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Résumé 

L’intégration croissante des technologies numériques dans les contextes éducatifs nécessite des 

systèmes adaptatifs capables de répondre dynamiquement à la fois à la performance des 

apprenants et à leurs états cognitifs sous-jacents. Alors que les systèmes traditionnels de tutorat 

intelligent s’adaptent généralement à partir de mesures comportementales, les avancées récentes 

en neurotechnologie soulignent le potentiel des données neurophysiologiques en temps réel pour 

fournir une rétroaction plus nuancée et individualisée. Ce mémoire explore le potentiel d’un 

système neuroadaptatif, piloté par un indice de charge de tâche, afin d’améliorer la performance 

et l’engagement dans une tâche d’apprentissage. Lors d’une expérience contrôlée en laboratoire, 

51 participants ont été assignés aléatoirement à l’une des trois conditions (contrôle, motivation 

extrinsèque, neuroadaptative) et ont effectué une tâche d’apprentissage en ligne répartie en 

quatre blocs, avec enregistrement continu des données physiologiques et neurophysiologiques. 

Les participants ont également rempli des mesures auto-déclarées d’engagement et de motivation 

intrinsèque. Les résultats indiquent que les participants sous motivation extrinsèque ont démontré 

une meilleure performance dans les derniers blocs. À l’inverse, le groupe neuroadaptatif a atteint 

des performances comparables à ceux du groupe contrôle mais avec une charge de tâche 

significativement réduite, expliquée par une diminution des niveaux de thêta frontal et d’alpha 

pariétal, suggérant une allocation plus efficace des ressources cognitives. Ces résultats 

soutiennent l’intégration de rétroactions neurophysiologiques en temps réel pour une instruction 

personnalisée, avec des implications pratiques pour l’adoption élargie en éducation numérique.  

Mots clés : système neuroadaptatif, BCI (brain-computer interface), EEG, charge de tâche, 

apprentissage, motivation extrinsèque 

Méthodes de recherche : expérimentation, recherche quantitative, mesures neurophysiologiques 
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Abstract 

The growing integration of digital technologies in educational contexts necessitates adaptive 

systems capable of responding dynamically to both learner performance and underlying 

cognitive states. While traditional intelligent tutoring systems typically adapt based on 

behavioural performance metrics, recent developments in neurotechnology highlight the 

potential for real-time neural data to provide more nuanced and individualized feedback. The 

thesis investigates the potential of a neuroadaptive system driven by a task-load index to enhance 

performance and engagement during a digital learning task, by sustaining optimal cognitive 

states for learning. In a controlled laboratory experiment, 51 participants were randomly assigned 

to one of three conditions (control, extrinsic motivation, neuroadaptive), and completed a four-

block digital learning task, while physiological and neurophysiological data were continuously 

recorded. Participants also provided self-reported measures of engagement and intrinsic 

motivation. Findings suggest that participants in the extrinsic motivation condition demonstrated 

superior performance in later blocks. Conversely, those in the neuroadaptive condition achieved 

performance comparable to controls, but with significantly reduced task load, explained by lower 

levels of frontal theta and parietal alpha band activity, suggesting more efficient cognitive 

resource allocation. These findings advance the development of neuroadaptive learning systems 

by empirically validating the role of real-time, neurophysiological-based feedback in 

personalized instruction, thereby offering practical applications for broader adoption in digital 

education.  
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Introduction 

In an era defined by rapid technological advancement, understanding how humans learn 

and perform has never been more critical. Broadly, human-computer interaction (HCI) is the 

study of the dynamics between users and information technology (Card et al., 1983). HCI is a 

multidisciplinary field that borrows from cognitive science, human factors ergonomics, and 

computer science. Combining these fields enables the design of functional, intuitive, and 

efficient systems while aligning with human needs and capabilities. Recent developments in HCI 

benefit from neuroadaptive brain-computer interfaces (BCI). Brain-computer interfaces utilize 

neural activity to affect change in a system (Krol & Zander, 2017; Zander et al., 2016). The 

global BCI market is projected to generate a compound annual growth rate of 18.15% from 2025 

to 2030 (Grand View Research, 2024).  Recent developments show promise of neuroadaptive 

systems to improve daily life across multiple domains such as healthcare, aviation, and 

education. Many clinical trials, such as the Neuralink clinical trials (McBride, 2025) or those 

involving mood-altering brain implants (Devlin, 2025),  have been in recent news, boasting of 

the potential benefits of BCIs. While clinical trials attract attention with invasive procedures, 

identifying effective, non-invasive methods of BCI implementation is the primary focus of 

researchers worldwide to ensure a higher likelihood of user adoption (Hsieh et al., 2025). 

Specifically, identifying non-invasive methods of BCI implementation facilitates neuroadaptive 

learning environments, allowing for more effective learning tailored to individuals’ progress and 

abilities.  

In addition to adaptive systems, motivation is a pertinent factor in enhancing learning 

experiences. Motivation has long been recognized as a key driver of effective learning (Deci & 

Ryan, 1985), influencing performance outcomes. It is an effective means of improving outcomes, 
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particularly by targeting extrinsic motivation by incentivizing performance with monetary 

rewards. Nevertheless, feasibility and ethics are often called into question. For example, it is 

unrealistic to promise students $1 for every 10% they achieve on an exam. This challenge calls 

for the search of an alternate system in which to improve outcomes, that is, a system that is easily 

implemented, non-invasive, and effectively improves learning outcomes as well as, or better, 

than an extrinsic motivator. A neuroadaptive system is a likely candidate to meet these goals due 

to its ability to personalize the learning experience by responding dynamically to an individual’s 

cognitive state (Krol & Zander, 2017; Zander et al., 2016). Additionally, new neuroadaptive 

systems are aiming to be scalable and non-invasive, making them more practical for widespread 

implementation in educational settings compared to extrinsic motivators. 

Moreover, previous research has utilized measures of cognitive load (CL) to drive 

neuroadaptive systems in various contexts (Beauchemin et al., 2024; Mark et al., 2022). Drawing 

on cognitive load theory, CL is a multifaceted construct that broadly encompasses the mental 

effort necessary for engaging in a task or activity (Sweller et al., 2011). While CL is affected by 

additional factors such as the environmental context and task modality (Kirschner, 2002; Mayer, 

2003), task load (TL), a construct beneath the umbrella of CL, solely focused on the mental 

effort required to engage in a computer-based task. Since task load is an underutilized construct, 

it warrants further investigation and precise operationalization to understand better its potential 

for driving a brain-computer interface (BCI) that optimally enhances learning outcomes. In the 

domain of neuroadaptive systems, it is postulated that countermeasures may play a similar role 

as extrinsic motivation in improving learning outcomes by maintaining an optimal cognitive 

state.  
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Addressing this research avenue is particularly important given the increasing adoption of 

adaptive systems in diverse learning environments, ranging from e-learning platforms to high-

stakes professional training. It is necessary to validate the system with robust measurement tools 

(i.e. EEG) before piloting more widely accessible measures such as pupillometry.  

This thesis seeks to explore the role of TL utilized as input to a BCI, and its potential 

impact on learning outcomes and user experience in a neuroadaptive system while considering 

the role of motivation. By examining TL as a dynamic factor, this research aims to contribute to 

a broader understanding of how such measures can inform and optimize user experiences. The 

findings have implications for validating TL as an indicator of executive function and its 

application in a wide array of domains, including education, workplace productivity, and critical 

infrastructure monitoring. Considering prior research, this thesis aims to disentangle the effects 

of motivation on neuroadaptive learning by posing the following research question:  

How can neuroadaptive technologies reshape traditional approaches to online learning 

by addressing the limitations of extrinsic motivation? 

We conducted a laboratory experiment with a three-group, between-subjects design to 

answer the research question. Participants completed a learning task while a 32-electrode EEG 

system recorded their neural activity, classifying their TL in real-time. Additional measures of 

motivation, engagement, and user experience were captured to better understand the user 

experience of interacting with a neuroadaptive system. Data were analyzed using an analysis of 

variance framework. Sensor-level, EEG-informed scalp topography maps were generated to 

achieve deeper insight into the cognitive processes at play during the encoding phase of the 

learning trials. These analyses allow for between-group comparison of the dependent variables in 

addition to comparison within groups across learning blocks.  
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This thesis provides theoretical contributions and practical implications. Placing the 

research at the intersection of neuroadaptive systems, TL, and motivation, this thesis provides 

insight into how these concepts can be leveraged to optimize learning outcomes in diverse 

educational and professional contexts. By introducing a novel application of TL as a driver for a 

BCI, this research expands the current understanding of adaptive systems, providing evidence in 

favour of the utility of measuring TL. The advancements discussed in this thesis hold the 

potential to revolutionize e-learning platforms, professional training programs, and other 

domains where cognitive optimization is paramount. 

This thesis comprises four chapters. The first chapter, the introduction, establishes the 

foundation of the study. Chapter 2 presents the first article, a scientific recount of the 

methodology and findings of the research study, details the quantitative research design, 

assessing the effects of a neuroadaptive system on performance, motivation, and TL in a learning 

task. In addition, this article is in preparation for submission to the academic journal ACM 

Transactions on Computer-Human Interaction. Chapter 3 presents the second article, aimed at 

the general population, conveying the main contributions and the practical implications of the 

study presented in Chapter 2. This article is in preparation to be submitted to The Conversation, 

an independent news outlet that publishes evidence-based articles aiming to disseminate 

scholarly insights to the public. The thesis is completed by Chapter 4, the conclusion, 

summarizing the study and the overall contributions. 

The following table summarizes the student’s contributions to the various stages of the 

research project and the writing of the thesis. The percentages reflect the scope of the student’s 

responsibilities and the extent of their efforts in executing each task. 
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Table 1. Contributions and Responsibilities in the Completion of the Thesis. 

Research Activity Contribution 

Research Questions Defining the research problem – 70%  

- The broad research question was established prior 

- Implemented additional variables according to the 

literature 

Literature Review Development of the literature review – 90% 

- Identification of existing literature on the topic 

- Assistance from supervisors on identifying seminal 

papers 

Experimental Design Planning and structuring the experiment – 75% 

- Establishing experimental protocols and procedures 

- Collaboration with the lab on integrating tools and 

technologies 

Pre-tests Testing procedures prior to experimentation – 95%  

- Pilot testing and refining protocols according to 

feedback 

- Validating tools and measures 

- Ensuring equipment functionality 

Participant Recruitment Recruitment and Management of Participants – 60% 

- Recruitment facilitated by HEC’s research panel 

- Management of participants was aided by the 

Tech3Lab research panel team 

Data Collection Systematic collection of research data – 100% 

- Present during all data collection sessions 

Analysis Pre-processing the data – 30% 

- The data pre-processing was conducted in part by 

the Tech3Lab team. 

Statistical Analyses – 90% 

- EEG analyses were conducted in partner with 

Thaddé Rolon-Merette. 

Writing Writing of the thesis – 100% 

- All thesis chapters were written independently, with 

feedback from the supervisors and co-authors of the 

articles. 
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Chapter 2  

Utilizing Task Load to Drive a Brain-Computer Interface in a 

Neuroadaptive Learning Task1 

Katrina Sollazzo, Alexander John Karran, Sylvain Sénécal 

 

Abstract 

The major shift towards online learning calls for methods to tailor learning to individual user 

needs. A neuroadaptive system driven by a brain-computer interface (BCI) can dynamically 

adapt aspects of the learning interface in real-time based on the classification of a cognitive state, 

in this case, task load (TL). Task load, a construct under the umbrella of cognitive load, 

considers the mental effort required to complete a computer-based task. This study employed a 

three-group (n = 51) between-subjects design to investigate how motivation, a key element for 

engagement and performance, affects learning outcomes during a neuroadaptive learning task 

driven by a task load index. A 32-electrode electroencephalography (EEG) system captured 

frontal theta and parietal alpha band activity to classify TL as low, medium, or high. This 

classification drove the interface to adapt the presentation speed of the stimuli. The 

neuroadaptive group achieved results comparable to those of the control group. However, further 

investigation of the TL level throughout the task duration suggests the neuroadaptive group 

exerted less cognitive effort than the control group. In contrast, the extrinsic motivation group, 

who were promised a monetary reward based on performance, outperformed both the 

neuroadaptive and control groups, exerting similar effort as the control group. Topographic maps 

displaying alpha and theta activity reveal the emergence of distinct learning patterns during the 

encoding phase across groups.  

 
1 This article is in preparation for publication in ACM Transactions on Computer-Human Interaction 
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Introduction 

Learning is fundamental to human development, allowing individuals to build on past 

knowledge, develop new skills, and adapt to new challenges. From early childhood to adulthood, 

effective learning is important for personal and professional growth. Many resources such as 

formal in-person education and online training modules, exist to facilitate learning. With 

considerable advancements in digital platforms, a significant shift has occurred toward online 

learning, which has emerged as a staple method of education at all levels. In 2022, 21.8% of 

Canadians over the age of 15 took part in formal training or learning online (Statistics Canada, 

2023). In the context of this study, online learning is defined as any learning experience that 

takes place on a digital platform. As the popularity of online learning continues to grow, it is of 

vital importance that the learning experience is effective to ensure a successful educational 

experience (Hongsuchon et al., 2022). Online learning offers a compelling advantage as it can be 

adapted to each user’s specific needs. Past research emphasizes the importance of tailoring 

teaching methods to the specific needs of the learner to optimize learning outcomes (Klašnja-

Milićević et al., 2011; Tekin et al., 2015). However, imposing effective adaptations requires 

accurate measures of cognitive states.  

 Given the complexity of human cognition, psychological constructs are frequently 

utilized to assess these cognitive states accurately. Fostering suitable levels of motivation and 

engagement greatly impacts learning as seen in outcomes such as performance and learning 

speed (Duan et al., 2020; Liang et al., 2018). Motivation, both intrinsic and extrinsic, affects how 

individuals engage with tasks (Deci & Ryan, 1985). These two facets of motivation play 

complementary roles in promoting effective learning. Nevertheless, the relationship between 

motivation and engagement in online settings remains unclear and underexplored. Additionally, 
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task difficulty can influence both motivation and engagement. The level of difficulty an 

individual confronts while facing a task, in combination with the amount of effort required to 

complete the task, referred to as task load (TL), can heavily influence their learning outcomes. 

Unlike cognitive load (CL), TL is a multifaceted measure of real-world task performance. 

Finding the right balance of TL is vital to ensure learners can perform at their optimal level. 

Understanding how TL impacts performance through motivation and engagement in an online 

learning task is essential to developing systems that ensure learners remain in their ideal learning 

zone.  

 It is possible to establish the best environment for individuals to learn using Vygotsky’s 

concept of the Zone of Proximal Development (ZPD) (Vygotsky & Cole, 1978).. The ZPD 

delineates the ideal intersection of what an individual can accomplish on their own and what they 

can accomplish with scaffolding. Notably, the ZPD is unique for every learner. Traditionally, 

scaffolding is provided by teachers, mentors, or similar. However, with the rise of online 

learning, it is interesting to consider the role the platform plays in facilitating the learning 

experience. A logical next step would be to create an online learning interface that can adapt to 

TL while taking into consideration learner motivation to enhance learner performance, by 

maintaining each user’s ZPD.  

 The current study aims to evaluate a neuroadaptive brain-computer interface (BCI) driven 

by an experimental TL index and its potential to enhance learning outcomes and engagement in a 

neuroadaptive system. Therefore, this study aims to answer the following question: 

RQ: To what extent does motivation affect learning outcomes and engagement 

during a neuroadaptive task, driven by a task load index? 
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 The remainder of this article explores the methodology used to investigate this causal 

relationship. Firstly, we present a review of the literature, providing a theoretical foundation and 

informing our research hypotheses. Secondly, we discuss a detailed explanation of the 

experimental design employed in the study. Thirdly, we present the results of our analysis. 

Finally, we interpret the results and discuss their implications and scientific contributions.  

Background 

Zone of Proximal Development in Online Learning 

 Vygotsky’s framework of ZPD traditionally describes the zone in which adequate 

scaffolding allows an individual to learn (Vygotsky & Cole, 1978). The key idea is that the ZPD 

denotes the optimal zone for learning, where an individual can use their own experience in 

conjunction with a beneficial level of support to expand their knowledge. This framework has 

been previously drawn on in human-computer interaction (HCI) research. Ferguson et al. (2022) 

found that in a narrative game, AI-driven personalized instruction improved learners’ 

performance, reducing their CL. The researchers successfully maintained a user’s optimal ZPD 

by altering their cognitive state through real-time personalized instruction. Although previous 

research has reported on optimal ZPD and cognitive states, little is known thus far of how 

specifically a neuroadaptive BCI could alter an individual’s cognitive state to improve learning 

outcomes.  

 Regarding online learning, the scaffolding necessary for individuals to succeed can take 

shape in the form of a neuroadaptive system. Neuroadaptive systems driven by a passive BCI use 

neural input from a source (such as EEG) to adapt the interface according to a classification 

index (Krol & Zander, 2017; Zander et al., 2016).  Neural activity, typically brain waves, is used 

to infer a cognitive state, such as sustained attention (Karran et al., 2019), level of cognitive load 
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(Beauchemin et al., 2024) and mindfulness (Daudén Roquet et al., 2023), which in turn is used to 

adapt an interface based on a pre-determined classification of the cognitive state. The stated 

model is a closed biocybernetic loop (Pope et al., 1995), which comprises four iterative steps: 1. 

the individual’s actions elicit specific brain activity, 2. the brain activity is measured and 

classified, 3. the system adapts depending on the classification, 4. the individual reacts to the 

adaptation triggering new brain activity, consequently closing the loop. There exists both an 

active and a passive form of non-invasive BCI (Zander & Kothe, 2011). In the active form, users 

consciously and purposefully attempt to alter their neural activity to elicit changes in the 

interface through the BCI. On the other hand, in the passive form, the user is unaware that 

changes in their activity subsequently cause changes in the interface, as it is done automatically.   

 Passive BCIs have been successfully used in a multitude of areas, including aviation 

(Borghini et al., 2022; Mark et al., 2022), driving (Alguindigue et al., 2024; Liu et al., 2015), and 

education (Sethi et al., 2018). In education, past research has focused on measuring key elements 

critical for learning. Serrhini and Dargham (2017) developed and validated a BCI that assessed 

attention as measured from alpha and beta wave frequency measurements during an online 

course. Apicella et al. (2022) proposed and validated an adaptive system based on cognitive 

engagement during cognitive tasks, intended to extend to online learning platforms. However, 

despite these advancements, there are still significant gaps in the literature regarding the 

objective measurement of cognitive states. In particular, TL is essential to assess as it is used as a 

measure of the cognitive state of an individual while they are immersed in a task (Hart & 

Staveland, 1988).   

 Given the critical role of TL in computer-based tasks, neuroadaptive countermeasures 

may improve user performance by keeping users in their optimal ZPD. As the ZPD implies the 
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existence of two other states; cognitive underload and cognitive overload (Vygotsky & Cole, 

1978), by dynamically adjusting to real-time TL classification, the system can help the user 

overcome this challenge, maintaining a cognitive state most conducive to learning.  

Cognitive Load and Task Load in Neuroadaptive Learning Systems 

 Two main constructs have been previously studied to uncover cognitive mechanisms at 

play during learning: mental workload and CL. Mental workload is a multidimensional construct 

that is characterized by individual traits, cognitive states, and task criteria (Van Acker et al., 

2018). Previous research has used the NASA TLX, a subjective measurement scale, to measure 

workload in online learning, reporting that students require increased effort in online learning  

(Febiyani et al., 2021). Moreover, increased workload elicits increased fatigue, negatively 

affecting learning outcomes (Kubicek et al., 2023). Drawing on cognitive load theory, CL is an 

umbrella construct for the mental effort and cognitive resources necessary to process and store 

information while performing a task (Sweller et al., 2011). Extensive research has been 

conducted commending the relevance of CL on digital tasks such as learning (Beauchemin et al., 

2024; Skulmowski & Xu, 2022) and decision-making (Deck & Jahedi, 2015). However, CL is a 

broad construct that considers more than task difficulty and is affected by external factors such 

as environmental context and task modality (Kirschner, 2002; Mayer, 2003). Therefore, we argue 

that TL is better suited to assess users' cognitive state in a computer-based task than CL or 

mental workload.  

 Task load is an underutilized sub-construct of CL linked to task difficulty, focusing 

explicitly on the mental effort required to complete a computer-based task. Task load has been 

derived from mental workload to improve the classification of the cognitive process occurring 

while engaged in a task. The current study aims to employ a granular measure of TL, as 
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compared to mental workload and CL, through electroencephalography (EEG). Research 

suggests that frontal theta is sensitive to expending cognitive resources (Xie et al., 2016), 

sustained attention, and working memory (Borghini et al., 2014). Conversely, parietal alpha is 

indicative of cognitive fatigue (Borghini et al., 2014). Therefore, we posit that an index created 

using multiple pairs of frontal theta and parietal alpha will exhaustively represent TL. This index 

will classify TL into three levels (low, medium, and high), triggering task-specific 

countermeasures in the interface and facilitating the user’s performance of the task. Ultimately, 

the use of the TL-driven neuroadaptive system will adjust the interface in real time, maintaining 

the user at their optimal TL level, which acts as a proxy for their ZPD. The countermeasures 

elicited by the TL classifications act as the scaffolding learners require to preserve their optimal 

ZPD.  

The Role of Motivation in Online Learning and Task Load 

 Motivation, both intrinsic and extrinsic, plays an essential role in learning. Ryan and Deci 

(2000, p.56) define intrinsic motivation (IM) as “the doing of an activity for its inherent 

satisfactions rather than for some separable consequence.” Contrarily, they define extrinsic 

motivation (EM) as engaging in a task or activity with the desire to attain a specific outcome of 

value. Extrinsic motivation has been studied in various ways, most often as an incentive, 

typically of monetary value (Beauchemin et al., 2024; Duan et al., 2020; Liang et al., 2018). 

According to self-determination theory, both forms of motivation work in parallel to promote an 

individual’s ability to learn (Deci & Ryan, 1985). While the two forms act on different 

mechanisms, together they support learning. Research suggests that there is an additive effect, 

rather than an interaction effect, of IM and EM on memory performance (Duan et al., 2020). It is 



16 

 

suggested that EM promotes learning by minimizing distractions, while IM increases attention 

and activation of the reward system. Both mechanisms enhance memory formation.  

 As explained by the motivational intensity theory (Brehm & Self, 1989), the effort that 

one is willing to exert is directly related to the demand for the task. By isolating TL from CL, we 

can better investigate the role of motivation on learning. Zhozhikashvili et al. (2024) investigated 

the effect of IM on working memory. Specifically, they report that although IM is not associated 

with accuracy, participants who reported higher subjective IM applied additional effort when 

faced with more challenging tasks. This finding is reflected in increased frontal midline theta 

activity and greater alpha desynchronization.  

 Given the dual role of motivation on learning, it is expected that IM will moderate the 

relationship between the experimental group and performance. Extrinsic motivation is a 

treatment level in the experiment, as it would be impossible to disentangle the effects of the 

neuroadaptive system and monetary incentive. Therefore, EM is expected to further improve 

performance in a learning task, similar to the improvement yielded from utilizing a 

neuroadaptive system.  

Examining the Impact of Neuroadaptive Countermeasures  

 Implementing a novel system of cognitive state classification and adaptation necessitates 

measuring the success of the system. The neuroadaptive system will be assessed by participant 

performance and TL across the task. Ultimately, we expect that through the implementation of 

countermeasures, the system will reduce the expenditure of cognitive resources, maintaining an 

optimal learning state for each user.  Nonetheless, additional measures will bolster the results. 

Specifically, user satisfaction can be used to indicate how users perceive their interaction with 

the system (Griffiths et al., 2007), giving insight into the user experience. Similarly, asking 
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participants about their intention to recommend the system to a friend or colleague can indicate 

the potential for broader adoption of a new technology (Blau et al., 2017; Rahman et al., 2022). 

Moreover, both these factors interplay with engagement. Therefore, engagement will also be 

measured psychometrically to indicate system success (Martin & Bolliger, 2018; Muzammil et 

al., 2020).  

 In summary, this study aims to address gaps in the literature by investigating the role of 

TL within a neuroadaptive learning task. Focusing on TL, rather than broader constructs such as 

CL or mental workload, allows for a more precise classification of users’ cognitive state for real-

time adaptation of the learning environment. This adaptive approach aligns with Vygotsky’s 

framework of the ZPD (Vygotsky & Cole, 1978), as it aims to maintain a learner’s optimal state 

for learning through dynamic modifications. Moreover, taking into consideration both intrinsic 

and extrinsic motivational factors is expected to enhance learning outcomes, providing a more 

nuanced understanding of their impact on user performance. Evaluating additional system 

success indicators will offer valuable insights into the user experience and the potential 

implications of the neuroadaptive system. Collectively, these findings will contribute to 

developing more effective and adaptive online learning platforms, ultimately bridging the gap 

between cognitive state adaptation and user-centered design.  

Method 

Participants 

 Fifty-one adults (24 female; age M = 26.61, SD = 5.76) participated in the study. The 

sample size is consistent with prior BCI studies using similar methods requiring intensive data 

collection (Apicella et al., 2022; Beauchemin et al., 2024; Karran et al., 2019). Participants were 

recruited from our institution’s panel on the basis of good health, normal or corrected vision, no 
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history of neurological disorders, and advanced understanding of French, both oral and written. 

Participants were compensated $60 and entered in a draw for a $200 Visa gift card, in line with 

the EM condition described in the following section. Ethical approval was obtained from the 

institution on March 27th, 2024, under the certificate 2023-5071. 

Procedure  

 Participants were randomly assigned to one of three groups: Control (no reward, no 

adaptivity) (C; n = 19), reward and no neuroadaptive countermeasures (R; n = 16 ), 

neuroadaptive countermeasures and no reward (N; n = 16). Data collection sessions, conducted 

in French, lasted approximately 150 minutes. After providing informed consent and demographic 

information, participants underwent tool installation and signal verification (EEG impedance 

check and artifact inspection). Baseline tasks were included to establish reference measurements 

for physiological and EEG data. Participants completed a pre-task questionnaire establishing 

demographic information and prior knowledge of the task content, followed by four blocks of the 

learning task. Group R participants were informed they would earn one entry into a $200 prepaid 

Visa gift card draw for every 10% improvement in their block scores. Post-task questionnaires 

measured IM and engagement. Participants signed a compensation form for electronic payment 

and were thanked before departure.  

Experimental Design 

 The study used a between-subjects, three-group design where the independent variables 

were EM and neuroadaptivity. EM was in the form of entries into a draw for a monetary reward, 

where the more correct responses during the task, the more entries participants believed they 

would receive. At the end of the study, all participants received the same number of entries in the 

draw.  
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Measures  

 To measure IM, we adapted the Intrinsic Motivation Inventory, originally developed by 

Ryan (1982). The scale consists of 7 subscales, totalling 45 items. Traditionally, each item is 

rated using a 7-point Likert scale from “not at all true” to “very true”. The scale was shortened to 

11 items based on a 2011 study by Sun and Gao with a Cronbach alpha of .92. The current 

study’s Cronbach’s alpha calculation indicated a level of internal consistency of .69. Therefore, 

the three dimensions (interest  = .88, effort  = .88, and competence  = .95) were investigated 

independently.   

 Perceived engagement was measured using an engagement scale developed by de Vreede 

et al. (2019). The scale is composed of three dimensions: affective engagement, behavioural 

engagement, and cognitive engagement. The scale is composed of 15 items in total. During the 

creation of the scale, the authors reported a Cronbach’s alpha of .73 for the cognitive factor, .92 

for the behavioural factor, and .86 for the affective factor. Initially created to have a discipline-

independent definition and measure of engagement, the scale has since been used to assess 

engagement with artificial intelligence (de Vreede et al., 2024). This study reported similar 

Cronbach’s alphas for the three factors: .90, .90, and .92, respectively. The scale was reduced to 

three items per dimension based on the highest factor loadings of the de Vreede et al. (2024) 

study. The current study’s Cronbach’s alpha calculation revealed an acceptable level of internal 

consistency ( = 0.72), therefore the dimensions were combined.  

 We used the Net Promoter Score (NPS) developed by Reichheld (2003) to measure 

individuals’ intention to recommend. The NPS is a single-item scale scored on an 11-point Likert 

scale, where 0 denotes “not likely” and 10 denotes “likely”. To measure satisfaction, we used the 

Customer Satisfaction Score (CSAT) developed by Faris et al. (2010). It is a single-item scale, 
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scored on a 7-point Likert scale where 1 represents “not satisfied” and 7 represents “satisfied”. 

Prior knowledge was measured with two single-item questions to get a general idea of 

participants’ knowledge of the task content, as well as a 10-item scale adapted from Flynn and 

Goldsmith (1999).  

 All scale items were presented as a sliding scale with an anchor on either end. This 

decision was made to maintain valid scores in a small sample by mitigating response bias.  

 Regarding physiological measures, heart rate variability (HRV) was calculated as the 

ratio of low-frequency power (0.04 Hz - 0.15 Hz) over high-frequency power (0.15 Hz - 0.4 Hz) 

(LF/HF) (Pagani et al., 1986) throughout each block. Electrodermal activity (EDA) was 

measured as average phasic EDA across each block, created from data recorded at 250Hz 

averaged every second (Benedek & Kaernbach, 2010). These two physiological measures were 

used as proxies for autonomic activation (Ghiasi et al., 2020).  

Experimental Stimuli 

 The interactive user interface was adapted from Riopel et al. (2017). This specific task 

was chosen as it was anticipated that participants were likely to be unfamiliar with the content. 

The original task was comprised of 88 constellations. Of these constellations, 32 were selected 

for this learning task based on shape similarity to increase the task's difficulty. The stimuli were 

presented in four blocks. Each constellation was shown in conjunction with four possible 

responses for the participant to select. The interface displayed a countdown below the response 

options during the response portion and the feedback portion of each trial. See Figure 1 for a 

complete example of the stimuli. Response time was fixed at five seconds. Feedback time was 

fixed at five seconds for the C and R conditions. The feedback time for the N condition started at 

five seconds for the first trial, then varied by one second depending on the classified TL. The 
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feedback time could vary between three and eight seconds, inclusively. Each constellation was 

presented twice per block, in a pre-determined randomized order, giving 64 trials per block. 

Instruments and Lab Setup 

 Participants were situated in a Faraday cage, equipped with a desk, a Lenovo monitor 

(1920 x 1080, 59.93 Hz), and a chair with adjustable height. There was a two-way mirror 

between the experimental room and the observation room, where participants could not see into 

the observation room. In the observation room, there were three computers and five monitors. 

There was a switch between two monitors to alternate which screen was displayed to the 

participant. The moderator communicated with the participant via a microphone and speaker. 

Data synchronization was possible through a sync box that delivered pulses from the COBALT 

Bluebox (Courtemanche et al., 2022; Léger et al., 2022) to Tobii Pro Lab every 60 seconds. The 

pulses could then be converted to UTC timestamps, which allowed for complete synchronization 

between all data sources.  

 Variations in brainwave activity were captured using the g.tec NAUTILUS wireless 

system (g.tec medical engineering GmbH, Schiedlberg, Austria), specifically using the 

g.SCARABEO active electrodes (g.tec medical engineering GmbH, Schiedlberg, Austria). A 32-

electrode EEG montage was configured based on the 10-10 (Chatrian et al., 1985) and 10-20 

Figure 1. Example of the Constellation Stimuli 

Note 1. Left: Response stimulus, Right: Feedback stimulus 
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international system (Klem et al., 1999), with adjustments made to ensure data were captured in 

the areas of interest. Eight electrodes were identified as crucial to measure TL (F1-4, CP1, CP5, 

P1, P5). PO3, PO4, O1, and O2 were remapped to accommodate this electrode selection. A 

ground electrode was placed at Fz, and a reference electrode was placed on the right earlobe as a 

common baseline to facilitate noise reduction and EEG signal comparison (Nunez et al., 1997).  

 EEG signals were recorded using Simulink, a Matlab-based software (version R2021b, 

IBM), with a real-time sampling rate of 250Hz. A simplified Simulink model can be found in 

Figure 2.  All 32 channels were saved as raw EEG signals. Data for the eight electrodes of 

interest were processed in real-time with Bandpass (0.5Hz-50Hz) and Notch (58Hz-62Hz) filters. 

A Simulink block was also implemented for band-power extraction for the eight electrodes. Task 

load classification was a two-stage process. First, 16 ratios were calculated every second and 

classified as high or low based on the 1st and 3rd quartile average theta-alpha ratios from the 

Group C data. Majority voting dictated the TL classification per second of these high and low 

classifications. Second, a final TL classification was made every six seconds based on the 

previous six values to send to the interface through a lab streaming layer (LSL). 

 All measurement scales were administered via Qualtrics (Qualtrics, Provo, UT). 

Participant sessions were recorded using a Razer Kiyo Pro Ultra 4K Webcam mounted on the 

participants' monitor. An iPad Air was used to administer the consent and compensation forms 

via Qualtrics (Qualtrics, Provo, UT). 
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 EDA and ECG activity were recorded using the COBALT-Bluebox system 

(Courtemanche et al. 2022). Two EDA sensors were placed on the participant’s non-dominant 

hand, fixed with a compression glove. We utilized a Lead 2 sensor configuration to measure 

heart rate, whereby one sensor was placed beneath each collarbone, and a third was placed on the 

participant’s second-to-last rib on the left side.  

Statistical Analysis 

 All statistical analyses were conducted in R Version 4.2.1 and RStudio Version 2023.09.1 

(R Core Team, 2022). The “dplyr” (Wickham et al., 2023) package was used for data cleaning. 

All data visualizations were created using “ggplot2” (Wickham, 2016). The demographics table 

was created using the “table1” (Rich, 2021) package. Outliers were identified as data points that 

were above Q3 plus 1.5 times the interquartile range (IQR) or below Q1 minus 1.5 times the 

interquartile range. Score outliers were retained as they are indicative of interaction with the 

system. Due to data quality, sample size differed between analyses depending on the variable 

under investigation. Based on the nature of the data, a chi-square test or an ANOVA was used to 

assess group differences. A Shapiro-Wilk test was applied to assess the normality of the data for 

Figure 2. EEG Process Model 

Note 2. Visual representation of the closed-loop BCI system. 
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each variable. The test revealed a non-normal distribution of scores for satisfaction, intention to 

recommend, and engagement. In consequence, we opted to apply a non-parametric test, the 

Kruskal-Wallis test, to assess the hypotheses related to these variables in accordance with the 

literature (Siegel, 1957). Moreover, multiple linear regressions were run to test the hypotheses 

regarding IM and engagement. All ANOVAs were run using the anova_test function from the 

“rstatix” package (Kassambara, 2023), corrected for multiple comparisons using the Bonferroni 

adjustment. Linear regressions were run using the lm function from the base R stats package. 

Post-hoc pairwise comparisons were conducted with the pairwise_t_test function from the 

“rstatix” package (Kassambara, 2023). A mixed ANOVA was applied to assess the effect of 

group and block on the TL ratios during retrieval.  

Results 

Descriptive Statistics  

 Neither age nor gender significantly differed between groups. In addition, the level of 

education and prior constellation knowledge did not differ between groups. Thus, these variables 

were not used as covariates in testing the hypotheses. See Table 1 for complete demographic 

data. 

Table 2. Demographic Characteristics by Group 

Note 3. F (2, 48). Values are presented as M(SD) 

 

 C 

(N=19) 

R 

(N=16) 

N 

(N=16) 

Overall 

(N=51) 
F p ηp² / χ2 

Education      .1651 11.701 

      Master 7 (37 %) 3 (19 %) 6 (38 %) 16 (31 %)    

      University 8 (42 %) 11 (69 %) 9 (56 %) 28 (54 %)    

Prior 

Constellation 

Knowledge 

2.72 (0.71) 2.88 (1.02) 2.90 (0.88) 2.83 (0.85) 0.222 .8020 0.009 
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Hypothesis Testing 

Performance by Group and Block 

 We hypothesized that performance would differ by group across learning blocks, where 

Group R would perform similarly to Group N, while better than Group C. Results show a 

significant effect of learning block on score F (2, 96) = 135.235, p < .001, ηp² = .738. As shown 

in Figure 3, there was a significant increase in scores across Block 2 (M = 37.50, SD = 12.40), 

Block 3 (M = 46.40, SD = 13.30), and Block 4 (M = 50.30, SD = 12.80). The interaction between 

group and learning block was not significant, F (4, 96) = 1.795, p = .144, ηp² = .068. Given the 

directionality of the hypotheses, one-tailed pairwise comparisons were performed. A pairwise t-

test revealed a significant difference in score in Block 4 between Group R (M = 55.10, SD = 

8.25) and Group N (M = 43.60, SD = 16.50, p = .0153). In Block 3, there was a significant 

difference between Group R (M = 50.90, SD = 10.80) and Group N (M = 40.80, SD = 14.50, p = 

.0449). In Block 4, there were trending differences between Group C (M = 51.80, SD = 10.50) 

and Group N (M = 43.60, SD = 16.50, p = .0780). 
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Satisfaction and Intention to Recommend by Group 

 We expected that satisfaction and intention to recommend would differ by group. Results 

revealed no effect of group on intention to recommend. A second Kruskal-Wallis test was 

performed to identify group differences in satisfaction scores. The effect of group was significant 

significance F (2) = 6.5135, p = .0385, η² = .0940, where Group R (M = 6.06, SD = 0.93) tended 

to report higher satisfaction scores than Group N (M =4.88, SD = 1.36, p = .0390). 

Intrinsic Motivation as a Moderator Between Group and Score 

 We hypothesized that IM would act as a moderator between group and performance. 

Three multiple linear regressions were conducted to predict Block 4 scores based on group 

membership and each dimension of IM, with Group N as the reference group. The overall 

models for both interest and effort were not significant, with no significant main effects or 

Figure 3. Mean Performance by Learning Block 

Note 4. Mean participant scores across blocks, * p < .1; ** p < .05 
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interactions. The overall model for competence was statistically significant, F (5, 45) = 12, p < 

.001, explaining 57.13% of the variance in scores (R2 = 0.5713, adjusted R2 = 0.5237). The main 

effect of competence was significant, β = 8.093, p < .001, where higher competence scores 

predict higher Block 4 scores. The interaction between Group R and competence was significant, 

β = -4.67, p = .035, suggesting that Group R's slope is less steep than Group N's.  

Intrinsic Motivation as a Moderator Between Group and Engagement 

 We expected IM to moderate the relationship between group and engagement.  Results 

show no effect of group on engagement. Three multiple linear regressions were conducted to 

predict engagement based on group membership and each dimension of IM, with Group N as the 

reference group. In the first model, the predictors were Group C and Group R, interest, and two 

interaction terms between group and interest. The overall model was significant, F(5, 45) = 

18.81, p < .001, explaining 67.64% of the variance in engagement (R2 = 0.6764, adjusted R2 = 

0.6404). Interest was a significant predictor of engagement, β = 0.5007, p < .001.  In the second 

model, the predictors were Group C and Group R, effort, and two interaction terms between 

group and effort. The overall model was significant, F(5, 45) = 4.592, p = .002, explaining 

33.79% of the variance in engagement (R2 = 0.3379, adjusted R2 = 0.2643). Effort was a 

significant predictor of engagement, β = 0.4712, p = .003.  In the third model, the predictors were 

Group C and Group R, competence, and two interaction terms between group and competence. 

The overall model was significant F(5, 45) = 3.264, p = .013, explaining 26.61% of the variance 

in engagement (R2 = 0.2661, adjusted R2 = 0.1846). Competence was a significant predictor of 

engagement β = 0.3422, p = .006.  In conclusion, none of the three IM dimensions moderate the 

relationship between group and engagement.  
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Physiological Measures by Group and Block 

 We expected physiological measures to differ by group and block, with parasympathetic 

dominance increasing in a stepwise manner (C <  R < N). There were no significant main effects 

or interactions of phasic EDA on learning block or group. The model demonstrated a significant 

effect of group on ratio HRV F (2, 31) = 5.019, p = .0130, ηp² = .245. One-tailed, pairwise 

comparisons revealed ratio HRV differed between Group C (M = 1.170, SD = 0.456) and Group 

R (M = 0.808, SD = 0.292, p < .001), and Group C (M = 1.170, SD = 0.456) and Group N (M = 

0.746, SD = 0.223, p < .001).  

Task Load by Group and Block 

 We hypothesized TL would be higher in Group C and Group R than in Group N. The 

model revealed a group by block interaction on the average of the 16 TL ratios during retrieval F 

(6, 99) = 3.409, p = .004, ηp² = .171.  One-tailed, pairwise comparisons uncover a significant 

difference between Group N (M = 2.99, SD = 0.535) and Group C (M = 6.37, SD = 4.47, p = 

.004) in Block 4. There was a trending difference between Group C and Group R (M = 4.12, SD 

= 1.84, p = .061) in Block 4. 

Discussion 

Summary of Main Results 

 Across task blocks, there is an evident learning effect regardless of group membership. 

Further investigation revealed that Group R yielded higher scores in Block 3 and 4, indicating 

they may have learned more constellations. It is consistent with the literature that the promise of 

a reward improves memory formation (Duan et al., 2020). Though there is a lack of 

differentiation in overall scores across groups, the results suggest that Group N exerted less 

effort to achieve similar results as Group C in Block 4, as observed in the 16 TL ratios. It could 
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be reasoned that the neuroadaptive countermeasures helped the participant remain in their ZPD, 

avoiding cognitive underload and overload. In line with motivational intensity theory (Brehm & 

Self, 1989), Group N received favorable adaptations for their current cognitive capacity, 

therefore reducing the need for elevated effort; additional effort was not needed as the system 

maintained a balance between task demands and cognitive resources. These results support the 

premise that the neuroadaptive system can effectively act as scaffolding within an online 

learning task. Thus, we highlight the potential of neuroadaptive systems to complement 

traditional motivational approaches by providing individualized support that adjusts in real time, 

enhancing the learning experience.  

 All three experimental groups presented theta dominance in Block 4 to different degrees 

of power spectral density. Prior cognitive research suggests that higher theta band power is 

associated with a higher allocation of cognitive resources to a task (Tsang & Vidulich, 2006; Xie 

et al., 2016). Notably, theta dominance has also been associated with increases in working 

memory and attention (Borghini et al., 2012, 2014). This finding explains the observed increase 

in TL, representing higher theta activity, in Group C in the last block of the task, as the user is on 

their last try to merit a good score, drawing on intrinsic motivation. Logically, theta dominance 

in Block 4 was the least prominent in Group N, indicating better allocation of cognitive resources 

without compromising performance.  

 To complement the results of the quantitative analyses, alpha and theta power were 

plotted at the sensor level in scalp topographic maps, across group and block, during the 

encoding phase of the learning task (see Figure 4). The EEG-based topographic maps illustrate 

the salient cerebral activity in the frontal and parietal areas, identifying distinct learning profiles 

by group. More specifically, alpha and theta activity present differently for each group across 
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time. At the beginning of the learning task, Group R and Group N displayed similar activity, 

with medium to high frontal theta power and medium to low parietal alpha power. At the end of 

the learning task, parietal alpha power appears lower for Group R than Group N. Conversely, 

Group C begins the learning task with medium levels of alpha and theta power across the map. 

By the end of the learning task, Group C exhibits both high parietal alpha and frontal theta 

power.  

 Based on our knowledge of the role of parietal alpha and frontal theta oscillations in 

memory tasks, these findings are as expected.  Both alpha and theta have been previously 

indicated to play important roles in encoding information. In particular, alpha activity may 

reflect rote rehearsal (Kapur et al., 1996) and visual attention and encoding  (Medendorp et al., 

2007). Additionally, parietal alpha may also indicate cognitive fatigue (Borghini et al., 2014). 
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Figure 4. EEG-based Scalp Topography Maps 

Note 5. EEG-based topographic maps displaying alpha and 

theta activity by group in the encoding phase of Block 2 (a) 

and Block 4 (b). 
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Moreover, as previously discussed, frontal theta is a sensitive indicator of cognitive resource 

utilization (Xie et al., 2016), sustained attention, and working memory (Borghini et al., 2014). 

Considering these findings, we can estimate that Group C exhibited increasing cognitive fatigue 

and expenditure of cognitive resources across time. In contrast, the topographic maps suggest 

that Group N utilized fewer cognitive resources and exhibited more visual attention than Group 

C throughout the learning task, indicating faster associative decoding than Group C and Group R 

(Klimesch, 1997). This pattern further suggests that the neuroadaptive system successfully 

maintained Group N in their optimal learning zone (ZPD), without compromising learning 

outcomes. Moreover, the profile of Group R is similar to that of Group N. However, the 

visualization may indicate that they exhibit less visual attention than Group N towards the end of 

the learning task, expending more cognitive resources earlier on. 

 Regarding heart rate, Group R and Group N experienced lower ratio HRV. Research 

suggests that this indicates parasympathetic dominance (Pagani et al., 1986). Moreover, 

parasympathetic dominance could be attributed to lower levels of stress (Lin et al., 2011). 

However, the results did not show a difference in phasic EDA between groups or across blocks. 

Previous research has reported that changes in cognitive load are not linked to variation in phasic 

EDA (Shimomura et al., 2008). However, a consensus on the effect of cognitive load on phasic 

EDA has not been reached as other studies suggest that increases in cognitive load can 

potentially increase phasic EDA (Ikehara & Crosby, 2005; Shi et al., 2007). The convergence of 

the physiological results strengthens the validity of the observed effects in the EEG ratio.  

 The results point to a close relationship between engagement and IM, in that all three 

dimensions of IM predicted increases in engagement. This finding is supported by the literature 

testifying that IM positively influences learner engagement (Liu et al., 2024; Nagpal & M, 2024) 
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and employee engagement (Sutha et al., 2023). Another significant aspect of IM, specifically 

perceived competence, is its relationship to performance. As shown in Figure 5, scores in Block 

4 are significantly predicted by competence and group. Overall, higher perceived competence is 

associated with higher scores. However, this effect is not as prominent in Group R as in Group 

N. Potentially, the additive effect of motivation can explain this moderation. While IM and EM 

both contribute to performance, research suggests that when an incentive is directly tied to 

performance, IM has less of an impact on performance than EM (Cerasoli et al., 2014). This 

relationship is further explained by motivational intensity theory (Brehm & Self, 1989), where 

the effort is greater when an incentive is present, enhancing individuals’ willingness to engage 

with the adaptive system.  

 

 Regarding satisfaction, CSAT scores differed among groups, where Group R reported 

being more satisfied with the interface than Group N. With a mean score of 6.06 (SD = 0.929) 
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Figure 5. Interaction of Group and Competence on Block 4 Scores 

Note 6. Score is significantly predicted by Group and Competence. 
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we can conclude that participants in Group R are satisfied with the system. This finding aligns 

with previous research that positively links satisfaction to monetary rewards (Boyce et al., 2010; 

Cheung & Lucas, 2015; Johnson & Krueger, 2006).  

 Taking into consideration all the indicators of system success, it is evident that, overall, 

the neuroadaptive system was successful in regulating TL. The system appears to have 

minimized stress levels, optimized performance requiring less cognitive resources, and benefited 

from dimensions of IM. Despite the lack of difference in phasic EDA and intention to 

recommend the system, learners overall show a more stable cognitive state and enhanced user 

experience while using the neuroadaptive system.    

Theoretical Contributions 

 The current study extends our understanding of the implications of motivation and TL in 

a neuroadaptive learning context. First, the results demonstrate that neuroadaptive 

countermeasures can effectively act as real-time scaffolding to maintain learners in their ZPD.  

The dynamic nature of the neuroadaptive system allowed learners to operate within an optimal 

zone without experiencing underload or overload. This finding extends Vygotsky’s original 

notion of ZPD by demonstrating that scaffolding can be automated through closed-loop 

neuroadaptive technologies.  

 Second, this study contributes to self-determination theory (Deci & Ryan, 1985) by 

illustrating how IM and EM work in parallel to support learning. The current findings 

demonstrate the nuance of the additive effect of IM and EM, highlighting how IM has less of an 

impact on performance when an incentive is present. Moreover, our findings reflect motivational 

intensity theory (Brehm & Self, 1989) where the amount of effort is in line with the presence of 

an incentive.  In addition, motivational intensity theory expects the amount of effort to be 
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proportional to task difficulty, or in our case TL. Participants in the neuroadaptive condition 

sustained performance while exerting less mental effort, aligning with the optimal imposed TL, 

extending the assumptions of motivational intensity theory into the domain of neuroadaptive 

learning.  

 Finally, this study has a significant methodological contribution. Existing applications of 

TL measurement under cognitive load theory (Sweller et al., 2011) have traditionally relied on 

subjective ratings such as the NASA TLX (Hart & Staveland, 1988). In contrast, the present 

study successfully utilized a neural activity to infer TL in real-time, enabling granular, non-

invasive, and adaptive task adaptation. This technique validates the use of EEG-based metrics for 

monitoring TL and opens a new avenue for TL measurement beyond self-report.  

Practical Implications 

 Given the demonstrated effectiveness of the present study in regulating TL through a 

neuroadaptive BCI, it is essential to examine the implications and feasibility of implementing 

such technology within authentic, real-world educational contexts. The research model indicates 

a decrease in TL (effort) as a result of an interaction with the neuroadaptive interface, 

maintaining a ZPD. Placed in an education context, students would benefit from exhausting 

fewer cognitive resources while learning a similar amount as they would without cognitive 

augmentation. However, it is essential to call into question that using such a system would 

require individuals to delegate their self-regulation of cognitive capacities to the adaptive 

technology. Students would have less autonomy in the classroom. Informed consent must be 

prioritized, ensuring students understand the implications of engaging with such technology 

(Burwell et al., 2017).  Furthermore, there are other aspects to consider, such as the extent to 
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which an educator is involved in manipulating the technology, who owns the collected data, and 

the state's role in the application of neurotechnology in the education system.  

Limitations and Future Research Avenues 

 Despite the many insights gained, this study has several limitations. The adaptation took 

the form of a change in feedback presentation time. The timing was given a floor and ceiling 

value of 3 seconds and 8 seconds, respectively. This decision was made to fit with the rate of TL 

calculations. However, it remains to be investigated and validated whether a free range of 

feedback presentation time would be optimal. In the case of measuring IM and engagement, both 

scales were presented post-task. Since the task took 45 minutes to 1 hour to complete, it is 

possible that these scores were not representative of the initial learning blocks. Future studies 

should consider measuring these constructs between blocks. 

 Holistically, the scalp topography maps provide promising results that merit further 

investigation. The frontal and parietal areas discussed can be further mapped to the extensively 

studied Broadman’s areas, which would reveal additional, more salient insights into the cognitive 

mechanisms at work in the neuroadaptive learning task. Research points to Broadman’s areas 6, 

8, and 39 to be exceptionally involved in working memory, specifically the encoding of semantic 

and visual information (Kapur et al., 1996; Medendorp et al., 2007). To offer a more granular 

investigation, additional analyses could examine neural oscillations based on specific event-

related markers, visualizing connectivity through phase transfer entropy (Lobier et al., 2014). 

Future studies could employ more sophisticated techniques such as functional near-infrared 

spectroscopy (fNIRS), magnetoencephalography (MEG) or magnetic resonance imaging (MRI) 

to pinpoint the underlying mechanisms in the areas of interest. Our results are promising, 

showcasing group differences during a single task. Additional analyses, such as brain 
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connectivity, would be interesting to conduct as a means of determining cortical activation 

patterns across groups and different tasks. 

 Considering EM's elevated performance and neuroadaptation's maintenance of an optimal 

learning zone, future research should couple these two variables. A neuroadaptive interface 

driven by a BCI that includes extrinsically motivating factors may further demonstrate increased 

learning capacities. In addition, the model could be tested and validated with a different target 

(learning psychological theories) or with a different type of learning task (solving math 

equations).  

Conclusion 

 Ultimately, this study highlights the effects of motivation and TL in a learning task. The 

combined effects of IM and EM facilitate learning, working in parallel to enhance learning 

outcomes. EEG data and physiological measures indicate a reduction in TL following 

neuroadaptive countermeasures. Moreover, the topographic maps further stress the effectiveness 

of the neuroadaptive system to enable users to maintain optimal levels of TL, reducing cognitive 

strain while achieving similar outcomes to users without the system. The findings provide robust 

evidence highlighting the utility of measuring TL in learning environments. However, as 

neuroadaptive BCI technologies continue to evolve, it is vital to address the ethical 

considerations of widespread implementation in organizational contexts.  
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Chapter 3 

Time Well Spent: Tailoring Learning to Unlock Potential2 

Katrina Sollazzo, Alexander John Karran, Sylvain Sénécal 

 

 In 2022, 21.8% of Canadians over the age of 15 took part in formal training or learning 

online 3. As online learning continues to grow, it is essential to consider how we can create the 

optimal online learning environment. Advancements in personalized learning using 

neuroadaptive systems are shaping how we approach learning and motivation. Neuroadaptive 

systems use recordings of brain activity to generate changes in a training or learning interface, 

aiming to prompt a change in a user’s behaviour 4. In contexts such as driving 5 and aviation 6, 

neuroadaptive systems have been shown to improve performance and the overall user 

experience. These systems help users in a dynamic way by altering features such as the level of 

difficulty, feedback mechanisms, or the amount of time allotted for tasks 7.  

 Some neuroadaptive systems, like Neuralink 8, use highly invasive techniques that 

require a medical procedure. More commonly, non-invasive methods are used, which rely on 

data such as brain activity, eye movements, or heart rate to drive the system. Typically, 

 
2 This article is in preparation for publication in The Conversation. 
3 Statistics Canada, “Selected Online Activities by Gender, Age Group and Highest Certificate, Diploma or Degree 

Completed.” 
4 Krol and Zander, “Passive Bci-Based Neuroadaptive Systems”; Zander et al., “Neuroadaptive Technology Enables 

Implicit Cursor Control Based on Medial Prefrontal Cortex Activity.” 
5 Alguindigue et al., “Biosignals Monitoring for Driver Drowsiness Detection Using Deep Neural Networks.” 
6 Borghini et al., “Real-Time Pilot Crew’s Mental Workload and Arousal Assessment During Simulated Flights for 

Training Evaluation.” 
7 Dehais et al., “A Neuroergonomics Approach to Mental Workload, Engagement and Human Performance.” 
8 Fiani et al., “An Examination of Prospective Uses and Future Directions of Neuralink.” 
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neuroadaptive systems measure the cognitive state of an individual to determine what changes 

are needed to optimize the user experience 9.   

Our study 

 We conducted a study to explore personalized learning using a neuroadaptive system 

based on task load, a cognitive state related to mental effort. Task load may be a critical factor in 

learning performance, and adjusting parameters, such as providing additional time for 

challenging tasks, could meaningfully impact performance. While task load is a key 

consideration in learning performance, there are other influences at play. Notably, motivation 

plays an essential role in learning 10. Motivation can come from the self (intrinsic motivation) or 

it can come from an external source (extrinsic motivation; Ryan & Deci, 2000). Regardless, both 

types of motivation work in parallel to boost learning. Given the interplay between 

neuroadaptive systems, task load, and motivation, two key questions arise: 

1.   How do personalized dynamic time changes promote learning? 

2. What role does motivation play in an online learning task? 

 While monitoring their brain activity with electroencephalography (EEG), participants 

completed a memory task. Participants were aiming to learn 32 constellations, a topic they were 

likely to be unfamiliar with. Participants were randomly assigned to one of three groups to 

compare different learning strategies. One group of participants were incentivized with a chance 

to win a monetary prize, based on their performance, in order to tap into their extrinsic 

motivation. Participants in the neuroadaptive group experienced changes in the learning interface 

 
9 Beauchemin et al., “Enhancing Learning Experiences”; Karran et al., “Toward a Hybrid Passive BCI for the 

Modulation of Sustained Attention Using EEG and fNIRS”; Serrhini and Dargham, “Toward Incorporating Bio-

Signals in Online Education Case of Assessing Student Attention with BCI.” 
10 Duan et al., “The Effect of Intrinsic and Extrinsic Motivation on Memory Formation”; Liang et al., “How Intrinsic 

Motivation and Extrinsic Incentives Affect Task Effort in Crowdsourcing Contests”; Zhozhikashvili et al., “Working 

Memory Processes and Intrinsic Motivation.” 
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based on the task load inferred from their brain activity. These changes were intended to 

maintain an optimal task load for learning.  

What did we find? 

 On the surface, all three groups demonstrated  a learning curve across the task, whereas 

the incentivized group performed slightly better in the latter stages. However, the brain activity 

revealed that participants in the neuroadaptive group achieved similar results as those in the 

control group, with less mental effort. We believe, this is because the system successfully 

optimized the timing of feedback to match their mental capacity. Each group employed different 

strategies to learn the material; they managed their cognitive resources differently across the 

learning task. The neuroadaptive group appeared to maintain focus, while the other groups 

seemed to experience cognitive fatigue.  

 Moreover, motivation played a role in engagement and performance. The more 

competent a person believed they were, the better they performed, with this relationship being 

pronounced in the incentivized and neuroadaptive groups. These findings suggest that motivation 

and cognitive regulation work together to create the optimal learning experience.  

Best practices and recommendations 

 Even though this study employed a complex, highly technical research design, the key 

takeaway is quite simple: timing is everything. The findings highlight the critical role of time in 

shaping learning outcomes. As technology advances and neuroadaptive systems become more 

accessible, these systems should be implemented where possible to enhance performance. In 

cases where it is impossible, educators and managers should allow flexible time adjustments 

based on task complexity and each learner’s individual needs. Moreover, breaks could be 



54 

 

incorporated along with flexible pacing to avoid cognitive fatigue, particularly in tasks requiring 

continuous attention.  

 Moreover, the results suggest that both intrinsic and extrinsic motivation can significantly 

influence learning and overall performance. Tailoring strategies to leverage these motivational 

factors can further enhance learning outcomes. For example, offering an incentive, be it 

monetary or recognition-based, can boost extrinsic motivation, while creating a sense of 

competency and autonomy can foster intrinsic motivation.  

 Additionally, incorporating flexible pacing could optimize task load and maintain 

motivation by preventing frustration or disengagement caused by tasks that are too demanding or 

too easy. Allowing learners to work at a pace that aligns with their task load can keep them in the 

“sweet spot” of engagement, where they feel challenged but not overwhelmed.  

 By combining flexible timing with motivational strategies, educators and managers can 

create an environment that supports both sustained effort and a sense of accomplishment, 

ultimately leading to better learning and performance. Leveraging tools such as neuroadaptive 

systems may provide personalized experiences, empowering individuals to reach their full 

potential. By incorporating flexible timing and motivational strategies, educators and managers 

can take meaningful steps toward creating environments that are more supportive and adaptable 

to individual needs, ensuring time is truly well spent.  
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Conclusion 

 Situated at the intersection of HCI and cognitive science, this thesis investigated how 

motivational factors affect learning outcomes and engagement during a neuroadaptive task, 

driven by a TL index. To achieve this goal, we applied a novel TL index in an EEG-informed 

BCI which powered a neuroadaptive system. This system presented a learning task where the 

time allotted for interaction with the feedback stimulus was adjusted in real time based on TL 

classification.  Specifically, this thesis explored the following research question: 

How can neuroadaptive technologies reshape traditional approaches to online learning 

by addressing the limitations of extrinsic motivation? 

 The findings suggest that the neuroadaptive countermeasures successfully maintained the 

ZPD of the neuroadaptive group by providing adequate scaffolding, allowing them to complete 

the task in their optimal learning state, based on the measurement of their experienced TL. 

Furthermore, the generation of sensor-level EEG-based scalp topographic maps revealed unique 

learning profiles for each group. While the TL values point to the presence of theta-dominance in 

all groups, it is evident that the neuroadaptive group had the lowest level of theta-dominance in 

Block 4. Coupled with the topographic visualization, we can infer that the neuroadaptive group 

exhibited a better allocation of cognitive resources throughout the task than the other groups.  

 Overall, the neuroadaptive system proved successful at regulating TL. Users who 

interacted with the system showed a more stable cognitive state, which allowed them to best 

manage their cognitive resources during the task.  

Theoretical Contributions 

The utilization of a TL index in a neuroadaptive online learning task in combination with 

motivational factors elicits multiple contributions to the theories in which they are grounded. 
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Regarding the neuroadaptive element, the TL-driven countermeasures successfully maintained 

learners’ ZPD. Therefore, this study expands Vygotsky’s ZPD framework to include 

neuroadaptive countermeasures as an adequate means of scaffolding (Vygotsky & Cole, 1978). 

These findings suggest the system actively combatted both cognitive underload and cognitive 

overload, further contributing to the current understanding of cognitive regulation. Additionally, 

examining the effects of EM and IM, the results support self-determination theory (Deci & Ryan, 

1985) providing evidence of the additive effect of motivation on performance.  

Practical Implications 

The plethora of BCI research today shows promise for many real-world applications. The 

testing of the novel TL index in the neuroadaptive learning task is no different. This study 

demonstrates the utility of leveraging neurophysiological measures in educational and training 

contexts. Learners could take advantage of the preservation of cognitive resources from the 

interaction with a neuroadaptive system. However, employing these learning strategies in 

educational contexts has unique ethical considerations. Neuroethics is an emergent field that 

presents principal ethical considerations around neurotechnologies. Regarding the 

implementation of neuroadaptive technologies in an educational setting, it is important to 

consider several factors. As systems increasingly rely on neurophysiological data to optimize 

learning experiences, safeguarding learner privacy as they delegate their self-regulation to 

technology is paramount. This decrease in autonomy enforces the priority of having informed 

consent, drawing attention to the implications of engaging with such systems (Burwell et al., 

2017). Addressing neuroethical concerns proactively will be essential for fostering trust, 

acceptance, and responsible adoption of neuroadaptive learning technologies in educational 

contexts.  
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Future Directions 

Future studies should consider an experimental design that integrates additional 

measurements of the subjective variables to elicit additional insights into the user experience. 

While successful, current EEG-based neuroadaptive systems are complex and not ideal for 

widespread adoption in typical educational or training environments. Assessing the utility of 

simpler measures to drive the system, such as pupillometry through eye-tracking technology, 

could more feasibly lead to broader practical applications of the neuroadaptive system.  

Additionally, the current system employed a logic-based method of classification. An 

important direction for future research involves the integration of advanced machine learning 

algorithms within a neuroadaptive learning environment. Harnessing deep learning solutions to 

classify cognitive states, future studies could enhance system responsiveness and personalization.  

Future research can apply these findings to other areas of learning. In this study, we 

focused on associative memory, assessed with recognition-based recall. The neuroadaptive 

system employed in this study could be applied to other areas such as math learning, or more 

conceptual topics. Further validation of the system with a wide variety of learning targets will 

provide additional support for widespread implementation.  

Concluding Remarks 

 This thesis highlights the critical role of motivational and neuroadaptive mechanisms in 

optimizing learning experiences and enhancing learner outcomes within digital environments. 

Bridging theoretical insights from psychology with HCI and empirical evidence derived from 

neurophysiology, the findings contribute to both theoretical expansion and practical innovation 

in neuroadaptive educational technology. Despite its limitations, this work presents a meaningful 

step toward tailored, cognitively sustainable digital learning experiences. Future research 
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incorporating advanced approaches, such as machine learning, and varied task contexts hold 

significant promise for further refining and validating these systems. Ultimately, continued 

multidisciplinary approaches will remain pivotal in shaping the next generation of user-centered 

educational technologies. 
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Table 2 

Items for Psychometric Scales 

Construct Items Reference 

Intrinsic 

Motivation 

(7-point slider, strongly disagree - strongly 

agree) 

Interest/enjoyment  

• I enjoyed doing the constellation learning 

activity very much. 

• The constellation learning activity was 

fun to do. 

• I would describe the constellation 

learning activity as very interesting. 

• I thought the constellation learning 

activity was quite enjoyable 

Perceived competence 

• I think I am pretty good at the 

constellation learning activity. 

• After working at the constellation 

learning activity for a while, I felt pretty 

competent. 

• I am satisfied with my performance at the 

constellation learning activity. 

• I was pretty skilled at the constellation 

learning activity. 

Effort/importance 

• I put a lot of effort into the constellation 

learning activity. 

• I tried very hard on the constellation 

learning activity. 

• It was important to me to do well at the 

constellation learning activity. 

Ryan, R. M. (1982). Control 

and Information in the 

Intrapersonal Sphere: An 

Extension of Cognitive 

Evaluation Theory. Journal of 

Personality and Social 

Psychology, 43(3), 450–461. 



ii 

 

Engagement 

(7-point slider, strongly disagree - strongly 

agree) 

Affective engagement 

• It made me happy to complete this task. 

• It was fun to complete this task.  

• I enjoyed completing this task.  

Behavioural engagement 

• I was being attentive to the task.  

• I was actively involved in completing this 

task.  

• I diligently completed this task. 

Cognitive engagement  

• This task was so absorbing that I forgot 

about everything else.  

• I did not think about anything else when 

completing this task.  

• I was fully immersed while completing 

this task.  

de Vreede, T., Andel, S., de 

Vreede, G.-J., Spector, P., 

Singh, V., & Padmanabhan, B. 

(2019). What is Engagement 

and How Do We Measure It? 

Toward a Domain Independent 

Definition and Scale. 749–758. 



iii 

 

Prior 

Knowledge 

Please indicate your level of general 

knowledge of constellations (slider scale 1-

10) 

 

Please indicate your level of general 

knowledge of astronomy (slider scale 1-10) 

 

To what extent do you agree or disagree 

with the following statements? (7-point 

slider,  strongly disagree - strongly agree) 

• I know constellations pretty well. 

• I don't feel very knowledgeable about the 

theory surrounding constellations. 

• Among my circle of friends, I’m one of 

the “experts” on constellations.  

• I know the difference between astronomy 

and astrology. 

• Compared to most other people, I know 

less about constellations. 

• I am able to identify a large number of 

constellations by looking at the sky.  

• When it comes to constellations, I really 

don't know a lot. 

• I know the names of several 

constellations.  

• I like to learn about constellations.  

• I find constellations to be important and 

useful. 

Adapted from: 

Flynn, L. R., & Goldsmith, R. 

E. (1999). A Short, Reliable 

Measure of Subjective 

Knowledge. Journal of 

Business Research, 46(1), 57–

66. 

https://doi.org/10.1016/S0148-

2963(98)00057-5 

Satisfaction 

Are you satisfied with the constellation 

learning system? 

(7-point slider, strongly disagree - strongly 

agree) 

Farris, P. W., Bendle, N. T., 

Pfeifer, P. E., & Reibstein, D. 

J. (2010). Marketing metrics: 

The definitive guide to 

measuring marketing 

performance (2nd ed). Wharton 

School Pub. 

Intention to 

recommend 

How likely is it that you would recommend 

the constellation learning system to a friend, 

a colleague, or a member of your family? 

(10-point slider, not at all probable – very 

probable) 

Reichheld, F. F. (2003). The 

One Number You Need to 

Grow. Harvard Business 

Review, 81(12), 46–55. 
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