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Résumé 

Les problèmes des horaires sont couverts par une multitude de disciplines. L’intérêt particulier 

porté au sujet des horaires en recherche peut être attribué à la complexité notoire de ces problèmes 

et à l’impact des horaires répandu dans l’ensemble des industries. Ce mémoire se centre sur les 

problèmes des horaires dans le domaine de l’éducation. De nombreuses institutions dépendent de 

processus manuels dans la création des horaires, favorisant un mode simple et pratique. Toutefois, 

ce type de processus est essentiellement fondé sur la reconduction et modification d’un horaire 

précédent pour s’adapter aux nouvelles demandes. Alors, en présence d’un nombre élevé de 

changements, ces tâches deviennent considérablement difficiles à exécuter. De plus, les 

institutions adoptant un processus manuel risquent de préserver les erreurs d’un horaire à l’autre. 

Avec la croissance et l’évolution des institutions, les méthodes traditionnelles, comme les 

processus manuels dans la création des horaires, deviennent difficiles à appliquer aux situations 

modernes. Alternativement, on remarque que l’automatisation de tels processus devient 

graduellement plus facile avec le progrès de la technologie. Ainsi, nous consacrons ce mémoire à 

aider HEC Montréal à automatiser son processus de création des horaires, mettant en pratique 

diverses techniques d’optimisation. À HEC Montréal, des différences significatives de contexte 

poussent à ce que la création des horaires de cours et celle des examens soient traitées comme des 

sous-problèmes. Dans ce mémoire, on étudie la revue littéraire des problèmes des horaires, 

contextualisant l’instance en jeu pour explorer l’ensemble des méthodes de solution. Nous 

justifions notre choix d’adopter une approche heuristique basée sur la recherche locale pour 

développer un algorithme capable de résoudre les deux sous-problèmes. De nombreux modèles 

dérivant de différentes stratégies pour améliorer le temps de calcul général de l’algorithme sont 

présentés. À travers ce mémoire, nous proposons ultimement un algorithme robuste pourvu de 

simplicité et flexibilité, favorisant une application à de multiples problèmes dans le cadre des 

horaires. 

 

 

 

Mots clés :  

problèmes d’horaires universitaires, optimisation, heuristique, recherche locale  



 iv 

 

  



 v 

Abstract 

Scheduling problems are discussed amongst many research disciplines due to their high 

complexity and heavy impact on almost all industries. This thesis focuses on a subcategory of 

scheduling problems: timetabling problems in the educational field. While many institutions rely 

on manual processes for their scheduling activities in favor of simplicity and convenience, these 

methods have a few drawbacks. In fact, manual timetabling, which is mainly built upon the 

modification of a previous timetable to comply to new requests, can amount to a tedious task when 

the number of changes is large. Moreover, the institutions face a great risk of unknowingly carrying 

forward existing issues. As institutions grow and evolve, the use of traditional means, such as 

manual timetabling, becomes harder to adapt to modern situations. With today’s level of 

technology, the automation of such processes is greatly facilitated. In this thesis, we seek to help 

the university of HEC Montréal to automate its timetabling process by leveraging optimization 

techniques. At HEC Montréal, due to the contextual differences involved in course lectures and 

examinations, Course Timetabling and Examination Timetabling are treated as sub-problems. 

Through this thesis, we study the state-of-the-art of timetabling problems, and we contextualize 

the problem instance at hand to explore the many possible solving methods. We justify the heuristic 

approach adopted to develop an algorithm based on local search that can solve both Course 

Timetabling and Examination Timetabling problems. This algorithm is put through numerous tests 

with different strategies to improve its overall computational time. Ultimately, we propose an 

algorithm that shows great simplicity and flexibility, in addition to robustness, allowing for 

application to a variety of problems in the scheduling sphere.  
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1 Introduction 

Scheduling is a widely discussed topic as it essentially affects a variety of fields, including business, 

sports, and education. From employee scheduling to job scheduling, nearly all industries are 

subject to these time-management problems. The objective of a scheduling problem is presented 

as follows:  

to solve practical problems relating to the allocation, subject to constraints, of resources to 

objects being placed in space-time, using or developing whatever tools may be appropriate. 

The problems will often relate to the satisfaction of certain objectives. (Wren, 1996) 

 

Timetabling problems are the most prominent scheduling problems in the education industry. The 

quality of the course schedules offered by universities and other higher education institutions can 

have a material effect on their reputation. These course schedules not only contribute to the overall 

satisfaction of students and lecturers, but they also help attract prospective talent to the institution. 

Because of the complex nature of the problems at hand, research efforts in the field have yet to 

find a general method able to efficiently solve any timetabling problem despite numerous attempts 

to do so. In fact, the high complexity in this problem led to the conduction of research in a multitude 

of disciplines, such as artificial intelligence and operational research. The state-of-the-art of 

timetabling problems includes operational research-based techniques, metaheuristic methods, 

intelligent novel methods, and distributed multi-agent system-based applications, as we will later 

discuss in this thesis.  

 

Timetabling is a process that must be completed either at a semestrial or annual frequency for 

universities. The process becomes increasingly complicated and time-consuming as the institution 

grows. With the constant expansion of the university, we have been tasked by HEC Montréal, a 

business school, to automate the process of timetabling for course lectures and examinations. 

Timetabling problems considerably differ depending on the institution, which calls for different 

solving methods to be used for different cases. According to McCollum (2006), a great amount of 

literature is available on timetabling problems, so much that there seems to be a gap between the 

theory and the practice of this subject as most published papers discuss specific applications. In 

this thesis, we propose a heuristic algorithm based on local search that is simple and flexible, 

making it not only applicable to HEC Montréal’s specific Course Timetabling and Examination 
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Timetabling, but also to other problems in the scheduling sphere. The algorithm was developed on 

Python, but it can be replicated in most other programming languages. 

 

This thesis is divided into four parts. The first chapter will be dedicated to the review of literature 

on the topic of timetabling problems in the educational field. We will elaborate on the theoretical 

definition of timetabling, the computational complexity, and the techniques commonly used to 

solve timetabling problems. A second chapter will serve to formulate the problem, expanding on 

the context of the problem instance of HEC Montréal, as well as the frameworks created to 

represent the timetables. The third chapter will introduce the different components of the algorithm 

proposed. The fourth chapter will present the experimental results of the models given the data 

simulated, as well as the analysis of said results. Finally, the last chapter will conclude with a 

discussion of the usefulness of the algorithm we propose for HEC Montréal.  
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2 Review of literature and problem 

2.1  Introduction to timetabling problems 

According to Wren (1996), timetabling problems are a special case of scheduling problems. To be 

exact, timetabling is defined as “the allocation, subject to constraints, of given resources to objects 

being placed in space-time, in such a way as to satisfy as nearly as possible a set of desirable 

objectives” (Wren, 1996). In both scheduling and timetabling, the resource allocation is restricted 

by hard and soft constraints. Hard constraints refer to requirements that must be respected; they 

define the feasibility of a solution. Soft constraints are not related to feasibility. Rather, they refer 

to preferences and determine the quality of a solution. The number of constraints, as well as the 

distinction between hard and soft constraints, are greatly influenced by the formulation of the 

problem instance.  

 

Timetabling problems in the educational field can be divided into three main classes: School 

Timetabling, Course Timetabling, and Examination Timetabling. Because universities often rely 

on a combination of Course Timetabling and Examination Timetabling, they are together referred 

to as university timetabling problems. School Timetabling, also commonly called class-teacher 

timetabling, is defined as “the weekly scheduling for all the classes of a school, avoiding teachers 

meeting two classes at the same time, and vice versa” (Schaerf, 2005). Course Timetabling 

corresponds to “the weekly scheduling for all the lectures of a set of university courses, minimizing 

the overlaps of lectures of courses having common students” (Schaerf, 2005). Finally, Examination 

Timetabling is “the scheduling for the exams of a set of university courses, avoiding overlap of 

exams of courses having common students, and spreading the exams for the students as much as 

possible” (Schaerf, 2005). However, real-world problems are complex and may fit loosely between 

multiple classes. 

 

There have been differences in the advancement of research across educational timetabling classes. 

As put forth by Oude Vrielink et al. (2019), research progress in School Timetabling problems has 

historically been slower relative to university timetabling problems. This could be attributable to 

methodological differences in the way studies are conducted. The authors explained that School 

Timetabling studies are conducted for specific institutions, while Course Timetabling and 
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Examination Timetabling studies rely on widely adopted benchmarks, allowing for easier 

comparisons.  

 

Organizational structures of schools and universities often influence the solving methods of 

timetabling problems. This is reflected in the typology of Course Timetabling problems. Course 

Timetabling problems can either be post-enrollment-based or curriculum-based, depending on the 

timing of student enrollment.  According to Abdullah et al. (2012), the main difference between 

the two types of Course Timetabling is that “the post-enrollment course timetabling problems 

concentrate on students’ preferences’ […] while curriculum-based course timetabling focuses on 

lecturers’ preferences.” In a post-enrollment-based setting, the timetable is set after the students’ 

enrollment. The timetable needs to allow all students to attend the courses in which they have 

enrolled. In a curriculum-based setting, the timetable is set before the students’ enrollment. 

Students are organized into groups and must follow a predefined set of compulsory and optional 

courses. Due to their structure, curriculum-based timetables can be defined as “the weekly 

assignment of a set of lectures for several university courses to specific timeslots and rooms, where 

conflicts between courses are set according to curricula published by the university and not on the 

basis of enrollment data” (Abdullah et al., 2012).  

 

2.2  Timetabling: an NP-complete problem 

Timetabling problems are hard combinatorial problems. Hoos and Stützle (2004) defined 

combinatorial problems as problems that “involve finding groupings, orderings or assignments of 

a discrete, finite set of objects that satisfy certain conditions or constraints.” In some cases, a 

combinatorial problem can pose as a search problem, where the goal is to find a feasible solution. 

In other cases, it can be viewed as an optimization problem, where an objective function is 

associated to the solution. The quality of a solution is defined by the value of the objective function, 

and the best solution is the one with the highest quality. The Boolean satisfiability problem (SAT) 

and the travelling salesman problem (TSP) are examples of well-known combinatorial problems; 

Hoos and Stützle (2004) provided additional information on these problems’ combinatorics.  

 

Hoos and Stützle (2004) added that “combinations of these solution components form the potential 

solutions of a combinatorial problem.” In an educational timetabling context, the solution 



 5 

components are course lectures or examinations to be assigned to specific timeslots and rooms. 

This creates a very large number of candidate solutions to explore. In fact, “for most combinatorial 

optimization problems, the space of potential solutions for a given problem instance is at least 

exponential in the size of that instance” (Hoos & Stützle, 2004).  

 

Computational complexity is used to classify problems in terms of the amount of resources 

required to run their algorithms. Mainly, there are two classes of problems: P and NP. The P class 

refers to problems that are solvable in deterministic polynomial time, meaning that they are 

efficiently solvable, whereas the NP class relates to problems that are solvable in nondeterministic 

polynomial time but are verifiable in deterministic polynomial time. This implies that all P 

problems are contained in NP (or P ⊆ NP), because everything that is solvable in deterministic 

polynomial time is also ultimately solvable in nondeterministic polynomial time. Moreover, NP-

hard problems are problems that are at least as hard as the hardest NP problems. In such way, NP-

complete problems are ultimately problems that are both NP and NP-hard. In simpler terms, they 

are the hardest problems contained in the NP class. Timetabling problems are generally considered 

as NP-complete (Cooper & Kingston, 1995). 

 

Because the solutions of NP-complete problems can be verified in deterministic time, the 

relationship between P and NP brings us to an important topic in computational complexity theory: 

the P vs. NP problem. The question is such that if the solution to a problem can be verified in 

deterministic polynomial time, is it also possible to solve it in deterministic polynomial time? In 

other words, we want to know if P = NP is true. If P = NP was proven to be true, it would mean 

that every problem verifiable in deterministic time can also be solvable in deterministic time. 

Hence, we would be proving that all NP problems can be solved efficiently in a computational 

complexity standpoint. Hoos and Stützle (2004) stated that “it suffices to find a polynomial time 

deterministic algorithm for one single NP-complete problem to prove that P = NP.” However, to 

this day, no efficient algorithm to solve a NP-complete problem has yet been found. This just 

shows how complex timetabling problems truly are and how difficult they are to solve.  
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2.3  Solving techniques explored 

Numerous methods have been studied in attempt to find optimal solutions for educational 

timetabling instances. A survey by Babaei et al. (2015) breaks down these methods into the 

following categories: operational research-based techniques, metaheuristic methods, intelligent 

novel methods, and distributed multi-agent system-based applications. The next sections are 

dedicated towards the different methods’ description and application on diverse educational 

timetabling problems with a focus on university timetabling, spanning Course Timetabling and 

Examination Timetabling. 

 

2.3.1  Operational research techniques 

Operational research (OR) relates to the application of mathematical principles to management or 

business problems, mainly to improve decision-making. The most explored OR methods for 

timetabling problems include graph colouring (GC), integer programming or linear programming 

(IP/LP) and constraint satisfaction programming (CSP).  

 

2.3.1.1  Graph colouring (GC) 

Welsh and Powell (1967) suggested reducing timetabling problems to graph colouring. The GC 

problem consists of an assignment of colours to vertices of a graph such that no pair of vertices 

connected by an edge share a colour. In a scheduling context, the vertices are events, the edges are 

event conflicts, and the colours are timeslots. To illustrate, let us suppose that the only events are 

course lectures in the Course Timetabling case. If two vertices are connected by an edge, the 

corresponding courses have common students or lecturers and thus should not have lectures 

simultaneously. Because they should be assigned to different timeslots, the corresponding vertices’ 

colours must be different. Given a graph G, this problem typically looks for a solution with the 

least number of colours, i.e., with the chromatic number of G, but Welsh and Powell (1967) 

introduced a relaxation with the idea of adding an upper bound to the chromatic number. This 

upper bound allows to simplify the resolution of GC for instances where the minimum number of 

colours is not necessarily sought after. In fact, rather than a timetable with the minimum number 

of timeslots, timetabling problems generally look for a timetable with no event conflict that fit 

within a given number of timeslots. GC has also successfully been applied to School Timetabling 

(De Werra, 1985), Examination Timetabling (Welsh & Powell, 1967; Redl, 2004) and Course 
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Timetabling (Dandashi & Al-Mouhamed, 2010; Razak et al., 2010). Graph colouring is primarily 

used for timetabling problems that are predominantly restricted by event conflicts. However, 

because there are constraints that are outside of the graph colouring’s scope in higher education 

timetabling problems, heuristics incorporating graph colouring are more commonly used. Asham 

et al. (2011) proposed a heuristic combining graph colouring and genetic algorithm to decompose 

the Course Timetabling problem.  

 

2.3.1.2  Integer programming and linear programming (IP/LP) 

In a timetabling context, Babaei et al. (2015) referred to linear programming as an “efficient 

assigning of limited resources to the specified activities in order to maximize the interest and 

minimize the cost.” In fact, integer programming (IP) and linear programming (LP) correspond to 

mathematical optimization of problems. In integer programming, the variables only take integer 

values. In linear programming, the problem is represented with linear relationships. And linear 

integer programming (ILP) combines the two. The mathematical approach has been successfully 

applied to a wide range of real-world problems across business, medicine, and many more. 

Instances of Course Timetabling have been solved with IP by Aubin and Ferland (1989), Daskalaki 

et al. (2004) and Bakir and Aksop (2008). Although IP/LP have proven to be quite successful in 

solving combinatory optimization problems, computational difficulties may occur. In fact, IP/LP 

is a method that has shown great success in finding globally optimal solutions at the expense of 

considerably slow convergence time. Therefore, this approach is mostly used for small-sized 

problems because the heavy computations in larger-sized problems may require more powerful 

computers, which are not always accessible. For large scale problems, heuristics based on IP/LP 

are more frequently used. In the same vein, Daskalaki and Birbas (2005) presented a relaxation 

procedure to the optimization of the IP formulation of a university timetabling problem. In this 

two-stage relaxation procedure, the constraints requiring the heaviest computations are relaxed at 

the first stage, and then recovered at the second stage. This allows the model to find an initial 

solution more easily at the first stage, and then find an optimal solution at the second stage.  

  

2.3.1.3  Constraint satisfaction programming (CSP) 

Many operational research problems, including timetabling problems, fall within the general 

framework of constraint satisfaction programming. CSP relates to computer programming, rather 
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than mathematical programming. The general model for constraint-satisfaction programming is as 

follows: 𝐶𝑆𝑃 =  (𝑉, 𝐷, 𝐶)  where 𝑉 =  {𝑣_1, 𝑣_2, … , 𝑣_𝑛}  is a finite set of variables, 𝐷 =

 {𝐷_1, 𝐷_2, … , 𝐷_𝑛} is a finite set of domains where 𝐷_𝑖 is a set of values for the variable 𝑣_𝑖, and 

𝐶 =  {𝑐_1, 𝑐_2, … , 𝑐_𝑛} is a finite set of constraints restricting the variable values (Müller, 2005). 

The goal is to find a consistent assignment, i.e., to assign values to each variable such that all 

constraints are satisfied. Generally, CSP can be solved with either consistency techniques or search 

algorithms. Amongst consistency techniques, arc-consistency is a process that “ensures any valid 

value in the domain of a single variable has a valid match in the domain of any other variables in 

the problem” (Zhang & Lau, 2005). Most search algorithms used to solve CSP are systematic, 

meaning that they start with an empty solution and systematically assign possible values to the 

variables. Because they can go through the entirety of the possible values, they must find a solution, 

or prove that there is no solution. Müller (2005) proposed an iterative forward search algorithm, 

which combines systematic search to the local search approach, to solve the CSP formulation of a 

curriculum-based course timetabling problem at Purdue University.  

 

2.3.2  Metaheuristic methods 

Metaheuristics methods are methodological approaches based on an iterative process in the quest 

of improvements. These methods are known to return good quality solutions without proof of 

optimality. They are mainly split into two types of methods: single-based and population-based. 

Single solution-based metaheuristics use a single candidate solution to analyze the problem, rather 

than a population. A single candidate solution is initially chosen according to some criteria and 

evolves iteratively. Essentially, single-based metaheuristics are local search algorithms. 

Population-based methods choose multiple candidate solutions to form an initial population. At 

each iteration, a selection mechanism is used on the current population to select the best candidate 

solutions. The selected candidate solutions undergo some changes such that there is improvement.  

 

Amongst metaheuristics methods, variable neighbourhood search (VNS), tabu search algorithm 

(TS), simulated annealing (SA) and genetic algorithm (GA) are most used to solve timetabling 

problems. 
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2.3.2.1  Variable neighbourhood search (VNS) 

Variable neighbourhood search is an approach based on guided change of neighbourhoods in the 

search process. It “explores increasingly distant neighbourhoods of the current [best] solutions, 

and jumps from this solution to a new one if and only if an improvement has been made” 

(Mladenovic & Hansen, 1997). Many variants of VNS have been developed, such as variable 

neighborhood descent (VND) which uses multiple neighbourhoods in the local search, and variable 

neighbourhood decomposition search (VNDS) which systematically decomposes large scale 

problems into subproblems. According to Hansen et al. (2017), basic VNS is composed of three 

stages: shaking, local search and move. Local search allows to find the optimum in the 

neighbourhood of a solution. Move compares the neighbourhood’s local optimum to the current 

best solution. Finally, shaking is used to prevent local optimum traps. Basic VNS starts with a 

defined set of neighbourhood structures in a specific order. The VNS systematically searches 

through every neighbourhood of the current best solution in a predefined order. If a local optimum 

that is better than the current best solution is found, it replaces the latter. Then, the neighbourhood 

search starts over with the new current best solution, and so until no further improvement can be 

found. An instance of Examination Timetabling has been solved using VNS by Ayob et al. (2006). 

Borchani et al. (2017) developed a VND to solve a Course Timetabling problem instance. Many 

have developed hybrid heuristics combining a variant of VNS with other methods such as genetic 

algorithm (Burke et al. 2010) and tabu search (Vianna et al., 2020).  

 

2.3.2.2  Tabu search (TS) 

Tabu search is a metaheuristic “based on steepest descent search, as it tends to explore the search 

space by not re-interpreting recent moves” (Oude Vrielink et al., 2019). In fact, TS utilizes a tabu 

list, i.e., a list of moves that are prohibited. A move generally stays within the tabu list for a given 

number of iterations, which corresponds to the tabu tenure. Aspiration criteria can also be used, 

where a move leading to a certain candidate solution that meets the aspiration criteria can be 

accepted regardless of the tabu list. This aspect is mostly used to prevent stagnation from an 

overwhelming tabu list. The algorithm starts with a single candidate solution as the current best 

solution. It generates a set of neighbours (neighboring candidate solutions to the current best), and 

neighbours created from moves within the tabu list are removed from the set. Then, if the best 

neighbour out of the set betters the current best solution, it replaces the latter. The tabu list is 
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updated by removing all moves that is past the tabu tenure. Also, the last move used to obtain the 

current best candidate solution is added to the list to prevent cycling. Using TS, Alvarez et al. 

(2002), Hertz (1991) and Lu and Hao (2010) each presented a solution to different course instances, 

whereas Di Gaspero and Schaerf (2000) solved an examination instance.  

 

2.3.2.3  Simulated annealing (SA) 

According to Oude Vrielink et al. (2019), simulated annealing “aims to search for a wider area of 

search space in which worse steps are accepted and allows for a more extensive search for the 

optimal solution [than other single-based metaheuristics].” The SA algorithm is a probabilistic 

process with a variable temperature parameter mimicking the annealing process of metalworking. 

The temperature has a high value at the beginning of the search process and progressively 

decreases according to a given reduction rule. This parameter affects the acceptance probability of 

a candidate solution. If the candidate solution is not deteriorating, the probability of acceptance is 

1, else the acceptance is determined by a function of the variation in cost and the current 

temperature. In fact, the function tells us that, at high temperature, the algorithm focuses on 

exploration, and at low temperature, it focuses on improvements. The algorithm is initiated with a 

candidate solution. At each iteration, a candidate solution is randomly generated from the current 

solution. If the candidate solution is better than the current solution, it replaces the latter. Else, a 

number between 0 and 1 is randomly generated, and is compared to the acceptance probability. If 

the number generated is lower than the acceptance probability computed, the candidate solution is 

accepted, and replaces the current solution. In the context of educational timetabling, simulated 

annealing has been successfully used for both examinations (Burke et al., 2004; Thompson & 

Dowsland, 1996) and course lectures (Bellio et al., 2016). 

 

2.3.2.4  Genetic algorithms (GA) 

Genetic algorithm is a population-based approach inspired by the concept of natural selection and 

evolution. The initialization of the GA refers to generation of several individuals (candidate 

solutions) as part of the initial population. The population maintains a fixed size throughout the 

algorithm. Each individual has a chromosome which is represented by a set of genes (parameters). 

A fitness evaluation is used to assess the quality of each individual. In the selection process, 

individuals are chosen to enter the mating pool according to their fitness score. Then, the mating 
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process is performed by randomly choosing parents (pairs of individuals) from this subpopulation. 

Depending on a certain crossover probability, there might be an exchange of genes between the 

parents to create an offspring, otherwise no change is made. The new offspring, after crossover, is 

randomly chosen to perform mutation, which corresponds to modification of some genes. Mutation 

is needed to ensure diversity in the population, or to avoid early state convergence. Genetic 

algorithm techniques have been used to solve university timetabling problems, as demonstrated by 

Burke et al. (1994), Erben and Keppler (1995) and Alsmadi et al. (2011). 

 

2.3.3  Intelligent novel methods 

Babaei et al. (2015) refer to hybrid methods, fuzzy approach, hyper heuristics, knowledge-based 

methods, and clustering algorithms as intelligent novel methods. These methods have been more 

recently developed and more frequently used nowadays. The following sections are dedicated 

towards hybrid algorithms and fuzzy approach in the context of educational timetabling.  

 

2.3.3.1  Hybrid algorithms 

Hybrid algorithms combine multiple approaches to solve a common problem. They aim to benefit 

from the different attributes each method offers by compensating their individual shortcomings. 

The use of hybrid algorithms is becoming increasingly popular because of their good performance 

in solving complex problems. A few examples of hybrid algorithms have already been given in 

the previous sections. In fact, these algorithms are very diverse, mainly because their design highly 

depends on the problem instance. For example, local search algorithms and evolutionary 

approaches can be combined (Abdullah et al., 2007; Kohshori & Abadeh, 2012), and tabu search 

and variable neighborhood search can be hybridized as well (Muklason et al. 2019). 

 

2.3.3.2  Fuzzy approach 

The fuzzy approach makes use of fuzzy logic, which is born from the observation that decision is 

frequently made on uncertain and imprecise information. Novak et al. (2012) informally defined 

fuzzy logic as “a special many-valued logic addressing the vagueness phenomenon and developing 

tools for its modeling via truth degrees taken from an ordered scale. It is expected to preserve as 

many properties of classical logic as possible.” Because fuzziness still needs to be contained in 

logic, methods with a fuzzy approach must follow a fuzzy system. Research has shown that fuzzy 
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approaches constitute very effective and relevant methods for real-world cases (Asmuni et al., 

2009; Asmuni et al., 2005; Chaudhuri & Kajal, 2010; Golabpour et al., 2008). 

 

2.3.4  Distributed multi agent system-based applications  

The approach based on multi-agent architecture has been gaining more attention recently, partly 

due to its innovating way to decompose large instances of complex timetabling problems into 

smaller subproblems. In a multi-agent system, multiple agents cooperate in a computerized system 

to solve problems that are too complex to solve individually (Obit et al., 2011). An agent is 

anything that can observe the environment through sensors, and that can perform actions upon the 

environment. In the context of a decentralized university where each department create their own 

course schedule by negotiating for resources with the other departments, Di Gaspero et al.  (2004) 

proposed a system based on a three-agent architecture. Each department has three cooperative 

agents: Solver for local search of departmental timetable, Negotiator for resource negotiation 

between departments, and Manager for information management.  

 

2.4  Comparison between methods  

Educational timetabling problems have been widely studied because of their complexity, and many 

approaches have been proposed to solve these problems. There is not a universally best method to 

solve university Course Timetabling and Examination Timetabling problems, as each method has 

its strengths and weaknesses. According to Chen et al. (2021), operational research-based methods, 

single-based metaheuristics, and hybrid algorithms are the most popular solving techniques 

specifically employed in real-world Course Timetabling. 

 

Operational research-based methods, such as GA, IP/LP and CSP, are rather easy to implement, 

but they do not particularly show good efficiency in solving university timetabling problems. To 

be more precise, they do not perform well on very large instances since the complexity of these 

methods increases as the number of students and universities increases (Babaei et al., 2015). In 

fact, they seem good at generating feasible solutions but lacking at finding high quality solutions, 

especially in a large-scale context. As for metaheuristics, these methods have been increasingly 

popular in timetabling research, mainly because they can easily adapt to different constraints to 

generate high quality solutions and cover a very wide variety of optimization problems. But it was 
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noted that single-based metaheuristics, such as VNS, TS, and SA, mainly focus on exploitation 

rather than exploration, while population-based algorithms, like GA, are prone to premature 

convergence and tend to require a lot of computational time. It seems like recent research has been 

focused on single-based rather than population-based metaheuristics (Oude Vrielink et al., 2019). 

The attempts to find a synergy between exploitation and exploration have attracted attention to 

hybrid algorithms. While hybrid algorithms are more costly and harder to implement than 

metaheuristics, they generally perform well in the exploration of solution search space.  
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3 Problem formulation 

3.1  Context 

HEC Montréal is a business school in Montreal, Quebec, Canada founded in 1907. It offers over 

1,200 courses across more than 100 programs, at the undergraduate, graduate, and post-graduate 

level. There are courses available for the bachelor’s degree (BAA) and certificate (CERT) at the 

undergraduate level; Master of Science (MSC), Master of Business Administration (MBA) and 

specialized graduate diploma (DESS) at the graduate level; and Doctor of Philosophy (PHD) at 

the post-graduate level. Courses are offered primarily in French, but they can be available in 

English and Spanish. In the fall of 2020, HEC Montréal reported a student body size of 15,180, 

including 4,144 international students from 144 countries. At this scale, the effective scheduling 

of course lectures and examinations has become an increasingly challenging task for HEC 

Montréal. We express the situation as a timetabling problem and seek to help the institution derive 

more efficient scheduling outcomes by leveraging optimization techniques. Here, Course 

Timetabling and Examination Timetabling are treated as subproblems. We start by describing HEC 

Montréal’s current timetabling process, to then expand on the distinctive characteristics of Course 

Timetabling and Examination Timetabling in this specific context.   

 

3.1.1  HEC Montréal’s current timetabling process 

There are three main actors involved in HEC Montréal’s current timetabling process: the academic 

departments, the school administration, and the school organization department. Each of the eleven 

academic departments manages its course offering depending on its estimated demand, as well as 

its department lecturers’ availabilities. The school administration is responsible for approving the 

changes put forward by the academic departments. And ultimately, the school organization 

department is responsible for creating the timetables. 

 

At HEC Montréal, both Course Timetabling and Examination Timetabling are manual processes; 

the previous year’s semestrial timetables are reused and manually adjusted to reflect the required 

changes. This process takes over five months to complete and produces six timetables, i.e., one 

course timetable and one examination timetable for each of the three semesters (fall, winter, and 

summer) offered each year.  
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We now provide insight into how HEC Montréal operationalizes its current yearly scheduling 

process. The school organization department primarily uses Oracle PeopleSoft, a Human Capital 

Management (HCM) software suite, to manage course scheduling. The process begins in January, 

where the school administration holds a meeting to discuss changes on the course curricula. The 

school organization modifies the course offering on Peoplesoft considering the changes discussed 

by the school administration. Through Peoplesoft, the school organization department extracts all 

course labels from each semester of the previous year. The next step is to extract all schedules (i.e., 

represented in date and time) and room assignments of every course’s lecture and examination for 

each semester of the previous year. Here, the MBA program is treated separately because of 

structural differences. Then, the school organization department uses Textpad, a word editor, and 

Microsoft Excel spreadsheets to manually unassign rooms, such that only the schedules are 

retained. In cases where a course needs a specific room, the desired room is also preserved. This 

is commonly the case for online courses where a virtual room is always assigned. This step 

essentially allows for room assignment to start anew for the upcoming year. Then, the lectures and 

examinations are separately imported back into Oracle PeopleSoft. For each of the three semesters, 

the school organization updates the course information (e.g., course title, repertory number, and 

maximal registrations). Subsequently, a manual smoothing is performed to remove exemptions. 

An exemption is a lecture that is prevented from happening at its usual time by events such as 

holidays and lecturer unavailability; it is specific to a semester. For lectures, this manual smoothing 

allows for a course to be represented by a single timeslot: it reduces the date-time schedule into a 

weekly schedule where each course is assigned to a timeslot within a week. The course and 

examination schedules are then shared through SharePoint to the other parties (i.e., the academic 

departments and the school administration) in mid-February. Then the academic departments have 

four weeks to request for changes, additions, and removals of courses, which will need the approval 

of the administration. It is also through SharePoint that any preference is communicated. The 

preferences of a course or examination can relate to timeslots, rooms, and other factors, such as 

other related courses, location of building and room layout. Once mid-March, the school 

organization updates the exemption table for the upcoming year. The schedules and the exemption 

tables are imported to Timetabler as an intermedium to Enterprise, where they are merged to create 

three semestrial date-time schedules for the upcoming year. Then, the schedules are transferred 
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back to Oracle PeopleSoft. An Excel forecasting tool is used to validate the availability of rooms 

for each timeslot. It basically compares the number of rooms available to the number of courses 

assigned for each timeslot on different levels (e.g., room layout to course’s requested layout). 

Manual adjustments for additional requests from SharePoint are made until consensus, which 

allows the schedules to be definitive for mid-May. 

 

The process described above is categorized as a manual one. Manual timetabling processes remain 

widely used by institutions to solve scheduling problems. These manual timetabling techniques 

offer some benefits, mostly centered around simplicity and convenience. In instances that call for 

a small number of year-to-year adjustments, it can be significantly simpler to directly modify an 

existing timetable to satisfy the new requests, as opposed to creating an entirely new timetable. 

This leads many educational institutions to rely on manual processes for their scheduling activities, 

as those generally display low year-to-year variability. However, manual timetabling also faces 

limitations. It can prove tedious when a large number of adjustments are required, and institutions 

face the risk of carrying forward solvable issues that can first appear unavoidable or too difficult 

to solve manually. The advancement of computer technology greatly facilitates the development 

and implementation of automated timetabling solutions, allowing more institutions to enjoy its 

numerous benefits, namely reduced completion time, personnel employed, and human error 

involved through manual timetabling process.  

 

3.1.2  Course Timetabling context at HEC Montréal 

Course Timetabling at HEC Montréal is curriculum-based. We define a curriculum as a pre-

determined set of compulsory and optional courses. The use of curricula allows to produce course 

timetables before the moment students enroll in courses. Each student follows a given curriculum 

depending on their program of choice and relevant academic progress. Students generally need to 

complete all compulsory courses and most optional courses in their curriculum. Each course is 

associated to a number of credits for its completion, and students are fully responsible for enrolling 

in the appropriate courses to obtain the required number of credits for graduation.  

 

HEC Montréal must provide a course timetable that is entirely conflict-free for every curriculum 

at each semester to ensure that students can feasibly obtain all necessary credits within their 
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program’s expected time frame. To help achieve this, it employs three distinct types of constraints: 

exclusivity groupings, timeslot preferences and similarity groupings. 

 

Exclusivity groupings ensure that courses within a grouping are not assigned to a same timeslot. 

These groupings are created based on the curricula to make sure that the students can enroll in all 

their courses. No differentiation is made between compulsory courses and optional courses within 

exclusivity groupings. This is because although not all optional courses are required, they need to 

be available for all students following the curriculum. Since HEC Montréal’s room capacity is 

limited, a course is generally offered more than once per semester. Courses that are offered more 

than once in a semester are referred as multi-sectional courses; otherwise, they are called uni-

sectional courses. Exclusivity groupings mainly concern uni-sectional courses within a curriculum. 

This type of grouping is also used to prevent students from enrolling in both a course and its 

prerequisite course during the same semester. In parallel, the allocation of lecturers to courses at 

HEC Montréal is completely managed by the academic departments in preparation to the Course 

Timetabling process. Because lecturers are pre-assigned to courses, it is important for the course 

timetable to be conflict-free from the lecturers’ standpoint as well. Additional exclusivity 

groupings are formed to ensure that the lecturers can feasibly attend to all their allocated courses. 

This is mostly intended for courses that can only be taught by specific lecturers. In addition to 

exclusivity groupings, timeslot preferences are introduced, mainly to provide a satisfactory 

teaching schedule to lecturers. Academic departments can also request some courses to be 

scheduled at a certain time of the day and/or on a certain day of the week through timeslot 

preferences. Finally, similarity groupings are used to ensure that specific courses are assigned to 

the same timeslot. In fact, some compulsory courses, commonly core courses, are shared between 

curricula, and to facilitate lecturer allocation, multi-sectional compulsory courses are generally 

requested to be scheduled at a same time, given that the lecturers are different.  

 

In addition to the scheduling constraints laid out above, the timetables must also consider room 

constraints: room capacity, room occupancy, room layout (layout preference and layout necessity) 

and building location of room. Capacity refers to the constraint that a room assigned to a given 

course must have the physical capacity to seat the number of students. Because the number of 

students enrolled to a course is not yet available at the time of the timetable’s creation, HEC 
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Montréal uses course norms as proxies. The norm of a course corresponds to the maximal number 

of students allowed to be enrolled, itself based on historical data and adjusted according to 

projections for the current semester. The norm is determined before initiating the timetabling 

process. In addition to room capacity, HEC Montréal seeks to maximize occupancy rates by 

allocating courses with small norms to low-capacity rooms and vice-versa. Two constraints can be 

derived from room layouts: layout preference and layout necessity. While basic layout can be 

requested by a lecturer’s preferences, special layout can be required by the academic department 

because of a course’s nature. Courses with layout necessities (i.e., courses requiring a room with 

a certain special layout) need more attention than courses with layout preferences (i.e., courses 

requesting a room with a preferred basic layout). It is important that the only courses assigned to 

rooms with special layout are courses that require the specific layout in question. The trading room, 

negotiation room and computer labs are rooms with special layouts, whereas mobile, multi-level, 

and mobile islands pose as basic layout. Finally, HEC Montréal’s two buildings, Côte-Sainte-

Catherine (CSC) and Decelles (DEC), are taken into consideration. Lecturers and academic 

departments may demand for certain courses to be located at a specific building. 

 

3.1.3  Examination Timetabling context at HEC Montréal 

We now turn to examination timetables, with an emphasis on the contrast with the course timetable 

process outlined above. Examination timetables are created separately from course timetables, and 

are usually constructed at a later stage. Examination periods and lecture periods do not overlap, 

and examinations have different constraints from course lectures. Examination periods generally 

last for about two weeks when lectures do not occur; the midterm period comes at the middle of 

the semester, around the eighth week, whereas the final period begins after the last day of lecture. 

Generally, the midterms are split according to programs: the first week is dedicated towards BAA 

and DESS, and the second week is for MSC, CERT and PHD. It is important to note that 

examinations are overseen by supervisors, and not by lecturers. This leads to a different dynamic 

in the constraints. Furthermore, since Examination Timetabling is a problem of smaller scale than 

Course Timetabling, it can support a larger number of constraints, as well as more precise ones.  

 

HEC Montréal aims to avoid examination conflicts between core courses and other compulsory 

courses of a curriculum. This implies that courses follow similar timeslot exclusivity groupings 
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for lectures and examinations. It is also possible for academic departments to request that several 

courses do not have their examinations at the same time, creating additional timeslot exclusivity 

groupings. Because examinations of a course tend to be similar through all its variants, it is 

necessary that the examinations of the same courses, no matter the language variant, are scheduled 

at the same time. This causes similarity groupings to be different from lectures to examinations. 

In comparison to Course Timetabling, the constraints in Examination Timetabling are more 

specific to the academic program. In BAA, students of the core curriculum cannot have more than 

one examination per day. The courses involved form one-day exclusivity groupings. In DESS, 

examinations of uni-sectional courses must be scheduled at the same time of the day as their 

lectures, and examinations of multi-sectional courses must be scheduled in the evening or during 

weekends. In CERT, examinations also need to be scheduled in the evening or during the weekends. 

In MSC and PHD, for uni-sectional courses, the examinations need to be at the same timeslot as 

lectures. Also, for uni-sectional courses taught in English, the final examinations need to be in the 

morning. The MSC and PHD courses with lectures in the evening need to schedule the 

examinations for an evening timeslot. These requests are managed through timeslot preferences. 

Timeslot prohibitions are used for MSC and PHD finals where a timeslot (morning or afternoon) 

without examination on the first day is demanded. MSC and PHD also require that there is a day 

without examinations between two final examinations of core courses, and it is managed through 

two-day exclusivity groupings. 

 

Concerning the room assignment for examinations, it is required that for each seat occupied, one 

seat is left open. This implies that the capacity of a room is cut down in half for examinations. 

Because the institution is limited in large rooms, the courses are split into smaller divisions (called 

sub-sections) beforehand, and these sub-sections are the events assigned to time-rooms. As 

mentioned, examinations are not supervised by lecturers. However, their assistance might be 

required, suggesting that examinations of the same courses must be within a same building for 

easier accessibility. For examinations at HEC Montréal, it is also common for there to be a time 

interval (typically a minimum of 48 hours) between the exam date and the last lecture of the course. 

Finally, in contrast to Course Timetabling where room layout preferences come from the lecturer, 

the room layouts required in Examination Timetabling are primarily influenced by the form of the 

examinations. 
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3.2  Framework 

We have established that course lectures and examinations at HEC Montréal are subject to different 

sets of constraints. As such, we chose to express course lectures and examinations separately, 

effectively treating them as sub-problems. In addition, we note that course lecture timetables and 

examination timetables operate in different timeframes. We settle upon representing them using 

distinct timetabling frameworks. The following sections describe the differences between the 

frameworks used to represent a course timetable and an examination timetable. 

 

3.2.1  Course framework: a standardized weekly timetable 

We now discuss the logical use of a standardized weekly timetable for courses. Diving deeper in 

the construction of such a framework, we touch on the difference between typical and atypical 

courses, and discuss its building blocks which rely on the concept of time-rooms. 

 

Course lectures at HEC Montréal are recurrent events. They occur repeatedly at a weekly interval, 

but can be exceptionally interrupted by exemptions. As a reminder, an exemption is a lecture that 

is prevented from happening at its scheduled time by an unusual event (e.g., holidays or lecturer 

unavailability). The minimal week-to-week changes in the lectures’ recurrency patterns suggest 

that it is possible to reduce the course schedule to a standardized weekly timetable (as broadly 

supported by the literature on curriculum-based Course Timetabling). This standardized timetable 

represents a typical week in a context without exemption, and is solved such that each course is 

assigned to a specific room at a given timeslot, in accordance with the relevant constraints. This 

reduced representation allows for an easier solving. From there, the standardized weekly course 

timetable is expanded in a full course schedule (generally of 12 weeks) and manual adjustments 

are made to account for and reflect any relevant exemptions.  

 

Courses that fit within the standardized framework are considered typical. We regard a typical 

course as one with lectures occurring once per week for a period of 12 weeks, occupying the same 

room at the same time. Courses that come close to this definition may also be considered typical, 

but require explicit manual adjustments. Courses that do not fit within the proposed framework 

are considered atypical. Atypical courses generally can be manually incorporated in the final 
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course schedule because of their small number; this includes special cases where several atypical 

courses share similar behavior. As an alternative to a manual solution, if a special case is large 

enough, the algorithm we propose can serve as an inspiration to one that fits a special case’s 

framework. For instance, weekend courses that are recurring in a fixed pattern can fit within a 

weekend framework, and they can be solved by a similar algorithm. 

 

Each course is assigned to a time-room, i.e., a room at a given timeslot, within the framework. 

Each lecture timeslot can be represented using two components: day and time. The lectures at HEC 

Montréal are typically given from Monday to Friday. The typical lecture times are at 8:30 – 11:30, 

12:00 – 15:00, 15:30 – 18:30 and 18:45 – 21:45. Typical course lectures have a duration of three 

hours and time is pre-allocated between lecture times to allow for transportation and break between 

consecutive courses for both students and lecturers. With that being said, the lecture timetable has 

20 timeslots, each with 67 rooms; there is a total of 1,340 time-rooms available for course lectures.  

 

3.2.2  Examination framework: a full-length timetable 

Unlike course lectures, examinations are not recurring events within a semester. Because of the 

absence of recurrent patterns, midterm and final examinations must be represented in full-length 

timetables. As mentioned previously, the midterm weeks are split in two according to programs. 

The two midterm examination periods are each 7-days long, and the final examinations period is 

14-days long. Since the two midterm examination periods and the final examination period do not 

overlap, the three of them can be solved separately, so they require separate frameworks.  

 

Examinations take place in rooms that are offered for course lectures, and can occur across 

weekdays or weekends. However, weekdays and weekends offer a different number of timeslots. 

Weekdays provide three daily timeslots, whereas weekends provide two daily timeslots. Due to 

the yearly variability in examination dates, the total number of timeslots per examination period is 

variable. This carries the implication that the creation of an examination framework requires 

specific dates as inputs. It would also imply that an examination schedule cannot be reused for 

another year.  
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4 Application of solving methods  

4.1  General algorithm 

Combinatorial optimization problems, such as timetabling problems, are hard to solve, and finding 

optimal solutions can be time-consuming. The literature review in Chapter 2 revealed that 

timetabling problems are considered NP-complete. However, the complexity of a timetabling 

problem instance heavily depends on the constraints present. So far, we can only strongly assume 

that the instance described is a problem of NP-complete complexity. The literature review also 

highlighted that metaheuristics are well-suited to solve a wide variety of combinatorial problems, 

in part due to their flexibility. These methods can allow for sufficiently good solutions to be 

generated within a reasonable timeframe for cases where optimal solutions are not necessary. In 

this context, a sufficiently good solution refers to a conflict-free timetable that generally satisfies 

students and lecturers’ preferences. 

 

To solve HEC Montréal’s Course Timetabling and Examination Timetabling problems, we 

propose a heuristic algorithm based on local search. This heuristic algorithm searches the solution 

space by only exploring complete and feasible solutions, i.e., complete solutions that satisfy all 

hard constraints. We clarify on the definition of a complete and feasible solution in Section 4.2 

when we expand on the topic of constraints. Figure 4.1 shows the pseudo-code of the algorithm 

proposed. The heuristic algorithm starts with the initial state 𝑠_0, which corresponds to an initial 

timetable solution defined by the user. The algorithm uses a penalty function to iteratively evaluate 

the states. At each iteration, a transformation 𝑡 is generated and applied on a copy of the current 

state, creating a temporary state 𝑠𝑡𝑒𝑚𝑝 . To assess the transformation, the temporary state is 

evaluated by a penalty function, and its value is compared to the penalty value of the current state 

(i.e., the state before the transformation). The general rule is that a transformation is accepted if it 

improves the current value (i.e., the penalty value of the temporary state must be lower than the 

penalty value of the current state). If the transformation is accepted, the temporary state replaces 

the current state, else the current state remains unchanged. These steps are repeated until the 

stopping criteria are fulfilled. 
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While course lectures and examinations have different constraints, they adhere to a same algorithm. 

The next sections expand on each component of the algorithm used for Course Timetabling and 

Examination Timetabling.  

 

4.2  Constraints 

Soft constraints and hard constraints can vary from a case study to another, and they strongly 

depend on the problem instance. The algorithm proposed is constructed in a way that the hard 

constraints are pre-emptively respected, by constantly working with complete and feasible 

solutions. We impose, as a hard constraint, that every course (lecture or examination) must be 

assigned to an available time-room. We consider all other constraints as soft constraints, viewing 

them as goals, and any of their violation carries a penalty. Although some constraints technically 

pose as hard constraints, we consider them as components of the penalty function (i.e., as soft 

constraints) to be able to evaluate them. By treating them as soft constraints, the optimization 

problem is subject to a less strictly constrained search space. This, in turn, allows for the algorithm 

to freely explore the space and to avoid being trapped in disconnected zones. To most prevent the 

violation of the soft constraints that technically pose as hard constraints, they are significantly 

more penalized than other soft constraints. 

 

Since we assume that optimality is not essential, the weights attached to the constraints do not need 

to be optimal and they can be set manually. When defining the numerical values of a set of weights, 

two factors need to be considered by the user: scale and trade-off. The scale corresponds to the 

range of value that the set of weights can take, whereas the trade-off refers to the priorities between 

the goals. This means that the weights of more important goals need to be set to higher values. In 

parallel, the user needs to be mindful of the numerical difference between the weights, as it 

• Let 𝑠 =  𝑠_0 

• Repeat 

o Generate transformation 𝑡 to create a temporary timetable 𝑠𝑡𝑒𝑚𝑝 ←  𝑠 +  𝑡  

o If 𝑐(𝑠𝑡𝑒𝑚𝑝)  <  𝑐(𝑠) : 

▪ 𝑠 ←  𝑠𝑡𝑒𝑚𝑝 

• Until a stopping criterion is fulfilled 

• Output: final state 𝑠 

 
Figure 4.1 Pseudo-code of the algorithm 
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influences the symmetry of the combinatorial problem. To be more precise, if the difference 

between the weights is too small, it might increase the number of equivalent solutions. To prevent 

this, the weight values need to put enough emphasis on the qualitative differences between the 

goals. Keeping this in mind, we move on to expand on the penalty mechanism of each constraint 

in Course Timetabling and Examination Timetabling. 

 

4.2.1  Course Timetabling constraints 

Course Timetabling at HEC Montréal is focused on the allocation of timeslots and rooms to course 

lectures. In this special case of allocation problem, there is an interaction of time and space. The 

course timetables need to respect time constraints (timeslot preference, similarity grouping and 

exclusivity grouping) and room constraints (room capacity, room occupancy, building preference, 

layout necessity and layout preference). Thus, there are eight Course Timetabling constraints, and 

their order of importance (from most important to least important) is as follows: exclusivity 

grouping, layout necessity, room capacity, similarity grouping, timeslot preference, layout 

preference, building preference, room occupancy. 

 

4.2.1.1  Timeslot preference 

Timeslot preferences allow courses to integrate lecturers’ availability and to comply to the 

academic departments’ requests. Each course is allowed up to a definite maximal number of 

timeslot preferences, and the default number is arbitrarily set to 4. These preferences must be listed 

in an ascending order of importance (from most important to least important). The penalty weights 

associated to the timeslot preferences of a course are ascending but cumulative. To evaluate this 

constraint, the timeslot in which a course is assigned is compared to each of its preference until a 

preference is satisfied by the timeslot, or until all preference has been compared. Every preference 

that is not satisfied adds a penalty to the course. This means that satisfying the first preference 

leads to no penalty and satisfying no preferences cumulatively leads to the highest penalty. The 

ascending weights put emphasis on the satisfaction of the first preferences, and gradually load the 

penalty as the preferences are not satisfied. 
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4.2.1.2  Similarity grouping 

Similarity groupings are used for courses of a same grouping to be assigned to a same timeslot. 

This type of grouping mainly allows the academic departments to manage human resources more 

easily towards the courses they offer. A mechanism is put in place to make sure that no similarity 

grouping is repeated. More importantly, the mechanism also ensures that there is no overlapping 

of grouping. This implies that if a grouping shares courses with another, they ultimately merge 

into a same grouping. For a similarity grouping, a penalty is applied to every course that is not 

assigned to the same timeslot as the grouping’s majority.  

 

4.2.1.3  Exclusivity grouping 

Exclusivity groupings allow courses of the same grouping to be assigned to different timeslots.  

These groupings are created to ensure that students can enroll to all courses of their curriculum. A 

mechanism is integrated so that no exclusivity grouping is completely contained within another. 

If a grouping is completely contained within another, the former is removed. The penalty of a 

grouping is calculated through the number of unique timeslots within a grouping, which must be 

equal to the number of courses within a grouping. If not, the difference between the two is 

penalized. 

 

4.2.1.4  Room capacity and room occupancy 

The capacity of a room assigned to a course must be higher or equal to its norm, or else a penalty 

of fixed value is applied to the course. Additionally, rooms are evaluated on their room occupancy 

rate. Courses with low occupancy rate are more penalized than courses with high occupancy rate. 

This is meant to reduce the number of empty seats in occupied rooms, where the number of empty 

seats corresponds to the difference between the norm of a course assigned and the capacity of the 

room. For each course, we find the ratio between the number of empty seats and the capacity of 

the room assigned. This ratio is then multiplied by the room occupancy penalty weight. Because 

this constraint is of low priority, a very small value is set for the penalty weight.  

 

4.2.1.5  Building preference 

The building of the room assigned is compared to the course’s building preference. A penalty only 

happens when the room’s building does not respect the course’s building preference.  
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4.2.1.6  Layout necessity and layout preference  

The layout of the room assigned needs to satisfy the layout necessity or the layout preference of a 

course. The satisfaction of a layout necessity differs from that of a preference. It is considered 

essential to satisfy a layout necessity, whereas the satisfaction of a layout preference is not as 

important. This implies that a heavier penalty should inevitably be attached to the violation of the 

layout necessity constraint, rather than the layout preference constraint. Furthermore, the 

evaluation of a layout necessity also differs from that of a layout preference. For layout preferences, 

only courses with preferences that are unsatisfied are penalized, whereas for layout necessities, 

courses with an unsatisfied necessity and courses that wrongfully occupy a room with a special 

layout are penalized. This is because it is not adequate for a regular course to occupy a room with 

a special layout.  

 

4.2.2  Examination Timetabling constraints 

Like Course Timetabling, Examination Timetabling at HEC Montréal deals with the allocation of 

timeslots and rooms to examinations. As mentioned in Section 3.1.3, rather than courses, sub-

sections of courses (i.e., pre-emptively split courses) are affected to the time-rooms. The 

examination timetables need to respect time constraints (timeslot preference, timeslot prohibition, 

similarity grouping, timeslot exclusivity grouping, one-day exclusivity grouping and two-day 

exclusivity grouping) and room constraints (room capacity, building preference, building grouping 

and layout necessity). For Examination Timetabling, the importance order of the 10 constraints 

will be as follows: similarity grouping, timeslot exclusivity grouping, layout necessity, timeslot 

prohibition, room capacity, one-day exclusivity grouping, two-day exclusivity grouping, building 

grouping, timeslot preference, building preference.  

 

4.2.2.1  Timeslot preference 

Timeslot preferences in Examination Timetabling allow courses to request for their examinations 

to be scheduled at the same time of the day and the same day of the week as their lectures. Like in 

Course Timetabling, each course has a maximum of 4 preferences as default, and the timeslot 

preferences, as well as the penalty weights, must be listed in an ascending order of importance. 
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The timeslot preferences in Examination Timetabling are penalized in the same way as the Course 

Timetabling. 

 

4.2.2.2  Timeslot prohibition 

Timeslot prohibitions are used in two instances for examinations. On one hand, courses can 

explicitly request their examinations to not be assigned to certain timeslots. This is the case for 

those that need to be in the evening or during the weekend. On another hand, prohibitions can be 

used to force a time interval between a course’s examination and its last lecture before the 

examination. The default time interval is 48 hours, but courses may specifically request a different 

time interval or none. This type of timeslot prohibitions is created using a course’s last lecture date 

before the examination and its time interval input, which then generates a list of timeslots that are 

prohibited. This ultimately requires the course timetable as an input. A penalty is affected to a 

course if it is assigned to a timeslot within its prohibitions. 

 

4.2.2.3  Similarity grouping 

Similarity groupings are used to ensure that examinations of the same courses happen at the same 

time. A mechanism automatically creates similarity groupings between the sub-sections of a course, 

as well as between the same courses. This type of grouping mainly helps to avoid communication 

between students of the same courses. Because examinations tend to be similar for all variants of 

a course, all language variants need to be in a similarity grouping. In parallel, they can also be 

manually created by the user to address different courses. A mechanism is integrated to merge 

groupings that share courses. The penalty for similarity groupings is affected in the same way as 

in Course Timetabling.  

 

4.2.2.4  Timeslot exclusivity grouping, one-day exclusivity grouping and two-day 

exclusivity grouping 

Several types of exclusivity groupings are employed in examinations: timeslot exclusivity 

groupings, one-day exclusivity groupings and two-day exclusivity groupings. The timeslot 

exclusivity grouping constraint is used to ensure that examinations of courses within a same 

grouping are assigned to different timeslots. This constraint is equivalent to the exclusivity 

grouping constraint in Course Timetabling. In one-day exclusivity groupings, the examinations of 
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the courses within a grouping must be on different days. For two-day exclusivity groupings, there 

needs to be at least one day without examination between each course of a grouping. Each of these 

types of grouping have a mechanism preventing repeated groupings, as well as groupings that are 

completely contained within another.  

 

Exclusivity groupings are formed using the repertory number of the courses. By using repertory 

numbers rather than sub-sections, a short repertory exclusivity grouping can represent an extensive 

sub-section exclusivity grouping. Exclusivity groupings for examinations are mostly derived 

directly from the curricula, leading to a larger number of sub-sections to be involved. Furthermore, 

it is required for the examinations of multi-sectional courses to be scheduled at the same time, 

regardless of the lecture schedules. Because their sub-sections belong to a similarity grouping, they 

cannot be represented individually in an exclusivity grouping. For instance, suppose the courses X 

and Y with respectively two and three examination sub-sections, sub-section 𝑋1 must be assigned 

to the same timeslot as 𝑋2 but they both cannot be assigned to the same timeslot as 𝑌1, 𝑌2 and 𝑌3.  

While representing an exclusivity grouping with sets of sub-sections (e.g., set X and set Y) would 

solve this issue, the use of sub-section sets for the exclusivity constraints becomes much more 

complicated. Taking the previous example, the exclusivity groupings derived from these sets 

would be 𝑋1 and 𝑌1, 𝑋1 and 𝑌2, 𝑋1 and 𝑌3, 𝑋2 and 𝑌1, 𝑋2 and 𝑌2, 𝑋2 and 𝑌3.  In fact, this 

representation would call for combinations between sub-sections of different courses through the 

rule of product. This principle in combinatorics stipulates that between two sets A and B with 

respectively 𝑚 and 𝑛 elements, there are 𝑚 × 𝑛 combinations. To avoid wasting computational 

resource, exclusivity groupings should be expressed in repertory numbers instead, since multi-

sectional courses and sub-sections of a course all share the same repertory number. Figure 4.2 

illustrates the difference between these two representations of exclusivity groupings through a 

striking example using three courses (A, B, C) with respectively two, three and four sub-sections. 

It shows that the 24 groupings of sub-sections (on the left of the figure) can be represented by a 

single exclusivity grouping of three repertory numbers (on the right of the figure). In terms of time 

complexity, the creation of groupings with sets of sub-sections through combinations is 𝑂(𝑛𝑘) 

where n is the length of the largest set and k is the number of sets. This can be entirely eliminated 

by creating groupings with repertories.  
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Moving on to the topic of evaluation, the different types of exclusivity groupings are evaluated 

similarly. Regardless of the exclusivity grouping type, for a given grouping, the first step is to 

count the number of each repertory’s sub-sections assigned to each timeslot. In timeslot exclusivity, 

for a given timeslot, we identify the repertory with the most sub-sections assigned, and the sub-

sections that are not part of the majority repertory adds a factor of one to the penalty. In one-day 

exclusivity, for the timeslots in a given day, we identify the repertory with the most sub-sections 

assigned, and the sub-sections outside of the majority repertory are penalized by the exclusivity 

penalty weight. In addition, the sub-section is further penalized by the difference in time distance 

between its timeslot and the majority repertory’s timeslot. If the sub-section is assigned to the 

repertory’s timeslot, the penalty is at its highest, with a factor corresponding to the number of daily 

timeslots in the framework; and each additional timeslot difference deducts the factor by one. A 

penalty on the time distance is calculated by multiplying the factor with a distance weight. In two-

day exclusivity, for the timeslots in a given two-day period (i.e., a given day and its next 

consecutive day), we identify the repertory with the most sub-sections assigned, and the sub-

sections that are not part of the majority repertory are penalized in a similar manner. The time 

distance is penalized similarly, with the highest penalty factor corresponding to the number of 

timeslots within a two-day period.  

 

4.2.2.5  Room capacity 

For every student seated in examination, a seat needs to remain empty. This means that the capacity 

of an examination room corresponds to half of its real capacity (rounded up). In Examination 

Timetabling, the capacity constraint is not evaluated based on the norm of the course assigned like 

in Course Timetabling. Rather, the examination room’s capacity needs to be higher or equal to a 

Figure 4.2 Difference between exclusivity groupings of sub-sections and exclusivity groupings of repertories in Examination 

Timetabling 
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sub-section’s number of seats required. The penalty however takes effect similarly to the Course 

Timetabling constraint.  

 

4.2.2.6  Building preference and building grouping 

While the building preferences are used and evaluated in the same way as Course Timetabling, 

building groupings play a more important role than the preferences. This is because, although 

examinations are not supervised by lecturers, some require their assistance. The building 

preferences allow to make sure that the examinations of the same courses are within a same 

building such that the lecturer can be available when needed. The penalty for building groupings 

is evaluated in the same way as the similarity groupings, where buildings are compared rather than 

timeslots. 

 

4.2.2.7  Layout necessity 

The layout required relates to the form of the examination. As a result, the layout preferences have 

been removed and only the layout necessities remain in Examination Timetabling. This is mainly 

because layout preferences are related to lecturers’ preferences, which are irrelevant in this context. 

Moreover, it is important to note that the course lectures’ layout necessities do not directly translate 

into the examinations’ layout necessities. To illustrate, a course with lectures given in a computer 

lab may have an examination in paper format, hence it does not require computer lab as a layout. 

The layout necessity constraint in Examination Timetabling is evaluated like in Course 

Timetabling. 

 

4.3  Data representation 

We now turn to structuring the data. In doing so, we first draw a distinction on data mutability, by 

making use of tuples (for immutable data) and lists (for mutable data). All tuples and lists contain 

the same number of elements, with a length corresponding to the total number of time-rooms in 

the framework. We treat time-room characteristics as immutable (contained in tuples) and course 

requirements/preferences as mutable (contained in lists). We start by defining a time-room tuple, 

where each element corresponds to a timeslot for a given room (room 𝑟 at timeslot 𝑡). We then 

define the characteristic tuples to store relevant room-related characteristics (e.g., room capacity, 

layout, and building location). The state is represented by a list, and this state list shows the 
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assignment of courses when compared to the time-room tuple. Every room requirement/preference 

(e.g., norm, layout required, and building required) and timeslot requirement/preference (e.g., 

timeslot preferences, and similarity groupings) is represented in a list, referred to as requirement 

lists. The representation in tuples and lists allows for easy comparison between characteristics of 

time-rooms and requirements of courses. Room requirement lists are compared to their 

corresponding characteristic tuples (e.g., norm list compared to room capacity tuple). Timeslot 

preferences and prohibitions lists can be directly compared to the time-room tuple. However, 

similarity grouping and exclusivity grouping lists call for timeslot comparison within groupings, 

which potentially leads to multiple comparisons to the time-room tuple for a course. Therefore, the 

evaluation of grouping constraints takes slightly longer to complete. These requirement lists are 

manipulated to follow each course’s requirements/preferences through the state changes expressed 

by the state list. This structure allows us to more easily retrieve data of time-rooms and courses 

affected by each iteration. 

 

Initially, bi-dimensional numPy arrays were used to represent timetables. In such arrays, the first 

dimension corresponds to the timeslots and the second dimension to the rooms. For instance, the 

course timetable is represented by a 20×67 array. However, this representation is highly taxing in 

computational time. This is mainly because only the assignment of courses to time-rooms is 

represented by the array. The time-room information (e.g., room capacity and room layout) and 

course information (e.g., course time preferences and similarity groupings) are represented in a 

different and separate manner than the assignment. Retrieving information in this circumstance is 

complicated, which ultimately lengthens the calculation of the effects of a state change. While 

each swap generally involves a very small number of time-rooms (e.g., courses of 2 time-rooms 

swapped over 1,340 time-rooms), the entirety of a timetable must be evaluated at every state 

change in this array representation. The complete evaluation of solution leads to a lot of repeated 

calculations. With the list representation suggested, only the affected courses and time-rooms are 

evaluated through partial evaluation. This is enabled by the fact that time-room information and 

course information are represented in the same way as the timetable, allowing direct access through 

the index. The swap generation returns indexes to be swapped in the state list. All requirement 

lists follow the same changes as the state list, and the constraints are evaluated at the level of the 

affected indexes. By avoiding the evaluation of the entire state at every iteration through this 
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representation of data, we realize a significant economy in evaluation time. Figure 4.3 shows the 

evaluation plot of a Course Timetabling model using partial evaluation and complete evaluation. 

This figure allows to compare the algorithm’s convergence time using partial evaluation with list 

representation (illustrated in grey), and complete evaluation with array representation (illustrated 

in black). We note that the model converges considerably faster when using partial evaluation. The 

time economy through this choice of evaluation is significant; it reduces the solution evaluation 

time by a factor of over 1000. 

 

4.4  Initialization 

The algorithm is initialized with a state defined by the user. This initial state must be a complete 

and feasible solution. To realize this, three types of initializations are suggested: last, random, and 

random by similarity groupings. Last invokes the use of the previous year’s semestrial timetable 

as the initial state. Because the examination framework differs year-to-year, the last initialization 

is unapplicable to Examination Timetabling. Random and random by similarity groupings are 

constructive heuristics; they start off empty and iteratively assign a course to an available time-

room until a complete timetable is built as a state. Random returns a list of random non-repetitive 

time-rooms, and they are assigned to the alphabetically sorted courses.  Random by similarity 

groupings is done in two phases. First, we assign time-rooms to courses that are part of similarity 

groupings, in which all courses of a grouping should share a same timeslot. For a grouping, we 

randomly generate one timeslot with enough available rooms for the number of courses in the 

grouping. A list of random non-repetitive rooms is then generated. The time-rooms formed from 

the timeslot and rooms generation must be yet assigned. This step is repeated for all similarity 

Figure 4.3 Comparison between partial evaluation and complete 

evaluation with a Course Timetabling problem 
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groupings. Second, we assign time-rooms to courses that are not in any similarity groupings. To 

do so, a list of random non-repetitive time-rooms which have yet been assigned is generated. The 

idea behind random by similarity groupings initialization is for the algorithm to start off with a 

timetable that already has the similarity groupings constraint satisfied, that way less time is spent 

to reunite courses within groupings. The initial state list is derived from the list of courses assigned 

to time-rooms resulting from the type of initialization chosen by the user. The requirement lists 

are, in turn, derived from the state list. Because the state list and the requirement lists must 

maintain their length, time-rooms with no course assigned are assigned the None value at their 

respective position in the state list and the requirement lists.  

 

4.5  Transformation 

Transformations are modifiers that are applied on a state to create a new one. We only consider 

swaps for transformations in our algorithm. In this context, we define a swap as an exchange of 

courses between two or more time-rooms. A time-room within a swap can be empty (no course is 

currently assigned to the time-room); it would result in a translation of course from a time-room 

to another. To maintain similarity groupings that were united through the random by similarity 

groupings initialization, the algorithm must support swaps of sets of time-rooms. A swap of time-

room sets can be viewed as an exchange of courses between rooms of different timeslots. We will 

clarify on the idea of swaps of time-room sets when discussing swap generation.  

 

4.6  Swap generation 

The following section will explain the two steps entailed in a swap generation: the generation of a 

list of time-room indexes for each set involved, as well as the generation of a swapping order.   

 

In the generation of a list of time-room indexes for each set of a swap, each set must be generated 

subsequently to avoid repetition. To do so, we first generate an index number amongst the time-

room tuple. If the course currently assigned to the time-room (indicated by the state list) is part of 

a similarity grouping (indicated in the similarity grouping list), the time-rooms currently assigned 

to the courses of the grouping become part of the set, if they currently share the same timeslot as 

the first generated time-room. However, the number of time-rooms in each set must be equal, and 

this number is determined by the length of the largest set. Additional time-rooms are generated for 
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each set with insufficient time-rooms. The additional time-rooms, along with the time-rooms of 

the courses in their similarity groupings, need to be currently assigned to the same timeslot as the 

set they join, and they cannot exceed the number of time-rooms to fulfill. Figures 4.4 present a 

flowchart to illustrate this generation process, whereas Figure 4.5 provides a flowchart of the 

subprocess to generate additional time-rooms for sets with insufficient time-rooms. 

Figure 4.4 Flowchart of the process of swap generation 
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Figure 4.5 Flowchart of the subprocess to fill sets 
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The generation of a swapping order is needed to enable the possibility to swap multiple (more than 

two) sets of time-rooms. This order defines the dynamic between the sets, i.e., with which set each 

is swapped. In such a way, a swap can be considered as a permutation between the time-room sets. 

For 𝑛 time-room sets, there are 𝑛! − 1 possible permutations (without repetitions), excluding the 

permutation that involves no change. The number of possible permutations becomes increasingly 

high as the number of time-room sets increases. The time complexity for generating a swapping 

order from the possible permutations is 𝑂(𝑛!), which suggests that the number of sets should be 

limited to avoid lengthy swap generations. We compare two ways of generating a swapping order: 

best order and random order. The best order is obtained by evaluating every possible permutation 

for a given list of time-room indexes and selecting the best resulting one; the random order only 

calls for a single evaluation of a randomly generated order amongst the possible permutations. We 

compare the best order and random order methods with two Course Timetabling models, one with 

3-set swaps and another with 6-set swaps. Through evaluation plots presented in Figure 4.6, it is 

evident that the random order method both performs better and converges faster than the best order 

method in both models. Incidentally, Figure 4.5 shows that a higher number of sets does not 

guarantee better results. More details on the performance of models with multiple sets will be 

provided in Chapter 5.  

 

We further investigate the difference between the two methods by comparing the number of swaps 

generated and the average evaluation time in models that use different number of sets, as shown 

in Table 4.1. Globally, as the number of sets increases, less swaps are generated, and evaluation 

appears slower. The longer generation and evaluation processes can be explained by the increase 

Figure 4.6 Evaluation plot of a 3-set model and 6-set Course Timetabling model using best order and random order methods 
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in time-rooms involved through the increase in number of sets. Moreover, as the number of sets 

grows higher, the difference between the two methods becomes more prominent. While the best 

order method seems better for the model with 2 sets, the random order method works better for the 

other models. In the model with 2 sets, the best order method allows for 1.10x more swaps 

generated and 1.09x faster average evaluation time than the random order method. In models with 

3 to 6 sets, we see that the random order method leads to significantly higher number of swaps 

generated (i.e., respectively 4.16x, 18.5x, 96.37x and 577.81x) and faster average evaluation time 

(i.e., respectively 5.56x, 24.21x, 121.43x and 718.37x) than the best order method. We attribute 

this disparity in number to the fact that the best order method requires 𝑛! − 1 evaluations, making 

it longer to generate an order when the number of sets is high, whereas the random order method 

only requires one evaluation regardless of the number of sets. While both methods still require the 

generation of 𝑛!  permutations, the difference in execution time resides in the number of 

evaluations involved in the generation of a swap.  

 

To generate swaps, a fully random mechanism was initially adopted, implying that each part of a 

swap is generated randomly in a subsequent manner. However, full randomness can potentially 

lead to slow convergence, especially since combinatorial problems tend to have very large search 

Number of swaps generated Average evaluation time (in seconds) 

Number of sets Best order Random order Best order Random order 

2 346558 313711 0.0011 0.0012 

3 55349 230505 0.0100 0.0018 

4 10143 188105 0.0581 0.0024 

5 1407 135586 0.4250 0.0035 

6 182 105161 3.3045 0.0046 

Table 4.1 Comparison of best order and random order methods through number of swaps generated and average evaluation time 

according to number of sets 

Figure 4.7 Possible movements in two special swapping techniques (box(2,2) and cross(1,1)) through a Wednesday lunch 

timeslot example 
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spaces. This indicates a need for additional mechanisms to randomness. We notice that most 

accepted swaps have a pattern: they involve adjacent timeslots. The cause of this is the existing 

patterns within timeslot preferences; the preferred timeslots of a course are generally very close to 

one another. For instance, it is significantly more likely for a course lecture with a Monday 

morning preference to also list a Monday noon (or even a Tuesday morning) preference rather than 

a Friday evening. Therefore, it would be beneficial to exploit this idea of time distance within a 

swap in attempt to reduce exploration time.  

 

To control the timeslot distance in a pairwise swap, it is necessary to generate each part of a swap 

sequentially. This allows to add a bound on the timeslot of the first part of the swap to then generate 

the timeslot of the counterpart. Several techniques could be developed to generate swaps of time-

rooms that are closer in terms of time; we decide to focus on 𝑏𝑜𝑥(𝑣, ℎ) and 𝑐𝑟𝑜𝑠𝑠(𝑣, ℎ) swappings. 

𝐵𝑜𝑥(𝑣, ℎ) swapping enables simultaneously bi-dimensional swaps (vertical, horizontal, or across), 

while 𝑐𝑟𝑜𝑠𝑠(𝑣, ℎ) swapping only allows for uni-dimensional swaps (vertical or horizontal). The 

former allows for courses to simultaneously change timeslot and day, whereas the latter only 

permits a change of timeslot or day at a time. 𝐵𝑜𝑥(𝑣, ℎ) swapping adds a bound by completely 

surrounding a given timeslot, to create a box around the timeslot, and 𝑐𝑟𝑜𝑠𝑠(𝑣, ℎ) swapping adds 

a cross-shaped bound around the given timeslot. The user-defined values of 𝑣 and ℎ respectively 

correspond to the vertical units and the horizontal units. Figure 4.7 illustrates the different timeslots 

enabled (boxes colored in grey) between the two swapping techniques through an example: given 

a course time-room at Wednesday lunch (indicated by the “x” symbol), a 𝑏𝑜𝑥(1, 1) would allow 

a time-room to be generated from nine timeslots (between Tuesday to Thursday, from morning to 

afternoon) as seen on the left of Figure 4.7, and a 𝑐𝑟𝑜𝑠𝑠(1, 1) would enable 5 possible timeslots 

(Tuesday lunch, Wednesday morning to afternoon, and Thursday lunch) as seen on the right of 

Figure 4.7.  

 

4.7  Types of swaps 

In attempt to further the study on swaps, we have conducted an analysis on the types of swaps that 

are accepted in a baseline model. We categorized the swaps into 3 types: time-room swaps, time 

swaps, and room swaps. Stacked bar plots and pie charts are used to observe the occurrence of the 

different types of swaps according to the runtime of the model. Figure 5.2 shows stacked bar plots 
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of the frequency of the accepted swap types according to the runtime. The frequency is illustrated 

in four plots, each representing a different interval of runtime, because of the heavy concentration 

of swaps at the start of the runtime. Figure 4.8 shows that 78.25% of the total swaps (2988 swaps 

within 600 seconds) accepted in the first 150 seconds. Besides, we note that almost all of the time-

room swaps (90.25% out of 667 time-room swaps) and most of the swaps involving only time 

(77.25% out of 923 time swaps) or room (73.18% out of 1398 room swaps) happen in the first 150 

seconds. On another note, the time-room swaps are noticeably less common; they only account for 

22.32% of the total swaps. Time swaps and room swaps respectively account for 30.89% and 

46.79%. The pie charts in Figure 4.9 allow us to extract more information on the proportions of 

the types of swaps accepted per runtime interval. It can be observed that, aside from the first 150 

seconds where the proportions of time-room, time and room swaps are almost equal, the room 

swaps are the most frequent within a given time interval, followed by the time swaps and the time-

room swaps. The exclusive use of specific types of swaps between certain time intervals in a model 

could potentially lead to interesting results.   

 
Figure 4.8 Stacked bar plots of swap types per time interval 
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4.8  Solution evaluation 

In basic terms, evaluation compares the current state to the temporary state (i.e., the state after 

transformation). Due to the data representation proposed, it is not necessary to evaluate the entire 

timetable. Rather, only the time-rooms affected by the transformation need to be evaluated, once 

before and once after the transformation. Furthermore, because the constraints are on two distinct 

dimensions (time and space), evaluation can be done on two levels, and can be calculated using 

two variables: 𝑣𝑎𝑟_𝑡𝑖𝑚𝑒  and 𝑣𝑎𝑟_𝑟𝑜𝑜𝑚 . The sum of both results in the total variation in 

evaluation caused by the transformation generated on the current state. This decomposition in 

evaluation allows for an economy in evaluation time for some scenarios.  

 

Since Course Timetabling and Examination Timetabling are such large combinatorial problems, 

they are bound to involve numerous evaluations. To spare time in evaluation and focus on 

exploring solutions, it is important to identify situations where evaluation is not necessary. The 

distinction between time and space in the timetabling problems fuels the idea of computing the 

variation of penalty through two separate variables: 𝑣𝑎𝑟_𝑡𝑖𝑚𝑒 and 𝑣𝑎𝑟_𝑟𝑜𝑜𝑚. Here are three 

scenarios where the time-rooms generated for the transformation allow for a significant economy 

in evaluation time:  

Figure 4.9 Pie charts of swap types per time interval 
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1) The time-rooms are empty. 

If the time-rooms generated are empty, there would be no change: 𝑣𝑎𝑟_𝑡𝑖𝑚𝑒 =  0 and 

𝑣𝑎𝑟_𝑟𝑜𝑜𝑚 =  0. Therefore, no evaluation is necessary.  

2) The time-rooms have the same timeslot. 

If the transformation is only a change of room for the same timeslot, only the room 

constraints would be affected: 𝑣𝑎𝑟_𝑡𝑖𝑚𝑒 =  0. Therefore, no evaluation for timeslot is 

necessary, and if the variation for room shows improvement, the transformation is accepted.  

3) The time-rooms have the same room. 

If the transformation is only a change of timeslot for the same room, only the timeslot 

constraints would be affected: 𝑣𝑎𝑟_𝑟𝑜𝑜𝑚 =  0. Therefore, no evaluation for room is 

necessary, and if the variation for timeslot shows improvement, the transformation is 

accepted.  

 

4.9  Stopping criteria 

Because the optimal solution is not known, and the problem instance might not have a single 

optimal solution, the algorithm needs a stopping criterion. Two options based on duration are made 

available: total runtime and plateau time. Both options can also be used simultaneously such that 

the algorithm can be forcibly stopped after a predefined duration or after it hits a plateau (i.e., a 

period when no significant change can be found) for a predefined duration. The use of both options 

allows the algorithm to terminate as soon as it converges, such that the user does not have to wait 

the remainder of the algorithm duration to extract a solution.   
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5 Results 

5.1  Data simulation 

After acquiring knowledge on the general mechanics of the algorithm, we move on to the model 

applications to solve HEC Montréal’s timetabling problem instances. As novel problems, Course 

Timetabling and Examination Timetabling at HEC Montréal do not have benchmarks and require 

data simulations for model testing. Most data required for the algorithm (e.g., lecturers’ timeslot 

preferences and layout requirements) were not accessible at the time of the algorithm conception, 

leading to a need for data simulation. To test for a given past semester, we derive from its 

semestrial timetable to simulate the data. The past timetable will mainly be used to derive data, 

rather than to assess as a benchmark. This is because the goal of the algorithm is to generate 

conflict-free timetables that mostly satisfy students and lecturers’ preferences within a reasonable 

timeframe. Rather than attempting to replicate the past semestrial timetable, we focus on the 

analysis of the quality aspect of the timetables generated by the algorithm.  

 

To test Course Timetabling models, we use data from the lecture timetable of Fall 2019. While 

courses that could require layout necessities are directly extracted from the timetable, the 

preferences on the layout, building and timeslot are only partially derived. This is because it is 

impossible to pinpoint the courses with these requests solely from the timetable. The norms were 

not provided, so they had to be simulated. The similarity groupings and exclusivity groupings are 

formed by comparing timeslots of the uni-sectional courses within a same curriculum. We assume 

that, for a given curriculum, courses with the same timeslot form a similarity grouping, and courses 

with different timeslots form an exclusivity grouping. In the resulting simulated data, only 2% of 

the courses do not have any preferences (other than the norm that is affected to all 802 courses); 

51% of the courses require a specific layout, including 4% that indicate a layout necessity; 49% of 

courses request a building preference, and 93% of them provide at least one timeslot preference; 

finally, 8% of the courses are part of a similarity grouping, while 18% are in an exclusivity 

grouping.  

 

To test Examination Timetabling models, we similarly derive data from the examination timetable 

of Fall 2019. The number of seats required for each sub-section is provided. Because room layouts 
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concerned in the examination context are special layout (only the computer labs and the trading 

room), courses requiring a specific layout are directly extracted from the timetable. The 

preferences of building and timeslot, as well as the prohibitions of timeslot, are only partially 

derived from the timetable since the courses with such requests cannot completely be identified 

from the timetable. For timeslot prohibitions, we derive the timeslots that need to be included to 

respect the time interval from the last lecture date before examination. The academic programs’ 

requirements of course examinations to be scheduled, or not scheduled, at a specific timeslot are 

also used to create timeslot preferences and prohibitions. The similarity groupings and exclusivity 

groupings are formed by comparing timeslots of the sub-sections within a same curriculum. We 

assume that the sub-sections with the same repertory number form a similarity grouping. The 

building groupings are simply the same as the similarity groupings. Concerning the three types of 

exclusivity groupings, for a given curriculum, repertories of sub-sections with different timeslots 

form a timeslot exclusivity grouping, repertories of sub-sections on different days form a one-day 

exclusivity grouping, and those separated by a day without examination form a two-day exclusivity 

grouping. The resulting simulated data show only 1% of sub-sections without any preferences 

(other than the number of seats required for all 995 sub-sections); less than 1% of the sub-sections 

require a specific layout or request a building preferences while 91% are part of a building 

grouping; 8% have a timeslot preference and 62% use timeslot prohibitions; finally, 91% of the 

sub-sections are part of a similarity grouping, whereas 9% are in a timeslot exclusivity grouping, 

one-day exclusivity grouping and two-day exclusivity grouping.  

 

5.2  Experimental results 

This section is dedicated towards the presentation of the different models developed to solve the 

Course Timetabling and Examination Timetabling problems of HEC Montréal. The models are 

tested using the simulated data and, to ensure comparability, all models use the same constraint 

weights (excl. the room occupancy constraint) which are listed in Tables 5.1 and 5.2. The 

discussion of the results based on a total of 10 runs will be supported by additional tables. 

Description tables, labelled as 5A, are used to summarize each model by presenting the parameter 

inputs and a short description of the mechanics involved in the model. The parameters revealed 

through this table include the type of initialization, the type of swapping, the use of sets of single 

or multiple time-rooms, the number of sets, and the weight value of the room occupancy constraint. 
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Result tables, labelled as 5B, report the average, lowest and highest values for initial and final 

penalty, as well as the average runtime needed to reach 95% and 99% of the improvement 

accomplished within the defined total runtime. A result table provides insight regarding the 

performance and convergence of a model, given the inputs presented in its corresponding 

description table. The result reported in this section specifically concern the Course Timetabling 

problem, and the conclusions derived from these results are consistent with the Examination 

Timetabling problem, unless specified otherwise. 

Constraint Weight 

Timeslot preference [10, 20 30, 40] 

Similarity grouping 200 

Exclusivity grouping 500 

Capacity 300 

Layout necessity 450 

Layout preference 35 

Building 29 

Table 5.1 Course lecture constraint weights 

Constraint Weight 

Timeslot preference [5, 10, 20, 60] 

Timeslot prohibition 625 

Similarity grouping 900 

Timeslot exclusivity grouping 800 

One-day exclusivity grouping 200 (distance = 1) 

Two-day exclusivity grouping 100 (distance = 1) 

Capacity 500 

Layout necessity 700 

Building 30 

Building grouping 100 

Table 5.2 Examination constraint weights 

Considering the different model components, we introduce the concept of phase change, where a 

model changes one (or multiple) of its components at a certain point of the runtime. Two different 

approaches can be used for activating a phase: time-based and exploration-based. In the time-based 

approach, a phase change is triggered at a given runtime. This information is usually defined by a 

fraction of the total runtime. In the exploration-based approach, the phase change is instead 

triggered by a certain exploring time (i.e., the duration to find an improving swap). We find that 

two conditions must be in place to ensure proper functioning of the latter approach: ongoing 

exploring time and last exploring time. Since the average exploring time depends on the problem 
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instance, rather than using a fixed number, the ongoing exploring time should be expressed 

according to the last exploring time. Because the ongoing exploring time is expressed by a factor, 

the last exploring time needs to be limited by an explicit lower bound. The default lower bound 

for the last exploring time is 0.01. This is to ensure that very small values of the last exploring time 

do not affect the condition on the ongoing exploring time. Due to the conditions within the 

exploration-based approach, a phase change is not guaranteed to happen.   

 

5.2.1  Baseline model  

To start off, Course Timetabling and Examination Timetabling at HEC Montréal are novel 

problems. Because there is no available benchmark, a baseline model is used to compare 

improvement strategies. The baseline model corresponds to the simplest model developed, given 

the components presented in Chapter 4. As summarised in the description table, Table 5A.1, this 

baseline model is randomly initialized through random initialization, and it randomly generates 

swaps of single time-rooms, rather than sets of multiple time-rooms, and each swap involves two 

time-rooms. Additionally, it uses the room occupancy constraint with its default weight value of 

10-3. Through the result table, Table 5B.1, we can see that, with a total runtime of 600 seconds, the 

average penalty value progresses from 214252 to 6001, with 95% of the improvement achieved 

within the first 118.36 seconds, and 99% within 339.78 seconds in average. The range of penalty 

values greatly shrinks, with an initial value range of 9860 to a final value range of 825. 

 

5.2.2  Adapted baseline model  

We adapt the baseline model to study the joint effectiveness of the random by similarity grouping 

initialization and the use of sets of multiple time-rooms. Table 5A.1 indicates that all inputs, aside 

from the type of initialization and the use of sets of single or multiple time-rooms, remain 

unchanged from the baseline model. By pre-emptively regrouping courses within their similarity 

groupings and allowing them to change time-rooms simultaneously, we believe that an opportunity 

for a significant time economy can be created. As shown in Table 5B.1, this type of initialization 

allows the model to start at a lower initial penalty value than the baseline model, with an average 

value of 212100. Within a similar total runtime, the adapted baseline model successfully reaches 

a lower final penalty value of 5351 in average. On another note, 95% of the average improvement 

is accomplished within 127.53 seconds, and 99% of the average improvement within 370.14 
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seconds out of 600 seconds. The signs of slower convergence can be explained by the better 

performance of the model. With a range of initial values of 13880 and a range of final values of 

1840, the adapted baseline model seems to be much more variable than the baseline model, which 

shows ranges of 208515 and 825 for its initial and final values. While the range in final penalty 

values is much larger in the adapted baseline model, the highest penalty value obtained is still 

lower than the baseline model’s, showcasing once again the performance of the adapted baseline 

model.  

Name Baseline Adapted baseline 

Initialization Random Random by similarity 

Type of swapping Random Random 

Single or multiple Single Multiple 

Number of sets 2 2 

Occupancy 10-3 10-3 

Algorithmic details Simplest model 

Baseline model that uses 

random by similarity 

groupings initialization and 

sets of multiple time-rooms 

Table 5A.1 Description of baseline and adapted baseline models 

Name Baseline Adapted baseline 

Total runtime 600 sec 600 sec 

Average initial value 214252 212100 

Highest initial value 218375 218900 

Lowest initial value 208515 205020 

Range of initial values 9860 13880 

Average final value 6001 5351 

Highest final value 6515 6440 

Lowest final value 5690 4600 

Range of final values 825 1840 

Average time for 95% of 

final value 
118.36 sec 127.53 sec 

Average time for 99% of 

final value 
339.78 sec 370.14 sec 

Table 5B.1 Results of baseline and adapted baseline models 

 

5.2.3  Baseline and adapted baseline models with longer runtime  

Table 5C.1 presents the results of a single execution of the baseline and adapted baseline models 

executed for a longer runtime. It lists the total runtime, initial and final penalty values, as well as 

the time for 95% and 99% of the final value of the single execution of the model. We observe that, 
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with a total runtime of 1800 seconds, the baseline model does improve. The average final penalty 

of the baseline model after the extended runtime is 5130, showing a 14.51% decrease in value 

from the average of the original runtime of 600 seconds. We see that 95% of the improvement is 

achieved in 157.74 seconds, and 99% of it is achieved in 540.01 seconds. By contrast, there is a 

noticeably bigger decrease in final penalty value for the adapted baseline model through the 

extended runtime. The final value reaches 3415, which corresponds to a decrease of 36.18% in 

value from the average of the original runtime. This large improvement does, however, show an 

effect on the convergence of the model. In fact, when the model is executed for 1800 seconds, the 

penalty reaches 95% of its final value at 203.66 seconds and 99% of it at 668.18 seconds.  

 

 

 

 

 

Table 5C.1 Results of baseline adapted baseline with extended runtime 

 

By comparing both models, we can conclude that a longer runtime is as not beneficial to the 

baseline model, seeing that 99% of its final penalty value can be achieved within the original 

runtime of 600 seconds. In contrast, the adapted model needs more than 600 seconds to achieve 

99% of its final penalty value. With a 36.18% improvement to the former average penalty value, 

we can argue that additional runtime can be advantageous to the adapted baseline model. We can 

clearly see that the extended runtime enables penalty to reach lower values than the lowest penalty 

values of the runs with 600 seconds. Considering that the penalty value can be improved, we begin 

exploring avenues of improvement strategies as alternatives to a longer runtime. From Table 5B.2, 

we can see that the adapted baseline model has a lower average initial value, but a much larger 

range than the baseline model, i.e., average initial values of 214252 and 212100 with ranges of 

9860 and 13880. However, considering the lower resulting penalty value with a runtime of 1800 

seconds and the lower average penalty value with a runtime of 600 seconds, the next models will 

mostly continue to use the parameters random by similarity initialization and sets of multiple time-

rooms, introduced through the adapted baseline model. 

Name Baseline Adapted baseline 

Total runtime 1800 sec 1800 sec 

Initial value 218375 208950 

Final value 5130 3415 

Time for 95% of final value 157.74 sec 203.66 sec 

Time for 99% of final value 540.01 sec 668.18 sec 
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5.2.4  Swaps of multiple time-room sets 

Next, we turn to swaps between multiple sets of time-rooms, keeping in mind that the number of 

sets used should be limited, as discussed in Section 4.1.5. Table 5A.2 presents three models that 

operate with more than 2 sets of time-rooms in their swaps. As we can see, only the number of sets 

differs from the parameters of the adapted baseline model. With 3 sets of time-rooms involved in 

each swap, Table 5B.2 indicates that the model reaches an average final penalty of 7706, with 95% 

of improvement found within 195.50 seconds and 99% of it found within 418.05 seconds in 

average. This model shows both worse performance and convergence than the baseline model. We 

then use the time-based approach to equally allocate runtime to a phase of 2 sets and another of 3 

sets of time-room. With the use of 3 sets as the starting phase, Table 5B.2 reports an average final 

penalty value of 5765, whereas with the use of 2 sets as the starting phase, it reports an average 

value of 5856. As the models do not seem to show good performance compared to the adapted 

baseline model, the following models will simply continue to use swaps of 2 sets. 

Name 3set 3set_2set_1/2 2set_3set_1/2 

Initialization Random by similarity Random by similarity Random by similarity 

Type of swapping Random Random Random 

Single or multiple Multiple Multiple Multiple 

Number of sets 3 Per phase (3 and 2) Per phase (2 and 3) 

Occupancy 10-3 10-3 10-3 

Algorithmic details 
Allows swaps of 3 sets of 

multiple time-rooms 

Allows swaps of 3 sets in 

first ½ of total runtime; and 

allows only swaps of 2 sets 

in remaining runtime 

Allows only swaps of 2 sets 

in first ½ of total runtime; 

and allows swaps of 3 sets 

in remaining runtime 

Table 5A.2 Description of models with swaps of multiple time-room sets 
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Name 3set 3set_2set_1/2 2set_3set_1/2 

Total runtime 600 sec 600 sec 600 sec 

Average initial value 211748 208137 209630 

Highest initial value 217995 213910 217020 

Lowest initial value 204485 202900 203100 

Range of initial values 13510 11010 13920 

Average final value 7706 5765 5856 

Highest final value 8645 6170 6740 

Lowest final value 7015 5395 5500 

Range of final values 1630 775 1240 

Average time for 95% of 

final value 
195.50 sec 220.48 sec 119.22 sec 

Average time for 99% of 

final value 
418.05 sec 420.72 sec 288.97 sec 

Table 5B.2 Result of models with swaps of multiple time-rooms sets 

 

5.2.5  Special swappings 

As mentioned in Section 4.1.5, the randomness proposed in the generation of swaps can potentially 

lead to slow convergence. With the 𝑏𝑜𝑥(𝑣, ℎ) and 𝑐𝑟𝑜𝑠𝑠(𝑣, ℎ) swappings introduced previously, 

we aim to improve swap generation by looking for patterns in the accepted swaps of a model. We 

suggest an analysis, with the heatmap shown in Figure 5.1, of the accepted swaps in the baseline 

model discussed in the Section 5.2.1. In heatmap, the vertical axis shows the vertical units within 

the swaps and the horizontal axis shows the horizontal units within the swaps. We can see that the 

figure shows a strong concentration in the upper left corner. This indicates that the majority of the 

accepted swaps (70% of the 1089 swaps) involve a short time distance, which is limited to 2 units 

of time in days and daily timeslots. The heatmap seems to suggest that special swappings such as 

𝑏𝑜𝑥(2, 2) and 𝑐𝑟𝑜𝑠𝑠(1, 1) may be helpful in reducing the generation of non-improving swaps.  

Figure 5.1 Heatmap of time distance in accepted swaps in 

a baseline model 
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To integrate this idea, we first determine the impact of special swappings on the adapted baseline 

model. Two models are presented through Table 5A.3, where each model only uses a single type 

of special swapping which are 𝑏𝑜𝑥(2, 2) and 𝑐𝑟𝑜𝑠𝑠(1, 1). The remaining of the parameters are 

unchanged from the adapted baseline model. As reported in Table 5B.3, when using 𝑏𝑜𝑥(2,2), the 

average final penalty value achieved is 8262, and when using 𝑐𝑟𝑜𝑠𝑠(1,1), the average value 

achieved is 32590. The model with 𝑏𝑜𝑥(2,2) reaches 95% of its improvement in 143.97 seconds 

and 99% of its average improvement in 370.01 seconds in average. The model with 𝑐𝑟𝑜𝑠𝑠(1,1), 

considering a worse performance, reaches 95% of its average improvement in 79.64 seconds and 

99% of in average improvement at 253.75 seconds in average. These models do not yield 

comparable results to the baseline and adapted baseline models. 

Name 𝑩𝒐𝒙(𝟐, 𝟐) 𝑪𝒓𝒐𝒔𝒔(𝟏, 𝟏) 

Initialization Random by similarity Random by similarity 

Type of swapping 𝑏𝑜𝑥(2, 2) 𝑐𝑟𝑜𝑠𝑠(1, 1) 

Single or multiple Multiple Multiple 

Number of sets 2 2 

Occupancy 10-3 10-3 

Algorithmic details 
Only uses special swapping  

𝑏𝑜𝑥(2, 2) 

Only uses special swapping  

𝑐𝑟𝑜𝑠𝑠(1, 1) 

Table 5A.3 Description of models that use a single type of special swapping 

Name 𝑩𝒐𝒙(𝟐, 𝟐) 𝑪𝒓𝒐𝒔𝒔(𝟏, 𝟏) 

Total runtime 600 sec 600 sec 

Average initial value 211462 210470 

Highest initial value 215980 217310 

Lowest initial value 208575 203980 

Range of initial values 7405 13330 

Average final value 8262 32590 

Highest final value 9225 34960 

Lowest final value 7335 30780 

Range of final values 1890 4180 

Average time for 95% of 

final value 
143.97 sec 79.64 sec 

Average time for 99% of 

final value 
370.01 sec 253.75 sec 

Table 5B.3 Results of models that use a single type of special swapping 
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From the last observations, there is evidence to believe that the exclusive use of special swappings 

does not improve the algorithm. As random swapping seems to promote better performance and 

convergence, we move on to develop models that integrate the use of random swapping and special 

swappings through model phases. Given a list of swapping types ordered by their phase occurrence, 

two different approaches can be used for phase activation: time-based and exploration-based. A 

major difference can be perceived between the two approaches: as long as there is runtime 

allocated to each swapping type phase, all listed swapping types are used in the time-based 

approach, which is not the necessarily the case in the exploration-based approach. Because it is 

not possible to predict how many times the conditions for a phase change are satisfied in the 

exploration-based approach, there is no guarantee that every listed swapping type will be used in 

this approach.  

 

We first take a look at the time-based approach through the models described in Table 5A.4, which 

use random swapping and the special swappings 𝑏𝑜𝑥(2,2) and 𝑐𝑟𝑜𝑠𝑠(1,1). These models only 

differ from the adapted baseline model in terms of types of swapping. This particular order in the 

swapping types promotes a gradual increase of precision in time distance. As shown in the table, 

we test several runtime allocations to these swapping type phases. For a model that equally 

allocates the runtime to each type of swapping (⅓ of total runtime to each), the final penalty value 

is 6187 in average. For a model that allocates ½ of the runtime to random swapping and ¼ to each 

of the special type of swapping, the final penalty value averages 5234. Finally, for a model that 

allocates ⅔ of the runtime to random swapping and ⅙ for each of special type of swapping, the 

final penalty value is 5227 in average. From these models developed, we observe that the last two 

model beats not only the performance of the baseline model, but also the performance of the 

adapted baseline model. In addition to the lower average value of the final penalty, a smaller range 

of final value is also noted. The first model shows a range of 3245, as opposed to the last two 

models which respectively have a range of 1000 and 800. These results seem to indicate that a 

model performs better and is less variable when the majority of the total runtime is dedicated 

towards random swapping.  

 

 

 



 52 

 

Name 
Rand_𝒃𝒐𝒙(𝟐, 𝟐)_ 

𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_1/3 

Rand_𝒃𝒐𝒙(𝟐, 𝟐)_ 

𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_1/2 

Rand_𝒃𝒐𝒙(𝟐, 𝟐)_ 

𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_2/3 

Initialization Random by similarity Random by similarity Random by similarity 

Type of swapping 
Per phase (random, 

𝑏𝑜𝑥(2, 2), 𝑐𝑟𝑜𝑠𝑠(1, 1)) 

Per phase (random, 

𝑏𝑜𝑥(2, 2), 𝑐𝑟𝑜𝑠𝑠(1, 1)) 

Per phase (random, 

𝑏𝑜𝑥(2, 2), 𝑐𝑟𝑜𝑠𝑠(1, 1)) 

Single or multiple Multiple Multiple Multiple 

Number of sets 2 2 2 

Occupancy 10-3 10-3 10-3 

Algorithmic details 

Time-based model that 

allocates ⅓ of total runtime 

to each type of swapping 

Time-based model that 

allocates ½ of total runtime 

to random swapping and the 

remaining ¼ to each of 

special swapping 

Time-based model that 

allocates ⅔ of total runtime 

to random swapping and ⅙ 

to each of special swapping 

Table 5A.4 Description of time-based models that use three types of swapping 

Table 5B.4 Results of time-based models that use three types of swapping 

 

These results lead us to question the sufficiency of the use of a single special swapping, rather than 

two special swappings, to incorporate with random swapping. Tables 5A.5 and 5A.6 present three 

models that use random swapping, and 𝑏𝑜𝑥(2,2)  or 𝑐𝑟𝑜𝑠𝑠(1,1)  swapping, where runtime 

allocations to random swapping are the first ¼, ½ and ¾ of the total runtime of 600 seconds. The 

results are reported through Tables 5B.5 and 5B.6. For models that use 𝑏𝑜𝑥(2,2) swapping in 

addition to random swapping, the average final penalty values are respectively 5890, 4990 and 

5015. For models that use 𝑐𝑟𝑜𝑠𝑠(1,1) swapping in addition to random swapping, the average final 

penalty values are respectively 7950, 6039 and 5161. We see that, when 𝑏𝑜𝑥(2,2) is the secondary 

Name 
Rand_𝒃𝒐𝒙(𝟐, 𝟐)_  

𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_1/3 

Rand_𝒃𝒐𝒙(𝟐, 𝟐)_ 

𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_1/2 

Rand_𝒃𝒐𝒙(𝟐, 𝟐)_ 

𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_2/3 

Total runtime 600 sec 600 sec 600 sec 

Average initial value 210588 209265 208855 

Highest initial value 216325 216595 216240 

Lowest initial value 207280 204320 203200 

Range of initial values 9045 12275 13040 

Average final value 6187 5234 5227 

Highest final value 8655 5765 5690 

Lowest final value 5410 4765 4890 

Range of final values 3245 1000 800 

Average time for 95% of 

final value 
137.38 sec 124.95 sec 122.92 sec 

Average time for 99% of 

final value 
327.96 sec 306.92 sec 337.22 sec 
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swapping type, the models allocating the first ½ and ¾ of the total runtime to random swapping 

beat the adapted baseline model; when 𝑐𝑟𝑜𝑠𝑠(1,1) is the secondary swapping type, only the model 

that allocates the first ¾ of the total runtime to random swapping beat the adapted baseline model. 

Additionally, these three models show better performance than the best model combining all three 

swappings (random, 𝑏𝑜𝑥(2,2) and 𝑐𝑟𝑜𝑠𝑠(1,1)), which has an average final value of 5227. This 

indicates that, to compliment random swapping, the use of two special swappings is not necessary, 

as one special swapping seems sufficient. However, this is conditional to the runtime allocations 

and the type of special swapping used. From the previous results, we can deduce that a larger 

proportion of runtime needs to be allocated to random swapping when the secondary swapping 

type is more precise.  

Name Rand_𝒃𝒐𝒙(𝟐, 𝟐)_1/4 Rand_𝒃𝒐𝒙(𝟐, 𝟐)_1/2 Rand_𝒃𝒐𝒙(𝟐, 𝟐)_3/4 

Initialization Random by similarity Random by similarity Random by similarity 

Type of swapping 
Per phase (random, 

𝑏𝑜𝑥(2, 2)) 

Per phase (random, 

𝑏𝑜𝑥(2, 2)) 

Per phase (random, 

𝑏𝑜𝑥(2, 2)) 

Single or multiple Multiple Multiple Multiple 

Number of sets 2 2 2 

Occupancy 10-3 10-3 10-3 

Algorithmic details 

Time-based model that 

allocates ¼ of total runtime 

to random swapping and 

remaining ¾ to special 

swapping 𝑏𝑜𝑥(2, 2)) 

Time-based model that 

allocates ½ of total runtime 

to random swapping and 

remaining ½ to special 

swapping 𝑏𝑜𝑥(2, 2)) 

Time-based model that 

allocates ¾ of total runtime 

to random swapping and 

remaining ¼ to special 

swapping 𝑏𝑜𝑥(2, 2)) 

Table 5A.5 Description of time-based models that use random swapping and special swapping 𝑏𝑜𝑥(2, 2) 

Name Rand_𝒃𝒐𝒙(𝟐, 𝟐)_1/4 Rand_𝒃𝒐𝒙(𝟐, 𝟐)_1/2 Rand_𝒃𝒐𝒙(𝟐, 𝟐)_3/4 

Total runtime 600 sec 600 sec 600 sec 

Average initial value 210455 209319 209995 

Highest initial value 218910 216290 216850 

Lowest initial value 203620 203490 201165 

Range of initial values 15290 12800 15685 

Average final value 5890 4990 5015 

Highest final value 6710 5330 5255 

Lowest final value 5160 4595 4750 

Range of final values 1550 735 505 

Average time for 95% of 

final value 
114.96 sec 120.21 sec 132.51 sec 

Average time for 99% of 

final value 
330.20 sec 334.09 sec 330.38 sec 

Table 5B.5 Results of time-based models that use random swapping and special swapping 𝑏𝑜𝑥(2, 2) 
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Name Rand_𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_1/4 Rand_𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_1/2 Rand_𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_3/4 

Initialization Random by similarity Random by similarity Random by similarity 

Type of swapping 
Per phase (random, 

𝑐𝑟𝑜𝑠𝑠(1, 1)) 

Per phase (random, 

𝑐𝑟𝑜𝑠𝑠(1, 1)) 

Per phase (random, 

𝑐𝑟𝑜𝑠𝑠(1, 1)) 

Single or multiple Multiple Multiple Multiple 

Number of sets 2 2 2 

Occupancy 10-3 10-3 10-3 

Algorithmic details 

Time-based model that 

allocates ¼ of total runtime 

to random swapping and 

remaining ¾ to special 

swapping 𝑐𝑟𝑜𝑠𝑠(1, 1)) 

Time-based model that 

allocates ½ of total runtime 

to random swapping and 

remaining ½ to special 

swapping 𝑐𝑟𝑜𝑠𝑠(1, 1)) 

Time-based model that 

allocates ¾ of total runtime 

to random swapping and 

remaining ¼ to special 

swapping 𝑐𝑟𝑜𝑠𝑠(1, 1)) 

Table 5A.6 Description of time-based models that use random swapping and special swapping 𝑐𝑟𝑜𝑠𝑠(1, 1) 

Name Rand_𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_1/4 Rand_𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_1/2 Rand_𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_3/4 

Total runtime 600 sec 600 sec 600 sec 

Average initial value 209292 209292 211610 

Highest initial value 215100 214815 219750 

Lowest initial value 197225 200590 207440 

Range of initial values 17875 14225 12310 

Average final value 7950 6039 5161 

Highest final value 8595 6635 5500 

Lowest final value 7055 5375 4780 

Range of final values 1540 1260 720 

Average time for 95% of 

final value 
103.33 sec 124.92 sec 130.90 sec 

Average time for 99% of 

final value 
245.49 sec 295.61 sec 348.85 sec 

Table 5B.6 Results of time-based models that use random swapping and special swapping 𝑐𝑟𝑜𝑠𝑠(1, 1) 

 

We move on with the exploration-based approach, bearing in mind one special swapping is 

sufficient to complement random swapping. Considering the previous observations from the time-

based models, to ensure that a majority of the runtime is allocated to random swapping, we also 

consider adding a condition to limit the change in swapping type to the second ½ of the total 

runtime. Table 5A.7 presents two exploration-based approach models that use random swapping 

and 𝑏𝑜𝑥(2,2) swapping. As shown in Table 5B.7, with an ongoing exploring time that must be 50 

times superior to the last exploring time, the average final penalty value is 5473. With an ongoing 

exploring time that must be 100 times superior to the last, the final penalty value averages 5517. 
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95% of their respective average improvement is reached in 128.33 seconds and 137.75 seconds, 

whereas 99% of it is reached in 340.97 seconds and 360.75 seconds. These models show better 

performance and faster convergence than the adapted baseline model.   

Name Rand_𝒃𝒐𝒙(𝟐, 𝟐)_50 Rand_𝒃𝒐𝒙(𝟐, 𝟐)_100 

Initialization Random by similarity Random by similarity 

Type of swapping 
Per phase (random, 

𝑏𝑜𝑥(2, 2)) 

Per phase (random, 

𝑏𝑜𝑥(2, 2)) 

Single or multiple Multiple Multiple 

Number of sets 2 2 

Occupancy 10-3 10-3 

Algorithmic details 

Exploration-based model 

that uses random swapping 

until past ½ of the total 

runtime and until ongoing 

exploring time is a factor of 

50 to last exploring time, 

and then it uses 𝑏𝑜𝑥(2, 2) 

swapping 

Exploration-based model 

that uses random swapping 

until past ½ of the total 

runtime and until ongoing 

exploring time is a factor of 

100 to last exploring time, 

and then it uses 𝑏𝑜𝑥(2, 2) 

swapping 

Table 5A.7 Description of exploration-based models that use random swapping and special swapping 𝑏𝑜𝑥(2, 2) 

Name Rand_𝒃𝒐𝒙(𝟐, 𝟐)_50 Rand_𝒃𝒐𝒙(𝟐, 𝟐)_100 

Total runtime 600 sec 600 sec 

Average initial value 211258 209273 

Highest initial value 221430 218635 

Lowest initial value 201825 200680 

Range of initial values 19605 17955 

Average final value 5473 5517 

Highest final value 6250 5890 

Lowest final value 5120 5130 

Range of final values 1130 760 

Average time for 95% of 

final value 
128.33 sec 137.75 sec 

Average time for 99% of 

final value 
340.97 sec 360.75 sec 

Table 5B.7 Results of exploration-based models that use random swapping and special swapping 𝑏𝑜𝑥(2, 2) 

 

5.2.6  Room occupancy 

The room occupancy is a constraint that is used to reduce the assignment of small courses (courses 

with small norms) to large rooms (rooms with large capacities) in Course Timetabling.  A relatively 

small weight value is associated to this constraint. We take interest in this constraint’s influence 
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on the search algorithm, as it stimulates changes but inevitably reinforces the acceptance of 

solutions that are not significantly improving. As room occupancy is not applicable in examination 

timetables, this section does not concern Examination Timetabling. 

Name Baseline no occ 

Initialization Random 

Type of swapping Random 

Single or multiple Single 

Number of sets 2 

Occupancy 0 

Algorithmic details 

Simplest model with the 

weight of the room 

occupancy constraint set to 

0 

Table 5A.8 Description of baseline model without the room occupancy constraint 

Name Baseline no occ 

Total runtime 600 sec 

Average initial value 216975 

Highest initial value 220355 

Lowest initial value 212375 

Range of initial values 7980 

Average final value 6444 

Highest final value 6745 

Lowest final value 6095 

Range of final values 650 

Average time for 95% of 

final value 
113.32 sec 

Average time for 99% of 

final value 
321.12 sec 

Table 5B.8 Results of baseline model without the room occupancy constraint 

 

We investigate the usefulness of the room occupancy constraint by nullifying the constraint in the 

baseline model (setting its weight to 0), as described in Table 5A.8. With the average resulting 

penalty value of 6444 reported in Table 5B.8, this model does not outperform the baseline model. 

Moreover, it does not show better convergence than the baseline model, seeing that 95% of the 

average improvement is achieved within 113.32 seconds, and 99% within the 322.12 seconds. It 

is evident that the constraint of room occupancy, although associated to a very small weight value, 

have a great influence on the performance of a model. Rather than assigning a constant value to 

the room occupancy weight, we suggest creating models with active and inactive phases of the 
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room occupancy constraint, where the constraint weight takes a small positive value (defaulted to 

10-3) in active phases and a value of 0 in inactive phases. The phases can be triggered through a 

time-based approach and an exploration-based exploration. These phases are used so the algorithm 

can focus on bigger improvements while preventing disproportionate occupancy assignments. 

Through time-based models shown in Table 5A.9, we test the end of the inactive phase and the 

start of the active phase at ¼, ½, and ¾ of the total runtime. The resulting average penalty values 

provided in Table 5B.9 are respectively 5170, 5072 and 5379. Through exploration-based models 

shown in Table 5A.10, we test a factor to the last exploring time of 50, 100 and 150, which 

respectively yields an average final penalty value of 5009, 5263 and 5191 presented in Table 5B.10. 

We recognize that, amongst our tests, the exploration-based performant than the time-based ones.  

Name Occ_1/4 Occ_1/2 Occ_3/4 

Initialization Random by similarity Random by similarity Random by similarity 

Type of swapping Random Random Random 

Single or multiple Multiple Multiple Multiple 

Number of sets 2 2 2 

Occupancy Per phase (0, 10-3) Per phase (0, 10-3) Per phase (0, 10-3) 

Algorithmic details 

Occupancy penalty weight 

is set to 0 in first ¼ of the 

total runtime and then takes 

a value 10-3 for the 

remaining ¾ of the runtime 

Occupancy penalty weight 

is set to 0 in first ½ of the 

total runtime and then takes 

a value 10-3 for the 

remaining ½ of the runtime 

Occupancy penalty weight 

is set to 0 in first ¾ of the 

total runtime and then takes 

a value 10-3 for the 

remaining ¼ of the runtime 

Table 5A.9 Description of time-based models controlling the room occupancy constraint 

Name Occ_1/4 Occ_1/2 Occ_3/4 

Total runtime 600 sec 600 sec 600 sec 

Average initial value 211498 210427 208524 

Highest initial value 217100 221450 212755 

Lowest initial value 206215 203730 201960 

Range of initial values 10885 17720 10795 

Average final value 5170 5072 5379 

Highest final value 5910 5330 6135 

Lowest final value 4825 4630 4830 

Range of final values 1085 700 1305 

Average time for 95% of 

final value 
129.28 sec 134.88 sec 136.85 sec 

Average time for 99% of 

final value 
349.40 sec 372.66 sec 362.39 sec 

Table 5B.9 Results of time-based models controlling the room occupancy constraint 
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Name Occ_50 Occ _100 Occ_150 

Initialization Random by similarity Random by similarity Random by similarity 

Type of swapping Random Random Random 

Single or multiple Multiple Multiple Multiple 

Number of sets 2 2 2 

Occupancy Per phase (0, 10-3) Per phase (0, 10-3) Per phase (0, 10-3) 

Algorithmic details 

Occupancy penalty weight 

is set to 0 until ongoing 

exploring time is a factor of 

50 to last exploring time, 

and then it takes a value 10-3 

for the remaining runtime 

Occupancy penalty weight 

is set to 0 until ongoing 

exploring time is a factor of 

100 to last exploring time, 

and then it takes a value 10-3 

for the remaining runtime 

Occupancy penalty weight 

is set to 0 until ongoing 

exploring time is a factor of 

150 to last exploring time, 

and then it takes a value 10-3 

for the remaining runtime 

Table 5A.10 Description of exploration-based models controlling the room occupancy constraint 

Name Occ _50 Occ_100 Occ_150 

Total runtime 600 sec 600 sec 600 sec 

Average initial value 210790 210024 211203 

Highest initial value 215455 216250 219640 

Lowest initial value 207245 203215 201755 

Range of initial values 8210 13035 17885 

Average final value 5009 5263 5191 

Highest final value 5985 5670 5645 

Lowest final value 4440 4885 4600 

Range of final values 1545 785 1045 

Average time for 95% of 

final value 
135.12 sec 144.26 sec 125.06 sec 

Average time for 99% of 

final value 
347.75 sec 358.66 sec 350.36 sec 

Table 5B.10 Results of exploration-based models controlling the room occupancy constraint 

 

5.2.7  Room types 

The room constraints presented in Section 4.1.1 relate to three room characteristics: capacity, 

layout, and building. When evaluating a room constraint, for a same timeslot, rooms with the same 

characteristics yield equivalent penalties. Hence, these rooms can be considered equivalent to one 

another. Instead of defining the rooms by their room characteristics individually, it would be more 

beneficial to incorporate their combined characteristics. The intention is to use the combined 

characteristics as a type of screening before evaluation to lower the number of equivalent swaps. 
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By reducing the combinatorial symmetry of the problem with this method, the algorithm allocates 

less time in the exploration of equivalent solutions and focuses on improvement. To incorporate 

combined characteristics of rooms, we join rooms with similar traits to create clusters based on 

room types. While the layout and building characteristics are qualitative data with few possible 

values, respectively 6 and 2 possible values for layout and building characteristics, the room 

capacity is a quantitative data with 26 possible values over 67 rooms. We suggest creating clusters 

of rooms with similar capacities, rather than equivalent capacities. This leads to a smaller number 

of room types (16 room types instead of 26 room types out of the 67 rooms), allowing for better 

reduction of combinatorial symmetry. The effective capacity refers to the capacity representing a 

room type, whereas the real capacity refers to the true capacity of a room. We consider two options 

in defining the effective capacity through the rooms within a room type: minimal capacity and 

maximal capacity. Using the minimal capacity ensures that a course that respects the minimal 

capacity will inevitably respect the capacity of all time-rooms under this room type. However, it 

causes courses that require a larger number of seats than the largest room type that uses the minimal 

capacity to always be wrongly assigned in terms of the capacity constraint. Using the maximal 

capacity would solve this issue, but it does not guarantee that a course respecting the maximal 

capacity will inevitably respect the capacity of all time-rooms under this room type. Both options 

can be beneficial in different instances.  

Name Roomtype_min Roomtype_max 

Initialization Random by similarity Random by similarity 

Type of swapping Random Random 

Single or multiple Multiple Multiple 

Number of sets 2 2 

Occupancy 0 0 

Algorithmic details 

Uses room types (with room 

occupancy weight set to 0 

and with minimal capacity 

of room types as effective 

capacity)) 

Uses room types (with room 

occupancy weight set to 0 

and with maximal capacity 

of room types as effective 

capacity)) 

Table 5A.11 Description of models only room types with minimal or maximal capacity as effective capacity 
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Name Roomtype_min_all Roomtype_max_all 

Total runtime 600 sec 600 sec 

Average initial value 211297 211913 

Highest initial value 219400 220715 

Lowest initial value 204875 206480 

Range of initial values 14525 14235 

Average final value 5566 11480 

Highest final value 6505 13815 

Lowest final value 4620 10335 

Range of final values 1885 3480 

Average time for 95% of 

final value 
136.74 sec 142.51 sec 

Average time for 99% of 

final value 
366.00 sec 353.05 sec 

Table 5B.11 Results of models only room types with minimal or maximal capacity as effective capacity 

When the model is actively using room types, rather than specific rooms, the tuple that represents 

the effective capacity must be the room type capacity tuple. The effective capacity of a room type 

can correspond to the minimal or maximal capacity amongst the room type. Since both have 

different usage, as mentioned, we put both through tests to assess their effects on the models 

described in Table 5A.11. In models solely using room types, the average final penalty values 

reported in Table 5B.11 are respectively 5566 with the minimal capacity and 11480 with the 

maximal capacity considering an average initial penalty value of 211297 and 211913. Note that to 

maintain comparability between the models, all penalty values provided in tables labelled as 5B 

are real values, meaning that the reported values are based on the real capacity, rather than the 

effective capacity. From these results, the model that uses the minimal capacity clearly shows 

better performance than the other. Amongst the established tests, with a similar initial penalty 

value, the models with minimal capacity return a lower final penalty value, with the highest value 

being more than 1.5x lower than the lowest value of the models with maximal capacity. This 

reinforces our previous statement, saying that, if a course satisfies the capacity constraint of a room 

type using minimal capacity, it will necessarily satisfy the capacity constraint of any room within 

the room type, which is not the case with the maximal capacity. Nonetheless, both models do not 

beat the adapted baseline model. This could be due to the lack in precision of the capacity, implying 

that room types are not meant to be used exclusively. Instead, we suggest the use of room types 

and rooms in phases with this particular order, to allow for reduced combinatorial symmetry as 

well as precision in the solution. It is important to note that when room types are being used, the 
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room occupancy constraint must be nullified, since the effective capacity would lead to incorrect 

calculations of occupancy. For models that alternate between the use of room types and rooms 

through repeated phases, there must be a re-evaluation of the current state to accurately reflect the 

room capacity and room occupancy as the effective capacity changes to real capacity or vice-versa. 

Rather than a complete evaluation of the state at a phase change, by constantly keeping track of 

the time penalty value (i.e., the penalty values of the time constraints), only the rooms need to be 

re-evaluated and summed to the time penalty value for an accurate evaluation to carry on. 

Name Roomtype_max_1/4 Roomtype_max_1/2 Roomtype_max_3/4 

Initialization Random by similarity Random by similarity Random by similarity 

Type of swapping Random Random Random 

Single or multiple Multiple Multiple Multiple 

Number of sets 2 2 2 

Occupancy Per phase (0, 10-3) Per phase (0, 10-3) Per phase (0, 10-3) 

Algorithmic details 

First phase uses room types 

(with room occupancy 

weight set to 0 and with 

maximal capacity as 

effective capacity) for first 

¼ of total runtime, then the 

remaining ¾ of runtime is 

dedicated to second phase 

which uses rooms (with 

room occupancy weight set 

to 10-3) 

First phase uses room types 

(with room occupancy 

weight set to 0 and with 

maximal capacity as 

effective capacity) for first 

½ of total runtime, then the 

remaining ½ of runtime is 

dedicated to second phase 

which uses rooms (with 

room occupancy weight set 

to 10-3) 

First phase uses room types 

(with room occupancy 

weight set to 0 and with 

maximal capacity as 

effective capacity) for first 

¼ of total runtime, then the 

remaining ¾ of runtime is 

dedicated to second phase 

which uses rooms (with 

room occupancy weight set 

to 10-3) 

Table 5A.12 Description of time-based models that use room types with maximal capacity as effective capacity 

Name Roomtype_max_1/4 Roomtype_max_1/2 Roomtype_max_3/4 

Total runtime 600 sec 600 sec 600 sec 

Average initial value 210218 212010 208125 

Highest initial value 216540 222515 212455 

Lowest initial value 205840 205500 201030 

Range of initial values 10700 17015 11425 

Average final value 5348 5323 5467 

Highest final value 5850 5695 5920 

Lowest final value 4690 4825 4690 

Range of final values 1160 870 1230 

Average time for 95% of 

final value 
161.68 sec 244.39 sec 254.39 sec 

Average time for 99% of 

final value 
365.51 sec 379.71 sec 470.63 sec 

Table 5B.12 Results of time-based models that use room types with maximal capacity as effective capacity 
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Name Roomtype_min_1/4 Roomtype_min_1/2 Roomtype_min_3/4 

Initialization Random by similarity Random by similarity Random by similarity 

Type of swapping Random Random Random 

Single or multiple Multiple Multiple Multiple 

Number of sets 2 2 2 

Occupancy Per phase (0, 10-3) Per phase (0, 10-3) Per phase (0, 10-3) 

Algorithmic details 

First phase uses room types 

(with room occupancy 

weight set to 0 and with 

minimal capacity as 

effective capacity) for first 

¼ of total runtime, then the 

remaining ¾ of runtime is 

dedicated to second phase 

which uses rooms (with 

room occupancy weight set 

to 10-3) 

First phase uses room types 

(with room occupancy 

weight set to 0 and with 

minimal capacity as 

effective capacity) for first 

½ of total runtime, then the 

remaining ½ of runtime is 

dedicated to second phase 

which uses rooms (with 

room occupancy weight set 

to 10-3) 

First phase uses room types 

(with room occupancy 

weight set to 0 and with 

minimal capacity as 

effective capacity) for first 

¼ of total runtime, then the 

remaining ¾ of runtime is 

dedicated to second phase 

which uses rooms (with 

room occupancy weight set 

to 10-3) 

Table 5A.13 Description of time-based models that use room types with minimal capacity as effective capacity 

Name Roomtype_min_1/4 Roomtype_min_1/2 Roomtype_min_3/4 

Total runtime 600 sec 600 sec 600 sec 

Average initial value 207231 208558 211743 

Highest initial value 212980 214360 218505 

Lowest initial value 201200 197665 206620 

Range of initial values 11780 16695 11885 

Average final value 5374 5459 5515 

Highest final value 6255 5990 6065 

Lowest final value 4980 5000 5120 

Range of final values 1275 990 945 

Average time for 95% of 

final value 
148.16 sec 143.13 sec 137.92 sec 

Average time for 99% of 

final value 
365.06 sec 379.20 sec 377.30 sec 

Table 5B.13 Results of time-based models that use room types with minimal capacity as effective capacity 

 

We propose three time-based models that either use the minimal capacity or the maximal capacity 

as the effective capacity with the room type phase active until the room phase at ¼, ½ and ¾ of 

the total runtime, as shown in Tables 5A.11 and 5A.12. With the minimal capacity as the effective 

capacity, Table 5B.12 reports average final penalty values 5374, 5459 and 5515. With the maximal 

capacity as the effective capacity, Table 5B.11 reports average final penalty values of 5348, 5323 

and 5467. Amongst these models, the model that use maximal capacity with a phase change at ½ 
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of the runtime seems to be the best model. Not only does this model show a lower average penalty 

value, but it also has the shortest range of final penalty value.  

 

Imposing the maximal capacity as the effective capacity for the next models, we move on to 

analyze the exploration-based models presented in Table 5A.14. With the phase change triggered 

by an ongoing exploring time that is a factor of 25 of the last exploring time, the model results 

provided in Table 5B.14 reveals an average final penalty value of 4970, whereas a factor of 50 

would result in an average final penalty value of 5270. 95% of the respective average improvement 

is obtained within 130.90 seconds and 170.62 seconds, whereas 99% of the respective average 

improvement is obtained within 361.24 seconds and 345.22 seconds.  

Name Room type _max_25 Roomtype_max_50 

Initialization Random by similarity Random by similarity 

Type of swapping Random Random 

Single or multiple Multiple Multiple 

Number of sets 2 2 

Occupancy Per phase (0, 10-3) Per phase (0, 10-3) 

Algorithmic details 

First phase uses room types 

(with room occupancy 

weight set to 0 and with 

maximal capacity as 

effective capacity) until 

ongoing exploring time is a 

factor of 25 to the last 

exploring time, then the 

remaining runtime is 

dedicated to second phase 

which uses rooms (with 

room occupancy weight set 

to 10-3) 

First phase uses room types 

(with room occupancy 

weight set to 0 and with 

maximal capacity as 

effective capacity) until 

ongoing exploring time is a 

factor of 50 to the last 

exploring time, then the 

remaining runtime is 

dedicated to second phase 

which uses rooms (with 

room occupancy weight set 

to 10-3) 

Table 5A.14 Description of exploration-based models that use room types with maximal capacity as effective capacity 
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Name Room type _max_25 Roomtype_max_50 

Total runtime 600 sec 600 sec 

Average initial value 210704 211007 

Highest initial value 216445 216375 

Lowest initial value 203715 199390 

Range of initial values 12730 16985 

Average final value 4970 5270 

Highest final value 5245 6225 

Lowest final value 4490 4685 

Range of final values 755 1540 

Average time for 95% of 

final value 
130.90 sec 170.62 sec 

Average time for 99% of 

final value 
361.24 sec 345.22 sec 

Table 5B.14 Results of exploration-based models that use room types with maximal capacity as effective capacity 

 

5.3  Proposed methodology 

The experimental tests from the previous section allow us to identify the best models for course 

lecture and examination timetables at HEC Montréal, considering the data simulated. Supported 

by these numerical results, we propose two models to solve the Course Timetabling and 

Examination Timetabling problems. In the following section, we will explain the reasoning behind 

our choice of models, and reinforce our propositions with a robustness test. Finally, we present the 

constraint satisfaction derived from the best model in both contexts. 

 

5.3.1  Best Course Timetabling model 

At the extend of the experimental tests, the following models are the most noteworthy for their 

performance on this instance of Course Timetabling: the time-based models that use random 

swapping and 𝑏𝑜𝑥(2,2) swapping at ½ and ¾ of the total runtime (see models rand_𝑏𝑜𝑥(2,2)_1/2 

and rand_𝑏𝑜𝑥(2,2)_3/4 in Tables 5A.5 and 5B.5), the exploration-based model that controls room 

occupancy with a factor of 50 (see model occ_50 in Tables 5A.10 and 5B.10), and the exploration-

based models that use room types with the maximal capacity, with a factor of 25 and 50 (see 

models roomtype_max_25 and roomtype_max_50 in Tables 5A.14 and 5B.14).  

 

Amongst this list of good performing models, we identify the exploration-based model that uses 

room types with the maximal capacity and a factor 25, as the best Course Timetabling model. This 



 65 

model is built around two phases, where it uses room types (with the maximal capacity of the 

rooms within a room type as the effective capacity) in the first phase and rooms (using the real 

capacity of the rooms) in the second phase. The phase change is triggered when the ongoing 

exploring time exceeds 25 times the last exploring time. To recall this model’s specific parameters 

and results from the tests conducted, refer to Tables 5A.14 and 5B.14. This model is selected as 

the best model over the others because of its better performance and convergence. In terms of final 

penalty value, it shows the lowest average, in addition to a relatively small range. From an average 

initial value of 210704, this model achieves an average final penalty value of 4970, with a range 

of 755. While the model could not beat the performance of the adapted baseline model that 

underwent an extended runtime, it still shows better performance than the baseline and adapted 

baseline models on a similar runtime of 600 seconds. Additionally, given such a low average final 

penalty value, the time to reach 99% of its final value is considered relatively short, i.e., 361.24 

seconds over 600 seconds of total runtime.  

 

To consolidate on the model’s robustness, we put this model through 10 runs of 1800 seconds. 

This second round of testing is done to compare these results to the experimental results achieved 

within 600 seconds. For both rounds of testing with different total runtime, Table 5.3 presents the 

average, highest, lowest and range of the initial and final values. From Table 5.3, we can see that 

the average final penalty value is considerably lower on the second round of testing, i.e., 

respectively 3346 and 4970. Additionally, the highest final penalty value with a runtime of 1800 

seconds is lower than the lowest final penalty value with a runtime of 600 seconds, i.e., respectively 

3635 and 4490. This indicates that, all the results from a runtime of 1800 seconds are better than 

those from a runtime of 600 seconds. However, the comparison in the results of both rounds of 

testing needs to take into account the difference in initial penalty values as well. Considering the 

same parameters and data in both rounds of testing, we observe that the average initial penalty 

value is slightly lower in the second round of testing, i.e., respectively 209501 and 210704. 

Although it is lower, the average initial penalty value is only lower by 1203, whereas the average 

final penalty value is lower by 1624. Therefore, while the initial penalty is lower in average, the 

higher difference in average final values implies that a longer runtime leads to better results. As 

for the range in values, the range of the initial values is relatively larger on the second round of 

testing, i.e., respectively 19305 and 12730, and the range of final penalty values is much smaller 
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than the first round of testing, i.e., respectively 520 and 755. When representing these last numbers 

as a percentage of their respective average final penalty value, they amount to about the same, i.e., 

15.54% and 15.19%. Therefore, we believe that, for the model we propose as the best Course 

Timetabling model, a longer runtime allows for better results to be generated with nearly no 

compromise on the variability. We judge that the variability is low for both 600 seconds and 1800 

seconds of runtime, implying that a single execution of the model will unlikely return a penalty 

value that is very far from the average penalty value.  

Name Roomtype_max_25 Roomtype_max_25 

Total runtime 600 sec 1800 sec 

Average initial value 210704 209501 

Highest initial value 216445 219905 

Lowest initial value 203715 200600 

Range of initial values 12730 19305 

Average final value 4970 3346 

Highest final value 5245 3635 

Lowest final value 4490 3115 

Range of final values 755 520 

Table 5.3 Comparison of the best Course Timetabling model’s penalty values between 600 seconds and 1800 seconds 

 

To illustrate the constraint satisfaction obtained through the models, we describe the outcome from 

a single execution of a model with a runtime of 600 seconds. While any good performing model 

would suffice, we choose to use the model we identified as the best Course Timetabling model, 

which corresponds to the model that uses room types with the maximal capacity, with a factor of 

25. In a single execution of 600 seconds, this model’s real penalty value progresses from 206850 

to 4595. Table 5.4 serves as a support to report numbers about each type of constraint. For each 

constraint type, we find the total number of constraints, the number of constraints that is left 

unsatisfied with the resulting timetable, and the total penalty value accounted by the constraint 

type. Given the constraint weights listed in Table 5.1 from Section 5.1, the resulting timetable 

fully satisfies the capacity, similarity groupings and exclusivity groupings, with rooms occupied 

at 85.70% in average. The Table 5.4 shows that all 32 layout necessities are satisfied, considering 

that there are 80 time-rooms with special layouts and that all courses with the wrong layout 

necessity assigned to any of those time-rooms are also subject to penalization. The layout and 

building preferences constraints are satisfied for the most part, with only 5 out of 377 layout 

requests (1.33%) and 7 out of 390 building location requests (1.79%) unsatisfied. While 113 
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courses were penalized on the timeslot preference level, only 27 out of the 743 courses with 

timeslot preferences (3.63%) do not have any of their preferences satisfied. While the timeslot 

preferences accounts for the majority of the final penalty value, most courses (96.37%) are at least 

partially satisfied in terms of timeslot preference.  

Constraint type 
Total number of 

constraints 

Number of unsatisfied 

constraints 
Total penalty value 

Timeslot preference 743 113 4280 

Similarity grouping 62 0 0 

Exclusivity grouping 141 0 0 

Capacity 802 0 0 

Layout necessity 32 + 80 0 0 

Layout preference 377 5 175 

Building 390 7 140 

Table 5.4 Constraint satisfaction of a resulting course lecture timetable 

 

5.3.2  Best Examination Timetabling model 

The models developed for examinations are the same as for course lectures. However, the models 

related to room occupancy are omitted since this aspect is irrelevant in the examination context. 

While the results were not explicitly exposed in the previous section, they show similar dynamic 

between the examination models and the course lecture models. Through Table 5.5, we provide 

the results of a few selected Examination Timetabling models. This result table provides, for each 

model listed, the average, highest, lowest and range of the initial and final penalty value, as well 

as the average time to reach 95% and 99% of the respective final penalty value. These models’ 

parameters are the same as the Course Timetabling models under the same name, and they can be 

found in description tables labelled as 5A in Section 5.2. Note that the occupancy in tables labelled 

as 5A is unapplicable for the examination context. The similarity in dynamic between the models 

is illustrated by Table 5.5. By comparing the average final penalty values, we can see that the 

adapted baseline model is more performant that the baseline model, i.e., respectively 85178 and 

475783 in average final penalty value. Additionally, like in Course Timetabling, the time-based 

models that use random swapping and special swapping 𝑏𝑜𝑥(2,2) at ½ and ¾ of the runtime, with 

a respective average final penalty value of 79153 and 83482, also outperform both baseline and 

adapted baseline models. We list the following models as the most noteworthy models for their 

performance in Examination Timetabling: the time-based models that use random swapping and 

𝑏𝑜𝑥(2,2)  swapping at ½ and ¾ of the total runtime (see models rand_ 𝑏𝑜𝑥(2,2) _1/2 and 
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rand_𝑏𝑜𝑥(2,2)_3/4 in Tables 5A.5 and 5.5) and the adapted baseline model (see model adapted 

baseline in Tables 5A.1 and 5.5).  

 

Amongst the models listed, we identify the time-based model that uses random swapping, and 

special swapping 𝑏𝑜𝑥(2,2) after ½ of the total runtime as the best Examination Timetabling model. 

For this model’s specific parameters, refer to the Table 5A.5. This model is designated as the best 

Examination Timetabling model because it achieves the lowest average penalty value within 600 

seconds of runtime. As shown in Table 5.5, the final penalty value reaches 79153 in average. We 

also note that it takes around 325.35 seconds and 525.54 seconds in average out of 600 seconds to 

reach 95% and 99% of the final value.   

Name Baseline Adapted baseline 
Rand_𝒃𝒐𝒙(𝟐, 𝟐)_

1/2 

Rand_𝒃𝒐𝒙(𝟐, 𝟐)_

3/4 

Total runtime 600 sec 600 sec 600 sec 600 sec 

Average initial value 1158318 399627 416704 409969 

Highest initial value 1168029 414168 445405 446124 

Lowest initial value 1148807 384905 377254 386358 

Range of initial values 19222 29263 68151 59766 

Average final value 475783 85178 79153 83482 

Highest final value 493252 89140 79982 84434 

Lowest final value 464072 81328 77871 81852 

Range of final values 29180 7812 2111 2582 

Average time for 95% of 

final value 
473.42 sec 322.57 sec 325.35 sec 292.77 sec 

Average time for 99% of 

final value 
563.72 sec 516.92 sec 525.54 sec 506.11 sec 

Table 5.5 Results of baseline and adapted baseline models and a time-based model that use random swapping and special swapping 

box(2,2) 

 

Like in Course Timetabling, in order to test the model’s robustness, we put this model through a 

second round of testing by executing 10 runs of 1800 seconds. For both rounds of testing with 

different total runtime, Table 5.6 presents the average, highest, lowest and range of the initial and 

final values. From Table 5.6, we can see that the average final penalty value is relatively lower on 

the second round of testing, i.e., respectively 64183 and 79153. We also note that the highest final 

penalty value with a runtime of 1800 seconds is lower than the lowest final penalty value with a 

runtime of 600 seconds, i.e., respectively 66880 and 77871. This indicates that, all results from a 

runtime of 1800 seconds are better than those from a runtime of 600 seconds. However, 
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considering the same parameters and data in both rounds of testing, we observe that the average 

initial penalty value is slightly lower in the latter one, i.e., respectively 402198 and 416704. We 

see that both initial and final values are lower in average on the second round of testing. Yet, when 

comparing the second round of testing to the first round of testing, the difference in average final 

penalty values, i.e., 14970, is larger than the difference in average initial penalty values, i.e., 14506. 

Therefore, although the second round of testing starts at a lower penalty value in average, we can 

still say that a longer runtime allows for better results. As for the range in values, the range of the 

initial values is slightly larger on the second round of testing, i.e., respectively 69973 and 68151, 

and similarly the range of final penalty values is also larger than the first round of testing, i.e., 

respectively 5267 and 2111. When represented as a percentage of the average final penalty value, 

the ranges correspond to respectively 8.21% and 2.67%. Therefore, we can say that, for the model 

we propose as the best Examination Timetabling model, a longer runtime allows for better results 

to be generated at the expense of a slight increase in variability. Although the variability is 

compromised, we judge that the variability is low in both 600 seconds and 1800 seconds of runtime, 

implying that a single execution of the model will unlikely return a penalty value that is very far 

from the average penalty value of a given total runtime. 

Name Rand_𝒃𝒐𝒙(𝟐, 𝟐)_1/2 Rand_𝒃𝒐𝒙(𝟐, 𝟐)_1/2 

Total runtime 600 sec 1800 sec 

Average initial value 416704 402198 

Highest initial value 445405 427047 

Lowest initial value 377254 357074 

Range of initial values 68151 69973 

Average final value 79153 64183 

Highest final value 79982 66880 

Lowest final value 77871 61613 

Range of final values 2111 5267 

Table 5.6 Comparison of the best Course Timetabling model’s penalty values between 600 seconds and 1800 seconds 

 

We move on to the constraint satisfaction obtained through a single execution of the best 

Examination Timetabling model for a total runtime of 600 seconds. The weight set for the 

examination constraints can also be found in Section 5.1, listed in Table 5.2.  We use Table 5.6 to 

present, for each type of constraint in Examination Timetabling, the total number of constraints, 

as well as the number of unsatisfied constraints and the resulting total penalty value. In this 

execution, the penalty value progresses from 559047 to 165310 within 600 seconds. The resulting 
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timetable of the model proposed fully satisfies the constraints of timeslot prohibition, timeslot 

exclusivity grouping and one-day exclusivity grouping. The building preferences are also satisfied, 

but it is important to note that only less than 1% of sub-sections have these requests simulated. 

Although layout necessities are also few, considering 114 rooms with the concerned layouts, only 

9 time-rooms are penalized. With 910 sub-sections involved in the building grouping constraint, 

182 out of 910 (20.0%) are affected a penalty. As for room capacity, 122 out of 995 sub-sections 

(12.26%) are unsatisfied. Only 1 out of 910 (0.11%) were penalized for the similarity grouping. 

Contrastingly, for the 78 sub-sections with timeslot preferences, we note that 67.95% of them are 

satisfied in this aspect, meaning that they have at least one timeslot preference satisfied. Finally, 

the two-day exclusivity constraint is almost completely respected with 3 out of 90 sub-sections 

(0.03%) penalized. 

Constraint 
Total number of 

constraints 

Number of unsatisfied 

constraints 
Total penalty value 

Timeslot preference 78 70 5880 

Timeslot prohibition 618 0 0 

Similarity grouping 910 1 900 

Timeslot exclusivity grouping 90 0 0 

One-day exclusivity grouping 90 0 0 

Two-day exclusivity grouping 90 18 310 

Capacity 995 122 61000 

Layout necessity 1 + 114 9 6300 

Building 2 0 0 

Building grouping 910 182 91000 

Table 5.7 Constraint satisfaction of a resulting examination timetable 
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6 Conclusion 

The educational field shows strong interest in timetabling problems. This is partially because the 

process of timetabling is recurrent, and as an institution expands, the process becomes increasingly 

resource demanding. In fact, educational institutions, such as HEC Montréal, go through a lengthy 

manual process that can realistically extend to a few months of operation. This is due to the many 

interventions necessary in such a process. In this thesis, we proposed an algorithm to automate the 

process of timetabling. In the case of HEC Montréal, each model proposed for Course Timetabling 

and Examination Timetabling was able to return a timetable that satisfies most constraints after 

only 600 seconds. Through rigorous testing, we proved that the models are considerably robust, in 

the sense that they are capable of returning consistent results even in presence of randomness. 

Furthermore, we showed that a runtime of 1800 seconds can be very beneficial, as the models 

consistently returned even better results. We strongly believe that the implementation of this 

algorithm can immensely improve the timetabling process within the institution. This automation 

is deemed to reduce the time for active resolution in the process from several days down to a few 

hours. Additionally, such automation allows for a degree of versatility that is inconceivable in 

manual timetabling.  

 

Through the literature review in Chapter 2, we learned that, despite the numerous existing 

research work conducted on the topic of timetabling, no efficient solving method has yet been 

found for these problems categorized as NP-complete. However, the most notable solving 

techniques for these problems of high complexity are metaheuristics, due to their ability to cover 

a wide variety of problems and provide high quality solutions. In Chapter 3, we solidified the 

problem instance and the goal of the algorithm, which is to produce conflict-free timetables that 

mostly satisfy students and lecturers. With this in consideration, in Chapter 4, we proposed a 

heuristic algorithm based on local search to solve HEC Montréal’s Course Timetabling and 

Examination Timetabling problems. This heuristic searches for improving solutions by exploring 

complete and feasible solutions. By imposing a single hard constraint (being that all courses must 

be assigned to a time-room), we position for a more random search in a search space that is less 

constrained. The key elements of this algorithm are 1) the partial evaluation; 2) the distinction in 

time-specific and room-specific constraints; 3) the clustering of similar rooms into room types. 
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First, partial evaluation, in contrast to complete evaluation, leads to a significant economy in 

evaluation time. By structuring the time-room and course data into lists, we can follow the changes 

of the solution generated by a swap, and directly evaluate the changes in the affected time-rooms 

and courses. This framework ultimately eliminates repeated calculations. Second, knowing that 

timetabling has a dimension of time and space, we can identify scenarios where swaps only affect 

one dimension. By recognizing the distinction between time-specific and room-specific constraints, 

we can avoid calculations of unaffected constraints. Third, clustering rooms with similar 

characteristics to create room types allows to avoid unimpactful swaps, contributing to a reduction 

of the problem’s combinatorial symmetry. Numerous models were then presented and evaluated 

on their performance and convergence in Chapter 5. All models presented for Course Timetabling 

and Examination Timetabling were able to easily return timetables with the majority of the 

constraints satisfied within a reasonable timeframe. From the experimental results, we proposed 

two models, one for Course Timetabling and another for Examination Timetabling. The 

experimental results of this algorithm show high convictions to the purpose of automating the 

timetabling process of HEC Montréal.  

 

In addition to its optimization ability, the algorithm we proposed shows great simplicity and 

flexibility, which is essential for its capability in covering similar scheduling problems. We 

strongly believe that the three key elements of this algorithm (partial evaluation, distinction in 

time-specific and room-specific constraints, and clustering of similar rooms) can be beneficial for 

other optimization problems in the scheduling sphere. Concerning future works, the application of 

the algorithm on a variety of scheduling problems can provide an avenue of extension to prove the 

versatility of this heuristic algorithm. Through this extension, it would be interesting to develop 

on the challenges in adapting the algorithm proposed to a different problem instance. An emphasis 

on the difficulty of the instance and its likeness to the Course Timetabling or Examination 

Timetabling of HEC Montréal could lead the way to more interesting discussions. Moreover, since 

we are unable to prove the optimality of the solution with the heuristic proposed, the suggested 

extension could provide more depth to the heuristic’s optimization capacities. This thesis allowed 

numerous ideas to be studied in the search of a well-rounded algorithm. To maintain a natural flow 

and to keep the thesis within its scope, a few ideas had to be omitted upon their inconclusive results. 

For instance, the types of swaps discussed in Section 4.6.1 could lead to interesting models, but 
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none were found within the extend of our model testing. Also, a model inspired by VNS was 

created, but was ultimately disregarded. The recent success of VNS in metaheuristics reported in 

the literature review from Chapter 2 led to the idea to incorporate a shaking procedure to the 

algorithm. This procedure aims to avoid local optima, and we approached this by periodically 

accepting non-improving swaps in a probabilistic manner. In such a model, a shaking phase is 

initiated when no improving swap has been found in a certain amount of time. While these two 

ideas were not pursued due to inconclusive test results, they can nonetheless create ample 

opportunities for further research. Perhaps, these suggestions for future works could shed light on 

the complexity theory problem of P vs. NP mentioned in Chapter 2, and hopefully lead the way 

to an efficient algorithm to solve a NP-complete problem.  
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