0 0.00 0 0.00 41,080
-2 <M ≤ −1 11,629 21.84 2 0.00 0 0.00 53,253
-1 <M ≤ 0 8,883 14.13 1 0.00 0 0.00 62,880
0 <M ≤ 1 3,868 8.31 0 0.00 5 0.01 46,546
M > 1 706 18.64 0 0.00 0 0.00 3,788

90/365 < τ ≤ 180/365
M ≤ −2 5,024 23.71 0 0.00 0 0.00 21,190
-2 <M ≤ −1 16,578 21.14 0 0.00 0 0.00 78,408
-1 <M ≤ 0 20,036 15.92 1 0.00 0 0.00 125,885
0 <M ≤ 1 7,085 9.17 0 0.00 272 0.35 77,254
M > 1 353 22.23 0 0.00 0 0.00 1,588

180/365 < τ ≤ 1
M ≤ −2 669 25.74 0 0.00 0 0.00 2,599
-2 <M ≤ −1 3,077 19.62 0 0.00 0 0.00 15,684
-1 <M ≤ 0 4,066 15.82 0 0.00 0 0.00 25,709
0 <M ≤ 1 3,139 15.39 0 0.00 731 3.58 20,398
M > 1 69 29.36 0 0.00 0 0.00 235

τ > 1
M ≤ −2 0 0.00 0 0.00 0 0.00 0
-2 <M ≤ −1 0 0.00 0 0.00 0 0.00 0
-1 <M ≤ 0 74 15.16 0 0.00 0 0.00 488
0 <M ≤ 1 86 31.50 0 0.00 63 23.08 273
M > 1 0 0.00 0 0.00 0 0.00 0

Summary statistics on violations per time-to-maturity and moneyness buckets of no-arbitrage constraints on butterfly
spreads based on Carr and Madan (2005) methodology. The numbers and proportions of violations, aggregated across
all dates of the sample, are reported for both the data sample and the fitted surfaces of the PVIVS model. The static
arbitrage opportunities on the mid prices all fall within the bid-ask range and therefore remain theoretical arbitrage. The
fitted surfaces also admit static arbitrage but to a lesser extent than the mid prices.

Table 7: Detected butterfly arbitrage opportunities

The 1071 butterfly spread opportunities detected on the fitted surface are primarily attributable

to converting put options into call options using the put-call parity with a moneyness close to zero.

The estimated forward price and the calculated mid price from the bid and ask prices influence the

moneyness of the options, thereby affecting their prices. The summary statistics of these detected

opportunities are presented in the Table 8. The observations indicate a close proximity to a moneyness

of 0, with an average time to maturity exceeding 6 months. It can be inferred that this occurrence

impacts at-the-money put options with a longer time-to-maturity.
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Moneyness Time-to-maturity

Min 0.0000 0.2274
Mean 0.0272 0.6273
Max 0.0802 1.2493

Summary statistics of identified butterfly arbitrage opportunities for the fitted surfaces of the PVIVS model. The statistics
on violations are presented based on their moneyness and time-to-maturity and are aggregated across all sample dates.

Table 8: Summary of detected butterfly arbitrage opportunities

The arbitrage opportunities identified on the fitted surfaces are comparable to those that could be

based on the bid-ask prices. This suggests that both the PVIVS model and the observed data, which

fall within the actual trading range, limit the possibility of static arbitrage opportunities.

5 Model Applications

Having a complete surface with implied volatilities available over a wide range of moneyness and

maturity has several practical applications. This section presents one of the applications, which is its

use in derivatives pricing.

The PVIVS model can be used in the pricing of complex financial derivatives. The model has

the flexibility of directly interpolate or extrapolate IVs, and extracting density of the VIX risk-neutral

density. These techniques are necessary to price a broad choice of derivatives. Given the extensive

range of strike prices available on the VIX, deep OTM contracts frequently exhibit a lack of liquidity.

Pricing these options using mark-to-market procedures can be complex. As depicted in Figure 2, the

measure of moneyness can reach extreme values, becoming increasingly relevant in the current time

period. For such contracts, the pricing process can be simplified using the PVIVS model, as the IV is

solely a function of the option’s moneyness and its time-to-maturity.

One important use of option pricing across a range of strike prices involves calculating the risk-

neutral density of the underlying asset. Breeden and Litzenberger (1978) established that the risk-

neutral probability density function, which reflects the price of the underlying asset, follows Equation

(10). Appendix C.1 provides the proof demonstrating that the integral of that
∫ ∞

0
gτ(K)dK = 1. This

condition ensures that the total probability across all possible values of K is equal to 1, which is a

fundamental property of probability density functions.
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In the framework of the PVIVS model, the risk-neutral density function for a maturity τ is :

erτ ∂
2c
∂K2 =

Ft,τ

K2 φ(d1)
(

1
√
τ

∂d1

∂M
−

1
√
τ

d1
∂d1

∂M
∂σ

∂M
+

1
√
τ

∂2σ

∂M2

)
(24)

where φ(z) =
√

1
2π exp

(
− z2

2

)
is the density function of a standard normal random variable and

∂d1

∂M
=

1
σ
−

(
M
σ2 −

1
2
√
τ

)
∂σ

∂M
,

∂σ

∂M
= −β41M≤0 + β4

(e2M − 1
e2M + 1

)2

− 1

1M>0 + β5

(
2e2M−2

e2M−2 + 2
−

2e2M−2(e2M−2 − 2)
(e2M−2 + 2)2

)

− β6

e
M

MMax log
(
τ

TConv
+ ϵ

)
MMax


∂2σ

∂M2 = β48e2M e2M − 1
(e2M − 1)31M>0 + β5

(
(e2M−2 − 2)

(
8e4M−4

(e2M−2 + 2)3 −
4e2M−2

(e2M−2 + 2)2

)
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4e2M−2
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8e4M−4

(e2M−2 + 2)2

)
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M

MMax log
(
τ

TConv
+ ϵ

)
MMax

2


(25)

For the identical days depicted in Figure 2, we illustrate a series of risk-neutral densities gτ(ν), each

associated with a distinct maturity τ in Figure 7. Volatility tends to rise as time-to-maturity increases.

However, during the COVID-19 crisis, the volatility decreases with time-to-maturity. This effect is

more pronounced for short-term maturities. When examining the implied densities from the PVIVS

model across four distinct dates, a positive skewness was observed. This skewness is especially

noticeable in the March 2020 crisis.
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Panel A: January 3, 2007
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Panel B: January 10, 2014
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Panel C: March 17, 2020
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Panel D: December 30, 2022
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Risk-neutral densities implied by the PVIVS model with the function: gτ(ν). The first day of the sample is January 3,
2007. January 10, 2014, is a day with low volatility. March 17, 2020, marks the beginning of COVID-19. The last day
in the sample is December 30, 2022. Instead of using the moneyness defined in Equation (7), the densities are presented
with the moneyness K/F.

Figure 7: Risk-neutral densities surfaces for different dates

6 Conclusion

This paper presents a new parametric model for the implied volatility surface for VIX options.

The model’s design emphasizes computational efficiency and ease of estimation. The model captures

the essential characteristics of VIX option surfaces while maintaining simplicity and interpretability

by incorporating key factors such as the long-term level, time-to-maturity convexity, time-to-maturity

curvature, moneyness slope, smile extension, and smirk. These factors are tailored to reflect empirical

characteristics observed in the VIX IV surfaces.
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The PVIVS model can generate IV surfaces that are twice continuously differentiable, ensur-

ing consistency with no-arbitrage principles. Moreover, the factors are constructed to exhibit stable

asymptotic properties, making the model suitable for extrapolating beyond the observed ranges of

maturities and moneyness levels. This ability to extrapolate is particularly beneficial for pricing illiq-

uid derivatives, where quoted prices are often unavailable.

The model’s performance is evaluated against the Heston (1993) model, using historical VIX op-

tion data from the OptionMetrics database. Results show that the proposed model outperforms its

benchmark, particularly in its ability to handle deep out-of-the-money options and shorter maturity

options. This calibration performance makes the model particularly suited for market environments

where robust extrapolation is required. Additionally, the model ensures a smooth surface fit and limits

static arbitrage opportunities. The constructed surface passes arbitrage detection tests using vertical

and butterfly spreads, which are used to identify static arbitrage opportunities. Furthermore, the appli-

cability of the PVIVS model extends beyond VIX European option pricing to potential applications

in other derivative instruments requiring risk-neutral density estimations.

Further work could expand on the development of a dynamic model, create hedging strategies

specifically tailored for VIX options, and enable the pricing of more complex products, such as

forward start variance swaps. Additionally, future research could also explore the use of risk factors

based on the PVIVS model’s coefficients to enhance both pricing and hedging strategies.
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A Data Cleaning

A.1 Cleaning Criteria

Some exclusions occurred on three specific days in 2009: January 21, October 20, and December

2. These exclusions coincided with periods of high market volatility, largely due to the ongoing

recovery from the 2008 financial crisis. Although there were no clear, specific events on these days

that could have triggered such high uncertainty in the VIX options, the market conditions at the time

were characterized by heightened uncertainty. In addition to the instances in 2009, there were also

significant exclusions on February 5 and 6, 2018, during the "Volmageddon" event. This period

of extreme market volatility, driven by short volatility strategies and the rapid growth of Exchange

Traded Products (ETPs), resulted in a one-day loss of over 90% in the value of short-volatility ETPs.

Augustin et al. (2021) outlined that this event was fueled by a combination of factors, including the

need for ETPs to rebalance their hedges and leverage ratios in a highly volatile and concentrated

market. The rebalancing caused a feedback loop, which drove futures prices up and resulted in major

losses for investors who had bet on low volatility.

There are 5 days in our sample that contain an important number of options with large spreads.

These specific days are typically marked by a lack of market liquidity, affecting a substantial number

of contracts and consequently resulting in an illiquid options surface. This exclusion led to noticeable

decreases in the retained data.Table 9, along with the count of removed observations due to their large

spread.

Removed Removed Total
Date Observations Proportion(%) Observations
2009-01-21 121 61.42 197
2009-10-20 140 43.75 320
2009-12-02 144 47.37 304
2018-02-05 451 65.56 688
2018-02-06 473 63.92 740
Summary of the days when a significant number of observations were excluded due to their large spread. The columns
represent the following: Date: The specific day on which the large exclusions occurred. Removed Observations: The
number of observations that were removed on the given day due to their large spread. Proportion Removed(%): The
percentage of the total observations that were removed on the given day. Total Observations: The total number of
observations on the given day.

Table 9: Days of data exclusion and removed observations due to large spread
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A.2 Forward Estimation

Figure 8 represents the RMSE of Equation (3). The grey line represents the first pass, which

incorporates outliers. The black line represents the second pass that excludes these outliers. Outliers

present during the first pass can often skew the RMSE of the forward estimation. The spikes observed

around 2007 and 2022 in the second pass RMSE are attributed to the concentration of values retained

from the first pass. The values estimated using OLS method can deviate significantly from the median

implied forward, which increases the residuals for many implied forward values on those days.

2008 2010 2012 2014 2016 2018 2020 2022
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Second Pass RMSE

RMSE for both passes of the forward optimization from Equation (3). The gray line represents the first pass, which
includes outliers that skew the mean on certain days. The black line represents the second pass, which excludes outliers.

Figure 8: Daily RMSE for two-pass forward optimization

B Model Specification

B.1 Proof of Theorem for PVIVS Surface Function

Theorem 1. Let σ(M, τ) : R × R+ → R+ be the PVIVS surface function defined as:

σ(M, τ) =β1 + β2e
−τ

TConv + β3e
τ

THump

(
1− τ

THump

)
+ β4

(
−M1M≤0 −

e2M − 1
e2M + 1

1M>0

)
+ β5

(
e2(M−1) − 2
e2(M−1) + 2

−
e−2 − 2
e−2 + 2

)
+ β6

(
1 − e

M
MMax

)
log

(
τ

TConv
+ α

)
where M ∈ R denotes the moneyness, τ ∈ R+ the time to maturity, and βi,TConv,THump,MMax, ϵ ∈ R
are the model’s parameters. Then:

1. The limiting behavior of σ(M, τ) as M approaches zero is given by:

lim
M→0
σ(M, τ) = β1 + β2e−τ/TConv + β3eτ/THump(1−τ/THump)

2. For at-the-money options (M = 0), the limiting behavior of σ(0, τ) as τ approaches zero and
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infinity is given by:

lim
τ→0+
σ(0, τ) = β1 + β2 + β3

lim
τ→∞
σ(0, τ) = β1

3. σ(M, τ) is continuous for all M ∈ R, including at M = 0.

4. σ(M, τ) is twice continuously differentiable with respect to M for all M.

Proof. Part A: The asymptotic behavior of each term in the PVIVS surface function as M → 0 are
analyzed:

1. The first three terms, β1, β2e−τ/TConv , and β3eτ/THump(1−τ/THump), are independent of M and thus
remain invariant as M → 0.

2. For the moneyness slope term:

lim
M→0
β4

(
−M1M≤0 −

e2M − 1
e2M + 1

1M>0

)
= β4

(
0 − lim

M→0+

e2M − 1
e2M + 1

)
= β4

(
0 −

0
2

)
= 0

3. For the smile extension term:

lim
M→0
β5

(
e2(M−1) − 2
e2(M−1) + 2

−
e−2 − 2
e−2 + 2

)
= β5

(
e−2 − 2
e−2 + 2

−
e−2 − 2
e−2 + 2

)
= 0

4. For the smirk term:

lim
M→0
β6

(
1 − eM/MMax

)
log

(
τ

TConv
+ α

)
= β6(1 − 1) log

(
τ

TConv
+ α

)
= 0

Therefore, by the sum rule of limits, it is concluded that

lim
M→0
σ(M, τ) = β1 + β2e−τ/TConv + β3eτ/THump(1−τ/THump)

This limit represents the at-the-money (ATM) implied volatility, as M = 0 corresponds to the ATM
option. □

Proof. Part B: When M = 0, the function simplifies to:

σ(0, τ) = β1 + β2e−τ/TConv + β3eτ/THump(1−τ/THump)

For the limits as τ approaches zero and infinity:
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1. As τ→ 0+:

lim
τ→0+
σ(0, τ) = β1 + β2 lim

τ→0+
e−τ/TConv + β3 lim

τ→0+
eτ/THump(1−τ/THump)

= β1 + β2 · 1 + β3 · 1
= β1 + β2 + β3

2. As τ→ ∞:

lim
τ→∞
σ(0, τ) = β1 + β2 lim

τ→∞
e−τ/TConv + β3 lim

τ→∞
eτ/THump(1−τ/THump)

= β1 + β2 · 0 + β3 · 0
= β1

For the second term, limτ→∞ e−τ/TConv = 0 since TConv is positive. The third term can also be
expressed as

τ

THump

(
1 −

τ

THump

)
=
τ

THump
−

(
τ

THump

)2

As τ→ ∞, this expression approaches −∞. Consequently, eτ/THump(1−τ/THump) → 0.

□

Proof. Part C: For each term of the PVIVS surface function σ(M, τ),

1. The first three terms are continuous functions of τ and independent of M, so they are continuous
for all M.

2. The moneyness slope term, β4(−M1M≤0 −
e2M−1
e2M+11M>0), is continuous at M = 0 since

lim
M→0−

(−M) = 0

lim
M→0+

(
−

e2M − 1
e2M + 1

)
= 0

And both parts are continuous on their respective domains (−∞, 0] and [0,∞).

3. The smile extension term, β5( e2(M−1)−2
e2(M−1)+2−

e−2−2
e−2+2 ), is a composition of continuous functions and thus

continuous for all M ∈ R.

4. The smirk term, β6(1 − e
M

MMax ) log( τ
TConv
+ α), is also a composition of continuous functions and

thus continuous for all M ∈ R.

As the sum of continuous functions is continuous, σ(M, τ) is continuous for all M ∈ R, including at
M = 0. □

Proof. Part D: Taking the two derivatives of σ(M, τ) with respect to M for each term,

1. The first three terms are independent of M, so their first and second derivatives with respect to
M are zero and thus continuous for all M ∈ R.
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2. For the moneyness slope term, f (M) = β4(−M1M≤0 −
e2M−1
e2M+11M>0): The first derivative is

f ′(M) =

−β4 if M < 0

β4

((
e2M−1
e2M+1

)2
− 1

)
if M > 0

At M = 0, both left and right limits of f ′(M) equal −β4, therefore f ′(M) is continuous.

f ′(0) =

−β4 if M < 0
−β4 if M > 0

The second derivative is

f ′′(M) =

0 if M < 0
β4

8e2M(e2M−1)
(e2M+1)3 if M > 0

At M = 0, both left and right limits of f ′′(M) equal 0. Therefore, f ′′(M) is continuous.

f ′′(0) =

0 if M < 0
0 if M > 0

3. For the smile extension term, g(M) = β5( e2(M−1)−2
e2(M−1)+2 −

e−2−2
e−2+2 ), is a composition of infinitely differ-

entiable functions. Therefore, its first and second derivatives are continuous for all M ∈ R.

4. For the smirk term, h(M) = β6(1 − e
M

MMax ) log( τ
TConv
+ α), is also a composition of infinitely

differentiable functions. Its first and second derivatives are continuous for all M ∈ R.

As the sum of functions with continuous first and second derivatives is itself a function with contin-
uous first and second derivatives, the first two derivatives of the implied volatility surface function
σ(M, τ) with respect to M are continuous for all M ∈ R. □

B.2 Least Squares Optimization

The two-pass least squares optimization reduces coefficient variability within the model. This is

achieved by excluding a minor proportion of outliers, which never exceeds 5% of the total obser-

vations on a given day. This exclusion procedure enhances the model’s robustness against outliers,

thereby improving its overall performance. Figure 9 shows the number and proportion of outliers for

each day in the sample.

Furthermore, the two-pass optimization reduces the variability of the coefficients in the model.

Figure 10 displays the coefficients of Model (11) for its initial pass in red and the second pass in

black. Since the model is a function of two variables: (i) moneyness and (ii) time-to-maturity, the

second pass shows smaller variation in the coefficients capturing the moneyness, while the impact on

the coefficients for time-to-maturity was less pronounced.
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Panel A: Daily observations excluded for fitting errors with |z-score| > 3
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Panel B: Proportion (%) of daily observations excluded for fitting errors with |z-score| > 3
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Exclusion of observations during the two-pass least squares optimization. The observations were excluded if their fitting
error had an absolute z-score greater than 3. Panel A shows the number of daily observations that were removed. Panel
B illustrates the percentage of daily observations removed each day, calculated by dividing the number of excluded
observations (|z-score| > 3) by the total number of observations on that specific date.

Figure 9: Daily observations removed from the two-pass OLS optimization

Panel A of Figure (11) indicates that the second pass has a small impact on the RMSE of the

calibration. However, it enhances the overall stability of the model by smoothing the moneyness

coefficients. Panel B illustrates an improvement in pricing accuracy, as the second pass reduces

pricing errors and exhibits lower susceptibility to large variations compared to the first pass.
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Daily estimation of the coefficients βt = (βt,1, βt,2, βt,3, βt,4, βt,5, βt,6) for the IV model. Each of the factor coefficient time
series are illustrated above capturing respectively the long-term ATM level, the moneyness slope, the time-to-maturity
convexity, the time-to-maturity curvature, the smile extension and the smirk from January 1, 2007 to December 30, 2022.

Figure 10: Daily coefficients calibration of the IV model
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Panel A: RMSE Two-pass Comparison
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Panel B: ARPE Two-pass Comparison
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RMSE and APRE for both pass are reported daily for the PVIVS model. The ARPE is the absolute relative pricing error,
and the RMSE is the root mean square error.

Figure 11: Model Performance : First and Second OLS Pass

B.3 Benchmark Model

In this affine diffusion model, several parameters are used to price derivatives. The mean-reversion

rate κ, indicates the speed at which the variance reverts to its long-term mean, denoted by θ. The

parameter σv is the volatility of the variance process. The correlation between the asset price and its

volatility is measured by ρ, indicating how much the asset price and its volatility move in relation

to each other. The initial value of the volatility process is represented by V0. These parameters are

typically estimated from market data. Each of the 5 parameters undergoes daily calibration using the

lsqnonlin optimizer. For each daily calibration, the parameters from the previous day are used as

the initial guess.

Once calibrated, the Heston model generates negative prices for deep out-of-the-money (OTM)

put options. While no call options exhibited negative prices, 852 put options had negative prices.

Panel A of Figure (12) displays the count of put options with negative prices. Panel B presents the

proportion of negative prices relative to the total daily observations.
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Panel A: Daily observations from Heston model with negative pricing
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Panel B: Proportion (%) of daily observations from Heston model with negative pricing

2008 2010 2012 2014 2016 2018 2020 2022
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
op

or
tio

n 
(%

) o
f N

eg
ati

ve
 P

ric
es

Daily observations from the Heston model identified instances of negative pricing. Panel A displays the number of
daily observations with negative prices. Panel B illustrates the percentage of daily observations with negative pricing by
dividing the number of negative prices by the total number of observations on that specific date.

Figure 12: Negative prices from the Heston model

Figure (13) presents the time series of the Heston model parameters calibrated from the second

pass. Compared to the PVIVS model, the parameters exhibit greater volatility and occasionally reach

extreme values. Notably, the mean reversion speed parameter (κ) demonstrates significant instability.
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Panel A: Kappa (κ)
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Panel B: Initial Variance (Vt)
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Panel C: Theta (θ)
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Panel D: Volatility of Volatility (σ)
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Panel E: Rho (ρ)
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Daily calibrated parameters of the Heston model from January 2007 to December 30, 2022. Panel A is the mean reversion
speed (κ), Panel B shows the initial variance (Vt), Panel C illustrates the long-term variance level (θ), Panel D represents
the volatility of volatility (σ), and Panel E displays the correlation coefficient (ρ).

Figure 13: Time series of daily calibrated parameters for the Heston model
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C Model Applications

C.1 Risk Neutral Density Function

Note that the derivations of the following partial derivatives: ∂c
∂K , ∂

2c
∂K2 , ∂d1

∂M , and ∂d2
∂M , are identical to

those presented in the work of Francois et al. (2022). The probability density function integrates to

one since∫ ∞

0
erτ ∂

2c
∂K2 dK = erτ

(
lim

K→∞

∂c
∂K
− lim

K→0

∂c
∂K

)
= lim

M→∞

(
Φ(d2) + eM

√
τφ(d1)

∂σ

∂M

)
− lim

M→−∞

(
Φ(d2) + eM

√
τφ(d1)

∂σ

∂M

)
= lim

M→∞
Φ(d2) + lim

M→∞
eM
√
τφ(d1)

∂σ

∂M
= 1.
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