
[Inner endpaper]

HEC MONTRÉAL

Experience Learning in Routing Optimization
in Last-Mile Delivery

par

Huai Jun (Norina) Sun

Okan Arslan

HEC Montréal

Directeur de recherche

Sciences de la gestion

(Spécialisation Data Science and Business Analytics)

Mémoire présenté en vue de l’obtention
du grade de maîtrise ès sciences en gestion

(M. Sc.)

Juin 2024

© Huai Jun (Norina) Sun, 2024

2

Résumé

Cette thèse présente un cadre contextuel pour l’intégration de l’apprentissage par l’expé-

rience dans l’optimisation du routage, dans le contexte du vendeur itinérant dans la livrai-

son du dernier kilomètre. L’objectif de ce cadre est d’utiliser des itinéraires historiques de

haute qualité comme expérience à partir de laquelle il est possible d’apprendre. Ces itiné-

raires de haute qualité sont classés comme tels par des experts opérationnels, qui tiennent

compte des caractéristiques non structurées et complexes des opérations de livraison au

dernier kilomètre. Le cadre couvre deux facettes de la science des données : l’analyse

descriptive et l’analyse prédictive. Dans l’analyse descriptive, nous extrayons les règles

et les préférences des itinéraires de haute qualité dans les données. Au stade de l’analyse

prédictive, nous étudions différents algorithmes sans dérivation pour l’apprentissage des

préférences afin d’améliorer l’efficacité des méthodes développées. Toutes les préférences

cachées qui n’ont pas été obtenues lors de l’analyse descriptive sont capturées à ce stade.

En d’autres termes, nous utilisons des algorithmes d’analyse prédictive sur un problème

non structuré, dans lequel les règles ne sont pas faciles à décrire. Notre approche nous

permet de combiner les avantages des différentes facettes de la science des données dans

un cadre collaboratif unique, ce qui est efficace pour générer des solutions de haute qua-

lité pour un problème de livraison sur le dernier kilomètre. Une version préliminaire de la

méthode descriptive a reçu la troisième place et un prix de 25 000 dollars dans le cadre

du défi de recherche Amazon Last Mile Routing organisé en 2021. Dans cette thèse, nous

nous concentrons sur le développement de la facette d’analyse prédictive, et améliorons

la performance d’apprentissage des résultats du concours de plus de 23%.

Mots clés : Problèmes de représentants sur la route ; apprentissage ; orienté sur les don-

nées ; optimisation sans dérivée ; recherche de coordonnées ; livraison du dernier kilomètre

Méthodes de recherche : Optimisation contextuelle

3

Abstract

This thesis presents a contextual framework for the integration of experience learning

into routing optimization, within the context of the traveling salesperson person in last-

mile delivery. The objective of the framework is to utilize historical high-quality routes

as experience to learn from. These high-quality routes are classified as such by operatio-

nal experts, who consider the unstructured and complex features of the last-mile delivery

operations. The framework spans two facets of data-science : descriptive and predictive

analytics. In the descriptive analytics, we extract rules and preferences of high-quality

routes in the data. In the predictive analytics stage, we investigate different derivative-free

algorithms for learning the preferences in order to improve the effectiveness of the deve-

loped methods. Any hidden preferences that are not obtained in the descriptive analytics

are captured in this stage. In other words, we use predictive analytics algorithms on an

unstructured problem, in which the rules are not easily be described. Our approach allows

us to blend the advantages of the different facets of data science in a single collaborative

framework, which is effective in generating high-quality solutions for a last-mile delivery

problem. A preliminary version of the descriptive method received the third place, and a

$25,000 award in the Amazon Last Mile Routing Research Challenge organized in 2021.

In this thesis, we focus on the development of the predictive analytics facet, and improve

the learning performance of the contest results by more than 23%.

Keywords : traveling salesman problem; learning, data-driven ; derivative-free optimiza-

tion ; coordinate search ; last-mile delivery

Research methods : Contextual optimization

4

Table of contents

Résumé . 3

Abstract . 4

Table of contents . 5

List of tables and figures . 7

List of abbreviations and acronyms . 8

Acknowledgements . 9

Introduction . 10

Literature review . 11

Chapter 1: Problem definition and methodological framework . 15

1.1 Problem definition . 17

1.2 Factorization of the transition penalty matrix 17

1.3 Decomposition of the transition weight matrix 20

Chapter 2: Learning the transformation by predictive analytics . 21

2.1 Score guided coordinate search . 22

2.1.1 A proxy gradient function . 22

2.1.2 The SGCS algorithm . 23

2.2 Label-guided feature impact matrix . 25

Chapter 3: Description of the case study . 27

3.1 The competition and the data . 27

3.2 Comparing similarity of two routes: the scoring function 27

3.3 Descriptive statistics and feature selection 29

3.4 Rule-based feature impact matrix . 29

5

3.5 Combining the label-guided and the rule-based feature impact matrices . . 30

Chapter 4: Results and discussion . 31

4.1 Implementation details . 31

4.2 Comparison of algorithm performances 31

4.2.1 RFIM performance: . 31

4.2.2 SGCS performance . 32

4.2.3 LFIM performance . 32

4.2.4 R+LFIM performance . 33

4.3 Performance of the best performing algorithm under different settings . . 34

4.3.1 R+LFIM performance on various training and testing splits 35

4.3.2 R+LFIM performance on high routes: 37

4.3.3 R+LFIM performance on all routes: 38

4.3.4 R+LFIM performance on out-of-sample routes: 39

4.3.5 Optimization oracle with or without time windows: 40

Chapter 5: Discussion on effectiveness, interpretability and flexibility of the methods 41

Conclusion . 43

Bibliography . 44

Annexes . 49

A.1 Implementation details for RFIM . 49

A.2 Tuning parameters for RFIM . 49

A.3 Tuning parameters for SGCS . 49

A.4 Tuning parameters for R+LFIM . 51

6

List of tables and figures

Table 1 Nomenclature . 16

Table 2 Depot Information . 28

Table 3 Performance of RFIM and SGCS algorithms per depot on High-SV

routes an 80% training and 20% testing split. 33

Table 4 Performance of RFIM and LFIM algorithms per depot on High-SV

routes with an 80% training and 20% testing split. 34

Table 5 Performance of RFIM and R+LFIM algorithms per depot on High-SV

routes with an 80% training and 20% testing split. 35

Table 6 R+LFIM performance with respect to RFIM on High-SV routes for

varying training split proportions . 36

Table 7 R+LFIM performance with respect to RFIM on High routes for vary-

ing training split proportions . 38

Table 8 R+LFIM performance per depot with respect to RFIM on All routes . 39

Table 9 R+LFIM performance per depot with respect to RFIM on Out of Sam-

ple Dataset . 40

Table 10 Comparing the impacts of optimization oracle with and without time

windows on R+LFIM performance on High routes 41

Table 11 Results for varying values of ∆ . 50

Table 12 Results for varying values of ε . 50

Table 13 Results for varying values of γ . 50

Table 14 Results for varying values of itCount 50

Table 15 Results for different values of kappa - Out of Sample 51

Figure 1 An example for an instance with five nodes and two features (distance

and parcel size) for calculating the transition weight matrix Ds. . . . 19

Figure 2 R+LFIM Training Split Scores, High-SV and High routes 37

7

List of abbreviations and acronyms

CS Coordinate Search

DD-TSP Data Driven Travelling Salesperson Problem

DFO Derivative-Free Optimization

GPS Generalised Pattern Search

LFIM Label-guided Feature Impact Matrix

LKH Lin-Kernighan-Helsgaun algorithm

MADS Mesh Adaptive Direct Search

OR Operations Research

RFIM Rule-guided Feature Impact Matrix

SGCS Score Guided Coordinate Search

TSP Travelling Salesperson Problem

VRP Vehicle Routing Problem

8

Acknowledgements

I would like to thank Professor Okan Arslan for his guidance and for the opportunity to

work on this project. I could not have wished for a kinder, wiser, and more patient research

director.

I would also like to thank my partner James for the bottomless tea and his unwavering

support over what seemed like a never-ending period of time. To my dog Magy, for

tolerating my cuddles and being my late-night study buddy. Lastly to my friends and

family, thank you for your love and encouragement.

9

Introduction

Figures published by Zanzana & Martin (2023) show that the COVID-19 pandemic accel-

erated the popularity of e-commerce. Additionally, these indicators have not since lowered

to pre-pandemic levels, suggesting long-term adoption of internet facilitated consumption.

The final step in a transportation process is labelled as Last-mile delivery. It ends with a

completed delivery to the package’s final destination and begins with whichever previous

transportation hub the package persisted. According to Dolan (2022), this stage is the

most expensive part of the process comprising an estimated 53% of the related costs. This

final destination can differ, with possibilities such as brick-and-mortar retail stores, local-

ized pick-up hubs, or a consumers home address. Last-mile delivery as an area of research

exists to optimize this process, whether the goal be a minimization of cost, time or some

other measure.

Given a complete graph, the problem of finding a shortest tour that visits every node in

the graph is defined as the traveling salesman problem (TSP), which is a well-known NP-

hard problem (Applegate et al. 2011). In the TSP arising in last-mile delivery operations,

the tour starts and ends at a designated node referred to as the depot and visits a set of

customers. The intricate dynamics of the urban routing due to factors such as traffic con-

ditions or parking availability complicate the route planning process and the goodness of

a route cannot easily be expressed using a measure such as distance, time or cost, as in

the TSP. The experienced drivers do not usually follow the shortest, fastest or least-cost

routes, but use their tacit knowledge about the complex environment to execute efficient

delivery operations. When the routes that are optimized with respect to a single measure

are provided to drivers, they usually modify these routes. These post-optimality modifi-

cations on the routes are often necessary in real-world operational settings, and require

human intervention. The tacit knowledge that drive these post-optimality modifications

lack formalization. In this thesis, we develop a data science framework to solve the data-

driven TSP (DD-TSP). The aim is to generate tours similar to those that were historically

executed by experienced drivers.

10

Literature review

Consider a complete graph G = (N,A), where N is the set of nodes and A is the set

directed arcs, representing direct travel between nodes. We have n := |N | and the cost

of arc (i, j) ∈ A is dij ≥ 0. Node 0 represents the depot, and nodes N \ {0} represent

the customers. Let yij be a binary variable if and only if arc (i, j) is on the selected

path, and 0 otherwise. The objective function of the TSP is linear in yij variables, which

allows it to be modeled as a mixed integer linear program. Therefore, it is viable to obtain

both lower and upper bounds on the optimal objective function value. Exact algorithms

sequentially obtain such lower and upper bounds in order to reduce the optimality gap

and prove optimality of a solution. The heuristics, on the other hand, obtain valid upper

bounds on the objective function by finding feasible solutions. There is a multitude of

both exact and approximate solution approaches for the TSP in the literature (Applegate

et al. 2011).

One of the best performing heuristics for the TSP is developed by Lin & Kernighan (1973)

and an effective implementation is presented by Helsgaun (2000). For a review of heuristic

algorithms developed for the TSP, we refer the reader to Laporte (1992). Several meta-

heuristics are also developed such as genetic algorithm (Potvin 1996), tabu search (Knox

1994), simulated annealing (Pepper et al. 2002, Wang et al. 2009), variable neighborhood

search (Carrabs et al. 2007, Hore et al. 2018), among others. Kotthoff et al. (2015) report

that the Lin-Kernighan-Helsgaun (LKH) algorithm (Helsgaun 2000) and the genetic algo-

rithm with a powerful edge assembly crossover operator (Nagata & Kobayashi 2013) are

the two most powerful algorithms for inexact solution of the TSP.

Recent works on the TSP using machine learning are ample, and we categorize them

into three classes related to our work: (1) those that generate routes directly and act as

heuristics, (2) those that help improve the existing heuristics to improve their efficiency,

and (3) those that are used for experience learning.

Stand-alone heuristics: Learning algorithms are used to generate feasible routes. In other

11

words, they serve as alternatives to heuristics. Along this line, Bello et al. (2016) train

a recurrent neural network to predict a distribution over different city permutations and

generate a TSP route. Deudon et al. (2018) develop a neural network model for solving

the TSP directly, and compare their results with OR-tools heuristic (Google 2022). Miki

et al. (2018) develop a method for learning the optimal tour as an image using a convolu-

tional neural network. Nazari et al. (2018) develops a reinforcement learning algorithm to

generate routes for the capacitated VRP. Their approach outperforms classical heuristics

and OR-Tools heuristics on medium-sized instances in solution quality with comparable

computation time. Delarue et al. (2020) uses deep reinforcement learning to generate

routes. Their model achieves an average optimality gap of 1.7% on standard library in-

stances of medium size. Bresson & Laurent (2021) uses transformer architecture to learn

heuristics to potentially outperform human-developed heuristics. According to reported

performances, the optimality gap is 0.39% for 100-node TSP instances. Note that, when

the machine learning models are used as a stand-alone heuristic, their performance to this

date is usually inferior to the performance of existing human-developed state-of-the-art

heuristics.

Improving the heuristics: On the second stream of research, machine learning algo-

rithms are used to improve the performance of the human-developed (meta)heuristics.

Examples include the work by Zheng et al. (2021) that combine three reinforcement

learning methods (Q-learning, Sarsa and Monte Carlo) with the LKH algorithm. Sul-

tana et al. (2021) presents a learning-based approach for routing problems that uses a

penalty term and reinforcement learning to guide the search efforts. Xin et al. (2021) im-

prove the effectiveness of the LKH heuristics using deep learning. Hudson et al. (2021)

present a framework for solving the TSP based on graph neural networks and guided

local search. These aforementioned methods report performance improvements over the

human-developed heuristics without machine learning support, but the improvements may

be marginal. Varol et al. (2024) develop a TSP tour length estimator using neural networks

as alternative to continuous approximation models. Their method involves an efficient

method for obtaining valid lower bounds and partial solutions to the TSP. For a recent sur-

12

vey on machine learning algorithms designed for TSP, we refer the reader to Junior Mele

et al. (2021).

Contextual optimization and experience learning: The idea of learning input parame-

ters of a problem to guide the classical optimization solvers is a recent idea that has been

tested in various settings (Parmentier 2022) including vehicle routing (Canoy et al. 2023,

2024). Similarly, we approach the experience learning from a contextual optimization

perspective, in which the available side information is leveraged to produce best empirical

performance on a dataset. Sadana et al. (2024) classify the contextual optimization into

three paradigms as ‘decision rule optimization’, ‘sequential learning and optimization’,

and ‘integrated learning and optimization’. The learning the routing preferences fall un-

der the decision rule paradigm, in which a parameterized mapping is developed to the

desired solution space.

In 2021, (Amazon 2021) organized the Amazon Last-mile Routing Challenge 2021 com-

petition, which was based on the same idea of generating routes that are similar to those

by executed by the drivers. We present further details about this competition in Chapter

3. The first-place holders (Cook et al. 2024) implement a penalty-based local search by

considering constraints that are obtained through an analysis of historical routing data.

Using the same data, the second place holders (Mo et al. 2023) develop a neural network

for predicting the arc transition penalties. The third place holders (Arslan & Abay 2021a)

also implemented a penalty-based network transformation in which the penalties are ob-

tained through an analysis of the data. We present this method in detail in Chapter 3.3. All

three studies focus on learning the transition penalties (or weights). Using the same data,

Özarık et al. (2024) develop a pool-and-select framework, in which candidate sequences

are pooled as a function of their features as seen in the dataset, and then their scores of pre-

dicted using a regression model. Scroccaro et al. (2023) propose an inverse optimization

framework and develop a stochastic first-order algorithm for learning the preferences of

the drivers. Their algorithm also achieves a high performance on the Amazon competition

data. Ghosh et al. (2023) develop a method by first sequencing the customer zones, and

then sequencing the customer stops in every zone. When compared to the aforementioned

13

papers developing methods for solving the Amazon challenge, our best performing algo-

rithm improves the best score reported by (Cook et al. 2024) on the Amazon training data

by 40.1%. Even though it is generally uncommon to report training data performances,

our interpretable and flexible method demonstrates the potential improvement scale that

can be achieved on this data. We also improve on our previous results (Arslan & Abay

2021a) by 23.1% on the Amazon testing data placing it the second in all the performances

reported in the literature. Furthermore, our method involves a contextual framework, that

can easily be adopted to any features beyond customer zones.

14

Chapter 1: Problem definition and methodological framework

Consider a last-mile routing problem P , which aims to sequence a set of given customers,

with an unknown objective function representing the preferences of the decision makers.

Let s represent an instance of problem P including features such as distance matrix, travel

times, number of parcels per customer, parcel sizes, customer zones, customer time win-

dows, and weather information. Note that these features may be any type such as numer-

ical, categorical, geospatial or binary. Let S be a set of instances of problem P . Consider

a proxy problem P̂ with the same solution space as P and with a proxy objective func-

tion that approximates the unknown preferences of the decision makers. These unknown

preferences are generally hard to communicate and represent the tacit knowledge of the

planners. A proxy problem P̂ is the classical TSP that minimizes one feature, which we

refer to as T representing the distances or travel times between node pairs. Now, consider

an optimization oracle η : Rn×n → R that solves the approximate problem P̂ and gener-

ates an optimal solution x∗
s := η(T) for an instance s ∈ S using T as the only feature. Its

proxy objective function leaves out the other features representing the side information.

Generally, during the execution of this prescribed solution x∗
s in real-world operations, it is

modified by the operational experts (by the planners before the execution or by the drivers

during the execution) as x̂s that reflect the unknown preferences of the planners due to the

side information. The objective of this study is to learn these preferences so that the opti-

mization oracle η produces routes similar to those that are historically executed reflecting

the operational expertise. In this context, one needs to evaluate the differences between

the solutions x∗
s and x̂s, which is achieved by a scoring function σ(x∗

s, x̂s) that compares

the two solutions x∗
s and x̂s, and evaluates the dissimilarity between them. Clearly, we

have σ(x̂s, x̂s) = 0.

For solving problem P , the goal is to produce solutions similar to x̂s, which is deemed

to be “superior” operationally than the solution x∗
s that is an “optimal solution” of the

proxy problem P̂ . We can measure the average loss of the solutions x∗
s generated by the

15

optimization oracle with respect to the executed solutions x̂s over s ∈ S by

∑
s∈S

σ(x∗
s, x̂s)

|S|
. (1)

The problem of minimizing this error can be approached from two perspectives. One can

modify the optimization oracle η so that the optimal solutions x∗
s generated by this oracle

is more representative of the real-world operations. This can be done in a rule-based

fashion, by discussing with operational experts and better representing their preferences in

the objective function of the mathematical model. However, the planners’ tacit knowledge

may not always be easily articulated. In this thesis, we approach this problem from a data-

driven perspective, and learn these preferences using data. This learning is represented

by transforming the instance s into matrix Ds so that the “optimal” solution generated

by η(Ds) generates solutions closer to historically preferred routes. Note that the side

information available in instance s may be used to improve the sequencing decisions,

and it is embedded into matrix Ds, which no longer represents the actual distances, but

rather the transition weight between node pairs. In other words, the matrix Ds for s ∈ S

represents the experience and the preferences of the drivers. Each arc weight dij in Ds

represents the penalty of including arc (i, j) in the solution. By modifying the weight, one

can encourage or discourage this transition to apprear in the solution. For this reason, Ds

is referred to as the transition weight matrix. The nomenclature is presented in Table 1.

Table 1 – Nomenclature

Symbol Definition

S Instance set
Ds Transition weight matrix for instance s ∈ S
η Optimization oracle
σ Scoring function
F Feature space
Ff Feature impact matrix for feature f ∈ F
γf Weighted scoring matrix for feature f ∈ F
Isf Incidence matrix of nodes in instance s ∈ S to feature f ∈ F

16

1.1 Problem definition

We now define the problem considered in this thesis.

Definition 1 Given a set of instances s ∈ S and executed routes x̂s for s ∈ S, the data-

driven traveling salesman problem (DD-TSP) is defined as finding the transition weight

matrix Ds for s ∈ S, such that the average dissimilarity between the executed solutions

x̂s, and the solutions generated by the optimization oracle η(Ds) over the set of instances

S is minimized.

DD-TSP can be expressed in compact form as follows:

min
D

∑
s∈S

σ(η(Ds), x̂s)

|S|
. (2)

Note that there are two nested optimization models in (2). While the outer optimization

model minimizes the loss with respect to a scoring function σ(·), the inner optimization

oracle η(·) solves a TSP using Ds, which is obtained by transforming the input data.

The scoring function σ(·) has no particular structure, it can potentially be nonlinear or

a non-smooth function. The transition weight matrix is expected to incorporate the tacit

knowledge by encoding the side information.

1.2 Factorization of the transition penalty matrix

Observe that even for a small problem instance with 100 nodes, model (2) requires learn-

ing 1002 elements of the transition weight matrix Ds for a given instance s ∈ S. Further-

more, the set of nodes varies for every instance. Considering particularly the unstructured

scoring function σ(·), learning the transition likelihood between every node pair may be

computationally impractical. Therefore, inspired by the singular value decomposition and

principal component analysis (Wall et al. 2003), we consider constructing the unknown

full-dimensional Ds matrix by factoring out the features and investigating their impacts

independently. Let F be the feature space, Isf be the incidence matrix of nodes in instance

17

s ∈ S to feature f ∈ F , and Ff be the feature impact matrix, which describes the impact

of feature f to the transition between nodes. Matrix Ff is square, and it measures the im-

pacts of the transition between node pairs with particular features. For s ∈ S, we include

the side information using the following factorization of the transition weight matrix

Ds =
∏
f∈F

{Isf
TFfI

s
f}⊙, (3)

where ⊙ represents the element-wise product of matrices. In other words, the matrix

Ds is the element-wise product of the matrices {IsfTFfI
s
f}n×n for f ∈ F . Note that,

by pre- and post-multiplying the feature impact matrix Ff by the instance matrix Isf , we

implement a dimensionality expansion and obtain a weight per transition between node

pairs corresponding to feature levels. Therefore, the problem is expressed as

argmin

∑
s∈S

σ(η(
∏
f∈F

{Isf
TFfI

s
f}⊙, x̂s)

|S|
. (4)

In this model, the variables are the elements of the matrices Ff for f ∈ F . Observe that,

by this factorization, we benefit from dimensionality reduction similar to the principle

component analysis. A problem instance s with five customer nodes (C1, . . . , C5) and two

features is given in Figure 1. The first feature is the distance, and the second feature is

the customer zone. The incidence matrix of the first feature is an identity matrix because

distance between every node pair is unique. The second feature has three levels (or cate-

gories) as Z1, Z2 and Z3 (emphasized in red color in the figure). The incidence matrix for

the second feature represents the zone (i.e., the feature level) that customers reside in. In

this example, the second feature impact matrix F2 encourages delivering parcels within

the same zone, and discourages transitions between zones. The transitions between Z1

and Z3 are the most penalized among other possible transitions. The matrix in the right-

most column of the table is the Ds matrix and it is obtained by the element-wise product

of the two matrices in the fifth column. When this Ds matrix is used as input to the TSP,

18

Figure 1 – An example for an instance with five nodes and two features (distance and
parcel size) for calculating the transition weight matrix Ds.

the optimization oracle produces a feasible solution, which is then evaluated in the scor-

ing function (by comparing to the executed route in the real world). The objective in this

thesis is to learn the feature impact matrices Ff for f ∈ F corresponding to the side in-

formation (F2 in the example in Figure 1) so that solving the TSP using the resulting Ds

matrix yields “superior” solutions in practice that better represent the preferences of the

decision makers.

Note that these features may be independent or dependent. The factorization may capture

the independent relationships, and the feature matrices can be learned sequentially. On

the other hand, the dependent information among factors may be lost in such a factor-

ization. Nevertheless, learning capacity of algorithms such intricate relationships in large

datasets is limited. Therefore, in this thesis, we adapted factorization of the function in

order to foster interpretability and flexibility of the methods. Similar to model building

and variable selection strategies such as backward and forward methods in linear regres-

sion (Montgomery et al. 2021), our framework assumes learning features in a sequential

manner.

19

1.3 Decomposition of the transition weight matrix

When certain levels of a feature only apply to a subset of the route instances, the trans-

formation function can be decomposed based on these levels. In particular, a delivery

operation originating from a depot in a city may lead to different tacit information that

only applies to this depot. Therefore, the side information at this depot only applies to

routes in their delivery region. Hence, the transformation function can then be decom-

posed. In the particular case of different depots, a feature impact matrix F can be learned

per city.

20

Chapter 2: Learning the transformation by predictive

analytics

The objective of DD-TSP is to solve (4) optimally and thereby learn the ‘optimal’ feature

impact matrices Ff for f ∈ F , which represents the preferences and the tacit information

of the decision makers. Learning these preferences from the data can be achieved using

descriptive or predictive methods. In this chapter, we focus our attention on predictive

methods and present two methods for learning preferences from the data. In a case study in

Chapter 3, we also show an application of learning by descriptive analytics. As discussed

in Chapter 1.2, our framework assumes learning features independently in a sequential

manner. Therefore, the focus in this chapter is learning one single feature only.

Recall that we assume no structure for the scoring function σ. Therefore, we do not have

access to its gradient vector or its Hessian matrix. Within the realm of Derivative-Free

Optimization (DFO), there exists several approaches ranging from simple search methods

such as the Nelder-Mead Simplex Algorithm (Nelder & Mead 1965) to complex direct

search methods such as Generalised Pattern Search and Mesh Adaptive Direct Search

(Audet & Hare 2017). These methods are not scalable and are often used when optimizing

approximately 50 or fewer variables (Audet & Hare 2017). Our preliminary experiments

using DFO also confirmed this result. The size of a feature impact matrix, on the other

hand, may reach up to a million variables to learn, which is beyond the size of the instances

that can be handled using DFO algorithms. Our attempts to use metaheuristics including

the genetic algorithm, the simulated annealing and the tabu search did not also yield any

meaningful improvements in the overall score. We now present two algorithms that lead

to improvements in terms of learning preferences. The first one is inspired by a DFO

algorithm, the Coordinate Search, while the second one is inspired by supervised learning

algorithms.

21

2.1 Score guided coordinate search

Coordinate Search (CS) is an iterative algorithm that examines the coordinate directions

(by varying one variable at a time) at decreasing step sizes (Audet & Hare 2017). If an

improvement is detected, the incumbent is updated, and the search is terminated when

certain conditions are met (such as time limit or iteration count). When solving the DD-

TSP using the basic implementation of the CS algorithm, the matrix Ff is modified by

changing one element at a time and all such directions are explored to improve the score

of the routes generated by optimization oracle η(Ds). Since no derivative information of

the scoring function is available, the CS algorithm explores all directions at the incum-

bent solution in order to determine an improving direction. This is particularly very costly

when the scoring function is computationally demanding. In this section, we present the

Score Guided Coordinate Search (SGCS), which we develop by extending the basic CS al-

gorithm. Instead of testing all coordinate directions, we guide the search by incorporating

score information about potentially ‘good’ directions. Such good directions are provided

by a proxy function as described in the next section.

2.1.1 A proxy gradient function

A scoring function is used to evaluate the performance of the routes generated using a

transition weight matrix Ds, which is obtained by feature impact matrices Ff for f ∈ F .

Observe that some features are common among instances such as customer zones and

parcel sizes, whereas some are customer-specific such as the distances to the other nodes.

For feature f ∈ F that is shared between instances, we define a weighted scoring matrix

γf to measure the impact of every feature level. For f ∈ F , let ℓf1 and ℓf2 be two feature

levels, and Sℓf1 ℓ
f
2
⊆ S be the set of problem instances, in which particular transition from

ℓf1 to ℓf2 is observed in the executed route x̂s. We then define

γf

ℓf1 ℓ
f
2

=

∑
s∈S

ℓ
f
1 ℓ

f
2

σ(η(Ds), x̂s)

|Sℓf1 ℓ
f
2
|

(5)

22

to be the weighted score of the particular transition from a node with feature ℓf1 to another

node with feature ℓf2 if |Sℓf1 ℓ
f
2
| ≠ 0, and γf

ℓf1 ℓ
f
2

= 0 otherwise. Observe that this value

allows us to measure the performance of a particular transition between features levels.

It is the average score of those routes in which transition from ℓf1 to ℓf2 is observed. This

measure is particularly valuable in guiding the CS algorithm. If this average value is poor,

it indicates that the routes using this particular transition obtained worse scores than other

routes that did not use this transition. Even though this is not the derivative of the scoring

function σ, it acts as a proxy to approximate the behavior of the scoring function in a single

coordinate direction. Observe that the dimensions of the weighted scoring matrix γf and

the feature impact matrix Ff are the same, and we now have a performance measure for

each element in Ff matrix. Clearly, if a particular transition is observed more on those

routes with poor scores, then increasing the value of the corresponding element in Ff will

discourage this particular transition from appearing in the routes. This is the key idea of

the SGCS algorithm, which is presented next.

2.1.2 The SGCS algorithm

The SGCS algorithm explores the coordinate directions guided by the weighted scoring

matrix γf to improve the performance of the poor-performing transitions. Considering

the proxy gradient function and its output γf matrix, we increase the value of the element

in the feature impact matrix Ff that corresponds to poor-performing elements in the γf

matrix. By penalizing the transitions observed in poorly scoring routes, we guide the

solver to explore alternative transitions. The algorithm is therefore guided to target the

transitions which are universally unfavourable across routes, and encourage preferable

alternatives. Additionally, this approach allows us to avoid exploring transitions that are

unlikely to produce significant improvements. The SGCS is presented in Algorithm 1.

23

Algorithm 1: Score Guided Coordinate Search

Inputs: Set of instances S, executed routes x̂s, feature f̂ , initial solution (F input

f̂
) for

the feature impact matrix, iteration count (itCount), maximum number of
trials at every iteration (Γ), number of unique elements changed (ε), step size
(∆)

Functions: η(·) is the optimization oracle and returns a route, σ(·) is the scoring
function and returns a scalar, γ(·) is the weighted scoring function and
returns a matrix, find_element_order(·) finds the ascending order of
the value of an element among all elements in a given matrix

Output: Ff̂

1 Φtemp ← F input

f̂

2 for s ∈ S do
3 Ds ← {IsTΦtempI

s}⊙
∏

f∈F\f̂{Is
T
FfI

s}⊙ /* Calculate the weight matrix */

4 x∗
s ← η(Ds) /* Generate proposed routes using the Ds matrix */

5 Min_Loss←
∑

s∈S
σ(x∗

s ,x̂s)
|S|

6 for i = 1 to itCount do
7 Calculate γ f̂ using σ(x∗

s, x̂s) for s ∈ S /* Calculate the weighted score matrix */
8 for j = 1 to Γ do
9 for ℓ = 1 to 2 do

10 if ℓ == 1 then penalty = ∆
11 else penalty = 1000

12 for every element γ f̂
ij in γ f̂ matrix do

13 Hij ={
penalty if 100ε(j − 1) ≤ find_element_order(γ f̂

ij) < 100εj

0 otherwise

14 Mℓ ← Φtemp + H
15 for s ∈ S do
16 Ds

ℓ ← {Is
T
MℓI

s} ⊙
∏

f∈F\f̂{Is
T
FfI

s}⊙
17 x∗∗

s ← η(Ds
ℓ)

18 if
∑

s∈S
σ(x∗∗

s ,x̂s)
|S| < Min_Loss then

19 Φtemp ←Mℓ

20 x∗
s ← x∗∗

s

21 Min_Loss← σ(x∗∗
s , x̂s))

22 break j loop

23 Φtemp ←Mℓ /* Use the last tested Mℓ matrix as the incumbent */
24 x∗

s ← x∗∗
s

25 Ff̂ ← Φtemp

26 return Ff̂

24

For a given feature f̂ , the algorithm takes an initial estimate of the feature impact ma-

trix F input

f̂
as input and allocates it to a temporary working matrix Φtemp (line 1). It

will initially calculate the transition weight matrix Ds using Φtemp and use optimization

oracle η(·) to generate proposed routes for all s ∈ S (lines 2−4). The minimum loss

(Min_Loss) is calculated for these proposed routes (line 5). The objective of the algo-

rithm is to improve the Min_Loss by modifying Φtemp. Observe that different Φtemp

matrices yield different Ds matrices for s ∈ S, which in turn yield different routes by the

optimization oracle, and the score is accordingly impacted. The outer loop (line 6) iterates

itCount times and starts by calculating the weighted score matrix γ f̂ at the current solu-

tion x∗
s. Recall that the dimensions of γ f̂ and Φtemp matrices are the same. In the inner

loop (line 8), we conduct trials with weight adjustments by modifying a batch of coordi-

nates at a time. In particular, the algorithm penalizes ε percent of the worst-performing

transitions in γ f̂ at every iteration. The penalty is ∆ in the first round when ℓ = 1, and it

is equal to a large value, 1000, when ℓ = 2. At every inner iteration on j, the algorithm

selects jth ε percent of the worst performing scores. For example, if ε = 2, the algorithm

first assigns a penalty for 2% of the worst performing transitions. In the second iteration

on j, a penalty is assigned for 2−4% worst-performing transitions, and iterations continue

until j = Γ. If at any iteration an improvement on Min_Loss is achieved, the incumbent

solution is updated. If no improvement is made in Γ iterations, the algorithm takes the last

tested matrix Mℓ as the incumbent (line 23), which diversifies the search. In other words,

the algorithm does a local search using coordinate search, and if no improvement is found,

the weighted score matrix is recalculated in the outer loop using the new incumbent, and

the search continues. The algorithm terminates when itCount iterations are completed.

2.2 Label-guided feature impact matrix

Inspired by supervised learning, we also develop a non-iterative training method as a

closed-form solution. Recall that we use the weighted scoring matrix γf as a proxy to

guide the search algorithm. Each entry in this matrix represents how frequently a particu-

lar transition between feature levels is observed. Observe that the executed routes can also

25

be evaluated using the same function, which expresses the transitions that are frequently

seen in the testing dataset. For f ∈ F , let ℓfi and ℓfj be two feature levels of two nodes i

and j, and Lf

ℓfi ℓ
f
j

be the number of transitions from every node i with a feature level ℓfi to

every other node j with feature level ℓfj , which are observed in the executed routes x̂s for

s ∈ S. For f ∈ F , we have

F ij
f =



1 if Lf

ℓfi ℓ
f
j

= 0

1

Lf

ℓ
f
i
ℓ
f
j

if 1 ≤ Lf

ℓfi ℓ
f
j

≤ κ

1
κ

otherwise

(i, j) ∈ A, (6)

where κ ∈ N represents the maximum number of transitions that can change the weight

value. We refer to this approach as Label-guided Feature Impact Matrix (LFIM), which

bares the same simplicity of RFIM, but takes a more granular approach making use of the

data directly.

26

Chapter 3: Description of the case study

We now present a real-world case study based on by Amazon Last-mile Routing Chal-

lenge 2021 competition (Amazon 2021). In this chapter, we first present the data and the

competition in Section 3.1, and a scoring function in Section 3.2. We then extract and se-

lect features using descriptive analytics of the data in Section 3.3. Using the results of the

descriptive analysis, we present a rule-based method to construct a feature impact matrix

in Section 3.4. Finally, we combine the ideas of the rule-based and label-guided methods

to devise a combined method and present it in Section 3.5.

3.1 The competition and the data

This section briefly describes the dataset by Merchan et al. (2021), which includes 6112

routes from five major locations and their surrounding cities: Los Angeles, Seattle, Chicago,

Boston, and Austin. These five major locations contain more than one servicing depot, and

there are a total of 17 depots across all the cities. The number of routes per depot is pre-

sented in Table 2. The customer regions that are serviced by depots are non-overlapping.

The routes are classified by operational experts into high, medium, and low qualities.

Some high quality routes contain multiple visits to the same drop-off node due to failed a

first attempt delivery and a subsequent re-attempt later on on the same route. We therefore

further break down high quality routes into high-single-visit (High-SV) and high-multi-

visit (High-MV) routes. Collectively, we refer to High-SV and High-MV routes as High

routes. The aim is to generate routes similar to High-SV ones. The dataset contains the

executed routes, and each route contains information on nodes that are visited and the

visiting order, along with information on the packages delivered to each node.

3.2 Comparing similarity of two routes: the scoring function

The scoring function introduced in Chapter 1 measures the dissimilarity between two

routes. Recall that, in the DD-TSP, the objective is to imitate an experienced driver and to

generate routes similar to historically executed ones. This requires expressing the differ-

27

Table 2 – Depot Information

Number of Routes by Quality
High Number of

Depot High-SV High-MV Medium Low Zones
DAU1 52 44 114 4 2786
DBO1 12 17 29 2 617
DBO2 67 48 178 3 2306
DBO3 73 89 403 8 3341
DCH1 30 81 85 0 1813
DCH2 18 48 88 0 1338
DCH3 78 18 167 8 1914
DCH4 72 36 269 4 2331
DLA3 30 128 89 7 1411
DLA4 19 59 116 3 1119
DLA5 28 22 103 2 1376
DLA7 164 283 673 13 4266
DLA8 53 227 156 12 3758
DLA9 185 195 301 20 4829
DSE2 24 74 26 1 563
DSE4 112 137 193 4 1809
DSE5 90 105 302 11 1255
Total 1107 1611 3292 102 35702

ence between an estimated route and an executed one. Observe that, even though the two

routes may have the same duration and length, they could still be significantly different

in the order of customer visits, which would imply dissimilarity between the two routes.

A scoring metric is developed in the context of Amazon Last-mile Routing Challenge,

which is a function of the sequence deviation and a variation of edit distance (Ristad &

Yianilos 1998). The sequence deviation measures how different two routes are, and it

captures differences in the ordering of nodes (regardless of the physical distance between

the nodes). The edit distance, on the other hand, measures the number of single-element

operations (insertions, deletions, and substitutions) required to transform one route to the

other. Operations are also weighted by the physical distance of the nodes involved. More

details about the scoring metric is available by Mo et al. (2023). The score produces a

value between 0 and a maximum possible score (between 0.17 and 1.77, depending on the

estimated route), which is determined by the operational experts. A perfect estimation of

a historic route will result in a score of 0 and a random ordering of the customer nodes

visited will result in a poor score close to the maximum possible score. In this case study,

28

we adopt the scoring metric developed in this context; nevertheless, the methods are also

valid for any non-convex and non-smooth functions.

3.3 Descriptive statistics and feature selection

Model features are the inputs that models use during training and generation of solutions.

Descriptive analyses of the data detailed in Arslan & Abay (2021b) show that features

that have a strong impact of the routes are (1) the travel times, (2) the first and last nodes

on the route, and (3) the zone IDs of the customers. A zone ID, is formed of four tokens

(such as A1.1A). In the executed routes in the dataset, two consecutive nodes on the routes

85.2% of the times share the same zone ID, that is, all 4 tokens are the same. If two

consecutive nodes do not have the same zone IDs, the transition to another zone is likely

to share 3 tokens 11.9% of the time. In the context of this case study, we mainly focus

on the zone ID among the three features since it offers the most potential for performance

improvements as also observed in different studies focusing the same case study (Cook et

al. 2024, Mo et al. 2023, Özarık et al. 2024, Accorsi et al. 2022). In the remainder of this

thesis, the goal is to learn the feature impact matrix of zone ID feature.

3.4 Rule-based feature impact matrix

Taking the travel times and the zone IDs of the nodes into account, we build a feature

impact matrix Ff in a rule-based fashion, which we refer to as rule-based feature impact

matrix (RFIM). Let xk
ij = 1 if the kth token of the zone ID of nodes i and j are different,

29

and 0 otherwise. The RFIM constructs the feature impact matrix Ff as follows:

F ij
f =



b1 if i = 0

b2 if j = 0

a1 if i, j ̸= 0, x1
ij = 1 and

k=4∑
k=2

xk
ij = 3

a2 if i, j ̸= 0, x1
ij = 1 and

k=4∑
k=2

xk
ij = 2

a3 otherwise

(i, j) ∈ A, (7)

where (b1, b2, a1, a2, a3) are ‘discouragement multipliers’ with a1 < a2 < a3. Hyperpa-

rameter a1 is for the nodes in the same zone ID, which we set equal to 1. Hyperparameter

a2 is the multiplier between two nodes i and j whose zone IDs share three tokens includ-

ing the first token. Hyperparameter a3 is the discouragement multiplier between all other

node pairs when neither of the two nodes is the depot. If the tail or head of the arc is the

depot, the weight is b1 or b2, respectively. The RFIM method can be considered as expert

views on the route generation process, because it is based on rules.

3.5 Combining the label-guided and the rule-based feature impact

matrices

The RFIM is general and can perform well on unforeseen data, for which the LFIM is

limited. On the other hand, RFIM is generic and does not capture the nuances between

similar feature levels, for which the LFIM performs well and captures the subtle differ-

ences between feature levels. We therefore propose a combined method, which we refer

to as R+LFIM, by using the LFIM when a particular transition is seen in the dataset, and

using RFIM otherwise. It can also be viewed as discarding any RFIM influence as long

as the transition is seen in the training data for LFIM. Note that the RFIM can broadly be

considered a method built on expert views, constructed in a rule-based fashion, while the

LFIM is a data-driven method. The R+LFIM combines the best of both methods, utilizing

their respective strengths.

30

Chapter 4: Results and discussion

We now present the implementation details in Section 4.1 and compare the performances

of the methods in Section 4.2. We then test the performance of the best performing method

under different settings and demonstrate its generalizability in an out-of-sample dataset in

Section 4.3.

4.1 Implementation details

We implemented our algorithms using Python 3.9, and all the experiments were conducted

on the Cedar cluster of Compute Canada using single thread and 64GB of RAM on a

Linux environment. We have used the LKH 2.0.10 solver (Keld Helsgaun 2022) as the

optimization oracle unless otherwise stated. The time limit of LKH is set to 0.5 seconds.

The learning is decomposed based on depots (as described in Section 1.3). We use the

distance, the first and the last node, and the zone IDs as the features in the computational

study in this thesis, and focus on learning the feature impact matrix of the zone ID feature.

4.2 Comparison of algorithm performances

We now present computational results of the RFIM (Section 3.4), SGCS (Section 2.1),

LFIM (Section 2.2) and R+LFIM (Section 3.5) methods. We use High-SV quality routes

to compare the performances.

4.2.1 RFIM performance:

We have tested RFIM performance using our baseline hyperparameter settings, (b1, b2, a1, a2, a3) =

(1, 0, 1, 10, 100) and have obtained an average score of 0.0367. We have also tested 494

randomly generated values for these hyperparameters, but none of these implementations

achieved a better score than the baseline hyperparameter settings (see Appendix A.2 for

details on tuning). We note that the RFIM method has achieved a third place in the Ama-

zon competition, and we take it as our baseline when presenting the performance of the

two other methods.

31

4.2.2 SGCS performance

The SGCS algorithm has four hyperparameters. We first tested a variety of settings and

determined the best setting as (itCount, Γ, ε, ∆)= (10, 5, 0.05, 50), as detailed in Appendix

A.3. Furthermore, the initial solution for the feature impact matrix (Φinitial) is taken as

the solution given by the RFIM. The experiments for the SGCS were carried out using

High-SV routes and an 80% training and 20% testing split.

The average scores of the SGCS algorithm per depot on training and testing datasets are

presented in Table 3. The table also presents the results of the RFIM and compares the

performance of the two methods. The first column is the depot name. The second and

third columns report the average score per depot in training dataset for the RFIM and the

SGCS algorithms, respectively. The average score is improved from 0.0362 to 0.0332

in the training dataset, an average of 8.2% improvement. The average scores of the two

methods on the testing dataset are reported in the fourth and fifth columns, respectively.

The average scores are 0.0386, and 0.0392 for the RFIM and the SGCS, deteriorating

1.5%. The score changes in percentage from the RFIM to the SGCS per depot on testing

and training datasets are reported in sixth and seventh columns, respectively. The SGCS

algorithm improves the average score on the training set, and we also observe improve-

ments in the test data set for some depots such as DCH3 at −10.5% and DCH4 at −8.1%.

Nevertheless, it fails to improve the performance of the RFIM method on the entire testing

dataset and lacks the ability to generalise beyond seen routes.

4.2.3 LFIM performance

The only hyperparameter of the LFIM is the κ, which we set as 5 (see Annex A.4 for

hyperparameter tuning details). The performance of the LFIM in comparison to the RFIM

per depot on High-SV routes with an 80% training and 20% testing split is reported in

Table 4. The column titles correspond to those in Table 3, indicating similar measures for

comparing the performances of the RFIM and the LFIM methods. The weighted average

score of the LFIM is 0.0374 and 0.0575 on training and testing datasets, respectively,

which correspond to 3.4% and 48.8% deterioration with respect to the those of RFIM,

32

Table 3 – Performance of RFIM and SGCS algorithms per depot on High-SV routes an
80% training and 20% testing split.

Depot RFIM
Training

score

SGCS
Training

score

RFIM
Testing
score

SGCS
Testing
score

Score
change (%)
on training

dataset

Score
change (%)
on testing

dataset
DAU1 0.0555 0.0521 0.0420 0.0611 −6.2 45.6
DBO1 0.0620 0.0454 0.0838 0.0838 −26.8 0.0
DBO2 0.0433 0.0405 0.0643 0.0646 −6.5 0.5
DBO3 0.0263 0.0246 0.0252 0.0241 −6.5 −4.2
DCH1 0.0532 0.0498 0.0446 0.0446 −6.4 0.0
DCH2 0.0744 0.0731 0.0611 0.0617 −1.7 1.0
DCH3 0.0342 0.0318 0.0434 0.0388 −7.1 −10.5
DCH4 0.0333 0.0300 0.0514 0.0472 −8.7 −8.1
DLA3 0.0291 0.0200 0.0278 0.0300 −31.2 7.8
DLA4 0.0369 0.0232 0.0155 0.0143 −37.2 −7.8
DLA5 0.0256 0.0224 0.0306 0.0338 −12.7 10.4
DLA7 0.0282 0.0249 0.0235 0.0221 −11.7 −5.9
DLA8 0.0345 0.0313 0.0402 0.0400 −9.3 −0.5
DLA9 0.0407 0.0401 0.0464 0.0455 −1.5 −1.8
DSE2 0.0612 0.0516 0.0658 0.0755 −15.7 14.7
DSE4 0.0259 0.0249 0.0218 0.0221 −3.7 1.1
DSE5 0.0327 0.0297 0.0377 0.0420 −9.4 11.5

Wt.Avg. 0.0362 0.0332 0.0386 0.0392 −8.2 1.5

respectively. Observe that the RFIM is more generic and can be implemented to any

unseen data, whereas the LFIM is more dependent on the data seen in the training dataset.

If a particular transition is never seen, no information is transferred, which leads to poor

performance with respect to the RFIM method.

4.2.4 R+LFIM performance

Combining the strong sides of both RFIM and LFIM methods, R+LFIM method is devel-

oped in Section 3.5. The performance of the R+LFIM with respect to the RFIM method

is reported in Table 5 per depot on High-SV routes with an 80% training and 20% testing

split. The column titles match those in Table 3, indicating similar measures for comparing

the performances of the RFIM and the R+LFIM methods. The weighted average score

of the R+LFIM is 0.0108 and 0.0299 on training and testing datasets, respectively, which

correspond to 70.1% and 22.5% improvement with respect to the RFIM, respectively. This

clear improvement is achieved by using the available data to the best extend possible by

33

Table 4 – Performance of RFIM and LFIM algorithms per depot on High-SV routes with
an 80% training and 20% testing split.

Depot RFIM
Training

score

LFIM
Training

score

RFIM
Testing
score

LFIM
Testing
score

Score
change (%)
on training

dataset

Score
change (%)
on testing

dataset
DAU1 0.0555 0.0666 0.0420 0.0708 19.9 68.7
DBO1 0.0620 0.0516 0.0838 0.1270 −16.8 51.6
DBO2 0.0433 0.0438 0.0643 0.0896 1.0 39.5
DBO3 0.0263 0.0284 0.0252 0.0440 8.0 74.6
DCH1 0.0532 0.0626 0.0446 0.0959 17.7 114.8
DCH2 0.0744 0.0892 0.0611 0.1295 19.9 112.0
DCH3 0.0342 0.0398 0.0434 0.0596 16.3 37.3
DCH4 0.0333 0.0342 0.0514 0.0678 2.8 32.1
DLA3 0.0291 0.0305 0.0278 0.0577 4.9 107.7
DLA4 0.0369 0.0476 0.0155 0.0188 28.9 21.2
DLA5 0.0256 0.0388 0.0306 0.0426 51.4 39.1
DLA7 0.0282 0.0235 0.0235 0.0370 −16.7 57.2
DLA8 0.0345 0.0462 0.0402 0.0731 34.0 81.9
DLA9 0.0407 0.0383 0.0464 0.0605 −6.0 30.3
DSE2 0.0612 0.0654 0.0658 0.0907 6.9 37.8
DSE4 0.0259 0.0251 0.0218 0.0330 −3.1 51.2
DSE5 0.0327 0.0289 0.0377 0.0465 −11.6 23.4

Wt.Avg. 0.0362 0.0374 0.0386 0.0575 3.4 48.8

the LFIM, while consulting to the RFIM for unforeseen data due to its performance on

unforeseen data. Overall, the method achieves the best result among all the other methods

considered. We hereafter use the R+LFIM as our best performing method and test it under

different settings in the next section.

4.3 Performance of the best performing algorithm under different

settings

The R+LFIM is the computationally demonstrated to be the best performing algorithm

in terms of both the average score it achieves in testing dataset and its computational

efficiency due to not requiring any iterations. We first test the impacts of the split ratio on

the training and testing performances in Section 4.3.1. We then test the R+LFIM method

on High routes in Section 4.3.2, on all routes in Section 4.3.3 and on an out-of-sample

dataset, which was also used in the competition, in Section 4.3.4. Lastly, we test an

implementation which takes into account the customer time windows in the optimization

34

Table 5 – Performance of RFIM and R+LFIM algorithms per depot on High-SV routes
with an 80% training and 20% testing split.

Depot RFIM
Training

score

R+LFIM
Training

score

RFIM
Testing
score

R+LFIM
Testing
score

Score
change (%)
on training

dataset

Score
change (%)
on testing

dataset
DAU1 0.0555 0.0131 0.0420 0.0419 −76.3 −0.3
DBO1 0.0620 0.0188 0.0838 0.0838 −69.8 0.0
DBO2 0.0433 0.0111 0.0643 0.0516 −74.4 −19.6
DBO3 0.0263 0.0073 0.0252 0.0177 −72.1 −29.6
DCH1 0.0532 0.0181 0.0446 0.0550 −65.9 23.2
DCH2 0.0744 0.0259 0.0611 0.0621 −65.2 1.6
DCH3 0.0342 0.0112 0.0434 0.0318 −67.3 −26.8
DCH4 0.0333 0.0067 0.0514 0.0411 −79.8 −20.0
DLA3 0.0291 0.0071 0.0278 0.0279 −75.7 0.4
DLA4 0.0369 0.0122 0.0155 0.0138 −67.1 −11.2
DLA5 0.0256 0.0061 0.0306 0.0275 −76.2 −10.4
DLA7 0.0282 0.0084 0.0235 0.0161 −70.4 −31.7
DLA8 0.0345 0.0107 0.0402 0.0359 −68.9 −10.8
DLA9 0.0407 0.0108 0.0464 0.0357 −73.5 −23.1
DSE2 0.0612 0.0261 0.0658 0.0452 −57.4 −31.4
DSE4 0.0259 0.0107 0.0218 0.0149 −58.9 −31.6
DSE5 0.0327 0.0119 0.0377 0.0149 −63.5 −60.6

Wt.Avg. 0.0362 0.0108 0.0387 0.0299 −70.1 −22.5

oracle in Section 4.3.5.

4.3.1 R+LFIM performance on various training and testing splits

The R+LFIM method trains on the available data and the size of training data is therefore

crucial for the ability to generalize to unseen routes in the testing set. We now investigate

the impacts of changing the size of the training and testing datasets between 10% and 90%

of the High-SV routes. The results are presented in Table 6. The first column shows the

size of the training data as percentage of the High-SV routes, and the remaining routes are

used for testing. A value of 10 implies that the training dataset contains 10% of the routes,

and the remaining 90% of the routes are for used for testing. The following four columns

in the table report the average training and testing scores for the RFIM and the R+LFIM

methods. The improvements achieved by the R+LFIM over the RFIM are reported in the

rightmost two columns.

35

Table 6 – R+LFIM performance with respect to RFIM on High-SV routes for varying
training split proportions

Training
split (%)†

RFIM
Training

score

R+LFIM
Training

score

RFIM
Testing
score

R+LFIM
Testing
score

Score
change
(%) on
training
dataset

Score
change
(%) on
testing
dataset

10 0.0399 0.0081 0.0363 0.0349 −79.5 −3.9
20 0.0393 0.0090 0.0360 0.0338 −77.0 −6.2
30 0.0377 0.0089 0.0362 0.0329 −76.4 −9.0
40 0.0369 0.0096 0.0364 0.0320 −73.9 −12.2
50 0.0368 0.0099 0.0364 0.0306 −73.1 −16.1
60 0.0364 0.0101 0.0371 0.0304 −72.2 −18.1
70 0.0362 0.0106 0.0378 0.0306 −70.6 −19.0
80 0.0362 0.0108 0.0387 0.0299 −70.1 −22.5
90 0.0364 0.0113 0.0389 0.0296 −69.0 −23.6

100 0.0366 0.0119 - - −67.5 -
† The remaining data is used for testing.

The average training score has a direct relationship with the training split while the testing

score has an inverse relationship. At 10%, the training score of the R+LFIM method is

as low as 0.0081, while it increases to 0.0119 when the split is 100%. The reason is that

less data is easier to learn, but the performance on the training set does not generalize

well, as seen in the testing results. Note that the best performing algorithm in the training

dataset reported so far is by Cook et al. (2024) and is equal to 0.01978. With our R+LFIM

method, we achieved a score of 0.0119 on the complete dataset, which improves over the

best known performance by 40.1%. The average score of R+LFIM improves from 0.0349

to 0.0298 in testing dataset as the split proportion increases from 10% to 90%. An average

score of 0.0296 at an 90% training data split implies approximately 23.6% improvement

over the RFIM results, which achieved a third place in the Amazon competition. As we

will demonstrate in Section 4.3.4, the method also achieves a 23.1% improvement on an

out-of-sample dataset, which was used in the competition.

Figure 2 displays the score change reported in the rightmost two columns in Table 6.

As more data is available, the testing performance increases while training performance

decreases. Availability of more data clearly allows to generalize better. The figure addi-

36

tionally reports the improvements that the algorithm achieves on High routes, details of

which are presented in the next section.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−80

−60

−40

−20

0

Training split

Sc
or

e
ch

an
ge

(%
)f

ro
m

R
FI

M
to

R
+L

FI
M Training on High-SV routes

Testing on High-SV routes

Training on High routes

Testing on High routes

Figure 2 – R+LFIM Training Split Scores, High-SV and High routes

4.3.2 R+LFIM performance on high routes:

We next conduct experiments using all 2718 High quality routes (including High-SV and

High-MV). The results are reported in Table 7. The R+LFIM achieves a better average

score of 0.0282 on High routes than on the High-SV routes. Observe that reattempted

deliveries found in High-MV routes imply additional node visits unknown a priori to

the route generation. These reattempts may lead the driver to take undesired transitions,

which may eventually misguide the R+LFIM method. Despite this, the results continued

to improve when new routes were added. This demonstrates the value of including addi-

tional data, which offsets any drawbacks from incorporating the High-MV routes into the

learning process. Note that the new score achieved by the algorithm yields a 29.9% im-

provement with respect to RFIM baseline score. The score change with respect to varying

training splits is also plotted in Figure 2. The R+LFIM performs better in every setting

when new data is introduced to train.

37

Table 7 – R+LFIM performance with respect to RFIM on High routes for varying training
split proportions

Training
split (%)†

RFIM
Training

score

R+LFIM
Training

score

RFIM
Testing
score

R+LFIM
Testing
score

Score
change
(%) on
training
dataset

Score
change
(%) on
training
dataset

10 0.0393 0.0121 0.0403 0.0373 −69.3 −7.5
20 0.0402 0.0118 0.0406 0.0353 −69.4 −13.1
30 0.0396 0.0129 0.0405 0.0337 −69.4 −16.8
40 0.0392 0.0140 0.0409 0.0331 −67.4 −18.9
50 0.0397 0.0148 0.0407 0.0323 −64.4 −20.8
60 0.0396 0.0150 0.0411 0.0319 −62.8 −22.2
70 0.0399 0.0157 0.0410 0.0312 −60.7 −23.7
80 0.0397 0.0159 0.0422 0.0310 −59.9 −26.6
90 0.0402 0.0164 0.0401 0.0282 −59.2 −29.9

100 0.0403 0.0168 - - −58.4 -
† The remaining data is used for testing.

4.3.3 R+LFIM performance on all routes:

We have computationally demonstrated in the previous section that including greater num-

ber of High quality routes in testing data helped improve the results. This naturally raises

the question whether medium and low quality routes would also lead to similar results.

We now incorporate all 6112 routes including the medium and low quality ones. We use

a training split of 0.5 on the High-SV routes, and use the other half for our testing dataset.

All the remaining routes also form part of the training dataset. The results are presented in

Table 8 by depot. The weighted average scores of the RFIM and the R+LFIM on training

dataset are 0.0427 and 0.198, respectively. Including the medium and low quality routes

increased the training score with respect to those of High routes. The weighted average

score of the RFIM and the R+LFIM on testing dataset are 0.0408 and 0.0283. We ob-

serve that the performance of the method on all routes remain on par with the previously

reported results, demonstrating the robustness of the method.

38

Table 8 – R+LFIM performance per depot with respect to RFIM on All routes

Depot RFIM
Training

score

R+LFIM
Training

score

RFIM
Testing
score

R+LFIM
Testing
score

Score
change (%)
on training

dataset

Score
change (%)
on testing

dataset
DAU1 0.0626 0.0245 0.0656 0.0578 −60.9 −11.8
DBO1 0.0661 0.0396 0.1033 0.0871 −40.1 −15.7
DBO2 0.0562 0.0307 0.0509 0.0392 −45.3 −23.0
DBO3 0.0309 0.0124 0.0266 0.0140 −60.0 −47.5
DCH1 0.0601 0.0276 0.0534 0.0504 −54.1 −5.6
DCH2 0.0731 0.0390 0.0571 0.0665 −46.6 16.5
DCH3 0.0466 0.0240 0.0413 0.0342 −48.5 −17.2
DCH4 0.0417 0.0213 0.0430 0.0262 −48.9 −38.9
DLA3 0.0401 0.0162 0.0367 0.0237 −59.6 −35.6
DLA4 0.0431 0.0217 0.0411 0.0283 −49.6 −31.2
DLA5 0.0362 0.0130 0.0323 0.0250 −64.2 −22.6
DLA7 0.0362 0.0162 0.0335 0.0191 −55.3 −42.8
DLA8 0.0425 0.0186 0.0383 0.0302 −56.4 −21.2
DLA9 0.0467 0.0191 0.0444 0.0290 −59.2 −34.6
DSE2 0.0562 0.0362 0.0619 0.0489 −35.6 −20.9
DSE4 0.0329 0.0150 0.0283 0.0149 −54.5 −47.4
DSE5 0.0382 0.0193 0.0341 0.0158 −49.4 −53.6

Wt.Avg. 0.0427 0.0198 0.0408 0.0283 −53.6 −30.8

4.3.4 R+LFIM performance on out-of-sample routes:

In the Amazon competition, the algorithms were tested in an out-of-sample dataset, and

the performance of the top three teams were 0.0248, 0.0353 and 0.0391, respectively. The

first place winners, Cook et al. (2024), implemented a local search for learned constraints.

Second place winners, Mo et al. (2023), implemented a hierarchical TSP solution with a

custom cost matrix. Additional details for both approaches can be found in Winkenbach et

al. (2021). Lastly our initial RFIM method achieved a third place with a score of 0.0391.

Our focus on affecting the distances between nodes based on zone differences is echoed in

all of the top three performing methods, albeit utilized in different ways. We consider our

method the most direct and the least complicated, as it does not include any modifications

to a TSP solver directly and returns comparative results.

Table 9 presents the computational results. The RFIM score presented here achieves a

score of 0.0382 whereas the same method achieved 0.0391 in the competition. The dif-

39

ference is considered to be due to random noise in the heuristics to generate routes. We

then trained R+LFIM using all routes and tested on the out-of-sample dataset. The new

method improved the testing score from 0.0382 to 0.294, an improvement of approxi-

mately 23.1%.

Table 9 – R+LFIM performance per depot with respect to RFIM on Out of Sample Dataset

Depot Number of
Routes

RFIM
Training

score

R+LFIM
Training

score

RFIM
Testing
score

R+LFIM
Testing
score

Score
change (%)
on testing

dataset
DAU1 121 0.0629 0.0293 0.0508 0.0410 −14.82
DBO1 59 0.0744 0.0375 0.0606 0.0562 −9.43
DBO2 152 0.0548 0.0310 0.0438 0.0374 −6.89
DBO3 202 0.0303 0.0123 0.0268 0.0126 −41.97
DCH1 123 0.0573 0.0307 0.0614 0.0522 −12.24
DCH2 71 0.0701 0.0420 0.0516 0.0492 −0.20
DCH3 161 0.0465 0.0242 0.0393 0.0314 −11.02
DCH4 113 0.0426 0.0215 0.0336 0.0273 −9.36
DLA3 129 0.0389 0.0170 0.0342 0.0271 −17.80
DLA4 157 0.0425 0.0233 0.0391 0.0336 −7.08
DLA5 94 0.0359 0.0136 0.0312 0.0310 5.04
DLA7 397 0.0360 0.0161 0.0324 0.0199 −32.25
DLA8 353 0.0414 0.0185 0.0370 0.0303 −16.61
DLA9 496 0.0460 0.0206 0.0385 0.0325 −11.52
DSE2 114 0.0596 0.0368 0.0513 0.0313 −39.14
DSE4 166 0.0315 0.0154 0.0258 0.0143 −39.88
DSE5 143 0.0373 0.0183 0.0335 0.0190 −30.30
DBO6 1 − − 0.0752 0.0752 0.0

Wt.Avg. 0.0422 0.0204 0.0382 0.0294 −23.1

4.3.5 Optimization oracle with or without time windows:

We have used the LKH-2 solver (Keld Helsgaun 2022) in all the computational tests con-

ducted so far even if some customers have time windows in the dataset. This naturally

raises the question of whether respecting the time windows could potentially improve the

results. We then used LKH 3.0.9 (Helsgaun 2017), which supports modeling time win-

dows when solving the TSP. Here we trained on the High routes, with an 80% training

and 20% testing data split using R+LFIM. The results are presented in Table 10. The

performance is insignificantly impacted when the optimization oracle respects the time

windows on the available data.

40

Table 10 – Comparing the impacts of optimization oracle with and without time windows
on R+LFIM performance on High routes

Depot Without
TW

Training
Score

With TW
Training

Score

Without
TW

Testing
Score

With TW
Testing
Score

Score
change (%)
on training

dataset

Score
change (%)
on testing

dataset
DAU1 0.0243 0.0240 0.0741 0.0669 −1.47 −9.8
DBO1 0.0444 0.0483 0.0353 0.0339 8.73 −4.0
DBO2 0.0190 0.0191 0.0471 0.0468 0.22 −0.7
DBO3 0.0096 0.0099 0.0164 0.0162 3.47 −0.9
DCH1 0.0240 0.0239 0.0497 0.0513 −0.37 3.3
DCH2 0.0247 0.0252 0.0686 0.0689 2.24 0.4
DCH3 0.0136 0.0141 0.0286 0.0288 4.02 0.7
DCH4 0.0087 0.0083 0.0344 0.0327 −4.36 −4.8
DLA3 0.0147 0.0146 0.0265 0.0266 −0.94 0.2
DLA4 0.0190 0.0191 0.0401 0.0403 0.83 0.4
DLA5 0.0086 0.0085 0.0300 0.0325 −0.90 8.4
DLA7 0.0122 0.0125 0.0177 0.0184 2.48 4.3
DLA8 0.0140 0.0142 0.0392 0.0398 0.96 1.4
DLA9 0.0169 0.0168 0.0328 0.0338 −0.70 3.1
DSE2 0.0313 0.0320 0.0447 0.0449 1.96 0.5
DSE4 0.0143 0.0143 0.0151 0.0151 −0.13 0.1
DSE5 0.0140 0.0140 0.0169 0.0165 −0.46 −2.3

Wt.Avg. 0.0155 0.0156 0.0305 0.0304 0.68 −0.17

Chapter 5: Discussion on effectiveness, interpretability and

flexibility of the methods

We have had three modeling strategies that governed the choice of methods, which are de-

scribed in detail in this section. All of our solution techniques presented are interpretable,

flexible and they effectively capture sufficient information for a competitive performance.

Effectiveness: The RFIM method provides a baseline score of 0.0367 on the High-SV

dataset. Given the fact it is based on expertly engineered rules filtered through descriptive

analytics, there was no training procedure. Our second algorithm is the SGCS, which have

attained scores of 0.0332 and 0.0393 on training and testing datasets, respectively. Lastly,

the training and testing scores of R+LFIM, using only a portion of the High-SV routes for

testing and all the remaining routes as testing, yields a training score of 0.0198 and testing

41

score of 0.0283. It also achieves a score of 0.0294 on an out-of-sample dataset. The key

feature of the R+LFIM is that it does not require any iterative learning aspect, but it is a

data transformation that can be executed in seconds. It works immediately in conjunction

with established industrial solvers to provide effective and competitive results.

Interpretability: Our best performing method, the R+LFIM, solves a TSP on a modi-

fied graph, which has a low complexity in terms of interpretability. Our framing of the

problem keeps the granularity to the features, which is easily interpretable, and intuitively

understandable, because they represent the transition likelihood between the nodes. The

penalty factors used in the transition matrix can even be changed manually to encourage

or discourage particular visiting orders.

Flexibility: Our best performing method, the R+LFIM, is flexible due to ease of incorpo-

rating unseen data, and this requires no new training efforts. New nodes (customers), new

features, or new feature levels for existing features can seamlessly be incorporated by ex-

plicitly interpreting their impacts. The RFIM method allows us to have an initial baseline

of relations directly without any training. The R+LFIM benefits from the flexibility of the

RFIM and additionally improves its performance.

42

Conclusion

We have built an effective, interpretable, and flexible framework for learning the experi-

ences of the drivers. To this end, we have introduced, modeled and solved the Data-driven

Traveling Salesman Problem (DD-TSP), which involves minimizing a potentially non-

linear and nonsmooth function. The aim of the first of the two stages is to modify the

input weight matrix for the TSP, which corresponds to the transition discouragement lev-

els according to driver experiences. In the context of this thesis, we refer to this matrix

as the transition weight matrix, which is then given to a TSP solver in the second stage

to generate routes that are similar to the executed routes. We assume that this matrix is

factorizable; that is, it can be expressed as an element-wise multiplication of different ma-

trices that represent features. Each such factor matrix captures the impacts of a feature on

the routes, and we leverage the side information in the data to learn about these matrices.

We have developed three methods for learning the transition weight matrix. The first one,

Score Guided Coordinate Search (SGCS), is an extension of the coordinate search algo-

rithm in derivative-free optimization. The second method is for learning the transitions

directly from the data, which we have referred to as the Label-guided Feature Impact Ma-

trix. The third method combines the benefits of a rule-based method with the data-driven

approach, which is referred to as Rule-based Label-guided Feature Impact Matrix. We

have tested the efficiency of these methods using a case study based on Amazon Last-

Mile Routing Challenge. Results have shown that we have improved on our previous

results, which achieved a third place in the competition, by 23.1% in an out-of-sample

dataset. Furthermore, our best performing algorithm has improved the best score in the

literature achieved on the available training dataset by 40.1%.

43

Bibliography

Accorsi, L., Lodi, A., & Vigo, D. (2022). Guidelines for the computational testing of machine

learning approaches to vehicle routing problems. Operations Research Letters, 50(2), 229–

234.

Amazon. (2021). Amazon Last Mile Routing Research Challenge (Supported by the MIT Center for

Transportation & Logistics). Consulté sur https://routingchallenge.mit.edu

(Last accessed on Jun 18, 2021.)

Applegate, D. L., Bixby, R. E., Chvátal, V., & Cook, W. J. (2011). The traveling salesman

problem. Princeton university press, New Jersey.

Arslan, O., & Abay, R. (2021a). Data-driven vehicle routing in last mile delivery. Report

CIRRELT-2021-30, Université de Montreal.

Arslan, O., & Abay, R. (2021b). Data-driven vehicle routing in last mile delivery. Bureau de

Montreal, Université de Montreal.

Audet, C., & Hare, W. (2017). Derivative-free and blackbox optimization. Springer Cham,

Switzerland.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., & Bengio, S. (2016). Neural combinatorial optimiza-

tion with reinforcement learning. arXiv preprint arXiv:1611.09940.

Bresson, X., & Laurent, T. (2021). The transformer network for the traveling salesman problem.

arXiv preprint arXiv:2103.03012.

Canoy, R., Bucarey, V., Mandi, J., & Guns, T. (2023). Learn and route: learning implicit prefer-

ences for vehicle routing. Constraints, 28(3), 363–396.

Canoy, R., Bucarey, V., Mandi, J., Mulamba, M., Molenbruch, Y., & Guns, T. (2024). Probability

estimation and structured output prediction for learning preferences in last mile delivery.

Computers & Industrial Engineering, 189, 109932.

Carrabs, F., Cordeau, J.-F., & Laporte, G. (2007). Variable neighborhood search for the pickup

and delivery traveling salesman problem with lifo loading. INFORMS Journal on Computing,

19(4), 618–632.

Cook, W., Held, S., & Helsgaun, K. (2024). Constrained local search for last-mile routing.

Transportation Science, 58(1), 12–26.

44

https://routingchallenge.mit.edu

Delarue, A., Anderson, R., & Tjandraatmadja, C. (2020). Reinforcement learning with combina-

torial actions: An application to vehicle routing. Advances in Neural Information Processing

Systems, 33, 609–620.

Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., & Rousseau, L.-M. (2018). Learning

heuristics for the TSP by policy gradient. In International conference on the integration of

constraint programming, artificial intelligence, and operations research (pp. 170–181).

Dolan, S. (2022). The challenges of last mile delivery logistics and the tech solutions cutting costs

in the final mile. https://www.businessinsider.com/last-mile-delivery

-shipping-explained?r=AU&IR=T&ref=onfleet.com. Business Insider. (Ac-

cessed: 2024-06-02)

Ghosh, M., Kuiper, A., Mahes, R., & Maragno, D. (2023). Learn global and optimize local:

A data-driven methodology for last-mile routing. Computers & Operations Research, 159,

106312.

Google. (2022). Or-tools. https://github.com/google/or-tools. GitHub.

Helsgaun, K. (2000). An effective implementation of the Lin–Kernighan traveling salesman

heuristic. European Journal of Operational Research, 126(1), 106–130.

Helsgaun, K. (2017). An extension of the lin-kernighan-helsgaun tsp solver for constrained trav-

eling salesman and vehicle routing problems. Roskilde: Roskilde University, 12, 966–980.

Hore, S., Chatterjee, A., & Dewanji, A. (2018). Improving variable neighborhood search to solve

the traveling salesman problem. Applied Soft Computing, 68, 83–91.

Hudson, B., Li, Q., Malencia, M., & Prorok, A. (2021). Graph neural network guided local search

for the traveling salesperson problem. arXiv preprint arXiv:2110.05291.

Junior Mele, U., Maria Gambardella, L., & Montemanni, R. (2021). Machine learning approaches

for the traveling salesman problem: A survey. In 2021 the 8th international conference on

industrial engineering and applications (europe) (pp. 182–186).

Keld Helsgaun. (2022). LKH solver. http://webhotel4.ruc.dk/~keld/research/

LKH/.

Knox, J. (1994). Tabu search performance on the symmetric traveling salesman problem. Com-

puters & Operations Research, 21(8), 867–876.

Kotthoff, L., Kerschke, P., Hoos, H., & Trautmann, H. (2015). Improving the state of the art in

inexact tsp solving using per-instance algorithm selection. In C. Dhaenens, L. Jourdan, &

45

https://www.businessinsider.com/last-mile-delivery-shipping-explained?r=AU&IR=T&ref=onfleet.com
https://www.businessinsider.com/last-mile-delivery-shipping-explained?r=AU&IR=T&ref=onfleet.com
https://github.com/google/or-tools
http://webhotel4.ruc.dk/~keld/research/LKH/
http://webhotel4.ruc.dk/~keld/research/LKH/

M.-E. Marmion (Eds.), Learning and intelligent optimization (pp. 202–217). Springer Cham,

Heidelberg.

Laporte, G. (1992). The traveling salesman problem: An overview of exact and approximate

algorithms. European Journal of Operational Research, 59(2), 231-247.

Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-salesman

problem. Operations Research, 21(2), 498–516.

Merchan, D., Pachon, J., Arora, J., Konduri, K., Winkenbach, M., Parks, S., & Noszek, J. (2021).

Amazon last mile routing research challenge dataset. Seattle: Amazon.com. Consulté sur

https://registry.opendata.aws/amazon-last-mile-challenges (Ac-

cessed January 6, 2022)

Miki, S., Yamamoto, D., & Ebara, H. (2018). Applying deep learning and reinforcement learning

to traveling salesman problem. In 2018 international conference on computing, electronics

& communications engineering (iccece) (pp. 65–70).

Mo, B., Wang, Q., Guo, X., Winkenbach, M., & Zhao, J. (2023). Predicting drivers’ route

trajectories in last-mile delivery using a pair-wise attention-based pointer neural network.

Transportation Research Part E: Logistics and Transportation Review, 175, 103168.

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression

analysis. John Wiley & Sons, Hoboken, USA.

Nagata, Y., & Kobayashi, S. (2013). A powerful genetic algorithm using edge assembly crossover

for the traveling salesman problem. INFORMS Journal on Computing, 25(2), 346–363.

Nazari, M., Oroojlooy, A., Snyder, L., & Takác, M. (2018). Reinforcement learning for solving

the vehicle routing problem. Advances in neural information processing systems, 31.

Nelder, J. A., & Mead, R. (1965, 01). A Simplex Method for Function Minimization. The

Computer Journal, 7(4), 308-313.

Özarık, S. S., da Costa, P., & Florio, A. M. (2024). Machine learning for data-driven last-mile

delivery optimization. Transportation Science, 58(1), 27–44.

Parmentier, A. (2022). Learning to approximate industrial problems by operations research classic

problems. Operations Research, 70(1), 606–623.

Pepper, J. W., Golden, B. L., & Wasil, E. A. (2002). Solving the traveling salesman problem with

annealing-based heuristics: a computational study. IEEE Transactions on Systems, Man, and

Cybernetics-Part A: Systems and Humans, 32(1), 72–77.

46

https://registry.opendata.aws/amazon-last-mile-challenges

Potvin, J.-Y. (1996). Genetic algorithms for the traveling salesman problem. Annals of Operations

Research, 63(3), 337–370.

Ristad, E. S., & Yianilos, P. N. (1998). Learning string-edit distance. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 20(5), 522–532.

Sadana, U., Chenreddy, A., Delage, E., Forel, A., Frejinger, E., & Vidal, T. (2024). A survey of

contextual optimization methods for decision-making under uncertainty. European Journal

of Operational Research.

Scroccaro, P. Z., van Beek, P., Esfahani, P. M., & Atasoy, B. (2023). Inverse optimization for

routing problems. arXiv preprint arXiv:2307.07357.

Sultana, N., Chan, J., Sarwar, T., Abbasi, B., & Qin, A. (2021). Learning enhanced optimisation

for routing problems. arXiv preprint arXiv:2109.08345.

Varol, T., Özener, O. Ö., & Albey, E. (2024). Neural network estimators for optimal tour lengths

of traveling salesperson problem instances with arbitrary node distributions. Transportation

Science, 58(1), 45–66.

Wall, M. E., Rechtsteiner, A., & Rocha, L. M. (2003). Singular value decomposition and principal

component analysis. In A practical approach to microarray data analysis (pp. 91–109).

Springer, Boston.

Wang, Z., Geng, X., & Shao, Z. (2009). An effective simulated annealing algorithm for solving the

traveling salesman problem. Journal of Computational and Theoretical Nanoscience, 6(7),

1680–1686.

Winkenbach, M., Parks, S., & Noszek, J. (2021). Technical proceedings of the Amazon last

mile routing research challenge. Consulté sur https://hdl.handle.net/1721.1/

131235

Xin, L., Song, W., Cao, Z., & Zhang, J. (2021). NeuroLKH: Combining deep learning model with

Lin-Kernighan-Helsgaun heuristic for solving the traveling salesman problem. Advances in

Neural Information Processing Systems, 34.

Zanzana, S., & Martin, J. (2023, February 21). Measuring digital activity in

canada, 2021. https://www150.statcan.gc.ca/n1/pub/11-621-m/11-621

-m2023002-eng.htm. (Accessed: 2024-06-02)

Zheng, J., He, K., Zhou, J., Jin, Y., & Li, C.-M. (2021). Combining reinforcement learning with

Lin-Kernighan-Helsgaun algorithm for the traveling salesman problem. In Proceedings of

47

https://hdl.handle.net/1721.1/131235
https://hdl.handle.net/1721.1/131235
https://www150.statcan.gc.ca/n1/pub/11-621-m/11-621-m2023002-eng.htm
https://www150.statcan.gc.ca/n1/pub/11-621-m/11-621-m2023002-eng.htm

the aaai conference on artificial intelligence (Vol. 35, pp. 12445–12452).

48

Annexes

A.1 Implementation details for RFIM

In this section, we present details on implementation of the RFIM algorithm. We have

used the LKH solver. Since the zone_ids are critical for the correct calculation of the arc

costs, our implementation detects nodes with zone_id=‘nan’ and assign the closest node’s

zone_id.

A.2 Tuning parameters for RFIM

We randomly generated 494 (a1, a2, a3) values respecting a1 < a2 < 10a1 and a2 <

a3 < 10a2 conditions and tested our algorithm. None of these implementations performed

better than the baseline settings. The average score of these 494 experiments is 0.0396 and

the maximum score is 0.0543, demonstrating the robustness of our algorithm for different

parameter settings.

The b1 and b2 parameters determine the importance of the trips from and to the depot. We

tested (0, 0), (1, 0), (0, 1), (1, 1) and (0.5, 0) settings with (a1, a2, a3) = (1, 10, 100). The

average scores are 0.0381, 0.0367, 0.0378, 0.0374 and 0.0371, respectively. Therefore,

we set (b1, b2) = (1, 0) as in the baseline settings.

A.3 Tuning parameters for SGCS

Detailed in appendix A.3 are the hyper-parameters tested in the SGCS algorithm. In or-

der to tune our hyper-parameters, we conducted a full-factorial run with depot DLA9,

our largest depot in terms of the High-SV routes proportion. We chose our final hyper-

parameter values based on the best weighted average delta test score of −1.84%.The final

selection of hyper-parameters was k = 50, ε = 0.05, γ = 5, and I = 10. We applied

these hyper-parameters in the experiments for the rest of the depots.

49

Table 11 – Results for varying values of ∆

k Averaged Delta Train % Averaged Delta Test %

10 -6.2 2
50 -2.9 2.2
100 -2.6 3.2

Table 12 – Results for varying values of ε

ε Averaged Delta Train % Averaged Delta Test %

0.01 -4.5 1.9
0.05 -2.9 1.2
0.1 -4.4 4.4

Table 13 – Results for varying values of γ

γ Averaged Delta Train % Averaged Delta Test %

3 -3.7 2.2
5 -3.8 2.4

10 -4.3 2.9

Table 14 – Results for varying values of itCount

I Averaged Delta Train % Averaged Delta Test %

5 -3.8 2.6
10 -4 2.4

50

A.4 Tuning parameters for R+LFIM

In this section we present the different values of kappa tested. The entirety of the high

routes were used for training, meanwhile the out of sample dataset was used for testing.

The RBNT had a score 0.0403 for all the training routes, and 0.0382 for all the testing

routes. This is in accordance with the experiments conducted earlier in table 7 and table 9.

Table 15 – Results for different values of kappa - Out of Sample

kappa R+LFIM
Training

score

R+LFIM
Testing
score

Score
change
(%) on
training
dataset

Score
change
(%) on
testing
dataset

2 0.0168 0.0314 -58.4 -17.7
3 0.0166 0.0313 -58.7 -18.1
4 0.0168 0.0311 -58.3 -18.5
5 0.0168 0.0313 -58.4 -18.0
6 0.0169 0.0315 -58.2 -17.7
7 0.0171 0.0314 -57.6 -17.7
8 0.0170 0.0315 -57.8 -17.6
9 0.0172 0.0315 -57.3 -17.5

10 0.0172 0.0316 -57.4 -17.4

51

	Résumé
	Abstract
	Table of contents
	List of tables and figures
	List of abbreviations and acronyms
	Acknowledgements
	Introduction

	Literature review
	Chapter 1: Problem definition and methodological framework
	Problem definition
	Factorization of the transition penalty matrix
	Decomposition of the transition weight matrix

	Chapter 2: Learning the transformation by predictive analytics
	Score guided coordinate search
	A proxy gradient function
	The SGCS algorithm

	Label-guided feature impact matrix

	Chapter 3: Description of the case study
	The competition and the data
	Comparing similarity of two routes: the scoring function
	Descriptive statistics and feature selection
	Rule-based feature impact matrix
	Combining the label-guided and the rule-based feature impact matrices

	Chapter 4: Results and discussion
	Implementation details
	Comparison of algorithm performances
	RFIM performance:
	SGCS performance
	LFIM performance
	R+LFIM performance

	Performance of the best performing algorithm under different settings
	R+LFIM performance on various training and testing splits
	R+LFIM performance on high routes:
	R+LFIM performance on all routes:
	R+LFIM performance on out-of-sample routes:
	Optimization oracle with or without time windows:

	Chapter 5: Discussion on effectiveness, interpretability and flexibility of the methods
	Conclusion

	Bibliography
	Annexes
	Implementation details for RFIM
	Tuning parameters for RFIM
	Tuning parameters for SGCS
	Tuning parameters for R+LFIM

