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Résumé

Cette mémoire évalue l’efficacité prévisionnelle du modèle Hétérogène AutoRégressif (HAR)

et de ses extensions pour la volatilité réalisée sur les marchés financiers. Plus précisément,

nous évaluons le modèle HAR ainsi que ses variantes : le modèle HAR avec sauts (HAR-

J), le modèle HAR intégrant la semi-variance réalisée (HAR-RSV) et le modèle HAR avec

effets de levier (HAR-LE). Ces modèles sont appliqués à l’indice S&P 500 et à 89 titres indi-

viduels. Notre analyse comparative révèle que le modèle HAR-LE montre une performance

prévisionnelle supérieure pour la variance réalisée, tant en échantillon qu’hors échantillon,

particulièrement au niveau de l’indice S&P 500. Nous observons des résultats mitigés con-

cernant les améliorations de la précision prévisionnelle des modèles HAR-J, HAR-RSV, et

HAR-LE par rapport au modèle HAR au niveau des titres individuels. Les résultats soulig-

nent le rôle significatif des modèles intégrant des informations sur la volatilité asymétrique, en

particulier ceux qui incorporent des effets de levier, pour améliorer la précision des prévisions

principalement au niveau de l’indice S&P 500, mais moins au niveau des entreprises indi-

viduelles sur le marché boursier américain.



Abstract

This thesis assesses the forecasting effectiveness of the Heterogeneous AutoRegressive (HAR)

model and its extensions for realized volatility in financial markets. Specifically, we evaluate

the HAR model along with its variants: the HAR model with jumps (HAR-J), the HAR

model incorporating realized semivariance (HAR-RSV), and the HAR model with leverage

effects (HAR-LE). These models are applied to the S&P 500 Index and 89 individual stocks.

Our comparative analysis reveals that the HAR-LE model demonstrates superior forecast-

ing performance for both in-sample and out-of-sample realized variance, particularly at the

S&P Index level. We find mixed results with the forecasting accuracy improvements of the

HAR-J, HAR-RSV, and HAR-LE compared to the HAR model at the individual firm level.

The findings highlight the significant role of models that integrate asymmetric volatility in-

formation, especially those that incorporate leverage effects, in improving forecast accuracy

primarily at the S&P 500 Index level but less so at the individual firm level within the US

stock market.
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1 Introduction

Volatility modeling is indispensable in the financial industry. It impacts crucial areas such

as trading, risk management, banking, and government fiscal policy. It equips investors and

traders with robust methodologies for forecasting future financial data volatility, facilitating

informed strategic decision-making.

Historically, this field has predominantly used volatility models from the Autoregressive

Conditional Heteroskedasticity (ARCH) and Generalized Autoregressive Conditional Het-

eroskedasticity (GARCH) families (Engle, 1982; Bollerslev, 1986) as well as the Stochastic

Volatility (SV) framework (Shephard, 1996; Taylor, 2007). However, these traditional models

often incorporate assumptions that do not fully capture the intricate dynamics of financial

markets, particularly the fat-tailed distribution characteristic of financial time series data

(Ampadu et al., 2024).

The past two decades have seen a paradigm shift triggered by the influx of high-frequency

data (HFD), exposing traditional models’ limitations (Andersen and Bollerslev, 1997, 1998;

Corsi, 2009). HFD platforms like Wharton Research Data Services (WRDS) and the NYSE’s

Trade and Quote database (TAQ) provide detailed trade and quote price data that have

prompted ongoing refinements in volatility modeling techniques (Shephard and Sheppard,

2010). These enhancements aim to more accurately account for intraday price movements

and address the biases inherent in traditional models.

Volatility modeling is one of the main themes of financial research surrounding the advent,

accessibility, and availability of HFD (Hussain et al., 2023). A significant breakthrough

in this field is the development of the realized variance measure concept in the late 1990s

and early 2000s (Andersen et al., 1999, 2000, 2001; Barndorff-Nielsen and Shephard, 2002;

Barndorff-Nielsen and Shephard, 2002; Andersen et al., 2003). Realized variance is computed

by summing the squared returns of high-frequency financial data over a specified time period.

It serves as a reliable estimate of the latent volatility within that time frame. According

to Hansen and Lunde (2012a), realized measures built on HFD have substantially enhanced

volatility forecasting by improving understanding of the dynamic properties of volatility,

serving as effective predictors in reduced-form models, and aiding in developing new models

that produce more accurate forecasts.

Realized measures have advanced research and led to the development of the Heterogeneous

AutoRegressive (HAR) model of Realized Volatility by Corsi (2009). This model incorpo-

1



1 INTRODUCTION

rates data from realized measures from multiple time horizons and adopts a nonparametric

approach, thus avoiding the restrictive distributional assumptions inherent in GARCH and

SV family models. The HAR model and its extensions that account for asymmetric volatil-

ity patterns in equity markets, such as the leverage effect or jump components, have shown

effective performance in volatility forecasting. There is ongoing interest in improving volatil-

ity forecasting through the framework of the HAR model, with numerous studies focused on

stock indices like the S&P 500 and individual stocks. For example, Andersen et al. (2007),

Patton and Sheppard (2015), and Lyócsa and Todorova (2020) explore these aspects in the

context of the US stock market. Buncic and Gisler (2017) and other authors investigate

international markets such as the Nikkei 225 index in Japan (Maki and Ota, 2021) and the

PX index in the Czech stock market (Seda, 2012).

Inspired by previous studies and drawing on the groundwork laid by Corsi (2009), this

thesis investigates the efficacy of volatility forecasting with the HAR model using the real-

ized variance estimator and high-frequency price data from the NYSE’s TAQ database for

the S&P 500 Index and 89 individual component stocks over the trading period from 2000

to 2020. Specifically, we assess the forecasting performance of the one-day ahead realized

variance in and out-of-sample across two distinct trading subperiods: 2000-2010 and 2011-

2020. Our analysis incorporates the HAR model as a benchmark along with three of its

extensions designed to account for three types of volatility asymmetries: asymmetric jumps

(HAR-J), realized semivariance (HAR-RSV), and the leverage effect (HAR-LE). Our find-

ings contribute to the literature by showing that the HAR-LE model incorporating leverage

effect asymmetry dynamics provides superior forecasting accuracy of one-day ahead realized

variance at the S&P 500 Index level. However, we find mixed results with the forecasting

accuracy of the HAR-J, HAR-RSV, and HAR-LE models compared to the HAR model’s

accuracy at the individual firm level.

This thesis is structured as follows: Section 2 provides a review of the literature, Section 3

describes the methodology used for the experiment, Section 4 explores the data set of the

experiment, Section 5 discusses the results, and Section 6 concludes with a synthesis of the

findings and their implications for future research.

2



2 Literature Review

Volatility forecasting is crucial in financial markets, helping investors and risk managers

make informed decisions. Traditionally, models such as the GARCH and SV models have

dominated this field. These models, introduced in seminal work by Engle (1982), Bollerslev

(1986), and Taylor (2007), are often calibrated on low-frequency data, such as daily price

data, to predict future volatility and capture long-term trends.

However, these traditional models often do not account for the nuances of intraday price

movements. This can lead to significant biases in volatility estimates by overlooking critical

intraday information, as Andersen and Bollerslev (1998) emphasize. Andersen et al. (2003)

observe that, with the rise of high-frequency trading and technological advances in the last

two decades, there has been a growing need for models that can leverage intraday data to

forecast volatility accurately. According to Corsi (2009), traditional models also struggle

with issues such as persistence in financial data volatility and their inability to capture the

dynamics of volatility across different time horizons, as well as the fat tails and tail crossover

phenomena common in financial return distributions. To address these limitations, Corsi

(2009) proposes the Heterogeneous AutoRegressive (HAR) model. This model incorporates

different volatility components on multiple time horizons and aims to better replicate the em-

pirical features of financial returns, including long memory and fat tails, in a more tractable

and parsimonious manner than traditional GARCH and SV models.

The HAR model distinguishes itself by employing a non-parametric approach, avoiding the

distributional assumptions required by model families such as GARCH and SV. This al-

lows the HAR model to effectively capture volatility persistence through the aggregation

of heterogeneous components, a principle rooted in the Heterogeneous Market Hypothesis

and extensively discussed in the literature (Müller et al., 1993, 1997; Dacorogna et al., 1998;

Lynch and Zumbach, 2003; Corsi et al., 2012). The model reflects the complex structure of

the market, characterized by varying time horizons among participants, whose heterogene-

ity arises from differences in risk profiles, institutional constraints, access to information,

geographical locations, and other characteristics. Central to the HAR model is an ordinary

least squares (OLS) regression built on realized variance measure estimators derived from

high-frequency intraday financial return data summed and averaged across multiple time

frames, typically daily, weekly and monthly.

The simplicity of the HAR model’s estimation process and its forecast performance enhance

its appeal. Empirical studies have demonstrated the effectiveness of the HAR model in fore-
3



2 LITERATURE REVIEW

casting volatility for time series of equity with better performance than traditional models.

Thanasoulas (2019) finds that from 2000 to 2018, the HAR model consistently outperformed

the GARCH(1,1) model in forecasting volatility in the AEX index in the Netherlands, and

the S&P 500 and Nikkei 225 indices, during both non-crisis and crisis periods (2000-2002 and

2007-2009). Furthermore, Seda (2012) shows that during 2004-2012, including the 2008-2009

financial crisis, the HAR model significantly outperformed the GARCH(1,1) model in the

in-sample forecast accuracy of the Czech stock market PX index in all periods tested.

Building on the foundational work of Corsi (2009), several extensions of the HAR model

have been developed to improve forecast accuracy and accommodate the asymmetric nature

of volatility observed in equity markets. Maki and Ota (2021) categorize the expressions of

asymmetry in volatility into three principal forms: the leverage effect, which suggests that

past negative returns amplify future volatility; realized semivariance (RSV), which splits

realized variance into positive and negative components based on intraday returns; and the

presence of asymmetric jumps.

The extensive literature shows improvements in volatility forecasting performance when the

HAR model is extended to account for one or more of the three forms of volatility asym-

metry that Maki and Ota (2021) describe. For example, Buncic and Gisler (2017) examine

the impact of jumps and the leverage effect in 18 international equity markets, finding that

while the separation of volatility into jump and continuous components shows mixed results,

including the leverage effect significantly improves the accuracy of volatility forecasting, par-

ticularly in the forecast horizon of one month. Similarly, Corsi and Renò (2012) show that

the LHAR-CJ model, which incorporates heterogeneous leverage effects and jumps, signif-

icantly enhances volatility prediction across all tested horizons compared to the HAR and

HAR-CJ models using high-frequency data from the S&P 500 futures market spanning nearly

28 years (1982 to 2009). Patton and Sheppard (2015), whose findings indicate that negative

semivariance is highly predictive of future volatility, report that models that incorporate this

measure can greatly enhance forecast accuracy on the S&P 500 index and individual stocks.

Lastly, Andersen et al. (2007) observe that including jumps leads to significant improvements

in out-of-sample volatility forecasts in exchange rates, equity index returns, and bond yields.

This enhancement is attributed to the model’s ability to capture abrupt changes in volatility,

often linked to specific macroeconomic news announcements or other market-moving events.

4



3 Methodology

This section discusses the theoretical foundations and practical implications of realized vari-

ance. We provide a detailed explanation of each model in our experiment, including the

HAR, HAR-J, HAR-RSV, and HAR-LE models, their mathematical framework, and how

they are built on realized variance measures. Lastly, we review the key features of HFD

and the most commonly used techniques to minimize the influence of market microstructure

noise when estimating realized variance.

3.1 Realized Variance

Realized variance1is defined as the sum of the squared intraday returns sampled at very high

frequencies. This measure is explored in a series of foundational articles, including works by

Andersen et al. (1999), Andersen et al. (2000), Andersen et al. (2001), and Andersen et al.

(2003). Barndorff-Nielsen and Shephard (2002) and Barndorff-Nielsen and Shephard (2002)

further elaborate the theoretical underpinnings of the realized variance measure and use the

realized variance to estimate the quadratic variation of a stochastic process. We summa-

rize below the mathematical foundations for the realized variance, based on the established

literature and the course notes by Gauthier (2020).

Stock Price Stochastic Process

Let Pt be the price of a stock and St = lnPt. We assume St to follow a standard jump-

diffusion process,

dSt = µtdt+ σtdWt + dJt , (1)

where µt is the drift, σt is the instantaneous stochastic volatility, strictly positive and square-

integrable, Wt is a Brownian motion, and Jt is a jump process.

1It is important to understand the difference between “realized volatility” and “realized variance”. Al-

though these terms are often used interchangeably in the financial literature, their precise meanings differ.

Realized volatility refers to the square root of realized variance. To avoid confusion, we clearly define and

specify the correct usage of each term in its respective context.
5



3 METHODOLOGY

Quadratic Variation of the Stock Price Stochastic Process

Let {Xt}t≥0 be a stochastic process on the probability space (Ω,F ,P) and 0 = t0 < t
(n)
1 <

. . . < t
(n)
n = T be a partition of the time interval [0, T ] such that

lim
n→∞

max
i∈{1,2,...,n}

∣∣∣t(n)i − t
(n)
i−1

∣∣∣ = 0 . (2)

Then the quadratic variation of X on the time interval [0, T ] is

[X]T = lim
n→∞

n∑
i=1

(
X

t
(n)
i

−X
t
(n)
i−1

)2

. (3)

It can be shown that the quadratic variation for the logarithmic price process St is

[S]T = QVT =

∫ T

0

σ2
sds+

NT∑
i=1

Y 2
i , (4)

where
∫ T

0
σ2
sds is the integrated variance and

∑NT

i=1 Y
2
i is the sum of the squared jumps.

Daily Realized Variance Estimator of the Stock Price Stochastic Process

Let an intraday return of the stock price process St between t and t+ i τ
n
be

rt+i τ
n
= St+i τ

n
− St+(i−1) τ

n
. (5)

When τ = 1
252

is the length in year of a business day and n is the number of periods per day,

the realized variance of the stock price process St for that specific trading day is

RVt,t+τ =
n∑

i=1

r2t+i τ
n
. (6)

Assuming the US stock market opening hours from 9:30 am to 4:00 pm, if the intraday

returns are calculated at each 1-minute interval period of a trading day, n = 390, if they

are computed at each five-minute interval period, n = 78, etc. It follows that the realized

variance is an estimator for the daily quadratic variation and latent volatility of the stochastic

6



3 METHODOLOGY

process:

QVt,t+τ = [S]t+τ − [S]t

= lim
n→∞

n∑
i=1

(
St+i τ

n
− St+(i−1) τ

n

)2

= lim
n→∞

n∑
i=1

r2t+i τ
n

∼= RVt,t+τ .

(7)

And, from Equation 4, we can show that

QVt,t+τ = [S]t+τ − [S]t

=

∫ t+τ

t

σ2
sds︸ ︷︷ ︸

Integrated variance

+

Nt+τ∑
i=Nt

Y 2
i︸ ︷︷ ︸

Sum of the squared jumps︸ ︷︷ ︸
∼=RVt,t+τ

.
(8)

Bipower Variation

We can disentangle the integrated variance from the realized variance estimator in Equation

8 to estimate the sum of the squared jumps. This requires the bipower variation estimator,

which Barndorff-Nielsen and Shephard (2006) show is a consistent estimator of integrated

variance. The formula for the bipower variation estimator is

BVt,t+τ =
π

2

n∑
i=2

∣∣∣Rt+i τ
n
Rt+(i−1) τ

n

∣∣∣ , (9)

and we show how the realized variance estimator and the bipower variation estimator are

connected in the following equation

QVt,t+τ =

∫ t+τ

t

σ2
sds︸ ︷︷ ︸

Integrated variance︸ ︷︷ ︸
∼=BVt,t+τ

+

Nt+τ∑
i=Nt

Y 2
i︸ ︷︷ ︸

Sum of the squared jumps︸ ︷︷ ︸
∼=RVt,t+τ

. (10)

Subtracting the bipower variation from the realized variance provides an estimate for the

sum of squared jumps, enhancing the accuracy of jump adjustments in volatility modeling.
7
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Although, in theory, the result of this subtraction should always be positive, in practice, the

maximum between 0 and the subtraction result must be taken as illustrated by the formula

Nt+τ∑
i=Nt

Y 2
i
∼= max (RVt,t+τ −BVt,t+τ , 0) . (11)

3.2 Models

We follow the framework of Maki and Ota (2021) to model and forecast realized variance. The

models we use are the Heterogeneous AutoRegressive (HAR) and the following extensions:

the HAR-J specification, which includes a jump component; the HAR-RSV specification,

where realized variance is decomposed into positive and negative realized semivariance; and

the HAR-LE specification, which considers the leverage effect of the past negative returns of

an asset price time series. The HAR model is our realized variance forecasting benchmark.

In contrast to Corsi (2009) who uses untransformed realized estimators to model volatility

under the HAR framework, we apply a logarithmic transformation to the realized variance

estimators as Maki and Ota (2021) do. Clements and Preve (2021) explain that this transfor-

mation addresses the distributional properties of realized variance. Unlike the untransformed

realized variance, which has been observed to be right-skewed, the distribution of the log-

arithms of realized volatilities is approximately Gaussian (Andersen et al., 2003; Eriksson

et al., 2019). Consequently, the logarithmic transformation of the realized variance is shown

to be economically and statistically significant (Taylor, 2017).

In each model specification, the realized variance estimator RVt is constructed on period t

equal to one trading day.

3.2.1 HAR

The HAR model aims to address the complexity and persistence seen in the volatility of fi-

nancial markets by breaking down the volatility into components over different time horizons:

daily, weekly, and monthly. To achieve this, the HAR model considers the realized variance

observed yesterday (daily), denoted by RVt−1, over the past five trading days (weekly), de-

noted by RV w
t−1, and over the past twenty-two trading days (approximately one month),

denoted by RV m
t−1. The HAR model is defined in the following equation:

lnRVt = c+ α1 lnRVt−1 + α2 lnRV w
t−1 + α3 lnRV m

t−1 + ϵt (12)

8
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where RV w
t−1 =

1
5

∑5
i=1 RVt−i and RV m

t−1 =
1
22

∑22
i=1RVt−i .

The model captures the cascade of volatility from long-term components to short-term com-

ponents, which is critical since long-term volatility can significantly influence short-term

market risk and vice versa. We use the realized variance estimators under the HAR model

specification instead of the realized volatility estimators used by Corsi (2009).

3.2.2 HAR-J

Andersen et al. (2007) note that the HAR model developed by Corsi (2009) can be ex-

tended by incorporating a component that accounts for asset price jumps, denoted by Jt.

This specification, denoted as the HAR-J model, may help the model better forecast return

volatility by separating the jump (discontinuous) component from the continuous component

of volatility, the integrated variance. The HAR-J model is defined in the following equation:

lnRVt = c+ α1 lnRVt−1 + α2 lnRV w
t−1 + α3 lnRV m

t−1 + β1 ln (Jt−1 + 1) + ϵt (13)

where the jump component Jt = max(RVt−BVt, 0), as previously described in Equation 11.

3.2.3 HAR-RSV

Barndorff-Nielsen et al. (2008) show a method to decompose the realized variance RVt into

two components: the negative realized semivariance, denoted by RSV −
t=1, and the positive

realized semivariance, denoted by RSV +
t−1. The authors show that RVt is the sum of RSV −

t−1

and RSV +
t . The negative and positive semivariances are computed as follows:

the negative realized semivariance, RSV −
t−1 =

n∑
j=1

r2t,jI {rt,j < 0} , (14)

and the positive realized semivariance, RSV +
t−1 =

n∑
j=1

r2t,jI {rt,j ≥ 0} .

Patton and Sheppard (2015) decompose the daily realized variance estimator variable into

positive and negative realized semivariance within the HAR model specification but keep the

rest of the model equation intact. The HAR-RSV model is defined in the following equation:

lnRVt = c+ α1 lnRSV +
t−1 + α2 lnRSV −

t−1 + α3 lnRV w
t−1 + α4 lnRV m

t−1 + ϵt . (15)
9
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The HAR-RSV model aims to capture the leverage effect in financial markets that is not

accounted for in the standard HAR model. The model utilizes signed semivariances to

differentiate between the content of the information and the risk implications of intraday

positive and negative returns.

3.2.4 HAR-LE

Horpestad et al. (2019) describe the HAR-LE model, which accounts for the daily stock

return rt and introduces asymmetry by using leverage terms that are related to lagged

absolute daily returns, denoted by |rt−1|, and lagged absolute daily negative returns, denoted

by |rt−1| I {rt−1 < 0}. The leverage effect can also be extended to longer time horizons by

including weekly and monthly returns, as discussed by Corsi and Renò (2009). The HAR-LE

model is defined in the following equation:

lnRVt = c+ α1 lnRVt−1 + α2 lnRV w
t−1 + α3 lnRV m

t−1 (16)

+ δ1 |rt−1|+ δ2 |rt−1| I {rt−1 < 0}+ ϵt .

3.3 High-Frequency Data and Sampling

Considering the impact of market microstructure noise when calculating realized variance

and bipower variation estimators is crucial. Under ideal conditions, where prices are ob-

served continuously and without measurement error, realized variance can provide an ac-

curate estimate of volatility, as noted by Merton (1980). However, the presence of market

microstructure noise in HFD significantly affects the accuracy of the measurement. Specif-

ically, reducing the time interval for calculating intraday returns (by increasing n as shown

in Equations 5 and 6) allows for more detailed data aggregation in the computation of the

estimators but also leads to increasingly biased estimators. These biases are exacerbated

as the sampling frequency increases (Hansen and Lunde, 2012b), often resulting in inflated

volatility estimates.

Djupsjöbacka (2010) provides a comprehensive list of microstructure noises present in HFD

time series that affect the estimation of the realized variance. These disturbances include bid-

ask bounce, nonsynchronous trading, price discreteness and clustering, and market-making

activities. The bid-ask bounce causes observed prices to oscillate between bid and ask val-

ues, artificially inflating the variability. Nonsynchronous trading refers to delays in recording

prices across different markets or assets, leading to misalignments in price data synchroniza-

tion. Price discreteness and clustering occur when prices aggregate around specific values,

10
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affecting the variance and autocorrelation of returns. Additionally, market-making activities

influence measured variance and autocorrelation due to dual-side trading by market makers.

To mitigate the influence of microstructure noise on realized variance estimators, the finan-

cial literature suggests various methods, including filtering, outlier detection and removal,

smoothing with kernel algorithms, sampling method modifications (e.g., calendar time vs.

business time), and subsampling. For instance, Andersen et al. (2001) filter the five-minute

interval returns of high-frequency transaction price data on individual stocks from the Dow

Jones Industrial Average (DJIA) from January 2, 1993, until May 29, 1998, using a Moving

Average model, MA(1), to adjust for the bid-ask bounce and nonsynchronous trading effects.

Brownlees and Gallo (2006) apply outlier detection and removal techniques to NYSE TAQ

price time series, calculating local statistical baselines within a moving window for each data

point and identifying significant deviations using a Z-score type filter. Furthermore, Zhou

(1996), Barndorff-Nielsen et al. (2009), and Hansen and Lunde (2004) employ kernel function

algorithms to weight and smooth HFD price time series, improving the quality of volatility

estimations.

It is important to note that the n parameter in Equations 5 and 6 presumes that intraday

returns used to calculate the realized variance estimator come from evenly spaced trade price

transactions, which is not always the case in empirical stock price HFD. Practitioners often

need to reconstruct the time series of trade prices before estimating the variance realized.

Methods such as calendar time sampling, which collects data at regular calendar intervals

(e.g., every 5 minutes), business time sampling, which adjusts intervals according to the

volume of transactions or trades, and transaction time sampling, which collects data points

based on a predefined number of transactions or trading volume, are used to represent mar-

ket dynamics better. Oomen (2005) suggests that business and transaction time sampling

generally provides a more accurate representation of market dynamics compared to calen-

dar time sampling, particularly in reducing the mean square error of bias-corrected realized

variance estimates. Extending sampling intervals beyond five minutes to ten or fifteen min-

utes can mitigate microstructure noise by averaging the effects of order flows and bid-ask

bounces, thus providing a clearer view of price trends and reducing the noise-to-signal ra-

tio. Hansen and Lunde (2012b) confirm that noise considerations can be minimized when

intraday returns are sampled at lower frequencies, such as every 20 minutes, in the 30 DJIA

stocks.

Another method extensively used in the literature to address the challenges of microstructure

noise and to find a compromise between frequent sampling and maximizing data utilization

11
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is the subsampling method described by Zhang et al. (2005). This approach averages realized

variance estimates computed over different subsampled grids and can reduce the noise impact

compared to single-grid methods such as calendar time or business time sampling. The

formula for subsampling for the realized variance subsample estimator is

RV
Subsampling (k)
t,t+τ =

1

k

k−1∑
j=0

RV
Standard (k)
t+j∆,t+τ (17)

and for the bipower variation subsample estimator,

BV
Subsampling (k)
t,t+τ =

1

k

k−1∑
j=0

BV
Standard (k)
t+j∆,t+τ , (18)

where k denotes the time interval between two observations and the number of subgrids. For

instance, if k = 5, it means calculating five subsample estimators at five-minute intervals

on each of the five subgrids and then averaging these estimators into one final estimator.

The subgrids would be denoted as subgrid 1, {5, 10, 15, . . . , 390}, subgrid 2, {6, 11, . . . , 386},
and so on. RV

Standard (1)
t+j∆,t+τ would the realized variance estimated on subgrid 1, RV

Standard (2)
t+j∆,t+τ

on the subgrid 2, and so on. Liu et al. (2012) investigates the effectiveness of various

high-frequency volatility estimators in multiple asset classes, comparing nearly 400 different

realized measures over 11 years of data. They find that while more sophisticated measures

sometimes outperform the simple five-minute realized variance, this simpler measure often

competes closely regarding practical applicability and forecast accuracy.
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This section details our data collection methodology, data processing pipeline, and validation

procedure with empirical data. We also illustrate some inherent anomalies of high-frequency

data in the TAQ database.

4.1 Data Collection

We work with a data set collected by Clément Aymard, a Ph.D. candidate in finance under

the supervision of David Ardia. This data set consists of 21 CSV files. The data set includes

intraday trade prices at the one-minute interval of stocks that compose the S&P 500 and are

traded between 2000 and 2020. There is one CSV file for each trading year. To identify the

S&P 500 component stocks for this period, we use the CRSP and NYSE TAQ databases.

From CRSP, we obtain unique permanent identifiers (PERMNO) for each of the S&P 500

component stocks. We then locate the corresponding stock data tables with these identifiers

in the TAQ database. Furthermore, we focus exclusively on intraday trade price data.

Specifically, we do not work with quote price data of identified S&P 500 component stocks

also available on TAQ.

4.2 Data Processing Pipeline

We use Python software and various open-source packages to clean and prepare the data,

calibrate the models, and analyze the results. To facilitate experiment replication and enable

others to follow along, we have uploaded the source code for all manipulation steps to GitHub.

The GitHub repository can be made available for cloning upon request at the email address

frederic.rivard@hec.ca.

The structure of our Python code is organized into four main files. The files step1.py,

step2.py, and step3.py each perform a specific stage of the data cleaning pipeline. The

file data analysis.py generates the leading figures and results. In the files step1.py,

step2.py, and step3.py, basic functions serve as the first level of abstraction and are then

integrated into higher-level functions to form the second level of abstraction.

Using Figma software, we visually represent the data cleaning and preparation process in a

flow chart. The experiment flow chart (EFC) can be accessed via the following URL: https:

//www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%

2FA9npqUxI2BZGctUlb1YCJU%2FData-Pipeline---Realized-Volatility-Forecasting-in-U.
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and is also displayed in Figures 1, 2, and 3. In the EFC chart, the first level of abstraction

in function calls is indicated by red folder icons, while the secondary level of abstraction

functions is shown with purple rectangles. By examining the legend in Figma and exploring

the EFC, readers can easily follow and understand steps 1 to 3 outlined in the subsections

below.

4.2.1 Step 1 - Data Preparation and Reorganization

We start by reorganizing the 21 CSV files collected from WRDS, which we identify as Data

Set A in the EFC (see Figure 1). More specifically, we identify all unique S&P 500 common

stock tickers traded each year between 2000 and 2020. We segregate the 1-minute inter-

val price trade records for each ticker with the step1.compute step 1 1() function and

recombine them into 21 annual CSV files. The set of all these segregated trade price data

files is called Data Set B in the EFC. We then use the step1.compute step 1 2() function

to merge the segregated trade price data on a ticker-by-ticker basis. This merging process

reconstructs a complete time series for each unique ticker, extending from its first recorded

trade—if it was added to the S&P 500 after January 1, 2000—to its last—if it was removed

before December 30, 2020. We obtain a set of 1,139 comprehensive time series, which we

call the Datcalla Set C in the EFC.

We observe differences in the structure of the TAQ database between two timeframes, 2000-

2009 and 2010-2020, as shown in Tables 1 and 2. During the 2000-2009 period, we use the

“SYMBOL” column to differentiate among the S&P 500 component stock tickers. TAQ price

trade data for this time period comprise exclusively common stocks. From 2010 onward, the

“SYM ROOT” column replaces “SYMBOL” for ticker identification. A new column called

“SYM SUFFIX” is introduced and displays attributes for the stock symbol of each trade

price record, including the funding round (e.g. ticker.A to ticker.T), preferred share sta-

tus (e.g., ticker.PR), and other characteristics. We consider only those records where the

“SYM SUFFIX” attribute is null, which indicates common stock trade data for the S&P

500 components. For more detailed information on the various suffix types, please con-

sult the NYSE TAQ documentation at https://www.nyse.com/publicdocs/nyse/data/

Daily_TAQ_Client_Spec_v4.0.pdf.
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Figure 1: Step 1 - Data Preparation and Reorganization
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Table 1: 10 First Rows of TAQ Data Extract: Trading Activity Calendar Year 2000

DATE SYMBOL itime rtime isize iprice

20000103 A 9:30:00 9:34:01.0000 64700 78.7500

20000103 A 9:31:00 9:34:01.0000 64700 78.7500

20000103 A 9:32:00 9:34:01.0000 64700 78.7500

20000103 A 9:33:00 9:34:01.0000 64700 78.7500

20000103 A 9:34:00 9:34:01.0000 64700 78.7500

20000103 A 9:35:00 9:34:49.0000 200 78.7500

20000103 A 9:36:00 9:35:58.0000 200 78.6875

20000103 A 9:37:00 9:36:57.0000 1300 78.0625

Table 2: 10 First Rows of TAQ Data Extract: Trading Activity Calendar Year 2010

DATE SYM ROOT SYM SUFFIX itime m rtime m isize iprice

20100104 A 9:30:00 9:30:02.7640 98 31.32

20100104 A 9:31:00 9:30:51.0490 100 31.14

20100104 A 9:32:00 9:31:59.6660 200 31.36

20100104 A 9:33:00 9:32:54.3190 100 31.23

20100104 A 9:34:00 9:33:59.7630 200 31.22

20100104 A 9:35:00 9:34:51.3600 100 31.28

20100104 A 9:36:00 9:35:58.8740 100 31.30

20100104 A 9:37:00 9:36:57.6640 100 31.33
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4.2.2 Step 2 - Data Validation and Cleaning

We validate the integrity and completeness of the raw NYSE TAQ trade price data from 2000

to 2020 in Step 2 of the EFC (see Figure 2). We work only with merged trade price data time

series from stocks that trade consistently over this period. To determine which stocks meet

this criterion, we use the official trading calendar for the S&P 500 Index, which we collect

from a Bloomberg terminal. The trading period between January 1, 2000, and December 30,

2020, consists of 5,282 official trading days. We use the step2.compute step 2 1() function

to perform an initial screening of the 1,139 stock time series from Data Set C and find 282

stocks that are traded actively on all official trading days identified.

Aligning stock trading records with Bloomberg’s official trading days for S&P 500 Index

alone does not suffice to affirm the day-to-day completeness of the TAQ trade price time

series. Under normal conditions, a standard trading day from 9:30 am to 4:00 pm should

have exactly 390 price observations per stock at a one-minute trading interval. On certain

US holidays, such as Independence Day or Thanksgiving, fewer observations are recorded

when the NYSE operates on a shortened schedule and closes at 1:00 pm. To ensure each

trading day fully captures all trade price observations, we use two additional functions:

step2.compute step 2 2 1() and step2.compute step 2 2 2(). These functions verify

that there are either 390 observations for a regular full-trading day or ensure that obser-

vations are consecutive at one-minute intervals for days with early market closes.

We implement an initial filtering process to eliminate potential errors and ensure the com-

pleteness of the TAQ time series daily observations. Our approach follows the guidelines

proposed by Hendershott and Moulton (2011), which remove intraday price records from

the dataset that do not satisfy certain heuristic criteria. These criteria include trade price

records valued at zero or those where the price exceeds 150% or falls below 50% of the pre-

vious price. We adapt these principles to fit a five-minute subsample estimation framework,

whereby we completely discard any stock ticker time series that contains trade price records

meeting these criteria on any trading day and within any five-minute subgrid interval. To

facilitate these filtering steps, we use the step2.compute step 2 3() function. We exclude

179 stocks from Data Set C and retain 103 stocks for Data Set D.
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Figure 2: Step 2 - Data Validation and Cleaning
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4.2.3 Step 3 - Data Completion and Model Calibration

We obtain Data Set E by retrieving the adjusted close price for the remaining stock tickers

and completing Data Set D. We then calibrate four models, namely the HAR (Eq. 12),

HAR-J (Eq. 13), HAR-RSV (Eq. 15), and HAR-LE (Eq. 16). We follow four substeps

detailed below and in Figure 3 to perform the entire process.

Substep 1 - Adjusted Close Price and Five-Minute Subsample Estimators

We have all the necessary data points to calibrate the HAR, HAR-J, and HAR-RSV models

in Data Set D. However, to calibrate the HAR-LE model, we need to compute the daily

stock return components |rt−1| and |rt−1|I{rt−1 < 0} for each ticker.

We cannot use the last daily recorded trade price data from the TAQ database to construct

a time series of stock returns since there is a chance of misalignment with the NYSE’s official

daily closing prices. Moreover, inaccuracies due to stock splits between 2000 and 2020 could

lead to spurious negative returns post-split. To avoid this, we use the Python package named

yfinance to obtain the adjusted close price time series from Yahoo Finance. We use the

function step3.compute step 3 1() to execute this process. We could not obtain price data

for seven tickers (‘ALXN’, ‘CERN’, ‘COG’,‘CR’, ‘FISV’, ‘MDP’, ‘PKI’) and hence exclude

these tickers from Data Set D. The Data Set D is thus updated to Data Set E, which contains

96 tickers.

We then compute the subsample estimators at the five-minute interval for realized variance,

bipower variation, and the realized semivariance, and we use the step3.compute step 3 2()

function. Additionally, we compute the daily returns for the HAR-LE model using the

step3.compute step 3 4() function.

Substep 2 - Trade Price Data Microstructure Noise Anomalies and Z-score

Heuristic

We observe some irregularities in the information on trade prices for specific stock symbols

on particular trading days. For some tickers, there are extended periods of intraday zero

returns on certain trading days, indicating that the trade price data are static. Such trading

days can be challenging as they result in a daily realized variance of zero, which suggests that

there was no price action for the given stock. This can cause problems for model calibration

because the models rely on the logarithm of realized variance estimates. When the realized

variance is zero, the logarithm approaches infinity, leading to convergence difficulties in OLS

fitting and model calibration failure.
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To determine the extent of price stagnation, we use a heuristic formula that utilizes daily

trade price Z-scores to identify potentially static trade prices on a trading day basis. We

identify the maximum Z-scores (MAXZ) and the minimum Z-scores (MINZ) for each trading

day and set thresholds of 0.25 and -0.25. There could be price stagnation if either MAXZ or

MINZ falls within the threshold interval. This is based on the assumption that maximum

and minimum Z-scores near zero might indicate no or few trade price actions in a given ticker

TAQ trade price time series. We note that this situation was particularly prevalent in the year

2000. We provide further details of this analysis in Subsection 4.4. Our analysis is facilitated

by the step3.compute step 3 3 1() and step3.compute step 3 3 2() functions.

Substep 3 - Divide Estimator Time Series in Two Trading Subperiods - 2000-2010

and 2011-2020

The subsample estimator time series and the leverage effect return estimators for the HAR-

LE model are subsequently divided into two distinct subperiods — 2000 to 2010 and 2011

to 2020—using the step3.compute step 3 5() function. This division is done to evaluate

the performance of the models under varying market conditions and to check if they remain

consistent across different trading subperiods.

The two subperiods have distinct market features and volatile shocks in stock returns. The

first subperiod, from 2000 to 2010, is characterized by the Dot-com bubble and the financial

crisis. The second subperiod, from 2011 to 2020, is marked by post-financial crisis market

stability but is impacted by significant market turmoil at the start of 2020 due to the Covid-

19 pandemic.

Substep 4 - Model Calibration

After dividing the time series into two trading subperiods, we calibrate the HAR, HAR-J,

HA-RSV, and HAR-LE models with the step3.compute step 3 6() function. The calibra-

tion process involves two steps: (1) a full-series model fit using OLS regression to predict the

realized variance one day ahead (in-sample) and (2) a 1,000-trading day rolling window OLS

estimation to predict the realized variance one day ahead (out-of-sample). The calibration

process fails for seven tickers (’ANSS’, ’BLK’, ’CLF’, ’HOLX’, ’PVH’, ’SWN’, ’TSCO’) iden-

tified as problematic during the heuristic Z-score evaluation due to the presence of trading

days with a realized variance of zero. Thus, we get a final data set containing time series for

89 tickers, which are listed in the Appendix A.
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Figure 3: Step 3 - Data Completion and Model Calibration

21



4 DATA

4.3 Empirical Data Pipeline Validation

We use real-world data to validate the functionality of the Python code developed for com-

puting realized variance subsample estimation and calibrating HAR models. We need to

acquire two time series of realized volatility for this validation. First, we downloaded a

realized volatility time series related to the S&P 500 Index from Professor Dacheng Xiu’s

website at the Booth School of Business, University of Chicago, on March 3, 2024. The URL

of the data is https://dachxiu.chicagobooth.edu/. Second, we purchased the intraday

“prices” of the S&P 500 Index at 1-minute intervals from FirstRateData on February 20,

2024 (more information can be found at https://firstratedata.com/). We sought clarifi-

cations from the FirstRateData support team regarding the construction of intraday prices,

who explained that these prices are derived from the intraday price data of all constituent

stocks within the S&P 500 Index. The FirstRateData S&P 500 Index time series starts on

January 2, 2008, and ends on February 20, 2024.

We follow the same procedure outlined in Subsections 4.2.1, 4.2.2, and 4.2.3 to calculate the

realized variance of the FirstRateData S&P 500 time series. We then multiply the square

root of the realized variance time series by
√
252 to get an annualized realized volatility. We

work with the annualized realized volatility to compare these results to the realized volatility

time series of Dacheng Xiu.

From Figure 4, we can observe that the red time series, representing the realized volatility

calculated from the realized variance 5-minute subsample estimators of the means FirstRate-

Data S&P 500 time series, aligns with the blue line, which represents the realized variance

reported by Dacheng Xiu. The green time series represents the difference between the red

and blue time series, except for specific windows where volatility spikes, such as during the

2008 financial crisis and the start of 2020 during the COVID-19 pandemic, the difference

remains low. These discrepancies can likely be explained by the fact that the underlying

time series used by Dacheng Xiu is different than differs from the FirstRateData time series

we used.

We also note from Figure 5 that the 30-day rolling correlation between the annualized realized

volatility of FirstRateData’s S&P 500 Index series and Dacheng Xiu’s results mostly remains

above zero except for a short period of volatility spike where it decreases towards zero or

becomes negative. The p-values of the 30-day rolling correlation mostly remain under the

significance level of 5%, as indicated by a dashed line in the figure. We can also analyze these

results from the perspective of the distribution of the values of the rolling correlation and its

corresponding p-values with Figure 6. The average 30-day rolling correlation is 0.4947 with
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a standard deviation of 0.2184. The average p-value is 0.0767 with a standard deviation

of 0.1654. These results suggest a significant and strong correlation between the two time

series, indicating good alignment of the two series.

Overall, the alignment of the time series and the low difference between them indicate that

the pipeline used to calculate the realized variance subsample estimators and other volatility

for the HAR model calibration is reliable.

Figure 4: S&P 500 Index Realized Volatility Over Time

Note: This figure compares the annualized realized volatility of FirstRateData’s S&P 500 Index

series with Dacheng Xiu’s results. The top graph displays both time series together, while the

bottom graph shows the difference between the two.
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Figure 5: 30-Day Rolling Correlation and Correlation Estimator P-value Over Time

Note: The top graph shows the 30-day rolling correlation between the annualized realized volatility

of FirstRateData’s S&P 500 Index series and Dacheng Xiu’s results of Figure 4. The bottom graph

displays the p-value of the 30-day rolling correlation.
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Figure 6: Correlation and P-Value Distribution
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4.4 Anomalous Features of High-Frequency Data

In Section 3, we discuss the presence of market microstructure noise in trade price data from

the TAQ database, which may exhibit anomalous behavior. In this subsection, we illustrate

some anomalies in the raw TAQ price data with practical examples, including price deviation

and price stagnation.

4.4.1 Price Deviation

Let consider the stock ticker AAPL as part of the final data set. We identify specific instances

where trade prices exhibited exceptionally high Z-scores as potential anomalies. For example,

Table 3 lists a trade price of $22.18 with a Z-score of 13.88, which starkly contrasts with

other trade prices on that day. Similarly, Table 4 records an open trade price of $191.08 with

a Z-score of 8.99, notably higher than subsequent prices. Figure 7 also shows examples of

trading days where the daily MAXZ and MINZ exceeded the bounds of -5 and 5, respectively,

for the stock ticker AAPL. This is an indication that there may be some trade prices that

deviate significantly from others on the same trading days.

Table 3: TAQ Trade Price Data for AAPL on 2001-06-14

DATE SYMBOL itime rtime isize iprice Z Score

20010614 AAPL 15:02:00 15:01:52 100 20.13 0.14

20010614 AAPL 15:03:00 15:02:58 300 20.12 0.08

20010614 AAPL 15:04:00 15:03:57 100 20.18 0.48

20010614 AAPL 15:05:00 15:04:52 300 20.159 0.34

20010614 AAPL 15:06:00 15:05:57 600 20.04 -0.46

20010614 AAPL 15:07:00 15:06:44 5000 22.18 13.88

20010614 AAPL 15:08:00 15:07:58 200 20.15 0.28

20010614 AAPL 15:09:00 15:08:54 200 20.18 0.48

Day average price p̄ = 20.1083 Day price standard deviation σp 0.1493

4.4.2 Price Stagnation

Data Set D comprises 96 stock tickers after subsampling before we calibrate the HAR model.

Figure 9 illustrates the distributions of the smallest values of MAXZ and MINZ for all trading

days across these tickers. We identify fourteen stock tickers (‘ANSS’, ‘BLK’, ‘CLF’, ‘HOLX’,
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Table 4: TAQ Trade Price Data for AAPL on 2018-07-18

DATE SYM ROOT SYM SUFFIX itime m rtime m isize iprice Z-Score

20180718 AAPL 9:30:00 9:30:00 11 191.8 8.99

20180718 AAPL 9:31:00 9:31:00 35 190.92 3.71

20180718 AAPL 9:32:00 9:32:00 40 190.7 2.39

20180718 AAPL 9:33:00 9:33:00 300 190.97 4.01

20180718 AAPL 9:34:00 9:34:00 40 190.8262 3.15

20180718 AAPL 9:35:00 9:35:00 5 191 4.19

20180718 AAPL 9:36:00 9:36:00 100 190.69 2.33

20180718 AAPL 9:37:00 9:37:00 100 190.47 1.01

Day average price p̄ = 190.3001 Day price standard deviation σp = 0.1668

‘HRL’, ‘IFF’, ‘IP’, ‘PCG’, ‘PPL’, ‘PVH’, ‘SNV’, ‘SWK’, ‘SWN’, ‘TSCO’) where at least one

trading day for each exhibited MAXZ or MINZ values within the Z-score range of -0.25

to 0.25. This range may indicate the presence of stagnant prices on at least one trading

day within these time series. It is worth noting that having prices within this particular

range does not necessarily imply that all trade prices are constant for at least one trading

day, leading to a daily realized variance of zero. Seven of the 14 stock tickers flagged with

the MAXZ or MINZ encountered calibration issues as detailed in Subsection 4.2.3. The

calibration failure occurs due to at least one daily realized variance subsample estimator

with a value of zero and a logarithm of infinity.

The MAXZ and MINZ values over time for the AAPL stock ticker show no signs of price

stagnation in Figure 7. In contrast, Figure 8 indicates the ANSS stock ticker potential price

stagnation on certain trading days. Notably, at the end of the trading year 2000, a clear

pattern of price stagnation is evident as both MAXZ and MINZ values gradually converge

towards zero. Unlike AAPL, where no similar trend is observed, ANSS displays trading days

with a realized variance subsample estimator of zero, leading to calibration failures in the

HAR model.
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Figure 7: Daily Maximum and Minimum Z-Scores Over Time for AAPL

Figure 8: Daily Maximum and Minimum Z-Scores Over Time for ANSS
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Figure 9: Analysis of Heuristic Maximum and Minimum Z-Scores
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5 Empirical Analysis

5.1 Data Preliminary Analysis

Table 5 presents summary statistics of the estimates for realized variance, bipower variation

and realized semivariance obtained from the intraday trade price data for the FirstRateData

S&P 500 time series and from the five-minute subsample estimators calculated from the

NYSE TAQ data using the trade price data from individual stocks.

Panel A of Table 5 shows that individual firms’ average daily realized variance is 0.000621

(equivalent to an annualized realized variance of 15.64%) between 2000 and 2010. The

average annualized realized volatility, obtained by taking the square root of the daily realized

volatility and then averaging across stocks2, is 32.06%, which aligns with the results presented

by Patton and Sheppard (2015) (33.2%, based on a dataset of 105 stocks from 1997 to 2008)

and Lyócsa and Todorova (2020) (31.17%, from a sample of 431 stocks spanning 2007 to

2016).

Panel B reveals that the average daily realized variance for the S&P 500 Index during the

trading period from 2011 to 2020 is 0.00060 (equivalent to an annualized realized variance of

1.52%). The annualized daily realized volatility for the S&P 500 Index is 9.86%, below the

figure reported by Patton and Sheppard (2015) of 17.1%. The mean daily realized variance

for individual stock symbols is 0.000304 (annualized realized variance of 7.66%), and the

average annualized realized volatility for individual stocks is 22.71%, which is relatively

lower compared to the results documented by Patton and Sheppard (2015) and Lyócsa and

Todorova (2020).

Panel B’s trading period only starts on January 1, 2011, and does not overlap with the 2007-

2008 financial crisis compared to the studies of cited authors. This might explain why the

annualized realized variance we observe is lower for the S&P 500 and individual firms. Also,

Panel A covers the trading period during the 2008 financial crisis, a time of unusually high

levels of stock market volatility. Research on stock market volatility in the United States,

the United Kingdom, and Japan suggests that the volatility observed during the 2008 crisis

was short-lived (Schwert, 2011). This observation may help explain the subsequent decrease

in average realized variance during the trading period from 2011 to 2020, which we note in

Panel B, compared to 2000-2010.

2The daily realized volatility values are not shown in Table 5.
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5 EMPIRICAL ANALYSIS

The “Max” column in Table 5 reveals an intriguing pattern concerning the average value

of the estimators (RV , BV , RSV +, and RSV −) presented in both Panels A and B. This

column indicates that the maximum values for all estimators are much higher than those

at the 95th percentile. These observations align with the discussions on price deviations in

HFD previously detailed in Subsection 4.4.1. Such substantial disparities in realized variance

underscore the importance of employing a subsample estimator at the five-minute interval.

This approach not only smooths the final estimators but also minimizes the impact of these

extreme values on the overall results. In contrast, the “Min” column shows no notable

difference between the minimum average estimator values and those at the 5th percentile.
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5 EMPIRICAL ANALYSIS

Table 5: Data Summary Statistics

S&P 500 Mean Q0.05 Median Q0.95 Min Max

Panel A: 2000-2010

Averages

RV - 0.621 0.059 0.268 2.081 0.002 461.172

BV - 0.521 0.051 0.232 1.801 0.000 281.088

RSV + - 0.304 0.027 0.130 1.050 0.000 209.013

RSV − - 0.317 0.027 0.129 1.037 0.000 461.027

Autocorrelations (1 lag)

RV - 0.3941 0.0083 0.4745 0.7104 0.0018 0.7737

BV - 0.7149 0.4613 0.7330 0.8619 0.2833 0.9056

RSV + - 0.4275 0.0459 0.4850 0.6357 0.0093 0.6875

RSV − - 0.3609 0.0017 0.4352 0.6795 -0.0002 0.7505

Panel B: 2011-2020

Averages

RV 0.060 0.304 0.040 0.134 0.934 0.006 193.174

BV 0.056 0.274 0.036 0.122 0.848 0.006 107.181

RSV + 0.030 0.154 0.019 0.066 0.473 0.003 185.845

RSV − 0.030 0.150 0.018 0.065 0.471 0.001 32.891

Autocorrelations (1 lag)

RV 0.8141 0.6660 0.3413 0.7066 0.8392 0.1083 0.8826

BV 0.8240 0.7149 0.4613 0.7330 0.8619 0.2833 0.9056

RSV + 0.7859 0.6013 0.1950 0.6507 0.7874 0.0556 0.8538

RSV − 0.7696 0.6526 0.4152 0.6777 0.7989 0.1036 0.8667

Note: The information provided in the S&P 500 column pertains to the average daily values of realized

variance (RV ), bipower variation (BV ), positive semivariance (RSV +), and negative semivariance

(RSV −) estimators, specifically within the Averages subpanels and is solely computed based on the

S&P 500 time series. The averages shown in the neighboring columns (Mean, Q0.05, Median, Q0.95,

Min, and Max) are derived from the entire dataset consisting of 89 stock ticker time series. This also

holds for the Autocorrelations subpanels, where the autocorrelations indicate the lag-1 autocorrelation

and only present the raw autocorrelation value for the S&P 500 time series in the S&P 500 column,

with the average autocorrelation for the adjacent columns being calculated across the complete dataset

of 89 stock tickers. Furthermore, all values in the Averages subpanels are scaled by a factor of 1,000.
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5 EMPIRICAL ANALYSIS

5.2 In-Sample Forecast Performance

We calibrate HAR models (HAR, HAR-J, HAR-RSV and HAR-LE) in-sample using OLS

regression to predict the one-day ahead logarithmic realized variance for the S&P 500 time

series (FirstRate Data Set) and each of the 89 individual stocks (TAQ Data Set).

Every regression model employs the Newey-West estimator to address autocorrelation and

heteroskedasticity in the error terms. The choice of lags for the Newey-West estimator is

based on the work of Newey and West (1994) where the highest lag to include in the kernel,

L, is calculated with the following formula, L =
⌊
4
(

T
100

) 2
9

⌋
. The Bartlett kernel is used with

Newey-West’s automatic bandwidth selection method.

The OLS regression coefficients for the fitted models for the S&P 500 time series during the

trading period of 2011-2020 are presented in Table 6. The results for the 89 stocks in the

trading periods 2000-2010 and 2011-2020 are aggregated and presented in Table 7.

5.2.1 S&P 500 Index

The following analysis examines the OLS regression results of the S&P 500 time series. As

seen in Table 6, the OLS coefficients are significant at the 1% level for each regressed log

lagged realized variance regression variable of the HAR model, namely lnRV d
t−1, lnRV w

t−1,

and lnRV m
t−1. The extended models, which consider the volatility asymmetry components,

HAR-J, HAR-RSV, and HAR-LE, also display significant OLS coefficients for the same three

HAR model log lagged realized variance regression variables.

We observe that the importance of the log realized variance regressors decreases as the time

horizon increases from daily to weekly to monthly regressions for the S&P 500 time series.

This can be seen from the OLS coefficient for lnRV d
t−1 being larger than that for lnRV w

t−1 and

lnRV m
t−1, and the coefficient for RV w

t−1 being higher than that for RV m
t−1. These findings are

consistent with previous studies by Corsi (2009), Patton and Sheppard (2015), and Andersen

et al. (2007), despite differences in the analysis time frame and the S&P 500 time series used.

Corsi (2009) covers the period from 1990 to 2007, Patton and Sheppard (2015) cover the

period from 1997 to 2008, and Andersen et al. (2007) cover the period from 1990 to 2002.

We note that during the in-sample calibration of the HAR-J model, the OLS coefficient of

ln(Jt−1 + 1) is negative, which has also been reported in Andersen et al. (2007). Our results

reveal that the jump coefficient is not significant and does not contribute to improving the

in-sample performance. This can be seen in the adjusted R-squared of both the HAR and

HAR-J models, which show only a slight difference and no increase for the HAR-J model
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Table 6: In-sample One-Day Ahead Realized Variance Model Parameters Evaluation For

the S&P 500 (2011-2020)

Trading Window Period 2011-2020

HAR HAR-J HAR-RSV HAR-LE

Intercept −0.882∗∗ −0.833∗∗ −0.543∗∗ −1.659∗∗

lnRVt−1 0.516∗∗ 0.519∗∗ 0.433∗∗

lnRV w
t−1 0.265∗∗ 0.265∗∗ 0.299∗∗ 0.270∗∗

lnRV m
t−1 0.141∗∗ 0.141∗∗ 0.139∗∗ 0.153∗∗

ln(Jt−1 + 1) −773.841

lnRSV +
t 0.156∗∗

lnRSV −
t 0.327∗∗

|rt−1| 5.240∗

|rt−1|I{rt−1 < 0} 19.806∗∗

Adjusted R2 69.091 69.092 69.157 70.317

Note: *, and ** denote rejections of null hypothesis at 5% and 1% signifi-

cance levels, respectively

when ln(Jt−1 + 1) is added. Maki and Ota (2021) found similar results, showing that the

coefficient of ln(Jt−1 + 1) is both negative and statistically insignificant for the Japanese

market for the Nikkei 225 time series that spans from 2001 to 2019.

The R-squared values of the HAR-RSV and HAR-LE models suggest that they perform

better in-sample to predict one-day ahead forecasts than the HAR and HAR-J models. In

particular, the HAR-RSV model shows that the coefficients of lnRSV +
t and lnRSV −

t are

significant at the 1% level. The coefficient for the log negative realized semivariance term is

higher than that of the log positive realized semivariance, indicating that negative semivari-

ance could be a better predictor of future volatility than positive realized semivariance for

the S&P 500 Index.

Likewise, the HAR-LE model’s leverage effect has shown the best in-sample performance

compared to other fitted models. Both |rt−1| and |rt−1|I{rt−1 < 0} have a significant OLS

coefficient, although only the coefficient of |rt−1|I{rt−1 < 0} is significant at the 1% level.

Furthermore, the coefficient for negative past returns is greater than for positive past returns,

suggesting a higher forecasting power for future volatility. This finding is consistent with

what is discussed in detail bu Corsi et al. (2008).
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5.2.2 Individual Firms

We examine the in-sample OLS regression results for the different calibrated models for the

89 final stock tickers during the two trading periods from 2000 to 2010 and 2011 to 2020.

According to Table 7, we find that, across the four models and both trading periods, the

average coefficient for lnRV d
t−1 is higher than that of lnRV w

t−1 and lnRV m
t−1 and the average

coefficient for lnRV w
t−1 tends to be lower than that of lnRV m

t−1. This is different from the

findings of Lyócsa and Todorova (2020) and Andersen et al. (2007) for the HAR model,

where the mean regression coefficient in-sample for RV w
t−1 is higher than that of lnRV m

t−1 in

one-day ahead forecasts. According to Lyócsa and Todorova (2020), the average in-sample

regression coefficient for lnRV m
t−1 only becomes more significant than that of lnRV w

t−1 for

longer-term forecasts, specifically five-days ahead, and even exceeds that of lnRV d
t−1 for 22-

days ahead regression. Similar results are also reported by Patton and Sheppard (2015)

for the HAR model, where the average coefficient for lnRV m
t−1 is only higher than that of

RV w
t−1 for the 22-days ahead regression for in-sample data. We notice that in almost half of

the analyzed stock symbols, the coefficient associated with lnRV w
t−1 was higher than that of

lnRV m
t−1. Specifically, during the trading period 2000-2010, 42 coefficients for lnRV w

t−1 out of

89 for HAR, 44 for HAR-J, 44 for HAR-RSV, and 41 for HAR-LE exhibit this characteristic,

while 42 for HAR, 45 for HAR-J, 43 for HAR-RSV, and 38 for HAR-LE show it during the

trading period of 2011-2020. Notably, not all stock tickers showed a regression coefficient

that is higher for lnRV m
t−1 than for lnRV w

t−1. Instead, the overall coefficient average indicates

this tendency. Lastly, Figures 10 and 11 show that the three variables of lagged log realized

variance (lnRV d
t−1, lnRV w

t−1, and lnRV m
t−1) are significant at the 1% level across the four

models tested during both trading periods from 2000 to 2010 and 2011 to 2020.

We observe that the coefficients of ln(Jt−1 + 1) in the HAR-J model fitted in-sample for

the individual firms are similar to the ones obtained from the HAR-J model fitted to the

S&P 500 time series. However, unlike the S&P 500 time series, the average adjusted R-

squared increases in both trading window periods when compared to the R-squared of the

standard HAR model. This suggests that the jump component might play a role in improving

the performance in-sample for individual firms and reducing the impact of lagged realized

volatility, as pointed out by Andersen et al. (2007). Analyzing the period from 2000 to 2010,

we see that out of the 89 ticker symbols, the HAR-J model has OLS regression coefficients

for ln(Jt−1 + 1) that are significant at the 5% level for 74 stocks. Similarly, during the

trading period from 2011 to 2020, this significance is observed for 41 stock tickers. The

jump component shows significance for almost half of the stock tickers examined.
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Table 7: In-sample Realized Variance Model Parameters Evaluation For Firms

Trading Window Period 2000-2010 2011-2020

HAR HAR-J
HAR-

RSV

HAR-

LE
HAR HAR-J

HAR-

RSV

HAR-

LE

Intercept
-0.671

(0.279)

-0.382

(0.259)

-0.398

(0.256)

-0.948

(0.315)

-1.017

(0.324)

-0.860

(0.305)

-0.704

(0.324)

-1.422

(0.383)

lnRVt−1

0.355

(0.045)

0.382

(0.050)

0.325

(0.044)

0.421

(0.03)

0.444

(0.035)

0.370

(0.032)

lnRV w
t−1

0.281

(0.029)

0.282

(0.051)

0.277

(0.054)

0.282

(0.051)

0.228

(0.04)

0.227

(0.040)

0.224

(0.041)

0.231

(0.039)

lnRV m
t−1

0.290

(0.064)

0.283

(0.066)

0.287

(0.064)

0.292

(0.065)

0.242

(0.038)

0.237

(0.034)

0.238

(0.038)

0.251

(0.038)

ln(Jt−1 + 1)
-215.051

(197.800)

-494.179

(447.519)

lnRSV +
t

0.136

(0.051)

0.177

(0.023)

lnRSV −
t

0.228

(0.032)

0.252

(0.027)

|rt−1|
1.207

(1.211)

2.381

(1.75)

|rt−1|I{rt−1 < 0}
4.572

(1.811)

6.430

(2.659)

Average Adjusted R2
69.3

(7.79)

69.7

(7.54)

69.5

(7.74)

69.7

(7.73)

60.4

(8.01)

60.6

(7.92)

60.5

(7.97)

61.0

(7.94)

Note: The values in the table correspond to average coefficients across the final data set of 89 stock tickers.

The values in parentheses are standard deviations of the coefficients calculated across all 89 stock tickers.
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We notice that negative semivariance parameter, lnRSV −
t−1, has a more significant effect on

lnRVt than positive semivariance, lnRSV +
t−1 since, during both trading periods, the regres-

sion coefficients for the negative semivariance realized are higher than those for lnRSV +
t−1

(0.228 vs. 0.136 for 2000-2010 and 0.252 vs. 0.177 for 2011-2020). These findings are consis-

tent with the conclusions of Maki and Ota (2021) and Patton and Sheppard (2015), which

emphasize the importance of negative semivariance in forecasting future realized variance

and volatility. The p-values of the regression coefficient for lnRSV +
t−1 and lnRSV −

t−1 in the

trading periods 2000-2010 and 2011-2020 are primarily significant at the 1% level for most

stock tickers, as shown in Figures 12 and 13.

Table 7 also shows that the average R-squared result obtained from the HAR-LE model

fitting is higher than that of other models, as observed in Subsection 5.2.1. However, it is

worth noting that when analyzing individual firms, we get a different perspective on the

predictive power of positive past returns. The coefficient of positive past returns, |rt−1|, is
significant for the S&P 500, but it is only significant for 27 out of 89 stock tickers during the

trading period of 2000-2010 and 43 during 2011-2020, as shown in Figures 12 and 13. The

distribution of the adjusted R-squared of all 89 tickers across models and time periods are

available in Figures 14 and 15.
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Figure 10: P-Values of Realized Variance Estimators

Across Models - 2000-2010 (In-Sample)

Figure 11: P-Values of Realized Variance Estimators

Across Models - 2011-2020 (In-Sample)

Note: Figures 10 and 11 show, for the 89 stock tickers, the distribution of the p-values of the parameters lnRV d
t−1 (identified with the symbol “RV” on the figures),

lnRV w
t−1 (RV5), and lnRV m

t−1 (RV22), which are common among the four tested models, HAR, HAR-j, HAR-RSV, and HAR-LE. For example, the column “har RV5”

corresponds to the distribution of p-values of the parameter lnRV w
t−1 for the HAR model.
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Figure 12: P-Value of Additional HAR Model Extension

Parameters Across Models - 2000-2010 (In-Sample)

Figure 13: P-Value of Additional HAR Model Extension

Parameters Across Models - 2000-2010 (In-Sample)

Note: Figures 12 and 13 show, for the 89 stock tickers, the distribution of the p-values of the parameters ln(Jt−1 + 1) (identified with the symbol “J” on the figures),

lnRSV +
t−1 (RSV(+)), lnRSV −

t−1 (RSV(-)), |rt−1| (ret(+)), and |rt−1|I{rt−1 < 0} (ret(-)) which extends the HAR models in the models HAR-J, HAR-RSV, and

HAR-LE. For example, the column “har rsv RSV(+)” corresponds to the distribution of p-values of the parameter lnRSV +
t−1 for the HAR-RSV model.
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Figure 14: Distribution of Adjusted R-Squared Across

Models - 2000-2010 (In-Sample)

Figure 15: Distribution of Adjusted R-Squared Across

Models - 2011-2020 (In-Sample)
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5.3 Out-of-Sample Forecasting Performance

5.3.1 Forecasting Procedure

We use a rolling window approach to evaluate the forecast performance of the different models

on the S&P 500 time series (FirstRate Data Set) and each of the 89 individual stocks (TAQ

Data Set). Specifically, we calibrate the HAR, HAR-J, HAR-RSV, and HAR-LE models

using training sets that comprised 1,000 trading days. Our objective was to forecast one-day

ahead of the out-of-sample log variance realized and assess the models’ forecast accuracy.

Figure 16 depicts this rolling window method.

Figure 16: Illustration of the Rolling Window Approach

5.3.2 Forecast Performance Evaluation

We evaluate the accuracy of a forecasting model using two different loss functions: Root

Mean Squared Error (RMSE) and Mean Absolute Error (MAE). We first examine how each

model performs based on the raw measurement of the loss function. After that, we conduct

a Diebold-Mariano test (Diebold and Mariano, 2002) with the adjustment of Harvey et al.

(1997) to determine the significance of the accuracy differences between each model extension

(HAR-J, HAR-RSV, and HAR-LE) and the HAR model. We then compare each extension

against the other.

The RMSE and MAE loss functions are defined as follows:
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RMSE =

√√√√ 1

T

T∑
t=1

(
l̂nRVt − lnRVt

)2

, and (19)

MAE =
1

T

T∑
t=1

∣∣∣l̂nRVt − lnRVt

∣∣∣ , (20)

where l̂nRVt represents the forecasted log realized variance, lnRVt is the actual log realized

variance and T the number of predicted days. We choose RMSE and MAE due to their

differing sensitivities to outliers, with RMSE placing a higher penalty on large forecast

errors.

5.3.3 S&P 500 Index

Table 8 presents the out-of-sample performance for the S&P 500 time series, detailing the

RMSE and MAE values. The RMSE values are consistently higher than the MAE values

across all models. The HAR-J model has a slightly lower RMSE than the HAR and HAR-

RSV models. However, the differences in MAE among these models are minimal. Table 9

displays the Diebold-Mariano statistics and supports these results. Regarding RMSE, the

HAR-J’s greater accuracy compared to HAR is not statistically significant, and the lower

accuracy of the HAR-RSV compared to HAR is only significant at the 10% level. Regarding

MAE, neither the HAR-J nor HAR-RSV models have forecast accuracy significantly different

than that of the HAR model.

Table 8: RMSE and MAE of Out-of-Sample Log Realized Variance Across the 2010-2020

Trading Period

HAR HAR-J HAR-RSV HAR-LE

RMSE 0.6186 0.6179 0.6194 0.6023

MAE 0.4915 0.4914 0.4915 0.4786

Table 8 also shows that the HAR-LE model stands out among competing models by exhibit-

ing the lowest RMSE and MAE values, suggesting superior predictive accuracy compared

to the benchmark HAR model and other competing models. Table 9 demonstrates that the

accuracy of the HAR-LE model is significantly greater at the 5% level compared to the HAR
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model, both in terms of RMSE and MAE. These results are consistent with findings from

previous studies such as those by Maki and Ota (2021) and Corsi and Renò (2009), which

demonstrate that models incorporating the leverage effect perform better out-of-sample for

equity indices such as the Nikkei 225 and S&P 500, respectively. The forecasted realized

variance of the HAR-LE model compared to the realized variance of the S&P 500 is depicted

in Figure 17.

Table 9: Diebold-Mariano Statistics for RMSE and MAE Loss Functions and Model

Accuracy Significance Comparison

Model Comparison HAR-J HAR-RSV HAR-LE

RMSE

Benchmark

HAR 1.469 −1.666∗ 1.953∗∗

HAR-J – −2.158∗∗ 1.801∗

HAR-RSV – – 2.644∗∗∗

MAE

Benchmark

HAR 1.208 −0.645 2.155∗∗

HAR-J – −1.071 2.006∗∗

HAR-RSV – – 2.452∗∗

Note: This table shows Diebold-Mariano statistics comparing forecast errors across different models using

RMSE and MAE loss functions. A benchmark model’s forecast error is compared to another model’s error

(column entries) to compute these statistics. A positive significant Diebold-Mariano statistic indicates that

the benchmark model has significantly higher error (and thus lower accuracy) than the tested model; a

negative significant statistic indicates the opposite. For instance, when HAR is benchmarked against HAR-

LE with an RMSE measure, the statistic is 1.953, which is positive and significant at the 5% level, indicating

lower HAR accuracy than HAR-LE. Significance levels are indicated by * (10%), ** (5%), and *** (1%).

5.3.4 Individual Firms

We assess the forecast performance of various volatility models for 89 stock tickers over two

distinct training periods: 2000-2010 and 2011-2020. The evaluation of RMSE and MAE

metrics is visually detailed in box plots shown in Figures 18, 19, 22, and 23. These plots

generally indicate that the loss function results for models HAR-J, HAR-RSV, and HAR-LE

are more favorable than those from the standard HAR model, displaying lower values for
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Figure 17: S&P 500 Index One-Day Ahead Forecast Logarithmic Realized Variance for

Model HAR-LE vs Empirical Values

both RMSE and MAE across both periods.

Further insights are provided through count matrix heatmaps, as depicted in Figures 20,

21, 24, and 25. These heatmaps effectively illustrate the comparative performance of each

model (identified on the y-axis of the heatmaps) by showing the number of stocks, out of the

total 89, for which each model recorded the lowest to the highest RMSE and MAE values

(displayed on the x-axis of the heatmaps from 0, the lowest loss function value, to 3, the

highest loss function value). For instance, in Figure 24, the HAR model is shown to have

the highest RMSE values for 78 out of the 89 stocks during 2000-2010, while the HAR-LE

model achieved the lowest RMSE values for 60 stocks in the same period.

Consistent patterns emerge from the heatmaps across all metrics and both training periods.

The standard HAR model, lacking a volatility asymmetry component, consistently shows the

highest loss function value count (3 on the x-axis). In contrast, the HAR-LE model stands

out with the best performance, having the lowest loss function results (0 on the x-axis) for

most stocks. The HAR-J model, which sits between the standard HAR and HAR-LE models

in terms of performance, generally outperforms the HAR-RSV model. Specifically, the HAR-
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J model exhibits a greater frequency of the lowest (0 on the x-axis) and second-lowest (1 on

the x-axis) loss function values for RMSE and MAE. In contrast, the HAR-RSV model more

frequently records the second-highest loss function values (2 on the x-axis).

While the box plots and count matrix heatmaps suggest a certain hierarchy in model per-

formance, the Diebold-Mariano test results add nuance to these findings. In Figures 26 and

27, we observe that during the 2000-2010 trading period, the HAR-RSV model shows signifi-

cantly better accuracy than the HAR model for a substantial proportion of the stocks under

both RMSE and MAE metrics. However, the HAR-J and HAR-LE models do not generally

demonstrate a statistically significant improvement in accuracy over the HAR model. More-

over, when comparing the HAR-RSV model against the HAR-J and HAR-LE models, most

stocks do not exhibit a significant difference in accuracy.

For the subsequent period from 2011 to 2020, as illustrated in Figures 28 and 29, all three

models—HAR-J, HAR-RSV, and HAR-LE—show no significant difference in accuracy for

the majority of stocks when compared to the HAR model. This contrast suggests a conver-

gence in model performances over time. Notably, when discrepancies in accuracy do arise

between these three models and the HAR benchmark, the Diebold-Mariano statistics are

predominantly positive. This outcome indicates that, for specific stocks, the models HAR-J,

HAR-RSV, and HAR-LE tend to outperform the HAR model, albeit this is not a universal

trend across all stocks and trading periods.

While the HAR-J, HAR-RSV, and HAR-LE models, which account for volatility asymmetry,

exhibit lower RMSE and MAE values than the HAR model, these improvements in raw loss

measures do not consistently translate into significant accuracy enhancements, as assessed

by the Diebold-Mariano test. This overall analysis suggests that introducing volatility asym-

metry into the models does not uniformly enhance predictive accuracy in individual firms.
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Figure 18: RMSE Across Models - 2000-2010 Figure 19: RMSE Across Models - 2011-2020

Figure 20: RMSE Count Matrix Heatmap - 2000-2010 Figure 21: RMSE Count Matrix Heatmap - 2011-2020
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Figure 22: MAE Across Models - 2000-2010 Figure 23: MAE Across Models - 2011-2020

Figure 24: MAE Count Matrix Heatmap - 2000-2010 Figure 25: MAE Count Matrix Heatmap - 2011-2020
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Figure 26: RMSE Diebold Mariano Model Comparison Matrix Heatmap - 2000-2010

Note: In Figure 26, the heatmap provides a quantitative comparison of forecast errors between various forecasting models, based

on the Diebold-Mariano (DM) statistics across 89 stocks. The y-axis categorizes the counts into seven categories reflecting the

comparative accuracy of a benchmark model against others, according to the predictive direction (better or worse) and the level

of statistical significance. The x-axis lists the comparison models. Each cell shows the number of stocks where the benchmark

model’s forecast error, evaluated by RMSE and MAE metrics, was significantly higher (positive DM) or lower (negative DM)

compared to the competing model, or where no significant difference was observed (‘No difference’). The counts are further

distinguished by statistical significance levels, represented by asterisks: one asterisk for 10% (*), two asterisks for 5% (**), and

three asterisks for 1% (***). For instance, within the heatmap, it is noted that the HAR-RSV model exhibits significantly

better forecast accuracy than the HAR benchmark model for 13 out of the 89 stocks at the 1% significance level (***).
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Figure 27: MAE Diebold Mariano Model Comparison Matrix Heatmap - 2000-2010

Note: See notes in Figure 26.
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Figure 28: RMSE Diebold Mariano Model Comparison Matrix Heatmap - 2011-2020

Note: See notes in Figure 26.
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Figure 29: MAE Diebold Mariano Model Comparison Matrix Heatmap - 2011-2020

Note: See notes in Figure 26.
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This thesis enhances the evaluation of the Heterogeneous AutoRegressive (HAR) model

by integrating extensions such as jumps (HAR-J), realized semivariance (HAR-RSV), and

leverage effects (HAR-LE). These extensions aim to improve the realized variance forecasting

accuracy for the S&P 500 Index and individual stocks. An innovative aspect of this study

is the division of the analysis into two distinct trading periods: 2000-2010 and 2011-2020,

which provides a deeper insight into the temporal dynamics of model performance.

Our findings show that among these, the HAR-LE model provides superior forecasting per-

formance for the S&P 500 Index, both in-sample and out-of-sample. While the out-of-sample

enhancements are suggested by the raw RMSE and MAE loss functions, indicating poten-

tially better realized variance forecasting accuracy for the HAR-J, HAR-RSV, and HAR-LE

models compared to the HAR model, these improvements do not hold statistical significance

at the individual stock level. This conclusion is supported by the Diebold-Mariano test,

which fails to confirm superior accuracy of the extended models over the benchmark.

Our analysis confirms that incorporating elements that account for volatility asymmetries,

particularly leverage effects, may significantly refines the model’s predictive accuracy for the

S&P 500 Index. These results not only emphasize the importance of selecting appropriate

models for volatility forecasting but also highlight the benefits of adjusting for asymmetry

to more effectively capture the dynamics of market volatility. Furthermore, this thesis aligns

with prior studies, such as those by Andersen et al. (2007), Patton and Sheppard (2015), and

Lyócsa and Todorova (2020), reinforcing the predictive strength of extended HAR models

for the S&P 500 Index, while also acknowledging the mixed outcomes compared to these

studies the individual stock level.

Building on these insights, there are several promising avenues for further research. One

potential direction is to evaluate whether the HAR-LE model’s forecasting accuracy for the

S&P 500 Index during the 2000-2010 trading period surpasses that of the standard HAR

model. Extending this analysis to other financial market indices, such as the Nikkei 225,

and comparing results across different trading periods could also test the HAR-LE model’s

generalizability for market indices. Additionally, exploring the forecasting capabilities of

the HAR model and its extensions over longer horizons, such as 5-day and 22-day forecasts,

could provide further insights. Finally, at the individual stock level, incorporating exogenous

variables that account for market sentiment and attention could further enhance the model’s

ability to capture volatility asymmetries, offering a comparative analysis to existing metrics
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like jumps, realized semivariance, and leverage effects (Audrino et al., 2020).
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Djupsjöbacka, D., 2010. Implications of market microstructure for realized variance mea-

surement. European Journal of Finance 16, 27–43. URL: http://www.tandfonline.com/

doi/abs/10.1080/13518470902853376, doi:10.1080/13518470902853376.

Engle, R.F., 1982. Autoregressive Conditional Heteroscedasticity with Estimates of the

Variance of United Kingdom Inflation. Econometrica 50, 987. URL: https://www.jstor.

org/stable/1912773?origin=crossref, doi:10.2307/1912773.

Eriksson, A., Preve, D.P.A., Yu, J., 2019. Forecasting Realized Volatility Using a Nonneg-

ative Semiparametric Model. Journal of Risk and Financial Management 12, 139. URL:

https://www.mdpi.com/1911-8074/12/3/139, doi:10.3390/jrfm12030139.

56

https://academic.oup.com/jfec/article-lookup/doi/10.1093/jjfinec/nbp001
https://academic.oup.com/jfec/article-lookup/doi/10.1093/jjfinec/nbp001
http://dx.doi.org/10.1093/jjfinec/nbp001
https://onlinelibrary.wiley.com/doi/10.1002/9781118272039.ch15
http://dx.doi.org/10.1002/9781118272039.ch15
http://dx.doi.org/10.1002/9781118272039.ch15
http://www.tandfonline.com/doi/abs/10.1080/07474930701853616
http://www.tandfonline.com/doi/abs/10.1080/07474930701853616
http://dx.doi.org/10.1080/07474930701853616
https://creates.au.dk/fileadmin/site_files/filer_oekonomi/subsites/creates/Seminar_Papers/2009/FulvioCorsi_260209.pdf
https://creates.au.dk/fileadmin/site_files/filer_oekonomi/subsites/creates/Seminar_Papers/2009/FulvioCorsi_260209.pdf
http://www.tandfonline.com/doi/abs/10.1080/07350015.2012.663261
http://www.tandfonline.com/doi/abs/10.1080/07350015.2012.663261
http://dx.doi.org/10.1080/07350015.2012.663261
http://www.ssrn.com/abstract=36960
http://dx.doi.org/10.2139/ssrn.36960
http://www.jstor.org/stable/1392155
http://www.tandfonline.com/doi/abs/10.1080/13518470902853376
http://www.tandfonline.com/doi/abs/10.1080/13518470902853376
http://dx.doi.org/10.1080/13518470902853376
https://www.jstor.org/stable/1912773?origin=crossref
https://www.jstor.org/stable/1912773?origin=crossref
http://dx.doi.org/10.2307/1912773
https://www.mdpi.com/1911-8074/12/3/139
http://dx.doi.org/10.3390/jrfm12030139


REFERENCES

Gauthier, G., 2020. Realized Variance. HEC Montréal - Méthodes d’apprentissage appliquées
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A Appendix

Table 10: Final Dataset and Company Information

SYMBOL PERMNO CUSIP Company Name

AAPL 14593 03783310 APPLE INC

ABT 20482 00282410 ABBOTT LABORATORIES

ADBE 75510 00724F10 ADOBE INC

AEE 24985 02360810 AMEREN CORP

AFL 57904 00105510 AFLAC INC

AN 76282 05329W10 AUTONATION INC DEL

APD 28222 00915810 AIR PRODUCTS & CHEMICALS INC

ASH 24272 04420910 ASHLAND INC NEW

ATI 43123 01741R10 ALLEGHENY TECHNOLOGIES

AZO 76605 05333210 AUTOZONE INC

BAX 27887 07181310 BAXTER INTERNATIONAL INC

BC 10874 11704310 BRUNSWICK CORP

BEN 37584 35461310 FRANKLIN RESOURCES INC

BMY 19393 11012210 BRISTOL MYERS SQUIBB CO

CAG 56274 20588710 CONAGRA BRANDS INC

CLX 46578 18905410 CLOROX CO

CMA 25081 20034010 COMERICA INC

CNX 86799 20854P10 CONSOL ENERGY INC

COST 87055 22160K10 COSTCO WHOLESALE CORP NEW

CSX 62148 12640810 C S X CORP

CTAS 23660 17290810 CINTAS CORP

DLTR 81481 25674610 DOLLAR TREE INC

EBAY 86356 27864210 EBAY INC

FAST 11618 31190010 FASTENAL COMPANY

FE 23026 33793210 FIRSTENERGY CORP

GD 12052 36955010 GENERAL DYNAMICS CORP

GPC 46674 37246010 GENUINE PARTS CO

HAS 52978 41805610 HASBRO INC

HD 66181 43707610 HOME DEPOT INC
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A APPENDIX

Table 10 continued from previous page

SYMBOL PERMNO CUSIP Company Name

HIG 82775 41651510 HARTFORD FINANCIAL SVCS GRP INC

HRL 32870 44045210 HORMEL FOODS CORP

HSY 16600 42786610 HERSHEY CO

IFF 40272 45950610 INTERNATIONAL FLAVORS & FRAG INC

IGT 45277 45990210 INTERNATIONAL GAME TECHNOLOGY

INTU 78975 46120210 INTUIT INC

IP 21573 46014610 INTERNATIONAL PAPER CO

IPG 53065 46069010 INTERPUBLIC GROUP COS INC

IRM 83143 46284610 IRON MOUNTAIN INC

JBHT 42877 44565810 HUNT J B TRANSPORT SERVICES INC

JCI 42534 47836610 JOHNSON CONTROLS INC

JNPR 86979 48203R10 JUNIPER NETWORKS INC

JWN 57817 65566410 NORDSTROM INC

KBH 70092 48666K10 K B HOME

KLAC 46886 48248010 K L A CORP

KMB 17750 49436810 KIMBERLY CLARK CORP

KR 16678 50104410 KROGER COMPANY

KSS 77606 50025510 KOHLS CORP

LOW 61399 54866110 LOWES COMPANIES INC

LRCX 48486 51280710 LAM RESH CORP

LUV 58683 84474110 SOUTHWEST AIRLINES CO

MAS 34032 57459910 MASCO CORP

MBI 75175 55262C10 M B I A INC

MCHP 78987 59501710 MICROCHIP TECHNOLOGY INC

MRO 15069 56584910 MARATHON OIL CORP

MTW 51263 56357110 MANITOWOC CO INC

NEM 21207 65163910 NEWMONT CORP

NI 38762 65473P10 NISOURCE INC

NSC 64311 65584410 NORFOLK SOUTHERN CORP

NVDA 86580 67066G10 NVIDIA CORP

OMC 30681 68191910 OMNICOM GROUP INC

OXY 34833 67459910 OCCIDENTAL PETROLEUM CORP

PAYX 61621 70432610 PAYCHEX INC
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Table 10 continued from previous page

SYMBOL PERMNO CUSIP Company Name

PBI 24459 72447910 PITNEY BOWES INC

PCAR 60506 69371810 PACCAR INC

PCG 13688 69331C10 P G & E CORP

PDCO 78034 70339510 PATTERSON COMPANIES INC

PEP 13856 71344810 PEPSICO INC

PHM 54148 74586710 PULTE GROUP INC

PPL 22517 69351T10 P P L CORP

PRGO 77182 71429010 PERRIGO CO

QCOM 77178 74752510 QUALCOMM INC

RJF 69649 75473010 RAYMOND JAMES FINANCIAL INC

ROP 77338 77669610 ROPER TECHNOLOGIES INC

SNPS 77357 87160710 SYNOPSYS INC

SNV 20053 87161C10 SYNOVUS FINANCIAL CORP

SO 18411 84258710 SOUTHERN CO

SSP 84176 81105440 E W SCRIPPS COMPANY

SWK 43350 85450210 STANLEY BLACK & DECKER INC

TEX 58318 88077910 TEREX CORP NEW

TJX 40539 87254010 T J X COMPANIES INC NEW

TMO 62092 88355610 THERMO FISHER SCIENTIFIC INC

TROW 10138 74144T10 T ROWE PRICE GROUP INC

TUP 83462 89989610 TUPPERWARE BRANDS CORP

TXT 23579 88320310 TEXTRON INC

UPS 87447 91131210 UNITED PARCEL SERVICE INC

VFC 43553 91820410 V F CORP

X 76644 91290910 UNITED STATES STEEL CORP NEW

XRAY 11600 24903010 DENTSPLY INTERNATIONAL INC NEW

YUM 85348 98849810 YUM BRANDS INC
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