

HEC MONTRÉAL

A heuristic approach based on local search for Course Timetabling

and Examination Timetabling at HEC Montréal

par

Su-Min Tan

Sylvain Perron

HEC Montréal

Directeur de recherche

Gilles Caporossi

HEC Montréal

Codirecteur de recherche

Sciences de la gestion

(Spécialisation Data Science and Business Analytics)

Mémoire présenté en vue de l’obtention

du grade de maîtrise ès sciences en gestion

(M. Sc.)

Décembre 2022

© Su-Min Tan, 2022

 iii

Résumé

Les problèmes des horaires sont couverts par une multitude de disciplines. L’intérêt particulier

porté au sujet des horaires en recherche peut être attribué à la complexité notoire de ces problèmes

et à l’impact des horaires répandu dans l’ensemble des industries. Ce mémoire se centre sur les

problèmes des horaires dans le domaine de l’éducation. De nombreuses institutions dépendent de

processus manuels dans la création des horaires, favorisant un mode simple et pratique. Toutefois,

ce type de processus est essentiellement fondé sur la reconduction et modification d’un horaire

précédent pour s’adapter aux nouvelles demandes. Alors, en présence d’un nombre élevé de

changements, ces tâches deviennent considérablement difficiles à exécuter. De plus, les

institutions adoptant un processus manuel risquent de préserver les erreurs d’un horaire à l’autre.

Avec la croissance et l’évolution des institutions, les méthodes traditionnelles, comme les

processus manuels dans la création des horaires, deviennent difficiles à appliquer aux situations

modernes. Alternativement, on remarque que l’automatisation de tels processus devient

graduellement plus facile avec le progrès de la technologie. Ainsi, nous consacrons ce mémoire à

aider HEC Montréal à automatiser son processus de création des horaires, mettant en pratique

diverses techniques d’optimisation. À HEC Montréal, des différences significatives de contexte

poussent à ce que la création des horaires de cours et celle des examens soient traitées comme des

sous-problèmes. Dans ce mémoire, on étudie la revue littéraire des problèmes des horaires,

contextualisant l’instance en jeu pour explorer l’ensemble des méthodes de solution. Nous

justifions notre choix d’adopter une approche heuristique basée sur la recherche locale pour

développer un algorithme capable de résoudre les deux sous-problèmes. De nombreux modèles

dérivant de différentes stratégies pour améliorer le temps de calcul général de l’algorithme sont

présentés. À travers ce mémoire, nous proposons ultimement un algorithme robuste pourvu de

simplicité et flexibilité, favorisant une application à de multiples problèmes dans le cadre des

horaires.

Mots clés :

problèmes d’horaires universitaires, optimisation, heuristique, recherche locale

 iv

 v

Abstract

Scheduling problems are discussed amongst many research disciplines due to their high

complexity and heavy impact on almost all industries. This thesis focuses on a subcategory of

scheduling problems: timetabling problems in the educational field. While many institutions rely

on manual processes for their scheduling activities in favor of simplicity and convenience, these

methods have a few drawbacks. In fact, manual timetabling, which is mainly built upon the

modification of a previous timetable to comply to new requests, can amount to a tedious task when

the number of changes is large. Moreover, the institutions face a great risk of unknowingly carrying

forward existing issues. As institutions grow and evolve, the use of traditional means, such as

manual timetabling, becomes harder to adapt to modern situations. With today’s level of

technology, the automation of such processes is greatly facilitated. In this thesis, we seek to help

the university of HEC Montréal to automate its timetabling process by leveraging optimization

techniques. At HEC Montréal, due to the contextual differences involved in course lectures and

examinations, Course Timetabling and Examination Timetabling are treated as sub-problems.

Through this thesis, we study the state-of-the-art of timetabling problems, and we contextualize

the problem instance at hand to explore the many possible solving methods. We justify the heuristic

approach adopted to develop an algorithm based on local search that can solve both Course

Timetabling and Examination Timetabling problems. This algorithm is put through numerous tests

with different strategies to improve its overall computational time. Ultimately, we propose an

algorithm that shows great simplicity and flexibility, in addition to robustness, allowing for

application to a variety of problems in the scheduling sphere.

Keywords:

university timetabling, optimization, heuristics, local search

 vi

 vii

Table of Contents

RÉSUMÉ ... III

ABSTRACT ... V

LIST OF TABLES AND FIGURES ... IX

1 INTRODUCTION .. 1

2 REVIEW OF LITERATURE AND PROBLEM... 3

2.1 INTRODUCTION TO TIMETABLING PROBLEMS ... 3

2.2 TIMETABLING: AN NP-COMPLETE PROBLEM .. 4

2.3 SOLVING TECHNIQUES EXPLORED .. 6

2.3.1 Operational research techniques ... 6

2.3.2 Metaheuristic methods ... 8

2.3.3 Intelligent novel methods ... 11

2.3.4 Distributed multi agent system-based applications ... 12

2.4 COMPARISON BETWEEN METHODS ... 12

3 PROBLEM FORMULATION .. 14

3.1 CONTEXT ... 14

3.1.1 HEC Montréal’s current timetabling process .. 14

3.1.2 Course Timetabling context at HEC Montréal .. 16

3.1.3 Examination Timetabling context at HEC Montréal ... 18

3.2 FRAMEWORK ... 20

3.2.1 Course framework: a standardized weekly timetable .. 20

3.2.2 Examination framework: a full-length timetable ... 21

4 APPLICATION OF SOLVING METHODS ... 22

4.1 GENERAL ALGORITHM ... 22

4.2 CONSTRAINTS .. 23

4.2.1 Course Timetabling constraints ... 24

4.2.2 Examination Timetabling constraints .. 26

4.3 DATA REPRESENTATION .. 30

4.4 INITIALIZATION.. 32

4.5 TRANSFORMATION... 33

4.6 SWAP GENERATION .. 33

4.7 TYPES OF SWAPS .. 38

4.8 SOLUTION EVALUATION... 40

 viii

4.9 STOPPING CRITERIA ... 41

5 RESULTS .. 42

5.1 DATA SIMULATION .. 42

5.2 EXPERIMENTAL RESULTS ... 43

5.2.1 Baseline model ... 45

5.2.2 Adapted baseline model ... 45

5.2.3 Baseline and adapted baseline models with longer runtime .. 46

5.2.4 Swaps of multiple time-room sets ... 48

5.2.5 Special swappings .. 49

5.2.6 Room occupancy .. 55

5.2.7 Room types ... 58

5.3 PROPOSED METHODOLOGY .. 64

5.3.1 Best Course Timetabling model ... 64

5.3.2 Best Examination Timetabling model .. 67

6 CONCLUSION ... 71

BIBLIOGRAPHY .. 74

 ix

List of Tables and Figures

Table 4.1 Comparison of best order and random order methods through number of swaps generated and average

evaluation time according to number of sets.. 37

Table 5.1 Course lecture constraint weights .. 44

Table 5.2 Examination constraint weights ... 44

Table 5.3 Comparison of the best Course Timetabling model’s penalty values between 600 seconds and 1800 seconds

 .. 66

Table 5.4 Constraint satisfaction of a resulting course lecture timetable .. 67

Table 5.5 Results of baseline and adapted baseline models and a time-based model that use random swapping and

special swapping box(2,2) .. 68

Table 5.6 Comparison of the best Course Timetabling model’s penalty values between 600 seconds and 1800 seconds

 .. 69

Table 5.7 Constraint satisfaction of a resulting examination timetable ... 70

Table 5A.1 Description of baseline and adapted baseline models 46

Table 5B.1 Results of baseline and adapted baseline models .. 46

Table 5C.1 Results of baseline and adapted models ... 47

Table 5A.2 Description of models with swaps of multiple time-room sets ... 48

Table 5B.2 Results of models with swaps of multiple time-room sets .. 49

Table 5A.3 Description of models that use a single type of special swapping .. 50

Table 5B.3 Results of models that use a single type of special swapping ... 50

Table 5A.4 Description of time-based models that use three types of swapping .. 52

Table 5B.4 Results of time-based models that use three types of swapping ... 52

Table 5A.5 Description of time-based models that use random swapping and special swapping box(2,2) 53

Table 5B.5 Results of time-based models that use random swapping and special swapping box(2,2) 53

Table 5A.6 Description of time-based models that use random swapping and special swapping cross(1,1) 54

Table 5B.6 Results of time-based models that use random swapping and special swapping cross(1,1) 54

Table 5A.7 Description of exploration-based models that use random swapping and special swapping box(2,2) 55

Table 5B.7 Results of exploration-based models that use random swapping and special swapping box(2,2) 55

Table 5A.8 Description of baseline model without the room occupancy constraint ... 56

Table 5B.8 Results of baseline model without the room occupancy constraint .. 56

Table 5A.9 Description of time-based models controlling the room occupancy constraint .. 57

Table 5B.9 Results of time-based models controlling the room occupancy constraint ... 57

Table 5A.10 Description of exploration-based models controlling the room occupancy constraint 58

Table 5B.10 Results of exploration-based models controlling the room occupancy constraint 58

Table 5A.11 Description of models only room types with minimal or maximal capacity as effective capacity 59

Table 5B.11 Results of models only room types with minimal or maximal capacity as effective capacity................ 60

 x

Table 5A.12 Description of time-based models that use room types with maximal capacity as effective capacity ... 61

Table 5B.12 Results of time-based models that use room types with maximal capacity as effective capacity 61

Table 5A.13 Description of time-based models that use room types with minimal capacity as effective capacity 62

Table 5B.13 Results of time-based models that use room types with minimal capacity as effective capacity 62

Table 5A.14 Description of exploration-based models that use room types with maximal capacity as effective capacity

 .. 63

Table 5B.14 Results of exploration-based models that use room types with maximal capacity as effective capacity 64

Figure 4.1 Pseudo-code of the algorithm ... 23

Figure 4.2 Difference between exclusivity groupings of sub-sections and exclusivity groupings of repertories in

Examination Timetabling ... 29

Figure 4.3 Comparison between partial evaluation and complete evaluation with a Course Timetabling problem ... 32

Figure 4.4 Flowchart of the process of swap generation ... 34

Figure 4.5 Flowchart of the subprocess to fill sets... 35

Figure 4.6 Evaluation plot of a 3-set model and 6-set Course Timetabling model using best order and random order

methods .. 36

Figure 4.7 Possible movements in two special swapping techniques (box(2,2) and cross(1,1)) through a Wednesday

lunch timeslot example .. 37

Figure 4.8 Stacked bar plots of swap types per time interval .. 39

Figure 4.9 Pie charts of swap types per time interval .. 40

Figure 5.1 Heatmap of time distance in accepted swaps in a baseline model ... 49

file://///Users/sumin/Downloads/Tan_Su-Min_2022_memoire_newformat_edited.docx%23_Toc127052265
file://///Users/sumin/Downloads/Tan_Su-Min_2022_memoire_newformat_edited.docx%23_Toc127052266
file://///Users/sumin/Downloads/Tan_Su-Min_2022_memoire_newformat_edited.docx%23_Toc127052266
file://///Users/sumin/Downloads/Tan_Su-Min_2022_memoire_newformat_edited.docx%23_Toc127052267
file://///Users/sumin/Downloads/Tan_Su-Min_2022_memoire_newformat_edited.docx%23_Toc127052268
file://///Users/sumin/Downloads/Tan_Su-Min_2022_memoire_newformat_edited.docx%23_Toc127052269
file://///Users/sumin/Downloads/Tan_Su-Min_2022_memoire_newformat_edited.docx%23_Toc127052270
file://///Users/sumin/Downloads/Tan_Su-Min_2022_memoire_newformat_edited.docx%23_Toc127052270
file://///Users/sumin/Downloads/Tan_Su-Min_2022_memoire_newformat_edited.docx%23_Toc127052271
file://///Users/sumin/Downloads/Tan_Su-Min_2022_memoire_newformat_edited.docx%23_Toc127052271
file://///Users/sumin/Downloads/Tan_Su-Min_2022_memoire_newformat_edited.docx%23_Toc127052272
file://///Users/sumin/Downloads/Tan_Su-Min_2022_memoire_newformat_edited.docx%23_Toc127052273
file://///Users/sumin/Downloads/Tan_Su-Min_2022_memoire_newformat_edited.docx%23_Toc127052274

 1

1 Introduction

Scheduling is a widely discussed topic as it essentially affects a variety of fields, including business,

sports, and education. From employee scheduling to job scheduling, nearly all industries are

subject to these time-management problems. The objective of a scheduling problem is presented

as follows:

to solve practical problems relating to the allocation, subject to constraints, of resources to

objects being placed in space-time, using or developing whatever tools may be appropriate.

The problems will often relate to the satisfaction of certain objectives. (Wren, 1996)

Timetabling problems are the most prominent scheduling problems in the education industry. The

quality of the course schedules offered by universities and other higher education institutions can

have a material effect on their reputation. These course schedules not only contribute to the overall

satisfaction of students and lecturers, but they also help attract prospective talent to the institution.

Because of the complex nature of the problems at hand, research efforts in the field have yet to

find a general method able to efficiently solve any timetabling problem despite numerous attempts

to do so. In fact, the high complexity in this problem led to the conduction of research in a multitude

of disciplines, such as artificial intelligence and operational research. The state-of-the-art of

timetabling problems includes operational research-based techniques, metaheuristic methods,

intelligent novel methods, and distributed multi-agent system-based applications, as we will later

discuss in this thesis.

Timetabling is a process that must be completed either at a semestrial or annual frequency for

universities. The process becomes increasingly complicated and time-consuming as the institution

grows. With the constant expansion of the university, we have been tasked by HEC Montréal, a

business school, to automate the process of timetabling for course lectures and examinations.

Timetabling problems considerably differ depending on the institution, which calls for different

solving methods to be used for different cases. According to McCollum (2006), a great amount of

literature is available on timetabling problems, so much that there seems to be a gap between the

theory and the practice of this subject as most published papers discuss specific applications. In

this thesis, we propose a heuristic algorithm based on local search that is simple and flexible,

making it not only applicable to HEC Montréal’s specific Course Timetabling and Examination

 2

Timetabling, but also to other problems in the scheduling sphere. The algorithm was developed on

Python, but it can be replicated in most other programming languages.

This thesis is divided into four parts. The first chapter will be dedicated to the review of literature

on the topic of timetabling problems in the educational field. We will elaborate on the theoretical

definition of timetabling, the computational complexity, and the techniques commonly used to

solve timetabling problems. A second chapter will serve to formulate the problem, expanding on

the context of the problem instance of HEC Montréal, as well as the frameworks created to

represent the timetables. The third chapter will introduce the different components of the algorithm

proposed. The fourth chapter will present the experimental results of the models given the data

simulated, as well as the analysis of said results. Finally, the last chapter will conclude with a

discussion of the usefulness of the algorithm we propose for HEC Montréal.

 3

2 Review of literature and problem

2.1 Introduction to timetabling problems

According to Wren (1996), timetabling problems are a special case of scheduling problems. To be

exact, timetabling is defined as “the allocation, subject to constraints, of given resources to objects

being placed in space-time, in such a way as to satisfy as nearly as possible a set of desirable

objectives” (Wren, 1996). In both scheduling and timetabling, the resource allocation is restricted

by hard and soft constraints. Hard constraints refer to requirements that must be respected; they

define the feasibility of a solution. Soft constraints are not related to feasibility. Rather, they refer

to preferences and determine the quality of a solution. The number of constraints, as well as the

distinction between hard and soft constraints, are greatly influenced by the formulation of the

problem instance.

Timetabling problems in the educational field can be divided into three main classes: School

Timetabling, Course Timetabling, and Examination Timetabling. Because universities often rely

on a combination of Course Timetabling and Examination Timetabling, they are together referred

to as university timetabling problems. School Timetabling, also commonly called class-teacher

timetabling, is defined as “the weekly scheduling for all the classes of a school, avoiding teachers

meeting two classes at the same time, and vice versa” (Schaerf, 2005). Course Timetabling

corresponds to “the weekly scheduling for all the lectures of a set of university courses, minimizing

the overlaps of lectures of courses having common students” (Schaerf, 2005). Finally, Examination

Timetabling is “the scheduling for the exams of a set of university courses, avoiding overlap of

exams of courses having common students, and spreading the exams for the students as much as

possible” (Schaerf, 2005). However, real-world problems are complex and may fit loosely between

multiple classes.

There have been differences in the advancement of research across educational timetabling classes.

As put forth by Oude Vrielink et al. (2019), research progress in School Timetabling problems has

historically been slower relative to university timetabling problems. This could be attributable to

methodological differences in the way studies are conducted. The authors explained that School

Timetabling studies are conducted for specific institutions, while Course Timetabling and

 4

Examination Timetabling studies rely on widely adopted benchmarks, allowing for easier

comparisons.

Organizational structures of schools and universities often influence the solving methods of

timetabling problems. This is reflected in the typology of Course Timetabling problems. Course

Timetabling problems can either be post-enrollment-based or curriculum-based, depending on the

timing of student enrollment. According to Abdullah et al. (2012), the main difference between

the two types of Course Timetabling is that “the post-enrollment course timetabling problems

concentrate on students’ preferences’ […] while curriculum-based course timetabling focuses on

lecturers’ preferences.” In a post-enrollment-based setting, the timetable is set after the students’

enrollment. The timetable needs to allow all students to attend the courses in which they have

enrolled. In a curriculum-based setting, the timetable is set before the students’ enrollment.

Students are organized into groups and must follow a predefined set of compulsory and optional

courses. Due to their structure, curriculum-based timetables can be defined as “the weekly

assignment of a set of lectures for several university courses to specific timeslots and rooms, where

conflicts between courses are set according to curricula published by the university and not on the

basis of enrollment data” (Abdullah et al., 2012).

2.2 Timetabling: an NP-complete problem

Timetabling problems are hard combinatorial problems. Hoos and Stützle (2004) defined

combinatorial problems as problems that “involve finding groupings, orderings or assignments of

a discrete, finite set of objects that satisfy certain conditions or constraints.” In some cases, a

combinatorial problem can pose as a search problem, where the goal is to find a feasible solution.

In other cases, it can be viewed as an optimization problem, where an objective function is

associated to the solution. The quality of a solution is defined by the value of the objective function,

and the best solution is the one with the highest quality. The Boolean satisfiability problem (SAT)

and the travelling salesman problem (TSP) are examples of well-known combinatorial problems;

Hoos and Stützle (2004) provided additional information on these problems’ combinatorics.

Hoos and Stützle (2004) added that “combinations of these solution components form the potential

solutions of a combinatorial problem.” In an educational timetabling context, the solution

 5

components are course lectures or examinations to be assigned to specific timeslots and rooms.

This creates a very large number of candidate solutions to explore. In fact, “for most combinatorial

optimization problems, the space of potential solutions for a given problem instance is at least

exponential in the size of that instance” (Hoos & Stützle, 2004).

Computational complexity is used to classify problems in terms of the amount of resources

required to run their algorithms. Mainly, there are two classes of problems: P and NP. The P class

refers to problems that are solvable in deterministic polynomial time, meaning that they are

efficiently solvable, whereas the NP class relates to problems that are solvable in nondeterministic

polynomial time but are verifiable in deterministic polynomial time. This implies that all P

problems are contained in NP (or P ⊆ NP), because everything that is solvable in deterministic

polynomial time is also ultimately solvable in nondeterministic polynomial time. Moreover, NP-

hard problems are problems that are at least as hard as the hardest NP problems. In such way, NP-

complete problems are ultimately problems that are both NP and NP-hard. In simpler terms, they

are the hardest problems contained in the NP class. Timetabling problems are generally considered

as NP-complete (Cooper & Kingston, 1995).

Because the solutions of NP-complete problems can be verified in deterministic time, the

relationship between P and NP brings us to an important topic in computational complexity theory:

the P vs. NP problem. The question is such that if the solution to a problem can be verified in

deterministic polynomial time, is it also possible to solve it in deterministic polynomial time? In

other words, we want to know if P = NP is true. If P = NP was proven to be true, it would mean

that every problem verifiable in deterministic time can also be solvable in deterministic time.

Hence, we would be proving that all NP problems can be solved efficiently in a computational

complexity standpoint. Hoos and Stützle (2004) stated that “it suffices to find a polynomial time

deterministic algorithm for one single NP-complete problem to prove that P = NP.” However, to

this day, no efficient algorithm to solve a NP-complete problem has yet been found. This just

shows how complex timetabling problems truly are and how difficult they are to solve.

 6

2.3 Solving techniques explored

Numerous methods have been studied in attempt to find optimal solutions for educational

timetabling instances. A survey by Babaei et al. (2015) breaks down these methods into the

following categories: operational research-based techniques, metaheuristic methods, intelligent

novel methods, and distributed multi-agent system-based applications. The next sections are

dedicated towards the different methods’ description and application on diverse educational

timetabling problems with a focus on university timetabling, spanning Course Timetabling and

Examination Timetabling.

2.3.1 Operational research techniques

Operational research (OR) relates to the application of mathematical principles to management or

business problems, mainly to improve decision-making. The most explored OR methods for

timetabling problems include graph colouring (GC), integer programming or linear programming

(IP/LP) and constraint satisfaction programming (CSP).

2.3.1.1 Graph colouring (GC)

Welsh and Powell (1967) suggested reducing timetabling problems to graph colouring. The GC

problem consists of an assignment of colours to vertices of a graph such that no pair of vertices

connected by an edge share a colour. In a scheduling context, the vertices are events, the edges are

event conflicts, and the colours are timeslots. To illustrate, let us suppose that the only events are

course lectures in the Course Timetabling case. If two vertices are connected by an edge, the

corresponding courses have common students or lecturers and thus should not have lectures

simultaneously. Because they should be assigned to different timeslots, the corresponding vertices’

colours must be different. Given a graph G, this problem typically looks for a solution with the

least number of colours, i.e., with the chromatic number of G, but Welsh and Powell (1967)

introduced a relaxation with the idea of adding an upper bound to the chromatic number. This

upper bound allows to simplify the resolution of GC for instances where the minimum number of

colours is not necessarily sought after. In fact, rather than a timetable with the minimum number

of timeslots, timetabling problems generally look for a timetable with no event conflict that fit

within a given number of timeslots. GC has also successfully been applied to School Timetabling

(De Werra, 1985), Examination Timetabling (Welsh & Powell, 1967; Redl, 2004) and Course

 7

Timetabling (Dandashi & Al-Mouhamed, 2010; Razak et al., 2010). Graph colouring is primarily

used for timetabling problems that are predominantly restricted by event conflicts. However,

because there are constraints that are outside of the graph colouring’s scope in higher education

timetabling problems, heuristics incorporating graph colouring are more commonly used. Asham

et al. (2011) proposed a heuristic combining graph colouring and genetic algorithm to decompose

the Course Timetabling problem.

2.3.1.2 Integer programming and linear programming (IP/LP)

In a timetabling context, Babaei et al. (2015) referred to linear programming as an “efficient

assigning of limited resources to the specified activities in order to maximize the interest and

minimize the cost.” In fact, integer programming (IP) and linear programming (LP) correspond to

mathematical optimization of problems. In integer programming, the variables only take integer

values. In linear programming, the problem is represented with linear relationships. And linear

integer programming (ILP) combines the two. The mathematical approach has been successfully

applied to a wide range of real-world problems across business, medicine, and many more.

Instances of Course Timetabling have been solved with IP by Aubin and Ferland (1989), Daskalaki

et al. (2004) and Bakir and Aksop (2008). Although IP/LP have proven to be quite successful in

solving combinatory optimization problems, computational difficulties may occur. In fact, IP/LP

is a method that has shown great success in finding globally optimal solutions at the expense of

considerably slow convergence time. Therefore, this approach is mostly used for small-sized

problems because the heavy computations in larger-sized problems may require more powerful

computers, which are not always accessible. For large scale problems, heuristics based on IP/LP

are more frequently used. In the same vein, Daskalaki and Birbas (2005) presented a relaxation

procedure to the optimization of the IP formulation of a university timetabling problem. In this

two-stage relaxation procedure, the constraints requiring the heaviest computations are relaxed at

the first stage, and then recovered at the second stage. This allows the model to find an initial

solution more easily at the first stage, and then find an optimal solution at the second stage.

2.3.1.3 Constraint satisfaction programming (CSP)

Many operational research problems, including timetabling problems, fall within the general

framework of constraint satisfaction programming. CSP relates to computer programming, rather

 8

than mathematical programming. The general model for constraint-satisfaction programming is as

follows: 𝐶𝑆𝑃 = (𝑉, 𝐷, 𝐶) where 𝑉 = {𝑣_1, 𝑣_2, … , 𝑣_𝑛} is a finite set of variables, 𝐷 =

 {𝐷_1, 𝐷_2, … , 𝐷_𝑛} is a finite set of domains where 𝐷_𝑖 is a set of values for the variable 𝑣_𝑖, and

𝐶 = {𝑐_1, 𝑐_2, … , 𝑐_𝑛} is a finite set of constraints restricting the variable values (Müller, 2005).

The goal is to find a consistent assignment, i.e., to assign values to each variable such that all

constraints are satisfied. Generally, CSP can be solved with either consistency techniques or search

algorithms. Amongst consistency techniques, arc-consistency is a process that “ensures any valid

value in the domain of a single variable has a valid match in the domain of any other variables in

the problem” (Zhang & Lau, 2005). Most search algorithms used to solve CSP are systematic,

meaning that they start with an empty solution and systematically assign possible values to the

variables. Because they can go through the entirety of the possible values, they must find a solution,

or prove that there is no solution. Müller (2005) proposed an iterative forward search algorithm,

which combines systematic search to the local search approach, to solve the CSP formulation of a

curriculum-based course timetabling problem at Purdue University.

2.3.2 Metaheuristic methods

Metaheuristics methods are methodological approaches based on an iterative process in the quest

of improvements. These methods are known to return good quality solutions without proof of

optimality. They are mainly split into two types of methods: single-based and population-based.

Single solution-based metaheuristics use a single candidate solution to analyze the problem, rather

than a population. A single candidate solution is initially chosen according to some criteria and

evolves iteratively. Essentially, single-based metaheuristics are local search algorithms.

Population-based methods choose multiple candidate solutions to form an initial population. At

each iteration, a selection mechanism is used on the current population to select the best candidate

solutions. The selected candidate solutions undergo some changes such that there is improvement.

Amongst metaheuristics methods, variable neighbourhood search (VNS), tabu search algorithm

(TS), simulated annealing (SA) and genetic algorithm (GA) are most used to solve timetabling

problems.

 9

2.3.2.1 Variable neighbourhood search (VNS)

Variable neighbourhood search is an approach based on guided change of neighbourhoods in the

search process. It “explores increasingly distant neighbourhoods of the current [best] solutions,

and jumps from this solution to a new one if and only if an improvement has been made”

(Mladenovic & Hansen, 1997). Many variants of VNS have been developed, such as variable

neighborhood descent (VND) which uses multiple neighbourhoods in the local search, and variable

neighbourhood decomposition search (VNDS) which systematically decomposes large scale

problems into subproblems. According to Hansen et al. (2017), basic VNS is composed of three

stages: shaking, local search and move. Local search allows to find the optimum in the

neighbourhood of a solution. Move compares the neighbourhood’s local optimum to the current

best solution. Finally, shaking is used to prevent local optimum traps. Basic VNS starts with a

defined set of neighbourhood structures in a specific order. The VNS systematically searches

through every neighbourhood of the current best solution in a predefined order. If a local optimum

that is better than the current best solution is found, it replaces the latter. Then, the neighbourhood

search starts over with the new current best solution, and so until no further improvement can be

found. An instance of Examination Timetabling has been solved using VNS by Ayob et al. (2006).

Borchani et al. (2017) developed a VND to solve a Course Timetabling problem instance. Many

have developed hybrid heuristics combining a variant of VNS with other methods such as genetic

algorithm (Burke et al. 2010) and tabu search (Vianna et al., 2020).

2.3.2.2 Tabu search (TS)

Tabu search is a metaheuristic “based on steepest descent search, as it tends to explore the search

space by not re-interpreting recent moves” (Oude Vrielink et al., 2019). In fact, TS utilizes a tabu

list, i.e., a list of moves that are prohibited. A move generally stays within the tabu list for a given

number of iterations, which corresponds to the tabu tenure. Aspiration criteria can also be used,

where a move leading to a certain candidate solution that meets the aspiration criteria can be

accepted regardless of the tabu list. This aspect is mostly used to prevent stagnation from an

overwhelming tabu list. The algorithm starts with a single candidate solution as the current best

solution. It generates a set of neighbours (neighboring candidate solutions to the current best), and

neighbours created from moves within the tabu list are removed from the set. Then, if the best

neighbour out of the set betters the current best solution, it replaces the latter. The tabu list is

 10

updated by removing all moves that is past the tabu tenure. Also, the last move used to obtain the

current best candidate solution is added to the list to prevent cycling. Using TS, Alvarez et al.

(2002), Hertz (1991) and Lu and Hao (2010) each presented a solution to different course instances,

whereas Di Gaspero and Schaerf (2000) solved an examination instance.

2.3.2.3 Simulated annealing (SA)

According to Oude Vrielink et al. (2019), simulated annealing “aims to search for a wider area of

search space in which worse steps are accepted and allows for a more extensive search for the

optimal solution [than other single-based metaheuristics].” The SA algorithm is a probabilistic

process with a variable temperature parameter mimicking the annealing process of metalworking.

The temperature has a high value at the beginning of the search process and progressively

decreases according to a given reduction rule. This parameter affects the acceptance probability of

a candidate solution. If the candidate solution is not deteriorating, the probability of acceptance is

1, else the acceptance is determined by a function of the variation in cost and the current

temperature. In fact, the function tells us that, at high temperature, the algorithm focuses on

exploration, and at low temperature, it focuses on improvements. The algorithm is initiated with a

candidate solution. At each iteration, a candidate solution is randomly generated from the current

solution. If the candidate solution is better than the current solution, it replaces the latter. Else, a

number between 0 and 1 is randomly generated, and is compared to the acceptance probability. If

the number generated is lower than the acceptance probability computed, the candidate solution is

accepted, and replaces the current solution. In the context of educational timetabling, simulated

annealing has been successfully used for both examinations (Burke et al., 2004; Thompson &

Dowsland, 1996) and course lectures (Bellio et al., 2016).

2.3.2.4 Genetic algorithms (GA)

Genetic algorithm is a population-based approach inspired by the concept of natural selection and

evolution. The initialization of the GA refers to generation of several individuals (candidate

solutions) as part of the initial population. The population maintains a fixed size throughout the

algorithm. Each individual has a chromosome which is represented by a set of genes (parameters).

A fitness evaluation is used to assess the quality of each individual. In the selection process,

individuals are chosen to enter the mating pool according to their fitness score. Then, the mating

 11

process is performed by randomly choosing parents (pairs of individuals) from this subpopulation.

Depending on a certain crossover probability, there might be an exchange of genes between the

parents to create an offspring, otherwise no change is made. The new offspring, after crossover, is

randomly chosen to perform mutation, which corresponds to modification of some genes. Mutation

is needed to ensure diversity in the population, or to avoid early state convergence. Genetic

algorithm techniques have been used to solve university timetabling problems, as demonstrated by

Burke et al. (1994), Erben and Keppler (1995) and Alsmadi et al. (2011).

2.3.3 Intelligent novel methods

Babaei et al. (2015) refer to hybrid methods, fuzzy approach, hyper heuristics, knowledge-based

methods, and clustering algorithms as intelligent novel methods. These methods have been more

recently developed and more frequently used nowadays. The following sections are dedicated

towards hybrid algorithms and fuzzy approach in the context of educational timetabling.

2.3.3.1 Hybrid algorithms

Hybrid algorithms combine multiple approaches to solve a common problem. They aim to benefit

from the different attributes each method offers by compensating their individual shortcomings.

The use of hybrid algorithms is becoming increasingly popular because of their good performance

in solving complex problems. A few examples of hybrid algorithms have already been given in

the previous sections. In fact, these algorithms are very diverse, mainly because their design highly

depends on the problem instance. For example, local search algorithms and evolutionary

approaches can be combined (Abdullah et al., 2007; Kohshori & Abadeh, 2012), and tabu search

and variable neighborhood search can be hybridized as well (Muklason et al. 2019).

2.3.3.2 Fuzzy approach

The fuzzy approach makes use of fuzzy logic, which is born from the observation that decision is

frequently made on uncertain and imprecise information. Novak et al. (2012) informally defined

fuzzy logic as “a special many-valued logic addressing the vagueness phenomenon and developing

tools for its modeling via truth degrees taken from an ordered scale. It is expected to preserve as

many properties of classical logic as possible.” Because fuzziness still needs to be contained in

logic, methods with a fuzzy approach must follow a fuzzy system. Research has shown that fuzzy

 12

approaches constitute very effective and relevant methods for real-world cases (Asmuni et al.,

2009; Asmuni et al., 2005; Chaudhuri & Kajal, 2010; Golabpour et al., 2008).

2.3.4 Distributed multi agent system-based applications

The approach based on multi-agent architecture has been gaining more attention recently, partly

due to its innovating way to decompose large instances of complex timetabling problems into

smaller subproblems. In a multi-agent system, multiple agents cooperate in a computerized system

to solve problems that are too complex to solve individually (Obit et al., 2011). An agent is

anything that can observe the environment through sensors, and that can perform actions upon the

environment. In the context of a decentralized university where each department create their own

course schedule by negotiating for resources with the other departments, Di Gaspero et al. (2004)

proposed a system based on a three-agent architecture. Each department has three cooperative

agents: Solver for local search of departmental timetable, Negotiator for resource negotiation

between departments, and Manager for information management.

2.4 Comparison between methods

Educational timetabling problems have been widely studied because of their complexity, and many

approaches have been proposed to solve these problems. There is not a universally best method to

solve university Course Timetabling and Examination Timetabling problems, as each method has

its strengths and weaknesses. According to Chen et al. (2021), operational research-based methods,

single-based metaheuristics, and hybrid algorithms are the most popular solving techniques

specifically employed in real-world Course Timetabling.

Operational research-based methods, such as GA, IP/LP and CSP, are rather easy to implement,

but they do not particularly show good efficiency in solving university timetabling problems. To

be more precise, they do not perform well on very large instances since the complexity of these

methods increases as the number of students and universities increases (Babaei et al., 2015). In

fact, they seem good at generating feasible solutions but lacking at finding high quality solutions,

especially in a large-scale context. As for metaheuristics, these methods have been increasingly

popular in timetabling research, mainly because they can easily adapt to different constraints to

generate high quality solutions and cover a very wide variety of optimization problems. But it was

 13

noted that single-based metaheuristics, such as VNS, TS, and SA, mainly focus on exploitation

rather than exploration, while population-based algorithms, like GA, are prone to premature

convergence and tend to require a lot of computational time. It seems like recent research has been

focused on single-based rather than population-based metaheuristics (Oude Vrielink et al., 2019).

The attempts to find a synergy between exploitation and exploration have attracted attention to

hybrid algorithms. While hybrid algorithms are more costly and harder to implement than

metaheuristics, they generally perform well in the exploration of solution search space.

 14

3 Problem formulation

3.1 Context

HEC Montréal is a business school in Montreal, Quebec, Canada founded in 1907. It offers over

1,200 courses across more than 100 programs, at the undergraduate, graduate, and post-graduate

level. There are courses available for the bachelor’s degree (BAA) and certificate (CERT) at the

undergraduate level; Master of Science (MSC), Master of Business Administration (MBA) and

specialized graduate diploma (DESS) at the graduate level; and Doctor of Philosophy (PHD) at

the post-graduate level. Courses are offered primarily in French, but they can be available in

English and Spanish. In the fall of 2020, HEC Montréal reported a student body size of 15,180,

including 4,144 international students from 144 countries. At this scale, the effective scheduling

of course lectures and examinations has become an increasingly challenging task for HEC

Montréal. We express the situation as a timetabling problem and seek to help the institution derive

more efficient scheduling outcomes by leveraging optimization techniques. Here, Course

Timetabling and Examination Timetabling are treated as subproblems. We start by describing HEC

Montréal’s current timetabling process, to then expand on the distinctive characteristics of Course

Timetabling and Examination Timetabling in this specific context.

3.1.1 HEC Montréal’s current timetabling process

There are three main actors involved in HEC Montréal’s current timetabling process: the academic

departments, the school administration, and the school organization department. Each of the eleven

academic departments manages its course offering depending on its estimated demand, as well as

its department lecturers’ availabilities. The school administration is responsible for approving the

changes put forward by the academic departments. And ultimately, the school organization

department is responsible for creating the timetables.

At HEC Montréal, both Course Timetabling and Examination Timetabling are manual processes;

the previous year’s semestrial timetables are reused and manually adjusted to reflect the required

changes. This process takes over five months to complete and produces six timetables, i.e., one

course timetable and one examination timetable for each of the three semesters (fall, winter, and

summer) offered each year.

 15

We now provide insight into how HEC Montréal operationalizes its current yearly scheduling

process. The school organization department primarily uses Oracle PeopleSoft, a Human Capital

Management (HCM) software suite, to manage course scheduling. The process begins in January,

where the school administration holds a meeting to discuss changes on the course curricula. The

school organization modifies the course offering on Peoplesoft considering the changes discussed

by the school administration. Through Peoplesoft, the school organization department extracts all

course labels from each semester of the previous year. The next step is to extract all schedules (i.e.,

represented in date and time) and room assignments of every course’s lecture and examination for

each semester of the previous year. Here, the MBA program is treated separately because of

structural differences. Then, the school organization department uses Textpad, a word editor, and

Microsoft Excel spreadsheets to manually unassign rooms, such that only the schedules are

retained. In cases where a course needs a specific room, the desired room is also preserved. This

is commonly the case for online courses where a virtual room is always assigned. This step

essentially allows for room assignment to start anew for the upcoming year. Then, the lectures and

examinations are separately imported back into Oracle PeopleSoft. For each of the three semesters,

the school organization updates the course information (e.g., course title, repertory number, and

maximal registrations). Subsequently, a manual smoothing is performed to remove exemptions.

An exemption is a lecture that is prevented from happening at its usual time by events such as

holidays and lecturer unavailability; it is specific to a semester. For lectures, this manual smoothing

allows for a course to be represented by a single timeslot: it reduces the date-time schedule into a

weekly schedule where each course is assigned to a timeslot within a week. The course and

examination schedules are then shared through SharePoint to the other parties (i.e., the academic

departments and the school administration) in mid-February. Then the academic departments have

four weeks to request for changes, additions, and removals of courses, which will need the approval

of the administration. It is also through SharePoint that any preference is communicated. The

preferences of a course or examination can relate to timeslots, rooms, and other factors, such as

other related courses, location of building and room layout. Once mid-March, the school

organization updates the exemption table for the upcoming year. The schedules and the exemption

tables are imported to Timetabler as an intermedium to Enterprise, where they are merged to create

three semestrial date-time schedules for the upcoming year. Then, the schedules are transferred

 16

back to Oracle PeopleSoft. An Excel forecasting tool is used to validate the availability of rooms

for each timeslot. It basically compares the number of rooms available to the number of courses

assigned for each timeslot on different levels (e.g., room layout to course’s requested layout).

Manual adjustments for additional requests from SharePoint are made until consensus, which

allows the schedules to be definitive for mid-May.

The process described above is categorized as a manual one. Manual timetabling processes remain

widely used by institutions to solve scheduling problems. These manual timetabling techniques

offer some benefits, mostly centered around simplicity and convenience. In instances that call for

a small number of year-to-year adjustments, it can be significantly simpler to directly modify an

existing timetable to satisfy the new requests, as opposed to creating an entirely new timetable.

This leads many educational institutions to rely on manual processes for their scheduling activities,

as those generally display low year-to-year variability. However, manual timetabling also faces

limitations. It can prove tedious when a large number of adjustments are required, and institutions

face the risk of carrying forward solvable issues that can first appear unavoidable or too difficult

to solve manually. The advancement of computer technology greatly facilitates the development

and implementation of automated timetabling solutions, allowing more institutions to enjoy its

numerous benefits, namely reduced completion time, personnel employed, and human error

involved through manual timetabling process.

3.1.2 Course Timetabling context at HEC Montréal

Course Timetabling at HEC Montréal is curriculum-based. We define a curriculum as a pre-

determined set of compulsory and optional courses. The use of curricula allows to produce course

timetables before the moment students enroll in courses. Each student follows a given curriculum

depending on their program of choice and relevant academic progress. Students generally need to

complete all compulsory courses and most optional courses in their curriculum. Each course is

associated to a number of credits for its completion, and students are fully responsible for enrolling

in the appropriate courses to obtain the required number of credits for graduation.

HEC Montréal must provide a course timetable that is entirely conflict-free for every curriculum

at each semester to ensure that students can feasibly obtain all necessary credits within their

 17

program’s expected time frame. To help achieve this, it employs three distinct types of constraints:

exclusivity groupings, timeslot preferences and similarity groupings.

Exclusivity groupings ensure that courses within a grouping are not assigned to a same timeslot.

These groupings are created based on the curricula to make sure that the students can enroll in all

their courses. No differentiation is made between compulsory courses and optional courses within

exclusivity groupings. This is because although not all optional courses are required, they need to

be available for all students following the curriculum. Since HEC Montréal’s room capacity is

limited, a course is generally offered more than once per semester. Courses that are offered more

than once in a semester are referred as multi-sectional courses; otherwise, they are called uni-

sectional courses. Exclusivity groupings mainly concern uni-sectional courses within a curriculum.

This type of grouping is also used to prevent students from enrolling in both a course and its

prerequisite course during the same semester. In parallel, the allocation of lecturers to courses at

HEC Montréal is completely managed by the academic departments in preparation to the Course

Timetabling process. Because lecturers are pre-assigned to courses, it is important for the course

timetable to be conflict-free from the lecturers’ standpoint as well. Additional exclusivity

groupings are formed to ensure that the lecturers can feasibly attend to all their allocated courses.

This is mostly intended for courses that can only be taught by specific lecturers. In addition to

exclusivity groupings, timeslot preferences are introduced, mainly to provide a satisfactory

teaching schedule to lecturers. Academic departments can also request some courses to be

scheduled at a certain time of the day and/or on a certain day of the week through timeslot

preferences. Finally, similarity groupings are used to ensure that specific courses are assigned to

the same timeslot. In fact, some compulsory courses, commonly core courses, are shared between

curricula, and to facilitate lecturer allocation, multi-sectional compulsory courses are generally

requested to be scheduled at a same time, given that the lecturers are different.

In addition to the scheduling constraints laid out above, the timetables must also consider room

constraints: room capacity, room occupancy, room layout (layout preference and layout necessity)

and building location of room. Capacity refers to the constraint that a room assigned to a given

course must have the physical capacity to seat the number of students. Because the number of

students enrolled to a course is not yet available at the time of the timetable’s creation, HEC

 18

Montréal uses course norms as proxies. The norm of a course corresponds to the maximal number

of students allowed to be enrolled, itself based on historical data and adjusted according to

projections for the current semester. The norm is determined before initiating the timetabling

process. In addition to room capacity, HEC Montréal seeks to maximize occupancy rates by

allocating courses with small norms to low-capacity rooms and vice-versa. Two constraints can be

derived from room layouts: layout preference and layout necessity. While basic layout can be

requested by a lecturer’s preferences, special layout can be required by the academic department

because of a course’s nature. Courses with layout necessities (i.e., courses requiring a room with

a certain special layout) need more attention than courses with layout preferences (i.e., courses

requesting a room with a preferred basic layout). It is important that the only courses assigned to

rooms with special layout are courses that require the specific layout in question. The trading room,

negotiation room and computer labs are rooms with special layouts, whereas mobile, multi-level,

and mobile islands pose as basic layout. Finally, HEC Montréal’s two buildings, Côte-Sainte-

Catherine (CSC) and Decelles (DEC), are taken into consideration. Lecturers and academic

departments may demand for certain courses to be located at a specific building.

3.1.3 Examination Timetabling context at HEC Montréal

We now turn to examination timetables, with an emphasis on the contrast with the course timetable

process outlined above. Examination timetables are created separately from course timetables, and

are usually constructed at a later stage. Examination periods and lecture periods do not overlap,

and examinations have different constraints from course lectures. Examination periods generally

last for about two weeks when lectures do not occur; the midterm period comes at the middle of

the semester, around the eighth week, whereas the final period begins after the last day of lecture.

Generally, the midterms are split according to programs: the first week is dedicated towards BAA

and DESS, and the second week is for MSC, CERT and PHD. It is important to note that

examinations are overseen by supervisors, and not by lecturers. This leads to a different dynamic

in the constraints. Furthermore, since Examination Timetabling is a problem of smaller scale than

Course Timetabling, it can support a larger number of constraints, as well as more precise ones.

HEC Montréal aims to avoid examination conflicts between core courses and other compulsory

courses of a curriculum. This implies that courses follow similar timeslot exclusivity groupings

 19

for lectures and examinations. It is also possible for academic departments to request that several

courses do not have their examinations at the same time, creating additional timeslot exclusivity

groupings. Because examinations of a course tend to be similar through all its variants, it is

necessary that the examinations of the same courses, no matter the language variant, are scheduled

at the same time. This causes similarity groupings to be different from lectures to examinations.

In comparison to Course Timetabling, the constraints in Examination Timetabling are more

specific to the academic program. In BAA, students of the core curriculum cannot have more than

one examination per day. The courses involved form one-day exclusivity groupings. In DESS,

examinations of uni-sectional courses must be scheduled at the same time of the day as their

lectures, and examinations of multi-sectional courses must be scheduled in the evening or during

weekends. In CERT, examinations also need to be scheduled in the evening or during the weekends.

In MSC and PHD, for uni-sectional courses, the examinations need to be at the same timeslot as

lectures. Also, for uni-sectional courses taught in English, the final examinations need to be in the

morning. The MSC and PHD courses with lectures in the evening need to schedule the

examinations for an evening timeslot. These requests are managed through timeslot preferences.

Timeslot prohibitions are used for MSC and PHD finals where a timeslot (morning or afternoon)

without examination on the first day is demanded. MSC and PHD also require that there is a day

without examinations between two final examinations of core courses, and it is managed through

two-day exclusivity groupings.

Concerning the room assignment for examinations, it is required that for each seat occupied, one

seat is left open. This implies that the capacity of a room is cut down in half for examinations.

Because the institution is limited in large rooms, the courses are split into smaller divisions (called

sub-sections) beforehand, and these sub-sections are the events assigned to time-rooms. As

mentioned, examinations are not supervised by lecturers. However, their assistance might be

required, suggesting that examinations of the same courses must be within a same building for

easier accessibility. For examinations at HEC Montréal, it is also common for there to be a time

interval (typically a minimum of 48 hours) between the exam date and the last lecture of the course.

Finally, in contrast to Course Timetabling where room layout preferences come from the lecturer,

the room layouts required in Examination Timetabling are primarily influenced by the form of the

examinations.

 20

3.2 Framework

We have established that course lectures and examinations at HEC Montréal are subject to different

sets of constraints. As such, we chose to express course lectures and examinations separately,

effectively treating them as sub-problems. In addition, we note that course lecture timetables and

examination timetables operate in different timeframes. We settle upon representing them using

distinct timetabling frameworks. The following sections describe the differences between the

frameworks used to represent a course timetable and an examination timetable.

3.2.1 Course framework: a standardized weekly timetable

We now discuss the logical use of a standardized weekly timetable for courses. Diving deeper in

the construction of such a framework, we touch on the difference between typical and atypical

courses, and discuss its building blocks which rely on the concept of time-rooms.

Course lectures at HEC Montréal are recurrent events. They occur repeatedly at a weekly interval,

but can be exceptionally interrupted by exemptions. As a reminder, an exemption is a lecture that

is prevented from happening at its scheduled time by an unusual event (e.g., holidays or lecturer

unavailability). The minimal week-to-week changes in the lectures’ recurrency patterns suggest

that it is possible to reduce the course schedule to a standardized weekly timetable (as broadly

supported by the literature on curriculum-based Course Timetabling). This standardized timetable

represents a typical week in a context without exemption, and is solved such that each course is

assigned to a specific room at a given timeslot, in accordance with the relevant constraints. This

reduced representation allows for an easier solving. From there, the standardized weekly course

timetable is expanded in a full course schedule (generally of 12 weeks) and manual adjustments

are made to account for and reflect any relevant exemptions.

Courses that fit within the standardized framework are considered typical. We regard a typical

course as one with lectures occurring once per week for a period of 12 weeks, occupying the same

room at the same time. Courses that come close to this definition may also be considered typical,

but require explicit manual adjustments. Courses that do not fit within the proposed framework

are considered atypical. Atypical courses generally can be manually incorporated in the final

 21

course schedule because of their small number; this includes special cases where several atypical

courses share similar behavior. As an alternative to a manual solution, if a special case is large

enough, the algorithm we propose can serve as an inspiration to one that fits a special case’s

framework. For instance, weekend courses that are recurring in a fixed pattern can fit within a

weekend framework, and they can be solved by a similar algorithm.

Each course is assigned to a time-room, i.e., a room at a given timeslot, within the framework.

Each lecture timeslot can be represented using two components: day and time. The lectures at HEC

Montréal are typically given from Monday to Friday. The typical lecture times are at 8:30 – 11:30,

12:00 – 15:00, 15:30 – 18:30 and 18:45 – 21:45. Typical course lectures have a duration of three

hours and time is pre-allocated between lecture times to allow for transportation and break between

consecutive courses for both students and lecturers. With that being said, the lecture timetable has

20 timeslots, each with 67 rooms; there is a total of 1,340 time-rooms available for course lectures.

3.2.2 Examination framework: a full-length timetable

Unlike course lectures, examinations are not recurring events within a semester. Because of the

absence of recurrent patterns, midterm and final examinations must be represented in full-length

timetables. As mentioned previously, the midterm weeks are split in two according to programs.

The two midterm examination periods are each 7-days long, and the final examinations period is

14-days long. Since the two midterm examination periods and the final examination period do not

overlap, the three of them can be solved separately, so they require separate frameworks.

Examinations take place in rooms that are offered for course lectures, and can occur across

weekdays or weekends. However, weekdays and weekends offer a different number of timeslots.

Weekdays provide three daily timeslots, whereas weekends provide two daily timeslots. Due to

the yearly variability in examination dates, the total number of timeslots per examination period is

variable. This carries the implication that the creation of an examination framework requires

specific dates as inputs. It would also imply that an examination schedule cannot be reused for

another year.

 22

4 Application of solving methods

4.1 General algorithm

Combinatorial optimization problems, such as timetabling problems, are hard to solve, and finding

optimal solutions can be time-consuming. The literature review in Chapter 2 revealed that

timetabling problems are considered NP-complete. However, the complexity of a timetabling

problem instance heavily depends on the constraints present. So far, we can only strongly assume

that the instance described is a problem of NP-complete complexity. The literature review also

highlighted that metaheuristics are well-suited to solve a wide variety of combinatorial problems,

in part due to their flexibility. These methods can allow for sufficiently good solutions to be

generated within a reasonable timeframe for cases where optimal solutions are not necessary. In

this context, a sufficiently good solution refers to a conflict-free timetable that generally satisfies

students and lecturers’ preferences.

To solve HEC Montréal’s Course Timetabling and Examination Timetabling problems, we

propose a heuristic algorithm based on local search. This heuristic algorithm searches the solution

space by only exploring complete and feasible solutions, i.e., complete solutions that satisfy all

hard constraints. We clarify on the definition of a complete and feasible solution in Section 4.2

when we expand on the topic of constraints. Figure 4.1 shows the pseudo-code of the algorithm

proposed. The heuristic algorithm starts with the initial state 𝑠_0, which corresponds to an initial

timetable solution defined by the user. The algorithm uses a penalty function to iteratively evaluate

the states. At each iteration, a transformation 𝑡 is generated and applied on a copy of the current

state, creating a temporary state 𝑠𝑡𝑒𝑚𝑝 . To assess the transformation, the temporary state is

evaluated by a penalty function, and its value is compared to the penalty value of the current state

(i.e., the state before the transformation). The general rule is that a transformation is accepted if it

improves the current value (i.e., the penalty value of the temporary state must be lower than the

penalty value of the current state). If the transformation is accepted, the temporary state replaces

the current state, else the current state remains unchanged. These steps are repeated until the

stopping criteria are fulfilled.

 23

While course lectures and examinations have different constraints, they adhere to a same algorithm.

The next sections expand on each component of the algorithm used for Course Timetabling and

Examination Timetabling.

4.2 Constraints

Soft constraints and hard constraints can vary from a case study to another, and they strongly

depend on the problem instance. The algorithm proposed is constructed in a way that the hard

constraints are pre-emptively respected, by constantly working with complete and feasible

solutions. We impose, as a hard constraint, that every course (lecture or examination) must be

assigned to an available time-room. We consider all other constraints as soft constraints, viewing

them as goals, and any of their violation carries a penalty. Although some constraints technically

pose as hard constraints, we consider them as components of the penalty function (i.e., as soft

constraints) to be able to evaluate them. By treating them as soft constraints, the optimization

problem is subject to a less strictly constrained search space. This, in turn, allows for the algorithm

to freely explore the space and to avoid being trapped in disconnected zones. To most prevent the

violation of the soft constraints that technically pose as hard constraints, they are significantly

more penalized than other soft constraints.

Since we assume that optimality is not essential, the weights attached to the constraints do not need

to be optimal and they can be set manually. When defining the numerical values of a set of weights,

two factors need to be considered by the user: scale and trade-off. The scale corresponds to the

range of value that the set of weights can take, whereas the trade-off refers to the priorities between

the goals. This means that the weights of more important goals need to be set to higher values. In

parallel, the user needs to be mindful of the numerical difference between the weights, as it

• Let 𝑠 = 𝑠_0

• Repeat

o Generate transformation 𝑡 to create a temporary timetable 𝑠𝑡𝑒𝑚𝑝 ← 𝑠 + 𝑡

o If 𝑐(𝑠𝑡𝑒𝑚𝑝) < 𝑐(𝑠) :

▪ 𝑠 ← 𝑠𝑡𝑒𝑚𝑝

• Until a stopping criterion is fulfilled

• Output: final state 𝑠

Figure 4.1 Pseudo-code of the algorithm

 24

influences the symmetry of the combinatorial problem. To be more precise, if the difference

between the weights is too small, it might increase the number of equivalent solutions. To prevent

this, the weight values need to put enough emphasis on the qualitative differences between the

goals. Keeping this in mind, we move on to expand on the penalty mechanism of each constraint

in Course Timetabling and Examination Timetabling.

4.2.1 Course Timetabling constraints

Course Timetabling at HEC Montréal is focused on the allocation of timeslots and rooms to course

lectures. In this special case of allocation problem, there is an interaction of time and space. The

course timetables need to respect time constraints (timeslot preference, similarity grouping and

exclusivity grouping) and room constraints (room capacity, room occupancy, building preference,

layout necessity and layout preference). Thus, there are eight Course Timetabling constraints, and

their order of importance (from most important to least important) is as follows: exclusivity

grouping, layout necessity, room capacity, similarity grouping, timeslot preference, layout

preference, building preference, room occupancy.

4.2.1.1 Timeslot preference

Timeslot preferences allow courses to integrate lecturers’ availability and to comply to the

academic departments’ requests. Each course is allowed up to a definite maximal number of

timeslot preferences, and the default number is arbitrarily set to 4. These preferences must be listed

in an ascending order of importance (from most important to least important). The penalty weights

associated to the timeslot preferences of a course are ascending but cumulative. To evaluate this

constraint, the timeslot in which a course is assigned is compared to each of its preference until a

preference is satisfied by the timeslot, or until all preference has been compared. Every preference

that is not satisfied adds a penalty to the course. This means that satisfying the first preference

leads to no penalty and satisfying no preferences cumulatively leads to the highest penalty. The

ascending weights put emphasis on the satisfaction of the first preferences, and gradually load the

penalty as the preferences are not satisfied.

 25

4.2.1.2 Similarity grouping

Similarity groupings are used for courses of a same grouping to be assigned to a same timeslot.

This type of grouping mainly allows the academic departments to manage human resources more

easily towards the courses they offer. A mechanism is put in place to make sure that no similarity

grouping is repeated. More importantly, the mechanism also ensures that there is no overlapping

of grouping. This implies that if a grouping shares courses with another, they ultimately merge

into a same grouping. For a similarity grouping, a penalty is applied to every course that is not

assigned to the same timeslot as the grouping’s majority.

4.2.1.3 Exclusivity grouping

Exclusivity groupings allow courses of the same grouping to be assigned to different timeslots.

These groupings are created to ensure that students can enroll to all courses of their curriculum. A

mechanism is integrated so that no exclusivity grouping is completely contained within another.

If a grouping is completely contained within another, the former is removed. The penalty of a

grouping is calculated through the number of unique timeslots within a grouping, which must be

equal to the number of courses within a grouping. If not, the difference between the two is

penalized.

4.2.1.4 Room capacity and room occupancy

The capacity of a room assigned to a course must be higher or equal to its norm, or else a penalty

of fixed value is applied to the course. Additionally, rooms are evaluated on their room occupancy

rate. Courses with low occupancy rate are more penalized than courses with high occupancy rate.

This is meant to reduce the number of empty seats in occupied rooms, where the number of empty

seats corresponds to the difference between the norm of a course assigned and the capacity of the

room. For each course, we find the ratio between the number of empty seats and the capacity of

the room assigned. This ratio is then multiplied by the room occupancy penalty weight. Because

this constraint is of low priority, a very small value is set for the penalty weight.

4.2.1.5 Building preference

The building of the room assigned is compared to the course’s building preference. A penalty only

happens when the room’s building does not respect the course’s building preference.

 26

4.2.1.6 Layout necessity and layout preference

The layout of the room assigned needs to satisfy the layout necessity or the layout preference of a

course. The satisfaction of a layout necessity differs from that of a preference. It is considered

essential to satisfy a layout necessity, whereas the satisfaction of a layout preference is not as

important. This implies that a heavier penalty should inevitably be attached to the violation of the

layout necessity constraint, rather than the layout preference constraint. Furthermore, the

evaluation of a layout necessity also differs from that of a layout preference. For layout preferences,

only courses with preferences that are unsatisfied are penalized, whereas for layout necessities,

courses with an unsatisfied necessity and courses that wrongfully occupy a room with a special

layout are penalized. This is because it is not adequate for a regular course to occupy a room with

a special layout.

4.2.2 Examination Timetabling constraints

Like Course Timetabling, Examination Timetabling at HEC Montréal deals with the allocation of

timeslots and rooms to examinations. As mentioned in Section 3.1.3, rather than courses, sub-

sections of courses (i.e., pre-emptively split courses) are affected to the time-rooms. The

examination timetables need to respect time constraints (timeslot preference, timeslot prohibition,

similarity grouping, timeslot exclusivity grouping, one-day exclusivity grouping and two-day

exclusivity grouping) and room constraints (room capacity, building preference, building grouping

and layout necessity). For Examination Timetabling, the importance order of the 10 constraints

will be as follows: similarity grouping, timeslot exclusivity grouping, layout necessity, timeslot

prohibition, room capacity, one-day exclusivity grouping, two-day exclusivity grouping, building

grouping, timeslot preference, building preference.

4.2.2.1 Timeslot preference

Timeslot preferences in Examination Timetabling allow courses to request for their examinations

to be scheduled at the same time of the day and the same day of the week as their lectures. Like in

Course Timetabling, each course has a maximum of 4 preferences as default, and the timeslot

preferences, as well as the penalty weights, must be listed in an ascending order of importance.

 27

The timeslot preferences in Examination Timetabling are penalized in the same way as the Course

Timetabling.

4.2.2.2 Timeslot prohibition

Timeslot prohibitions are used in two instances for examinations. On one hand, courses can

explicitly request their examinations to not be assigned to certain timeslots. This is the case for

those that need to be in the evening or during the weekend. On another hand, prohibitions can be

used to force a time interval between a course’s examination and its last lecture before the

examination. The default time interval is 48 hours, but courses may specifically request a different

time interval or none. This type of timeslot prohibitions is created using a course’s last lecture date

before the examination and its time interval input, which then generates a list of timeslots that are

prohibited. This ultimately requires the course timetable as an input. A penalty is affected to a

course if it is assigned to a timeslot within its prohibitions.

4.2.2.3 Similarity grouping

Similarity groupings are used to ensure that examinations of the same courses happen at the same

time. A mechanism automatically creates similarity groupings between the sub-sections of a course,

as well as between the same courses. This type of grouping mainly helps to avoid communication

between students of the same courses. Because examinations tend to be similar for all variants of

a course, all language variants need to be in a similarity grouping. In parallel, they can also be

manually created by the user to address different courses. A mechanism is integrated to merge

groupings that share courses. The penalty for similarity groupings is affected in the same way as

in Course Timetabling.

4.2.2.4 Timeslot exclusivity grouping, one-day exclusivity grouping and two-day

exclusivity grouping

Several types of exclusivity groupings are employed in examinations: timeslot exclusivity

groupings, one-day exclusivity groupings and two-day exclusivity groupings. The timeslot

exclusivity grouping constraint is used to ensure that examinations of courses within a same

grouping are assigned to different timeslots. This constraint is equivalent to the exclusivity

grouping constraint in Course Timetabling. In one-day exclusivity groupings, the examinations of

 28

the courses within a grouping must be on different days. For two-day exclusivity groupings, there

needs to be at least one day without examination between each course of a grouping. Each of these

types of grouping have a mechanism preventing repeated groupings, as well as groupings that are

completely contained within another.

Exclusivity groupings are formed using the repertory number of the courses. By using repertory

numbers rather than sub-sections, a short repertory exclusivity grouping can represent an extensive

sub-section exclusivity grouping. Exclusivity groupings for examinations are mostly derived

directly from the curricula, leading to a larger number of sub-sections to be involved. Furthermore,

it is required for the examinations of multi-sectional courses to be scheduled at the same time,

regardless of the lecture schedules. Because their sub-sections belong to a similarity grouping, they

cannot be represented individually in an exclusivity grouping. For instance, suppose the courses X

and Y with respectively two and three examination sub-sections, sub-section 𝑋1 must be assigned

to the same timeslot as 𝑋2 but they both cannot be assigned to the same timeslot as 𝑌1, 𝑌2 and 𝑌3.

While representing an exclusivity grouping with sets of sub-sections (e.g., set X and set Y) would

solve this issue, the use of sub-section sets for the exclusivity constraints becomes much more

complicated. Taking the previous example, the exclusivity groupings derived from these sets

would be 𝑋1 and 𝑌1, 𝑋1 and 𝑌2, 𝑋1 and 𝑌3, 𝑋2 and 𝑌1, 𝑋2 and 𝑌2, 𝑋2 and 𝑌3. In fact, this

representation would call for combinations between sub-sections of different courses through the

rule of product. This principle in combinatorics stipulates that between two sets A and B with

respectively 𝑚 and 𝑛 elements, there are 𝑚 × 𝑛 combinations. To avoid wasting computational

resource, exclusivity groupings should be expressed in repertory numbers instead, since multi-

sectional courses and sub-sections of a course all share the same repertory number. Figure 4.2

illustrates the difference between these two representations of exclusivity groupings through a

striking example using three courses (A, B, C) with respectively two, three and four sub-sections.

It shows that the 24 groupings of sub-sections (on the left of the figure) can be represented by a

single exclusivity grouping of three repertory numbers (on the right of the figure). In terms of time

complexity, the creation of groupings with sets of sub-sections through combinations is 𝑂(𝑛𝑘)

where n is the length of the largest set and k is the number of sets. This can be entirely eliminated

by creating groupings with repertories.

 29

Moving on to the topic of evaluation, the different types of exclusivity groupings are evaluated

similarly. Regardless of the exclusivity grouping type, for a given grouping, the first step is to

count the number of each repertory’s sub-sections assigned to each timeslot. In timeslot exclusivity,

for a given timeslot, we identify the repertory with the most sub-sections assigned, and the sub-

sections that are not part of the majority repertory adds a factor of one to the penalty. In one-day

exclusivity, for the timeslots in a given day, we identify the repertory with the most sub-sections

assigned, and the sub-sections outside of the majority repertory are penalized by the exclusivity

penalty weight. In addition, the sub-section is further penalized by the difference in time distance

between its timeslot and the majority repertory’s timeslot. If the sub-section is assigned to the

repertory’s timeslot, the penalty is at its highest, with a factor corresponding to the number of daily

timeslots in the framework; and each additional timeslot difference deducts the factor by one. A

penalty on the time distance is calculated by multiplying the factor with a distance weight. In two-

day exclusivity, for the timeslots in a given two-day period (i.e., a given day and its next

consecutive day), we identify the repertory with the most sub-sections assigned, and the sub-

sections that are not part of the majority repertory are penalized in a similar manner. The time

distance is penalized similarly, with the highest penalty factor corresponding to the number of

timeslots within a two-day period.

4.2.2.5 Room capacity

For every student seated in examination, a seat needs to remain empty. This means that the capacity

of an examination room corresponds to half of its real capacity (rounded up). In Examination

Timetabling, the capacity constraint is not evaluated based on the norm of the course assigned like

in Course Timetabling. Rather, the examination room’s capacity needs to be higher or equal to a

Figure 4.2 Difference between exclusivity groupings of sub-sections and exclusivity groupings of repertories in Examination

Timetabling

 30

sub-section’s number of seats required. The penalty however takes effect similarly to the Course

Timetabling constraint.

4.2.2.6 Building preference and building grouping

While the building preferences are used and evaluated in the same way as Course Timetabling,

building groupings play a more important role than the preferences. This is because, although

examinations are not supervised by lecturers, some require their assistance. The building

preferences allow to make sure that the examinations of the same courses are within a same

building such that the lecturer can be available when needed. The penalty for building groupings

is evaluated in the same way as the similarity groupings, where buildings are compared rather than

timeslots.

4.2.2.7 Layout necessity

The layout required relates to the form of the examination. As a result, the layout preferences have

been removed and only the layout necessities remain in Examination Timetabling. This is mainly

because layout preferences are related to lecturers’ preferences, which are irrelevant in this context.

Moreover, it is important to note that the course lectures’ layout necessities do not directly translate

into the examinations’ layout necessities. To illustrate, a course with lectures given in a computer

lab may have an examination in paper format, hence it does not require computer lab as a layout.

The layout necessity constraint in Examination Timetabling is evaluated like in Course

Timetabling.

4.3 Data representation

We now turn to structuring the data. In doing so, we first draw a distinction on data mutability, by

making use of tuples (for immutable data) and lists (for mutable data). All tuples and lists contain

the same number of elements, with a length corresponding to the total number of time-rooms in

the framework. We treat time-room characteristics as immutable (contained in tuples) and course

requirements/preferences as mutable (contained in lists). We start by defining a time-room tuple,

where each element corresponds to a timeslot for a given room (room 𝑟 at timeslot 𝑡). We then

define the characteristic tuples to store relevant room-related characteristics (e.g., room capacity,

layout, and building location). The state is represented by a list, and this state list shows the

 31

assignment of courses when compared to the time-room tuple. Every room requirement/preference

(e.g., norm, layout required, and building required) and timeslot requirement/preference (e.g.,

timeslot preferences, and similarity groupings) is represented in a list, referred to as requirement

lists. The representation in tuples and lists allows for easy comparison between characteristics of

time-rooms and requirements of courses. Room requirement lists are compared to their

corresponding characteristic tuples (e.g., norm list compared to room capacity tuple). Timeslot

preferences and prohibitions lists can be directly compared to the time-room tuple. However,

similarity grouping and exclusivity grouping lists call for timeslot comparison within groupings,

which potentially leads to multiple comparisons to the time-room tuple for a course. Therefore, the

evaluation of grouping constraints takes slightly longer to complete. These requirement lists are

manipulated to follow each course’s requirements/preferences through the state changes expressed

by the state list. This structure allows us to more easily retrieve data of time-rooms and courses

affected by each iteration.

Initially, bi-dimensional numPy arrays were used to represent timetables. In such arrays, the first

dimension corresponds to the timeslots and the second dimension to the rooms. For instance, the

course timetable is represented by a 20×67 array. However, this representation is highly taxing in

computational time. This is mainly because only the assignment of courses to time-rooms is

represented by the array. The time-room information (e.g., room capacity and room layout) and

course information (e.g., course time preferences and similarity groupings) are represented in a

different and separate manner than the assignment. Retrieving information in this circumstance is

complicated, which ultimately lengthens the calculation of the effects of a state change. While

each swap generally involves a very small number of time-rooms (e.g., courses of 2 time-rooms

swapped over 1,340 time-rooms), the entirety of a timetable must be evaluated at every state

change in this array representation. The complete evaluation of solution leads to a lot of repeated

calculations. With the list representation suggested, only the affected courses and time-rooms are

evaluated through partial evaluation. This is enabled by the fact that time-room information and

course information are represented in the same way as the timetable, allowing direct access through

the index. The swap generation returns indexes to be swapped in the state list. All requirement

lists follow the same changes as the state list, and the constraints are evaluated at the level of the

affected indexes. By avoiding the evaluation of the entire state at every iteration through this

 32

representation of data, we realize a significant economy in evaluation time. Figure 4.3 shows the

evaluation plot of a Course Timetabling model using partial evaluation and complete evaluation.

This figure allows to compare the algorithm’s convergence time using partial evaluation with list

representation (illustrated in grey), and complete evaluation with array representation (illustrated

in black). We note that the model converges considerably faster when using partial evaluation. The

time economy through this choice of evaluation is significant; it reduces the solution evaluation

time by a factor of over 1000.

4.4 Initialization

The algorithm is initialized with a state defined by the user. This initial state must be a complete

and feasible solution. To realize this, three types of initializations are suggested: last, random, and

random by similarity groupings. Last invokes the use of the previous year’s semestrial timetable

as the initial state. Because the examination framework differs year-to-year, the last initialization

is unapplicable to Examination Timetabling. Random and random by similarity groupings are

constructive heuristics; they start off empty and iteratively assign a course to an available time-

room until a complete timetable is built as a state. Random returns a list of random non-repetitive

time-rooms, and they are assigned to the alphabetically sorted courses. Random by similarity

groupings is done in two phases. First, we assign time-rooms to courses that are part of similarity

groupings, in which all courses of a grouping should share a same timeslot. For a grouping, we

randomly generate one timeslot with enough available rooms for the number of courses in the

grouping. A list of random non-repetitive rooms is then generated. The time-rooms formed from

the timeslot and rooms generation must be yet assigned. This step is repeated for all similarity

Figure 4.3 Comparison between partial evaluation and complete

evaluation with a Course Timetabling problem

 33

groupings. Second, we assign time-rooms to courses that are not in any similarity groupings. To

do so, a list of random non-repetitive time-rooms which have yet been assigned is generated. The

idea behind random by similarity groupings initialization is for the algorithm to start off with a

timetable that already has the similarity groupings constraint satisfied, that way less time is spent

to reunite courses within groupings. The initial state list is derived from the list of courses assigned

to time-rooms resulting from the type of initialization chosen by the user. The requirement lists

are, in turn, derived from the state list. Because the state list and the requirement lists must

maintain their length, time-rooms with no course assigned are assigned the None value at their

respective position in the state list and the requirement lists.

4.5 Transformation

Transformations are modifiers that are applied on a state to create a new one. We only consider

swaps for transformations in our algorithm. In this context, we define a swap as an exchange of

courses between two or more time-rooms. A time-room within a swap can be empty (no course is

currently assigned to the time-room); it would result in a translation of course from a time-room

to another. To maintain similarity groupings that were united through the random by similarity

groupings initialization, the algorithm must support swaps of sets of time-rooms. A swap of time-

room sets can be viewed as an exchange of courses between rooms of different timeslots. We will

clarify on the idea of swaps of time-room sets when discussing swap generation.

4.6 Swap generation

The following section will explain the two steps entailed in a swap generation: the generation of a

list of time-room indexes for each set involved, as well as the generation of a swapping order.

In the generation of a list of time-room indexes for each set of a swap, each set must be generated

subsequently to avoid repetition. To do so, we first generate an index number amongst the time-

room tuple. If the course currently assigned to the time-room (indicated by the state list) is part of

a similarity grouping (indicated in the similarity grouping list), the time-rooms currently assigned

to the courses of the grouping become part of the set, if they currently share the same timeslot as

the first generated time-room. However, the number of time-rooms in each set must be equal, and

this number is determined by the length of the largest set. Additional time-rooms are generated for

 34

each set with insufficient time-rooms. The additional time-rooms, along with the time-rooms of

the courses in their similarity groupings, need to be currently assigned to the same timeslot as the

set they join, and they cannot exceed the number of time-rooms to fulfill. Figures 4.4 present a

flowchart to illustrate this generation process, whereas Figure 4.5 provides a flowchart of the

subprocess to generate additional time-rooms for sets with insufficient time-rooms.

Figure 4.4 Flowchart of the process of swap generation

 35

Figure 4.5 Flowchart of the subprocess to fill sets

 36

The generation of a swapping order is needed to enable the possibility to swap multiple (more than

two) sets of time-rooms. This order defines the dynamic between the sets, i.e., with which set each

is swapped. In such a way, a swap can be considered as a permutation between the time-room sets.

For 𝑛 time-room sets, there are 𝑛! − 1 possible permutations (without repetitions), excluding the

permutation that involves no change. The number of possible permutations becomes increasingly

high as the number of time-room sets increases. The time complexity for generating a swapping

order from the possible permutations is 𝑂(𝑛!), which suggests that the number of sets should be

limited to avoid lengthy swap generations. We compare two ways of generating a swapping order:

best order and random order. The best order is obtained by evaluating every possible permutation

for a given list of time-room indexes and selecting the best resulting one; the random order only

calls for a single evaluation of a randomly generated order amongst the possible permutations. We

compare the best order and random order methods with two Course Timetabling models, one with

3-set swaps and another with 6-set swaps. Through evaluation plots presented in Figure 4.6, it is

evident that the random order method both performs better and converges faster than the best order

method in both models. Incidentally, Figure 4.5 shows that a higher number of sets does not

guarantee better results. More details on the performance of models with multiple sets will be

provided in Chapter 5.

We further investigate the difference between the two methods by comparing the number of swaps

generated and the average evaluation time in models that use different number of sets, as shown

in Table 4.1. Globally, as the number of sets increases, less swaps are generated, and evaluation

appears slower. The longer generation and evaluation processes can be explained by the increase

Figure 4.6 Evaluation plot of a 3-set model and 6-set Course Timetabling model using best order and random order methods

 37

in time-rooms involved through the increase in number of sets. Moreover, as the number of sets

grows higher, the difference between the two methods becomes more prominent. While the best

order method seems better for the model with 2 sets, the random order method works better for the

other models. In the model with 2 sets, the best order method allows for 1.10x more swaps

generated and 1.09x faster average evaluation time than the random order method. In models with

3 to 6 sets, we see that the random order method leads to significantly higher number of swaps

generated (i.e., respectively 4.16x, 18.5x, 96.37x and 577.81x) and faster average evaluation time

(i.e., respectively 5.56x, 24.21x, 121.43x and 718.37x) than the best order method. We attribute

this disparity in number to the fact that the best order method requires 𝑛! − 1 evaluations, making

it longer to generate an order when the number of sets is high, whereas the random order method

only requires one evaluation regardless of the number of sets. While both methods still require the

generation of 𝑛! permutations, the difference in execution time resides in the number of

evaluations involved in the generation of a swap.

To generate swaps, a fully random mechanism was initially adopted, implying that each part of a

swap is generated randomly in a subsequent manner. However, full randomness can potentially

lead to slow convergence, especially since combinatorial problems tend to have very large search

Number of swaps generated Average evaluation time (in seconds)

Number of sets Best order Random order Best order Random order

2 346558 313711 0.0011 0.0012

3 55349 230505 0.0100 0.0018

4 10143 188105 0.0581 0.0024

5 1407 135586 0.4250 0.0035

6 182 105161 3.3045 0.0046

Table 4.1 Comparison of best order and random order methods through number of swaps generated and average evaluation time

according to number of sets

Figure 4.7 Possible movements in two special swapping techniques (box(2,2) and cross(1,1)) through a Wednesday lunch

timeslot example

 38

spaces. This indicates a need for additional mechanisms to randomness. We notice that most

accepted swaps have a pattern: they involve adjacent timeslots. The cause of this is the existing

patterns within timeslot preferences; the preferred timeslots of a course are generally very close to

one another. For instance, it is significantly more likely for a course lecture with a Monday

morning preference to also list a Monday noon (or even a Tuesday morning) preference rather than

a Friday evening. Therefore, it would be beneficial to exploit this idea of time distance within a

swap in attempt to reduce exploration time.

To control the timeslot distance in a pairwise swap, it is necessary to generate each part of a swap

sequentially. This allows to add a bound on the timeslot of the first part of the swap to then generate

the timeslot of the counterpart. Several techniques could be developed to generate swaps of time-

rooms that are closer in terms of time; we decide to focus on 𝑏𝑜𝑥(𝑣, ℎ) and 𝑐𝑟𝑜𝑠𝑠(𝑣, ℎ) swappings.

𝐵𝑜𝑥(𝑣, ℎ) swapping enables simultaneously bi-dimensional swaps (vertical, horizontal, or across),

while 𝑐𝑟𝑜𝑠𝑠(𝑣, ℎ) swapping only allows for uni-dimensional swaps (vertical or horizontal). The

former allows for courses to simultaneously change timeslot and day, whereas the latter only

permits a change of timeslot or day at a time. 𝐵𝑜𝑥(𝑣, ℎ) swapping adds a bound by completely

surrounding a given timeslot, to create a box around the timeslot, and 𝑐𝑟𝑜𝑠𝑠(𝑣, ℎ) swapping adds

a cross-shaped bound around the given timeslot. The user-defined values of 𝑣 and ℎ respectively

correspond to the vertical units and the horizontal units. Figure 4.7 illustrates the different timeslots

enabled (boxes colored in grey) between the two swapping techniques through an example: given

a course time-room at Wednesday lunch (indicated by the “x” symbol), a 𝑏𝑜𝑥(1, 1) would allow

a time-room to be generated from nine timeslots (between Tuesday to Thursday, from morning to

afternoon) as seen on the left of Figure 4.7, and a 𝑐𝑟𝑜𝑠𝑠(1, 1) would enable 5 possible timeslots

(Tuesday lunch, Wednesday morning to afternoon, and Thursday lunch) as seen on the right of

Figure 4.7.

4.7 Types of swaps

In attempt to further the study on swaps, we have conducted an analysis on the types of swaps that

are accepted in a baseline model. We categorized the swaps into 3 types: time-room swaps, time

swaps, and room swaps. Stacked bar plots and pie charts are used to observe the occurrence of the

different types of swaps according to the runtime of the model. Figure 5.2 shows stacked bar plots

 39

of the frequency of the accepted swap types according to the runtime. The frequency is illustrated

in four plots, each representing a different interval of runtime, because of the heavy concentration

of swaps at the start of the runtime. Figure 4.8 shows that 78.25% of the total swaps (2988 swaps

within 600 seconds) accepted in the first 150 seconds. Besides, we note that almost all of the time-

room swaps (90.25% out of 667 time-room swaps) and most of the swaps involving only time

(77.25% out of 923 time swaps) or room (73.18% out of 1398 room swaps) happen in the first 150

seconds. On another note, the time-room swaps are noticeably less common; they only account for

22.32% of the total swaps. Time swaps and room swaps respectively account for 30.89% and

46.79%. The pie charts in Figure 4.9 allow us to extract more information on the proportions of

the types of swaps accepted per runtime interval. It can be observed that, aside from the first 150

seconds where the proportions of time-room, time and room swaps are almost equal, the room

swaps are the most frequent within a given time interval, followed by the time swaps and the time-

room swaps. The exclusive use of specific types of swaps between certain time intervals in a model

could potentially lead to interesting results.

Figure 4.8 Stacked bar plots of swap types per time interval

 40

4.8 Solution evaluation

In basic terms, evaluation compares the current state to the temporary state (i.e., the state after

transformation). Due to the data representation proposed, it is not necessary to evaluate the entire

timetable. Rather, only the time-rooms affected by the transformation need to be evaluated, once

before and once after the transformation. Furthermore, because the constraints are on two distinct

dimensions (time and space), evaluation can be done on two levels, and can be calculated using

two variables: 𝑣𝑎𝑟_𝑡𝑖𝑚𝑒 and 𝑣𝑎𝑟_𝑟𝑜𝑜𝑚 . The sum of both results in the total variation in

evaluation caused by the transformation generated on the current state. This decomposition in

evaluation allows for an economy in evaluation time for some scenarios.

Since Course Timetabling and Examination Timetabling are such large combinatorial problems,

they are bound to involve numerous evaluations. To spare time in evaluation and focus on

exploring solutions, it is important to identify situations where evaluation is not necessary. The

distinction between time and space in the timetabling problems fuels the idea of computing the

variation of penalty through two separate variables: 𝑣𝑎𝑟_𝑡𝑖𝑚𝑒 and 𝑣𝑎𝑟_𝑟𝑜𝑜𝑚. Here are three

scenarios where the time-rooms generated for the transformation allow for a significant economy

in evaluation time:

Figure 4.9 Pie charts of swap types per time interval

 41

1) The time-rooms are empty.

If the time-rooms generated are empty, there would be no change: 𝑣𝑎𝑟_𝑡𝑖𝑚𝑒 = 0 and

𝑣𝑎𝑟_𝑟𝑜𝑜𝑚 = 0. Therefore, no evaluation is necessary.

2) The time-rooms have the same timeslot.

If the transformation is only a change of room for the same timeslot, only the room

constraints would be affected: 𝑣𝑎𝑟_𝑡𝑖𝑚𝑒 = 0. Therefore, no evaluation for timeslot is

necessary, and if the variation for room shows improvement, the transformation is accepted.

3) The time-rooms have the same room.

If the transformation is only a change of timeslot for the same room, only the timeslot

constraints would be affected: 𝑣𝑎𝑟_𝑟𝑜𝑜𝑚 = 0. Therefore, no evaluation for room is

necessary, and if the variation for timeslot shows improvement, the transformation is

accepted.

4.9 Stopping criteria

Because the optimal solution is not known, and the problem instance might not have a single

optimal solution, the algorithm needs a stopping criterion. Two options based on duration are made

available: total runtime and plateau time. Both options can also be used simultaneously such that

the algorithm can be forcibly stopped after a predefined duration or after it hits a plateau (i.e., a

period when no significant change can be found) for a predefined duration. The use of both options

allows the algorithm to terminate as soon as it converges, such that the user does not have to wait

the remainder of the algorithm duration to extract a solution.

 42

5 Results

5.1 Data simulation

After acquiring knowledge on the general mechanics of the algorithm, we move on to the model

applications to solve HEC Montréal’s timetabling problem instances. As novel problems, Course

Timetabling and Examination Timetabling at HEC Montréal do not have benchmarks and require

data simulations for model testing. Most data required for the algorithm (e.g., lecturers’ timeslot

preferences and layout requirements) were not accessible at the time of the algorithm conception,

leading to a need for data simulation. To test for a given past semester, we derive from its

semestrial timetable to simulate the data. The past timetable will mainly be used to derive data,

rather than to assess as a benchmark. This is because the goal of the algorithm is to generate

conflict-free timetables that mostly satisfy students and lecturers’ preferences within a reasonable

timeframe. Rather than attempting to replicate the past semestrial timetable, we focus on the

analysis of the quality aspect of the timetables generated by the algorithm.

To test Course Timetabling models, we use data from the lecture timetable of Fall 2019. While

courses that could require layout necessities are directly extracted from the timetable, the

preferences on the layout, building and timeslot are only partially derived. This is because it is

impossible to pinpoint the courses with these requests solely from the timetable. The norms were

not provided, so they had to be simulated. The similarity groupings and exclusivity groupings are

formed by comparing timeslots of the uni-sectional courses within a same curriculum. We assume

that, for a given curriculum, courses with the same timeslot form a similarity grouping, and courses

with different timeslots form an exclusivity grouping. In the resulting simulated data, only 2% of

the courses do not have any preferences (other than the norm that is affected to all 802 courses);

51% of the courses require a specific layout, including 4% that indicate a layout necessity; 49% of

courses request a building preference, and 93% of them provide at least one timeslot preference;

finally, 8% of the courses are part of a similarity grouping, while 18% are in an exclusivity

grouping.

To test Examination Timetabling models, we similarly derive data from the examination timetable

of Fall 2019. The number of seats required for each sub-section is provided. Because room layouts

 43

concerned in the examination context are special layout (only the computer labs and the trading

room), courses requiring a specific layout are directly extracted from the timetable. The

preferences of building and timeslot, as well as the prohibitions of timeslot, are only partially

derived from the timetable since the courses with such requests cannot completely be identified

from the timetable. For timeslot prohibitions, we derive the timeslots that need to be included to

respect the time interval from the last lecture date before examination. The academic programs’

requirements of course examinations to be scheduled, or not scheduled, at a specific timeslot are

also used to create timeslot preferences and prohibitions. The similarity groupings and exclusivity

groupings are formed by comparing timeslots of the sub-sections within a same curriculum. We

assume that the sub-sections with the same repertory number form a similarity grouping. The

building groupings are simply the same as the similarity groupings. Concerning the three types of

exclusivity groupings, for a given curriculum, repertories of sub-sections with different timeslots

form a timeslot exclusivity grouping, repertories of sub-sections on different days form a one-day

exclusivity grouping, and those separated by a day without examination form a two-day exclusivity

grouping. The resulting simulated data show only 1% of sub-sections without any preferences

(other than the number of seats required for all 995 sub-sections); less than 1% of the sub-sections

require a specific layout or request a building preferences while 91% are part of a building

grouping; 8% have a timeslot preference and 62% use timeslot prohibitions; finally, 91% of the

sub-sections are part of a similarity grouping, whereas 9% are in a timeslot exclusivity grouping,

one-day exclusivity grouping and two-day exclusivity grouping.

5.2 Experimental results

This section is dedicated towards the presentation of the different models developed to solve the

Course Timetabling and Examination Timetabling problems of HEC Montréal. The models are

tested using the simulated data and, to ensure comparability, all models use the same constraint

weights (excl. the room occupancy constraint) which are listed in Tables 5.1 and 5.2. The

discussion of the results based on a total of 10 runs will be supported by additional tables.

Description tables, labelled as 5A, are used to summarize each model by presenting the parameter

inputs and a short description of the mechanics involved in the model. The parameters revealed

through this table include the type of initialization, the type of swapping, the use of sets of single

or multiple time-rooms, the number of sets, and the weight value of the room occupancy constraint.

 44

Result tables, labelled as 5B, report the average, lowest and highest values for initial and final

penalty, as well as the average runtime needed to reach 95% and 99% of the improvement

accomplished within the defined total runtime. A result table provides insight regarding the

performance and convergence of a model, given the inputs presented in its corresponding

description table. The result reported in this section specifically concern the Course Timetabling

problem, and the conclusions derived from these results are consistent with the Examination

Timetabling problem, unless specified otherwise.

Constraint Weight

Timeslot preference [10, 20 30, 40]

Similarity grouping 200

Exclusivity grouping 500

Capacity 300

Layout necessity 450

Layout preference 35

Building 29

Table 5.1 Course lecture constraint weights

Constraint Weight

Timeslot preference [5, 10, 20, 60]

Timeslot prohibition 625

Similarity grouping 900

Timeslot exclusivity grouping 800

One-day exclusivity grouping 200 (distance = 1)

Two-day exclusivity grouping 100 (distance = 1)

Capacity 500

Layout necessity 700

Building 30

Building grouping 100

Table 5.2 Examination constraint weights

Considering the different model components, we introduce the concept of phase change, where a

model changes one (or multiple) of its components at a certain point of the runtime. Two different

approaches can be used for activating a phase: time-based and exploration-based. In the time-based

approach, a phase change is triggered at a given runtime. This information is usually defined by a

fraction of the total runtime. In the exploration-based approach, the phase change is instead

triggered by a certain exploring time (i.e., the duration to find an improving swap). We find that

two conditions must be in place to ensure proper functioning of the latter approach: ongoing

exploring time and last exploring time. Since the average exploring time depends on the problem

 45

instance, rather than using a fixed number, the ongoing exploring time should be expressed

according to the last exploring time. Because the ongoing exploring time is expressed by a factor,

the last exploring time needs to be limited by an explicit lower bound. The default lower bound

for the last exploring time is 0.01. This is to ensure that very small values of the last exploring time

do not affect the condition on the ongoing exploring time. Due to the conditions within the

exploration-based approach, a phase change is not guaranteed to happen.

5.2.1 Baseline model

To start off, Course Timetabling and Examination Timetabling at HEC Montréal are novel

problems. Because there is no available benchmark, a baseline model is used to compare

improvement strategies. The baseline model corresponds to the simplest model developed, given

the components presented in Chapter 4. As summarised in the description table, Table 5A.1, this

baseline model is randomly initialized through random initialization, and it randomly generates

swaps of single time-rooms, rather than sets of multiple time-rooms, and each swap involves two

time-rooms. Additionally, it uses the room occupancy constraint with its default weight value of

10-3. Through the result table, Table 5B.1, we can see that, with a total runtime of 600 seconds, the

average penalty value progresses from 214252 to 6001, with 95% of the improvement achieved

within the first 118.36 seconds, and 99% within 339.78 seconds in average. The range of penalty

values greatly shrinks, with an initial value range of 9860 to a final value range of 825.

5.2.2 Adapted baseline model

We adapt the baseline model to study the joint effectiveness of the random by similarity grouping

initialization and the use of sets of multiple time-rooms. Table 5A.1 indicates that all inputs, aside

from the type of initialization and the use of sets of single or multiple time-rooms, remain

unchanged from the baseline model. By pre-emptively regrouping courses within their similarity

groupings and allowing them to change time-rooms simultaneously, we believe that an opportunity

for a significant time economy can be created. As shown in Table 5B.1, this type of initialization

allows the model to start at a lower initial penalty value than the baseline model, with an average

value of 212100. Within a similar total runtime, the adapted baseline model successfully reaches

a lower final penalty value of 5351 in average. On another note, 95% of the average improvement

is accomplished within 127.53 seconds, and 99% of the average improvement within 370.14

 46

seconds out of 600 seconds. The signs of slower convergence can be explained by the better

performance of the model. With a range of initial values of 13880 and a range of final values of

1840, the adapted baseline model seems to be much more variable than the baseline model, which

shows ranges of 208515 and 825 for its initial and final values. While the range in final penalty

values is much larger in the adapted baseline model, the highest penalty value obtained is still

lower than the baseline model’s, showcasing once again the performance of the adapted baseline

model.

Name Baseline Adapted baseline

Initialization Random Random by similarity

Type of swapping Random Random

Single or multiple Single Multiple

Number of sets 2 2

Occupancy 10-3 10-3

Algorithmic details Simplest model

Baseline model that uses

random by similarity

groupings initialization and

sets of multiple time-rooms

Table 5A.1 Description of baseline and adapted baseline models

Name Baseline Adapted baseline

Total runtime 600 sec 600 sec

Average initial value 214252 212100

Highest initial value 218375 218900

Lowest initial value 208515 205020

Range of initial values 9860 13880

Average final value 6001 5351

Highest final value 6515 6440

Lowest final value 5690 4600

Range of final values 825 1840

Average time for 95% of

final value
118.36 sec 127.53 sec

Average time for 99% of

final value
339.78 sec 370.14 sec

Table 5B.1 Results of baseline and adapted baseline models

5.2.3 Baseline and adapted baseline models with longer runtime

Table 5C.1 presents the results of a single execution of the baseline and adapted baseline models

executed for a longer runtime. It lists the total runtime, initial and final penalty values, as well as

the time for 95% and 99% of the final value of the single execution of the model. We observe that,

 47

with a total runtime of 1800 seconds, the baseline model does improve. The average final penalty

of the baseline model after the extended runtime is 5130, showing a 14.51% decrease in value

from the average of the original runtime of 600 seconds. We see that 95% of the improvement is

achieved in 157.74 seconds, and 99% of it is achieved in 540.01 seconds. By contrast, there is a

noticeably bigger decrease in final penalty value for the adapted baseline model through the

extended runtime. The final value reaches 3415, which corresponds to a decrease of 36.18% in

value from the average of the original runtime. This large improvement does, however, show an

effect on the convergence of the model. In fact, when the model is executed for 1800 seconds, the

penalty reaches 95% of its final value at 203.66 seconds and 99% of it at 668.18 seconds.

Table 5C.1 Results of baseline adapted baseline with extended runtime

By comparing both models, we can conclude that a longer runtime is as not beneficial to the

baseline model, seeing that 99% of its final penalty value can be achieved within the original

runtime of 600 seconds. In contrast, the adapted model needs more than 600 seconds to achieve

99% of its final penalty value. With a 36.18% improvement to the former average penalty value,

we can argue that additional runtime can be advantageous to the adapted baseline model. We can

clearly see that the extended runtime enables penalty to reach lower values than the lowest penalty

values of the runs with 600 seconds. Considering that the penalty value can be improved, we begin

exploring avenues of improvement strategies as alternatives to a longer runtime. From Table 5B.2,

we can see that the adapted baseline model has a lower average initial value, but a much larger

range than the baseline model, i.e., average initial values of 214252 and 212100 with ranges of

9860 and 13880. However, considering the lower resulting penalty value with a runtime of 1800

seconds and the lower average penalty value with a runtime of 600 seconds, the next models will

mostly continue to use the parameters random by similarity initialization and sets of multiple time-

rooms, introduced through the adapted baseline model.

Name Baseline Adapted baseline

Total runtime 1800 sec 1800 sec

Initial value 218375 208950

Final value 5130 3415

Time for 95% of final value 157.74 sec 203.66 sec

Time for 99% of final value 540.01 sec 668.18 sec

 48

5.2.4 Swaps of multiple time-room sets

Next, we turn to swaps between multiple sets of time-rooms, keeping in mind that the number of

sets used should be limited, as discussed in Section 4.1.5. Table 5A.2 presents three models that

operate with more than 2 sets of time-rooms in their swaps. As we can see, only the number of sets

differs from the parameters of the adapted baseline model. With 3 sets of time-rooms involved in

each swap, Table 5B.2 indicates that the model reaches an average final penalty of 7706, with 95%

of improvement found within 195.50 seconds and 99% of it found within 418.05 seconds in

average. This model shows both worse performance and convergence than the baseline model. We

then use the time-based approach to equally allocate runtime to a phase of 2 sets and another of 3

sets of time-room. With the use of 3 sets as the starting phase, Table 5B.2 reports an average final

penalty value of 5765, whereas with the use of 2 sets as the starting phase, it reports an average

value of 5856. As the models do not seem to show good performance compared to the adapted

baseline model, the following models will simply continue to use swaps of 2 sets.

Name 3set 3set_2set_1/2 2set_3set_1/2

Initialization Random by similarity Random by similarity Random by similarity

Type of swapping Random Random Random

Single or multiple Multiple Multiple Multiple

Number of sets 3 Per phase (3 and 2) Per phase (2 and 3)

Occupancy 10-3 10-3 10-3

Algorithmic details
Allows swaps of 3 sets of

multiple time-rooms

Allows swaps of 3 sets in

first ½ of total runtime; and

allows only swaps of 2 sets

in remaining runtime

Allows only swaps of 2 sets

in first ½ of total runtime;

and allows swaps of 3 sets

in remaining runtime

Table 5A.2 Description of models with swaps of multiple time-room sets

 49

Name 3set 3set_2set_1/2 2set_3set_1/2

Total runtime 600 sec 600 sec 600 sec

Average initial value 211748 208137 209630

Highest initial value 217995 213910 217020

Lowest initial value 204485 202900 203100

Range of initial values 13510 11010 13920

Average final value 7706 5765 5856

Highest final value 8645 6170 6740

Lowest final value 7015 5395 5500

Range of final values 1630 775 1240

Average time for 95% of

final value
195.50 sec 220.48 sec 119.22 sec

Average time for 99% of

final value
418.05 sec 420.72 sec 288.97 sec

Table 5B.2 Result of models with swaps of multiple time-rooms sets

5.2.5 Special swappings

As mentioned in Section 4.1.5, the randomness proposed in the generation of swaps can potentially

lead to slow convergence. With the 𝑏𝑜𝑥(𝑣, ℎ) and 𝑐𝑟𝑜𝑠𝑠(𝑣, ℎ) swappings introduced previously,

we aim to improve swap generation by looking for patterns in the accepted swaps of a model. We

suggest an analysis, with the heatmap shown in Figure 5.1, of the accepted swaps in the baseline

model discussed in the Section 5.2.1. In heatmap, the vertical axis shows the vertical units within

the swaps and the horizontal axis shows the horizontal units within the swaps. We can see that the

figure shows a strong concentration in the upper left corner. This indicates that the majority of the

accepted swaps (70% of the 1089 swaps) involve a short time distance, which is limited to 2 units

of time in days and daily timeslots. The heatmap seems to suggest that special swappings such as

𝑏𝑜𝑥(2, 2) and 𝑐𝑟𝑜𝑠𝑠(1, 1) may be helpful in reducing the generation of non-improving swaps.

Figure 5.1 Heatmap of time distance in accepted swaps in

a baseline model

 50

To integrate this idea, we first determine the impact of special swappings on the adapted baseline

model. Two models are presented through Table 5A.3, where each model only uses a single type

of special swapping which are 𝑏𝑜𝑥(2, 2) and 𝑐𝑟𝑜𝑠𝑠(1, 1). The remaining of the parameters are

unchanged from the adapted baseline model. As reported in Table 5B.3, when using 𝑏𝑜𝑥(2,2), the

average final penalty value achieved is 8262, and when using 𝑐𝑟𝑜𝑠𝑠(1,1), the average value

achieved is 32590. The model with 𝑏𝑜𝑥(2,2) reaches 95% of its improvement in 143.97 seconds

and 99% of its average improvement in 370.01 seconds in average. The model with 𝑐𝑟𝑜𝑠𝑠(1,1),

considering a worse performance, reaches 95% of its average improvement in 79.64 seconds and

99% of in average improvement at 253.75 seconds in average. These models do not yield

comparable results to the baseline and adapted baseline models.

Name 𝑩𝒐𝒙(𝟐, 𝟐) 𝑪𝒓𝒐𝒔𝒔(𝟏, 𝟏)

Initialization Random by similarity Random by similarity

Type of swapping 𝑏𝑜𝑥(2, 2) 𝑐𝑟𝑜𝑠𝑠(1, 1)

Single or multiple Multiple Multiple

Number of sets 2 2

Occupancy 10-3 10-3

Algorithmic details
Only uses special swapping

𝑏𝑜𝑥(2, 2)

Only uses special swapping

𝑐𝑟𝑜𝑠𝑠(1, 1)

Table 5A.3 Description of models that use a single type of special swapping

Name 𝑩𝒐𝒙(𝟐, 𝟐) 𝑪𝒓𝒐𝒔𝒔(𝟏, 𝟏)

Total runtime 600 sec 600 sec

Average initial value 211462 210470

Highest initial value 215980 217310

Lowest initial value 208575 203980

Range of initial values 7405 13330

Average final value 8262 32590

Highest final value 9225 34960

Lowest final value 7335 30780

Range of final values 1890 4180

Average time for 95% of

final value
143.97 sec 79.64 sec

Average time for 99% of

final value
370.01 sec 253.75 sec

Table 5B.3 Results of models that use a single type of special swapping

 51

From the last observations, there is evidence to believe that the exclusive use of special swappings

does not improve the algorithm. As random swapping seems to promote better performance and

convergence, we move on to develop models that integrate the use of random swapping and special

swappings through model phases. Given a list of swapping types ordered by their phase occurrence,

two different approaches can be used for phase activation: time-based and exploration-based. A

major difference can be perceived between the two approaches: as long as there is runtime

allocated to each swapping type phase, all listed swapping types are used in the time-based

approach, which is not the necessarily the case in the exploration-based approach. Because it is

not possible to predict how many times the conditions for a phase change are satisfied in the

exploration-based approach, there is no guarantee that every listed swapping type will be used in

this approach.

We first take a look at the time-based approach through the models described in Table 5A.4, which

use random swapping and the special swappings 𝑏𝑜𝑥(2,2) and 𝑐𝑟𝑜𝑠𝑠(1,1). These models only

differ from the adapted baseline model in terms of types of swapping. This particular order in the

swapping types promotes a gradual increase of precision in time distance. As shown in the table,

we test several runtime allocations to these swapping type phases. For a model that equally

allocates the runtime to each type of swapping (⅓ of total runtime to each), the final penalty value

is 6187 in average. For a model that allocates ½ of the runtime to random swapping and ¼ to each

of the special type of swapping, the final penalty value averages 5234. Finally, for a model that

allocates ⅔ of the runtime to random swapping and ⅙ for each of special type of swapping, the

final penalty value is 5227 in average. From these models developed, we observe that the last two

model beats not only the performance of the baseline model, but also the performance of the

adapted baseline model. In addition to the lower average value of the final penalty, a smaller range

of final value is also noted. The first model shows a range of 3245, as opposed to the last two

models which respectively have a range of 1000 and 800. These results seem to indicate that a

model performs better and is less variable when the majority of the total runtime is dedicated

towards random swapping.

 52

Name
Rand_𝒃𝒐𝒙(𝟐, 𝟐)_

𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_1/3

Rand_𝒃𝒐𝒙(𝟐, 𝟐)_

𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_1/2

Rand_𝒃𝒐𝒙(𝟐, 𝟐)_

𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_2/3

Initialization Random by similarity Random by similarity Random by similarity

Type of swapping
Per phase (random,

𝑏𝑜𝑥(2, 2), 𝑐𝑟𝑜𝑠𝑠(1, 1))

Per phase (random,

𝑏𝑜𝑥(2, 2), 𝑐𝑟𝑜𝑠𝑠(1, 1))

Per phase (random,

𝑏𝑜𝑥(2, 2), 𝑐𝑟𝑜𝑠𝑠(1, 1))

Single or multiple Multiple Multiple Multiple

Number of sets 2 2 2

Occupancy 10-3 10-3 10-3

Algorithmic details

Time-based model that

allocates ⅓ of total runtime

to each type of swapping

Time-based model that

allocates ½ of total runtime

to random swapping and the

remaining ¼ to each of

special swapping

Time-based model that

allocates ⅔ of total runtime

to random swapping and ⅙

to each of special swapping

Table 5A.4 Description of time-based models that use three types of swapping

Table 5B.4 Results of time-based models that use three types of swapping

These results lead us to question the sufficiency of the use of a single special swapping, rather than

two special swappings, to incorporate with random swapping. Tables 5A.5 and 5A.6 present three

models that use random swapping, and 𝑏𝑜𝑥(2,2) or 𝑐𝑟𝑜𝑠𝑠(1,1) swapping, where runtime

allocations to random swapping are the first ¼, ½ and ¾ of the total runtime of 600 seconds. The

results are reported through Tables 5B.5 and 5B.6. For models that use 𝑏𝑜𝑥(2,2) swapping in

addition to random swapping, the average final penalty values are respectively 5890, 4990 and

5015. For models that use 𝑐𝑟𝑜𝑠𝑠(1,1) swapping in addition to random swapping, the average final

penalty values are respectively 7950, 6039 and 5161. We see that, when 𝑏𝑜𝑥(2,2) is the secondary

Name
Rand_𝒃𝒐𝒙(𝟐, 𝟐)_

𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_1/3

Rand_𝒃𝒐𝒙(𝟐, 𝟐)_

𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_1/2

Rand_𝒃𝒐𝒙(𝟐, 𝟐)_

𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_2/3

Total runtime 600 sec 600 sec 600 sec

Average initial value 210588 209265 208855

Highest initial value 216325 216595 216240

Lowest initial value 207280 204320 203200

Range of initial values 9045 12275 13040

Average final value 6187 5234 5227

Highest final value 8655 5765 5690

Lowest final value 5410 4765 4890

Range of final values 3245 1000 800

Average time for 95% of

final value
137.38 sec 124.95 sec 122.92 sec

Average time for 99% of

final value
327.96 sec 306.92 sec 337.22 sec

 53

swapping type, the models allocating the first ½ and ¾ of the total runtime to random swapping

beat the adapted baseline model; when 𝑐𝑟𝑜𝑠𝑠(1,1) is the secondary swapping type, only the model

that allocates the first ¾ of the total runtime to random swapping beat the adapted baseline model.

Additionally, these three models show better performance than the best model combining all three

swappings (random, 𝑏𝑜𝑥(2,2) and 𝑐𝑟𝑜𝑠𝑠(1,1)), which has an average final value of 5227. This

indicates that, to compliment random swapping, the use of two special swappings is not necessary,

as one special swapping seems sufficient. However, this is conditional to the runtime allocations

and the type of special swapping used. From the previous results, we can deduce that a larger

proportion of runtime needs to be allocated to random swapping when the secondary swapping

type is more precise.

Name Rand_𝒃𝒐𝒙(𝟐, 𝟐)_1/4 Rand_𝒃𝒐𝒙(𝟐, 𝟐)_1/2 Rand_𝒃𝒐𝒙(𝟐, 𝟐)_3/4

Initialization Random by similarity Random by similarity Random by similarity

Type of swapping
Per phase (random,

𝑏𝑜𝑥(2, 2))

Per phase (random,

𝑏𝑜𝑥(2, 2))

Per phase (random,

𝑏𝑜𝑥(2, 2))

Single or multiple Multiple Multiple Multiple

Number of sets 2 2 2

Occupancy 10-3 10-3 10-3

Algorithmic details

Time-based model that

allocates ¼ of total runtime

to random swapping and

remaining ¾ to special

swapping 𝑏𝑜𝑥(2, 2))

Time-based model that

allocates ½ of total runtime

to random swapping and

remaining ½ to special

swapping 𝑏𝑜𝑥(2, 2))

Time-based model that

allocates ¾ of total runtime

to random swapping and

remaining ¼ to special

swapping 𝑏𝑜𝑥(2, 2))

Table 5A.5 Description of time-based models that use random swapping and special swapping 𝑏𝑜𝑥(2, 2)

Name Rand_𝒃𝒐𝒙(𝟐, 𝟐)_1/4 Rand_𝒃𝒐𝒙(𝟐, 𝟐)_1/2 Rand_𝒃𝒐𝒙(𝟐, 𝟐)_3/4

Total runtime 600 sec 600 sec 600 sec

Average initial value 210455 209319 209995

Highest initial value 218910 216290 216850

Lowest initial value 203620 203490 201165

Range of initial values 15290 12800 15685

Average final value 5890 4990 5015

Highest final value 6710 5330 5255

Lowest final value 5160 4595 4750

Range of final values 1550 735 505

Average time for 95% of

final value
114.96 sec 120.21 sec 132.51 sec

Average time for 99% of

final value
330.20 sec 334.09 sec 330.38 sec

Table 5B.5 Results of time-based models that use random swapping and special swapping 𝑏𝑜𝑥(2, 2)

 54

Name Rand_𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_1/4 Rand_𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_1/2 Rand_𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_3/4

Initialization Random by similarity Random by similarity Random by similarity

Type of swapping
Per phase (random,

𝑐𝑟𝑜𝑠𝑠(1, 1))

Per phase (random,

𝑐𝑟𝑜𝑠𝑠(1, 1))

Per phase (random,

𝑐𝑟𝑜𝑠𝑠(1, 1))

Single or multiple Multiple Multiple Multiple

Number of sets 2 2 2

Occupancy 10-3 10-3 10-3

Algorithmic details

Time-based model that

allocates ¼ of total runtime

to random swapping and

remaining ¾ to special

swapping 𝑐𝑟𝑜𝑠𝑠(1, 1))

Time-based model that

allocates ½ of total runtime

to random swapping and

remaining ½ to special

swapping 𝑐𝑟𝑜𝑠𝑠(1, 1))

Time-based model that

allocates ¾ of total runtime

to random swapping and

remaining ¼ to special

swapping 𝑐𝑟𝑜𝑠𝑠(1, 1))

Table 5A.6 Description of time-based models that use random swapping and special swapping 𝑐𝑟𝑜𝑠𝑠(1, 1)

Name Rand_𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_1/4 Rand_𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_1/2 Rand_𝒄𝒓𝒐𝒔𝒔(𝟏, 𝟏)_3/4

Total runtime 600 sec 600 sec 600 sec

Average initial value 209292 209292 211610

Highest initial value 215100 214815 219750

Lowest initial value 197225 200590 207440

Range of initial values 17875 14225 12310

Average final value 7950 6039 5161

Highest final value 8595 6635 5500

Lowest final value 7055 5375 4780

Range of final values 1540 1260 720

Average time for 95% of

final value
103.33 sec 124.92 sec 130.90 sec

Average time for 99% of

final value
245.49 sec 295.61 sec 348.85 sec

Table 5B.6 Results of time-based models that use random swapping and special swapping 𝑐𝑟𝑜𝑠𝑠(1, 1)

We move on with the exploration-based approach, bearing in mind one special swapping is

sufficient to complement random swapping. Considering the previous observations from the time-

based models, to ensure that a majority of the runtime is allocated to random swapping, we also

consider adding a condition to limit the change in swapping type to the second ½ of the total

runtime. Table 5A.7 presents two exploration-based approach models that use random swapping

and 𝑏𝑜𝑥(2,2) swapping. As shown in Table 5B.7, with an ongoing exploring time that must be 50

times superior to the last exploring time, the average final penalty value is 5473. With an ongoing

exploring time that must be 100 times superior to the last, the final penalty value averages 5517.

 55

95% of their respective average improvement is reached in 128.33 seconds and 137.75 seconds,

whereas 99% of it is reached in 340.97 seconds and 360.75 seconds. These models show better

performance and faster convergence than the adapted baseline model.

Name Rand_𝒃𝒐𝒙(𝟐, 𝟐)_50 Rand_𝒃𝒐𝒙(𝟐, 𝟐)_100

Initialization Random by similarity Random by similarity

Type of swapping
Per phase (random,

𝑏𝑜𝑥(2, 2))

Per phase (random,

𝑏𝑜𝑥(2, 2))

Single or multiple Multiple Multiple

Number of sets 2 2

Occupancy 10-3 10-3

Algorithmic details

Exploration-based model

that uses random swapping

until past ½ of the total

runtime and until ongoing

exploring time is a factor of

50 to last exploring time,

and then it uses 𝑏𝑜𝑥(2, 2)

swapping

Exploration-based model

that uses random swapping

until past ½ of the total

runtime and until ongoing

exploring time is a factor of

100 to last exploring time,

and then it uses 𝑏𝑜𝑥(2, 2)

swapping

Table 5A.7 Description of exploration-based models that use random swapping and special swapping 𝑏𝑜𝑥(2, 2)

Name Rand_𝒃𝒐𝒙(𝟐, 𝟐)_50 Rand_𝒃𝒐𝒙(𝟐, 𝟐)_100

Total runtime 600 sec 600 sec

Average initial value 211258 209273

Highest initial value 221430 218635

Lowest initial value 201825 200680

Range of initial values 19605 17955

Average final value 5473 5517

Highest final value 6250 5890

Lowest final value 5120 5130

Range of final values 1130 760

Average time for 95% of

final value
128.33 sec 137.75 sec

Average time for 99% of

final value
340.97 sec 360.75 sec

Table 5B.7 Results of exploration-based models that use random swapping and special swapping 𝑏𝑜𝑥(2, 2)

5.2.6 Room occupancy

The room occupancy is a constraint that is used to reduce the assignment of small courses (courses

with small norms) to large rooms (rooms with large capacities) in Course Timetabling. A relatively

small weight value is associated to this constraint. We take interest in this constraint’s influence

 56

on the search algorithm, as it stimulates changes but inevitably reinforces the acceptance of

solutions that are not significantly improving. As room occupancy is not applicable in examination

timetables, this section does not concern Examination Timetabling.

Name Baseline no occ

Initialization Random

Type of swapping Random

Single or multiple Single

Number of sets 2

Occupancy 0

Algorithmic details

Simplest model with the

weight of the room

occupancy constraint set to

0

Table 5A.8 Description of baseline model without the room occupancy constraint

Name Baseline no occ

Total runtime 600 sec

Average initial value 216975

Highest initial value 220355

Lowest initial value 212375

Range of initial values 7980

Average final value 6444

Highest final value 6745

Lowest final value 6095

Range of final values 650

Average time for 95% of

final value
113.32 sec

Average time for 99% of

final value
321.12 sec

Table 5B.8 Results of baseline model without the room occupancy constraint

We investigate the usefulness of the room occupancy constraint by nullifying the constraint in the

baseline model (setting its weight to 0), as described in Table 5A.8. With the average resulting

penalty value of 6444 reported in Table 5B.8, this model does not outperform the baseline model.

Moreover, it does not show better convergence than the baseline model, seeing that 95% of the

average improvement is achieved within 113.32 seconds, and 99% within the 322.12 seconds. It

is evident that the constraint of room occupancy, although associated to a very small weight value,

have a great influence on the performance of a model. Rather than assigning a constant value to

the room occupancy weight, we suggest creating models with active and inactive phases of the

 57

room occupancy constraint, where the constraint weight takes a small positive value (defaulted to

10-3) in active phases and a value of 0 in inactive phases. The phases can be triggered through a

time-based approach and an exploration-based exploration. These phases are used so the algorithm

can focus on bigger improvements while preventing disproportionate occupancy assignments.

Through time-based models shown in Table 5A.9, we test the end of the inactive phase and the

start of the active phase at ¼, ½, and ¾ of the total runtime. The resulting average penalty values

provided in Table 5B.9 are respectively 5170, 5072 and 5379. Through exploration-based models

shown in Table 5A.10, we test a factor to the last exploring time of 50, 100 and 150, which

respectively yields an average final penalty value of 5009, 5263 and 5191 presented in Table 5B.10.

We recognize that, amongst our tests, the exploration-based performant than the time-based ones.

Name Occ_1/4 Occ_1/2 Occ_3/4

Initialization Random by similarity Random by similarity Random by similarity

Type of swapping Random Random Random

Single or multiple Multiple Multiple Multiple

Number of sets 2 2 2

Occupancy Per phase (0, 10-3) Per phase (0, 10-3) Per phase (0, 10-3)

Algorithmic details

Occupancy penalty weight

is set to 0 in first ¼ of the

total runtime and then takes

a value 10-3 for the

remaining ¾ of the runtime

Occupancy penalty weight

is set to 0 in first ½ of the

total runtime and then takes

a value 10-3 for the

remaining ½ of the runtime

Occupancy penalty weight

is set to 0 in first ¾ of the

total runtime and then takes

a value 10-3 for the

remaining ¼ of the runtime

Table 5A.9 Description of time-based models controlling the room occupancy constraint

Name Occ_1/4 Occ_1/2 Occ_3/4

Total runtime 600 sec 600 sec 600 sec

Average initial value 211498 210427 208524

Highest initial value 217100 221450 212755

Lowest initial value 206215 203730 201960

Range of initial values 10885 17720 10795

Average final value 5170 5072 5379

Highest final value 5910 5330 6135

Lowest final value 4825 4630 4830

Range of final values 1085 700 1305

Average time for 95% of

final value
129.28 sec 134.88 sec 136.85 sec

Average time for 99% of

final value
349.40 sec 372.66 sec 362.39 sec

Table 5B.9 Results of time-based models controlling the room occupancy constraint

 58

Name Occ_50 Occ _100 Occ_150

Initialization Random by similarity Random by similarity Random by similarity

Type of swapping Random Random Random

Single or multiple Multiple Multiple Multiple

Number of sets 2 2 2

Occupancy Per phase (0, 10-3) Per phase (0, 10-3) Per phase (0, 10-3)

Algorithmic details

Occupancy penalty weight

is set to 0 until ongoing

exploring time is a factor of

50 to last exploring time,

and then it takes a value 10-3

for the remaining runtime

Occupancy penalty weight

is set to 0 until ongoing

exploring time is a factor of

100 to last exploring time,

and then it takes a value 10-3

for the remaining runtime

Occupancy penalty weight

is set to 0 until ongoing

exploring time is a factor of

150 to last exploring time,

and then it takes a value 10-3

for the remaining runtime

Table 5A.10 Description of exploration-based models controlling the room occupancy constraint

Name Occ _50 Occ_100 Occ_150

Total runtime 600 sec 600 sec 600 sec

Average initial value 210790 210024 211203

Highest initial value 215455 216250 219640

Lowest initial value 207245 203215 201755

Range of initial values 8210 13035 17885

Average final value 5009 5263 5191

Highest final value 5985 5670 5645

Lowest final value 4440 4885 4600

Range of final values 1545 785 1045

Average time for 95% of

final value
135.12 sec 144.26 sec 125.06 sec

Average time for 99% of

final value
347.75 sec 358.66 sec 350.36 sec

Table 5B.10 Results of exploration-based models controlling the room occupancy constraint

5.2.7 Room types

The room constraints presented in Section 4.1.1 relate to three room characteristics: capacity,

layout, and building. When evaluating a room constraint, for a same timeslot, rooms with the same

characteristics yield equivalent penalties. Hence, these rooms can be considered equivalent to one

another. Instead of defining the rooms by their room characteristics individually, it would be more

beneficial to incorporate their combined characteristics. The intention is to use the combined

characteristics as a type of screening before evaluation to lower the number of equivalent swaps.

 59

By reducing the combinatorial symmetry of the problem with this method, the algorithm allocates

less time in the exploration of equivalent solutions and focuses on improvement. To incorporate

combined characteristics of rooms, we join rooms with similar traits to create clusters based on

room types. While the layout and building characteristics are qualitative data with few possible

values, respectively 6 and 2 possible values for layout and building characteristics, the room

capacity is a quantitative data with 26 possible values over 67 rooms. We suggest creating clusters

of rooms with similar capacities, rather than equivalent capacities. This leads to a smaller number

of room types (16 room types instead of 26 room types out of the 67 rooms), allowing for better

reduction of combinatorial symmetry. The effective capacity refers to the capacity representing a

room type, whereas the real capacity refers to the true capacity of a room. We consider two options

in defining the effective capacity through the rooms within a room type: minimal capacity and

maximal capacity. Using the minimal capacity ensures that a course that respects the minimal

capacity will inevitably respect the capacity of all time-rooms under this room type. However, it

causes courses that require a larger number of seats than the largest room type that uses the minimal

capacity to always be wrongly assigned in terms of the capacity constraint. Using the maximal

capacity would solve this issue, but it does not guarantee that a course respecting the maximal

capacity will inevitably respect the capacity of all time-rooms under this room type. Both options

can be beneficial in different instances.

Name Roomtype_min Roomtype_max

Initialization Random by similarity Random by similarity

Type of swapping Random Random

Single or multiple Multiple Multiple

Number of sets 2 2

Occupancy 0 0

Algorithmic details

Uses room types (with room

occupancy weight set to 0

and with minimal capacity

of room types as effective

capacity))

Uses room types (with room

occupancy weight set to 0

and with maximal capacity

of room types as effective

capacity))

Table 5A.11 Description of models only room types with minimal or maximal capacity as effective capacity

 60

Name Roomtype_min_all Roomtype_max_all

Total runtime 600 sec 600 sec

Average initial value 211297 211913

Highest initial value 219400 220715

Lowest initial value 204875 206480

Range of initial values 14525 14235

Average final value 5566 11480

Highest final value 6505 13815

Lowest final value 4620 10335

Range of final values 1885 3480

Average time for 95% of

final value
136.74 sec 142.51 sec

Average time for 99% of

final value
366.00 sec 353.05 sec

Table 5B.11 Results of models only room types with minimal or maximal capacity as effective capacity

When the model is actively using room types, rather than specific rooms, the tuple that represents

the effective capacity must be the room type capacity tuple. The effective capacity of a room type

can correspond to the minimal or maximal capacity amongst the room type. Since both have

different usage, as mentioned, we put both through tests to assess their effects on the models

described in Table 5A.11. In models solely using room types, the average final penalty values

reported in Table 5B.11 are respectively 5566 with the minimal capacity and 11480 with the

maximal capacity considering an average initial penalty value of 211297 and 211913. Note that to

maintain comparability between the models, all penalty values provided in tables labelled as 5B

are real values, meaning that the reported values are based on the real capacity, rather than the

effective capacity. From these results, the model that uses the minimal capacity clearly shows

better performance than the other. Amongst the established tests, with a similar initial penalty

value, the models with minimal capacity return a lower final penalty value, with the highest value

being more than 1.5x lower than the lowest value of the models with maximal capacity. This

reinforces our previous statement, saying that, if a course satisfies the capacity constraint of a room

type using minimal capacity, it will necessarily satisfy the capacity constraint of any room within

the room type, which is not the case with the maximal capacity. Nonetheless, both models do not

beat the adapted baseline model. This could be due to the lack in precision of the capacity, implying

that room types are not meant to be used exclusively. Instead, we suggest the use of room types

and rooms in phases with this particular order, to allow for reduced combinatorial symmetry as

well as precision in the solution. It is important to note that when room types are being used, the

 61

room occupancy constraint must be nullified, since the effective capacity would lead to incorrect

calculations of occupancy. For models that alternate between the use of room types and rooms

through repeated phases, there must be a re-evaluation of the current state to accurately reflect the

room capacity and room occupancy as the effective capacity changes to real capacity or vice-versa.

Rather than a complete evaluation of the state at a phase change, by constantly keeping track of

the time penalty value (i.e., the penalty values of the time constraints), only the rooms need to be

re-evaluated and summed to the time penalty value for an accurate evaluation to carry on.

Name Roomtype_max_1/4 Roomtype_max_1/2 Roomtype_max_3/4

Initialization Random by similarity Random by similarity Random by similarity

Type of swapping Random Random Random

Single or multiple Multiple Multiple Multiple

Number of sets 2 2 2

Occupancy Per phase (0, 10-3) Per phase (0, 10-3) Per phase (0, 10-3)

Algorithmic details

First phase uses room types

(with room occupancy

weight set to 0 and with

maximal capacity as

effective capacity) for first

¼ of total runtime, then the

remaining ¾ of runtime is

dedicated to second phase

which uses rooms (with

room occupancy weight set

to 10-3)

First phase uses room types

(with room occupancy

weight set to 0 and with

maximal capacity as

effective capacity) for first

½ of total runtime, then the

remaining ½ of runtime is

dedicated to second phase

which uses rooms (with

room occupancy weight set

to 10-3)

First phase uses room types

(with room occupancy

weight set to 0 and with

maximal capacity as

effective capacity) for first

¼ of total runtime, then the

remaining ¾ of runtime is

dedicated to second phase

which uses rooms (with

room occupancy weight set

to 10-3)

Table 5A.12 Description of time-based models that use room types with maximal capacity as effective capacity

Name Roomtype_max_1/4 Roomtype_max_1/2 Roomtype_max_3/4

Total runtime 600 sec 600 sec 600 sec

Average initial value 210218 212010 208125

Highest initial value 216540 222515 212455

Lowest initial value 205840 205500 201030

Range of initial values 10700 17015 11425

Average final value 5348 5323 5467

Highest final value 5850 5695 5920

Lowest final value 4690 4825 4690

Range of final values 1160 870 1230

Average time for 95% of

final value
161.68 sec 244.39 sec 254.39 sec

Average time for 99% of

final value
365.51 sec 379.71 sec 470.63 sec

Table 5B.12 Results of time-based models that use room types with maximal capacity as effective capacity

 62

Name Roomtype_min_1/4 Roomtype_min_1/2 Roomtype_min_3/4

Initialization Random by similarity Random by similarity Random by similarity

Type of swapping Random Random Random

Single or multiple Multiple Multiple Multiple

Number of sets 2 2 2

Occupancy Per phase (0, 10-3) Per phase (0, 10-3) Per phase (0, 10-3)

Algorithmic details

First phase uses room types

(with room occupancy

weight set to 0 and with

minimal capacity as

effective capacity) for first

¼ of total runtime, then the

remaining ¾ of runtime is

dedicated to second phase

which uses rooms (with

room occupancy weight set

to 10-3)

First phase uses room types

(with room occupancy

weight set to 0 and with

minimal capacity as

effective capacity) for first

½ of total runtime, then the

remaining ½ of runtime is

dedicated to second phase

which uses rooms (with

room occupancy weight set

to 10-3)

First phase uses room types

(with room occupancy

weight set to 0 and with

minimal capacity as

effective capacity) for first

¼ of total runtime, then the

remaining ¾ of runtime is

dedicated to second phase

which uses rooms (with

room occupancy weight set

to 10-3)

Table 5A.13 Description of time-based models that use room types with minimal capacity as effective capacity

Name Roomtype_min_1/4 Roomtype_min_1/2 Roomtype_min_3/4

Total runtime 600 sec 600 sec 600 sec

Average initial value 207231 208558 211743

Highest initial value 212980 214360 218505

Lowest initial value 201200 197665 206620

Range of initial values 11780 16695 11885

Average final value 5374 5459 5515

Highest final value 6255 5990 6065

Lowest final value 4980 5000 5120

Range of final values 1275 990 945

Average time for 95% of

final value
148.16 sec 143.13 sec 137.92 sec

Average time for 99% of

final value
365.06 sec 379.20 sec 377.30 sec

Table 5B.13 Results of time-based models that use room types with minimal capacity as effective capacity

We propose three time-based models that either use the minimal capacity or the maximal capacity

as the effective capacity with the room type phase active until the room phase at ¼, ½ and ¾ of

the total runtime, as shown in Tables 5A.11 and 5A.12. With the minimal capacity as the effective

capacity, Table 5B.12 reports average final penalty values 5374, 5459 and 5515. With the maximal

capacity as the effective capacity, Table 5B.11 reports average final penalty values of 5348, 5323

and 5467. Amongst these models, the model that use maximal capacity with a phase change at ½

 63

of the runtime seems to be the best model. Not only does this model show a lower average penalty

value, but it also has the shortest range of final penalty value.

Imposing the maximal capacity as the effective capacity for the next models, we move on to

analyze the exploration-based models presented in Table 5A.14. With the phase change triggered

by an ongoing exploring time that is a factor of 25 of the last exploring time, the model results

provided in Table 5B.14 reveals an average final penalty value of 4970, whereas a factor of 50

would result in an average final penalty value of 5270. 95% of the respective average improvement

is obtained within 130.90 seconds and 170.62 seconds, whereas 99% of the respective average

improvement is obtained within 361.24 seconds and 345.22 seconds.

Name Room type _max_25 Roomtype_max_50

Initialization Random by similarity Random by similarity

Type of swapping Random Random

Single or multiple Multiple Multiple

Number of sets 2 2

Occupancy Per phase (0, 10-3) Per phase (0, 10-3)

Algorithmic details

First phase uses room types

(with room occupancy

weight set to 0 and with

maximal capacity as

effective capacity) until

ongoing exploring time is a

factor of 25 to the last

exploring time, then the

remaining runtime is

dedicated to second phase

which uses rooms (with

room occupancy weight set

to 10-3)

First phase uses room types

(with room occupancy

weight set to 0 and with

maximal capacity as

effective capacity) until

ongoing exploring time is a

factor of 50 to the last

exploring time, then the

remaining runtime is

dedicated to second phase

which uses rooms (with

room occupancy weight set

to 10-3)

Table 5A.14 Description of exploration-based models that use room types with maximal capacity as effective capacity

 64

Name Room type _max_25 Roomtype_max_50

Total runtime 600 sec 600 sec

Average initial value 210704 211007

Highest initial value 216445 216375

Lowest initial value 203715 199390

Range of initial values 12730 16985

Average final value 4970 5270

Highest final value 5245 6225

Lowest final value 4490 4685

Range of final values 755 1540

Average time for 95% of

final value
130.90 sec 170.62 sec

Average time for 99% of

final value
361.24 sec 345.22 sec

Table 5B.14 Results of exploration-based models that use room types with maximal capacity as effective capacity

5.3 Proposed methodology

The experimental tests from the previous section allow us to identify the best models for course

lecture and examination timetables at HEC Montréal, considering the data simulated. Supported

by these numerical results, we propose two models to solve the Course Timetabling and

Examination Timetabling problems. In the following section, we will explain the reasoning behind

our choice of models, and reinforce our propositions with a robustness test. Finally, we present the

constraint satisfaction derived from the best model in both contexts.

5.3.1 Best Course Timetabling model

At the extend of the experimental tests, the following models are the most noteworthy for their

performance on this instance of Course Timetabling: the time-based models that use random

swapping and 𝑏𝑜𝑥(2,2) swapping at ½ and ¾ of the total runtime (see models rand_𝑏𝑜𝑥(2,2)_1/2

and rand_𝑏𝑜𝑥(2,2)_3/4 in Tables 5A.5 and 5B.5), the exploration-based model that controls room

occupancy with a factor of 50 (see model occ_50 in Tables 5A.10 and 5B.10), and the exploration-

based models that use room types with the maximal capacity, with a factor of 25 and 50 (see

models roomtype_max_25 and roomtype_max_50 in Tables 5A.14 and 5B.14).

Amongst this list of good performing models, we identify the exploration-based model that uses

room types with the maximal capacity and a factor 25, as the best Course Timetabling model. This

 65

model is built around two phases, where it uses room types (with the maximal capacity of the

rooms within a room type as the effective capacity) in the first phase and rooms (using the real

capacity of the rooms) in the second phase. The phase change is triggered when the ongoing

exploring time exceeds 25 times the last exploring time. To recall this model’s specific parameters

and results from the tests conducted, refer to Tables 5A.14 and 5B.14. This model is selected as

the best model over the others because of its better performance and convergence. In terms of final

penalty value, it shows the lowest average, in addition to a relatively small range. From an average

initial value of 210704, this model achieves an average final penalty value of 4970, with a range

of 755. While the model could not beat the performance of the adapted baseline model that

underwent an extended runtime, it still shows better performance than the baseline and adapted

baseline models on a similar runtime of 600 seconds. Additionally, given such a low average final

penalty value, the time to reach 99% of its final value is considered relatively short, i.e., 361.24

seconds over 600 seconds of total runtime.

To consolidate on the model’s robustness, we put this model through 10 runs of 1800 seconds.

This second round of testing is done to compare these results to the experimental results achieved

within 600 seconds. For both rounds of testing with different total runtime, Table 5.3 presents the

average, highest, lowest and range of the initial and final values. From Table 5.3, we can see that

the average final penalty value is considerably lower on the second round of testing, i.e.,

respectively 3346 and 4970. Additionally, the highest final penalty value with a runtime of 1800

seconds is lower than the lowest final penalty value with a runtime of 600 seconds, i.e., respectively

3635 and 4490. This indicates that, all the results from a runtime of 1800 seconds are better than

those from a runtime of 600 seconds. However, the comparison in the results of both rounds of

testing needs to take into account the difference in initial penalty values as well. Considering the

same parameters and data in both rounds of testing, we observe that the average initial penalty

value is slightly lower in the second round of testing, i.e., respectively 209501 and 210704.

Although it is lower, the average initial penalty value is only lower by 1203, whereas the average

final penalty value is lower by 1624. Therefore, while the initial penalty is lower in average, the

higher difference in average final values implies that a longer runtime leads to better results. As

for the range in values, the range of the initial values is relatively larger on the second round of

testing, i.e., respectively 19305 and 12730, and the range of final penalty values is much smaller

 66

than the first round of testing, i.e., respectively 520 and 755. When representing these last numbers

as a percentage of their respective average final penalty value, they amount to about the same, i.e.,

15.54% and 15.19%. Therefore, we believe that, for the model we propose as the best Course

Timetabling model, a longer runtime allows for better results to be generated with nearly no

compromise on the variability. We judge that the variability is low for both 600 seconds and 1800

seconds of runtime, implying that a single execution of the model will unlikely return a penalty

value that is very far from the average penalty value.

Name Roomtype_max_25 Roomtype_max_25

Total runtime 600 sec 1800 sec

Average initial value 210704 209501

Highest initial value 216445 219905

Lowest initial value 203715 200600

Range of initial values 12730 19305

Average final value 4970 3346

Highest final value 5245 3635

Lowest final value 4490 3115

Range of final values 755 520

Table 5.3 Comparison of the best Course Timetabling model’s penalty values between 600 seconds and 1800 seconds

To illustrate the constraint satisfaction obtained through the models, we describe the outcome from

a single execution of a model with a runtime of 600 seconds. While any good performing model

would suffice, we choose to use the model we identified as the best Course Timetabling model,

which corresponds to the model that uses room types with the maximal capacity, with a factor of

25. In a single execution of 600 seconds, this model’s real penalty value progresses from 206850

to 4595. Table 5.4 serves as a support to report numbers about each type of constraint. For each

constraint type, we find the total number of constraints, the number of constraints that is left

unsatisfied with the resulting timetable, and the total penalty value accounted by the constraint

type. Given the constraint weights listed in Table 5.1 from Section 5.1, the resulting timetable

fully satisfies the capacity, similarity groupings and exclusivity groupings, with rooms occupied

at 85.70% in average. The Table 5.4 shows that all 32 layout necessities are satisfied, considering

that there are 80 time-rooms with special layouts and that all courses with the wrong layout

necessity assigned to any of those time-rooms are also subject to penalization. The layout and

building preferences constraints are satisfied for the most part, with only 5 out of 377 layout

requests (1.33%) and 7 out of 390 building location requests (1.79%) unsatisfied. While 113

 67

courses were penalized on the timeslot preference level, only 27 out of the 743 courses with

timeslot preferences (3.63%) do not have any of their preferences satisfied. While the timeslot

preferences accounts for the majority of the final penalty value, most courses (96.37%) are at least

partially satisfied in terms of timeslot preference.

Constraint type
Total number of

constraints

Number of unsatisfied

constraints
Total penalty value

Timeslot preference 743 113 4280

Similarity grouping 62 0 0

Exclusivity grouping 141 0 0

Capacity 802 0 0

Layout necessity 32 + 80 0 0

Layout preference 377 5 175

Building 390 7 140

Table 5.4 Constraint satisfaction of a resulting course lecture timetable

5.3.2 Best Examination Timetabling model

The models developed for examinations are the same as for course lectures. However, the models

related to room occupancy are omitted since this aspect is irrelevant in the examination context.

While the results were not explicitly exposed in the previous section, they show similar dynamic

between the examination models and the course lecture models. Through Table 5.5, we provide

the results of a few selected Examination Timetabling models. This result table provides, for each

model listed, the average, highest, lowest and range of the initial and final penalty value, as well

as the average time to reach 95% and 99% of the respective final penalty value. These models’

parameters are the same as the Course Timetabling models under the same name, and they can be

found in description tables labelled as 5A in Section 5.2. Note that the occupancy in tables labelled

as 5A is unapplicable for the examination context. The similarity in dynamic between the models

is illustrated by Table 5.5. By comparing the average final penalty values, we can see that the

adapted baseline model is more performant that the baseline model, i.e., respectively 85178 and

475783 in average final penalty value. Additionally, like in Course Timetabling, the time-based

models that use random swapping and special swapping 𝑏𝑜𝑥(2,2) at ½ and ¾ of the runtime, with

a respective average final penalty value of 79153 and 83482, also outperform both baseline and

adapted baseline models. We list the following models as the most noteworthy models for their

performance in Examination Timetabling: the time-based models that use random swapping and

𝑏𝑜𝑥(2,2) swapping at ½ and ¾ of the total runtime (see models rand_ 𝑏𝑜𝑥(2,2) _1/2 and

 68

rand_𝑏𝑜𝑥(2,2)_3/4 in Tables 5A.5 and 5.5) and the adapted baseline model (see model adapted

baseline in Tables 5A.1 and 5.5).

Amongst the models listed, we identify the time-based model that uses random swapping, and

special swapping 𝑏𝑜𝑥(2,2) after ½ of the total runtime as the best Examination Timetabling model.

For this model’s specific parameters, refer to the Table 5A.5. This model is designated as the best

Examination Timetabling model because it achieves the lowest average penalty value within 600

seconds of runtime. As shown in Table 5.5, the final penalty value reaches 79153 in average. We

also note that it takes around 325.35 seconds and 525.54 seconds in average out of 600 seconds to

reach 95% and 99% of the final value.

Name Baseline Adapted baseline
Rand_𝒃𝒐𝒙(𝟐, 𝟐)_

1/2

Rand_𝒃𝒐𝒙(𝟐, 𝟐)_

3/4

Total runtime 600 sec 600 sec 600 sec 600 sec

Average initial value 1158318 399627 416704 409969

Highest initial value 1168029 414168 445405 446124

Lowest initial value 1148807 384905 377254 386358

Range of initial values 19222 29263 68151 59766

Average final value 475783 85178 79153 83482

Highest final value 493252 89140 79982 84434

Lowest final value 464072 81328 77871 81852

Range of final values 29180 7812 2111 2582

Average time for 95% of

final value
473.42 sec 322.57 sec 325.35 sec 292.77 sec

Average time for 99% of

final value
563.72 sec 516.92 sec 525.54 sec 506.11 sec

Table 5.5 Results of baseline and adapted baseline models and a time-based model that use random swapping and special swapping

box(2,2)

Like in Course Timetabling, in order to test the model’s robustness, we put this model through a

second round of testing by executing 10 runs of 1800 seconds. For both rounds of testing with

different total runtime, Table 5.6 presents the average, highest, lowest and range of the initial and

final values. From Table 5.6, we can see that the average final penalty value is relatively lower on

the second round of testing, i.e., respectively 64183 and 79153. We also note that the highest final

penalty value with a runtime of 1800 seconds is lower than the lowest final penalty value with a

runtime of 600 seconds, i.e., respectively 66880 and 77871. This indicates that, all results from a

runtime of 1800 seconds are better than those from a runtime of 600 seconds. However,

 69

considering the same parameters and data in both rounds of testing, we observe that the average

initial penalty value is slightly lower in the latter one, i.e., respectively 402198 and 416704. We

see that both initial and final values are lower in average on the second round of testing. Yet, when

comparing the second round of testing to the first round of testing, the difference in average final

penalty values, i.e., 14970, is larger than the difference in average initial penalty values, i.e., 14506.

Therefore, although the second round of testing starts at a lower penalty value in average, we can

still say that a longer runtime allows for better results. As for the range in values, the range of the

initial values is slightly larger on the second round of testing, i.e., respectively 69973 and 68151,

and similarly the range of final penalty values is also larger than the first round of testing, i.e.,

respectively 5267 and 2111. When represented as a percentage of the average final penalty value,

the ranges correspond to respectively 8.21% and 2.67%. Therefore, we can say that, for the model

we propose as the best Examination Timetabling model, a longer runtime allows for better results

to be generated at the expense of a slight increase in variability. Although the variability is

compromised, we judge that the variability is low in both 600 seconds and 1800 seconds of runtime,

implying that a single execution of the model will unlikely return a penalty value that is very far

from the average penalty value of a given total runtime.

Name Rand_𝒃𝒐𝒙(𝟐, 𝟐)_1/2 Rand_𝒃𝒐𝒙(𝟐, 𝟐)_1/2

Total runtime 600 sec 1800 sec

Average initial value 416704 402198

Highest initial value 445405 427047

Lowest initial value 377254 357074

Range of initial values 68151 69973

Average final value 79153 64183

Highest final value 79982 66880

Lowest final value 77871 61613

Range of final values 2111 5267

Table 5.6 Comparison of the best Course Timetabling model’s penalty values between 600 seconds and 1800 seconds

We move on to the constraint satisfaction obtained through a single execution of the best

Examination Timetabling model for a total runtime of 600 seconds. The weight set for the

examination constraints can also be found in Section 5.1, listed in Table 5.2. We use Table 5.6 to

present, for each type of constraint in Examination Timetabling, the total number of constraints,

as well as the number of unsatisfied constraints and the resulting total penalty value. In this

execution, the penalty value progresses from 559047 to 165310 within 600 seconds. The resulting

 70

timetable of the model proposed fully satisfies the constraints of timeslot prohibition, timeslot

exclusivity grouping and one-day exclusivity grouping. The building preferences are also satisfied,

but it is important to note that only less than 1% of sub-sections have these requests simulated.

Although layout necessities are also few, considering 114 rooms with the concerned layouts, only

9 time-rooms are penalized. With 910 sub-sections involved in the building grouping constraint,

182 out of 910 (20.0%) are affected a penalty. As for room capacity, 122 out of 995 sub-sections

(12.26%) are unsatisfied. Only 1 out of 910 (0.11%) were penalized for the similarity grouping.

Contrastingly, for the 78 sub-sections with timeslot preferences, we note that 67.95% of them are

satisfied in this aspect, meaning that they have at least one timeslot preference satisfied. Finally,

the two-day exclusivity constraint is almost completely respected with 3 out of 90 sub-sections

(0.03%) penalized.

Constraint
Total number of

constraints

Number of unsatisfied

constraints
Total penalty value

Timeslot preference 78 70 5880

Timeslot prohibition 618 0 0

Similarity grouping 910 1 900

Timeslot exclusivity grouping 90 0 0

One-day exclusivity grouping 90 0 0

Two-day exclusivity grouping 90 18 310

Capacity 995 122 61000

Layout necessity 1 + 114 9 6300

Building 2 0 0

Building grouping 910 182 91000

Table 5.7 Constraint satisfaction of a resulting examination timetable

 71

6 Conclusion

The educational field shows strong interest in timetabling problems. This is partially because the

process of timetabling is recurrent, and as an institution expands, the process becomes increasingly

resource demanding. In fact, educational institutions, such as HEC Montréal, go through a lengthy

manual process that can realistically extend to a few months of operation. This is due to the many

interventions necessary in such a process. In this thesis, we proposed an algorithm to automate the

process of timetabling. In the case of HEC Montréal, each model proposed for Course Timetabling

and Examination Timetabling was able to return a timetable that satisfies most constraints after

only 600 seconds. Through rigorous testing, we proved that the models are considerably robust, in

the sense that they are capable of returning consistent results even in presence of randomness.

Furthermore, we showed that a runtime of 1800 seconds can be very beneficial, as the models

consistently returned even better results. We strongly believe that the implementation of this

algorithm can immensely improve the timetabling process within the institution. This automation

is deemed to reduce the time for active resolution in the process from several days down to a few

hours. Additionally, such automation allows for a degree of versatility that is inconceivable in

manual timetabling.

Through the literature review in Chapter 2, we learned that, despite the numerous existing

research work conducted on the topic of timetabling, no efficient solving method has yet been

found for these problems categorized as NP-complete. However, the most notable solving

techniques for these problems of high complexity are metaheuristics, due to their ability to cover

a wide variety of problems and provide high quality solutions. In Chapter 3, we solidified the

problem instance and the goal of the algorithm, which is to produce conflict-free timetables that

mostly satisfy students and lecturers. With this in consideration, in Chapter 4, we proposed a

heuristic algorithm based on local search to solve HEC Montréal’s Course Timetabling and

Examination Timetabling problems. This heuristic searches for improving solutions by exploring

complete and feasible solutions. By imposing a single hard constraint (being that all courses must

be assigned to a time-room), we position for a more random search in a search space that is less

constrained. The key elements of this algorithm are 1) the partial evaluation; 2) the distinction in

time-specific and room-specific constraints; 3) the clustering of similar rooms into room types.

 72

First, partial evaluation, in contrast to complete evaluation, leads to a significant economy in

evaluation time. By structuring the time-room and course data into lists, we can follow the changes

of the solution generated by a swap, and directly evaluate the changes in the affected time-rooms

and courses. This framework ultimately eliminates repeated calculations. Second, knowing that

timetabling has a dimension of time and space, we can identify scenarios where swaps only affect

one dimension. By recognizing the distinction between time-specific and room-specific constraints,

we can avoid calculations of unaffected constraints. Third, clustering rooms with similar

characteristics to create room types allows to avoid unimpactful swaps, contributing to a reduction

of the problem’s combinatorial symmetry. Numerous models were then presented and evaluated

on their performance and convergence in Chapter 5. All models presented for Course Timetabling

and Examination Timetabling were able to easily return timetables with the majority of the

constraints satisfied within a reasonable timeframe. From the experimental results, we proposed

two models, one for Course Timetabling and another for Examination Timetabling. The

experimental results of this algorithm show high convictions to the purpose of automating the

timetabling process of HEC Montréal.

In addition to its optimization ability, the algorithm we proposed shows great simplicity and

flexibility, which is essential for its capability in covering similar scheduling problems. We

strongly believe that the three key elements of this algorithm (partial evaluation, distinction in

time-specific and room-specific constraints, and clustering of similar rooms) can be beneficial for

other optimization problems in the scheduling sphere. Concerning future works, the application of

the algorithm on a variety of scheduling problems can provide an avenue of extension to prove the

versatility of this heuristic algorithm. Through this extension, it would be interesting to develop

on the challenges in adapting the algorithm proposed to a different problem instance. An emphasis

on the difficulty of the instance and its likeness to the Course Timetabling or Examination

Timetabling of HEC Montréal could lead the way to more interesting discussions. Moreover, since

we are unable to prove the optimality of the solution with the heuristic proposed, the suggested

extension could provide more depth to the heuristic’s optimization capacities. This thesis allowed

numerous ideas to be studied in the search of a well-rounded algorithm. To maintain a natural flow

and to keep the thesis within its scope, a few ideas had to be omitted upon their inconclusive results.

For instance, the types of swaps discussed in Section 4.6.1 could lead to interesting models, but

 73

none were found within the extend of our model testing. Also, a model inspired by VNS was

created, but was ultimately disregarded. The recent success of VNS in metaheuristics reported in

the literature review from Chapter 2 led to the idea to incorporate a shaking procedure to the

algorithm. This procedure aims to avoid local optima, and we approached this by periodically

accepting non-improving swaps in a probabilistic manner. In such a model, a shaking phase is

initiated when no improving swap has been found in a certain amount of time. While these two

ideas were not pursued due to inconclusive test results, they can nonetheless create ample

opportunities for further research. Perhaps, these suggestions for future works could shed light on

the complexity theory problem of P vs. NP mentioned in Chapter 2, and hopefully lead the way

to an efficient algorithm to solve a NP-complete problem.

 74

Bibliography

Abdullah, S., Burke, E. K., & McCollum, B. (2007, September). A hybrid evolutionary approach

to the university course timetabling problem. In 2007 IEEE congress on evolutionary

computation (pp. 1764-1768). IEEE.

Abdullah, S., Turabieh, H., McCollum, B., & McMullan, P. (2012). A hybrid metaheuristic

approach to the university course timetabling problem. Journal of Heuristics, 18(1), 1-23.

Alsmadi, O. M. K., Za'er, S., Abu-Al-Nadi, D. I., & Algsoon, A. (2011, May). A novel genetic

algorithm technique for solving university course timetabling problems. In International

Workshop on Systems, Signal Processing and their Applications, WOSSPA (pp. 195-198). IEEE.

Alvarez-Valdes, R., Crespo, E., & Tamarit, J. M. (2002). Design and implementation of a course

scheduling system using tabu search. European Journal of Operational Research, 137(3), 512-

523.

Asham, G. M., Soliman, M. M., & Ramadan, A. R. (2011). Trans genetic coloring approach for

timetabling problem. Artificial Intelligence Techniques Novel Approaches & Practical

Applications, IJCA, 17-25.

Asmuni, H., Burke, E. K., & Garibaldi, J. M. (2005, September). Fuzzy multiple heuristic ordering

for course timetabling. In The Proceedings of the 5th United Kingdom Workshop on

Computational Intelligence (UKCI05), London, UK (pp. 302-309).

Asmuni, H., Burke, E. K., Garibaldi, J. M., McCollum, B., & Parkes, A. J. (2009). An investigation

of fuzzy multiple heuristic orderings in the construction of university examination

timetables. Computers & Operations Research, 36(4), 981-1001.

Aubin, J., & Ferland, J. A. (1989). A large scale timetabling problem. Computers & Operations

Research, 16(1), 67-77.

Ayob, M., Burke, E. K., & Kendall, G. (2006). An iterative re-start variable neighbourhood search

for the examination timetabling problem. Practice and Theory of Automated Timetabling.

LNCS, 1153, 336-344.

Babaei, H., Karimpour, J., & Hadidi, A. (2015). A survey of approaches for university course

timetabling problem. Computers & Industrial Engineering, 86, 43-59.

Bakir, M. A., & Aksop, C. (2008). A 0-1 integer programming approach to a university timetabling

problem. Hacettepe Journal of Mathematics and Statistics, 37(1), 41-55.

 75

Bellio, R., Ceschia, S., Di Gaspero, L., Schaerf, A., & Urli, T. (2016). Feature-based tuning of

simulated annealing applied to the curriculum-based course timetabling problem. Computers &

Operations Research, 65, 83-92.

Borchani, R., Elloumi, A., & Masmoudi, M. (2017). Variable neighborhood descent search based

algorithms for course timetabling problem: Application to a Tunisian University. Electronic Notes

in Discrete Mathematics, 58, 119-126.

Burke, E. K., Elliman, D., & Weare, R. (1994, September). A genetic algorithm based university

timetabling system. In Proceedings of the 2nd east-west international conference on computer

technologies in education (Vol. 1, pp. 35-40).

Burke, E., Bykov, Y., Newall, J., & Petrovic, S. (2004). A time-predefined local search approach

to exam timetabling problems. Iie Transactions, 36(6), 509-528.

Burke, E. K., Eckersley, A. J., McCollum, B., Petrovic, S., & Qu, R. (2010). Hybrid variable

neighbourhood approaches to university exam timetabling. European Journal of Operational

Research, 206(1), 46-53.

Chaudhuri, A., & Kajal, D. (2010). Fuzzy genetic heuristic for university course timetable

problem. Int. J. Advance. Soft Comput. Appl, 2(1), 100-121.

Chen, M. C., Goh, S. L., Sabar, N. R., & Kendall, G. (2021). A survey of university course

timetabling problem: perspectives, trends and opportunities. IEEE Access, 9, 106515-106529.

Cooper, T. B., & Kingston, J. H. (1995, August). The complexity of timetable construction

problems. In International conference on the practice and theory of automated timetabling (pp.

281-295). Springer, Berlin, Heidelberg.

Dandashi, A., & Al-Mouhamed, M. (2010, May). Graph coloring for class scheduling. In

ACS/IEEE International Conference on Computer Systems and Applications-AICCSA 2010 (pp.

1-4). IEEE.

Daskalaki, S., Birbas, T., & Housos, E. (2004). An integer programming formulation for a case

study in university timetabling. European journal of operational research, 153(1), 117-135.

Daskalaki, S., & Birbas, T. (2005). Efficient solutions for a university timetabling problem through

integer programming. European journal of operational research, 160(1), 106-120.

Di Gaspero, L., Mizzaro, S., & Schaerf, A. (2004, August). A multiagent architecture for

distributed course timetabling. In Proceedings of the 5th International Conference on the Practice

and Theory of Automated Timetabling (PATAT-2004) (pp. 471-474).

 76

Di Gaspero, L., & Schaerf, A. (2000, August). Tabu search techniques for examination timetabling.

In International Conference on the Practice and Theory of Automated Timetabling (pp. 104-117).

Springer, Berlin, Heidelberg.

Erben, W., & Keppler, J. (1995, August). A genetic algorithm solving a weekly course-timetabling

problem. In International Conference on the Practice and Theory of Automated Timetabling (pp.

198-211). Springer, Berlin, Heidelberg.

Golabpour, A., Shirazi, H. M., Farahi, A., Kootiani, A. Z. M., & Beigi, H. (2008, December). A

fuzzy solution based on Memetic algorithms for timetabling. In 2008 International Conference on

MultiMedia and Information Technology (pp. 108-110). IEEE.

Hansen, P., Mladenović, N., Todosijević, R., & Hanafi, S. (2017). Variable neighborhood search:

basics and variants. EURO Journal on Computational Optimization, 5(3), 423-454

Hertz, A. (1991). Tabu search for large scale timetabling problems. European journal of

operational research, 54(1), 39-47.

Hoos, H. H., & Stützle, T. (2004). Stochastic local search: Foundations and applications. Elsevier.

Kohshori, M. S., & Abadeh, M. S. (2012). Hybrid genetic algorithms for university course

timetabling. International Journal of Computer Science Issues (IJCSI), 9(2), 446.

Lü, Z., & Hao, J. K. (2010). Adaptive tabu search for course timetabling. European journal of

operational research, 200(1), 235-244.

McCollum, Barry. (2006). University timetabling: Bridging the gap between research and practice.

Proceedings of the 5th International Conference on the Practice and Theory of Automated

Timetabling.

Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers & operations

research, 24(11), 1097-1100.

Muklason, A., Irianti, R. G., & Marom, A. (2019). Automated course timetabling optimization

using tabu-variable neighborhood search based hyper-heuristic algorithm. Procedia Computer

Science, 161, 656-664.

Müller, T. (2005). Constraint-based timetabling.

Novák, V., Perfilieva, I., & Mockor, J. (2012). Mathematical principles of fuzzy logic (Vol. 517).

Springer Science & Business Media.

 77

Obit, J. H., Ouelhadj, D., Landa-Silva, D., Vun, T. K., & Alfred, R. (2011, December). Designing

a multi-agent approach system for distributed course timetabling. In 2011 11th International

Conference on Hybrid Intelligent Systems (HIS) (pp. 103-108). IEEE.

Oude Vrielink, R. A., Jansen, E. A., Hans, E. W., & van Hillegersberg, J. (2019). Practices in

timetabling in higher education institutions: a systematic review. Annals of operations

research, 275(1), 145-160.

Razak, H. A., Ibrahim, Z., & Hussin, N. M. (2010, March). Bipartite graph edge coloring approach

to course timetabling. In 2010 International Conference on Information Retrieval & Knowledge

Management (CAMP) (pp. 229-234). IEEE.

Redl, T. A. (2004). A study of university timetabling that blends graph coloring with the

satisfaction of various essential and preferential conditions. Rice University.

Schaerf, A. (1999). A survey of automated timetabling. Artificial intelligence review, 13(2), 87-

127.

Thompson, J. M., & Dowsland, K. A. (1996). Variants of simulated annealing for the examination

timetabling problem. Annals of Operations research, 63(1), 105-128.

Vianna, D. S., Martins, C. B., Lima, T. J., Vianna, M. D. F. D., & Meza, E. B. M. (2020). Hybrid

VNS-TS heuristics for university course timetabling problem. Brazilian Journal of Operations &

Production Management, 17(2), 1-20.

Welsh, D. J., & Powell, M. B. (1967). An upper bound for the chromatic number of a graph and

its application to timetabling problems. The Computer Journal, 10(1), 85-86.

Wren, A. (1995, August). Scheduling, timetabling and rostering—a special relationship?.

In International conference on the practice and theory of automated timetabling (pp. 46-75).

Springer, Berlin, Heidelberg.

Zhang, L., & Lau, S. (2005, November). Constructing university timetable using constraint

satisfaction programming approach. In International Conference on Computational Intelligence

for Modelling, Control and Automation and International Conference on Intelligent Agents, Web

Technologies and Internet Commerce (CIMCA-IAWTIC'06) (Vol. 2, pp. 55-60). IEEE.

	Résumé
	Abstract
	Table of Contents
	1
	List of Tables and Figures
	1 Introduction
	2 Review of literature and problem
	2.1 Introduction to timetabling problems
	2.2 Timetabling: an NP-complete problem
	2.3 Solving techniques explored
	2.3.1 Operational research techniques
	2.3.1.1 Graph colouring (GC)
	2.3.1.2 Integer programming and linear programming (IP/LP)
	2.3.1.3 Constraint satisfaction programming (CSP)

	2.3.2 Metaheuristic methods
	2.3.2.1 Variable neighbourhood search (VNS)
	2.3.2.2 Tabu search (TS)
	2.3.2.3 Simulated annealing (SA)
	2.3.2.4 Genetic algorithms (GA)

	2.3.3 Intelligent novel methods
	2.3.3.1 Hybrid algorithms
	2.3.3.2 Fuzzy approach

	2.3.4 Distributed multi agent system-based applications

	2.4 Comparison between methods

	3 Problem formulation
	3.1 Context
	3.1.1 HEC Montréal’s current timetabling process
	3.1.2 Course Timetabling context at HEC Montréal
	3.1.3 Examination Timetabling context at HEC Montréal

	3.2 Framework
	3.2.1 Course framework: a standardized weekly timetable
	3.2.2 Examination framework: a full-length timetable

	4 Application of solving methods
	4.1 General algorithm
	4.2 Constraints
	4.2.1 Course Timetabling constraints
	4.2.1.1 Timeslot preference
	4.2.1.2 Similarity grouping
	4.2.1.3 Exclusivity grouping
	4.2.1.4 Room capacity and room occupancy
	4.2.1.5 Building preference
	4.2.1.6 Layout necessity and layout preference

	4.2.2 Examination Timetabling constraints
	4.2.2.1 Timeslot preference
	4.2.2.2 Timeslot prohibition
	4.2.2.3 Similarity grouping
	4.2.2.4 Timeslot exclusivity grouping, one-day exclusivity grouping and two-day exclusivity grouping
	4.2.2.5 Room capacity
	4.2.2.6 Building preference and building grouping
	4.2.2.7 Layout necessity

	4.3 Data representation
	4.4 Initialization
	4.5 Transformation
	4.6 Swap generation
	4.7 Types of swaps
	4.8 Solution evaluation
	4.9 Stopping criteria

	5 Results
	5.1 Data simulation
	5.2 Experimental results
	5.2.1 Baseline model
	5.2.2 Adapted baseline model
	5.2.3 Baseline and adapted baseline models with longer runtime
	5.2.4 Swaps of multiple time-room sets
	5.2.5 Special swappings
	5.2.6 Room occupancy
	5.2.7 Room types

	5.3 Proposed methodology
	5.3.1 Best Course Timetabling model
	5.3.2 Best Examination Timetabling model

	6 Conclusion
	Bibliography

