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Résumé

L’intégration croissante des technologies numériques dans les contextes éducatifs nécessite des
systemes adaptatifs capables de répondre dynamiquement a la fois a la performance des
apprenants et a leurs états cognitifs sous-jacents. Alors que les systemes traditionnels de tutorat
intelligent s’adaptent généralement a partir de mesures comportementales, les avancées récentes
en neurotechnologie soulignent le potentiel des données neurophysiologiques en temps réel pour
fournir une rétroaction plus nuancée et individualisée. Ce mémoire explore le potentiel d’un
systéme neuroadaptatif, piloté par un indice de charge de tache, afin d’améliorer la performance
et I’engagement dans une tache d’apprentissage. Lors d’une expérience contrélée en laboratoire,
51 participants ont été assignés aléatoirement a I’une des trois conditions (controle, motivation
extrinseque, neuroadaptative) et ont effectué¢ une tache d’apprentissage en ligne répartie en
quatre blocs, avec enregistrement continu des données physiologiques et neurophysiologiques.
Les participants ont également rempli des mesures auto-déclarées d’engagement et de motivation
intrinseque. Les résultats indiquent que les participants sous motivation extrinseéque ont démontré
une meilleure performance dans les derniers blocs. A I’inverse, le groupe neuroadaptatif a atteint
des performances comparables a ceux du groupe contrdle mais avec une charge de tache
significativement réduite, expliquée par une diminution des niveaux de théta frontal et d’alpha
pariétal, suggérant une allocation plus efficace des ressources cognitives. Ces résultats
soutiennent I’intégration de rétroactions neurophysiologiques en temps réel pour une instruction
personnalisée, avec des implications pratiques pour 1’adoption élargie en éducation numérique.
Mots clés : systeme neuroadaptatif, BCI (brain-computer interface), EEG, charge de tache,
apprentissage, motivation extrinséque

Méthodes de recherche : expérimentation, recherche quantitative, mesures neurophysiologiques






Abstract

The growing integration of digital technologies in educational contexts necessitates adaptive
systems capable of responding dynamically to both learner performance and underlying
cognitive states. While traditional intelligent tutoring systems typically adapt based on
behavioural performance metrics, recent developments in neurotechnology highlight the
potential for real-time neural data to provide more nuanced and individualized feedback. The
thesis investigates the potential of a neuroadaptive system driven by a task-load index to enhance
performance and engagement during a digital learning task, by sustaining optimal cognitive
states for learning. In a controlled laboratory experiment, 51 participants were randomly assigned
to one of three conditions (control, extrinsic motivation, neuroadaptive), and completed a four-
block digital learning task, while physiological and neurophysiological data were continuously
recorded. Participants also provided self-reported measures of engagement and intrinsic
motivation. Findings suggest that participants in the extrinsic motivation condition demonstrated
superior performance in later blocks. Conversely, those in the neuroadaptive condition achieved
performance comparable to controls, but with significantly reduced task load, explained by lower
levels of frontal theta and parietal alpha band activity, suggesting more efficient cognitive
resource allocation. These findings advance the development of neuroadaptive learning systems
by empirically validating the role of real-time, neurophysiological-based feedback in
personalized instruction, thereby offering practical applications for broader adoption in digital

education.
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Introduction

In an era defined by rapid technological advancement, understanding how humans learn
and perform has never been more critical. Broadly, human-computer interaction (HCI) is the
study of the dynamics between users and information technology (Card et al., 1983). HCl is a
multidisciplinary field that borrows from cognitive science, human factors ergonomics, and
computer science. Combining these fields enables the design of functional, intuitive, and
efficient systems while aligning with human needs and capabilities. Recent developments in HCI
benefit from neuroadaptive brain-computer interfaces (BCI). Brain-computer interfaces utilize
neural activity to affect change in a system (Krol & Zander, 2017; Zander et al., 2016). The
global BCI market is projected to generate a compound annual growth rate of 18.15% from 2025
to 2030 (Grand View Research, 2024). Recent developments show promise of neuroadaptive
systems to improve daily life across multiple domains such as healthcare, aviation, and
education. Many clinical trials, such as the Neuralink clinical trials (McBride, 2025) or those
involving mood-altering brain implants (Devlin, 2025), have been in recent news, boasting of
the potential benefits of BCIs. While clinical trials attract attention with invasive procedures,
identifying effective, non-invasive methods of BCI implementation is the primary focus of
researchers worldwide to ensure a higher likelihood of user adoption (Hsieh et al., 2025).
Specifically, identifying non-invasive methods of BCI implementation facilitates neuroadaptive
learning environments, allowing for more effective learning tailored to individuals’ progress and
abilities.

In addition to adaptive systems, motivation is a pertinent factor in enhancing learning
experiences. Motivation has long been recognized as a key driver of effective learning (Deci &

Ryan, 1985), influencing performance outcomes. It is an effective means of improving outcomes,



particularly by targeting extrinsic motivation by incentivizing performance with monetary
rewards. Nevertheless, feasibility and ethics are often called into question. For example, it is
unrealistic to promise students $1 for every 10% they achieve on an exam. This challenge calls
for the search of an alternate system in which to improve outcomes, that is, a system that is easily
implemented, non-invasive, and effectively improves learning outcomes as well as, or better,
than an extrinsic motivator. A neuroadaptive system is a likely candidate to meet these goals due
to its ability to personalize the learning experience by responding dynamically to an individual’s
cognitive state (Krol & Zander, 2017; Zander et al., 2016). Additionally, new neuroadaptive
systems are aiming to be scalable and non-invasive, making them more practical for widespread
implementation in educational settings compared to extrinsic motivators.

Moreover, previous research has utilized measures of cognitive load (CL) to drive
neuroadaptive systems in various contexts (Beauchemin et al., 2024; Mark et al., 2022). Drawing
on cognitive load theory, CL is a multifaceted construct that broadly encompasses the mental
effort necessary for engaging in a task or activity (Sweller et al., 2011). While CL is affected by
additional factors such as the environmental context and task modality (Kirschner, 2002; Mayer,
2003), task load (TL), a construct beneath the umbrella of CL, solely focused on the mental
effort required to engage in a computer-based task. Since task load is an underutilized construct,
it warrants further investigation and precise operationalization to understand better its potential
for driving a brain-computer interface (BCI) that optimally enhances learning outcomes. In the
domain of neuroadaptive systems, it is postulated that countermeasures may play a similar role
as extrinsic motivation in improving learning outcomes by maintaining an optimal cognitive

state.



Addressing this research avenue is particularly important given the increasing adoption of
adaptive systems in diverse learning environments, ranging from e-learning platforms to high-
stakes professional training. It is necessary to validate the system with robust measurement tools
(i.e. EEG) before piloting more widely accessible measures such as pupillometry.

This thesis seeks to explore the role of TL utilized as input to a BCI, and its potential
impact on learning outcomes and user experience in a neuroadaptive system while considering
the role of motivation. By examining TL as a dynamic factor, this research aims to contribute to
a broader understanding of how such measures can inform and optimize user experiences. The
findings have implications for validating TL as an indicator of executive function and its
application in a wide array of domains, including education, workplace productivity, and critical
infrastructure monitoring. Considering prior research, this thesis aims to disentangle the effects
of motivation on neuroadaptive learning by posing the following research question:

How can neuroadaptive technologies reshape traditional approaches to online learning
by addressing the limitations of extrinsic motivation?

We conducted a laboratory experiment with a three-group, between-subjects design to
answer the research question. Participants completed a learning task while a 32-electrode EEG
system recorded their neural activity, classifying their TL in real-time. Additional measures of
motivation, engagement, and user experience were captured to better understand the user
experience of interacting with a neuroadaptive system. Data were analyzed using an analysis of
variance framework. Sensor-level, EEG-informed scalp topography maps were generated to
achieve deeper insight into the cognitive processes at play during the encoding phase of the
learning trials. These analyses allow for between-group comparison of the dependent variables in

addition to comparison within groups across learning blocks.



This thesis provides theoretical contributions and practical implications. Placing the
research at the intersection of neuroadaptive systems, TL, and motivation, this thesis provides
insight into how these concepts can be leveraged to optimize learning outcomes in diverse
educational and professional contexts. By introducing a novel application of TL as a driver for a
BC(I, this research expands the current understanding of adaptive systems, providing evidence in
favour of the utility of measuring TL. The advancements discussed in this thesis hold the
potential to revolutionize e-learning platforms, professional training programs, and other
domains where cognitive optimization is paramount.

This thesis comprises four chapters. The first chapter, the introduction, establishes the
foundation of the study. Chapter 2 presents the first article, a scientific recount of the
methodology and findings of the research study, details the quantitative research design,
assessing the effects of a neuroadaptive system on performance, motivation, and TL in a learning
task. In addition, this article is in preparation for submission to the academic journal ACM
Transactions on Computer-Human Interaction. Chapter 3 presents the second article, aimed at
the general population, conveying the main contributions and the practical implications of the
study presented in Chapter 2. This article is in preparation to be submitted to The Conversation,
an independent news outlet that publishes evidence-based articles aiming to disseminate
scholarly insights to the public. The thesis is completed by Chapter 4, the conclusion,
summarizing the study and the overall contributions.

The following table summarizes the student’s contributions to the various stages of the
research project and the writing of the thesis. The percentages reflect the scope of the student’s

responsibilities and the extent of their efforts in executing each task.



Table 1. Contributions and Responsibilities in the Completion of the Thesis.

Research Activity

Contribution

Research Questions

Defining the research problem — 70%
- The broad research question was established prior
- Implemented additional variables according to the
literature

Literature Review

Development of the literature review — 90%
- Identification of existing literature on the topic
- Assistance from supervisors on identifying seminal
papers

Experimental Design

Planning and structuring the experiment — 75%
- Establishing experimental protocols and procedures
- Collaboration with the lab on integrating tools and
technologies

Pre-tests

Testing procedures prior to experimentation — 95%
- Pilot testing and refining protocols according to
feedback
- Validating tools and measures
- Ensuring equipment functionality

Participant Recruitment

Recruitment and Management of Participants — 60%
- Recruitment facilitated by HEC’s research panel
- Management of participants was aided by the
Tech3Lab research panel team

Data Collection

Systematic collection of research data — 100%
- Present during all data collection sessions

Analysis

Pre-processing the data — 30%
- The data pre-processing was conducted in part by
the Tech3Lab team.
Statistical Analyses — 90%
- EEG analyses were conducted in partner with
Thaddé Rolon-Merette.

Writing

Writing of the thesis — 100%
- All thesis chapters were written independently, with
feedback from the supervisors and co-authors of the
articles.
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Chapter 2
Utilizing Task Load to Drive a Brain-Computer Interface in a

Neuroadaptive Learning Task'

Katrina Sollazzo, Alexander John Karran, Sylvain Sénécal

Abstract

The major shift towards online learning calls for methods to tailor learning to individual user
needs. A neuroadaptive system driven by a brain-computer interface (BCI) can dynamically
adapt aspects of the learning interface in real-time based on the classification of a cognitive state,
in this case, task load (TL). Task load, a construct under the umbrella of cognitive load,
considers the mental effort required to complete a computer-based task. This study employed a
three-group (n = 51) between-subjects design to investigate how motivation, a key element for
engagement and performance, affects learning outcomes during a neuroadaptive learning task
driven by a task load index. A 32-electrode electroencephalography (EEG) system captured
frontal theta and parietal alpha band activity to classify TL as low, medium, or high. This
classification drove the interface to adapt the presentation speed of the stimuli. The
neuroadaptive group achieved results comparable to those of the control group. However, further
investigation of the TL level throughout the task duration suggests the neuroadaptive group
exerted less cognitive effort than the control group. In contrast, the extrinsic motivation group,
who were promised a monetary reward based on performance, outperformed both the
neuroadaptive and control groups, exerting similar effort as the control group. Topographic maps
displaying alpha and theta activity reveal the emergence of distinct learning patterns during the

encoding phase across groups.

! This article is in preparation for publication in ACM Transactions on Computer-Human Interaction
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Introduction

Learning is fundamental to human development, allowing individuals to build on past
knowledge, develop new skills, and adapt to new challenges. From early childhood to adulthood,
effective learning is important for personal and professional growth. Many resources such as
formal in-person education and online training modules, exist to facilitate learning. With
considerable advancements in digital platforms, a significant shift has occurred toward online
learning, which has emerged as a staple method of education at all levels. In 2022, 21.8% of
Canadians over the age of 15 took part in formal training or learning online (Statistics Canada,
2023). In the context of this study, online learning is defined as any learning experience that
takes place on a digital platform. As the popularity of online learning continues to grow, it is of
vital importance that the learning experience is effective to ensure a successful educational
experience (Hongsuchon et al., 2022). Online learning offers a compelling advantage as it can be
adapted to each user’s specific needs. Past research emphasizes the importance of tailoring
teaching methods to the specific needs of the learner to optimize learning outcomes (Klasnja-
Mili¢evi¢ et al., 2011; Tekin et al., 2015). However, imposing effective adaptations requires
accurate measures of cognitive states.

Given the complexity of human cognition, psychological constructs are frequently
utilized to assess these cognitive states accurately. Fostering suitable levels of motivation and
engagement greatly impacts learning as seen in outcomes such as performance and learning
speed (Duan et al., 2020; Liang et al., 2018). Motivation, both intrinsic and extrinsic, affects how
individuals engage with tasks (Deci & Ryan, 1985). These two facets of motivation play
complementary roles in promoting effective learning. Nevertheless, the relationship between

motivation and engagement in online settings remains unclear and underexplored. Additionally,
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task difficulty can influence both motivation and engagement. The level of difficulty an
individual confronts while facing a task, in combination with the amount of effort required to
complete the task, referred to as task load (TL), can heavily influence their learning outcomes.
Unlike cognitive load (CL), TL is a multifaceted measure of real-world task performance.
Finding the right balance of TL is vital to ensure learners can perform at their optimal level.
Understanding how TL impacts performance through motivation and engagement in an online
learning task is essential to developing systems that ensure learners remain in their ideal learning
zone.

It is possible to establish the best environment for individuals to learn using Vygotsky’s
concept of the Zone of Proximal Development (ZPD) (Vygotsky & Cole, 1978).. The ZPD
delineates the ideal intersection of what an individual can accomplish on their own and what they
can accomplish with scaffolding. Notably, the ZPD is unique for every learner. Traditionally,
scaffolding is provided by teachers, mentors, or similar. However, with the rise of online
learning, it is interesting to consider the role the platform plays in facilitating the learning
experience. A logical next step would be to create an online learning interface that can adapt to
TL while taking into consideration learner motivation to enhance learner performance, by
maintaining each user’s ZPD.

The current study aims to evaluate a neuroadaptive brain-computer interface (BCI) driven
by an experimental TL index and its potential to enhance learning outcomes and engagement in a
neuroadaptive system. Therefore, this study aims to answer the following question:

RQ: To what extent does motivation affect learning outcomes and engagement

during a neuroadaptive task, driven by a task load index?
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The remainder of this article explores the methodology used to investigate this causal
relationship. Firstly, we present a review of the literature, providing a theoretical foundation and
informing our research hypotheses. Secondly, we discuss a detailed explanation of the
experimental design employed in the study. Thirdly, we present the results of our analysis.
Finally, we interpret the results and discuss their implications and scientific contributions.

Background
Zone of Proximal Development in Online Learning

Vygotsky’s framework of ZPD traditionally describes the zone in which adequate
scaffolding allows an individual to learn (Vygotsky & Cole, 1978). The key idea is that the ZPD
denotes the optimal zone for learning, where an individual can use their own experience in
conjunction with a beneficial level of support to expand their knowledge. This framework has
been previously drawn on in human-computer interaction (HCI) research. Ferguson et al. (2022)
found that in a narrative game, Al-driven personalized instruction improved learners’
performance, reducing their CL. The researchers successfully maintained a user’s optimal ZPD
by altering their cognitive state through real-time personalized instruction. Although previous
research has reported on optimal ZPD and cognitive states, little is known thus far of how
specifically a neuroadaptive BCI could alter an individual’s cognitive state to improve learning
outcomes.

Regarding online learning, the scaffolding necessary for individuals to succeed can take
shape in the form of a neuroadaptive system. Neuroadaptive systems driven by a passive BCI use
neural input from a source (such as EEG) to adapt the interface according to a classification
index (Krol & Zander, 2017; Zander et al., 2016). Neural activity, typically brain waves, is used

to infer a cognitive state, such as sustained attention (Karran et al., 2019), level of cognitive load
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(Beauchemin et al., 2024) and mindfulness (Daudén Roquet et al., 2023), which in turn is used to
adapt an interface based on a pre-determined classification of the cognitive state. The stated
model is a closed biocybernetic loop (Pope et al., 1995), which comprises four iterative steps: 1.
the individual’s actions elicit specific brain activity, 2. the brain activity is measured and
classified, 3. the system adapts depending on the classification, 4. the individual reacts to the
adaptation triggering new brain activity, consequently closing the loop. There exists both an
active and a passive form of non-invasive BCI (Zander & Kothe, 2011). In the active form, users
consciously and purposefully attempt to alter their neural activity to elicit changes in the
interface through the BCI. On the other hand, in the passive form, the user is unaware that
changes in their activity subsequently cause changes in the interface, as it is done automatically.

Passive BCls have been successfully used in a multitude of areas, including aviation
(Borghini et al., 2022; Mark et al., 2022), driving (Alguindigue et al., 2024; Liu et al., 2015), and
education (Sethi et al., 2018). In education, past research has focused on measuring key elements
critical for learning. Serrhini and Dargham (2017) developed and validated a BCI that assessed
attention as measured from alpha and beta wave frequency measurements during an online
course. Apicella et al. (2022) proposed and validated an adaptive system based on cognitive
engagement during cognitive tasks, intended to extend to online learning platforms. However,
despite these advancements, there are still significant gaps in the literature regarding the
objective measurement of cognitive states. In particular, TL is essential to assess as it is used as a
measure of the cognitive state of an individual while they are immersed in a task (Hart &
Staveland, 1988).

Given the critical role of TL in computer-based tasks, neuroadaptive countermeasures

may improve user performance by keeping users in their optimal ZPD. As the ZPD implies the
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existence of two other states; cognitive underload and cognitive overload (Vygotsky & Cole,
1978), by dynamically adjusting to real-time TL classification, the system can help the user
overcome this challenge, maintaining a cognitive state most conducive to learning.
Cognitive Load and Task Load in Neuroadaptive Learning Systems

Two main constructs have been previously studied to uncover cognitive mechanisms at
play during learning: mental workload and CL. Mental workload is a multidimensional construct
that is characterized by individual traits, cognitive states, and task criteria (Van Acker et al.,
2018). Previous research has used the NASA TLX, a subjective measurement scale, to measure
workload in online learning, reporting that students require increased effort in online learning
(Febiyani et al., 2021). Moreover, increased workload elicits increased fatigue, negatively
affecting learning outcomes (Kubicek et al., 2023). Drawing on cognitive load theory, CL is an
umbrella construct for the mental effort and cognitive resources necessary to process and store
information while performing a task (Sweller et al., 2011). Extensive research has been
conducted commending the relevance of CL on digital tasks such as learning (Beauchemin et al.,
2024; Skulmowski & Xu, 2022) and decision-making (Deck & Jahedi, 2015). However, CL is a
broad construct that considers more than task difficulty and is affected by external factors such
as environmental context and task modality (Kirschner, 2002; Mayer, 2003). Therefore, we argue
that TL is better suited to assess users' cognitive state in a computer-based task than CL or
mental workload.

Task load is an underutilized sub-construct of CL linked to task difficulty, focusing
explicitly on the mental effort required to complete a computer-based task. Task load has been
derived from mental workload to improve the classification of the cognitive process occurring

while engaged in a task. The current study aims to employ a granular measure of TL, as
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compared to mental workload and CL, through electroencephalography (EEG). Research
suggests that frontal theta is sensitive to expending cognitive resources (Xie et al., 2016),
sustained attention, and working memory (Borghini et al., 2014). Conversely, parietal alpha is
indicative of cognitive fatigue (Borghini et al., 2014). Therefore, we posit that an index created
using multiple pairs of frontal theta and parietal alpha will exhaustively represent TL. This index
will classify TL into three levels (low, medium, and high), triggering task-specific
countermeasures in the interface and facilitating the user’s performance of the task. Ultimately,
the use of the TL-driven neuroadaptive system will adjust the interface in real time, maintaining
the user at their optimal TL level, which acts as a proxy for their ZPD. The countermeasures
elicited by the TL classifications act as the scaffolding learners require to preserve their optimal
ZPD.
The Role of Motivation in Online Learning and Task Load

Motivation, both intrinsic and extrinsic, plays an essential role in learning. Ryan and Deci
(2000, p.56) define intrinsic motivation (IM) as “the doing of an activity for its inherent
satisfactions rather than for some separable consequence.” Contrarily, they define extrinsic
motivation (EM) as engaging in a task or activity with the desire to attain a specific outcome of
value. Extrinsic motivation has been studied in various ways, most often as an incentive,
typically of monetary value (Beauchemin et al., 2024; Duan et al., 2020; Liang et al., 2018).
According to self-determination theory, both forms of motivation work in parallel to promote an
individual’s ability to learn (Deci & Ryan, 1985). While the two forms act on different
mechanisms, together they support learning. Research suggests that there is an additive effect,

rather than an interaction effect, of IM and EM on memory performance (Duan et al., 2020). It is
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suggested that EM promotes learning by minimizing distractions, while IM increases attention
and activation of the reward system. Both mechanisms enhance memory formation.

As explained by the motivational intensity theory (Brehm & Self, 1989), the effort that
one is willing to exert is directly related to the demand for the task. By isolating TL from CL, we
can better investigate the role of motivation on learning. Zhozhikashvili et al. (2024) investigated
the effect of IM on working memory. Specifically, they report that although IM is not associated
with accuracy, participants who reported higher subjective IM applied additional effort when
faced with more challenging tasks. This finding is reflected in increased frontal midline theta
activity and greater alpha desynchronization.

Given the dual role of motivation on learning, it is expected that IM will moderate the
relationship between the experimental group and performance. Extrinsic motivation is a
treatment level in the experiment, as it would be impossible to disentangle the effects of the
neuroadaptive system and monetary incentive. Therefore, EM is expected to further improve
performance in a learning task, similar to the improvement yielded from utilizing a
neuroadaptive system.

Examining the Impact of Neuroadaptive Countermeasures

Implementing a novel system of cognitive state classification and adaptation necessitates
measuring the success of the system. The neuroadaptive system will be assessed by participant
performance and TL across the task. Ultimately, we expect that through the implementation of
countermeasures, the system will reduce the expenditure of cognitive resources, maintaining an
optimal learning state for each user. Nonetheless, additional measures will bolster the results.
Specifically, user satisfaction can be used to indicate how users perceive their interaction with

the system (Griffiths et al., 2007), giving insight into the user experience. Similarly, asking
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participants about their intention to recommend the system to a friend or colleague can indicate
the potential for broader adoption of a new technology (Blau et al., 2017; Rahman et al., 2022).
Moreover, both these factors interplay with engagement. Therefore, engagement will also be
measured psychometrically to indicate system success (Martin & Bolliger, 2018; Muzammil et
al., 2020).

In summary, this study aims to address gaps in the literature by investigating the role of
TL within a neuroadaptive learning task. Focusing on TL, rather than broader constructs such as
CL or mental workload, allows for a more precise classification of users’ cognitive state for real-
time adaptation of the learning environment. This adaptive approach aligns with Vygotsky’s
framework of the ZPD (Vygotsky & Cole, 1978), as it aims to maintain a learner’s optimal state
for learning through dynamic modifications. Moreover, taking into consideration both intrinsic
and extrinsic motivational factors is expected to enhance learning outcomes, providing a more
nuanced understanding of their impact on user performance. Evaluating additional system
success indicators will offer valuable insights into the user experience and the potential
implications of the neuroadaptive system. Collectively, these findings will contribute to
developing more effective and adaptive online learning platforms, ultimately bridging the gap
between cognitive state adaptation and user-centered design.

Method

Participants

Fifty-one adults (24 female; age M = 26.61, SD = 5.76) participated in the study. The
sample size is consistent with prior BCI studies using similar methods requiring intensive data
collection (Apicella et al., 2022; Beauchemin et al., 2024; Karran et al., 2019). Participants were

recruited from our institution’s panel on the basis of good health, normal or corrected vision, no
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history of neurological disorders, and advanced understanding of French, both oral and written.
Participants were compensated $60 and entered in a draw for a $200 Visa gift card, in line with
the EM condition described in the following section. Ethical approval was obtained from the
institution on March 27, 2024, under the certificate 2023-5071.
Procedure

Participants were randomly assigned to one of three groups: Control (no reward, no
adaptivity) (C; n = 19), reward and no neuroadaptive countermeasures (R; n =16 ),
neuroadaptive countermeasures and no reward (N; n = 16). Data collection sessions, conducted
in French, lasted approximately 150 minutes. After providing informed consent and demographic
information, participants underwent tool installation and signal verification (EEG impedance
check and artifact inspection). Baseline tasks were included to establish reference measurements
for physiological and EEG data. Participants completed a pre-task questionnaire establishing
demographic information and prior knowledge of the task content, followed by four blocks of the
learning task. Group R participants were informed they would earn one entry into a $200 prepaid
Visa gift card draw for every 10% improvement in their block scores. Post-task questionnaires
measured IM and engagement. Participants signed a compensation form for electronic payment
and were thanked before departure.
Experimental Design

The study used a between-subjects, three-group design where the independent variables
were EM and neuroadaptivity. EM was in the form of entries into a draw for a monetary reward,
where the more correct responses during the task, the more entries participants believed they
would receive. At the end of the study, all participants received the same number of entries in the

draw.
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Measures

To measure IM, we adapted the Intrinsic Motivation Inventory, originally developed by
Ryan (1982). The scale consists of 7 subscales, totalling 45 items. Traditionally, each item is
rated using a 7-point Likert scale from “not at all true” to “very true”. The scale was shortened to
11 items based on a 2011 study by Sun and Gao with a Cronbach alpha of .92. The current
study’s Cronbach’s alpha calculation indicated a level of internal consistency of .69. Therefore,
the three dimensions (interest oo = .88, effort o = .88, and competence a = .95) were investigated
independently.

Perceived engagement was measured using an engagement scale developed by de Vreede
et al. (2019). The scale is composed of three dimensions: affective engagement, behavioural
engagement, and cognitive engagement. The scale is composed of 15 items in total. During the
creation of the scale, the authors reported a Cronbach’s alpha of .73 for the cognitive factor, .92
for the behavioural factor, and .86 for the affective factor. Initially created to have a discipline-
independent definition and measure of engagement, the scale has since been used to assess
engagement with artificial intelligence (de Vreede et al., 2024). This study reported similar
Cronbach’s alphas for the three factors: .90, .90, and .92, respectively. The scale was reduced to
three items per dimension based on the highest factor loadings of the de Vreede et al. (2024)
study. The current study’s Cronbach’s alpha calculation revealed an acceptable level of internal
consistency (o = 0.72), therefore the dimensions were combined.

We used the Net Promoter Score (NPS) developed by Reichheld (2003) to measure
individuals’ intention to recommend. The NPS is a single-item scale scored on an 11-point Likert
scale, where 0 denotes “not likely”” and 10 denotes “likely”. To measure satisfaction, we used the

Customer Satisfaction Score (CSAT) developed by Faris et al. (2010). It is a single-item scale,
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scored on a 7-point Likert scale where 1 represents “not satisfied” and 7 represents “satisfied”.
Prior knowledge was measured with two single-item questions to get a general idea of
participants’ knowledge of the task content, as well as a 10-item scale adapted from Flynn and
Goldsmith (1999).

All scale items were presented as a sliding scale with an anchor on either end. This
decision was made to maintain valid scores in a small sample by mitigating response bias.

Regarding physiological measures, heart rate variability (HRV) was calculated as the
ratio of low-frequency power (0.04 Hz - 0.15 Hz) over high-frequency power (0.15 Hz - 0.4 Hz)
(LF/HF) (Pagani et al., 1986) throughout each block. Electrodermal activity (EDA) was
measured as average phasic EDA across each block, created from data recorded at 250Hz
averaged every second (Benedek & Kaernbach, 2010). These two physiological measures were
used as proxies for autonomic activation (Ghiasi et al., 2020).
Experimental Stimuli

The interactive user interface was adapted from Riopel et al. (2017). This specific task
was chosen as it was anticipated that participants were likely to be unfamiliar with the content.
The original task was comprised of 88 constellations. Of these constellations, 32 were selected
for this learning task based on shape similarity to increase the task's difficulty. The stimuli were
presented in four blocks. Each constellation was shown in conjunction with four possible
responses for the participant to select. The interface displayed a countdown below the response
options during the response portion and the feedback portion of each trial. See Figure 1 for a
complete example of the stimuli. Response time was fixed at five seconds. Feedback time was
fixed at five seconds for the C and R conditions. The feedback time for the N condition started at

five seconds for the first trial, then varied by one second depending on the classified TL. The
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feedback time could vary between three and eight seconds, inclusively. Each constellation was
presented twice per block, in a pre-determined randomized order, giving 64 trials per block.

Figure 1. Example of the Constellation Stimuli

Quel est le nom de la
constellation au centre de I'image?

Le bon choix était

Boussole

Ecu de Sobleski

Boussole

Hydre méle

Dauphin

Note 1. Left: Response stimulus, Right: Feedback stimulus

Instruments and Lab Setup

Participants were situated in a Faraday cage, equipped with a desk, a Lenovo monitor
(1920 x 1080, 59.93 Hz), and a chair with adjustable height. There was a two-way mirror
between the experimental room and the observation room, where participants could not see into
the observation room. In the observation room, there were three computers and five monitors.
There was a switch between two monitors to alternate which screen was displayed to the
participant. The moderator communicated with the participant via a microphone and speaker.
Data synchronization was possible through a sync box that delivered pulses from the COBALT
Bluebox (Courtemanche et al., 2022; Léger et al., 2022) to Tobii Pro Lab every 60 seconds. The
pulses could then be converted to UTC timestamps, which allowed for complete synchronization
between all data sources.

Variations in brainwave activity were captured using the g.tec NAUTILUS wireless
system (g.tec medical engineering GmbH, Schiedlberg, Austria), specifically using the
g.SCARABEO active electrodes (g.tec medical engineering GmbH, Schiedlberg, Austria). A 32-

electrode EEG montage was configured based on the 10-10 (Chatrian et al., 1985) and 10-20

21



international system (Klem et al., 1999), with adjustments made to ensure data were captured in
the areas of interest. Eight electrodes were identified as crucial to measure TL (F1-4, CP1, CP5,
P1, P5). PO3, PO4, O1, and O2 were remapped to accommodate this electrode selection. A
ground electrode was placed at Fz, and a reference electrode was placed on the right earlobe as a
common baseline to facilitate noise reduction and EEG signal comparison (Nunez et al., 1997).

EEG signals were recorded using Simulink, a Matlab-based software (version R2021b,
IBM), with a real-time sampling rate of 250Hz. A simplified Simulink model can be found in
Figure 2. All 32 channels were saved as raw EEG signals. Data for the eight electrodes of
interest were processed in real-time with Bandpass (0.5Hz-50Hz) and Notch (58Hz-62Hz) filters.
A Simulink block was also implemented for band-power extraction for the eight electrodes. Task
load classification was a two-stage process. First, 16 ratios were calculated every second and
classified as high or low based on the 1 and 3 quartile average theta-alpha ratios from the
Group C data. Majority voting dictated the TL classification per second of these high and low
classifications. Second, a final TL classification was made every six seconds based on the
previous six values to send to the interface through a lab streaming layer (LSL).

All measurement scales were administered via Qualtrics (Qualtrics, Provo, UT).
Participant sessions were recorded using a Razer Kiyo Pro Ultra 4K Webcam mounted on the
participants' monitor. An iPad Air was used to administer the consent and compensation forms

via Qualtrics (Qualtrics, Provo, UT).
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Figure 2. EEG Process Model

EEG _Sl_g_nal 3 Data Filter »{ Feature Extraction
Acquisition
¥
- Adaptation -+ Classification
Participant

Note 2. Visual representation of the closed-loop BCI system.

EDA and ECG activity were recorded using the COBALT-Bluebox system
(Courtemanche et al. 2022). Two EDA sensors were placed on the participant’s non-dominant
hand, fixed with a compression glove. We utilized a Lead 2 sensor configuration to measure
heart rate, whereby one sensor was placed beneath each collarbone, and a third was placed on the
participant’s second-to-last rib on the left side.

Statistical Analysis

All statistical analyses were conducted in R Version 4.2.1 and RStudio Version 2023.09.1
(R Core Team, 2022). The “dplyr” (Wickham et al., 2023) package was used for data cleaning.
All data visualizations were created using “ggplot2” (Wickham, 2016). The demographics table
was created using the “tablel” (Rich, 2021) package. Outliers were identified as data points that
were above Q3 plus 1.5 times the interquartile range (IQR) or below Q1 minus 1.5 times the
interquartile range. Score outliers were retained as they are indicative of interaction with the
system. Due to data quality, sample size differed between analyses depending on the variable
under investigation. Based on the nature of the data, a chi-square test or an ANOVA was used to

assess group differences. A Shapiro-Wilk test was applied to assess the normality of the data for
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each variable. The test revealed a non-normal distribution of scores for satisfaction, intention to
recommend, and engagement. In consequence, we opted to apply a non-parametric test, the
Kruskal-Wallis test, to assess the hypotheses related to these variables in accordance with the
literature (Siegel, 1957). Moreover, multiple linear regressions were run to test the hypotheses
regarding IM and engagement. All ANOVAs were run using the anova_test function from the
“rstatix” package (Kassambara, 2023), corrected for multiple comparisons using the Bonferroni
adjustment. Linear regressions were run using the Im function from the base R stats package.
Post-hoc pairwise comparisons were conducted with the pairwise t test function from the
“rstatix” package (Kassambara, 2023). A mixed ANOVA was applied to assess the effect of
group and block on the TL ratios during retrieval.
Results

Descriptive Statistics

Neither age nor gender significantly differed between groups. In addition, the level of
education and prior constellation knowledge did not differ between groups. Thus, these variables
were not used as covariates in testing the hypotheses. See Table 1 for complete demographic
data.

Table 2. Demographic Characteristics by Group

C R N Overall rF 27,2

(N=19) (N=16) (N=16) (N=51) P /X

Education 1651 11.701
Master 737%)  3(19%)  6(38%)  16(31%)

University  8(42%)  11(69%)  9(56%) 28 (54 %)

Prior
Constellation 2.72 (0.71) 2.88(1.02) 2.90(0.88) 2.83(0.85) 0.222 .8020 0.009
Knowledge

Note 3. F (2, 48). Values are presented as M(SD)
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Hypothesis Testing
Performance by Group and Block

We hypothesized that performance would differ by group across learning blocks, where
Group R would perform similarly to Group N, while better than Group C. Results show a
significant effect of learning block on score F (2, 96) = 135.235, p <.001, np? = .738. As shown
in Figure 3, there was a significant increase in scores across Block 2 (M = 37.50, SD = 12.40),
Block 3 (M = 46.40, SD = 13.30), and Block 4 (M = 50.30, SD = 12.80). The interaction between
group and learning block was not significant, ' (4, 96) = 1.795, p = .144, np* = .068. Given the
directionality of the hypotheses, one-tailed pairwise comparisons were performed. A pairwise t-
test revealed a significant difference in score in Block 4 between Group R (M = 55.10, SD =
8.25) and Group N (M =43.60, SD = 16.50, p = .0153). In Block 3, there was a significant
difference between Group R (M = 50.90, SD = 10.80) and Group N (M = 40.80, SD = 14.50, p =
.0449). In Block 4, there were trending differences between Group C (M = 51.80, SD = 10.50)

and Group N (M = 43.60, SD = 16.50, p = .0780).
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Figure 3. Mean Performance by Learning Block
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Note 4. Mean participant scores across blocks, * p <.1; ** p <.05

Satisfaction and Intention to Recommend by Group

We expected that satisfaction and intention to recommend would differ by group. Results
revealed no effect of group on intention to recommend. A second Kruskal-Wallis test was
performed to identify group differences in satisfaction scores. The effect of group was significant
significance F'(2) = 6.5135, p =.0385, n?> = .0940, where Group R (M = 6.06, SD = 0.93) tended
to report higher satisfaction scores than Group N (M =4.88, SD = 1.36, p = .0390).
Intrinsic Motivation as a Moderator Between Group and Score

We hypothesized that IM would act as a moderator between group and performance.
Three multiple linear regressions were conducted to predict Block 4 scores based on group
membership and each dimension of IM, with Group N as the reference group. The overall

models for both interest and effort were not significant, with no significant main effects or
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interactions. The overall model for competence was statistically significant, F' (5,45) =12, p <
.001, explaining 57.13% of the variance in scores (R?= 0.5713, adjusted R? = 0.5237). The main
effect of competence was significant, f = 8.093, p <.001, where higher competence scores
predict higher Block 4 scores. The interaction between Group R and competence was significant,
B=-4.67, p=.035, suggesting that Group R's slope is less steep than Group N's.
Intrinsic Motivation as a Moderator Between Group and Engagement

We expected IM to moderate the relationship between group and engagement. Results
show no effect of group on engagement. Three multiple linear regressions were conducted to
predict engagement based on group membership and each dimension of IM, with Group N as the
reference group. In the first model, the predictors were Group C and Group R, interest, and two
interaction terms between group and interest. The overall model was significant, F(5, 45) =
18.81, p <.001, explaining 67.64% of the variance in engagement (R’ = 0.6764, adjusted R’ =
0.6404). Interest was a significant predictor of engagement, = 0.5007, p <.001. In the second
model, the predictors were Group C and Group R, effort, and two interaction terms between
group and effort. The overall model was significant, F(5, 45) = 4.592, p = .002, explaining
33.79% of the variance in engagement (R?= 0.3379, adjusted R’ = 0.2643). Effort was a
significant predictor of engagement, f = 0.4712, p = .003. In the third model, the predictors were
Group C and Group R, competence, and two interaction terms between group and competence.
The overall model was significant F(5, 45) = 3.264, p = .013, explaining 26.61% of the variance
in engagement (R°= 0.2661, adjusted R = 0.1846). Competence was a significant predictor of
engagement § = 0.3422, p = .006. In conclusion, none of the three IM dimensions moderate the

relationship between group and engagement.
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Physiological Measures by Group and Block

We expected physiological measures to differ by group and block, with parasympathetic
dominance increasing in a stepwise manner (C < R <N). There were no significant main effects
or interactions of phasic EDA on learning block or group. The model demonstrated a significant
effect of group on ratio HRV F' (2, 31) =5.019, p = .0130, np* = .245. One-tailed, pairwise
comparisons revealed ratio HRV differed between Group C (M = 1.170, SD = 0.456) and Group
R (M =0.808, SD =0.292, p <.001), and Group C (M =1.170, SD = 0.456) and Group N (M =
0.746, SD = 0.223, p <.001).
Task Load by Group and Block

We hypothesized TL would be higher in Group C and Group R than in Group N. The
model revealed a group by block interaction on the average of the 16 TL ratios during retrieval F
(6,99)=3.409, p =.004, np*> = .171. One-tailed, pairwise comparisons uncover a significant
difference between Group N (M = 2.99, SD = 0.535) and Group C (M =6.37,SD =4.47,p =
.004) in Block 4. There was a trending difference between Group C and Group R (M =4.12, SD
=1.84, p=.061) in Block 4.

Discussion

Summary of Main Results

Across task blocks, there is an evident learning effect regardless of group membership.
Further investigation revealed that Group R yielded higher scores in Block 3 and 4, indicating
they may have learned more constellations. It is consistent with the literature that the promise of
a reward improves memory formation (Duan et al., 2020). Though there is a lack of
differentiation in overall scores across groups, the results suggest that Group N exerted less

effort to achieve similar results as Group C in Block 4, as observed in the 16 TL ratios. It could
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be reasoned that the neuroadaptive countermeasures helped the participant remain in their ZPD,
avoiding cognitive underload and overload. In line with motivational intensity theory (Brehm &
Self, 1989), Group N received favorable adaptations for their current cognitive capacity,
therefore reducing the need for elevated effort; additional effort was not needed as the system
maintained a balance between task demands and cognitive resources. These results support the
premise that the neuroadaptive system can effectively act as scaffolding within an online
learning task. Thus, we highlight the potential of neuroadaptive systems to complement
traditional motivational approaches by providing individualized support that adjusts in real time,
enhancing the learning experience.

All three experimental groups presented theta dominance in Block 4 to different degrees
of power spectral density. Prior cognitive research suggests that higher theta band power is
associated with a higher allocation of cognitive resources to a task (Tsang & Vidulich, 2006; Xie
et al., 2016). Notably, theta dominance has also been associated with increases in working
memory and attention (Borghini et al., 2012, 2014). This finding explains the observed increase
in TL, representing higher theta activity, in Group C in the last block of the task, as the user is on
their last try to merit a good score, drawing on intrinsic motivation. Logically, theta dominance
in Block 4 was the least prominent in Group N, indicating better allocation of cognitive resources
without compromising performance.

To complement the results of the quantitative analyses, alpha and theta power were
plotted at the sensor level in scalp topographic maps, across group and block, during the
encoding phase of the learning task (see Figure 4). The EEG-based topographic maps illustrate
the salient cerebral activity in the frontal and parietal areas, identifying distinct learning profiles

by group. More specifically, alpha and theta activity present differently for each group across
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time. At the beginning of the learning task, Group R and Group N displayed similar activity,
with medium to high frontal theta power and medium to low parietal alpha power. At the end of
the learning task, parietal alpha power appears lower for Group R than Group N. Conversely,
Group C begins the learning task with medium levels of alpha and theta power across the map.
By the end of the learning task, Group C exhibits both high parietal alpha and frontal theta
power.

Based on our knowledge of the role of parietal alpha and frontal theta oscillations in
memory tasks, these findings are as expected. Both alpha and theta have been previously

Figure 4. EEG-based Scalp Topography Maps
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Note 5. EEG-based topographic maps displaying alpha and
theta activity by group in the encoding phase of Block 2 (a)
and Block 4 (b).

indicated to play important roles in encoding information. In particular, alpha activity may
reflect rote rehearsal (Kapur et al., 1996) and visual attention and encoding (Medendorp et al.,

2007). Additionally, parietal alpha may also indicate cognitive fatigue (Borghini et al., 2014).
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Moreover, as previously discussed, frontal theta is a sensitive indicator of cognitive resource
utilization (Xie et al., 2016), sustained attention, and working memory (Borghini et al., 2014).
Considering these findings, we can estimate that Group C exhibited increasing cognitive fatigue
and expenditure of cognitive resources across time. In contrast, the topographic maps suggest
that Group N utilized fewer cognitive resources and exhibited more visual attention than Group
C throughout the learning task, indicating faster associative decoding than Group C and Group R
(Klimesch, 1997). This pattern further suggests that the neuroadaptive system successfully
maintained Group N in their optimal learning zone (ZPD), without compromising learning
outcomes. Moreover, the profile of Group R is similar to that of Group N. However, the
visualization may indicate that they exhibit less visual attention than Group N towards the end of
the learning task, expending more cognitive resources earlier on.

Regarding heart rate, Group R and Group N experienced lower ratio HRV. Research
suggests that this indicates parasympathetic dominance (Pagani et al., 1986). Moreover,
parasympathetic dominance could be attributed to lower levels of stress (Lin et al., 2011).
However, the results did not show a difference in phasic EDA between groups or across blocks.
Previous research has reported that changes in cognitive load are not linked to variation in phasic
EDA (Shimomura et al., 2008). However, a consensus on the effect of cognitive load on phasic
EDA has not been reached as other studies suggest that increases in cognitive load can
potentially increase phasic EDA (Ikehara & Crosby, 2005; Shi et al., 2007). The convergence of
the physiological results strengthens the validity of the observed effects in the EEG ratio.

The results point to a close relationship between engagement and IM, in that all three
dimensions of IM predicted increases in engagement. This finding is supported by the literature

testifying that IM positively influences learner engagement (Liu et al., 2024; Nagpal & M, 2024)
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and employee engagement (Sutha et al., 2023). Another significant aspect of IM, specifically
perceived competence, is its relationship to performance. As shown in Figure 5, scores in Block
4 are significantly predicted by competence and group. Overall, higher perceived competence is
associated with higher scores. However, this effect is not as prominent in Group R as in Group
N. Potentially, the additive effect of motivation can explain this moderation. While IM and EM
both contribute to performance, research suggests that when an incentive is directly tied to
performance, IM has less of an impact on performance than EM (Cerasoli et al., 2014). This
relationship is further explained by motivational intensity theory (Brehm & Self, 1989), where
the effort is greater when an incentive is present, enhancing individuals’ willingness to engage

with the adaptive system.

Figure 5. Interaction of Group and Competence on Block 4 Scores
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Note 6. Score is significantly predicted by Group and Competence.

Regarding satisfaction, CSAT scores differed among groups, where Group R reported

being more satisfied with the interface than Group N. With a mean score of 6.06 (SD = 0.929)
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we can conclude that participants in Group R are satisfied with the system. This finding aligns
with previous research that positively links satisfaction to monetary rewards (Boyce et al., 2010;
Cheung & Lucas, 2015; Johnson & Krueger, 2006).

Taking into consideration all the indicators of system success, it is evident that, overall,
the neuroadaptive system was successful in regulating TL. The system appears to have
minimized stress levels, optimized performance requiring less cognitive resources, and benefited
from dimensions of IM. Despite the lack of difference in phasic EDA and intention to
recommend the system, learners overall show a more stable cognitive state and enhanced user
experience while using the neuroadaptive system.

Theoretical Contributions

The current study extends our understanding of the implications of motivation and TL in
a neuroadaptive learning context. First, the results demonstrate that neuroadaptive
countermeasures can effectively act as real-time scaffolding to maintain learners in their ZPD.
The dynamic nature of the neuroadaptive system allowed learners to operate within an optimal
zone without experiencing underload or overload. This finding extends Vygotsky’s original
notion of ZPD by demonstrating that scaffolding can be automated through closed-loop
neuroadaptive technologies.

Second, this study contributes to self-determination theory (Deci & Ryan, 1985) by
illustrating how IM and EM work in parallel to support learning. The current findings
demonstrate the nuance of the additive effect of IM and EM, highlighting how IM has less of an
impact on performance when an incentive is present. Moreover, our findings reflect motivational
intensity theory (Brehm & Self, 1989) where the amount of effort is in line with the presence of

an incentive. In addition, motivational intensity theory expects the amount of effort to be
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proportional to task difficulty, or in our case TL. Participants in the neuroadaptive condition
sustained performance while exerting less mental effort, aligning with the optimal imposed TL,
extending the assumptions of motivational intensity theory into the domain of neuroadaptive
learning.

Finally, this study has a significant methodological contribution. Existing applications of
TL measurement under cognitive load theory (Sweller et al., 2011) have traditionally relied on
subjective ratings such as the NASA TLX (Hart & Staveland, 1988). In contrast, the present
study successfully utilized a neural activity to infer TL in real-time, enabling granular, non-
invasive, and adaptive task adaptation. This technique validates the use of EEG-based metrics for
monitoring TL and opens a new avenue for TL measurement beyond self-report.
Practical Implications

Given the demonstrated effectiveness of the present study in regulating TL through a
neuroadaptive BCI, it is essential to examine the implications and feasibility of implementing
such technology within authentic, real-world educational contexts. The research model indicates
a decrease in TL (effort) as a result of an interaction with the neuroadaptive interface,
maintaining a ZPD. Placed in an education context, students would benefit from exhausting
fewer cognitive resources while learning a similar amount as they would without cognitive
augmentation. However, it is essential to call into question that using such a system would
require individuals to delegate their self-regulation of cognitive capacities to the adaptive
technology. Students would have less autonomy in the classroom. Informed consent must be
prioritized, ensuring students understand the implications of engaging with such technology

(Burwell et al., 2017). Furthermore, there are other aspects to consider, such as the extent to
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which an educator is involved in manipulating the technology, who owns the collected data, and
the state's role in the application of neurotechnology in the education system.
Limitations and Future Research Avenues

Despite the many insights gained, this study has several limitations. The adaptation took
the form of a change in feedback presentation time. The timing was given a floor and ceiling
value of 3 seconds and 8 seconds, respectively. This decision was made to fit with the rate of TL
calculations. However, it remains to be investigated and validated whether a free range of
feedback presentation time would be optimal. In the case of measuring IM and engagement, both
scales were presented post-task. Since the task took 45 minutes to 1 hour to complete, it is
possible that these scores were not representative of the initial learning blocks. Future studies
should consider measuring these constructs between blocks.

Holistically, the scalp topography maps provide promising results that merit further
investigation. The frontal and parietal areas discussed can be further mapped to the extensively
studied Broadman’s areas, which would reveal additional, more salient insights into the cognitive
mechanisms at work in the neuroadaptive learning task. Research points to Broadman’s areas 6,
8, and 39 to be exceptionally involved in working memory, specifically the encoding of semantic
and visual information (Kapur et al., 1996; Medendorp et al., 2007). To offer a more granular
investigation, additional analyses could examine neural oscillations based on specific event-
related markers, visualizing connectivity through phase transfer entropy (Lobier et al., 2014).
Future studies could employ more sophisticated techniques such as functional near-infrared
spectroscopy (fNIRS), magnetoencephalography (MEG) or magnetic resonance imaging (MRI)
to pinpoint the underlying mechanisms in the areas of interest. Our results are promising,

showcasing group differences during a single task. Additional analyses, such as brain
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connectivity, would be interesting to conduct as a means of determining cortical activation
patterns across groups and different tasks.

Considering EM's elevated performance and neuroadaptation's maintenance of an optimal
learning zone, future research should couple these two variables. A neuroadaptive interface
driven by a BCI that includes extrinsically motivating factors may further demonstrate increased
learning capacities. In addition, the model could be tested and validated with a different target
(learning psychological theories) or with a different type of learning task (solving math
equations).

Conclusion

Ultimately, this study highlights the effects of motivation and TL in a learning task. The
combined effects of IM and EM facilitate learning, working in parallel to enhance learning
outcomes. EEG data and physiological measures indicate a reduction in TL following
neuroadaptive countermeasures. Moreover, the topographic maps further stress the effectiveness
of the neuroadaptive system to enable users to maintain optimal levels of TL, reducing cognitive
strain while achieving similar outcomes to users without the system. The findings provide robust
evidence highlighting the utility of measuring TL in learning environments. However, as
neuroadaptive BCI technologies continue to evolve, it is vital to address the ethical

considerations of widespread implementation in organizational contexts.
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Chapter 3

Time Well Spent: Tailoring Learning to Unlock Potential®

Katrina Sollazzo, Alexander John Karran, Sylvain Sénécal

In 2022, 21.8% of Canadians over the age of 15 took part in formal training or learning
online 3. As online learning continues to grow, it is essential to consider how we can create the
optimal online learning environment. Advancements in personalized learning using
neuroadaptive systems are shaping how we approach learning and motivation. Neuroadaptive
systems use recordings of brain activity to generate changes in a training or learning interface,
aiming to prompt a change in a user’s behaviour . In contexts such as driving > and aviation ©,
neuroadaptive systems have been shown to improve performance and the overall user
experience. These systems help users in a dynamic way by altering features such as the level of
difficulty, feedback mechanisms, or the amount of time allotted for tasks 7.

Some neuroadaptive systems, like Neuralink #, use highly invasive techniques that
require a medical procedure. More commonly, non-invasive methods are used, which rely on

data such as brain activity, eye movements, or heart rate to drive the system. Typically,

2 This article is in preparation for publication in The Conversation.

3 Statistics Canada, “Selected Online Activities by Gender, Age Group and Highest Certificate, Diploma or Degree
Completed.”

4 Krol and Zander, “Passive Bci-Based Neuroadaptive Systems”; Zander et al., “Neuroadaptive Technology Enables
Implicit Cursor Control Based on Medial Prefrontal Cortex Activity.”

5 Alguindigue et al., “Biosignals Monitoring for Driver Drowsiness Detection Using Deep Neural Networks.”

¢ Borghini et al., “Real-Time Pilot Crew’s Mental Workload and Arousal Assessment During Simulated Flights for
Training Evaluation.”

7 Dehais et al., “A Neuroergonomics Approach to Mental Workload, Engagement and Human Performance.”

8 Fiani et al., “An Examination of Prospective Uses and Future Directions of Neuralink.”



neuroadaptive systems measure the cognitive state of an individual to determine what changes
are needed to optimize the user experience °.
Our study

We conducted a study to explore personalized learning using a neuroadaptive system
based on task load, a cognitive state related to mental effort. Task load may be a critical factor in
learning performance, and adjusting parameters, such as providing additional time for
challenging tasks, could meaningfully impact performance. While task load is a key
consideration in learning performance, there are other influences at play. Notably, motivation
plays an essential role in learning '°. Motivation can come from the self (intrinsic motivation) or
it can come from an external source (extrinsic motivation; Ryan & Deci, 2000). Regardless, both
types of motivation work in parallel to boost learning. Given the interplay between
neuroadaptive systems, task load, and motivation, two key questions arise:

1.  How do personalized dynamic time changes promote learning?
2. What role does motivation play in an online learning task?

While monitoring their brain activity with electroencephalography (EEG), participants
completed a memory task. Participants were aiming to learn 32 constellations, a topic they were
likely to be unfamiliar with. Participants were randomly assigned to one of three groups to
compare different learning strategies. One group of participants were incentivized with a chance
to win a monetary prize, based on their performance, in order to tap into their extrinsic

motivation. Participants in the neuroadaptive group experienced changes in the learning interface

° Beauchemin et al., “Enhancing Learning Experiences”; Karran et al., “Toward a Hybrid Passive BCI for the
Modulation of Sustained Attention Using EEG and fNIRS”; Serrhini and Dargham, “Toward Incorporating Bio-
Signals in Online Education Case of Assessing Student Attention with BCL.”

19 Duan et al., “The Effect of Intrinsic and Extrinsic Motivation on Memory Formation”; Liang et al., “How Intrinsic
Motivation and Extrinsic Incentives Affect Task Effort in Crowdsourcing Contests”’; Zhozhikashvili et al., “Working
Memory Processes and Intrinsic Motivation.”
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based on the task load inferred from their brain activity. These changes were intended to
maintain an optimal task load for learning.
What did we find?

On the surface, all three groups demonstrated a learning curve across the task, whereas
the incentivized group performed slightly better in the latter stages. However, the brain activity
revealed that participants in the neuroadaptive group achieved similar results as those in the
control group, with less mental effort. We believe, this is because the system successfully
optimized the timing of feedback to match their mental capacity. Each group employed different
strategies to learn the material; they managed their cognitive resources differently across the
learning task. The neuroadaptive group appeared to maintain focus, while the other groups
seemed to experience cognitive fatigue.

Moreover, motivation played a role in engagement and performance. The more
competent a person believed they were, the better they performed, with this relationship being
pronounced in the incentivized and neuroadaptive groups. These findings suggest that motivation
and cognitive regulation work together to create the optimal learning experience.

Best practices and recommendations

Even though this study employed a complex, highly technical research design, the key
takeaway is quite simple: timing is everything. The findings highlight the critical role of time in
shaping learning outcomes. As technology advances and neuroadaptive systems become more
accessible, these systems should be implemented where possible to enhance performance. In
cases where it is impossible, educators and managers should allow flexible time adjustments

based on task complexity and each learner’s individual needs. Moreover, breaks could be
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incorporated along with flexible pacing to avoid cognitive fatigue, particularly in tasks requiring
continuous attention.

Moreover, the results suggest that both intrinsic and extrinsic motivation can significantly
influence learning and overall performance. Tailoring strategies to leverage these motivational
factors can further enhance learning outcomes. For example, offering an incentive, be it
monetary or recognition-based, can boost extrinsic motivation, while creating a sense of
competency and autonomy can foster intrinsic motivation.

Additionally, incorporating flexible pacing could optimize task load and maintain
motivation by preventing frustration or disengagement caused by tasks that are too demanding or
too easy. Allowing learners to work at a pace that aligns with their task load can keep them in the
“sweet spot” of engagement, where they feel challenged but not overwhelmed.

By combining flexible timing with motivational strategies, educators and managers can
create an environment that supports both sustained effort and a sense of accomplishment,
ultimately leading to better learning and performance. Leveraging tools such as neuroadaptive
systems may provide personalized experiences, empowering individuals to reach their full
potential. By incorporating flexible timing and motivational strategies, educators and managers
can take meaningful steps toward creating environments that are more supportive and adaptable

to individual needs, ensuring time is truly well spent.
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Conclusion

Situated at the intersection of HCI and cognitive science, this thesis investigated how
motivational factors affect learning outcomes and engagement during a neuroadaptive task,
driven by a TL index. To achieve this goal, we applied a novel TL index in an EEG-informed
BCI which powered a neuroadaptive system. This system presented a learning task where the
time allotted for interaction with the feedback stimulus was adjusted in real time based on TL
classification. Specifically, this thesis explored the following research question:

How can neuroadaptive technologies reshape traditional approaches to online learning

by addressing the limitations of extrinsic motivation?

The findings suggest that the neuroadaptive countermeasures successfully maintained the
ZPD of the neuroadaptive group by providing adequate scaffolding, allowing them to complete
the task in their optimal learning state, based on the measurement of their experienced TL.
Furthermore, the generation of sensor-level EEG-based scalp topographic maps revealed unique
learning profiles for each group. While the TL values point to the presence of theta-dominance in
all groups, it is evident that the neuroadaptive group had the lowest level of theta-dominance in
Block 4. Coupled with the topographic visualization, we can infer that the neuroadaptive group
exhibited a better allocation of cognitive resources throughout the task than the other groups.

Overall, the neuroadaptive system proved successful at regulating TL. Users who
interacted with the system showed a more stable cognitive state, which allowed them to best
manage their cognitive resources during the task.
Theoretical Contributions

The utilization of a TL index in a neuroadaptive online learning task in combination with

motivational factors elicits multiple contributions to the theories in which they are grounded.

58



Regarding the neuroadaptive element, the TL-driven countermeasures successfully maintained
learners’ ZPD. Therefore, this study expands Vygotsky’s ZPD framework to include
neuroadaptive countermeasures as an adequate means of scaffolding (Vygotsky & Cole, 1978).
These findings suggest the system actively combatted both cognitive underload and cognitive
overload, further contributing to the current understanding of cognitive regulation. Additionally,
examining the effects of EM and IM, the results support self-determination theory (Deci & Ryan,
1985) providing evidence of the additive effect of motivation on performance.
Practical Implications

The plethora of BCI research today shows promise for many real-world applications. The
testing of the novel TL index in the neuroadaptive learning task is no different. This study
demonstrates the utility of leveraging neurophysiological measures in educational and training
contexts. Learners could take advantage of the preservation of cognitive resources from the
interaction with a neuroadaptive system. However, employing these learning strategies in
educational contexts has unique ethical considerations. Neuroethics is an emergent field that
presents principal ethical considerations around neurotechnologies. Regarding the
implementation of neuroadaptive technologies in an educational setting, it is important to
consider several factors. As systems increasingly rely on neurophysiological data to optimize
learning experiences, safeguarding learner privacy as they delegate their self-regulation to
technology is paramount. This decrease in autonomy enforces the priority of having informed
consent, drawing attention to the implications of engaging with such systems (Burwell et al.,
2017). Addressing neuroethical concerns proactively will be essential for fostering trust,
acceptance, and responsible adoption of neuroadaptive learning technologies in educational

contexts.

59



Future Directions

Future studies should consider an experimental design that integrates additional
measurements of the subjective variables to elicit additional insights into the user experience.
While successful, current EEG-based neuroadaptive systems are complex and not ideal for
widespread adoption in typical educational or training environments. Assessing the utility of
simpler measures to drive the system, such as pupillometry through eye-tracking technology,
could more feasibly lead to broader practical applications of the neuroadaptive system.

Additionally, the current system employed a logic-based method of classification. An
important direction for future research involves the integration of advanced machine learning
algorithms within a neuroadaptive learning environment. Harnessing deep learning solutions to
classify cognitive states, future studies could enhance system responsiveness and personalization.

Future research can apply these findings to other areas of learning. In this study, we
focused on associative memory, assessed with recognition-based recall. The neuroadaptive
system employed in this study could be applied to other areas such as math learning, or more
conceptual topics. Further validation of the system with a wide variety of learning targets will
provide additional support for widespread implementation.
Concluding Remarks

This thesis highlights the critical role of motivational and neuroadaptive mechanisms in
optimizing learning experiences and enhancing learner outcomes within digital environments.
Bridging theoretical insights from psychology with HCI and empirical evidence derived from
neurophysiology, the findings contribute to both theoretical expansion and practical innovation
in neuroadaptive educational technology. Despite its limitations, this work presents a meaningful

step toward tailored, cognitively sustainable digital learning experiences. Future research
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incorporating advanced approaches, such as machine learning, and varied task contexts hold
significant promise for further refining and validating these systems. Ultimately, continued
multidisciplinary approaches will remain pivotal in shaping the next generation of user-centered

educational technologies.
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Appendices

Appendix A
Table 2
Items for Psychometric Scales
Construct Items Reference
(7-point slider, strongly disagree - strongly
agree)
Interest/enjoyment
e Ienjoyed doing the constellation learning
activity very much.
e The constellation learning activity was
fun to do.
e | would describe the constellation
learning activity as very interesting.
e [ thought the constellation learning
activity was quite enjoyable
Perceived competence Ryan, R. M. (1982). Control
Intrinsic e [ think I am pretty good at the and Information in the
. : & Intrapersonal Sphere: An
constellation learning activity. Extension of Coenitive
Motivation |e After working at the constellation 5

learning activity for a while, I felt pretty
competent.

I am satisfied with my performance at the
constellation learning activity.

I was pretty skilled at the constellation
learning activity.

Effort/importance

I put a lot of effort into the constellation
learning activity.

I tried very hard on the constellation
learning activity.

It was important to me to do well at the
constellation learning activity.

Evaluation Theory. Journal of
Personality and Social
Psychology, 43(3), 450-461.




Engagement

(7-point slider, strongly disagree - strongly
agree)
Affective engagement

e [t made me happy to complete this task.
e [t was fun to complete this task.
e I enjoyed completing this task.

Behavioural engagement

e [ was being attentive to the task.

e [ was actively involved in completing this
task.

e [ diligently completed this task.

Cognitive engagement

e This task was so absorbing that I forgot
about everything else.

e [ did not think about anything else when
completing this task.

e [ was fully immersed while completing
this task.

de Vreede, T., Andel, S., de
Vreede, G.-J., Spector, P.,
Singh, V., & Padmanabhan, B.
(2019). What is Engagement
and How Do We Measure It?
Toward a Domain Independent
Definition and Scale. 749-758.

i




Please indicate your level of general
knowledge of constellations (slider scale 1-

10)

Please indicate your level of general
knowledge of astronomy (slider scale 1-10)

To what extent do you agree or disagree
with the following statements? (7-point
slider, strongly disagree - strongly agree)

I know constellations pretty well.
I don't feel very knowledgeable about the

Adapted from:

Flynn, L. R., & Goldsmith, R.

Prior theory surrounding constellations. E. (1999). A Short, Reliable
e Among my circle of friends, I'm one of | Measure of Subjective
Knowledge the “experts” on constellations. Knowledge. Journal of
e [ know the difference between astronomy | Business Research, 46(1), 57—
and astrology. 06.
e Compared to most other people, I know https://doi.org/10.1016/50148-
less about constellations. 2963(98)00057-5
e [ am able to identify a large number of
constellations by looking at the sky.
e When it comes to constellations, I really
don't know a lot.
e | know the names of several
constellations.
e | like to learn about constellations.
e [ find constellations to be important and
useful.
Are you satisfied with the constellation Farris, P. W., Bendle, N. T.,
learning system? Pfeifer, P. E., & Reibstein, D.
Satisfaction (7-point slider, strongly disagree - strongly | J. (2010). Marketing metrics:

agree)

The definitive guide to
measuring marketing
performance (2nd ed). Wharton
School Pub.

Intention to
recommend

How likely is it that you would recommend
the constellation learning system to a friend,
a colleague, or a member of your family?
(10-point slider, not at all probable — very
probable)

Reichheld, F. F. (2003). The
One Number You Need to
Grow. Harvard Business
Review, 81(12), 46-55.
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