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Résumé 

Pour les organisations, l’étude de la durée de vie des consommateurs est très importante. 

Elles utilisent toutes sortes de modèles pour prédire la fin de leur lien d’affaires, appelé 

churn. Lorsque les clients n’ont pas de contrat (par exemple en vente au détail), la date 

de leur départ ne sera pas observable, rendant le problème d’étude du churn encore plus 

difficile. L’auteur de cette thèse possède une longue expérience pratique en industrie où 

il a construit des modèles pour étudier le churn de consommateurs non-contractuels. En 

pratique, des approximations sont utilisées et les hypothèses énoncées sont rarement 

respectées à la perfection. Dans ce mémoire, nous utilisons les outils d’analyse de survie 

pour bâtir une stratégie pratique pour le churn non-contractuel, similaire aux solutions 

approximatives utilisées en pratique. Quelques modèles différents seront présentés. 

Deux jeux de données et une étude de Monte Carlo serviront à illustrer et comparer les 

différentes méthodes. 

Mots clés : analyse de survie, COX, AFT, churn, CLV 

Méthodes de recherche : quantitative, l'analyse des données, Étude de Monte-Carlo 
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Abstract 

For organizations, studying the lifetime of customers and their value is very important. 

Models are made to predict the end of their business relationship, also called churn. In 

cases where customers do not have a contract (e.g. retail), the time when a client leaves 

will not be observed, making the study of churn even more challenging. The author of 

this thesis has a long experience in the industry where he built models for non-

contractual churn. In practice, approximations are made, and assumptions are rarely 

completely verified. In this thesis, we present a strategy akin to those real-life 

approximate models, to study the lifetime of non-contractual customers while leveraging 

survival analysis tools. A few alternative models will be compared. Two datasets as well 

as a small Monte Carlo study are used to illustrate and assess the proposed methods. 

Keywords : survival analysis, COX, AFT, churn, CLV 

Research methods : quantitative, data analysis, Monte-Carlo study 
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Introduction 

Context 

The importance of determining a customer’s lifetime should not be 

underestimated. While at first glance it might not look very important; having a tool to 

accurately model and predict clients lifetime leads to other important metrics widely 

used in business. For example, customer churn rates (the opposite of retention) are 

directly related to client lifetimes, which is one of the primary factors that determine the 

steady-state level of customers that a business will support. The time at which a client’s 

lifetime ends can be defined as a churn event. This is a critical prediction for many types 

of business since; in general, acquiring new clients is much more expensive than 

retaining existing ones. Companies invest in clients through promotions, advertisement, 

discounts, special offers and many other marketing strategies to generate more revenue 

and minimize losses caused by customer churn. Such strategies also allow to target and 

retain high-value clients, thereby maximizing profit. Lifetime can be used as an input for 

modeling a customer’s lifetime value (CLV)18 which is in fact an important concept in 

business; it provides a tool to estimate the expected revenue generated by the client and 

encourages a company to shift its focus to the long-term health of their customer 

relationships. It also represents an upper limit on spending to acquire new customers. If 

there is a way to identify the most promising clients with the highest expected CLV, a 

company can focus on targeting them with certain marketing methods. 

This thesis is focused on non-contractual businesses. There is a big difference 

between modeling contractual and non-contractual customer lifetimes. For contractual 

business, the client’s defection is directly observable: the old contract ends and a new 

contract does not exist, or the current contract is interrupted at some point for some 

reason with the same result – no more profit from that customer. In this concept, 

defection refers to the time at which a client becomes inactive. That is, the client stops 

generating revenue and is considered to be lost forever. For non-contractual business, 

                                                 
18 See abbreviations for more details 

https://en.wikipedia.org/wiki/Steady_state
https://en.wikipedia.org/wiki/Customer_lifetime_value
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things are more complicated. For every client, any purchase can be the last one or just 

the next one in the long (or short) sequence of transactions that generates profit for the 

business. In this case, it is not a trivial task to identify the event of a client’s defection. 

To illustrate this, consider a customer who buys only one product every week; following 

this pattern, it is expected that the client will make a purchase every seven days. If there 

are no transactions during the following 21 days, for example, it may be likely that the 

client has churned. On the other hand, for a customer who makes purchases from time to 

time and always buys different products, the expected time of the next visit is very 

different, and difficult to predict. A non-contractual customer can change their buying 

pattern without informing the company. Therefore, it is inappropriate to use a model 

designed for a contractual setting in the non-contractual case, where the first difficulty is 

to analytically define the moment when the client becomes inactive with respect to his 

previous activity (when they churn). 

Objective of this research 

The main topic of this research is the modeling of customer lifetime for non-

contractual businesses. The author of the thesis has a long experience in the industry 

where he encountered the challenges previously described. In a real-life setting, multiple 

assumptions and approximations are made to yield a reasonable answer fast. The goal of 

this thesis is to reproduce a realistic strategy for modeling non-contractual churn similar 

to the methods that the author saw and used in real life. We will investigate how well 

this solution works on publicly available real transaction data and through simulations. 

Two datasets are considered, each corresponding to two different companies: 

CDNOW19 and an online retail20 company. The CDNOW dataset contains the entire 

purchase history up to the end of June 1998 of the cohort of 23,570 individuals who 

made their first-ever purchase at CDNOW in the first quarter of 1997. Each record in 

this file, 69,659 in total, comprises four fields: the customer's ID, the date of the 

transaction, the number of CDs purchased, and the dollar value of the transaction. For 

non-contractual data, it is typical to have such a simple and straightforward list of 

                                                 
19 http://brucehardie.com/datasets/CDNOW_master.zip (accessed on December 21, 2022) 
20 https://archive.ics.uci.edu/ml/datasets/Online+Retail+II (accessed on December 21, 2022) 

http://brucehardie.com/datasets/CDNOW_master.zip
https://archive.ics.uci.edu/ml/datasets/Online+Retail+II
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transactions. The Online Retail II data set contains a similar list of transactions 

occurring for a UK-based registered, non-store online retail company between the first 

of December 2009 and the ninth of December 2011.The company mainly sells unique 

all-occasion giftware. Many customers of the company are wholesalers. Database 

contains 33,112 transactions in total, made by 5,878 clients. 

 Since lifetime (in any units) is a quantitative measure, we will be using regression 

models to predict this outcome. Predictors must be determined from the transactions 

data. We will thus create a set of useful features that can be informative for describing 

customers’ behavior and may also contain valuable information for estimating customer 

lifetime. Some of the features considered here originate from an RFM market analysis21 

and have been used in direct marketing for a number of decades because of their ease of 

implementation in practice. Interestingly, features that we defined based on intuition are 

also found in the literature. (Buckinx & Van den Poel, 2005) show that past behavioral 

variables, more specifically RFM22 variables and their derivatives, are the best 

predictors of partial customer defection (when the customers switch some of their 

purchases to another store). (Fader, Hardie, & Shang, 2010) show that RFM predictors 

are sufficient statistics for a non-contractual class of CLV models and provide a 

theoretical justification for their use; it also implies that Recency, Frequency, and 

Monetary value provide a complete customer summary for CLV prediction.  

Since the end of a non-contractual customer’s relationship with a company is not 

explicitly observed, we will have to make certain assumptions based mostly on our 

practical experience. The most crucial one is at which point of time we can consider that 

a customer has experienced a total defection: he stopped his business with the company 

and will never make any new purchase. The consequences of this assumption will be 

investigated with a Monte Carlo simulation to assess its compatibility with reality and to 

measure if this assumption is a significant source of error.  

While common sense suggests that time-varying covariates should be meaningful 

to the prediction of lifetime, they cannot easily be leveraged because we would need to 
                                                 
21 https://en.wikipedia.org/wiki/RFM_(market_research) (accessed on December 21, 2022) 
22 See abbreviations 

https://en.wikipedia.org/wiki/RFM_(market_research)
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know the values of those covariates in the future to make predictions. For survival 

regression we will still consider time-varying covariates but will use the last observed 

value as a proxy to make predictions. For models that ignore the time-varying variable, 

we compensate at least slightly for a loss of the behavioral dynamics by using additional 

predictors that capture features trends (short and long). We believe that leveraging the 

history of features through their trends will provide valuable (but unfortunately 

incomplete) dynamic information to the regression model. Lastly, we will construct a 

regression (non-survival) model based on artificial neural network that uses time-

varying covariates as predictors. There are in practice many instances of trying shiny 

new models for solving problems they were not specifically designed for, hereby 

ignoring the censoring, for instance. We call this the ‘dazzle effect’. We expect that this 

model will significantly underestimate the remaining survival life, since it will not take 

into consideration the concept of censorship, but its learning capacity includes learning 

from sequential data, so it will be interesting to compare the performances of traditional 

survival regression and ANN23. 

In practice, different algorithms are typically considered. In the context of churn, 

this includes leveraging survival analysis tools, but also proposing methods that ignore 

censoring. We will compare results obtained from different algorithms to see their 

relative performance on the different data including real and simulated datasets. Using 

the simulated data, we predict the remaining customer lifetime according to the methods 

explored, and compare the predicted values with the ‘true’ remaining lifetime obtained 

by the simulation. While a simulation cannot reflect all aspects of real customers’ 

behavior, especially at the end of their lifetime (before they churn), this method 

nonetheless provides a rough approximation of a true data-generating process for which 

we know the truth. It allows us to use additional quantitative metrics such as the mean 

absolute error between true and predicted remaining life, which is impossible to 

compute with real non-contractual customer transaction data. We use R to simulate 

transactions and Python for all other tasks: data preparation, feature engineering, 

survival analysis and multivariable sequence learning artificial neural network. 

                                                 
23 See abbreviations 
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Structure of thesis 

This work starts with a literature review of models for the non-contractual setting. 

Two types of models, probabilistic and non-probabilistic, are proposed in the literature 

to predict different outcomes such as churn, number of future purchases, or CLV. 

Particular attention is devoted to exploring various definitions of churn events from the 

literature.  

We describe and explain our own definition of churn in Chapter 1. A cornerstone 

is the description of our vision of customer’s lifetime when the death event is not 

explicitly observed. Further steps of the proposed methodology are also presented, 

including the modeling framework (i.e., how we construct a discrete-time survival 

model) and feature engineering. A special section is devoted to a conceptual explanation 

of the transition from transaction data into variables and features that can sustain 

survival analysis. Again, these solutions are based on real-life solutions driven by 

intuition and common sense, but they may not respect all usual assumptions. 

Chapter 2 reviews models and metrics that are used in further chapters, including 

the description of the survival regression models that are considered. The two real 

datasets previously described are analyzed in Chapter 3 using different algorithms. We 

consider commonly used evaluation metrics for survival, notably two versions of the 

concordance index (CI).  

In Chapter 4, we know the ‘truth’ in the synthetic data produce in the Monte Carlo 

simulation. As a metric, the mean absolute error (MAE)24 allows to compare with the 

‘true’ remaining life for censored customers. We also make simplifying assumptions on 

the CLV to determine a ‘true’ spending for the censored customers based on the 

individuals’ remaining life and average spending. Customers spending made during 

their remaining live can be seen as CLV and describes how much revenue the company 

can expect to have in the future from existing clients (without taking into consideration 

new arrivals). The interpretation of the role of the features in the models is in line with 

                                                 
24 See abbreviations 
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the intuition, and the results shed a new light on the role of assumptions to get good 

predictions 

Finally, our main findings will be summarized in the conclusion. 

 



1 

Literature review 

Introduction 

The prediction of churn is gaining attention across different fields; both from a 

business and an academic perspective, and a variety of sophisticated models that predict 

churn have already been proposed. In a contractual business setting, the definition and 

observation of churn is relatively simple, because it is directly related to the changes to 

an existing contract. This can be through the termination of the service unless the 

customer takes a specific action such as a subscription or membership renewal, or by an 

active service until the customer actively cancels the contract (Ascarza, Netzer, & 

Hardie, 2018b). One of the most important challenges with churn in non-contractual 

business settings is the lack of a good definition for the churn itself. This is especially 

important since we typically need a working definition of a customers’ defection to 

build a churn prediction model. That churn definition is highly subjective and definitely 

influences any model and its results.  

Churn definitions for non-contractual settings 

Non-contractual business settings pose many more challenges. As customers can 

leave without saying a word to a company or terminating a contract, the loss of customer 

is not directly observed. Unfortunately, the decision of whether a customer has churned 

or not is rather subjective and usually relies on heuristic rules, set by the industry 

officials (Kaya, et al., 2018). One approach to a churn definition for non-contractual 

business includes two basic parameters: customers’ activities and some threshold fixed 

by certain business (Clemente-Císca, San Matías, & Giner-Bosch, 2014). 

(Buckinx & Van den Poel, 2005) do not take into account any monetary condition 

to identify behaviourally loyal customers. Focusing on frequent customers they define 

their loyal segment based on two behavioural attributes: the frequency of purchases and 

the time between their purchases, so customers should satisfy the following two 

conditions: frequency of purchases is above the average and the ratio of the standard 

deviation of the inter-purchase time to the mean inter-purchase time is below average. 
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The first criterion serves as an indication of a customer’s loyalty and potential 

profitability (Wu & Chen, 2000). The second ensures that the times between customer 

visits are regular. So, if one of the aforementioned conditions is not fulfilled, (Buckinx 

& Van den Poel, 2005) classify a customer as partially defecting. (Clemente-Císca, San 

Matías, & Giner-Bosch, 2014) use an approach similar to (Buckinx & Van den Poel, 

2005) where a customer is considered as a churner if they changed a predefined status 

from loyal to non-loyal, whereas loyal customers are those who shop frequently and 

have a regular buying pattern.  

(Karnstedt, et al., 2010) propose several definitions of churn, notably global, 

individual, and gradient. Global churn considers a customer as a churner if their average 

activity level within a certain time window is lower than a fraction of the average 

activity level of the population in the same time window. Their definition of individual 

churn follows a similar principle, but the individual average activity is compared to the 

average level of activity of the same customer in a prior time window. The idea of 

gradient churn is then similar to individual churn, but the change through time is 

measured as a ratio akin to a derivative measuring the magnitude of the rate of change in 

the individual’s level of activity. 

Working with different definitions of churn is frequent as it may answer different 

business questions. In the mobile gaming industry, (Perisic, Jung, & Pahor, 2022) use 

definitions of churn for no activity (absence churn) as well as a decline in engaging 

activities (starting absence churn). They also define their own version of the gradient 

churn of (Karnstedt, et al., 2010) to detect changes in the behaviour of customers. 

For the online gambling industry (Coussement & De Bock, 2013) assume 

gamblers are churners when they have not placed a bet over a period of four month. The 

model proposed by (Jahromi, Stakhovych, & Ewing, Managing B2B customer churn, 

retention and profitability, 2014) use half a year as a unit of measurement and analyses 

two consecutive periods: define churn as being inactive in the second half of the year 

(prediction period) while being active in the first half of the year (calibration period). A 

clustering approach can be found in (Jahromi, Sepehri, Teimourpour, & Choobdar, 
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2010) who model churn in non contractual setting in the case of telecommunication 

service providers. Customers’ population is divided into groups (clusters) according to 

their intensity of cell phone usage. Clients are considered as churners if the period of 

their inactivity is greater than the mean value that corresponds to the cluster to which 

they belong. 

(Bayrak, Guven, Bahadır, & Yalcınkaya, Comparative Methods for Personalized 

Customer Churn Prediction with Sequential Data, 2022) use sequences of times of 

transactions to determine customers’ churn. They focus on average-order-day frequency 

(the average of the time differences between orders in day) calculated individually for 

each regular customer, as well as a similar average for the entire population. They 

include only customers with a minimum of five transactions. Interestingly, they follow 

customers after they churned, and study the individual buying patterns – a sequence of 

churn / no churn status for each customer. Their analyses focus on a short-term 

definition of churn and the assumption that there will be multiple churns for a typical 

customer. They use those patterns as an input feature in sequential neural networks 

algorithms. 

(Glady, Baesens, & Croux, 2009) use a modified Pareto/NBD model to predict the 

future number of transactions and CLV as a sub-model to define churn: a churner is 

defined as someone with a customer lifetime value decreasing over time. 

Survival for time-to-churn prediction 

To paraphrase (Liu, 2012), the practice of survival analysis is the use of reason to 

describe, measure, and analyze features of events for making predictions about not only 

survival but also ‘time-to–event processes’ – the length of time until the change of status 

or the occurrence of an event – such as from living to dead, from single to married, or 

from healthy to sick. In medical research, scientists apply survival analysis to compare 

the risk of death or recovery from disease between or among population groups 

receiving different medications or treatments 
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In survival analysis specific methods are required because we rarely observe the 

event of interest for all participants but the ‘censored’ information about the not-yet-

observed events must be taken into consideration. As (Liu, 2012) mentions, 

methodologically, censoring is defined as the loss of observation on the lifetime variable 

of interest in the process of an investigation. In survival data, censoring frequently 

occurs for many reasons. In a clinical trial on the effectiveness of a new medical 

treatment for disease, for example, patients may be lost to follow - up due to migration 

or health problems. In a longitudinal observational survey, some baseline respondents 

may lose interest in participating in subsequent investigations because some of the 

questions in a previous questionnaire are considered too sensitive.  

A key publication in survival analysis, (Cox, 1972) proposes semi-parametric 

regression for survival data. His trick is to have a nonparametric base hazard function 

multiplied by a factor determined by regression coefficients. A parametric alternative to 

Cox regression is the Accelerated failure time models (Wei, L.J.: The Accelerated 

Failure Time Mode: A Useful Alternative To the Cox Regression Model in Survival 

Analysis, Statistics in Medicine,11, 1992, 1871-1879.). Generally speaking it determines 

the way in which the explanatory variables influence the survival time or in another 

words, how much the covariates accelerate or decelerate the lifetime of an individual 

comparing to the baseline. In recent publications non-traditional applications of survival 

analysis are found in fields quite far from medicine. For example, Cox model has been 

used to predict credit card default (Djeundje & Crook, 2019). Also, Cox proportional 

hazards model is used by (Li, Li, & Li, 2019) to study credit card default problems. An 

extended Cox proportional hazards model is applied by (Hu, Chen, & Chen, 2021) to 

discover the impact of different factors that influence customer churn in the car sharing 

industry. In the insurance field, Cox regression model is proposed to analyze clients’ 

repurchasing behavior with lifestyle segmentation (Ansell, Harrison, & Archibald, 

2007). Research by (Chen, Zhang, Zhao, & Xu, 2022) has been conducted on car 

insurance renewal problems. Their paper proposes the Cox model with variable 

penalties to predict a customers’ churn and distinguish regular clients for vehicle 

insurance. 
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CLV 

Most models that study non-contractual customers’ life attempt to predict either 

their number of future purchases followed by estimation of future spending or CLV 

directly. (Wong, 2011) models customer time to churn by Cox regression, but for 

contractual settings where the ‘death’ event is explicitly observed. However, his work 

focused mostly on the attempt to identify customer segments that are sensitive to 

churning behaviors. Some papers related to non-contractual settings propose probability 

models. An interesting overview of a class of parsimonious models is has been done by 

(Fader, Hardie, & Shang, 2010). They cover both: non-contractual (customers ‘death’ is 

not observed) and contractual setting. Those models assume that customers buying 

behavior follow some probability distribution. Models use this assumption to estimate 

the probability of customers ‘death’ or number of future purchases (buy till you die). 

One of the first probabilistic models for non-contractual setting that tries to predict 

customer’s future purchases is Pareto/NDB proposed by (Schmittlein, Morrison, & 

Colombo, Counting your customers: Who are they and what will they do next?, 1987). 

They assume that purchases of active customers are characterized by a Poisson 

distribution and the time between purchases can be represented by an exponential 

distribution with a certain rate parameter that corresponds to customers mean purchase 

rate. Each customer has their own rate which is assumed to come from a gamma 

distribution, resulting in the negative binomial distribution (NBD) model for repeating 

purchases at the population level (Morrison & Schmittlein, 1988). One development of 

Pareto/NBD model is proposed by (Fader, Hardie, & Shang, 2010). They call it beta-

geometric/beta-Bernoulli (BG/BB) model that captures customers’ purchases while 

clients are active and the time until each customer “dies”. Another modified 

Pareto/NDB approach was proposed by (Glady, Baesens, & Croux, 2009) to predict the 

future number of transactions and customer lifetime value simultaneously. The churning 

customer is defined as someone who’s CLV is decreasing. Generalizations of the 

Pareto/NBD can be found, for example in (Jerath, Fader, & Hardie, 2011). Non-

homogeneous hidden Markov proposed by (Netzer, Lattin, & Srinivasan, 2008) captures 

the dynamics of customer relationships incorporating the effect of the sequence of 

customer-company encounters and buying behaviour. 
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In addition, survival analysis allows having both lifetime and probability of 

survival, so it could in fact be used to solve both problems since the ‘hazard function’ 

can be viewed as the probability that a customer will churn away (Wong, 2011). 

Multiple strategies have been developed to study the life of customers. Some look 

at specific definitions of churn, others try to predict CLV. Since churn is an ‘event’ of 

interest, using survival analysis would seem natural, yet standard tools are not typically 

leveraged. The approach that we assess in this thesis focuses on customers’ lifetime and 

makes use of different survival analysis methods. 
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Chapter 1 
From transactions to survival 

Churn refers to an end-of-life event in the sense that a client eventually ceases to 

purchase from the company. The data produced by non-contractual clients are a 

sequence of transactions, which may be transformed into survival data. In this chapter, 

we present relevant definitions and strategies to transform those transactions into 

relevant times for survival analysis. 

Why survival? 

The main goal of this work is to estimate customers’ lifetime. Survival analysis is 

a branch of statistics for analyzing the duration of time until one event occurs, such as 

death in biological organisms and failure in mechanical systems. Among the others, the 

two main goals of survival analysis are to determine the effect of covariates on survival 

time and to predict the moment of failure or individuals’ death. The inability to observe 

the death event in a non-contractual setting involves that we cannot know the real time 

of churn. Our setting contains time-varying covariates, which creates additional 

complications for modeling. To predict duration, we would need to know the covariates 

values beyond the observed times. However, if we knew that, we would also know if the 

subject was still alive or not! COX time varying and discrete-time proportional odds 

models allow to compute hazard rate of subjects at known observations, the baseline 

cumulative hazard rate and baseline survival function. However, it is not trivial to 

estimate expected duration (lifetime) for any individual. Accelerated failure time 

survival models have the ability to extrapolate lifetime estimation, but the problem lies 

in feature engineering: they are time-varying. One simple possible solution is to use 

features that correspond only to last known states regardless of whether customer is 

active or churned. However, this simplified model might not be able to learn from 

customers purchasing history and be unable to extract useful information from changing 

clients purchasing activities during the study period. For example, one customer had 

very regular buying pattern during some period (purchased something every week for 

example). Then he started to buy in irregular manner (one month delay, than few regular 

https://en.wikipedia.org/wiki/Statistics
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transactions again). Finally, he leaves. Intuitively, he started to churn when he changed 

his buying behavior. Therefore, a feature that describes regularity (clumpiness) had 

values close to zero at the beginning, but by the time of churning event, value got closer 

to 1 (0.5 for example). If we look only at the final state, we will see that this client has 

an irregular buying pattern, but we cannot know that he purchased regularly before. 

Another example is for the customer whose mean daily spending was $10 at the 

beginning for some time, than he started to buy less and less ($2 daily), and finally left. 

The inability to provide changes of any predictor in time might be compensated by using 

their linear trends.  

Durations and censorship 

A typical survival outcome is summarized by two pieces of information: a time 

and an indicator saying if that time corresponds to an event or to censoring. In this work, 

we consider right-censoring, i.e. the situation where we either know the time of an 

event, or a lower bound for that time, as this is the typical type of data for a churn study. 

In a non-contractual setting the death and churn events are not observed. To define 

the survival outcome, we must first decide on a working definition for those important 

events. The mathematical definition of those events is presented in the next chapter, but 

given our constraints, they are defined from the sequences of purchase times. Figure 1 

shows three different customers with their purchase history within the time frame of a 

churn study period. Client 1 has his ‘death’ event within the study interval, therefore his 

lifetime will be considered observed, he is not censored. The time to event is defined as 

the time from ‘birth’ to ‘churn’ (see details in defining churn section). The ‘death’ 

events of Clients 2 and 3 lie outside the study interval. Even if the ‘churn’ event of 

Client 2 happens before the end of the study, we do not yet know about his ‘death’; so 

both Client 2 and 3 are censored. Their times of censoring are equal to the duration from 

‘birth’ event to the last time of activity, which corresponds to the customers’ last 

transaction. 
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Figure 1. Visual explanation of the process of defining ‘event’ shown on three different customers. 

Definition of churn 

Before defining churn for non-contractual business, two questions arise: when 

does a client become inactive (dead) and can we be sure that the death is true? In other 

words, when can we truly ascertain whether a customer has stopped his business with 

the company and left forever? Such unobserved states can unfortunately not be 

determined with certainty. The literature review in the previous section describes a 

variety of strategies when it comes to defining customer churn in a non-contractual 

setting. All have their advantages but need to be adapted to the type of business it is 

applied to. In practice, the definitions of churn will be inspired by the literature but 

represent the particularities of a given company. This work proposes a definition of 

churn based on customers’ individual buying patterns that could likely be developed by 

an organization, and that is in fact very similar to definitions that the author has used in 

the industry. 
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A very common definition of churn is to fix a set time (say four months) after 

which the client is considered ‘dead’. This definition is found, e.g. in (Coussement & De 

Bock, 2013). In some businesses, clients will have heterogeneous buying frequencies. 

For customers that buy every day, a death event after four months lies way too far from 

the unobserved time when they quit. From the other side, clients that make purchases 

once per year experience ‘death’ after each transaction and are wrongly labeled as 

‘dead’ after each purchase. Defining a longer (or shorter) period of inactivity for the 

entire population of customers will only lead to an aggravated problem at one end of 

that spectrum. A definition of churn that uses a common time threshold for all customers 

would be appropriate when customer patterns are homogeneous, but this is not the case 

in the data that we consider. From experience, we also observed that clients’ buying 

patterns can vary a lot for different companies depending on their occupation, product 

assortment, size and many other characteristics. In one company that I worked for, a 

small pool of customers were buying every day products and services, and hence 

inactivity for only few days meant they turned over. Even within the same company, 

another category of customers were buying from time to time with inter-purchase 

intervals that varied from days to years. Seasonality patterns may also be a reality: every 

summer some clients buy a lot but they are inactive for the rest of the year.  

We prefer adaptive thresholds to define ‘death’, an idea that is found in (Buckinx 

& Van den Poel, 2005) although they predict customer partial defection rather than their 

lifetime. For our adaptive proposal, each customer has their own individual time to 

‘death’ (TTD), the time interval from the last transaction to the day when a customer is 

considered to be lost. The personalization of TTD leverages the individual distribution 

of purchase history. The inter-purchase interval (IPI) times are of particular interest. The 

IPIs represent the time between two consecutive transactions. To have a sufficient 

purchase history, we limit the pool of customers to those who completed their third 

purchase, hence making that date of purchase their ‘birth’ event for the purpose of the 

churn study. To represent each customer’s IPI distribution, we fit parametric models to 

their data using Maximum Likelihood Estimation (MLE). If we knew that all clients are 

still alive at the end of the period, we should have included the censored value of the last 

purchase time to the end of observations. Since we do not know their status, we ignore 
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that last censored time, but acknowledge that this approximation could bias in the 

estimation. Each customer buying pattern therefore gets summarized by their estimate of 

the parameters for their IPI distribution. With a Gamma model, for instance, each 

customer will have a shape and a scale parameter of his own. 

To illustrate, let us consider the following list of transaction dates for one typical 

customer in the CDNOW dataset: 1997-01-01, 1997-01-15, 1997-02-05, 1997-04-08, 

1997-05-27, 1997-06-17, 1997-07-22, 1997-09-16, 1997-12-09, 1997-12-30, 1998-02-

18. These dates yield the corresponding sequence of IPI in days: 14, 21, 63, 49, 21, 35, 

56, 84, 21, 50. They are referred as the sample for this customer. The distribution of IPI 

may vary from a business to another, and we thus consider multiple popular 

distributions as potential parametric models, namely: Normal, Lognormal, Fisk, 

Weibull, Exponential, and Gamma. For this specific sample, we find the following 

parameter estimates for these distributions: 

• Normal: mean = 41.4, std = 21.6019, 

• Lognormal: stdLog = 0.565, mean = 35.6273, meanLog = 3.5731, 

• Fisk: shape = 2.8731, median = 36.2365, 

• Exponential: scale = 41.4, rate = 0.0242, 

• Gamma: shape = 3.4874, scale = 11.8712, rate = 0.0842, 

• Weibull: shape = 2.0546, scale = 46.9612. 

These parameters yield probability density functions (PDF) that are shown on 

Figure 2 along with their median and 98% quantiles. 
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Figure 2. PDF of Normal, Lognormal, Fisk, Exponential, Gamma and Weibull distributions with parameters 
obtained by MLE on sequence of inter-purchase intervals from the CDNOW dataset, namely {14, 21, 63, 49, 
21, 35, 56, 84, 21, 50 }. Dotted vertical lines with corresponding colors show median of each distribution. Solid 
vertical lines mark 98% quantile of corresponding distribution. 

For a given churn analysis, we select one of the models using goodness-of-fit tests, 

namely Kolmogorov-Smirnov and Cramér-von-Mises. While letting each individual 

have their own best fitting model would seem to provide additional flexibility, such a 

strategy would also be more unstable for customers with a very short buying history. We 

therefore retain the parametric model that provides the best average fit for all customers 

based on a majority vote strategy. 
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Figure 3. CDF of Normal, Lognormal, Fisk, Exponential, Gamma and Weibull distributions with parameters 
obtained by MLE on sequence of inter-purchase intervals {14, 21, 63, 49, 21, 35, 56, 84, 21, 50 }. Dotted vertical 
lines with corresponding colors show median of each distribution. Solid vertical lines mark 98% quantile of 
corresponding distribution. 

Our definitions of churn and death will involve quantiles that are more naturally 

visible from the cumulative distribution function (CDF). Figure 3 shows the estimated 

CDF for the same CDNOW client considered earlier. All CDFs (except exponential) 

look similar. While the solid vertical lines show the 98% quantile of the distributions, 

the dotted vertical lines represent the median of each CDF. Remembering that the CDF 

of a random variable 𝑋 is the function given by: 𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) where the right-

hand side represents the probability that 𝑋 takes values less than or equal to 𝑥. This 

means that for Weibull distribution, for example, estimates that the probability of a 

customer making a purchase within 91.21 days of its last purchase is 98% as may be 

seen from the plot. Or having parameters of Weibull distribution determined by MLE: 

shape: 2.0546, scale: 46.9612 and remembering that for 𝑥 >  0 CDF = 1 − e−( x
scale)shape 

at 𝑥 = 91.21 we have 𝐶𝐷𝐹 = 0.98. In other words, if this customer is still alive there is 

only a 5% chance that he does not buy something during 91.21 days. We would like to 

translate this probability into the probability of being alive given the time since the last 

transaction, but that would involve using the Bayes formula which requires the a priori 

knowledge on the probability of being alive until that time. This situation is akin to tests 

of hypotheses where we need to make a decision on the rejection of 𝐻0 but have no easy 
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way to determine the probability of it being true. We propose a similar solution: when 

there is a low enough probability that an alive client waits so long to do a purchase, we 

reject the ‘hypothesis’ that he is still alive. With this definition of the ‘death’ event, after 

a given purchase there is approximately one chance out of fifty that a customer will 

experience a false ‘death’ event because of the length of time between two consecutive 

transactions exceeding the TTD interval. 

So TTD is the duration in days that corresponds to the value of percent-point 

function (quantile function), constructed from some distribution with certain parameters, 

obtained by MLE estimator, equal to 0.98. For example for exponential distribution, 

98% quantile can be calculated by formula: − ln (1−p)
λ

, where lambda is rate, so a 

customer described in the example has TTD = 161.96 days. We should notice that 98% 

quantile has been chosen intuitively as a compromise between certainty of customers’ 

death and early churn alert. If for example, we take exponential distribution and 99% 

quantile, false ‘death’ error will decrease to 1% but alert caused by customers absence 

will be raised later (in 190.65 days according to exponential distribution for example). 

Death times are used to decide that a client is already gone, but their actual churn 

time will most often happen before. Intuition tells that from a company’s point of view, 

the ‘churn’ event could be considered to occur as early as the day (or the next day) of 

the last transaction after which client will not be making any purchases. Following this 

logic, the customer’s lifetime would be the time interval from first to last purchase and 

could be directly observed for clients who are considered ‘dead’. The lifetime of 

customers considered still alive is unknown (censored). This logic is in line with churn 

prevention: proactive retention actions require identifying churners before they leave 

forever, as early as possible. So, for the client taken as an example, 91.21 days after the 

last transaction (based on the Weibull distribution) is likely too late. Defining ‘churn’ 

event too close to the last transaction may also cause issues for any algorithm that would 

use time-varying features, as those vary substantially after each transaction due to their 

nature. Details of the time-varying features are described in the next section). 
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Therefore, we define a ‘churn’ even, which only occurs for customers whose 

‘death’ events were observed. The time to churn (TTC) is the duration in days that 

corresponds to the median IPI based on the MLE estimator previously discussed. 

Customer’s lifetime is the duration in days from customer’s ‘birth’ to his ‘churn’. This is 

equal to the duration between third and last purchases plus TTC.  

The median of a Weibull distribution is given by λ(ln (2))
1
k. For our example, k is 

shape = 2.0546 and lambda is scale = 46.9612, yielding a median of 39.29 days, the 

TTC. Note that the other aforementioned five distributions would lead to different yet 

similar TTCs ranging from 28.7 to 41.4 days. Note that TTD varies more since it is 

further in the tail. For this particular sample, it ranges from 85.76 to 161.96 days. The 

choice of distribution might have a significant impact on the results, hence our approach 

to use goodness-of-fit tests to select wisely.  

Both, ‘churn’ and ‘death’ events are obtained from different quantiles (50%, 98%) 

of the same distribution, but have different purposes. ‘Death’ event specifies whether 

customers are still alive or if they left forever, but the ‘churn’ event serves as a marker 

of when the customer actually left. In the context of survival regression, when a client 

meets the definition of ‘death’, its observed time of death will be defined based on TTC. 

Otherwise, the customers are assumed alive, and the time from birth to now is censored. 

Details on survival regression are explained in Chapter 2. 

Discrete-time framework 

Our model uses discrete time framework within which variables (features) 

occurring at distinct, separate "points in time" and being unchanged throughout each 

certain time period (time step). Thus features’ values jump from one value to another as 

time moves from one time period to the next. The reason we use this framework is that 

our features cannot be measured directly and must be calculated; this process requires 

certain time. Time periods where features have values we call ‘States’. Figure 4 shows 

the discrete-time framework for CDNOW dataset. Transactions period starts at 1997-01-

01 and ends at 1998-06-30. Study period starts at 1997-04-05 and ends at 1998-06-27, 

therefore, State 0 is at 1997-04-05 and the last state is at 1998-06-27, number of states 
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equals to 65 (N=64) and time step is equal to 7 days. Dataset provides us a population of 

7206 customers that satisfy the eligibility criteria described in previous paragraphs. 5607 

of them are censored and 1599 are dead. 

 

Figure 4. Visual demonstration of discrete-time framework created from CDNOW dataset. 

Every state has a subset of customers: each of them must have his ‘birth’ event 

somewhere between the first transaction date and a state date. From states’ perspective 

the only knows customer’s activity is the one that happened before the states’ date. This 

rule is mandatory for all clients’ descriptors except status. Generally speaking, all 

customers’ descriptors (except status) are calculated from states’ perspective: future 

clients’ activity (after States date) remains unknown. Customers’ status is an exception 

from this rule; it might be either ‘dead’ or ‘censored’. Customer is ‘dead’ at State if his 

TTD (see defining churn section for details) lies within transactions interval (‘death’ 

happen before the end of transactions period), and ‘censored’ otherwise. Every customer 

at each state has set of descriptors that represent variable, event or are used to calculate 

features.  

 

Features 

Features are the subset of descriptors that are used predictors in machine learning 

models and can possibly describe quantitatively customers’ behavior. Some features 

may be time-varying. Our data has limitations: we only have purchase history, hence all 

features may only be engineered from those transactions that contain customer id, 

purchase date and amount. While defining both the outcome and the predictors from a 

same source of data may raise concerns with endogeneity, these operations tend to be 
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frequent in practice. We are also looking for some predictive models, rather than 

inferential conclusions, a more forgiving endeavour as long as the final black box 

produces useful predictions. Most predictors we define are similar to the ones used in 

(Buckinx & Van den Poel, 2005) where a very good summary of many behavioural 

independent variables is described and supported by past research. 

Recency is the time interval from ‘last purchase’ to the day of study. Customers 

who recently made purchases are more likely to be active than customers who shopped a 

long time ago (Wu & Chen, 2000). Previous studies find that the lower the value of 

recency, the higher the probability that a customer is still loyal. In a non-contractual 

setting this can be the most important variable to indicate an active or inactive 

relationship (Reinartz & Kumar, 2002).  

Frequency is the number of purchases the customer made since birth (regardless 

of money spent and number of items bought). The customer’s frequency of purchases 

may be predictive for their future behavior (Schmittlein & Peterson, 1994) because it is 

positively related to customers’ expected future use (Lemon, White, & Wine, 2002). The 

probability that a customer is alive may be measured by the number of purchases 

(Reinartz & Kumar, 2002). 

Loyalty is the time interval between customer’s ‘birth’ and day of study. The 

extent to which a customer is able to identify himself with a company is positively 

related to the period he is willing to continue this relationship (Bhattacharya, 1998). 

This expectation is confirmed in (Anderson & Weitz, 1989) and indicated that the length 

of the relationship is positively associated to the perceived future stability of the 

relationship.  

Clumpiness – measure of regularity of intervals between visits or individual-level 

entropy measure described in the article (Zhang, Bradlow, & Small, 2014) in details and 

equal to 1 + ∑ log (xi)xin+1
i=1
log (n+1)

 where 𝑥𝑖 is ith value in sequence and 𝑛 is sequence length 

where sequence is customers IPI. It has range [0 , 1] where values close to zero  
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correspond to regular buying pattern (all values in sequence are almost identical) and a 

value closer to 1 represents irregular buying patterns. 

Monetary predictors represent the amount of money someone has spent at a 

company. The monetary value of each customer’s past purchase behavior tends to be 

effective in predicting purchase patterns (Schmittlein & Peterson, 1994) and is used in 

the literature to determine future patterns. We incorporate three monetary features: 

MoneySum – sum of customers’ spending.  

MoneyDaily – daily average spending which is MoneySum divided by time 

interval from customer’s ‘birth state’ to date if study.  

MoneyMedian – median customers spending. 

Poisson features 

One assumption can be made that intervals between purchases follow Poisson 

distribution with certain constant mean rate, individual for every client. However, mean 

rate can vary from state to state and depends on previous intervals. Equation adapted to 

rate is:  

P(k events in time t) =
rtke−rt

k!
 

Probability of one event occurring during [0..recency] period 

P(1 or more events in time t) = 1 − P(0 events in time t) = 1 − e−rt 

Where current rate r = n
∑ xin
i=1

 

Where 𝑥𝑖 is the 𝑖𝑡ℎ interval between transactions, n is number of repeating transactions 

(number of intervals between transactions), t is recency at current state. Also, having 

current rate, a time interval to the instance where probability of occurring 1 or more 

events is equal to p can be found as t = − log (1−p)
r
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Another two features will be used to create predictors for our modeling: 

pEventPoisson – probability that client makes transaction at current state 

ratePoisson – rate described above 

Ranking features (ranks) 

Deciles (10 quantiles) are used to divide observations in a sample into continuous 

intervals with equal probabilities based on method 7 of (Hyndman & Fan, 1996). It is 

necessary since features like MoneySum can have long range but shifted towards one 

side distribution. For example mean value for population could be 100 but for few 

customers cumulative spending can be 100000. There is an issue that appears while 

number of dead clients is accumulating. For all dead customers, recency is increasing 

constantly and does not drop since left clients do not make purchases anymore. 

Therefore, if deciles are calculated including both dead and alive customers, the mean 

value for each decile shifts towards the higher numbers (in case of recency), which will 

lead to distortion of real picture that should describe customers’ standing relative to 

other active customers. Having this in mind, for every state, cut points for deciles are 

calculated using only subset of active clients. Then, for all customers, corresponding 

features are used to find appropriate decile. On machine learning language, model fits 

active customers’ subset, but predicts values for entire population, that belongs to 

specified state. As a result, any ranking feature gets integer value from 1 to 10. Highest 

number 10 corresponds to ‘best’ customer (the maximum score represents the preferred 

behavior). This is straightforward for most of features such as frequency, loyalty, and 

monetary features. Higher value represents better client. However, for recency and 

clumpiness, order should be reversed, so most recently visited customer has highest rank 

10. Other clustering methods can be applied to assign ranks (labels) for customer’s 

features, but usually it takes more computational time and those that have been tried (k-

means and agglomerative clustering) did not show any significant improvement in final 

lifetime predictions. The following ranks will be used in later modeling: 

r10_R: recency rank 
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r10_F: frequency rank 

r10_M: moneyDaily rank 

r10_L: loyalty rank 

It should be mentioned that ranks correspond to their sources (features described 

above) and therefore are calculated for each state separately.  

Complex ranking features  

Composite ranks are composition of rank features  ∑ wi ∗ rin
i=1  (m.1) or ∏ wi ∗n

i=1

ri (m.2) where n – number of single features, 𝑤𝑖 - weight of each feature, 𝑟𝑖 – feature 

itself. Each type of composite feature has the same scale (integer [1 , 10]) as source 

ranking feature. We will be using (m.2) model it will include interactions between two 

or more predictors in the regression model. 

r10_RF – interaction between recency and frequency. 

r10_FM – product of frequency and MoneyDaily ranks. High value will indicate 

those clients who made many repeating transactions and spent lots of money. 

r10_RFM – product of recency, frequency and MoneyDaily. Probably the most 

common indicator in a way to use data based on existing customer behavior to predict 

how a new customer is likely to act in the future (RFM analysis). 

R10_RFML – product of recency, frequency, MoneyDaily and loyalty. 

Trends 

Generally speaking, for time series sequences, trend estimation can be used to 

make and justify statements about tendencies in the data, by relating the measurements 

to the times at which they occurred and can be used to describe the behavior of the 

observed data, without explaining it. Trend features are of two types: long and short. 

Long trends describe global tendency of change of customer’s behavior. Linear trends 

were obtained by simple linear regression and the slope value is used as a feature. 

https://en.wikipedia.org/wiki/Time_series
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Positive trend value signifies general improvement of customers standing in population 

among active clients. Short trends are designed to get recent changes. Only most recent 

states (counting from present) are included in linear regression model that calculates the 

slope. For this model, data from the most recent 10 time steps were used to find this 

feature. Since calculating trends for every customer at each state require some time, 

trends will be prepared only for subset of features described above. 

On Figure 5 and Figure 6, two randomly selected customers from CDNOW 

dataset are presented to illustrate how some predictors change in our discrete-time 

framework. Figure 5 shows active customer, Figure 6 – the churner. There is a 

timeframe on the x axis, blue vertical dashed lines show transactions that clients made. 

Top subplot of each two plots shows rank r10_RFM (green) scaled to range from 0 to 1, 

Clumpiness (C in plots legends in blue) and pPoisson (red). On bottom subplot the 

corresponding short and long trends are shown (same colors, short trends are dashed 

curves, long trends - solid). Visual inspection might give an impression that for active 

customer ranks go up and long trends are positive. For churner the situation is different: 

ranks go down and long trends have either small positive or negative values. From the 

other side, short trends could reflect a dynamics in buying pattern. We hope, that those 

predictors as well as the others described in this section would be informative for 

machine learning models we are going to implement to predict customers lifetime. 



28 
 

 

Figure 5. Randomly selected active customer from CDNOW dataset, who made his last purchase not very far 
from the end of transactions data. Upper subplot shows how features r10_RFM, C and pPoisson change in 
time. Vertical dashed lines correspond to time instances when customer made purchases. Lower subplot 
displays short and long trends of corresponding features from top subplot. 

 

Figure 6. Randomly selected churning customer from CDNOW dataset, who made his last purchase relatively 
long time ago from the end of transactions data. Upper subplot shows how features r10_RFM, C and pPoisson 
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change in time. Vertical dashed lines correspond to time instances when customer made purchases. Lower 
subplot displays short and long trends of corresponding features from top subplot. 
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Chapter 2 
Methods for Estimating Lifetime 

Common terms in survival analysis 

One way to describe the survival times of members of a group is to model a 

survival function that gives the probability that a patient, device, or other object of 

interest will survive past a certain time (1). The survival function is defined by: 

𝑆(𝑡) = 𝑃({𝑇 > 𝑡}) = � 𝑓(𝑢)𝑑𝑢 = 1 − 𝐹(𝑡)
∝

𝑡
 

Equation 1. Survival function. 

where F(t) is cumulative distribution function of continuous random variable T. 

Another basic notion in survival analysis is the hazard function.  

ℎ(𝑡) = lim
𝛿>0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝛿|𝑇 ≥ 𝑡)
𝛿

 

Equation 2. Hazard function 

It represents the instantaneous risk of experiencing the event at time t given it did not 

occur before. In our case T is discrete and can take values 1, 2, .. N, so hazard function 

is defined by: 

ℎ(𝑡) = 𝑃(𝑇 = 𝑡|𝑇 ≥ 𝑡) 

and it is a probability that the event occurs at time t given it did not occur before. 

Cumulative hazard rate is defined by: 

𝐻(𝑡) = � ℎ(𝑥)𝑑𝑥
𝑡

0
 

Equation 3. Cumulative hazard rate. 

https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Survival_analysis
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and can be thought of as the total accumulated risk of experiencing death that has been 

gained by progressing to time t. While h(t) can increase or decrease with time, the 

cumulative hazard rate can only increase or remain the same. There is a direct 

connection between cumulative hazard rate and survival function: 

𝑆(𝑡) = 𝑒−𝐻(𝑡) 

Equation 4. Survival-hazard connection. 

  

𝐻(𝑡) = −ln (𝑆(𝑡)) 

Equation 5. Hazard-survival connection. 

Expected survival time is the area under the survival curve: 

𝐸(𝑇) = �𝑆(𝑡)𝑑𝑡
∝

0

 

Equation 6. Expected survival time. 

Median survival time is the value 𝑡𝑖 such that 𝑆(𝑡𝑖) = 0.5 

If we know that subject survived 𝑡∗ time, then 

Remaining expected survival time is: 

𝐸(𝑇|𝑇 ≥ 𝑡∗) = �𝑆(𝑢)𝑑𝑢
∝

𝑡∗

 

Equation 7. Remaining expected survival time. 

Median survival time with condition that subject survived 𝑡∗ is the value 𝑡𝑖 such that: 

𝑆(𝑡𝑖) = 0.5 ∗ 𝑆(𝑡∗) 

Equation 8. Median survival time. 

Therefore, remaining median survival time is 𝑡𝑖 − 𝑡∗ 
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Univariate survival models 

We start with parametric univariate survival models such as Exponential, Weibull, 

LogNormal, LogLogistic, GeneralizedGamma as well as non-parametric Kaplan–Meier 

statistics that can estimate survival function from lifetime data. Generally speaking, 

parametric models have functional forms with parameters that we are to be determined 

by fitting to the data. Kaplan–Meier statistics will be used for Integrated Absolute Error 

(IAE) and Integrated Square Error (ISE) metrics since for real data the mathematical 

expression of the survival function is unknown, we will use an approximation obtained 

by Kaplan-Meier statistics. It should be mentioned that univariate estimators do not 

require additional data (features).  

Kaplan-Meier statistics is the non-parametric KM estimation method, used to obtain 

the approximate expression of 𝑆(𝑡) defined by: 

S�(t) = �
ni − di

niti<𝑡

 

Equation 9. Kaplan-Meier estimate. 

Where ti is time when at least one event happened, di is the number of death events at 

time t and ni is the number of subjects at risk of death just prior to time t, but not dead 

yet. 

Exponential model has parameterized form with single parameter 𝜆: 

𝑆(𝑡) = 𝑒
−𝑡
𝜆 , 𝜆 > 0 

Which implies the cumulative hazard rate is: 

𝐻(𝑡) =
𝑡
𝜆

 

And hazard rate is: 

ℎ(𝑡) =
1
𝜆
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Weibull model has two parameters: 

λ > 0(scale), represents the time when 63.2% of the population has died  

ρ > 0 (shape), controls if the cumulative hazard is convex or concave, representing 

accelerating or decelerating hazards. 

The model has parameterized form: 

𝑆(𝑡) = 𝑒−�
𝑡
𝜆�

𝜌

 

The hazard and cumulative hazard rates are: 

ℎ(𝑡) = 𝜌
𝜆
�𝑡
𝜆
�
𝜌−1

         𝐻(𝑡) = �𝑡
𝜆
�
𝜌

 

Log-normal model has two parameters: 𝜎 > 0 and 𝜇 and has a form: 

𝑆(𝑡) = 1 − Φ �
ln 𝑡 − 𝜇

𝜎 � 

and cumulative hazard rate: 

𝐻(𝑡) = − ln�1 − Φ �
ln 𝑡 − 𝜇

𝜎 �� 

where Φ is the CDF of standard normal random variable. 

Log-logistic model has two parameters: 

α > 0 (scale), has an interpretation as being equal to the median lifetime of the 

population 

β > 0  influences the shape of the hazard 

Models survival function is defined by: 
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𝑆(𝑡) = �1 + �
𝑡
𝛼�

𝛽
�
−1

 

and corresponding hazard and cumulative hazard rates: 

ℎ(𝑡) =
�𝛽𝛼��

𝑡
𝛼�

𝛽−1

1+�𝑡𝛼�
𝛽    𝐻(𝑡) = ln ��𝑡

𝛼
�
𝛽

+ 1� 

Generalized Gamma has three parameters: 𝜇,𝜎, 𝜆. Its survival function is: 

𝑆(𝑡) =

⎩
⎪⎪
⎨

⎪⎪
⎧

1 − Γ𝑅𝐿 �
1
𝜆2

;
𝑒𝜆�

ln 𝑡−𝜇
𝜎 �

𝜆2 � , 𝜆 > 0

Γ𝑅𝐿 �
1
𝜆2

;
𝑒𝜆�

ln 𝑡−𝜇
𝜎 �

𝜆2 � , 𝜆 ≤ 0

� 

where ΓRL is the regularized lower incomplete Gamma function. It should be mentioned 

that Exponential (𝜆 = 1,𝜎 = 1), Weibull (𝜆 = 1) and Log-normal (𝜆 = 0) are sub-

models of Generalized gamma model. 

Survival regression 

The name implies the model regress covariates against another variable - 

duration. There are a few popular models in survival regression: Cox’s model, 

accelerated failure (AFT) models. Some of them we are going to explore and we will try 

to use them to predict customers’ lifetime. 

Cox proportional hazard model (CoxPH) 

The idea behind CoxPH is that the log-hazard of an individual is a linear function 

of their covariates and a population-level baseline hazard that changes over time. Cox 

hazard rate is the following: 

H(t|x) = h0(t)e∑ βi
n
i=1 (xi−x�i) 
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where h0(t) is time-dependent baseline hazard (the only time component) and 

exponential part is partial hazard,  a time-invariant scalar factor that only increases or 

decreases the baseline hazard. Thus changes in covariates will only inflate or deflate the 

baseline hazard. Model does not specify entirely the survival function and the hazard 

function (ℎ0(𝑡) is left unspecified). The baseline hazard is modeled using Breslow 

(1975) method (non-parametrically) and the entire model is the traditional semi-

parametric Cox model. 

The survival function is: 

𝑆(𝑡|𝑥) = 𝑆0(𝑡)𝑒𝛽𝑥 

where 𝑆0(𝑡) is baseline survival function that corresponds to zero vector 𝛽. 

Accelerated failure time (AFT) regression models 

All AFT models have general form: 

𝑇 = 𝜙(𝑥,𝛽)𝑇0 

where 𝜙 is a positive function that links the predictors x to an unknown vector of 

parameters 𝛽, 𝑇0 is the random event time with all covariates equal to 0. Covariates 

increase or decrease through 𝜙(𝑥,𝛽) the survival time compared to the reference. 

Weibull AFT has parameterized form of survival function: 

𝑆(𝑡; 𝑥;𝑦) = 𝑒−�
𝑡

𝜆(𝑥)�
𝜌

 

where 

𝜆(𝑥) = 𝑒(𝛽0+𝛽1𝑥1+..+𝛽𝑛𝑥𝑛)  

Cumulative hazard rate is: 

𝐻(𝑡; 𝑥;𝑦) =
𝑡

𝜆(𝑥)

𝜌
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Log-normal AFT has parameterized cumulative hazard rate: 

𝐻(𝑡; 𝑥;𝑦) = − ln�1 − Φ�
ln𝑇 − 𝜇(𝑥)

𝜎
�� 

where: 

𝜇(𝑥) = 𝛼0 + 𝛼1𝑥1 + ⋯+ 𝛼𝑛𝑥𝑛 

Log-logistic AFT has parameterized cumulative hazard rate: 

H(t; x; y) = ln�1 + �
t

α(x)�
β
� 

where 

α(x) = e(α0+α1x1+⋯+αnxn) 

Survival tree 

Gradient-boosted Cox proportional hazard loss with regression trees as base 

learner (GB). The loss function is the partial likelihood loss of CoxPH model. The 

objective is to maximize the log partial likelihood function 

argmin
𝑓

�𝛿𝑖 �𝑓(𝑥𝑖) − ln��𝑒𝑓(𝑥𝑖)

𝑗∈𝑅

��
𝑛

𝑖=1

 

but instead of linear xTβ, the additive model 

f(x) = � βmg(x; θm)
M

m=1

 

is used. Here, M is the number of base learners, βm is a weighting term and function g 

refers to a base learner parameterized by vector 𝜃. 

Metrics 
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To compare survival models the following metrics will be used: 

Concordance index (CI) or the C statistic or Harrell’s index is the number of 

concordant pairs of observations divided by the number of comparable pairs (Harrell, 

Califf, Pryor, Lee, & Rosati, 1982). The mathematical expression for CI is: 

𝐶𝐼 =
∑ 𝐼�𝑇�𝑖 > 𝑇�𝑗� ∗ 𝐼�𝜂𝑗 > 𝜂𝑖� ∗ Δ𝑗𝑖,𝑗

∑ 𝐼�𝑇�𝑖 > 𝑇�𝑗�𝑖,𝑗 ∗ Δ𝑗
 

It is designed to estimate the concordance probability 𝑃�𝜂𝑗 > 𝜂𝑖|𝑇𝑖 > 𝑇𝑗� which 

compares the rankings of two independent pairs of survival times 𝑇𝑖 ,𝑇𝑗 and predictions 

𝜂𝑖 , 𝜂𝑗. The concordance probability evaluates whether large values of 𝜂𝑖 are associated 

with small values of 𝑇𝑖 and vice versa. 

Concordance index for right-censored data based on inverse probability of 

censoring weights (CI_IPCW) - is an alternative to the CI estimator and does not 

depend on the distribution of censoring times in the test data (Uno H. , Cai, Pencinac, 

D'Agostino, & Wei, 2011). 

Akaike information criterion (AIC) – an estimator of prediction error and relative 

quality of models for a given set of data. 

Bayesian information criterion (BIC) - a criterion for model selection among a finite 

set of models. 

Integrated (time-dependent) Brier Score (IBS) provides an overall calculation of the 

model performance at all available times 𝑡1 ≤ 𝑡 ≤ 𝑡𝑚𝑎𝑥. IBS over the interval [t1; tmax] 

is defined as 

𝐼𝐵𝑆 = � 𝐵𝑆𝑐(𝑡)𝑑𝑤(𝑡)
𝑡𝑚𝑎𝑥

𝑡1
 

where the weighting function is 𝑤(𝑡) = 𝑡
𝑡𝑚𝑎𝑥

. The integral is estimated via the 

trapezoidal rule. 

https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Model_selection
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And BS is time-dependent Brier score (BS) for right censored data (the mean squared 

error at time point t): 

BSc(t) =
1
n
� I�yi ≤ t ∧ δi = 1�

�0 − π�(t|xi)�
2

G��yi�

n

i=1

+ I�yi > ��
�1 − π�(t|xi)�

2

G�(t)
 

Where π�(t|x) is the predicted probability of remaining event-free up to time point 𝑡 for a 

feature vector x, and 1
G�(t)

 is an inverse probability of censoring weight, estimated by the 

Kaplan-Meier estimator. 

Integrated Absolute Error (IAE) and Integrated Square Error (ISE) defined by: 

IAE = ∫ �S(t) − S�(t)�dtt    ISE = ∫ �S(t) − S�(t)�2
dtt  

where S(t) and S�(t) represent the true survival function and the predicted survival 

function, respectively. However, in our case, the mathematical expression of the 

survival function is unknown, so the non-parametric Kaplan-Meier estimation method 

will be used to obtain the approximate expression of S(t). 

Mean absolute error (MAE) will be used in simulated data only where ‘true’ survival 

time is known even for censored data. Is defined by: 

𝑀𝐴𝐸 =
1
𝑁
��𝑌𝑖 − 𝑌�𝑖�
𝑁

𝑖=1

 

where, 𝑁 is size of censored test data, 𝑌𝑖  is ‘true’ remaining life and 𝑌�𝑖 is expected or 

median predicted remaining life. 
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Chapter 3 
Analysis of Real Datasets 

CDNOW dataset 

Choice of distribution 

For better understanding of customers buying patters, the density histogram shown 

on Figure 7 might be useful. It shows distribution of IPI of CDNOW dataset for the 

entire customers population. Obviously, it is right skewed, which means that short 

intervals are dominating. Also, this implies that distribution that can be used as 

representative for each customer should be right skewed as well.  

 

Figure 7. Density histogram of inter-purchase intervals for all customers made three and more purchases from 
CDNOW dataset. 

Therefore, for the analysis we take five well-known distributions: 'Lognormal', 

‘Fisk’, 'Weibull', 'Exponential' and 'Gamma' that might have right-skewed shape with 

long tail on the right side and 'Normal' to verify our assumption. Then, from transactions 

we filter only regular clients that made purchases 3 or more times each (if same client 

makes two or more transactions during one day we count them as one purchase). For 

each of those 7,473 customers we create a sequence of IPI (similar to that what was 
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described in the example above). Using MLE we estimate parameters for all of 6 

mentioned distributions for all 7,473 clients. Then, we find TTD and TTC according to 

definitions described above for all 7,473 customers. The box plot on Figure 8 shows 

distributions of TTD and TTC for 6 distributions. 

 

Figure 8. Box plot of distribution of time to death (left) and time to churn (right) for Normal, Lognormal, Fisk, 
Exponential, Gamma and Weibull distributions.  

TTC distributions (median of each IPI sample) look similar for all models. 

However, TTD (98% quantile) looks different: Fisk distribution which has heavy tail, 

often gives large numbers TTD followed by lognormal and Weibull. Since variance of 

TTC is relatively low, long tails of Fisk and lognormal distributions (98% quantile is 

situated on tail) might signify that many customers have non-regular buying patterns [5, 

10, 100] for example. The density histogram on Figure 9 shows that distribution of 

number of transactions made by each customer. 
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Figure 9. Histogram of number of purchases (frequency) made by regular customers, CDNOW dataset. 

It shows that most of clients make only few purchases dusing the transactions 

perod. The Figure 10 shoes that values of TTD and TTC go down as number of 

transactions increases. This is not surprising since transactions interval is limited: first 

date - 1997-01-01, last date - 1998-06-30, interval length: 545 days. So, customers who 

made many transactions during this period did them frequently having short IPI. This 

also means that most of clients have large TTD and for many of them we will not be 

able to see their ‘death’ even if it has happened (again, due to limited transactions 

period). 
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Figure 10. Plot median TTD (left) and median TTC (right) versus number of purchases. There are six plots; 
each corresponds to one of distributions: Normal, Lognormal, Fisk, Exponential, Gamma, Weibull. 

In order to find a distribution that might be used for best representation of 

customers buying pattern we will be using Kolmogorov–Smirnov test (KS) and Cramér–

von Mises criterion (CvM). For each regular customer’s IPI sequence we already 

estimated parameters for all 6 distributions. Now by comparing a sample (customer’s 

sequence of IPI) with a reference probability distribution (each of 6 mentioned above 

one by one) we get six p-values (for each sample). Tests (either of KS or CvM) might 

answer the question “what is the probability that sample could have been drawn from 

the probability distribution”. P-value, can be used as such a metric, so the highest p-

value obtained by tests corresponds to distribution that is representative for the sample. 

The histogram on Figure 11 summarises results obtained by KS and CvM tests. It 

shows that about 60% of population samples could have been drawn from Fisk (log-

logistic) distribution. 
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Figure 11. Histogram of the distribution of largest p-value obtained by KS (left) and CvM (right). All regular 
customers from CDNOW dataset. 

Figure 12 and Figure 13 show in details the distributions of p-values for each of 

two test statistics for all 6 distributions. Looking at peaks near the point where p-value is 

high (more than 0.9), we can see that the difference in p-values for all test statistics 

(except exponential) is not very large and any of them might be taken for TTD and TTC 

calculation. However, we will be using Fisk distribution having in mind the fact, that 

according to tests, log-logistic distribution is the most representative, it has long tail 

which might be a good feature to model irregular buying patterns.   
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Figure 12. Histogram of p-values obtained by KS test for each of six distributions fitted on regular customers 
IPI from CDNOW dataset. 

 

Figure 13. Histogram of p-values obtained by CvM test for each of six distributions fitted on regular customers 
IPI from CDNOW dataset. 

 

Univariate models 
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First of all we will try to estimate the survival function for the population by 

univariate models. To be more precise we will try to fit five parametric models 

(Exponential, Weibull, Lognormal, log-logistic and generalized gamma) and non-

parametric Kaplan-Meier statistics. All mentioned parametric models have their 

functional forms with parameters we are going to determine by fitting to the training 

data. We take a fraction equal to 0.2 from both censored and dead observations to form a 

test subset of size 1,440 observations; the remaining 5,766 observations would be used 

as training data. All described parametric models as well as Kaplan–Meier statistics are 

implemented in ‘lifelines’25 python library. We fit each model to training data; AIC and 

BIC criterions are provided within models’ class after convergence. BS and IBS metrics 

is implemented in another python library named ‘scikit-survival’26. 

 

Figure 14. Survival functions obtained by five parametric models and Kaplan-Meier estimatior on training 
subset of CDNOW dataset. 

From the Figure 14 it can be observed that survival curves do not cross horizontal 

line that corresponds to value equal 0.5. This might occur when the largest observed 

                                                 
25 https://lifelines.readthedocs.io/en/latest/Survival%20Analysis%20intro.html (accessed on December 21, 
2022) 
26 https://scikit-survival.readthedocs.io/en/stable/user_guide/00-introduction.html (accessed on December 
21, 2022) 

https://scikit-survival.readthedocs.io/en/stable/index.html
https://lifelines.readthedocs.io/en/latest/Survival%20Analysis%20intro.html
https://scikit-survival.readthedocs.io/en/stable/user_guide/00-introduction.html
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time is censored and implies that for the churn rate of the population from CDNOW 

data, available study interval of 64 weeks is too short since it covers approximately one 

third of median lifetime of customers population (best model predicts median lifetime 

equals to 197 weeks). In ideal case, study interval should be long enough to allow the 

Kaplan-Meier curve to drop to the value 0.05-0.1 or even better to the value close to 

zero. In Table 1, determined parameters of five univariate models can be found as well 

as 95% confidence intervals. 

Model CoefName coef se(coef) coef lower 
95% 

coef upper 
95% 

Exponential lambda_ 
112.8335 3.1537 106.6522 119.0149 

Weibull lambda_ 
130.7778 5.7958 119.4182 142.1374 

rho_ 
0.8844 0.0210 0.8431 0.9258 

LogNormal mu_ 
4.6147 0.0483 4.5199 4.7096 

sigma_ 
1.8218 0.0394 1.7445 1.8991 

LogLogistic alpha_ 
92.1252 3.9726 84.3390 99.9114 

beta_ 
0.9864 0.0230 0.9413 1.0315 

GeneralizedGamma mu_ 
3.3843 0.1187 3.1517 3.6170 

ln_sigma_ 
0.8124 0.0216 0.7699 0.8549 

lambda_ 
-1.9496 0.1616 -2.2663 -1.6328 

Table 1. Parameters and confidence intervals obtained by five univariate models by fitting on train subset of 
CDNOW data. 

For those models we used a subset of metrics described previously, particularly 

AIC, BIC, IBS, IAE, ISE. Since CDNOW is real data and we do not know true lifetime, 

we used the Kaplan-Meier estimator to obtain the approximate expression of S(t) for 

IAE and ISE calculations. Those metrics as well as expected and median survival times 

are summarized in Table 2. 

  
AIC BIC IBS IAE 

Median 
ISE 

Median 
tExpected tMedian 

Exponential 
14660.3401 14666.9999 0.1773 2.2954 0.1131 112.83 78.21 

Weibull 
14634.5699 14647.8894 0.1768 1.7564 0.0653 138.94 86.41 

LogNormal 
14442.5641 14455.8835 0.1765 1.2802 0.0387 433.67 100.97 

LogLogistic 
14566.6883 14580.0077 0.1767 1.5399 0.0545 404.51 92.13 

GeneralizedGamma 
14307.7362 14327.7154 0.1764 0.3613 0.0036 1931.7 197.25 

Table 2. Summary of available metrics to describe the goodness of fit of five univariate parametric models. 
tExpected and tMedian are expected and median survival times obtained by corresponding models for 
population from training set of CDNOW data. 
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Among univariate parametric models Generalized Gamma seems to be the best 

representation: all shown metrics indicate that this estimate is the closest to real data. 

IAE and ISE scores of generalized gamma model are significantly better than other 

models have meaning that survival function modeled by GGM mimics very well the 

survival curve obtained by Kaplan-Meier estimator. 

Survival regression models 

Usage of regression models implies having some predictors in possession. From 

the described list of covariates for survival regression we will be using the following: 

‘C‘, ‘trend_C’, ‘trend_short_C’, ‘moneySum’, ‘moneyDaily’, ‘r10_F’, ‘r10_RF’, 

‘r10_FM’, ‘r10_RFM’, ‘trend_r10_RF’, ‘trend_short_r10_RF’, ‘trend_r10_FM’, 

‘trend_short_r10_FM’, ‘trend_r10_RFM’, ‘trend_short_r10_RFM’, ‘trend_r10_RFML’, 

‘trend_short_r10_RFML’. They are all numeric, so we will standardize them before 

fitting procedure (zero mean, unit variance). Due to the popularity of semi-parametric 

Cox proportional hazard model (Cox, 1972), we will try two different implementations 

from two python libraries: ‘lifelines’ and ‘scikit-survival’. The most common way of 

CoxPH model usage is its standalone version in accompany with the estimator of 

baseline hazard (both selected models use Breslow estimator). Another interesting 

approach to use Cox which we are going to try is proposed by ‘scikit-survival’ library is 

implemented in model GradientBoostingSurvivalAnalysis. It is a week learner that has a 

gradient-boosted Cox proportional hazard loss with regression trees as base learner. 

AFT parametric models provide an alternative to CoxPH, so we will fit to data three 

AFT models from ‘lifeline’ library: ‘WeibullAFT, LognormalAFT’ and 

‘LoglogisticAFT’. The heat map on Figure 15 shows Pearson correlation between our 

predictors. As expected, composite features (or their trends) are correlated with single 

features that were used as components to construct complex ranks. For example the 

correlation between r10_F (frequency rank) and r10FM (frequency – daily spending 

product) is 0.92. High correlation can be also observed between composite predictors 

such as trend_r10_RF and trend_r10_RFML for example. Existence of correlated 

predictors might cause problems for convergence of some algorithms (generalized 

gamma model is the most vulnerable among those we tried), but since we do not know 

https://scikit-survival.readthedocs.io/en/stable/index.html
https://scikit-survival.readthedocs.io/en/stable/index.html
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yet the predictive power for each of them, we would keep this feature subset for our 

modeling and will use small regularization penalty to let algorithms converge.  

 

 

Figure 15. Pearson correlations between features we are going to use as predictors in survival regression. 

On Figure 16 coefficients obtained by two CoxPH models after fitting to train 

data are shown. The one from lifelines provides confidence intervals as well (black color 

on plot). The red dots represent coefficients determined by COX model from ‘scikit-

survival’. Parameters from two models that correspond to same features have slightly 

different magnitudes, but same sign (except those that are very close to zero). It should 

be remained that proportional model in this case means that increasing a covariate xi by 

1 scales the baseline hazard by eβi. 

Summary on Table 3 shows coefficients, determined by ‘lifelines’ COX model. 

They have different magnitude and therefore features should have different influence on 

the survival function. 

https://scikit-survival.readthedocs.io/en/stable/index.html
https://scikit-survival.readthedocs.io/en/stable/index.html
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Figure 16. Coefficients of two different implementations of CoxPH. Black color corresponds to coefficients and 
confidence intervals for the model from ‘lifelines’, red dots show coefficients from ‘scikit-survival’. 

covariate coef exp(coef) coef lower 95% coef upper 95% exp(coef) lower 
95% 

exp(coef) upper 
95% 

C 
0.3033 1.3543 0.1944 0.4122 1.2146 1.5102 

trend_C 
0.1021 1.1075 -0.0175 0.2217 0.9825 1.2483 

trend_short_C 
0.0614 1.0633 -0.0727 0.1956 0.9298 1.2160 

moneySum 
-1.3735 0.2531 -1.6295 -1.1176 0.1960 0.3270 

moneyDailyStep 
0.4274 1.5333 0.3723 0.4824 1.4512 1.6200 

r10_F 
0.9245 2.5208 0.6807 1.1684 1.9754 3.2168 

r10_RF 
-2.4241 0.0885 -2.6458 -2.2024 0.0709 0.1105 

r10_FM 
2.0604 7.8496 1.7568 2.3641 5.7940 10.6347 

r10_RFM 
-1.1583 0.3140 -1.4382 -0.8784 0.2373 0.4154 

trend_r10_RF 
0.2975 1.3465 0.0694 0.5255 1.0719 1.6914 

trend_short_r10_RF 
0.7458 2.1081 0.5419 0.9497 1.7193 2.5849 

trend_r10_FM 
0.0680 1.0704 -0.1122 0.2483 0.8938 1.2819 

trend_short_r10_FM 
0.2149 1.2398 0.0498 0.3801 1.0511 1.4624 

trend_r10_RFM 
0.4486 1.5662 0.0426 0.8547 1.0435 2.3507 

trend_short_r10_RFM 
-0.0847 0.9187 -0.4335 0.2640 0.6482 1.3021 

trend_r10_RFML 
-0.0106 0.9894 -0.4335 0.4122 0.6482 1.5102 

trend_short_r10_RFML 
-0.5395 0.5830 -0.8825 -0.1964 0.4137 0.8216 

Table 3. Coefficients and corresponding confidence intervals determined by ‘lifeline’ CoxPH model. 
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Let’s take a closer look on small subset of four features: r10_FM, C, r10_RF and 

r10_RFM. First two features have positive coefficients and eβ greater than 1 which 

means that if an individual has large values of those predictors, his hazard will be large 

as well and therefore, his survival time will be low. Last two features have negative 

coefficients and corresponding eβ less than 1, so large values of features will make a 

smaller hazard rate and longer survival time. Figure 17 shows in details the impact of 

mentioned features on survival time according to CoxPH model. Varying original 

feature values are shown on plots legends; they cover the range each feature might take 

(1 to 10 for ranks and 0 to 1 for clumpiness). Baseline survival function is provided for 

comparison and represents the survival time for a subject with median value of each 

feature. Different survival curves from Figure 17 are concordant with magnitudes of 

coefficients from table: if exp(coefficient) has magnitude greater than one, the impact of 

corresponding covariate on hazard is the following: larger original values of covariate 

increases hazard and decreases survival time, predictors r10_FM and C for example.  

 

Figure 17. Partial impact of certain features on survival time of CoxPH model from ‘lifelines’. Top two plots 
demonstrate negative impact on survival time, bottom ones – positive impact. 
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AFT models differ from COX proportional model in the sense that the covariates 

have the multiplicative effect directly on survival time. Figure 18 shows Log-normal 

model fitted coefficients: this time coefficient of r10_RF that had the largest negative 

value in CoxPH model, has largest positive value (except intercept) as expected since 

parameters of CoxPH influences directly the hazard function, but coefficients of AFT 

model have similar direct impact on survival time (see Equation 4 and Equation 5). 

 

Figure 18. Coefficients determined by Lognormal AFT model on training data from CDNOW. 

Table 4 shows all fitted coefficients and intercept, determined by Log-normal 

AFT model by fitting training data as well as confidence intervals. 

param covariate coef exp(coef) coef lower 
95% 

coef upper 
95% 

exp(coef) 
lower 95% 

exp(coef) upper 
95% 

mu_ C 
-0.2050 0.8145 -0.2559 -0.1542 0.7741 0.8570 

moneyDailyStep 
-0.1647 0.8480 -0.1862 -0.1432 0.8300 0.8664 

moneySum 
0.4153 1.5148 0.3521 0.4785 1.4220 1.6137 

r10_F 
-0.5426 0.5812 -0.6484 -0.4368 0.5228 0.6460 

r10_FM 
-0.8054 0.4469 -0.9306 -0.6801 0.3942 0.5065 

r10_RF 
1.2408 3.4585 1.1416 1.3401 3.1317 3.8194 

r10_RFM 
0.5338 1.7055 0.4084 0.6592 1.5045 1.9333 

trend_C 
0.0970 1.1019 0.0438 0.1503 1.0447 1.1622 

trend_r10_FM 
0.0023 1.0023 -0.0825 0.0872 0.9207 1.0911 

trend_r10_RF 
-0.2359 0.7897 -0.3280 -0.1438 0.7202 0.8660 
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trend_r10_RFM 
-0.0387 0.9620 -0.2072 0.1298 0.8127 1.1386 

trend_r10_RFML 
-0.0853 0.9181 -0.2499 0.0791 0.7788 1.0824 

trend_short_C 
-0.0171 0.9830 -0.0774 0.0431 0.9254 1.0441 

trend_short_r10_FM 
-0.1774 0.8374 -0.2492 -0.1056 0.7793 0.8997 

trend_short_r10_RF 
-0.3153 0.7295 -0.4103 -0.2203 0.6634 0.8022 

trend_short_r10_RFM 
0.1251 1.1332 -0.0202 0.2704 0.9799 1.3106 

trend_short_r10_RFML 
0.2035 1.2257 0.0650 0.3421 1.0671 1.4079 

Intercept 
3.9794 53.4885 3.9295 4.0294 50.8816 56.2289 

sigma_ Intercept 
-0.4360 0.6465 -0.4746 -0.3975 0.6220 0.6719 

Table 4. Coefficients and confidence intervals determined by fitting Lognormal AFT model to training data of 
CDNOW dataset. 

Figure 19 shows plots of effect of some of varying covariates obtained from 

Lognormal AFT. It can be observed that this parametric model produces the similar 

survival curves for the subset of features we used for CoxPH. Here large values of 

features ‘r10_FM’ and ‘C’ decrease survival time similarly to CoPH model, but their 

exponents have values smaller than one. Same concordance can be remarked by 

observing plots of features r10_RF and r10_RFM. Figure 17 and Figure 19 illustrate 

that two models with different learning approaches (proportional hazard and accelerated 

failure) find appropriate feature impacts on survival function. Also, coefficient plots of 

three AFT models (Figure 18, Figure 20 and Figure 21) show that often, relative 

impact of features (related to other covariates) is similar: for example, r10_RF followed 

by r10_RFM have greatest positive impact on survival function. 
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Figure 19. Partial effect of certain features on survival time of Lognormal AFT model. Top two plots 
demonstrate negative impact on survival time, bottom ones – positive impact. 

 

 

Figure 20. Coefficients determined by Log-logistic AFT model on training data from CDNOW. 
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Figure 21. Coefficients determined by Weibull AFT model on training data from CDNOW. 

GB model is tree based; it has a possibility to show feature importance obtained 

from out of bag observations during the training process: predictors that have high 

values are more important than the ones with low values. Figure 22 illustrates relative 

feature importance on decision made by GB algorithm.  

 

Figure 22. Feature importance by GB on out of bag observations of training data. 
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Unfortunately, it does not show the sign of impact, but results from this plot 

partially correlate with results from CoxPH and AFT models: features r10_RF and some 

of trend features have relatively large (in magnitude) coefficients and significant in GB 

model. 

The summary of metrics of regression models is presented in Table 5. Results 

were obtained by making predictions by each of six regression models on test data that 

has 1440 observations. If model cannot estimate the expected or median survival time 

for a subject, the observation is not taken into account. As we described before, AFT 

models can provide the survival function of any desired length regardless the duration of 

study period. On the contrary, COX and GB models cannot extrapolate the survival 

function beyond the duration of study period (64 weeks). Therefore, if survival curve do 

not cross horizontal line that corresponds to value equal 0.5 median survival time 

becomes infinity. To estimate the expected survival time, survival function must 

approach to zero at reasonably small distance (we counted 0.05 is close enough to zero), 

otherwise, expectation is infinity again. Row tExpected shows average expected survival 

time for the population except those who have been predicted infinity. Row sizeMedian 

tells us how many test observations we were able to predict. Similarly, tMedian and size 

Median are median survival time for population and number of eligible subjects. For this 

particular dataset, COX models are able to predict median survival time for only about 

one third of test observations and GB less than one fourth. The number of subjects that 

models could estimate expected survival time is much smaller. Obviously, COX and GB 

models require longer study period or larger churn rate. Row rankCI shows models rank 

from best to worst according to CI IPCW metric only. From scores in Table 5, for 

CDNOW dataset, Lognormal AFT seems to be the most promising algorithm for 

lifetime estimation: CI, AUC scores are close to the leading model (GB), but the ability 

to predict survival time for all subjects makes this model more favorable than GB. 

  

  GradientBoosting LogNormalAFT CoxPHFitter CoxPHSurvival LogLogisticAFT WeibullAFT 

CI 0.9804 0.9426 0.9433 0.9419 0.9251 0.9089 

CI IPCW 0.9656 0.9071 0.9013 0.8993 0.8812 0.8612 
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IBS 0.0307 0.0548 0.0501 0.0502 0.0575 0.0687 

AUC 0.9943 0.9723 0.9731 0.9732 0.9649 0.9532 

IAE Median 11.3245 12.6572 12.0433 12.2155 11.2482 9.1168 

ISE Median 2.1671 2.8477 2.5786 2.6508 2.2315 1.5246 

tExpected 10.81 94.46 10.2 9.96 83.12 70.43 

sizeExpected 223 1437 182 177 1440 1439 

tMedian 14 75 25 24 63 65 

sizeMedian 331 1438 498 463 1440 1440 

rankCI 1 2 3 4 5 6 
Table 5. Summary of metrics and results obtained by six regression modes on training subset of observations of 
CDNOW datased. 

Box plots on Figure 23 show the distribution of IAE (left) and ISE (right) for each 

of mentioned regression models. 

 

Figure 23. Box plot of the distribution of IAE (left) and ISE (right) of six regression models. 

Distributions of expected and median survival times for same six models are 

shown on Figure 24. Below the each box, there is an indicator of the number of test 

observations that specified model was able to predict. Small boxes of COX and GB are 

consequences of small study period restrained by the duration of 64 weeks. 
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Figure 24. Box plots of distributions of expected (left) and median (right) survival time obtained by six models 
on test subset. Numbers below boxes indicate the quantity of observations corresponding model was capable to 
estimate. 

Since our study period is limited to 64 weeks Cox model cannot estimate lifetime 

beyond this period. If survival curve is undefined before it reaches 0.5, median lifetime 

cannot be estimated, and therefore becomes infinity. The situation is even worse for 

expected value; to evaluate it properly, estimated survival curve from the Cox model 

must reach zero value, which is in fact very rare case for our dataset. We could integrate 

up to the maximum available value but it’s not clear that this is a good strategy with 

severely censored data. On Figure 24 all predictions beyond the limit were replaced by 

the highest observed lifetime (64 weeks). As a result, this value became a median for the 

population. This situation was expected after analyzing results from previous 

(univariate) models where all mean and median predicted values for population lifetime 

excided study interval. This is not exactly the Cox’s models problem: more precisely 

this complication arises from h0(t) term which in fact is been estimated by Breslow’s 

method. If we had a possibility to extrapolate baseline hazard, Cox model would be 

applicable for our data. Unfortunately, existing python packages for survival analysis 

(‘lifeline’ and ‘scikit-survival’) do not have other options. In the contrary, fully 

https://scikit-survival.readthedocs.io/en/stable/index.html


58 
 

parametric models allow us to construct survival function of the desired length. On 

Figure 25 survival curves of 5 randomly selected subjects, obtained by CoxPH model 

are shown with corresponding expected and median survival times. Baseline survival 

function is shown in bold black. In this particular sample, median survival time could be 

estimated by Cox model for only two subjects. Expected lifetime cannot be estimated by 

Cox at all since survival curves do not approach to zero.  

 

Figure 25. Baseline survival curve and five survival functions predicted by CoxPH for 5 randomly chosen 
individuals. 

However, parametric model such as log-normal (shown on Figure 26) could 

extend survival function as long as necessary to determine expected and median survival 

times. We cut the plot at about 160 weeks for better illustration: all median survival 

times are clearly seen on the chart. 
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Figure 26. Five survival functions predicted by Lognormal AFT for 5 randomly chosen individuals. 

Another example of survival curves for different 5 random customers produced by 

log-logistic AFT model is shown on Figure 27.  

 

Figure 27. Five survival functions predicted by Log-logistic AFT for 5 randomly chosen individuals. 
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The highest values of CI, CI IPCW and AUC belong to 

GradientBoostingSurvivalAnalysis as well as the lowest IBS score. However, it 

experiences the same problem as Cox proportional hazard model or Kaplan-Meier 

estimator: survival curves often do not end up at zero or even undefined before it 

reaches 0.5.  

Retail dataset 

We will try our models on another publicly available dataset. It is similar to 

CDNOW but there are some differences. Transactions period starts at 2009-12-01 and 

ends at 2011-12-09. Study period starts at 2010-03-01and covers 92 weeks which is 

about 30% longer than CDNOW dataset has. We will be using the same discrete-time 

model described in previous parts with time unit equals to one week. After splitting data, 

training population size is 2,526 (380 dead and 2,146 censored) and test size – 631 (95 

dead, 536 censored) observations, so total number of customers is three times smaller 

than in CDNOW dataset.  

Univariate survival models 

Following the same procedure as described for CDNOW dataset, we fit five 

univariate models and Kaplan-Meier statistic on training subset of retail dataset. 

Obtained survival functions are shown on Figure 28. Again, similarly to previous 

dataset, survival curves do not even cross the horizontal line y=0.5. This fact implies we 

will experience similar problems with survival time estimation for COX and GB 

models. 
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Figure 28. Survival functions estimated by five univariate models and Kaplan-Meier estimator on test subset of 
retail data. 

According to metrics presented in Table 6, generalized gamma model is the best 

representation among univariate parametric models. Unfortunately, its median survival 

time for the population is 1,247 weeks which is far behind the value of study period (92 

weeks) and much larger than in CDNOW dataset (197 weeks). Therefore, even if we 

have longer study period than in previous dataset (92 vs. 64 weeks), median lifetime 

seems to be longer as well.  

  
AIC BIC IBS IAE 

Median 
ISE 

Median 
tExpected tMedian 

Exponential 
5011.1352 5016.9696 0.1313 2.2066 0.0728 267.99 185.76 

Weibull 
4989.016 5000.6848 0.1309 1.3329 0.0267 437.79 247.41 

LogNormal 
4948.0844 4959.7532 0.1308 0.9323 0.0139 1705.3 387.84 

LogLogistic 
4978.3657 4990.0345 0.1309 1.2064 0.0227 1242.26 295.74 

GeneralizedGamma 
4929.2575 4946.7607 0.1308 0.3216 0.0017 3923.04 1247.1 

Table 6. Summary of metrics obtained by five univariate models on training subset of retail data. 

Heat map of feature correlations presented on Figure 29 looks similar to CDNOW 

data, but there is at least one big difference: correlations between long and short trends 

of same features are much smaller than in previous experiment; one possible reason 

might be longer study period of retail data. 
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Figure 29. Pearson correlations calculated for selected features engineered from training subset of transactions 
of retail data. 

Regression survival models 

Following exactly the same procedure as for CNOW data, we fit same six 

regression models to retail training subset. Visualization of coefficients obtained by 

CoxPH models is presented on Figure 30. Their numerical values as well as lower and 

upper confidence intervals are in Table 7. Definitely, they are different than those that 

were obtained for CDNOW data. However, the following pattern can be observed: the 

group of features that have significant positive impact on hazard (by increasing the 

value of feature hazard becomes larger) remains the same: r10_FM, r10_F, 

trend_r10_RFM. We can say that the subset of features {r10_RF, moneySum, 

trend_short_r10_RFML} have large negative impact on hazard (decrease hazard rate) in 

CoxPH models for either Retail or CDNOW data. Coefficients determined by three 

parametric models Weibull, Lognormal and log-logistic AFT are shown on Figure 31, 

Figure 32 and Figure 33 respectively.  
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Figure 30. Coefficients of two different implementations of CoxPH. Black color corresponds to coefficients and 
confidence intervals for the model from ‘lifelines’, red dots show coefficients from ‘scikit-survival’ 

 

Figure 31. Coefficients determined by Weibull AFT model on training set of retail data. 
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Figure 32. Coefficients determined by Lognormal AFT model on training set of retail data. 

 

Figure 33. Coefficients determined by Log-logistic AFT model on training set of retail data. 

covariate coef exp(coef) coef lower 95% coef upper 95% exp(coef) lower 
95% 

exp(coef) upper 
95% 

C 
0.5600 1.7507 0.3936 0.7264 1.4824 2.067 

trend_C 
-0.3029 0.7386 -0.4089 -0.1969 0.6643 0.8212 

trend_short_C 
0.0036 1.0036 -0.1619 0.1691 0.8505 1.1842 

moneySum 
-1.6422 0.1935 -2.3204 -0.9641 0.0982 0.3813 
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moneyDailyStep 
0.3056 1.3574 0.2417 0.3695 1.2734 1.4470 

r10_F 
1.2646 3.5419 0.8483 1.6810 2.3356 5.3710 

r10_RF 
-3.2405 0.0391 -3.6523 -2.8288 0.0259 0.0590 

r10_FM 
1.1152 3.0503 0.5979 1.6326 1.8183 5.1171 

r10_RFM 
-0.1628 0.8497 -0.6916 0.3660 0.5007 1.4419 

trend_r10_RF 
0.3015 1.3520 0.0128 0.5903 1.0129 1.8046 

trend_short_r10_RF 
0.3893 1.4760 0.0425 0.7362 1.0434 2.0880 

trend_r10_FM 
-0.5944 0.5518 -0.7709 -0.4178 0.4625 0.6584 

trend_short_r10_FM 
0.5876 1.7997 0.3762 0.7990 1.4568 2.2233 

trend_r10_RFM 
1.3974 4.0449 0.9369 1.8580 2.5521 6.4109 

trend_short_r10_RFM 
0.7555 2.1287 0.3315 1.1795 1.3930 3.2530 

trend_r10_RFML 
-0.7043 0.4944 -1.1679 -0.2407 0.3110 0.7860 

trend_short_r10_RFML 
-0.7403 0.4769 -1.1310 -0.3495 0.3226 0.7050 

Table 7. Coefficients and upper and lower confidence intervals obtained by CoxPH from ‘lifelines’ library on 
training subset from retail data. 

GB model does not have explicit parameters, but it provides the variable 

importance chart. One remarkable thing, that can be observed from results: feature 

r10_RF have the largest impact (or importance) for lifetime prediction in all regression 

models. Bar plot in Figure 34 shows the importance of each feature that GB model 

used. 

 

Figure 34. Bar plot of feature importance obtained by GB model on out of bag data after fitting the training 
subset of retail data. 

The summary of metrics obtained by six regression models on Retail data is shown on 

Table 8. According to CI IPCW, the best model becomes GB again. However, it 
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experiences the same issue as described in CDNOW dataset analysis: GB as well as 

CoxPH models can predict lifetime for only small fraction on test subjects due to 

relatively short study period. This issue can be clearly seen on Figure 35 that displays 

the distribution of predicted expected and median survival times obtained by each of six 

models. Boxes that correspond to CoxPH and GB models are very little, but those that 

are related to AFT models are much larger. Distributions of IAE and ISE scores are 

shown on Figure 36. 

  GradientBoosting CoxPHSurvival CoxPHFitter LogNormalAFT LogLogisticAFT WeibullAFT 

CI 0.9773 0.9602 0.958 0.9576 0.9352 0.9278 

CI IPCW 0.9769 0.9507 0.9462 0.9458 0.9028 0.8909 

IBS 0.0273 0.0356 0.0367 0.0366 0.0427 0.0435 

AUC 0.9878 0.9821 0.9813 0.9814 0.9732 0.9676 

IAE Median 10.4663 13.4712 13.1956 13.8247 12.8929 12.1199 

ISE Median 1.3086 2.2826 2.1565 2.3732 2.0686 1.8636 

tExpected 15.25 19.04 18.85 180.08 207.32 140.02 

sizeExpected 64 122 126 629 631 631 

tMedian 20 30 29 124 99 98 

sizeMedian 90 245 246 630 631 631 

rankCI 1 2 3 4 5 6 
Table 8. Summary of metrics obtained by six survival regression models on training subset of retail data. 
Column tExpexted contains mean expected survival time for population. Column sizeExpected shows number 
of individuals that corresponding algorithm succeeded to estimate. Column tMedian has median survival time 
for population estimated by corresponding algorithm. sizeMedian has numbers of individuals each algorithm 
was capable to predict. 
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Figure 35. Box plot of distributions of expected (left) and median (right) survival times computed by six 
survival regression models fitted on training subset of retail data. 

 

Figure 36. Box plot of distributions of IAE (left) and ISE (right) calculated from results obtained by six 
survival regression models fitted on training subset of retail data. 

 





1 

Chapter 4 
Monte Carlo Simulations 

Since both of our datasets have relatively small churn rate and short study period, 

we can try to simulate transactions data with relatively large study period and greater 

churn rate. We want a longer follow-up time, which would normally be available to a 

company, but was not released in the publicly available CDNOW and retail data, which 

will allow us to extend study period. Ideally, we expect to have a study period longer 

that the largest censored individual has. In this case, Kaplan-Meier survival curve should 

approach to zero, which means, we will be able to calculate both: expected and median 

survival times. 

We hope that even if simulation cannot reflect all aspects of true data, it would be 

a good approximation and therefore would allow us to study models behavior on larger 

study period. Another useful aspect in simulation that we will have ‘true’ survival time 

even for ‘censored’ customers. Having this in mind we can use an additional metric such 

as mean (median) absolute error to compare how predicted remaining life for ‘censored’ 

customers differs from ‘true’ remaining life. The algorithm for simulation is written in. 

Using the synthetic data, we will also verify our assumption about customers ‘death’ 

event described in ‘defining churn’ sub-section. 

Synthetic data generation 

To simulate our synthetic data we will be using CDNOW dataset as a template. 

Three crucial characteristics: time between purchases, spending and loyalty (time 

interval from first to last purchase) were collected for all 7,296 customers of CDNOW 

dataset. The time between purchases looks like a nested list of the length, equals to 

number of customers from CDNOW data, 7,296 in our case. Each inner list corresponds 

to one individual and contains time intervals between consecutive purchases. Spending 

is a nested list of the length equal to 7,296; every inner list contains the money each 

customer spent at one cumulative daily transaction (if few purchases were made during 

one day by one client, it is considered as one buy and money sums). Therefore, the 
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length of every inner list is equal to frequency of its client. Loyalty is a sequence of the 

length equal to 7,296; each value corresponds to the time interval from customers’ first 

to last transaction.  

First we define some key parameters for our synthetic data: 

a) dStartTransactions is a first date of transactions, equals to 2000-01-01. 

b) ‘avgLifetime’ is calculated as mean value of loyalty of all customers.  

c) ‘maxBirthDelay’ equals to 365 * 5 and determines the upper margin for dime 

lag that cohort appear uniformly on a period from dStartTransactions to 

maxBirthDelay’. It is designed to make new customers to appear not at one 

time instance, but distributed in time during 5 year period.  

d) nPoints – max number of new customers we make. Must be smaller than 

7,296. 

We are going to model customers lifetimes by using exponential distribution 

which is in fact is the probability distribution of the time between events in a Poisson 

point process, where events occur continuously and independently at constant rate. This 

approximation might not reflect all aspects present in real data, but it might serve as a 

good approximation for clients’ lifetimes in synthetic data. It has been found that 

exponential distribution naturally occurs in models that describe inter-arrival times in 

Poisson process. Therefore, we create 7,296 values for lifetime (7,296 equals to the 

number of customers from CNOW used as a templates for synthetic data), calculated as 

round(rexp(7,296, 1/avgLifetime)) where rexp() is R’s function for exponential 

distribution and 1/ avgLifetime is its only parameter (rate) which corresponds in our case 

to average rate of transactions’ appearances within certain period. Those lifetime values 

are stored in array churntime of size equal to 7,296. 

Then we define a birth lag for each of 7,296 data points calculated as 

round(runif(7,296, min=0, max=maxBirthDelay)), where runif() is R’s function for 

uniform distribution. 
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To accomplish simulation of transactions for every new customer we need to 

simulate his IPI and spending for each purchase. As a template we are going to use the 

existing regular customers from CDNOW. Using log-normal distribution and MLE, for 

every CDNOW regular customer we determine two parameters for log-normal 

distributions, fitted in IPI and spending sequences (for one customer one model for IPI, 

another model for spending). Parameters 𝜇 and 𝜃 for IPI are stores in muPurchase and 

sigmaPurchase respectively: both arrays are of the same size equals to 7,296. Similarily 

parameters 𝜇 and 𝜃 for spending are stored in muSpending and sigmaSpending. 

We take a sample of the size equals to nPoints from our 7,296 templates. In loop 

from 1 to nPoints we try to make IPI for new synthetic clients in the following way: 

Get 𝑖𝑡ℎ lifetime previously drawn from exponential distribution 

loyalty1 = churntime[i]  

Get 𝑖𝑡ℎ parameters for IPI log-normal distribution 

muPurchase1 = muPurchase[i] 

sigmaPurchase1 = sigmaPurchase[i]) 

Get 𝑖𝑡ℎ parameters for spending log-normal distribution 

muSpending1 = muSpending[i] 

muSpending1 = muSpending[i]) 

Generate IPI for 𝑖𝑡ℎ observation by function genInterevents 

IPI_1 = genInterevents(loyalty1, muPurchase1, sigmaPurchase1) 

Where genInterevents is the following user-defined function: 

genInterevents = function(span, mu, sigma){ 

    purchases=NULL 
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    newtime=NULL 

    while(sum(c(purchases, newtime)) < span){ 

        purchases=c(purchases, newtime) 

        newtime=ceiling(rlnorm(1, mu, sigma)) 

    } 

    return(purchases) 

} 

The function genInterevents takes three parameters as inputs:  

1) span is customers lifetime taken from churntime 

2) 𝜇 and 𝜃 are two parameters for IPI lognormal distribution, taken from 

muPurchase and sigmaPurchase arrays respectively. 

genInterevents basically generates (if it can) the sequence of IPI for a new 

observation within time interval equals to span. Each IPI is drawn from log-normal 

distribution with 𝜇 and 𝜃 taken from 𝑖𝑡ℎ values of muPurchase and sigmaPurchase. 

Having a sequence of IPI we need to generate the amount spent at each transaction 

by newly generated client. We take parameters from 𝑖𝑡ℎ records of previously created 

arrays muSpending and sigmaSpending and draw values from log-normal distribution to 

fill spending for a new customer. The R’s function round(rlnorm(length(purchases) + 1, 

muSpending[i], sigmaSpending[i]), 2) does this job. 

Following the described procedure we simulate one transactions dataset using 

nPoints equals to 5,000 and repeating the procedure five times. All produced records are 

merged into one data. We need this set to compare the structure of the simulated data 

with the original CDNOW. Then we simulate twenty transactions by described 

procedure: each simulated data will be used to fit / predict survival times by same 

models we described in Chapter 3. Twenty repetitions is low number compared to usual 

simulations, but the procedure of feature engineering is very time consuming. Each 

repetition taking close to two hours, even producing twenty of them took more than a 
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day. We found that twenty were enough to have a sense of variability and provide a 

realistic picture to describe our approach to solve the main problem of this work.  

While using any synthetic data in this experiment for the analysis we split 

transactions interval of simulated data on two parts: training and hold out periods 

separated by date 2004-07-01. Data from holdout period is unseen for most of modeling 

parts except the one when we compare ‘true’ and predicted remaining life. We will be 

training our models only using training period before 2004-07-01 like the following 

after it transactions do not exist. So, training period starts at 2000-01-01 and ends at 

2004-07-01. Study period starts at 2000-07-01 and has duration of 156 weeks. Hold out 

period starts just after 2004-07-01 and ends at 2013-09-12.  

One simulation 

We simulate one dataset with extended number of customers to verify how 

simulated data resembles the original one and what the difference is. During the training 

period (before 2004-07-01) 13,970 customers made at least three purchases (became 

regular and eligible for our model). We split this population into training (7,072 dead, 

4,105 censored, 11,177 total train) and test (1,767 dead, 1,026 censored, 2,793 total test) 

subsets. Even if we simulated data that covers much longer time period and population 

has higher churn rate, it should resemble somehow the original one. For example, 

density histograms of inter-purchase intervals on Figure 37, as well as box plots of TTC 

and TTD on Figure 38, look very similar to the ones from CDNOW described in the 

section ‘choice of distribution’ of Chapter 3 in details. 
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Figure 37. Histogram of IPI distribution for synthetic data. 

 

Figure 38. Distribution of TTD (left) and TTC (right) obtained by modeling critical events by six distributions 
described at the beginning of Chapter 3. 

As for CDNOW data we use KS test and CvM criterion to determine the most suitable 

distribution (from set of six) for customers buying pattern. Box plot of highest p-values 

calculated by majority voting is shown on Figure 39. It looks like same plot from 

CDNOW data; Fisk distribution has about 60% of observations, so the choice becomes 

obvious. 
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Figure 39. Bar plot of results of majority voting according to best p-value calculated by KS (left) and CvM 
(right) test statistics. 

The interesting fact is that the correlation heat map shown on Figure 40 looks 

more like the one from Retail dataset even if we used CDNOW as a template. 

Particularity, correlations between long and short trends are small; this might happen 

because Retail and simulated dataset have longer study intervals than CDNOW. 
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Figure 40. Heat map of Pearson correlations between features from synthetic data. 

Univariate survival models 

Starting with Kaplan-Meier estimator and univariate models we fit the training subset of 

our simulated data to see median survival functions for the population. Hopefully, this 

time all survival curves cross the horizontal line 𝑦 = 0.5 and survival functions values 

approaches the value 0.1 at the end of study period. As can be seen on Figure 41, all six 

survival curves are close to each other. The summary of the coefficients of five 

univariate models are presented in Table 9. 
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Figure 41. Survival functions obtained by five univariate models and Kaplan-Meier statistics for synthetic 
data. 

Model CoefName coef se(coef) coef lower 95% coef upper 95% 
Exponential lambda_ 49.8415 0.5926 48.6798 51.003 

Weibull lambda_ 49.7585 0.5656 48.6499 50.8671 
rho_ 1.0462 0.0098 1.0270 1.0654 

LogNormal mu_ 3.4328 0.0131 3.4071 3.4586 
sigma_ 1.2236 0.0105 1.2029 1.2443 

LogLogistic alpha_ 31.4204 0.4015 30.6333 32.2075 
beta_ 1.4159 0.0137 1.3889 1.4428 

GeneralizedGamma mu_ 3.5512 0.0226 3.5069 3.5955 
ln_sigma_ 0.1557 0.0119 0.1323 0.1790 
lambda_ 0.2377 0.0381 0.1630 0.3123 

Table 9. Parameters of five univariate models obtained by fitting to synthetic data. 

According to metrics from Table 10, generalized gamma model has lowest values 

for AIC, BIC, IBS, IAE and ISE and median survival time is near 32 weeks. This 

number is much lower comparing to the one from CDNOW dataset (197 weeks). 

  
AIC BIC IBS IAE Median ISE Median tExpected tMedian 

Exponential 
69432.7422 69440.0638 0.1568 2.4507 0.0460 49.84 34.55 

Weibull 
69411.9342 69426.5774 0.1571 3.3986 0.0877 48.87 35.05 

LogNormal 
69069.01 69083.6532 0.1563 2.3107 0.0506 65.47 30.97 
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LogLogistic 
69151.2613 69165.9045 0.1562 2.1811 0.0444 81.74 31.42 

GeneralizedGamma 
69032.7416 69054.7064 0.1561 1.0731 0.0119 57.67 31.76 

Table 10. Summary of metrics obtained by five univariete models on test subset of synthetic data. 

Regression survival models 

As in the experiment for real data, we fit six survival regression models to training 

subset of synthetic survival dataset. Coefficients for two CoxPH, Weibull, Lognormal 

and Log-logistic regression models are presented on Figure 42, Figure 43, Figure 44 

and Figure 45. 

 

Figure 42. Coefficients of two different implementations of CoxPH. Black color corresponds to coefficients and 
confidence intervals for the model from ‘lifelines’, red dots show coefficients from ‘scikit-survival’ 
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Figure 43. Coefficients determined by Weibull AFT model on training set of synthetic data. 

 

Figure 44. Coefficients determined by Lognormal AFT model on training set of synthetic data. 
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Figure 45. Coefficients determined by Log-logistic AFT model on training set of synthetic data. 

Surprisingly, two predictors that we used as examples to illustrate how they make 

an influence on survival time in previous section do not show significant impact in 

simulated data. Figure 46 and Figure 47 show that features ‘C’ and ‘r10_RFM’ have no 

or tiny impact on survival time of subjects from population. 
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Figure 46. Partial impact of certain features on survival time of CoxPh model. Top left plot demonstrates 
negative impact on survival time, bottom left – positive impact. Features shown on two right plots do not make 
significant influence on survival function. 

 

Figure 47. Partial impact of certain features on survival time of Lognormal AFT model. Top left plot 
demonstrates negative impact on survival time, bottom left – positive impact. Features shown on two right 
plots do not make significant influence on survival function. 
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Summary of metrics for six survival regression models are shown on Table 11. 

The remarkable difference from any of real data is that CoxPH and GB models are 

capable of predicting survival time for almost all censored customers. This is a result of 

longer study period which is one of our purposes to perform this simulation. 

  GradientBoosting LogLogisticAFT LogNormalAFT CoxPHSurvival CoxPHFitter WeibullAFT 

CI 0.9602 0.8865 0.8839 0.8786 0.8781 0.8728 

CI IPCW 0.9512 0.8648 0.8597 0.853 0.8524 0.8468 

IBS 0.0341 0.0696 0.0722 0.0765 0.0765 0.08 

AUC 0.9906 0.9513 0.9495 0.9449 0.9447 0.9426 

IAE Median 30.0173 26.6142 27.7178 28.6376 28.8477 26.4081 

ISE Median 8.3600 6.3593 6.9167 7.5105 7.5618 6.4327 

tExpected 27.21 42.54 41.9 25.05 25.13 39.36 

sizeExpected 2476 2793 2793 2172 2170 2793 

tMedian 27 28 28 27 27 29 

sizeMedian 2777 2793 2793 2732 2731 2793 

rankCI 1 2 3 4 5 6 
Table 11. Summary of metrics obtained by six survival regression models on training subset of synthetic data. 
Column tExpexted contains mean expected survival time for population. Column sizeExpected shows number 
of individuals that corresponding algorithm succeeded to estimate. Column tMedian has median survival time 
for population estimated by corresponding algorithm. sizeMedian has numbers of individuals each algorithm 
was capable to predict. 

Highest CI IPCW, AUC and lowest IBS has GB model. IAE / ISE values are 

slightly better for AFT models. All six models estimate median survival time in very 

close range from 27 to 29 weeks. Figure 48 presents the distributions of expected and 

median survival times for test subjects predicted by six survival regression models. 

Numbers below boxes indicate the size of test individual for which survival time was 

successfully estimated by the model. Definitely, we have higher numbers for median 

survival time than for expected since survival curve has more chances to reach the value 

0.5 than to drop up to conditional zero. However, we can conclude that study interval for 

this data is reasonably long to allow predictions for the majority of test customers. 
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Figure 48. Box plots of distributions of expected (left) and median (right) survival time obtained by six 
regression survival models on test subset. Numbers below boxes indicate the quantity of observations 
corresponding model is capable to estimate. 

Simulation data allows us to accomplish one additional task: measure the 

difference between true and predicted remaining life for test subjects since we ‘know’ 

the ‘true’ lifetime for everyone in population. We used MAE metrics to measure the 

difference since it provides an additional impression on how wrong the models are (it is 

easy to compare MAE with individual lifetime itself as well as with populations’ 

lifetime and to see how reasonable the results are). For this metrics from the test subset 

we separate only subjects that were alive by the end of study period (1,026 individuals). 

Figure 49 presents the distribution of absolute error for predictions of expected and 

median remaining life of ‘alive’ clients from the test subset. 
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Figure 49. Box plot of distribution of absolute error between remaining expected life and ‘true’ values for six 
regression models obtained on test subset of synthetic data. 

Table 12 summarizes results for all models we tried including univariate ones. It 

can be clearly seen that any regression model have lower MAE for median remaining 

time than any univariate, so we can conclude that our features (at least some of them) 

are valuable as predictors in this scope. It should be mentioned that for this experiment 

while calculating expected value we did not drop subjects whose survival curve did not 

reach zero value and performed integration to get the area under the survival curve up to 

the point where survival function ends regardless its last value, which should lead to 

underestimation of survival time. First three models (two COX and GB) have very close 

MAE, so ‘best’ model according to CI is still on top of ranking. 

  
MAE 

Expected 
sizeExpected MedianAE sizeMedian rankMedianAE 

CoxPHSurvivalAnalysis 32.694699 1026 16.9047 931 1 
CoxPHFitter 32.688452 1026 16.9627 932 2 

GradientBoosting 31.581848 1026 16.9652 954 3 
LogLogisticAFT 34.337111 1026 17.4313 1026 4 

WeibullAFT 32.833293 1026 17.8611 1026 5 
LogNormalAFT 34.00198 1026 18.3707 1026 6 
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Weibull 34.709638 1026 22.4704 1026 7 
Exponential 35.704911 1026 23.3501 1026 8 

GeneralizedGamma 47.072602 1026 24.7446 1026 9 
LogLogistic 96.696889 1026 25.7 1026 10 
LogNormal 60.257127 1026 26.3920 1026 11 

Table 12. MAE and median absolute error between estimated and ‘true’ values of remaining life of test 
individuals obtained by five univariate and six regression survival models from synthetic dataset.  

Simulation of twenty datasets. 

To be more certain about accuracy of our estimations it is reasonable to create 

multiple simulated datasets and apply the same procedure described above for each 

simulation. Then, we can use an average of twenty simulations for each metric to have 

more accurate and less biased results. 

Churn model assumption 

In section ‘definition of churn’ from Chapter 1 we made few assumptions how to 

model customers’ death for non-contractual business. For real data with short study 

interval it is hard to verify how our assumptions work and is there any violations of 

them (for example customer tagged as dead after certain period of time makes another 

purchase and becomes alive). For simulated data with longer study period and especially 

having hold-out period this verification becomes trivial. Figure 50 plot shows the 

distribution of number of customers (left) that violate our churn definition described in 

previous sections. Corresponding distributions of fractions of violating customers 

(middle) and the populations size (right) are presented as well. In average, only about 27 

customers that became ‘dead’ during the training period made at least one transaction 

during the hold-out period. Those clients are considered to be ‘dead’ according to our 

churn definition described in previous sections, but in fact, they are not. However, this is 

a relatively small fraction comparing to all customers in training period (less than 0.9% 

in average). We hope that this error will not significantly affect the accuracy of our 

modeling.  
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Figure 50. Distribution of number of customers that violate churn assumption (left). Distribution of fraction of 
customers that violate churn assumption (middle). Distribution of population size along 20 simulated datasets. 

Univariate survival models 

Starting from the simplest, we fit five univariate models to training subset of each of 20 

simulated datasets and collect metrics obtained by making predictions on test subset. 

Average values for each of survival metrics we used in this work for univariate models 

are presented in Table 13.  

Model IBS IAE Median ISE Median tExpected sizeExpected tMedian sizeMedian 

Exponential 
0.1727 3.1243 0.0834 49.6645 393.05 34.425 393.05 

Weibull 
0.1731 3.6853 0.1126 49.03 393.05 34.7565 393.05 

LogNormal 
0.1717 2.2356 0.0517 65.923 393.05 30.639 393.05 

LogLogistic 
0.1717 2.0420 0.0462 83.2745 393.05 31.075 393.05 

GeneralizedGamma 
0.1718 1.3959 0.0236 59.6215 393.05 31.245 393.05 

Table 13. Summary of average metric obtained by five univariate models on 20 simulated data. 

Model that provides the survival curve closest to KM is generalized gamma. However, 

Lognormal has slightly better IBS. It should be mentioned that median survival time 

predicted by all univariate models lie within range from 30 to 35 weeks.  
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Results from the procedure of fitting six survival regression models are presented in 

Table 14. Highest CI and AUC and lowest IBS has GB model. Median survival time 

predicted by all regression models lie within the range from 27 to 30 weeks. Comparing 

to the range from univariate models it is shifted towards lower values.  

  
GradientBoosting LogLogisticAFT CoxPHSurvival WeibullAFT LogNormalAFT CoxPHFitter 

CI 
0.9546 0.9079 0.9022 0.9015 0.8992 0.8816 

CI IPCW 
0.9373 0.8785 0.8696 0.8692 0.8691 0.8516 

IBS 
0.0486 0.0711 0.0775 0.0772 0.0753 0.0909 

AUC 
0.9855 0.9617 0.9562 0.9571 0.9575 0.9394 

IAE Median 
30.9445 29.5167 29.9632 30.0793 28.8173 31.5407 

ISE Median 
8.8052 8.1221 8.1537 8.3314 7.6053 9.3906 

tExpected 
29.0485 44.1365 24.1175 43.3645 44.0925 26.4135 

sizeExpected 
356.6 392.85 298.35 392.6 392.95 293.35 

tMedian 
27.325 27.4 27.2 27.9 28.25 29.625 

sizeMedian 
391.8 392.9 381.2 392.65 393 376.5 

Table 14. Summary of average metric obtained by six survival regression models on 20 simulated data. 

Distributions of CI IPCW and AUC are presented on Figure 51. 
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Figure 51. Distributions of CI IPCW (left) and AUC (right) of six survival regression models obtained on test 
subsets of 20 simulated data. 

Distributions of expected remaining life obtained by five univariate models and 

six regression models on test subset over 20 simulations are presented in the form of box 

plots on Figure 52. Generally, expectations survival regression models are shorter than 

from univariate models. Among regression models, AFT group gives predictions of 

remaining life longer than the Cox group. Similar picture can be observed for median 

remaining life on Figure 53. Another observation that can be made from mentioned 

figures that expected remaining life usually greater in magnitude than median. 
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Figure 52. Distributions of expected remaining life obtained by five univariate models (lfet) and six survival 
regression models (right) on test subsets of 20 simulated datasets. 
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Figure 53. Distributions of median remaining life obtained by five univariate models (lfet) and six survival 
regression models (right) on test subsets of 20 simulated datasets 

Predictions of remaining life from all models we use in our work are summarized in 

Table 15. 

Model MAE Expected sizeExpected MedianAE sizeMedian 
GradientBoosting 32.7486 143.85 16.8024 135.7 

LogLogisticAFT 52.8302 144.1 17.5141 143.95 
CoxPHSurvivalAnalysis 34.2882 143.85 18.5845 127.25 

WeibullAFT 69.8723 144.1 18.7664 143.8 
LogNormalAFT 44.7511 144.1 19.0490 144.05 

CoxPHFitter 36.1321 144.1 19.9068 124.45 
Weibull 36.1807 144.1 22.6170 144.1 

Exponential 36.8842 144.1 23.1588 144.1 
GeneralizedGamma 52.8980 144.1 26.2657 144.1 

LogLogistic 105.2549 144.1 27.0938 144.1 
LogNormal 64.2434 144.1 27.5028 144.1 

Table 15. MAE and median absolute error between estimated and ‘true’ values of remaining life of test 
individuals obtained by five univariate and six regression survival models from 20 simulations. 
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Results are very similar to the ones obtained from first large synthetic dataset. However, 

order of models, sorted by median absolute error in descending order is slightly 

different. The top model becomes GB followed by Log-logistic AFT. Distributions of 

MAE between expected and ‘true’ remaining life are shown on Figure 54. Similarly, 

median absolute errors between median remaining life and true values are on Figure 55.  

 

Figure 54. Distributions of MAE between expected and ‘true’ remaining life obtained by five univariate models 
(left) and six survival regression models (right) on test subsets of 20 simulated datasets. 
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Figure 55. Distributions of median absolute error between median and ‘true’ remaining life obtained by five 
univariate models (lfet) and six survival regression models (right) on test subsets of 20 simulated datasets 

Prediction of future profit 

Our model can be extended and provide an estimation of future profit of the 

company. Having estimated remaining life for existing customers and knowing their 

purchase history we can also estimate their daily future spending and therefore, 

companies profit until all existing customers will churn. With our simulated data we can 

compare two values: total ‘true’ spending and a sum of estimated spending of censored 

customers. The last value can be obtained by multiplying clients’ daily spending on his 

estimated remaining life in days. In Table 16 results obtained over 20 simulations are 

presented where expected remaining life is used to calculate CLV. Surprisingly, 

predictions made by univariate Weibull model appear to be the most accurate. However, 

error seems to be large relatively to the average value of ‘true’ CLV. Remarkable 

observation is that all AFT models significantly overestimate CLV, therefore, remaining 

survival life. GB model underestimates remaining life the most among all models. 
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Model Predicted True AbsError 
Weibull 213,815. 165,383. 492,29. 
Exponential 223,778. 165,383. 583,94. 
CoxPHSurvivalAnalysis 138,363. 165,383. 720,32. 
CoxPHFitter 153,127. 165,383. 805,25. 
GradientBoosting 62,998. 165,383. 102,385. 
LogNormalAFT 290,153. 165,383. 184,494. 
LogLogisticAFT 305,037. 165,383. 185,468. 
GeneralizedGamma 372,577. 165,383. 207,193. 
LogNormal 456,431. 165,383. 291,048. 
WeibullAFT 446,353. 165,383. 312,416. 
LogLogistic 713,950. 165,383. 548,566. 

Table 16. Predicted furure profit from existing active customers. Expected remaining life is used as lifetime 
variable for CLV calculation. Average values over 20 simulations. Column Predicted contains predicted values 
of CLV of the population of censored customers. Column True contains average ‘true’ value of the sum of 
CLV of all censored customers. Column AbsError is the difference between sums of predicted and ‘true’ 
CLVs. 

If we use median remaining life as lifetime measure for CLV calculations, results 

becomes better. As we can see from Table 17, lowest mean absolute error belongs to 

univariate generalized gamma model and this error is more than twice lower than the 

best one from Table 16. Both Cox models few times overestimate lifetimes. 

Model Predicted True AbsError 
GeneralizedGamma 171,423. 165,383. 19,977. 
Exponential 140,910. 165,383. 25,828. 
LogNormal 187,212. 165,383. 27,001. 
Weibull 136,609. 165,383. 28,982. 
LogLogistic 190,511. 165,383. 29,426. 
GradientBoostingSurvivalAnalysis 240,731. 165,383. 96,168. 
LogNormalAFT 256,496. 165,383. 183,568. 
LogLogisticAFT 270,332. 165,383. 184,994. 
WeibullAFT 434,518. 165,383. 307,148. 
CoxPHSurvivalAnalysis 687,348. 165,383. 521,965. 
CoxPHFitter 729,850. 165,383. 564,466. 

Table 17. Predicted furure profit from existing active customers. Median remaining life is used as lifetime 
variable for CLV calculation. Average values over 20 simulations. Column Predicted contains predicted values 
of CLV of the population of censored customers. Column True contains average ‘true’ value of the sum of 
CLV of all censored customers. Column AbsError is the difference between sums of predicted and ‘true’ 
CLVs. 
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Box plots on Figure 56 and Figure 57 show distributions of profit calculated by using 

expected and median remaining life. 

 

Figure 56. Box plot of profit distribution calculated from expected remaining life by five univariate models 
(left) and six regression models (right). On left plot, Label True corresponds to distribution of ‘true’ profit. 
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Figure 57. Box plot of profit distribution calculated from median remaining life by five univariate models (left) 
and six regression models (right). On left plot, Label True corresponds to distribution of ‘true’ profit. 

Dazzle effect 

In the introduction we mentioned that within our discrete-time framework features 

are time-varying. For every customer each feature actually is a sequence of values, each 

of them corresponds to different time instance within our framework. Figure 4 from 

section discrete-time framework shows possible time instances where values for every 

feature can possibly be extracted. The length of longest sequence is equal to total 

number of time steps (states) within the observation period. This is the case when the 

long-living customer has his third purchase before the start of the observation period and 

‘alive’ by the end of study. We have an intuition that features’ history of changes could 

make an impact on customers remaining life.  

However, usage of time-varying predictors in survival regression models is 

fraught with certain complications: in order to make predictions we need to know future 

values of time-dependent features. This time we try to step from survival concept and to 
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create artificial neural network regression model that predict survival time without 

taking into consideration the censorship. Plots presented on Figure 5 and Figure 6 show 

the history of change of few selected time-series predictors for one customer. Each 

feature on plots looks like time series data and in fact, it is. Having in mind, that we are 

going to use many features, one observation of the input data will be a 2D array of the 

shape [number of time steps, number of features]. Therefore, the input array has three 

dimensions and the shape [number of observations, number of time steps, number of 

features]. The outcome for an ANN model is the lifetime defined in the duration and 

censorship section, but for modeling we take only individuals that experience death 

within the study period. 

It should be mentioned that customers have various observed lifetimes, therefore, 

number of time-steps can vary from one to number of time steps within the observation 

period (65 for CDNOW for example). One option is to use the entire sequences for 

predictions. However, depending on the duration of study period, the sequence length 

might be quite long, resulting the high memory usage and significant computational 

time. The question ‘how long should customer event history be for customer churn 

prediction?’ is explored in details by (Ballings & Van den Poel, 2012). We used similar 

methodology and found experimentally that the most recent fifty values for each feature 

that correspond to approximately one year of history (since our time step is equal to one 

week) is sufficient to achieve reasonable accuracy. Having in mind that customers have 

varying observed period, we perform zero padding to make the length of all sequences 

equals to fifty. Therefore, sequences that are shorter than 50 time-steps are padded with 

zero from the beginning until they reach the length equals to 50. Sequences longer than 

50 are truncated from the beginning by keeping the most recent values and removing the 

oldest ones.  

Recurrent neural networks (RNN27) add the explicit handling of order between 

observations when learning a mapping function from inputs to outputs. They are a type 

of neural networks that natively supports sequential input data and can exhibit temporal 

dynamic behavior. Instead of mapping inputs to outputs alone, the network is capable of 
                                                 
27 https://en.wikipedia.org/wiki/Recurrent_neural_network (accessed on December 21, 2022) 

https://en.wikipedia.org/wiki/Recurrent_neural_network
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learning a mapping function for the inputs over time to an output. This capability of 

RNN has been used to in complex natural language processing models such as 

translation where the complex inter-relationships between words should be learned 

within a given language and across languages in translating form. Such a capability of 

RNN can be used for other tasks where sequences of data are involved.  

LSTM28 is a type of RNN that has feedback connections and can process entire 

sequences of data. GRU29 is a gating mechanism in RNN similar to LSTM, but it lucks 

an output gate and has fewer parameters than LSTM. Its performance on certain tasks is 

found to be similar to that of LSTM and even better on some small datasets. Figure 58 

shows the structure of the neural network we use for our regression model. Our ANN 

has two GRU layers followed by three dense layers and linear output. Few dropout 

layers30 are included to prevent overfitting.  

Procedure to obtain estimated values for remaining life is similar to survival 

regression models, except that we train ANN model on the subset that contains all dead 

‘customers’ and make predictions for those who remains alive by the end of study 

period. Subset containing ‘dead’ customers is divided into to two groups: training and 

validation. Training data is used to fit ANN model, validation data has two purposes: it 

is used for early stopping (where ANN model should stop training) and to compare 

predicted and true values of the remaining life. MAE obtained on validation data is 

equal to 8.1 which is very low value comparing to results from survival regression. 

However, MAE calculated on predictions, made on test dataset that contains only 

censored clients, is 35.06 which is significantly larger. Median absolute error on test 

data is equal to 16 weeks which is comparable with best results obtained by survival 

models. 

 

                                                 
28 https://en.wikipedia.org/wiki/Long_short-term_memory (accessed on December 21, 2022) 
29 https://en.wikipedia.org/wiki/Gated_recurrent_unit (accessed on December 21, 2022) 
30 
https://keras.io/api/layers/regularization_layers/dropout/#:~:text=The%20Dropout%20layer%20randomly
%20sets,over%20all%20inputs%20is%20unchanged. (accessed on December 21, 2022) 

https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Gated_recurrent_unit
https://keras.io/api/layers/regularization_layers/dropout/#:%7E:text=The%20Dropout%20layer%20randomly%20sets,over%20all%20inputs%20is%20unchanged
https://keras.io/api/layers/regularization_layers/dropout/#:%7E:text=The%20Dropout%20layer%20randomly%20sets,over%20all%20inputs%20is%20unchanged
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Figure 58. Artificial neural network architecture. 
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Figure 59. Scatter plot predicted vs. true remaining life estimated by RNN model on censored observations 
over 20 simulated synthetic data. 

 

Figure 60. Box plots of distributions of true remaining life (left), predicted remaining life (middle) and MAE 
(right). Predictions obtained by RNN on subset of censored observations over 20 simulated synthetic datasets. 
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Results obtained by RNN regression model by predicting censored observations from 20 

simulations are presented on Figure 59 and Figure 60. It can be clearly seen that our 

RNN model significantly underestimates the outcome for censored customers, which is 

not surprising since the model is trained only on the subset of ‘dead’ clients. Even is the 

model has large capacity and the ability to learn complex dependencies from temporal 

sequential data, it does not take into account the concept of censorship and therefore is 

biased towards shorter values of the outcome. 
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Conclusion 

Studying churn is important for businesses, and non contractual settings are 

especially challenging. We described and analyzed a reasonable solution based on 

experience and intuition. While many different strategies exist, we focused on using 

survival tools to predict customers’ lifetime. The experiments described herein show 

that survival analysis can be applied to predict customers’ lifetime for non-contractual 

setting. Discrete-time model and features created within its scope can serve as predictors 

for survival regression for lifetime estimation. Univariate models can be used as quick 

way to estimate populations’ mean and median survival time, which in its turn might be 

useful to predict future purchases and therefore, companies’ profit. Best model could be 

selected via either AIC/BIC criteria or by comparison with Kaplan-Meier estimator 

(IAE / ISE), which can be treated as ‘true’ survival function. In our experiment, 

generalized gamma model was the best among the other univariate models in terms of 

available metrics we used, except the last one in simulated data (the error between ‘true’ 

and predicted profit made by censored customers). However, univariate models do not 

take into consideration any customers specific characteristics that could be learned from 

the past buying behavior.  

CoxPH and gradient boosting models have significantly better performance than 

best univariate model (generalized gamma). However, if study interval is relatively short 

(censored individuals have larger lifetime than study period), those models cannot 

correctly predict the remaining life, since individuals’ survival functions do not go 

below the value 0.5. Therefore, from models’ perspective, those customer have 

infinitely long lifetime, which is not the case in real life. GB model has best 

performance characteristics most of the time (highest CI and AUC and lowest IBS), but 

on simulated data its predictions suffer of underestimation of clients’ lifetime. 

Therefore, this model might be used as a predictor for recent customers churn (if 

customers remaining life predicted by GB model is very low, this might be an indicator 

that he is going to churn and requires an attention of retention team). If study period is 

sufficient, CoxPH model is a good choice for lifetime estimation. However, if the 
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number of predictions that model cannot handle (predicts infinity lifetime) is significant, 

AFT model is an excellent choice to do the job. The huge advantage of AFT model is its 

functional form: once parameters of the model is determined via learning on training 

data, the survival function for any subject we would like to make prediction can be 

extended as far as necessary (at least until it will cross the altitude of 0.5 or even 

conditional zero). As a result, either expected or median survival time can be calculated 

for any censored customer. It should be mentioned that both top performed AFT models 

log-normal and log-logistic showed results not very far from best performing models 

either on real data (3rd and 2nd rank on CI index) or on simulated data (MAE and 

AbsError). 

We find that although many features are just derived from the transaction dates, 

their use appear to improve the performance of the regression methods. Some methods 

ignore the censoring, and surprisingly, they yielded reasonable results in our context. 

Globally, using methods with failed assumptions may still provide good predictions, or 

not. Making numerous approximations does not have an automatic negative cost on 

performance but may have a hidden cost of a reduce trustability of the model. Although 

we are aware of real-life instances where very reasonable assumptions in a rigorous 

model did not yield the expected performance – outside of Monte Carlo studies, we have 

no real control on the data generating process. 
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