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Abstract

This study explores portfolio construction by leveraging sentiment analysis from earnings call tran-

scripts of North American companies in the software sector. Using advanced Natural Language Pro-

cessing (NLP) techniques and a basic lexicon-based approach with the Loughran and McDonald

(2011) dictionary, I analyze sentiment at various levels of granularity. Sentiment is computed using

a Natural Language Inference (NLI) approach with DeBERTa (He et al., 2021) and a straightfor-

ward method with FinBERT (Araci, 2019). Initially, I segment the transcripts into multiple parts,

create summaries, and extract sentiment for each segment before aggregating them into a final score

to build diverse portfolio strategies. Subsequently, I combine these individual summaries to generate

a comprehensive sentiment score for the entire transcript, providing a broader sentiment assessment.

My research includes long-short and long-only frameworks, different weighting schemes, and sev-

eral sentiment scores aggregation methodologies. I find that the granularity of sentiment extraction

significantly impacts portfolio performance, and I demonstrate the superiority of this approach in a

long-only framework. I propose several aggregation methods for sentiment scores, and I find that the

naive-average methodology is the most effective. Finally, I show that a sentiment-weighted portfolio

construction yields better results than a classic equal-weight approach.

JEL Classification: C11; C12; C22; C32; C52; C53.

Keywords: Natural Language Processing; Natural Language Inference; Large Language Models;

Sentiment Analysis; Portfolio Construction
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1 Introduction

As finance continues to evolve into a data-driven discipline, we are rapidly shifting from traditional

structured datasets to the vast and complex realm of unstructured data. The importance of this shift

is widely discussed in the literature (see Cong et al., 2019, Gentzkow et al., 2019, Loughran and

McDonald, 2020), and has become even more pronounced with the emergence of Large Language

Models (LLMs). A general conclusion of these studies is that the use of advanced techniques like

Natural Langugage Processing (NLP) on unstructured data allow to extract new usable information

for investment purposes.

The Efficient Market Hypothesis (EMH) posits that financial markets are efficient in reflecting

all available information in the prices of securities (Fama, 1970). However, subsequent research,

such as Grossman and Stiglitz (1980), challenges this notion by arguing that markets may not be

perfectly efficient. They suggest that some publicly available data may contain latent information not

immediately evident to all market participants. This perspective opens the door to exploring various

market inefficiencies, particularly the potential for certain types of information like textual content, to

be underutilized by investors. Li (2006) demonstrate that textual information is often less incorporated

into market valuations, pointing to a possible oversight in the pricing of securities.

Against this backdrop, textual sentiment analysis emerges as a powerful tool to understand and

potentially exploit the psychological foundations of investor behavior. By quantifying the affective

content of textual data, sentiment analysis aims to capture the cognitive biases that influence market

prices (Tetlock, 2007).

Sentiment analysis has thus become a focal point within the financial sector, offering an informa-

tional edge. Early work by Hu and Liu (2004) establish a foundation for extracting sentiment from

textual data, which has been adapted for financial documents to generate market insights (Tetlock

et al., 2008). Subsequent research, such as Kogan et al. (2009), expand on these methods by employ-

ing regression techniques to assess risk from the language in corporate financial reports, demonstrat-

ing the predictive power of textual sentiment analysis in financial contexts. Bollen et al. (2011) further

illustrate how aggregated mood data from social media could predict stock market trends, suggesting

that sentiment analysis can provide early indicators of market movements.
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The literature prior to 2013 largely relied on regression techniques and basic machine learning

algorithms for sentiment analysis, as summarized in Kearney and Liu (2014). However, the advent of

deep learning has significantly advanced the field. Kim (2014) demonstrates the application of Con-

volutional Neural Networks (CNNs) to sentiment analysis tasks, while Tang et al. (2015) explore the

use of Long Short-Term Memory (LSTM) networks and Gated Recurrent Neural Networks (GRNNs)

for more accurate sentiment analysis. Chakraborty et al. (2019) further combine CNNs and LSTMs in

a hybrid model, showing that deep learning models generally outperform traditional machine learning

algorithms and dictionary-based approaches due to their ability to capture semantic nuances within

texts.

The development of transformer architectures has marked a revolutionary leap forward in NLP.

Introduced by Vaswani et al. (2017), transformers use self-attention mechanisms to weigh the impor-

tance of different words within a sentence, leading to a deeper understanding of context and semantics.

This innovation paved the way for LLMs such as BERT (Devlin et al., 2019) and GPT (Radford et al.,

2018), which have set new benchmarks across a wide range of NLP tasks. The ability of transformers

to process and generate human-like text has significantly enhanced sentiment analysis, allowing for

more nuanced interpretations of textual data.

More recent studies have leveraged these advancements for various predictive tasks in finance. For

example, Jha et al. (2024) use ChatGPT to generate firm-level scores from conference call transcripts

to forecast capital expenditure adjustments, while Lopez-Lira and Tang (2023) and Pelster and Val

(2024) demonstrate the predictive power of ChatGPT-4 in analyzing news headline sentiments and

aiding stock selection. Fatouros et al. (2023) show the effectiveness of ChatGPT-3.5 in financial

sentiment analysis, and Schuettler et al. (2024) fine-tune their own LLM to perform sentiment analysis

and create long/short portfolios, both highlighting the growing role of LLMs in finance. Lopez-Lira

and Tang (2023) also demonstrate the capability of LLMs to forecast stock prices, classifying stocks

as long, uncertain, or short based on news headlines, and then using these predictions to forecast stock

returns. Lefort et al. (2024) use Bloomberg news headlines, as a data source. They initially filter it

to retain only those with potential market impact and they ask ChatGPT to classify each news item

as likely to cause an increase, decrease, or have a neutral effect on financial markets. Finally, Chen
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et al. (2022) derive sentiment from Reuters news for individual stocks and find that using LLMs to

construct sentiment-based portfolios outperforms any other sentiment analysis technique.

I build on these recent advancements in NLP and LLMs to analyze earnings call transcripts and

introduce a new methodology. My approach leverages GPT-3.5 for its text summarization capabili-

ties, as demonstrated by Brown et al. (2020) and Kim et al. (2024), and integrates advanced prompt

engineering techniques from Yue et al. (2023) and Bommarito and Katz (2022). I further enhance sen-

timent extraction using DeBERTa, which improves the understanding of word relationships (He et al.,

2021), and apply NLI for nuanced interpretation. Drawing on the sentiment-based portfolio strategies

of Wang et al. (2018), which show the effectiveness of portfolio construction based on sentiment, my

research seeks to profit from this extracted information.

In my novel methodology, I initially divide the earnings call transcripts into chunks of maximum

8000 tokens each. I choose this number because this is the maxmimum size that can be processed by

GPT-3.5 at once. After segmentation, I summarize each of these chunks using GPT-3.5; I will refer

to these summaries as ‘atoms.’ Then, I compute sentiment scores using three distinct methodologies:

DeBERTa (He et al., 2021) in a NLI framework, FinBERT (Araci, 2019), which provides discrete

sentiment scores, and a more traditional lexicon-based approach using the Loughran and McDonald

(2011) dictionary. Additionally, I explore varying levels of granularity. In the first one, I compute

sentiment scores for each atom and explore different methods to aggregate the atoms’ scores into a

final score for the transcript. In the second one, I compute a single score on a single summary of the

whole transcript.

Then, I monetize the information extracted by constructing both long-only and long-short portfo-

lios that are rebalanced each quarter. The long-only portfolios are constructed by buying the 10 stocks

with the highest sentiment score. The long-short portfolios have the same long portion, but they are

also made of a short position in the 10 stocks with the lowest sentiment scores. I also explore different

methodologies to weight the stocks in the portfolios, and I evaluate each combination of methods with

traditional portfolio performance metrics such as the Sharpe ratio and the alpha.

For the empirical analysis, I utilize a dataset of 69 companies from the software sector, covering

a backtesting period from Q1 2013 to Q4 2023, based on calendar quarters. I have access to the
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complete history of earnings call transcripts from 2013 onward, as well as monthly stock prices,

which I convert into quarterly returns for each company. Some companies in my dataset either went

public after 2013 or were delisted due to privatization or bankruptcy before the end of 2023; these

adjustments have been fully accounted for and will be described in greater detail later in the analysis.

The use of LLMs and advanced NLP techniques in sentiment analysis represents a rapidly evolv-

ing field with significant potential for future research. My study contributes to this growing body of

literature by introducing a continuous sentiment scoring mechanism via NLI, which I compare against

traditional binary classification methods, such as those provided by Loughran and McDonald (2011)

and Araci (2019). I show that my model outperforms the binary ones in a long-only setting in terms

of absolute and risk-adjusted performance metrics. With my best strategies, I am able to achieve a

cumulative gain of 18.35$ and Sharpe ratio of 2.36 with DeBERTa, whereas I get 17.29$ and 1.34

for FinBERT and 13.71$ and 1.68 for the dictionary method. However, DeBERTa strategies still

lag behind FinBERT in the long-short framework. I also find that in terms of portfolio construction,

weighting the stocks by their respective sentiment scores outperforms the traditional equal-weight

framework.

My research demonstrates the advantages of the atom methodology in capturing incremental in-

formation from textual data. This innovative approach lays the groundwork for future investigations

into more granular sentiment analysis techniques. By exploring various sentiment score aggrega-

tion strategies, I provide a comprehensive framework for applying advanced NLP tools in financial

analysis, opening new avenues for both academic research and practical application in quantitative

finance.

My key takeaways are that using an NLI framework to construct a continuous sentiment score

increases the precision and thus is better suited to use in a financial context for signal generation.

Used this way, I can also conclude that DeBERTa provides better buy signals than FinBERT even

though this latter LLM was trained on a corpus of financial texts. Another takeaway is that the

granularity at which I compute the score matters and, in my case, the more granular strategies yield

better signals. Finally, the sentiment-weighting methodology should be applied when constructing

portfolios with sentiment scores, as it always outperforms the equal-weight methodology.
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This thesis is organized as follows. Section 2 presents the data. Section 3 describes the NLP

methodology. Section 4 presents the portfolio construction. Section 5 shows the empirical results.

Finally, Section 6 concludes and presents the limitations of my research and possible extensions for

future research.
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2 Data

This section provides an overview of the data utilized in my analysis. The textual data comprises

transcripts of earnings calls from software companies, which are employed to compute sentiment

scores. For portfolio construction, I extract price data from Bloomberg Terminal, while factor data

and the risk-free rate are sourced from the Kenneth R. French Data Library.

2.1 Earnings Call Transcripts

Data collection begins with the extraction and processing of transcripts from earnings calls of 69

North American companies in the software sector (GICS code: 451030), covering the period from

January 1, 2013, to December 31, 2023. In total, 2,068 distinct transcripts are processed. The in-

vestment universe is defined to align with the transcript universe available in the CDPQ database.

It should be noted that not all companies in the dataset are continuously present or publicly traded

throughout the entire study period, resulting in fewer than 44 transcripts—the total number of quar-

ters analyzed—for certain firms. Due to confidentiality agreements and data ownership by CDPQ,

further details regarding the distribution of transcripts over time or by firm cannot be disclosed. The

resulting imbalance in transcript availability does not compromise the validity of the analysis, as it is

systematically addressed during stock selection and benchmark construction.

To process these transcripts effectively, I segment them into chunks of approximately 1000 tokens

each. Although the model used, GPT-3.5 by OpenAI (Brown et al., 2020) can receive up to 8000

tokens, I decide to use 1000 tokens only to have a more granular approach and have more details in

the summary. I use GPT-3.5 due to its cost-effectiveness compared to more advanced models and

its availability through the CDPQ. In the domain of NLP, the concept of a ‘token’ is central to many

computational linguistics tasks. A token can be broadly defined as a meaningful unit of text, typically

a word, part of a word, or a punctuation mark, that serves as input for further processing as discussed

in Grefenstette (1999).

After segmenting the text into chunks, I generate summaries for each chunk, referred to as ‘atoms’

and denoted by Ai. These atoms are constructed using GPT-3.5 in a direct manner, requiring no pre-
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processing steps such as stemming, lemmatization, or token reduction. Each chunk is input to the

LLM with a prompt to generate a concise summary of fewer than 100 words. The original transcripts,

which range in length from 5,000 to approximately 16,000 tokens, are thus decomposed into sets of

atoms. For a given transcript Ti the resulting set of atoms is denoted as Ai = {ai,1, ai,2, . . . , ai,ni
}

where ni (the number of atoms per transcript) varies between 7 and 15, depending on transcript

length. Aggregating across all transcripts in the dataset, the total number of atoms generated for all

companies and time periods is 22,976. Due to confidentiality agreements, I cannot say more about

the proprietary data used in this analysis.

2.2 Prices and Factors

I collect the closing prices of the 69 stocks at the end of each quarter to calculate simple quarterly

returns. This approach ensures consistency with the timing of portfolio return calculations, which are

also based on quarter-end values. As data availability for each stock varies over time, the breadth

of the investment universe fluctuates across different periods. Nevertheless, this variation does not

adversely affect my portfolio construction methodology. Both benchmarks and portfolios are con-

structed using all available stocks at each point in time. I also collect quarterly risk-free rate and

factor data to compute performance metrics, including the Sharpe ratio and the alpha derived from

my portfolio’s regression on the FF six-factor model.

3 NLP Methodology

In this section, I introduce the methodology underlying LLMs. I provide an overview of transformer

architectures, explain the differences between BERT, FinBERT, and DeBERTa, and introduce NLI.

3.1 Transformer Architecture and Core Principles

Transformers (Vaswani et al., 2017) revolutionized neural network design by replacing sequential

processing with parallelized attention mechanisms. Building on this foundation, modern LLMs like

BERT and DeBERTa implement specialized adaptations for financial text analysis.
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3.1.1 Core Components

The transformer architecture consists of three primary components:

• Token Embeddings: Convert discrete text tokens into continuous vector representations using

learned embeddings (E ∈ Rdmodel), where dmodel typically ranges from 512 to 4096 dimensions

in modern implementations.

• Positional Encodings: Inject sequence order information through sinusoidal functions:

PE(pos,2i) = sin

(
pos

100002i/dmodel

)
, PE(pos,2i+1) = cos

(
pos

100002i/dmodel

)
, (1)

where pos is the position index and i is the dimension.

• Multi-Head Attention: Enables simultaneous focus on different contextual relationships through

h parallel attention heads (h = 8 in original implementation).

3.1.2 Self-Attention Mechanism

The scaled dot-product attention computes contextual relationships between all token pairs:

Attention(Q,K, V ) = softmax

(
QK

′

√
dk

)
V. (2)

Where:

• Q (Query): Represents the current token’s embedding seeking context.

• K (Key): Represents embeddings of all tokens in the sequence.

• V (Value): Represents content associated with each token.

•
√
dk: A scaling factor that prevents excessively large gradients when dk (dimensionality of key

vectors) is high.

This mechanism allows transformers to dynamically focus on relevant words in a sequence. For

example, in an earnings call transcript, the model can prioritize phrases like “margin expansion” while

downplaying less relevant boilerplate text.
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3.1.3 Advantages Over Sequential Models

Transformers offer several advantages over earlier architectures like RNNs and LSTMs:

• Parallelization: Processes all tokens simultaneously, significantly improving computational

efficiency.

• Long-Range Context: Captures dependencies across entire sequences, enabling nuanced un-

derstanding of complex texts.

• Transfer Learning: Pre-training objectives such as Masked Language Modeling (MLM) allow

transformers to generalize across diverse NLP tasks.

Transformers have proven particularly effective in financial NLP tasks such as semantic parsing,

event extraction, and cross-document reasoning.

For a more detailed mathematical treatment of transformers, readers can refer to the work of

Phuong and Hutter (2022).

3.2 Bert: Bidirectional Encoder Representations From Transformers

While transformers revolutionized sequence processing, BERT (Devlin et al., 2019) introduced bidi-

rectional context understanding through two key innovations:

3.2.1 Core Architecture

The BERT architecture consists of:

• Token Embeddings: Maps input tokens to dmodel-dimensional vectors (dmodel = 768 in base

BERT).

• Positional Encodings: Injects sequence order information through learned positional embed-

dings.

• Transformer Layers: Stacked self-attention and feed-forward networks (12 layers in base

BERT).
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3.2.2 Training Objectives

BERT’s pre-training uses two unsupervised tasks to learn contextual relationships in text: MLM and

Next Sentence Prediction (NSP).

MLM MLM trains BERT to recover masked tokens by analyzing bidirectional context. For input

sequence x = [x1, ..., xn], the model randomly masks 15% of tokens. The masking strategy is as

follows:

• 80% of masked tokens are replaced with the [MASK] token.

• 10% are replaced with random tokens.

• 10% remain unchanged.

This ensures that the model does not overfit to the [MASK] token during fine-tuning.

The MLM objective function is defined as:

LMLM = −Ex∼D

∑
i∈M

logP (xi|x\M), (3)

where M is the set of masked positions, x\M is the sequence with masked tokens, and D is the training

corpus.

For example:

• Original sentence: “Revenue grew 15% despite macroeconomic headwinds.”

• Masked sentence: “Revenue [MASK] 15% despite [MASK] headwinds.”

• The model learns to predict ‘grew’ and ‘macroeconomic’ using surrounding context.

MLM enables BERT to understand semantic relationships between words, making it particularly

useful for financial contexts where nuanced language often conveys critical information.
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NSP NSP trains BERT to understand inter-sentence relationships, which is crucial for tasks like

analyzing earnings call transcripts where context spans multiple sentences. The input format for NSP

is:

[CLS] A [SEP] B [SEP],

where A and B are sentences, [CLS] is a special token representing the entire sequence, and [SEP]

separates sentences.

The NSP objective function is defined as:

LNSP = −E(A,B)∼D logP (y|CLS(A,B)), (4)

where y indicates whether B follows A (y = 1 for consecutive sentences; y = 0 for random pairs).

Examples:

• Positive Pair: A: “Q2 EBITDA margin improved to 22%.” B: “This was driven by cost opti-

mization initiatives.”

• Negative Pair: A: “Net debt stood at $4.2B.” B: “The CEO emphasized dividend sustainabil-

ity.”

NSP helps BERT capture sentence-level coherence, enabling it to understand relationships be-

tween different parts of financial documents.

Both MLM and NSP are combined during pre-training, allowing BERT to develop a deep under-

standing of language structure and context. This pre-training approach makes BERT highly adaptable

for fine-tuning on specific NLP tasks like sentiment analysis.

3.2.3 Financial Text Applications

BERT’s bidirectional context modeling proves advantageous for financial NLP tasks:

• Sentiment Ambiguity Resolution: Disambiguates terms like ‘leverage’ (financial vs. opera-

tional) through context-aware embeddings.
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• Cross-Sentence Inference: Links forward-looking statements in earnings calls (e.g., “We ex-

pect growth...” in Q&A sections) to management discussion.

• Transfer Learning: Enables fine-tuning on small financial datasets, critical given the limited

labeled data in finance (Araci, 2019).

3.3 FinBERT: Domain-Specific Financial Sentiment Analysis

Building on the general-purpose language understanding capabilities of BERT, FinBERT (Araci,

2019) was developed to address the unique linguistic patterns and challenges of financial texts. By

fine-tuning BERT on a corpus of financial documents, FinBERT enhances sentiment analysis in do-

mains where domain-specific terminology plays a critical role.

3.3.1 Architectural Foundation

FinBERT retains the core architecture of BERT but introduces modifications tailored to financial

contexts:

• Pre-training Corpus: FinBERT is pre-trained on a corpus of financial texts comprising 4.9

billion tokens, sourced from diverse financial documents such as 10-K filings, earnings call

transcripts, and analyst reports. This corpus ensures that FinBERT learns sector-specific lan-

guage patterns.

• Tokenization: The tokenizer is enhanced to handle financial terminology (e.g., ‘EBITDA,’

‘amortization’) and numerical expressions (e.g., “Q2 FY23,” “15% YoY growth”).

• Sentiment Classification Layer: A classification head is added to the pre-trained model to

map contextual embeddings to sentiment probabilities (Positive, Neutral, Negative).

The input sequence follows the standard BERT format:

Input = [[CLS];w1, w2, ..., wn; [SEP]],
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where wi represents tokenized words, [CLS] denotes the aggregate representation for sentiment clas-

sification, and [SEP] separates sentences.

3.3.2 Fine-Tuning Methodology

FinBERT is fine-tuned using supervised learning on annotated financial sentiment datasets.

Datasets Two primary datasets are used for fine-tuning:

1. Financial PhraseBank (Malo et al., 2013): Contains 4,840 sentences labeled by domain ex-

perts into Positive, Negative, and Neutral categories. Example: “EPS beat consensus by $0.12”

→ Positive.

2. FiQA Sentiment Analysis Dataset: Includes 1,173 news headlines with fine-grained sentiment

scores ranging from [−1, 1], enabling nuanced sentiment modeling.

Loss Function The cross-entropy loss function optimizes sentiment classification:

Lclassification = −
C∑
c=1

yc logP (yc),

where C is the number of sentiment classes (Positive/Neutral/Negative), yc is the true label for class

c, and P (yc) is the predicted probability.

Training Protocol The fine-tuning process involves:

• Optimizer: AdamW with a learning rate of 3× 10−5.

• Batch Size: 32.

• Early Stopping: Based on validation F1-score.

• Epochs: Typically 3-5 epochs for convergence.
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3.3.3 Financial Text Applications

FinBERT addresses several key challenges in financial sentiment analysis:

• Contextual Negation: Identifies subtle negations such as “margin expansion despite head-

winds” (Positive) versus “margin contraction despite tailwinds” (Negative).

• Sarcasm/Hedging Detection: Captures mitigating phrases like “so-called ‘growth’ strategy”

as Negative.

• Numerical Sensitivity: Processes quantitative cues (e.g., “guidance raised to 15%” → Positive)

through learned embeddings for numerical tokens.

3.3.4 Empirical Validation

FinBERT’s performance has been validated on benchmark financial sentiment tasks. Table 1 summa-

rizes its results compared to BERT.

Model Loss Accuracy F1 Score

BERT 0.38 0.85 0.84
FinBERT 0.37 0.86 0.84

Table 1: Performance With Different Pre-training Strategies
This table presents the performance of FinBERT relative to the original BERT model according to three key
metrics; Loss, Accuracy, and F1 Score. It comes from the original FinBERT paper and the results are based on
a 10-fold cross validation.

3.4 DeBERTa: Decoding-Enhanced BERT With Disentangled Attention

While FinBERT achieves strong performance in financial sentiment analysis through domain-specific

fine-tuning, DeBERTa (He et al., 2021) introduces architectural innovations that address limitations in

both BERT and FinBERT. By disentangling content and positional information, DeBERTa improves

contextual understanding, making it particularly effective for complex financial documents.
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3.4.1 Disentangled Attention Mechanism

Unlike standard transformers that conflate content and position information, DeBERTa explicitly dis-

entangles these components through separate vector representations:

• Content Matrices: Capture semantic information independent of position.

• Position Matrices: Encode relative positional relationships between tokens.

This separation allows the model to process semantic meaning and positional context as distinct

aspects of language, particularly beneficial when analyzing financial texts where both the content of

statements and their relative positioning can signal sentiment nuances. In the following, the subscript

c in Qc and Kc denotes the content-based components of the query and key matrices, respectively,

as opposed to the positional components. The disentangled attention mechanism is mathematically

formalized as:

Attention(Q,K, V ) = softmax

(
QcK

′

c +QcP
′ + PKc

′
√
dk

)
V. (5)

Where:

• Qc, Kc represent content-based query and key matrices

• P represents the relative position matrix

• V represents the value matrix

• dk is the dimensionality of the key vectors

This formulation decomposes attention computation into three components: content-to-content

(QcK
′

c), content-to-position (QcP
′
), and position-to-content (PK

′

c) interactions. This granular ap-

proach enables more precise modeling of relationships between tokens in financial narratives, where

subtleties in phrasing can significantly impact sentiment interpretation.
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3.4.2 Enhanced Mask Decoder

DeBERTa enhances BERT’s MLM objective by incorporating absolute positional information during

the decoding phase. This enhanced mask decoder (EMD) improves token prediction by conditioning

on both contextual tokens and their absolute positions.

The training objective can be expressed as:

LEMD = −Ex∼D

∑
i∈M

logP (xi|x\M ,Posi). (6)

Where:

• M is the set of masked token positions

• x\M represents the input sequence with masked tokens

• Posi is the absolute position of the i-th token

• D is the training corpus

By incorporating absolute positions in the decoder, DeBERTa achieves more accurate token pre-

dictions, particularly beneficial for financial statements where the absolute position of information

(e.g., early vs. late mention of earnings results) can be semantically significant.

3.4.3 Relative Position Encoding

DeBERTa implements a sophisticated position encoding scheme that captures the relative distances

between tokens. Unlike BERT’s absolute position embeddings, DeBERTa’s relative position encoding

directly models token-to-token positional relationships:

RelPos(i, j) = log(|i− j|+ 1) · sign(i− j). (7)

Where i and j are the positions of two tokens in the sequence. This logarithmic scaling:

• Gives higher resolution to nearby tokens

• Reduces the impact of distance for far-apart tokens
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• Preserves directional information through the sign function

The relative position encoding is particularly advantageous for processing long financial docu-

ments such as earnings calls, where relationships between distant pieces of information (e.g., forward

guidance mentioned far from previous performance metrics) need to be captured.

3.4.4 Application to Financial NLP

DeBERTa’s architectural improvements make it particularly well-suited for financial sentiment anal-

ysis for several reasons:

• Long-Range Dependencies: The disentangled attention mechanism better captures relation-

ships between distant parts of earnings calls, such as connections between preliminary state-

ments and subsequent explanations.

• Contextual Disambiguation: Financial terms often have context-dependent meanings (e.g.,

‘volatile’ can be positive or negative depending on the context). DeBERTa’s enhanced contex-

tual modeling improves disambiguation of such terms.

• Structural Sensitivity: Earnings calls follow semi-structured formats where position carries

meaning. DeBERTa’s explicit handling of positional information helps capture these structural

aspects.

Empirical benchmarks such as GLUE and SuperGLUE demonstrate DeBERTa’s superior per-

formance over BERT across multiple NLP tasks. In financial NLP applications, these improvements

translate to more accurate sentiment classification and topic modeling of earnings transcripts, creating

a stronger foundation for investment signal generation.

3.5 NLI

Building upon the capabilities of powerful language models like DeBERTa, we now explore NLI,

a fundamental task in natural language understanding that benefits significantly from DeBERTa’s

enhanced architecture.
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NLI studies whether a hypothesis can be inferred from a premise, where both are text sequences. It

determines the logical relationship between a pair p (premise) and h (hypothesis). These relationships

typically fall into three categories:

• Entailment: The hypothesis can be inferred from the premise.

• Contradiction: The negation of the hypothesis can be inferred from the premise.

• Neutral: Neither entailment nor contradiction holds.

For illustration, consider the following examples:

• Entailment:

Premise: “Two women are hugging each other.”

Hypothesis: “Two women are showing affection.”

• Contradiction:

Premise: “The man is running.”

Hypothesis: “The man is sleeping.”

• Neutral:

Premise: “The musicians are performing for us.”

Hypothesis: “The musicians are famous.”

Mathematically, given a premise p and a hypothesis h, a model f predicts the logical relationship

r between them:

r = f(p, h), where r ∈ Entailment, Contradiction, Neutral. (8)

Modern NLI systems predominantly employ transformer-based architectures. The standard ap-

proach involves encoding the premise and hypothesis pair as a single sequence with special tokens:

input = [CLS]; p; [SEP];h; [SEP]. (9)

20



This input is then processed through the transformer architecture to produce a classification output.

The model function can be formalized as:

f(p, h) = softmax(W · Transformer(input) + b). (10)

Where W and b are learnable parameters, and the output is a probability distribution over the three

possible relationships. In this analysis, we use positive, negative, and neutral as the three relationships

to get sentiment scores.

As NLP systems continue to evolve, NLI remains a critical component for achieving true language

understanding and reasoning capabilities. The superior performance of DeBERTa on NLI tasks is

highlighted in He et al. (2021) with tests on empirical benchmarks like MNLI.

4 Portfolio Construction

This section outlines the methodological framework for constructing portfolios based on textual sen-

timent analysis. First, I detail the computation of sentiment scores using four distinct methodological

approaches. Next, I present the aggregation schemes employed to synthesize these scores. Finally, I

describe the portfolio formation process and the metrics used to evaluate performance. Table 5 at the

end of the section gives an overview of all the portfolios constructed using different combinations of

methodologies.

4.1 Sentiment Scoring

First, I utilize DeBERTa within an NLI framework (at two different granularity levels), which pro-

duces a continuous sentiment score ranging from -1 to 1. This score corresponds to the probabilistic

distribution over positive, negative, and neutral sentiment categories. Next, I apply FinBERT, which

generates discrete sentiment values of 1, 0, and -1, representing positive, neutral, and negative senti-

ment, respectively. Finally, I employ the traditional lexicon-based approach developed by Loughran

and McDonald (2011), which provides a continuous sentiment score between -1 and 1, although

through a less complex methodology compared to transformer-based models. Table 3, presented at
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the end of this section, provides a comprehensive summary of the methodologies employed for senti-

ment scoring and their respective characteristics.

4.1.1 NLI With DeBERTa

I compute NLI sentiment scores at two levels of granularity; at the topic level (denoted NLI-t) and at

the transcript level (denoted NLI).

Topic-Level Scores Let K = 15 denote the number of predefined topics (see Table 2) compiled in

collaboration with a professional equity research analyst. For each atom ai, two scores are computed:

• Topic Score (tsij ∈ [0, 1]): Represents the likelihood that atom ai discusses topic tj , as deter-

mined by DeBERTa in an NLI setting.

• Sentiment Score (SNLI-t
ij ∈ [−1, 1]): Indicates the polarity associated with topic tj in atom ai,

inferred using DeBERTa’s NLI-based sentiment classification.

Formally, for atom ai and topic tj , these scores are defined as:

tsij = fDeBERTa(ai, tj), SNLI-t
ij = gDeBERTa(ai, tj), (11)

where fDeBERTa and gDeBERTa denote the topic-scoring and sentiment-scoring functions of the model,

respectively.

The topic scores tsij are obtained using the following NLI prompts:

• Premise: “The news is:” ai.

• Hypothesis: “The news contains information about:” tj

The sentiment scores SNLI-t
ij are computed using these prompts:

• Premise: “The news is:” ai.

• Positive Hypothesis: “The news contains positive information about:” tj.
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• Negative Hypothesis: “The news contains slightly negative information

about:” tj.

This approach produces K = 15 topic and sentiment scores per atom. To address the model’s

observed bias towards optimistic sentiment classifications, the negative hypothesis prompt includes

the word ‘slightly.’ This adjustment is empirically validated: for example, when the sentence “the

food is bad” is inputted, the model yields a negative score of 0.98 with ‘slightly’ included, compared

to 0.87 without it.

Finally, the overall sentiment score for each topic and atom is computed as the difference between

the positive and negative scores:

SNLI-t
ij = SNLI-t

ij,positive − SNLI-t
ij,negative. (12)

Topic Frequency (%) Number

Revenues 38.3 1
Guidance 23.8 2
Organic Growth 8.2 3
Expenditure 6.9 4
Profitability 6.1 5
Margins 4.7 6
Mergers and Acquisitions 4.1 7
Cash Flow 2.6 8
Supply Chains 1.6 9
Macroeconomic Environment 1.1 10
Price Increases 0.9 11
Regulation and Compliance 0.8 12
Shareholder Giveback 0.4 13
Financing/Refinancing 0.3 14
Workforce Expansion/Reduction 0.1 15

Table 2: The Frequency of the Topics Among Atoms
This table presents the fifteen different topics selected and their respective frequency of occurrence in
percentage. The frequency is computed as the number of time a topic is selected for an atom (based on its
topic score) divided by the total number of atoms.

Transcript-Level Scores The less granular scoring methodology employs a synthesis approach

where all individual atoms from the same transcript are merged to form a comprehensive summary

representing the entire transcript. This aggregated text is then analyzed using DeBERTa within an

23



NLI framework to generate a singular sentiment score (SNLI
Ti

) for the complete transcript Ti, without

any topic-level granularity.

4.1.2 FinBERT

Although FinBERT’s architecture theoretically supports NLI tasks, adapting it for this framework

would require extensive fine-tuning on financial NLI datasets, a process requiring significant com-

putational resources and annotated training data. Given these constraints, I employ FinBERT in its

default classification mode, where it assigns one of three labels—Positive, Neutral, or Negative—to

each atom. These labels are numerically encoded as 1, 0, and −1 respectively. Unlike the NLI

methodology, which produces 15 topic-specific sentiment scores per atom, FinBERT generates a sin-

gle sentiment score per atom SFB
i , limiting its granularity but preserving computational efficiency.

4.1.3 Lexicon-Based Approach

In the third methodological approach, I adopt a lexicon-based strategy, making use of the Loughran

and McDonald (2011) dictionary. First, I compile two separate lists, one for positive and one for

negative terms as defined by the dictionary. Next, I convert all the atoms’ text to lowercase and split

it into individual words. For each atom, I iterate over each word and count the occurrences of words

classified as positive or negative. The scaled sentiment score SMD
i for atom ai is calculated as the

difference between the number of positive (Ni,positive) and negative (Ni,negative) words, normalized by

the total word count (Ni,words) to account for variations in atom lentgh:

SMD
i =

Ni,positive −Ni,negative

Ni,words
. (13)

This normalization facilitates the comparison of sentiment scores across atoms of varying lengths

by adjusting for differences in word count. As with the FinBERT approach, the dictionary-based

method produces a single sentiment score per atom and does not incorporate topic-specific informa-

tion.
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Characteristic DeBERTa topic (NLI-t) DeBERTa transcript (NLI) FinBERT (FB) Lexicon (MD)

Model Type Transformer-based (DeBERTa) Transformer-based (DeBERTa) Domain-specific BERT Dictionary-based

NLI Used Yes Yes No No

Input Processing Premise-hypothesis pairs Premise-hypothesis pairs Direct text input Word counting

Topic Awareness Yes (15 predefined topics) No No No

Scoring Mechanism SNLI-t
ij = SNLI-t

ij,positive − SNLI-t
ij,negative SNLI

Ti
SFB
i =



1 if Positive

0 if Neutral

−1 if Negative

SMD
i =

Ni,positive−Ni,negative

Ni,words

Score Range -1 to 1 -1 to 1 -1, 0, 1 -1 to 1

Scores Per Atom Multiple (one per topic) Transcript score directly Single Single

Domain Adaptation General model (financial prompts) General model (financial prompts) Financial domain Financial lexicon

Contextual Understanding High High High None (word-level only)

Complexity High Medium Medium Low

Table 3: Summary of Sentiment Scoring Methodologies
This table outlines the main characteristics of the four methodologies used to compute the sentiment scores. Each line is a characteristic of the model and each column
is a methodology. The different identified features are the model type, the use of NLI, the input processing methodology, the topic awareness, the scoring mechanism,
the range of the produced score, the number of scores per atom, the domain adaptation, the contextual understanding, and the complexity.
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4.2 Sentiment Score Aggregation

The next step involves aggregating the sentiment scores derived from each methodology into a unified

score for each transcript and for each quarter. As summarized in table 3 the NLI topic-level methodol-

ogy generates multiple sentiment scores SNLI-t
ij per atom due to its topic-specific scoring mechanism.

This necessitates a two-stage aggregation process:

1. Intra-atom aggregation, to consolidate topic-specific sentiment scores into a single sentiment

score per atom;

2. Inter-atom aggregation, to aggregate the atoms’ sentiment scores into a single sentiment score

per transcript.

Contrastingly, scores generated using FinBERT (SFB
i ) and the Loughran and McDonald (2011) dic-

tionary (SMD
i ) produce a single sentiment score per atom, requiring only the inter-atom aggregation

step to achieve transcript-level sentiment quantification. In this section, I detail the methodologies

employed at each stage of aggregation.

4.2.1 Intra-Atom Aggregation

I evaluate two distinct intra-atom aggregation methods: the first is referred to as naive aggregation,

while the second employs an attention-based aggregation approach.

Naive Aggregation In this method, I select a single topic for each atom. This approach assumes

topical exclusivity, where an atom is presumed to primarily discuss the topic for which it exhibits

the highest topic score. To associate each atom with a single dominant topic, we apply an argmax

selection criterion over topic scores. Formally, for atom ai, the assigned topic index zi is determined

by:

zi = argmax
j∈{1,...,K}

tsij, (14)

where tsij denotes the topic score for atom ai and topic tj . The corresponding sentiment score for ai

is SNLI-t
i,zi

, reflecting the sentiment score of the dominant topic tzi .
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Attention-Based Aggregation In this approach, no explicit topic selection is performed. Instead,

the topic scores are normalized such that, for each atom, they form a probability distribution over all

topics. Specifically, the normalized topic score t̃sij is computed as

t̃sij =
tsij∑K
k=1 tsik

, (15)

where tsij denotes the original topic score for atom ai and topic tj , K is the total number of topics,

and t̃sij is the normalized topic score, satisfying
∑K

j=1 t̃sij = 1 for each atom ai.

The sentiment score for each atom is then computed as a weighted average of the topic-specific

sentiment scores, using the normalized topic scores as weights:

SNLI-t
i =

K∑
j=1

SNLI-t
ij · t̃sij, (16)

where SNLI-t
ij is the sentiment score for atom ai and topic tj .

Both aggregation methods described above yield a single sentiment score per atom, thereby re-

quiring one more aggregation step to have a single score per transcript.

4.2.2 Inter-Atom Aggregation

I also explore two methods for the inter-atom aggregation step. The first is referred to as the average

aggregation, consisting of a simple average, while the second is an attention-based approach.

Average Aggregation In this method, I compute a single average of the transcript’s atoms’ senti-

ment scores:

SModel
Ti

=
1

ni

ni∑
i=1

SModel
i , (17)

where SModel
Ti

is the final sentiment score for the transcript Ti, Model is any of the three models (NLI-t,

FB, or MD) used to compute the sentiment scores, SModel
i is the sentiment score computed with Model

and associated with atom ai, and ni is the number of atoms in the transcript.
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Attention-Based Aggregation The attention-based aggregation method introduces topic frequency-

aware weighting to prioritize prevalent topics while maintaining bounded sentiment scores. Let fj

denote the frequency of occurrence of topic tj across all atoms in transcript Ti. This approach incor-

porates quadratic normalization to stabilize sentiment scoring:

SModel
Ti

=

∑K
j=1 fj

(∑fj
i=1 S

Model
i

)
∑K

j=1 f
2
j

, (18)

where:

• fj: Frequency of topic tj in transcript Ti,

• SModel
ij : Sentiment score of i-th atom for topic tj computed with Model,

• K: Total unique topics.

The squared-normalization approach combines two established principles:

1. Entropy regularization: The quadratic denominator aligns with term weighting schemes that

mitigate topic dominance through variance stabilization. (Paltoglou and Thelwall, 2010)

2. Attention normalization: Extends Slot Attention’s value scaling strategies (Krimmel et al.,

2024) to frequency-based aggregation.

For example, consider a transcript containing:

• 10 atoms classified under ‘Revenue’ (f1 = 10),

• 5 atoms under ‘Margins’ (f2 = 5).

The aggregation becomes:

Numerator = 10
10∑
i=1

SModel
i1 + 5

5∑
i=1

SModel
i2 ,

Denominator = 102 + 52 = 125,

SModel
Ti

=
Numerator

125
∈ [−1, 1].
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4.2.3 Topic-Level Aggregation

This final method employs two stages of aggregation as previously described in 4.2, but differs in its

application. Initially, I apply the naive aggregation step outlined in 4.2.1 and subsequently filter the

atoms to retain only those associated with the five most frequently cited topics (see Table 2). This

procedure yields multiple SNLI-t
i,zi

such that :

tzi ∈ {‘Revenues’, ‘Guidance’, ‘Organic Growth’, ‘Expenditure’, ‘Profitability’}.

Subsequently, for each tzi in this set, I apply the average aggregation step as described in Sec-

tion 4.2.2, as follows:

SNLI-t
Ti,tzi

=
1

ni,zi

ni,zi∑
i=1

SNLI-t
i,zi

, (19)

where SNLI-t
i,zi

denotes the sentiment score of the i-th atom for topic tzi , ni,zi
is the number of atoms

associated with topic tzi , and SNLI-t
Ti,tzi

represents the final sentiment score of transcript Ti with respect

to topic tzi .

For illustration, consider a transcript comprising 15 atoms, with three atoms assigned to each of

the five topics identified as the most frequent. In this case, the method produces five sentiment scores

for the transcript, one corresponding to each of these topics.

Table 4 summarizes the aggregation methods discussed and gives an overview of their character-

istics.
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Aggregation Level Method Description Mathematical Formulation Applicable Models

Intra-atom Naive Aggregation Selects single topic with highest affinity zi = argmax
j∈{1,...,K}

tsij; S
NLI-t
i = SNLI-t

i,zi
NLI-t

Intra-atom Attention-Based Weighted average using normalized topic scores t̃sij =
tsij∑K

k=1 tsik
; SNLI-t

i =
∑K

j=1 S
NLI-t
ij · t̃sij NLI-t

Inter-atom Average Simple arithmetic mean of atom scores SModel
Ti

= 1
ni

∑ni

i=1 S
Model
i NLI-t, FB, MD

Inter-atom Attention-Based Topic frequency-weighted average SModel
Ti

=

∑K
j=1 fj

(∑fj
i=1 S

Model
i

)
∑K

j=1 f
2
j

NLI-t, FB, MD

Topic-level Combined Topic-specific averaging for top 5 topics SNLI-t
Ti,tzi

= 1
ni,zi

∑ni,zi
i=1 SNLI-t

i,zi
NLI-t

Table 4: Overview of Sentiment Score Aggregation Methods and Their Characteristics
This table summarizes the different aggregations approaches employed in this study, specifying the aggregation stage, methodological rationale, formal mathematical
expressions, and the corresponding sentiment scoring models to which each method is applicable.
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4.3 Long-Only Portfolios

In this section, I detail the methodology employed for constructing sentiment-based long-only port-

folios. Additionally, I describe the construction of the long-only benchmark portfolios utilized to

evaluate the performance of my proposed strategies.

4.3.1 Portfolio Construction

For the portfolio construction methodology, I employ a systematic approach where, for each quarterly

rebalancing period, the ten stocks exhibiting the highest aggregated sentiment scores are selected for

inclusion in long-only portfolios. These portfolios implement two distinct weighting methodologies,

with their nomenclature following the convention:

L_stage1_stage2_method_weighting

• L designates the long position orientation

• stage1 specifies the intra-atom aggregation method, either naive or attention as detailed in Sec-

tion 4.2

• stage2 indicates the inter-atom aggregation approach: avg (average) or attention (frequency-

weighted)

• method denotes the sentiment quantification technique: NLI (NLI-t model), Dict (MD), Fin-

BERT (FB), or specific topical focus (e.g., ‘Revenues’)

• weighting represents the capital allocation strategy: EW (equal-weight) or SW (sentiment-

weight)

An exception to this nomenclature convention occurs for the L_One_Summary_weighting portfo-

lios, which utilize transcript-level sentiment scores directly without requiring multi-stage aggregation,

as discussed in Section 4.1.1.

I employ two distinct weighting schemes to investigate different capital allocation strategies:
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• EW Scheme: Each constituent asset receives an identical weight calculated as:

w+,EW
i,t =

1

n
, (20)

where n denotes the number of selected stocks and the + sign differentiates long weights from

short weights.

• SW Scheme: This innovative allocation strategy proportionally distributes weights according

to relative sentiment scores, formalized as:

w+,SW
i,t =

Si,t∑n
i=1 Si,t

, (21)

where Si,t represents the sentiment score for security i at period t. The development and anal-

ysis of this weighting methodology constitutes a principal investigative focus of this research,

offering potential contributions to asset allocation frameworks.

To avoid any data-snooping bias, I construct portfolios based on data available at the end of the

previous time period. The portfolio return at time t, RL
t , is computed using the returns of the stocks

at time t, such that:

RL
t =

n∑
i=1

w+
i,t−1 · ri,t, (22)

where ri,t is the return of the i-th stock at time t, and w+
i,t−1 is the weight assigned to the i-th stock

based on data up to time t− 1.

The sentiment analysis procedure was initiated in the first quarter of 2013 (Q1 2013). To ensure

compliance with the principle of information availability, portfolio return calculations begin in the

second quarter of 2013 (Q2 2013). This approach guarantees that portfolio weights are determined

solely on the basis of information observable at the end of the preceding quarter.
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4.3.2 Benchmarks

The primary benchmark employs a long-only, equally-weighted strategy across the entire investment

universe. This approach follows the empirical framework established by DeMiguel et al. (2009),

which demonstrates the comparative effectiveness of naive diversification strategies against capitalization-

weighted strategies. The equal-weighted portfolio serves as a robust baseline for evaluating the eco-

nomic significance of sentiment-driven strategies.

I also implement a momentum-based benchmark portfolio, consisting of long positions in the

ten best-performing equities from the preceding quarter. While this quarterly rebalancing frequency

diverges from the conventional 12-month momentum factor specification (Moskowitz et al., 2011), it

maintains temporal alignment with the sentiment strategy’s investment horizon. This design enables

direct testing of whether observed outperformance stems from sentiment signals or merely captures

short-term momentum effects.

For statistical robustness assessment, I generate an ensemble of 1,000 randomized portfolios

through bootstrap resampling. Each synthetic portfolio holds ten randomly selected stocks with equal-

weight allocation, following the Monte Carlo methodology proposed by Burns (2004). This bootstrap

approach mitigates single-benchmark comparison biases.

4.4 Long-Short Portfolios

In this section, I detail the methodologies employed for constructing sentiment-based long-short port-

folios. I explore two different construction methods, namely the traditional one and the expanded one.

Subsequently, I describe the benchmark portfolios utilized for comparative analysis.

4.4.1 Portfolio Construction

Traditional Long-Short In extending my analysis to long-short portfolios, I retain the selection

criteria for long positions as previously defined. For the short component of the portfolio, I use a

similar reasoning; the short portion of the portfolio is made of the 10 stocks with the lowest sentiment

scores. Portfolio nomenclature follows the convention:

LS_stage1_stage2_method_weighting
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• LS designates the long-short orientation

• stage1 specifies the intra-atom aggregation method per Section 4.2

• stage2 indicates the inter-atom aggregation approach

• method denotes the sentiment quantification technique

• weighting represents the capital allocation strategy

The exception for LS_One_Summary_weighting portfolios persists, utilizing direct transcript-level

scores without multi-stage aggregation as detailed in Section 4.1.1.

Short Position Weighting For SW schemes, short-side weights employ inverse proportional allo-

cation based on raw sentiment scores:

w−
i,t =

−1

1 + Si,t

, (23)

where Si,t represents the sentiment score for security i at period t. This formulation ensures that

negative sentiment scores (Si,t < 0) receive larger absolute weights

Final weights undergo normalization to enforce cash neutrality:

n
−∑

i=1

w−
i,t = −1, (24)

where n− is the number of stocks with negative sentiment. The EW scheme maintains symmetric

allocation:

w±,EW
i,t = ± 1

n
. (25)

The EW methodology ensures portfolios are cash-neutral, with both portions of the portfolio (long

and short) summing to either 1 or -1.

Expanded Long-Short I develop an alternative portfolio construction approach, the expanded long-

short strategy, which introduces conditional short allocation based on explicit negative sentiment
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signals, denoted as

LS_stage1_stage2_method_exp_weighting. This adaptive framework employs:

• Short Position Criteria: Exclusively targets equities with negative sentiment scores (Si,t < 0)

• Positioning Logic:

w−
i,t =


−1

n− For EW

−Si,t∑n
−

i=1 Si,t

For SW
(26)

where n− denotes the number of negative sentiment stocks (capped at 10), and Si,t represents

negative sentiment scores.

• Fallback Mechanism: Implements long-only positioning (
∑

wi,t = 1) when n− = 0, selecting

the ten highest-scoring equities with equivalent weighting scheme

This methodology enables:

1. Direct testing of negative sentiment signal efficacy through explicit short positioning

2. Empirical distinction between weakly positive and explicitly negative classifications

The long portion maintains identical weighting logic to standard long-short strategies:

w+
i,t =


1

n+ For EW

Si,t∑n
+

j=1 Sj,t

For SW
(27)

where n+ denotes the number of long positions (fixed at 10).

While deviating from long short when n− = 0, this approach enables direct evaluation of whether

negative sentiment scores contain predictive information distinct from merely attenuated positive sig-

nals. The performance differential between standard and expanded weighting strategies offers insights

into the model’s capacity to identify both outperformance and underperformance candidates.

The combined long-short portfolio return at time t, RLS
t , is obtained by summing the products of

the returns and weights of the long and short positions:
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RLS
t =

n
+∑

i=1

w+
i,t−1 · ri,t +

n
−∑

j=1

w−
j,t−1 · rj,t, (28)

where w+
i,t−1 and w−

j,t−1 are the weights assigned to the long and short positions, respectively,

based on data available up to time t − 1, and ri,t and rj,t are the returns for the corresponding long

and short stocks at time t. Through this method, I assess the performance of my methodology in both

long and short investment decisions.

4.4.2 Benchmarks

For the long-short framework, I do not construct a simple benchmark analogous to the long-only

equal-weighted portfolio over the entire investment universe. As detailed in Section 2.1, the temporal

variability in stock availability—where constituents enter or exit the universe over time—would ne-

cessitate arbitrary selection mechanisms to choose long and short positions. Instead, I generate 1,000

random long-short portfolios, consistent with the methodology employed in the long-only setting. In

each portfolio, both the long and short legs consist of 10 randomly selected stocks from the investment

universe.

Additionally, I apply the same rationale for the momentum benchmark as in the long-only frame-

work. Specifically, I construct a portfolio that takes long positions in the 10 stocks with the highest

returns over the previous quarter and short positions in the 10 stocks with the lowest returns over the

same period.
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NLI-t MD NLI (One Summary) FB Topic Total

Long-Only 6 4 2 4 10 26
Traditional Long-Short 6 4 2 4 10 26
Expanded Long-Short 6 4 2 4 10 26
Total 18 12 6 12 30 78

Table 5: Total Number of Portfolios per Methods
This table provides an overview of the number of portfolios generated by each sentiment scoring methodology
and portfolio construction framework. For the NLI-t portfolios, two stages of aggregation are employed,
resulting in three possible combinations for three distinct sentiment scores. Each of these scores is
subsequently used to construct portfolios with both EW and SW schemes, yielding a total of six portfolios.
The MD and FB methods involve only a single aggregation stage, producing two possible combinations for
each sentiment score, and thus four portfolios in total (two for EW and two for SW). The simple NLI
approach, which applies sentiment scoring to a single summary without aggregation, results in one portfolio
for EW and one for SW. Finally, as five topics are selected for the topic-based scoring approach, this leads to
the construction of ten portfolios (five for EW and five for SW).

4.5 Performance Measures

In my portfolio performance evaluation, I utilize a diverse set of metrics that encompass both absolute

returns and risk-adjusted measures, as well as other risk indicators. My comparison is based on seven

key metrics: cumulative gains, annualized mean return, annualized standard deviation, annualized

Sharpe ratio, maximum drawdown (MDD), annualized alpha, and annualized turnover.

The cumulative returns, annualized mean returns, and annualized standard deviation are straight

forward standard measures, so I do not go over their methodology in details.

Sharpe Ratio The Sharpe ratio is a metric for assessing risk-adjusted returns by quantifying excess

return per unit of volatility. To address temporal variations in the risk-free rate, this analysis imple-

ments a rolling-window methodology. I use quarterly portfolio returns to compute the Sharpe ratios

beginning in Q2 2014. The 4 quarter rolling period allows me to incorporate a full year of data for

each Sharpe ratio calculation. The Sharpe ratio for each quarter is defined as:

SRQi
=

rQi
− rfQi

σ̄j

. (29)

The Sharpe ratio is then multiplied by 2 for annualization. Finally, the overall average annualized

Sharpe ratio is computed by averaging these annualized values obtained from each rolling window:
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S̄RA =
1

N

N∑
i=1

SRAi
, (30)

where:

• SRQi
is the Sharpe ratio for the i-th quarter, starting at the fourth one,

• rQi
is the return of the portfolio for the i-th quarter,

• rfQi
is the risk-free rate corresponding to the i-th quarter,

• σ̄j is the standard deviation of the portfolio’s returns over the j-th rolling window,

• SRAi
is the annualized Sharpe ratio for the i-th quarter, and

• S̄RA is the average of the annualized Sharpe ratios over the whole time period, with N repre-

senting the total number of such windows available for analysis.

This methodology stems from the findings of Tang and Whitelaw (2011) who demonstrate that

Sharpe ratios are low at the peak of a cycle and high at the trough. Thus, computing a rolling sharpe

ratio provides a more representative measure of risk-adjusted returns taking into account short term

fluctuations.

MDD The MDD is a measure of the peak-to-trough decline of an investment portfolio. It is mathe-

matically defined as the maximum observed loss from a peak to a trough of a portfolio, before a new

peak is attained. The MDD is expressed as a percentage and is computed as:

MDD = max
τ∈[0,T ]

(
max
t∈[0,τ ]

(CRt)− CRτ

)
, (31)

MDD (%) =
(

MDD
maxt∈[0,T ](CRt)

)
× 100, (32)

where:

• CRt is the cumulative return at time t,
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• T is the total period under consideration,

• maxt∈[0,τ ](CRt) is the running maximum cumulative return up to time τ ,

• maxτ∈[0,T ] is the operation of finding the maximum drawdown over the total period T .

Alpha To estimate alpha, I conduct a regression of the portfolio returns on the Fama-French six-

factor model which comprises the market excess returns (Rm − Rf ), size (SMB), value (HML),

profitability (RMW ), investment (CMA), and momentum (MOM ) factors. The model is specified

as follows:

Rp −Rf = α + βm(Rm −Rf ) + βSMBSMB + βHMLHML

+ βRMWRMW + βCMACMA+ βMOMMOM + ϵ, (33)

where Rp denotes the portfolio return, Rf is the risk-free rate, and ϵ is the error term. Then, I ob-

serve the α coefficient and its associated p-value to assess the statistical significance of this parameter.

To ensure the robustness of the inference and to address potential issues arising from heteroskedastic-

ity, I estimate the OLS regression using Newey-West standard errors.

Turnover To quantify portfolio rebalancing activity, I calculate quarterly turnover as the sum of

absolute weight changes across all holdings. Mathematically, wafter-rebalancing
i,t represents the weight of

asset i in the portfolio at time t right after rebalancing the portfolio, and wbefore-rebalancing
i,t represents the

weight of the same asset right before the portfolio is rebalanced. The turnover for asset i is given by

|wafter-rebalancing
i,t − wbefore-rebalancing

i,t |. Therefore, the total turnover of the portfolio is computed as:

Turnovert =
1

2
×
∑
i

|wafter-rebalancing
i,t − wbefore-rebalancing

i,t | × 4. (34)

Here, the summation is taken over all assets i in the portfolio. The factor of 1
2

is included to

account for the fact that turnover measures total buying and selling activity; without this adjustment,

turnover would be double-counted. The final turnover figure is annualized by multiplying by 4.
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5 Empirical Results

In this section, I divide my experiments into two main categories, each further segmented into three

sub-categories for clarity. The two primary categories are Long-Only Portfolios and Long-Short

Portfolios. The sub-categories are as follows:

The first sub-category, Granular Sentiment-Aggregated Portfolios, includes portfolios constructed

using the naive_avg, naive_attention, and attention_avg methodologies. The second sub-category is

Topic Portfolios, which contains the portfolios built on individual topics, and the final sub-category is

One-Summary Portfolios, containing the results on the portfolio constructed with one comprehensive

summary per transcript.

By structuring the analysis in this way, I aim to provide a comprehensive understanding of the

different portfolios evaluated in this study. Table 5 shows all the different portfolios constructed in

this thesis.

5.1 Long-Only Portfolios

5.1.1 Granular Sentiment-Aggregated Portfolios

Based on the results presented in Table 6, several key insights emerge regarding the influence of

weighting methods, sentiment calculation techniques, and sentiment aggregation strategies on portfo-

lio performance. Each of these dimensions contribute distinctively to the observed portfolio metrics.

Figure 1 presents the cumulative returns of the Naive-Average portfolios, demonstrating the outper-

formance of those strategies relative to the benchmark and highlighting that my portfolios are posi-

tioned in the upper percentiles compared to the 1,000 generated random portfolios. Graphs for other

sentiment aggregation methods are provided in the Appendix.

Overall, the SW method consistently outperforms the EW method across most metrics. For exam-

ple for the naive-average DeBERTa portfolios, the SW method yields cumulative gains of 18.35$ and

mean return of 34.9% whereas the EW method yields 17.16$ in cumulative gains, and 34.1% in mean

return. The only metrics where the EW method shows an advantage are volatility and turnover. This

outcome is intuitive, as the SW method may require rebalancing even without changes in the portfo-
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lio composition, driven by fluctuations in sentiment scores and prices. In contrast, the EW portfolio

is driven by fluctuations in prices only. Using the same example as before, the EW scheme yields

volatility of 26.1% and turnover of 242% whereas the SW one yields volatility of 26.3% and turnover

of 247%.

Regarding sentiment calculation methods, the results are clear: portfolios based on the NLI-t

method outperform those based on the MD and FB approaches. The NLI-t portfolios show higher

cumulative gains (17.16$ for EW and 18.35$ for SW) and a better Sharpe ratio (2.36 for EW and

2.21 for SW) while maintaining lower volatility, maximum drawdown, and turnover. These findings

suggest that the sentiment signals generated by DeBERTa are more effective at identifying favorable

market conditions, likely due to the model’s advanced language processing capabilities. FinBERT

also performs well, exhibiting slightly higher mean returns (35.6% for EW and 35.8% for SW) and

alpha (6.4% for EW and 6.5% for SW) compared to DeBERTa (5.8% for EW and 6.0% for SW).

This indicates that FB portfolios may deliver more consistent returns, while NLI-t portfolios demon-

strate greater variability, with a return distribution characterized by fatter tails. The dictionary-based

approach, while simpler, generally underperforms both the NLI-t and FB methodologies.

Lastly, the naive-average aggregation method outperforms other techniques across most metrics,

except for turnover and maximum drawdown. By analyzing the differences in holdings between

the naive-average and naive-attention portfolios—the two best-performing aggregation methods in

the long-only setting—I find an average deviation of 4, or 40% of the portfolio. This highlights

a significant difference in the final sentiment scores produced by these two methods. The Naive-

Attention method results in slightly lower cumulative returns and higher volatility, suggesting that

while it is more responsive to frequently discussed topics, it may also amplify noise or less relevant

sentiment shifts. In contrast, the attention-average method underperforms both, indicating that while

it seeks to moderate the influence of certain topics, this balancing act may dilute the effectiveness of

sentiment signals.
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Portfolio Cum Gain Mean Return Std Sharpe Max DD (%) Alpha Turnover

Panel A: Naive-Average Equally-Weighted

DeBERTa (NLI-t) 17.16 0.341 0.261 2.36 43.11 0.058∗ 2.42
FinBERT (FB) 17.04 0.356 0.319 1.34 52.82 0.064∗ 2.81
Dict (MD) 10.79 0.294 0.296 1.44 50.30 0.048∗∗ 2.50

Panel B: Naive-Average Sentiment-Weighted

DeBERTa 18.35 0.349 0.263 2.21 41.71 0.06∗ 2.47
FinBERT 17.29 0.358 0.320 1.32 52.94 0.065∗ 2.83
Dict 11.76 0.306 0.304 1.48 49.65 0.05∗∗ 2.58

Panel C: Naive-Attention Equally-Weighted

DeBERTa 16.68 0.344 0.286 1.84 41.36 0.057∗ 2.42
FinBERT 15.49 0.343 0.311 1.11 49.07 0.059∗ 2.78
Dict 13.19 0.330 0.329 1.64 56.77 0.059∗∗ 2.63

Panel D: Naive-Attention Sentiment-Weighted

DeBERTa 18.25 0.355 0.289 1.80 40.78 0.059∗ 2.48
FinBERT 15.59 0.344 0.312 1.11 49.23 0.06∗ 2.81
Dict 13.71 0.334 0.332 1.68 55.69 0.06∗∗ 2.71

Panel E: Attention-Average with Both Weighting Methods

DeBERTa EW 16.44 0.34 0.28 1.83 46.90 0.058∗ 2.38
DeBERTa SW 17.59 0.35 0.29 1.83 45.65 0.059∗ 2.44

Table 6: Descriptive Statistics for Long-Only Granular Portfolios (Annualized)
This table presents annualized performance metrics for long-only portfolios constructed using various
sentiment extraction methodologies and portfolio construction frameworks. The sentiment methodologies
include DeBERTa (NLI-t), FinBERT (FB), and the dictionary-based approach (MD). Portfolios are evaluated
under different weighting schemes—EW and SW—and aggregation strategies, including Naive-Average,
Naive-Attention, and Attention-Average. The reported metrics are cumulative gain, mean return, standard
deviation (volatility), Sharpe ratio, maximum drawdown (in percentage), alpha, and portfolio turnover.
Significance levels are denoted as follows:
* indicates significance at the 99% level,
** at the 95% level.
Bold values highlight the best-performing metric within each panel.
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Figure 1: Cumulative Returns of Long-Only Naive-Average Portfolios
This figure displays the cumulative returns of long-only portfolios constructed using the naive-average
sentiment aggregation method, evaluated under both EW and SW schemes. The results are shown for each
sentiment extraction methodology (NLI, FinBERT, and Dictionary), alongside the benchmark, a momentum
strategy, and the 10th–90th percentile band of randomly generated portfolios. The x-axis represents the
evaluation period by quarter, and the y-axis reports the cumulative return in dollars.

5.1.2 Topic Portfolios

The results presented in Table 7 demonstrate that portfolio performance varies significantly depending

on the topics analyzed, highlighting the importance of specific sentiment themes in driving returns.

This more detailed analysis is conducted to pinpoint which topics contribute most to the outperfor-

mance observed in the previous aggregation methods.

In terms of weighting methodologies, I generally observe the same trends as before, with SW

outperforming EW. Regarding the topics themselves, I find that ‘Expenditure’ and ‘Profitability’ yield

the highest returns. This result may seem counterintuitive for ‘Expenditure,’ as it is not a direct

performance metric. However, these results must be interpreted in light of the frequency with which

each topic was mentioned. For instance, the ‘Revenue’ topic was mentioned 38.3% of the time, as

shown in Table 2. A higher frequency means that there is a higher chance of having false positives

(sentiment related to this topic wrongly labeled). In other words, the frequency of topic occurrences

must be factored in when evaluating the results; the higher the frequency, the greater the likelihood

of model errors, which can affect portfolio performance. Since ‘Profitability’ and ‘Expenditure’ are

the two least frequently mentioned topics among the five selected for portfolio construction, further
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investigation is needed to determine whether these topics are indeed the most influential in driving

outperformance.

Portfolio Cum Gain Mean Return Std Sharpe Max DD (%) Alpha Turnover

Panel A: Equally-Weighted

Revenue 12.04 0.301 0.275 1.22 50.30 0.054∗ 2.64
Guidance 15.33 0.338 0.299 1.20 47.4 0.056∗ 2.77
Growth 8.11 0.253 0.265 1.28 53.3 0.041∗∗ 2.67
Expenditure 18.60 0.366 0.325 1.95 44.39 0.065∗ 2.92
Profitability 22.20 0.381 0.297 2.07 47.26 0.074∗ 2.90

Panel B: Sentiment-Weighted

Revenue 12.20 0.303 0.278 1.23 50.33 0.055∗ 2.69
Guidance 16.53 0.343 0.286 1.18 44.35 0.060∗ 2.93
Growth 8.75 0.261 0.262 1.31 49.63 0.042∗∗ 2.86
Expenditure 19.41 0.372 0.334 1.51 38.75 0.065∗ 3.41
Profitability 20.51 0.374 0.305 2.72 49.76 0.071∗ 3.21

Table 7: Descriptive Statistics for Long-Only Topic Portfolios (Annualized)
This table reports annualized performance metrics for long-only portfolios constructed based on sentiment
scores associated with five key topics (Revenue, Guidance, Growth, Expenditure, and Profitability) extracted
from earnings call transcripts. Results are presented for both equally-weighted (Panel A) and
sentiment-weighted (Panel B) portfolio construction methods. The reported statistics include cumulative gain,
mean return, standard deviation (volatility), Sharpe ratio, maximum drawdown (in percentage), alpha, and
annualized turnover. Significance levels are denoted as follows:
* indicates significance at the 99% level,
** indicates significance at the 95% level.
Bold values highlight the best-performing metric within each panel.

5.1.3 One-Summary Portfolios

To assess whether the high level of granularity in my sentiment extraction truly enhances portfolio per-

formance, I analyze the outcomes of the One-Summary portfolios. These portfolios are constructed

using sentiment extracted from a single summary of each transcript, as opposed to the more granular,

atom-level sentiment extraction applied in previous analyses.

The results, presented in Table 8, clearly show that the performance of the One-Summary port-

folios is significantly lower across all metrics compared to the granular sentiment-based portfolios

discussed before. Both the EW and SW One-Summary portfolios exhibit diminished performance,

indicating that relying on a single summary sentiment lacks the nuanced insights that drive higher

returns and better risk-adjusted performance. Additionally, maximum drawdowns are higher com-

pared to the granular sentiment-based portfolios, suggesting that the One-Summary approach is less
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effective in capturing sentiment shifts that could mitigate downside risks. These findings reinforce

the conclusion that a more granular approach to sentiment extraction provides substantial value to

portfolio performance.

Portfolio Cum Gain Mean Return Std Sharpe Max DD (%) Alpha Turnover

Equally-Weighted 9.74 0.288 0.312 1.22 52.69 0.052∗∗ 2.73
Sentiment-Weighted 10.40 0.295 0.311 1.20 52.57 0.054∗∗ 2.84

Table 8: Descriptive Statistics for Long-Only One-Summary Portfolios (Annualized)
This table reports annualized performance metrics for long-only portfolios constructed using sentiment
extracted from a single summary of each earnings call transcript. Results are presented for both
equally-weighted and sentiment-weighted portfolio construction methods. The reported statistics include
cumulative gain, mean return, standard deviation (volatility), Sharpe ratio, maximum drawdown (in
percentage), alpha, and annualized turnover. Significance levels are denoted as follows:
* indicates significance at the 99% level,
** indicates significance at the 95% level.
Bold values highlight the best-performing metric within each panel.

5.2 Long-Short Portfolios

The results of the long-short portfolios reveal some interesting insights. Unlike the long-only portfo-

lios, the long-short configurations exhibit significantly weaker performance across most metrics. This

suggests that while sentiment-driven strategies may be effective in long-only contexts, their impact in

long-short portfolios could be more limited. However, Schuettler et al. (2024) demonstrate that their

model performs better in a long-short setting, indicating that my findings should not be generalized to

all sentiment analysis models. The weaker performance in my case may be attributed to the limited

universe of 69 stocks within the software sector, which has seen exceptional performance over the past

10 years, as shown in Table 14 in the appendix. Such strong performance makes it challenging to gen-

erate positive returns using a short strategy. The only notable advantage of the long-short strategies

compared to the long-only portfolios is for risk management purposes. Although the Sharpe ratios

are considerably lower due to weaker returns, I observe significantly lower volatility and maximum

drawdowns.

In this section, I analyze the results from both the expanded and regular portfolios to provide a

more comprehensive perspective. However, I believe the expanded strategies offer a more accurate

reflection of my model’s performance. These results clearly demonstrate the model’s ability to assign
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negative sentiment scores to the appropriate stocks, whereas the regular framework may result in

shorting stocks with positive but lower sentiment scores.

5.2.1 Granular Sentiment-Aggregated Portfolios

The results from the regular strategy are shown in Table 9, while those from the expanded strategies

are shown in Table 10.

Regular Strategies The trends observed earlier are less pronounced in this section. While the

SW methodology remains the strongest compared to EW, and dictionary-based portfolios continue

to underperform the other two, DeBERTa generally underperforms relative to FinBERT. Specifically,

DeBERTa outperforms FinBERT in the naive-attention setting but lags behind in the naive-average

configuration. The best-performing portfolio across all metrics is the FinBERT-based portfolio in the

SW naive-average context.

Expanded Strategies I draw the same conclusions for the expanded strategies regarding the com-

parison between DeBERTa and FinBERT, with the exception of the naive-attention SW setting. Fin-

BERT portfolios also demonstrate more consistent performance than DeBERTa, indicating that re-

gardless of the aggregation method, FinBERT tends to perform well across the board. However, in

this case, the DeBERTa SW naive-attention portfolio delivers the best performance and is the only

portfolio among all my long-short strategies to generate significant alpha.

While the performance gap between long-short and long-only strategies might be partially ex-

plained by my investment universe, these results clearly indicate that DeBERTa, used in an NLI

framework, struggles to capture negative sentiment and underperforms FinBERT. This outcome is

not surprising, as companies rarely make explicit negative statements. Prior research has shown that

complexity in financial language is often correlated with poor performance. Therefore, FinBERT, be-

ing specifically trained on financial data, may be better equipped to capture the subtleties of financial

language that signal negative sentiment.

It is difficult to draw definitive conclusions from these mixed results, but they do highlight some

of the limitations of my model and the investment universe used in this analysis.
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Portfolio Cum Gain Mean Return Std Sharpe Max DD (%) Alpha Turnover

Panel A: Naive-Average Equally-Weighted

DeBERTa (NLI-t) 1.55 0.051 0.138 0.61 26.22 0.006 2.37
FinBERT (FB) 1.56 0.056 0.166 0.65 35.19 0.007 2.71
Dict (MD) 0.99 0.014 0.175 -0.07 38.37 -0.005 2.44

Panel B: Naive-Average Sentiment-Weighted

DeBERTa 1.58 0.068 0.226 -0.06 21.66 0.013 2.67
FinBERT 2.69 0.116 0.200 0.68 16.84 0.018 2.96
Dict 1.42 0.083 0.323 0.12 42.27 -0.004 2.81

Panel C: Naive-Attention Equally-Weighted

DeBERTa 1.84 0.069 0.145 0.11 26.66 0.011 2.39
FinBERT 1.54 0.052 0.146 0.28 33.67 0.003 2.70
Dict 1.19 0.032 0.182 -0.06 29.36 -0.001 2.51

Panel D: Naive-Attention Sentiment-Weighted

DeBERTa 1.01 0.036 0.271 -0.26 44.76 -0.008 2.69
FinBERT 1.92 0.079 0.182 0.23 33.81 0.011 2.96
Dict 2.15 0.119 0.314 0.11 42.57 0.011 2.83

Panel E: Attention-Average with Both Weighting Methods

DeBERTa EW 1.19 0.028 0.154 0.17 29.98 0.002 2.35
DeBERTa SW 1.23 0.042 0.220 0.04 47.13 0.007 2.67

Table 9: Descriptive Statistics for Regular Long-Short Granular Portfolios (Annualized)
This table reports annualized performance metrics for regular long-short portfolios constructed using granular
sentiment scores derived from earnings call transcripts. Portfolios are formed using three sentiment extraction
methodologies: DeBERTa, FinBERT, and the dictionary-based approach, and are evaluated under different
aggregation schemes (Naive-Average, Naive-Attention, and Attention-Average) and weighting methods
(equally-weighted and sentiment-weighted). The reported metrics include cumulative gain, mean return,
standard deviation (volatility), Sharpe ratio, maximum drawdown (in percentage), alpha, and annualized
turnover. Significance levels are denoted as follows:
* indicates significance at the 99% level,
** indicates significance at the 95% level.
Bold values highlight the best-performing metric within each panel.
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Portfolio Cum Gain Mean Return Std Sharpe Max DD (%) Alpha Turnover

Panel A: Naive-Average Equally-Weighted

DeBERTa (NLI-t) 2.94 0.150 0.292 0.82 48.63 0.030 2.94
FinBERT (FB) 6.77 0.246 0.310 0.93 52.82 0.043 3.00
Dict (MD) 2.41 0.147 0.347 0.60 61.70 0.013 3.15

Panel B: Naive-Average Sentiment-Weighted

DeBERTa 3.30 0.163 0.294 0.97 46.89 0.034 2.95
FinBERT 6.63 0.244 0.312 0.88 52.94 0.042 3.00
Dict 2.56 0.156 0.357 0.64 61.28 0.014 3.15

Panel C: Naive-Attention Equally-Weighted

DeBERTa 3.75 0.180 0.305 0.59 36.33 0.028 2.99
FinBERT 4.38 0.199 0.315 0.64 53.50 0.036 3.10
Dict 2.05 0.127 0.341 0.67 60.60 0.010 3.21

Panel D: Naive-Attention Sentiment-Weighted

DeBERTa 6.87 0.250 0.314 1.08 30.34 0.051∗∗ 3.07
FinBERT 4.71 0.208 0.316 0.67 53.65 0.038 3.11
Dict 1.63 0.108 0.356 0.31 64.10 0.001 3.23

Panel E: Attention-Average with Both Weighting Methods

DeBERTa EW 1.84 0.106 0.308 0.33 55.20 0.019 2.89
DeBERTa SW 2.15 0.122 0.311 0.29 53.92 0.024 2.89

Table 10: Descriptive Statistics for Expanded Long-Short Granular Portfolios (Annualized)
This table reports annualized performance metrics for expanded long-short portfolios constructed using
granular sentiment scores derived from earnings call transcripts. Portfolios are formed using three sentiment
extraction methodologies: DeBERTa, FinBERT, and the dictionary-based approach, and are evaluated under
different aggregation schemes (Naive-Average, Naive-Attention, and Attention-Average) and weighting
methods (equally-weighted and sentiment-weighted). The expanded long-short framework selects short
positions exclusively among stocks with negative sentiment scores, allowing for a variable number of short
positions each quarter. The reported metrics include cumulative gain, mean return, standard deviation
(volatility), Sharpe ratio, maximum drawdown (in percentage), alpha, and annualized turnover. Significance
levels are denoted as follows:
* indicates significance at the 99% level,
** indicates significance at the 95% level.
Bold values highlight the best-performing metric within each panel.

5.2.2 Topic Portfolios

The performance of the long-short topic portfolios presents a similarly challenging picture. The

results in Table 11 correspond to the regular long-short topic portfolios, while those in Table 12 are

from the expanded portfolios.

Regular Strategies The regular strategies show consistent results, with SW portfolios outperform-

ing the EW ones. However, when comparing the top-performing topics with the long-only setting,
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there is a notable shift from ‘Expenditure’ and ‘Profitability’ to ‘Guidance’ and ‘Expenditure.’ ‘Guid-

ance’ can be tricky to interpret, as it is often subject to varying expectations (e.g., whether guidance

meets or exceeds analyst forecasts). Nonetheless, it emerges as the best-performing portfolio in both

absolute and risk-adjusted metrics. ‘Expenditure’ retains its significance, as it also features promi-

nently in the long-only strategies.

Expanded Strategies In the expanded strategies, an interesting development occurs. Firstly, SW

does not consistently outperform EW. Additionally, ‘Expenditure’ shows lower performance and is no

longer among the top two topics, being replaced by ‘Growth.’ This is an intriguing finding, indicating

that the strong performance of ‘Guidance’ in the regular strategies is likely tied to the long positions

in the portfolio. In the expanded strategy, where only negative sentiment stocks are shorted, shorting

stocks associated with negative ‘Expenditure’ sentiment performs poorly. The strong performance of

the ‘Growth’ portfolios suggests that this topic is more frequently linked to negative sentiment, allow-

ing greater profit capture through short positions. Furthermore, the performance of the ‘Guidance’

portfolios improves compared to the regular strategy, demonstrating that the model effectively assigns

negative sentiment to guidance-related discussions.

These findings reinforce my intuition that the expanded methodology provides a more accurate

assessment of the model’s ability to identify and label negative sentiment.
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Portfolio Cum Gain Mean Return Std Sharpe Max DD (%) Alpha Turnover

Panel A: Equally-Weighted

Revenue 0.61 -0.031 0.168 -0.26 49.90 -0.007 2.70
Guidance 1.78 0.067 0.147 0.42 22.65 0.006 2.85
Growth 0.69 -0.025 0.137 -0.18 45.10 -0.017 2.81
Expenditure 0.98 0.012 0.174 -0.36 42.16 -0.012 2.99
Profitability 0.76 -0.005 0.208 -0.40 52.13 0.002 2.98

Panel B: Sentiment-Weighted

Revenue 0.90 0.025 0.256 0.08 68.02 0.009 2.91
Guidance 2.88 0.127 0.213 0.91 33.69 0.018 2.99
Growth 0.72 -0.016 0.173 -0.14 47.18 -0.022 3.15
Expenditure 1.78 0.100 0.315 -0.27 60.21 0.014 3.37
Profitability 0.39 -0.020 0.339 0.46 76.42 0.001 3.37

Table 11: Descriptive Statistics for Regular Long-Short Topic Portfolios (Annualized)
This table presents annualized performance metrics for regular long-short portfolios constructed based on
sentiment scores associated with five key topics (Revenue, Guidance, Growth, Expenditure, and Profitability).
Results are stratified into equally-weighted (Panel A) and sentiment-weighted (Panel B) construction methods.
Reported metrics include cumulative gain, mean return, standard deviation (volatility), Sharpe ratio, maximum
drawdown (in percentage), alpha, and annualized turnover. Significance levels are denoted as follows:
* indicates significance at the 99% level,
** indicates significance at the 95% level.
Bold values highlight the best-performing metric within each panel.

Portfolio Cum Gain Mean Return Std Sharpe Max DD (%) Alpha Turnover

Panel A: Equally-Weighted

Revenue 0.76 0.061 0.369 0.54 86.52 0.029 3.03
Guidance 2.53 0.107 0.180 0.42 28.07 0.015 3.16
Growth 5.18 0.205 0.275 0.99 49.03 0.022 3.00
Expenditure 1.35 0.058 0.26 -0.14 46.06 0.010 3.20
Profitability 1.00 0.085 0.379 0.69 76.24 0.024 3.37

Panel B: Sentiment-Weighted

Revenue 0.57 0.071 0.400 0.55 91.18 0.037 3.08
Guidance 3.24 0.140 0.213 0.67 34.21 0.019 3.30
Growth 5.61 0.210 0.263 0.76 41.53 0.024 3.11
Expenditure 0.93 0.033 0.302 -0.13 56.10 -0.005 3.38
Profitability 0.96 0.082 0.381 0.70 78.48 0.021 3.48

Table 12: Descriptive Statistics for Expanded Long-Short Topic Portfolios (Annualized)
This table presents annualized performance metrics for expanded long-short portfolios constructed using
sentiment scores associated with five key topics (Revenue, Guidance, Growth, Expenditure, and Profitability).
Results are stratified into equally-weighted (Panel A) and sentiment-weighted (Panel B) construction methods
within the expanded framework that exclusively shorts stocks with negative sentiment scores. Reported
metrics include cumulative gain, mean return, standard deviation (volatility), Sharpe ratio, maximum
drawdown (in percentage), alpha, and annualized turnover. Significance levels are denoted as follows:
* indicates significance at the 99% level,
** indicates significance at the 95% level.
Bold values highlight the best-performing metric within each panel.
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5.2.3 One-Summary Portfolios

The results for the One-Summary portfolios are presented in Table 13. There is little to elaborate on

here, as these portfolios consistently show poor performance across both long-only and long-short

settings. The cumulative returns indicate that, in the regular strategies, the portfolio fails to add

value, ultimately finishing with a cumulative return of 1. In the expanded strategies, it even destroys

value, with a cumulative return falling below 1. These results further confirm the relevance of my

granular analysis, demonstrating that relying solely on a comprehensive summary of the transcript is

insufficient to capture both positive and negative sentiment effectively.

Portfolio Cum Gain Mean Return Std Sharpe Max DD (%) Alpha Turnover

Panel A: Regular strategies

Equally-Weighted 1.00 0.010 0.141 -0.13 34.18 0.003 2.66
Sentiment-Weighted 1.00 0.025 0.231 -0.32 37.09 0.006 2.97

Panel B: Expanded strategies

Equally-Weighted 0.57 0.001 0.335 -0.24 70.37 0.000 3.10
Sentiment-Weighted 0.45 -0.014 0.349 -0.23 76.79 -0.003 3.16

Table 13: Descriptive Statistics for Long-Short One-Summary Portfolios (Annualized)
This table presents annualized performance metrics for long-short portfolios constructed using sentiment
scores derived from single summaries of earnings call transcripts. Results are stratified into regular strategies
(Panel A) and expanded strategies (Panel B), with both equally-weighted and sentiment-weighted construction
methods. Reported metrics include cumulative gain, mean return, standard deviation (volatility), Sharpe ratio,
maximum drawdown (in percentage), alpha, and annualized turnover. Significance levels are denoted as
follows:
* indicates significance at the 99% level,
** indicates significance at the 95% level.
Bold values highlight the best-performing metric within each panel.

5.3 Summary of Empirical Results

Long-Only Portfolios

• Weighting Scheme Superiority: The sentiment-weighted methodology consistently outper-

forms equally-weighted strategies across key performance metrics, including cumulative gains

and risk-adjusted returns.

• Model Efficacy: The DeBERTa model demonstrates superior capability in capturing positive

sentiment signals within earnings call transcripts when deployed in an NLI framework at the
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atom level.

• Granularity Impact: Granular sentiment extraction significantly enhances portfolio perfor-

mance, as evidenced by the underperformance of One-Summary portfolios relative to method-

ologies employing atom-level sentiment scoring.

• Topic-Specific Contributions: Profitability and Expenditure topics exhibit the strongest asso-

ciation with positive sentiment-driven returns. However, these findings may reflect sampling

bias due to the lower frequency of these topics in earnings calls (see Table 2).

• Aggregation Method Dominance: The Naive-Average aggregation approach delivers superior

absolute and risk-adjusted returns compared to attention-based alternatives.

Long-Short Portfolios

• Negative Sentiment Detection: Preliminary evidence suggests FinBERT may outperform De-

BERTa in identifying actionable negative sentiment signals, though results remain statistically

inconclusive.

• Context-Dependent Aggregation: While Naive-Average remains effective in long-only frame-

works, its superiority diminishes in long-short strategies, with no single aggregation method

demonstrating consistent dominance.

Consistent Drivers

• Granularity: Granular sentiment extraction retains its critical role in performance differentia-

tion.

• Topics: Topic influence persists but lacks statistically significant patterns to identify dominant

themes.

• Aggregation methodology: Sentiment aggregation methodology explain material performance

variance, though optimal techniques vary by strategy.

These findings underscore the context-dependent nature of sentiment-driven portfolio construction

while affirming the value of methodological rigor in signal extraction and aggregation.

52



6 Conclusion

This study investigates the integration of LLMs into financial sentiment analysis and portfolio con-

struction, using a novel atom-based methodology. Summaries (‘atoms’) are generated from seg-

mented earnings conference call transcripts of 69 software sector companies using GPT-3.5. Sen-

timent scores for these atoms are then computed using three approaches: DeBERTa within an NLI

framework (at both atom and transcript levels), FinBERT, and a traditional lexicon-based method.

Various sentiment aggregation techniques are explored, and both long-only and long-short portfolios

are constructed using different weighting strategies informed by the sentiment scores.

This research makes three principal contributions to the literature. First, it demonstrates that

the atom-based approach to sentiment extraction yields superior portfolio performance in long-only

settings, underscoring the value of granularity in textual sentiment analysis. This result aligns with

recent advances in financial NLP, suggesting that more detailed sentiment scoring can provide a more

accurate assessment of underlying tone in financial disclosures. However, the methodology requires

further refinement to consistently outperform in long-short frameworks. Second, this study finds that

the choice of sentiment aggregation method has a substantial impact on portfolio outcomes, with

the simple average (naive-average) approach outperforming more complex alternatives in most cases.

Third, the results indicate that sentiment-weighted portfolio construction delivers higher returns and

better risk-adjusted performance compared to traditional equal-weighted strategies.

Several avenues for future research emerge from these findings. The analysis could be extended

by employing more recent or specialized LLMs, such as GPT-4, Mistral, or LLaMA 3.1, to assess

whether improvements in language understanding translate into better sentiment extraction and port-

folio performance. Expanding the dataset to include additional sectors or a broader universe of com-

panies would enhance the generalizability of the results and allow for sector-based strategies, po-

tentially incorporating market capitalization as an additional aggregation layer. Alternative portfolio

construction techniques, such as market-cap weighting or risk-parity, could be explored to assess their

interaction with sentiment signals. Further, topic modeling could be refined by clustering themes for

more homogeneous groupings or by isolating highly sector-specific topics to evaluate their incremen-

tal value.
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However, this study has several limitaions. The analysis is restricted to a sample of 69 software

stocks, reflecting the constraints of the available dataset. This sector’s historical outperformance may

limit the generalizability of the results, particularly regarding the high absolute returns observed. Ad-

ditionally, the use of GPT-3.5, while representative of current LLM capabilities, does not capture

the latest advancements in language modeling, and future work should investigate whether newer

models yield more robust sentiment signals. The inherent randomness of LLM outputs, even with

deterministic settings, introduces some variability in sentiment scores and, consequently, in portfolio

construction. Furthermore, the quarterly rebalancing frequency may not fully align with the timing of

earnings releases, and future research could examine the impact of alternative rebalancing intervals or

the lag between transcript publication and portfolio adjustment. Another consideration is the potential

for look-ahead bias, as LLMs trained on data up to 2021 may inadvertently incorporate future infor-

mation when evaluating historical transcripts. Techniques such as anonymizing product and company

names could help assess the extent of this bias.

Finally, while this study focuses on earnings call transcripts, the methodology is readily extend-

able to other sources of financial text, such as MD&A sections, M&A conference call transcripts, or

other regulatory filings. Prior research has demonstrated the informational value of these documents

for investment decision-making (Feldman et al., 2008, Hu et al., 2021, Zhou et al., 2024). Applying

the atom-based sentiment framework to a wider array of financial texts could further enhance the

utility and robustness of sentiment-driven portfolio strategies.

In summary, this research advances the application of LLMs in financial sentiment analysis and

portfolio management by demonstrating the benefits of granular sentiment extraction, careful ag-

gregation, and innovative weighting schemes. While subject to certain data and methodological

constraints, the findings provide a foundation for future work that leverages advances in language

modeling and data availability to further improve sentiment-based investment strategies.
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Appendix



Mean Return Median Return Standard Deviation Skewness Kurtosis

Minimum -0.131 -0.117 0.098 -0.802 -1.890
25th Quantile 0.037 0.013 0.152 -0.140 -0.508
Mean 0.057 0.044 0.240 0.374 0.824
Median 0.057 0.059 0.207 0.213 0.115
75th Quantile 0.082 0.083 0.303 0.799 1.153
Maximum 0.162 0.175 0.506 2.249 9.267

Table 14: Descriptive Statistics of Investment Universe Returns (Quarterly)
This table presents key distributional characteristics for quarterly returns of the 69-stock software sector
investment universe, covering the sample period from Q1 2013 to Q4 2023. Reported metrics include mean
return, median return, standard deviation (volatility), skewness (asymmetry measure), and kurtosis (tail
extremity measure).

Figure 2: Cumulative Returns of Long-Only Naive-Attention Portfolios This figure displays the
cumulative returns of long-only portfolios constructed using the naive-attention sentiment aggregation
method, evaluated with both EW and SW schemes across the three sentiment extraction approaches: NLI
(NLI-t), FinBERT (FB), and Dictionary-based methods (MD). The results are compared to a benchmark, a
momentum strategy, and the 10th–90th percentile band of randomly generated portfolios (shaded area). The
x-axis represents the evaluation period by quarter, and the y-axis reports cumulative return in dollars.
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Figure 3: Cumulative Returns of Long-Only Attention-Average Portfolios
This figure presents the cumulative returns of long-only portfolios constructed using the attention-average
sentiment aggregation method. Results are shown for both EW and SW strategies based on NLI (NLI-t)
sentiment extraction, alongside the benchmark and a momentum strategy. The shaded area represents the
10th–90th percentile band of cumulative returns from randomly generated portfolios. The x-axis indicates the
evaluation period by quarter, and the y-axis displays cumulative return in dollars.

Figure 4: Cumulative Returns of Long-Only One-Summary Portfolios
This figure displays the cumulative returns of long-only portfolios constructed using DeBERTa-based
sentiment scores extracted from one-summary representations of earnings call transcripts. Results are shown
for both EW and SW strategies, alongside the benchmark and a momentum strategy. The shaded area
represents the 10th–90th percentile band of cumulative returns from randomly generated portfolios. The
x-axis indicates the evaluation period by quarter, and the y-axis displays cumulative return in dollars.
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Figure 5: Cumulative Returns of Long-Only Topic Portfolios This figure presents the cumulative returns of
long-only portfolios constructed based on sentiment scores for five key topics: Revenue, Guidance, Growth,
Expenditure, and Profitability. Results are shown for both EW and SW strategies for each topic. The
performance of these portfolios is compared to a benchmark, a momentum strategy, and the 10th–90th
percentile band of randomly generated portfolios (shaded area). The x-axis represents the evaluation period by
quarter, and the y-axis displays cumulative return in dollars.

Figure 6: Cumulative Returns of Long-Short Naive-Average Portfolios This figure displays the cumulative
returns of long-short portfolios constructed using the naive-average sentiment aggregation method. Results are
shown for both EW and SW strategies across the three sentiment extraction approaches: NLI (NLI-t),
FinBERT (FB), and Dictionary (MD), as well as their expanded (Exp) variants. The performance of these
portfolios is compared to a momentum strategy and the 10th–90th percentile band of cumulative returns from
randomly generated portfolios (shaded area). The x-axis represents the evaluation period by quarter, and the
y-axis reports cumulative return in dollars.
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Figure 7: Cumulative Returns of Long-Short Naive-Attention Portfolios This figure displays the
cumulative returns of long-short portfolios constructed using the naive-attention sentiment aggregation
method. Results are shown for both EW and SW strategies across three sentiment extraction approaches: NLI
(NLI-t), FinBERT (FB), and Dictionary (MD), as well as their expanded (Exp) variants. The performance of
these portfolios is compared to a momentum strategy and the 10th–90th percentile band of cumulative returns
from randomly generated portfolios (shaded area). The x-axis represents the evaluation period by quarter, and
the y-axis displays cumulative return in dollars.

Figure 8: Cumulative Returns of Long-Short Attention-Average Portfolios This figure displays the
cumulative returns of long-short portfolios constructed using the attention-average sentiment aggregation
method. Results are shown for both EW and SW strategies across three sentiment extraction approaches: NLI
(NLI-t), FinBERT (FB), and Dictionary (MD), as well as their expanded (Exp) variants. The performance of
these portfolios is compared to a momentum strategy and the 10th–90th percentile band of cumulative returns
from randomly generated portfolios (shaded area). The x-axis represents the evaluation period by quarter, and
the y-axis displays cumulative return in dollars.
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Figure 9: Cumulative Returns of Long-Short One-Summary Portfolios This figure displays the
cumulative returns of long-short portfolios constructed using DeBERTa-based sentiment scores derived from
one-summary representations of earnings call transcripts. Results are shown for both EW and SW strategies,
as well as their expanded (Exp) variants. The performance of these portfolios is compared to a momentum
strategy and the 10th–90th percentile band of cumulative returns from randomly generated portfolios (shaded
area). The x-axis represents the evaluation period by quarter, and the y-axis displays cumulative return in
dollars.

Figure 10: Cumulative Returns of Regular Long-Short Topic Portfolios This figure presents the
cumulative returns of the regular long-short portfolios constructed based on sentiment scores for five key
topics: Revenue, Guidance, Growth, Expenditure, and Profitability. Results are shown for both EW and SW
strategies for each topic. The performance of these portfolios is compared to a momentum strategy and the
10th–90th percentile band of cumulative returns from randomly generated portfolios (shaded area). The x-axis
represents the evaluation period by quarter, and the y-axis displays cumulative return in dollars.
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Figure 11: Cumulative Returns of Expanded Long-Short Topic Portfolios This figure presents the
cumulative returns of the expanded long-short portfolios constructed based on sentiment scores for five key
topics: Revenue, Guidance, Growth, Expenditure, and Profitability. Results are shown for both EW and SW
strategies for each topic. The performance of these portfolios is compared to a momentum strategy and the
10th–90th percentile band of cumulative returns from randomly generated portfolios (shaded area). The x-axis
represents the evaluation period by quarter, and the y-axis displays cumulative return in dollars.
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