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Résumé

La compréhension des actions des participants au marché présentant divers degrés de

sensibilité au risque et de leurs réponses aux chocs macroéconomiques communs est es-

sentielle pour une prise de décision éclairée et une évaluation précise des risques sur les

marchés financiers. Dans cette thèse, nous abordons les jeux de champ moyen sensi-

bles au risque linéaires quadratiques gaussiens (LQG) avec un bruit commun en utilisant

l’analyse convexe. Les agents évoluant dans cet environnement sont exposés à un bruit

commun et cherchent à optimiser une fonction de coût exponentielle. Nous déduisons les

stratégies optimales des agents dans ce contexte, en considérant un scénario à population

infinie qui conduit à un équilibre de Nash.

Pour appliquer le modèle théorique, nous élargissons son champ d’application pour

englober les transactions interbancaires, où les entités impliquées sont des banques présen-

tant des caractéristiques homogènes. Dans ce contexte, notre étude se concentre sur

l’optimisation des transactions de prêt et d’emprunt dans le secteur interbancaire. Notre

analyse englobe l’évaluation des risques systémiques et individuels, en se concentrant sur

la probabilité de défaut des banques et des marchés lorsque leurs réserves logarithmiques

tombent en dessous d’un seuil spécifié dans un horizon temporel défini. Afin d’obtenir

la probabilité totale de défaut, nous utilisons des méthodes numériques explicites pour

résoudre les équations de Fokker-Planck basées sur la dynamique de la banque et du

marché dans le cadre du problème d’optimisation en considérant l’approche du premier

temps d’atteinte. Nos simulations révèlent des résultats intrigants. Plus précisément, nous

observons qu’une corrélation accrue entre les agents amplifie la probabilité de défaut du



marché. Cependant, cette corrélation accrue déclenche également un effet de partage des

risques systémiques avantageux pour les banques individuelles dans des paramètres spé-

cifiques. De plus, dans le cas où toutes les banques présentent les mêmes caractéristiques

de sensibilité au risque, la nature aversive au risque des agents atténue la probabilité de

défaut individuel, garantissant un niveau supérieur de stabilité du marché. L’équilibre de

Nash atteint dans l’environnement habité par les banques averses au risque agit comme

une force stabilisatrice, renforçant la résilience globale du système financier et conduisant

à une réduction du risque systémique. Enfin, en adoptant une approche similaire basée

sur les équations stochastiques de Fokker-Planck, nous élargissons davantage notre anal-

yse pour examiner les probabilités conditionnelles de défaut individuel en fonction de

trajectoires spécifiques du choc commun sur le marché.

Mots-clés

Sensibilité au risque, jeux en champ moyen, bruit commun, utilité exponentielle, systèmes

LQG, marché interbancaire, probabilité de défaut, risque systémique, équation de Fokker-

Planck.
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Abstract

Understanding the actions of market participants with varying risk sensitivity degree and

their responses to common macroeconomic shocks is essential for informed decision-

making and accurate risk assessment in financial markets. In this thesis, we address

linear-quadratic-Gaussian (LQG) risk-sensitive mean field games (MFGs) with a com-

mon noise using convex analysis. The agents within this environment are exposed to a

common noise and desire to optimize an exponential cost functional. We derive the opti-

mal strategies of agents in this context within an infinite-population scenario which yield

a Nash equilibrium.

To apply the theoretical model, we extend its scope to encompass interbank transac-

tions, where the entities involved are banks exhibiting homogeneous characteristics. In

this context, our study focuses on optimizing lending and borrowing transactions within

the interbank sector. Our analysis encompasses the evaluation of systemic and individ-

ual risks, focusing on the likelihood of banks and market default scenarios where their

logarithmic reserves fall below a specified threshold within a defined time horizon. In

order to obtain the total probability of default, we employ forward explicit numerical

methods to solve Fokker-Planck equations based on the dynamics of the bank and of the

market within the framework of the optimization problem by considering the first hitting

time approach. Our simulations reveal intriguing findings. Specifically, we observe that

increased correlation among agents amplifies the probability of the market default. How-

ever, this heightened correlation also triggers a systemic risk-sharing effect that proves

advantageous to individual banks under specific parameter settings. Furthermore, in the
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setting where all banks exhibit the same traits of risk sensitivity, the risk-averse nature of

agents mitigates the likelihood of individual defaults, ensuring a higher level of market

stability. The Nash equilibrium achieved in the environment inhabited by the risk-averse

banks acts as a stabilizing force, reinforcing the overall resilience of the financial system,

and leading to a decrease in systemic risk. Finally, adopting a similar approach based

on stochastic Fokker-Planck equations, we further expand our analysis to investigate the

conditional probabilities of individual default under specific trajectories of the common

market shock.

Keywords

Risk-sensitivity, mean-field games, common noise, exponential utility, LQG systems, in-

terbank market, default probability, systemic risk, Fokker-Planck equation.
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Introduction

0.1 Literature Review

In stochastic games, multiple agents search for maximizing the profit or minimizing the

cost while competing continuously with others. However, the complexity of the problem

increases when the number of agents is large. In fact, each agent’s stochastic optimal con-

trol problem becomes mathematically intractable in this case. As a solution for this issue,

for such large-population games, mean field game (MFG) theory is used to approximate

the solution to the high dimensional optimization problem each agent faces. MFG theory

was introduced in a series of works (Lasry and Lions, 2006a,b; Huang et al., 2006; Lions

and Lasry, 2007; Huang et al., 2007) in the early 21st century. In MFG games, when there

is an infinite number of agents, a Nash equilibrium is reached when one agent takes the

best-response action to the environment where the mass behavior of others is modelled

by the mean field distribution (Huang et al., 2006). Lions and Lasry (2007) and Huang

et al. (2006) reduce the optimal control problem of a representative agent to a set of cou-

pled forward-backward partial differential equations, where the forward component is the

Fokker-Planck-Kolmogorov equation generating the mean field distribution and the back-

ward component is the Hamilton-Jacobi-Bellman equation generating the value function

of the agent. The authors subsequently discuss the existence and uniqueness of the so-

lutions within this context. When it comes to a finite number of agents, an approximate

Nash equilibrium, called ε-Nash equilibrium, can be reached by employing the limiting

strategies obtained. In other words, one agent can profit at most by ε by unilaterally



deviating its strategy from others’ (Huang et al., 2006, 2007).

Linear quadratic Gaussian (LQG) MFGs involve agents with linear dynamics in its

own state and control action and the mean field as well as an additive noisemodelled by

a Brownian motion. In addition, the cost functional to optimize is a quadratic function

of these processes (Huang et al., 2007). For this type of MFGs, explicit solutions can be

obtained which is very convenient in the context of applications.

In the classical setup of MFGs, there are a large number of agents where each has an

asymptotically negligible influence on the system as the number of agents grows to infin-

ity. However, in applications, there are usually a few agents which are not asymptotically

negligible. Huang (2010) considers LQG games with a major agent and a large num-

ber of minor agents to address such situations in practice. The behavior (dynamics and

cost functionals) of individually negligible minor agents and the influential major agent

contribute collectively to the mean field formation. Nourian and Caines (2013) presents

nonlinear MFGs with a major agent and a large number of minor agents. In this case, as

the major agent’s state or control action induces random fluctuation in the mean field dis-

tribution, the authors decompose the MFG problem into a non-standard stochastic optimal

control problem with random coefficient for a representative minor agent and a stochastic

coefficient McKean-Vlasov optimal control problem for the major agent. Other works

in this area include (Nguyen and Huang, 2012; Carmona and Zhu, 2016; Carmona and

Wang, 2017, 2016; Şen and Caines, 2016; Firoozi and Caines, 2021; Firoozi et al., 2022;

Lasry and Lions, 2018; Bensoussan et al., 2017; Moon and Başar, 2018; Firoozi et al.,

2020; Huang, 2021; Dena, 2022).

In the context of applications, it is natural to consider a common random shock to all

agents, especially when the game happens within the same environment for all agents. A

common Brownian motion may be added to the agent’s dynamics to model such shocks.

Carmona et al. (2014) presents the MFGs where the agents’ dynamics include a com-

mon Brownian motion. The authors prove the existence of a weak MFG solution under

general assumptions. With additional convexity assumptions, the existence of solutions

is established without relaxed or externally randomized controls. Moreover, under the
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monotonicity condition of Lasry and Lions (Lions and Lasry, 2007), the authors prove

the existence and uniqueness of the solutions in a strong sense as the consequences of

their pathwise uniqueness. Carmona and Delarue (2018) develops the solutions for such

games and extend the subject to the games with major and minor players as well as the

games of timing. Caines et al. (2017) elaborates on two approaches to MFGs with com-

mon noise. The first one is an extension of the master equation formulation to the MFG

problems. The second one is to treat the common noise as the dynamics of an uncontrolled

major agent that embeds in each agent’s dynamics.

When solving mean field games in the risk-neutral case, only the first moment of the

integral cost is included in the cost functional of the agent. On the contrary, in the risk-

sensitive case, an exponential function of integral cost is considered. In other words, all

moments of the integral cost, including the second moment which is a risk measure for the

agent, are considered. Thus, the risk-sensitive behavior of the agent is captured (Moon

and Başar, 2017, 2019). Moon and Başar (2017) solves a multi-agent linear-quadratic

game with the exponential cost functional. The authors first solve a generic risk-sensitive

optimal problem and then characterize an approximated mass behavior effect on one agent

via the fixed-point analysis of the mean field system. They show that the approximated

mass behavior is the best estimate of the actual one as the population size goes to infinity.

Caines et al. (2017) mentions the use of dynamic programming for such problems with

exponential integral cost. In Moon and Başar (2019) stochastic maximum principle is

used to address nonlinear risk-sensitive mean field games. The authors analyze the op-

timal control problem under a fixed probability measure. Then, via Schauder’s theorem

they obtain the conditions under which a fixed-point solution exists to the consistency

equation which equates the probability law of the optimally controlled state of the rep-

resentative agent to the fixed measure. Tembine et al. (2014) elaborates on the fact that

the mean field value derived using this method coincides with the value function from

Hamilton-Jacobi-Bellman equation with an additional quadratic term under appropriate

regularity conditions.

MFGs have found diverse applications in mathematical finance. Firoozi and Caines
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(2017); Casgrain and Jaimungal (2020); Cardaliaguet and Lehalle (2018); Huang et al.

(2019) use MFGs in a dynamic trading context where the goal of each agent is to max-

imize the expected wealth and close the position at the end. The authors express the

solution of the game explicitly in terms of a deterministic fixed point problem and discuss

ε-Nash equilibrium when considering a finite population. Carmona and Delarue (2017)

incorporates the mean field game of timing into a bank runs’ context. The authors model

the value of the deposits with dividends of agents in relation to the moment at which

the agents exit the game satisfactorily in continuous time. Through a probabilistic ap-

proach, the fixed point for best responses is found using the Nash equilibrium. Carmona

et al. (2015a, 2018) uses LQG MFGs to model an inter-bank borrowing and lending sys-

tem in which each agent’s dynamic represents the log-monetary reserves of one bank.

In addition, the authors investigate the individual and systemic risk by defining a default

threshold for each bank. Then, the Nash equilibrium is established following the banks’

optimization of monetary reserve adjustments. Other applications include equilibrium

pricing in financial markets (Gomes and Saúde, 2020; Shrivats et al., 2022a; Féron et al.,

2021; Fujii and Takahashi, 2022), portfolio trading (Fu et al., 2018), financial market

design (Shrivats et al., 2022b), and cryptocurrencies (Li et al., 2019).

0.2 Problem Description and Contributions

The problem analyzed in this paper consists of solving linear-quadratic-Gaussian mean

field games with common noise, where agents have an exponential cost to capture the

risk sensitivity. The methodology used to address this problem is inspired mainly by Liu

et al. (2023), where the authors address linear-quadratic-Gaussian risk-sensitive optimal

control problems through a variational analysis which incorporates a change of measure.

The authors extend the single agent problem to MFGs with major and minor agents.

Then, the model is used to investigate the impact of risk sensitivity on individual

default and systemic default probabilities in the context of an interbank market where in-

dividual banks seek to pursue optimal strategies to reduce costs. For this purpose, first,

4



risk-sensitivity is incorporated in the market model introduced by Carmona et al. (2015b)

through an exponential cost functional. Then, to calculate the default probability of an in-

dividual agent and of the system, Fokker-Planck equations are formulated based on Ding

and Rangarajan (2004) via the hitting time approach for diffusion processes. Then, the

equations are numerically solved and the impact of various parameters, in particular risk-

sensitivity, is examined. Finally, the default probabilities subject to specific trajectories of

the common shock in the market are examined through a stochastic Fokker-Planck equa-

tion, drawing inspiration from Carmona et al. (2015b). The conditional default probability

is numerically computed and the impact of distinct trajectories of the common noises is

investigated.

The contributions of the paper are summarized as follows:

• The paper uses convex analysis to address linear-quadratic-Gaussian (LQG) risk-

sensitive mean field games (MFGs) with common noise. More specifically, this

model introduces exponential cost and a common Brownian motion, shedding light

on risk-sensitive behavior in the context of MFGs, where all agents are influenced

by a shared noise. Optimal feedback control actions for agents leading to a Nash

equilibrium are derived.

• Within the context of interbank transactions, the paper makes contributions by (i)

introducing risk sensitivity, (ii) utilizing the Fokker-Planck equation to derive the

total probabilities of individual default as well systemic default, and (iii) investi-

gating the conditional probability of individual default under specific trajectories of

the common shocks using stochastic Fokker-Planck equation.

0.3 Paper Organization

The paper is organized as follows. Firstly, a model of Linear-Quadratic-Gaussian (LQG)

risk-sensitive mean field games is presented 1.1, which incorporates a common Brownian

motion with exponential cost. Next, optimal feedback control actions for agents leading

5



to a Nash equilibrium are derived for the infinite-population scenario, where the number

of agents goes to infinity in Section in 1.2. Then, the paper demonstrates the applica-

tion of this model in an interbank market in Section 2. In Section 2.4 and Section 2.5,

the probability of default for the agent and the system is investigated by deriving corre-

sponding Fokker-Planck equations and numerically solving them. The impact of various

parameters, in particular risk-sensitivity on these probabilities is examined in Section

2.5.3. A more thorough investigation is conducted to study the conditional probability of

individual default using numerical methods over the stochastic Fokker-Planck equation,

focusing on specific trajectories of common shock in Section 2.5.4. Appendix A includes

an overview of convex analysis for static optimization problems. Appendix B presents the

distribution of both the bank’s log-reserve and the market state within the acquired market

equilibrium as delineated by transaction strategies in the infinite-population model.
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Chapter 1

LQG Risk-Sensitive Mean Field Games

with Common Noise

1.1 Finite-Population Model

In this section we present a general model for linear-quadratic-Gaussian (LQG) risk-

sensitive mean field game (MFG) systems with a finite number of agents impacted by

a common noise.

Consider a system consisting of N competitive dynamic agents. We assume that agents

are heterogeneous and belong to K distinct types, where each type is characterized by a

specific set of model parameters. The index set of agents is defined by N= {1,2, . . . ,N}.

Moreover, the index set Ik of type k,k ∈ K= {1,2, . . . ,K}, is defined as

Ik = {i : θi = θ
(k), i ∈N},

where θi and θ (k) ∈ Θ denote, respectively, the model parameters of agent i and type k,

with Θ being the system parameter set. The cardinality |Ik| of the index set Ik determines

the number of agents in type k, denoted by Nk henceforth. The proportion of the agents

that belong to type k ∈ K, is defined by π
[N]
k = Nk

N . Thus, for the entire population, we ob-

tain the vector of proportions π [N] = [π
[N]
1 π

[N]
2 ... π

[N]
K ], which represents the empirical

distribution of system parameters.



1.1.1 Dynamics

Agent i, i ∈N, is governed by linear dynamics given by

dxi
t =
(

Akxi
t +Fkx[N]

t +Bkui
t +bk(t)

)
dt +σkdwi

t +σ0dw0
t (1.1)

where t ∈ T := [0,T ] and k ∈ K. We denote respectively xi
t ∈ Rn and ui

t ∈ Rm as the state

and the control action of agent i at time t. We define w := {(w0
t )t∈T,(wi

t)t∈T, i∈N} as a set

of (N+1) independent Brownian motions, where wi
t ∈Rr denotes the idiosyncratic noise

of agent i at time t and w0
t ∈Rr denotes a common noise that impacts the dynamics of all

N agents at time t. The latter models a random shock in the system. The coefficients Ak ∈

Rn×n, Fk ∈Rn×n, Bk ∈Rn×m, σk,σ0 ∈Rn×r, and the function bk(t)∈Rn are deterministic

and known.

Moreover, x[N]
t ∈Rn defines the average state of the entire population of agents at time

t and is given by

x[N]
t =

1
N

N

∑
i=1

xi
t . (1.2)

From (1.1), each agent in the system is impacted by the average state of the entire popu-

lation.

1.1.2 Filtration and Control σ -Fields

Let (Ω,FFF ,(F
[N]
t )t∈T,P) be a filtered probability space, where Ω is the sample space, FFF

is a σ -algebra, (F [N]
t )t∈T is a filtration, and P is a probability measure. We define the σ -

algebra F
[N]
t := σ(w0

s ,w
i
s,0 ≤ s ≤ t, i ∈N). The admissible set of controls U i of an agent

i is the set of continuous linear state feedback Rm-valued control laws ui
t = u(t,xi

t), t ∈ T,

that are F
[N]
t -adapted such that E[

∫ T
0 (ui

t)
⊺ui

tdt]< ∞, for T < ∞.

Assumption 1. The initial states {xi
0, i ∈N}, defined on (Ω,FFF ,(F

[N]
t )t∈T,P), are identi-

cally distributed, mutually independent and also independent of w.
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1.1.3 Cost Functional

Let Sn×m denote the set of symmetric matrices of dimension n×m, and let ∥a∥2
B = a⊤Ba

denote the seminorm of vector a with respect to B ≥ 0. Additionally, we define u−i :=

(u0, . . . ,ui−1,ui+1, . . . ,uN) to represent the control actions performed by agents other than

agent i.

The cost functional of agent i to be minimized is given by

Ji,[N](ui,u−i) = γk logE
[

exp
(

1
γk

(
gk(xi

T ,x
[N]
T )+

∫ T

0
f k(xi,x[N]

t ,ui
t)dt
))]

(1.3)

where

gk(xi
T ,x

[N]
T ) =

1
2
∥xi

T −Hkx[N]
T −ηk∥2

Q̂k
(1.4)

f k(xi
t ,x

[N]
t ,ui

t) =
1
2

{
∥xi

t −Hkx[N]
t −ηk∥2

Qk
+2(xi

t −Hkx[N]
t −ηk)

⊺Skui
t +∥ui

t∥2
Rk

}
(1.5)

with 1
γk
∈ (0,∞) indicating the degree of risk aversion of the agent. In particular, as 1

γ

increases, the agent’s risk aversion intensifies. In the limit when 1
γ
→ 0, the cost functional

reduces into a risk-neutral form. The other parameters are Q̂k,Qk ∈ Sn×n, Rk ∈ Sm×m,

Hk ∈ Rn×n, ηk ∈ Rn, Sk ∈ Rn×m for all k ∈ K.

The cost functional is defined as the expected value of an exponential function of the

integral cost, enabling it to capture all moments of the integral cost, including those that

indicate risk. As a result, the cost functional incorporates risk, making it a risk-sensitive

cost.

For a representative agent, the optimization problem involves finding the optimal con-

trol ui
t that minimizes the cost functional while taking into account the agent’s dynamics

and its interactions with all other agents modeled by the average state. However, as the

number of agents N increases, the complexity of this problem escalates, rendering it in-

tractable. Mean Field Game (MFG) theory provides a mathematically tractable approach

to analyze such interactions among a large number of agents. The MFG methodology

involves finding the solution to the asymptotic game as the number of agents approaches

infinity. In this limiting case, the average state of the population, known as the mean

field, can be mathematically characterized. As each agent can compute the mean field,

9



the problem becomes significantly simplified and can be represented as a set of individual

optimal control problems linked together through the mean field. In the next section, we

present the optimization problem in the limiting case referred to as the infinite-population

model.

1.2 Infinite-Population Model

In this section we present the infinite-population model, as N →∞, for the linear-quadratic-

Gaussian (LQG) risk-sensitive mean field games described in the preceding section. The

model consists of an infinite number of competitive dynamic agents that belong to K < ∞

distinct types, each with a unique set of model parameters. Stated differently, we are

considering the limiting case where each type is comprised of an infinite population. The

index set of agents is denoted by N∞ = {1,2, . . .}.

Assumption 2. The empirical distribution of model parameters converges to a theoretical

distribution. In other words, there exists πk such that limN→∞ π
[N]
k := limN→∞

Nk
N = πk for

all k ∈ K. Thus, limN→∞ π [N] = π , where π = [π1, . . . ,πK].

1.2.1 Dynamics

From the dynamics (1.1), we consider the limit case of the empirical average for an infinite

population case and acknowledge the convergence criterion imposed in Assumption 2.

Then, agent i, i ∈ N∞, in the infinite-population limit is governed by linear dynamics

given by

dxi
t =
(
Akxi

t +Fπ
k x̄t +Bkui

t +bk(t)
)

dt +σkdwi
t +σ0dw0

t (1.6)

where Fπ
k ∈ Rn×Kn and x̄t ∈ RKn. We define Fπ

k = π ⊗Fk := [Fkπ1 Fkπ2 ... FkπK]. In

LQG case, the mean field can be written as x̄⊺t =
[
(x̄1

t )
⊺ . . . (x̄K

t )
⊺
]

which denotes the

population mean field at time t, where x̄k
t ∈ Rn is defined as

x̄k
t = lim

Nk→∞

1
Nk

∑
i∈Ik

xi
t (1.7)
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representing the mean field of type k at time t. The mean field dynamics is derived in

Section 1.2.4. All other continuous states and coefficients maintain their definitions from

the finite population model. The assumption on the starting states remains also the same

but in the filtered probability space defined in Section 1.2.2.

1.2.2 Filtration

We define the filtration for agent i as (F i
t )t∈T := σ(w0

s ,w
i
s,0 ≤ s ≤ t) for all i ∈N∞ and

the filtration for the mean field as (F 0
t )t∈T := σ(w0

s ,0 ≤ s ≤ t). The admissible set of

controls U i for an agent i is the set of continuous linear state feedback control laws ui
t =

u(t,xi
t), t ∈ T, that are F i

t -adapted Rm-valued processes such that E[
∫ T

0 (ui
t)
⊺ui

tdt] < ∞,

for T < ∞.

1.2.3 Cost Functional

The cost functional to be minimized is given by

Ji,∞(ui) = γk logE
[

exp
(

1
γk

(
gk(xi

T , x̄T )+
∫ T

0
f k(xi, x̄t ,ui

t)dt
))]

(1.8)

where

gk(xi
T , x̄T ) =

1
2
∥xi

T −Hπ
k x̄T −ηk∥2

Q̂k
(1.9)

f k(xi
t , x̄t ,ui

t) =
1
2
{
∥xi

t −Hπ
k x̄t −ηk∥2

Qk
+2(xi

t −Hπ
k x̄t −ηk)

⊺Skui
t +∥ui

t∥2
Rk

}
(1.10)

with Hπ
k ∈Rn×Kn defined as Hπ

k = π⊗Hk = [Hkπ1 Hkπ2 ... HkπK]. The other parameters

are the same as the ones in the finite-population model.

Assumption 3. Q̂k ≥ 0, Rk > 0, Qk −SkR−1
k S⊺k ≥ 0.

Assumption 3 ensures the convexity of the cost functional (1.8) with respect to xi
t and
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ui
t . By completing the square, we obtain the following equality

f k(xi
t , x̄t ,ui

t) =
1
2
{
∥xi

t −Hπ
k x̄t −ηk∥2

Qk
+2(xi

t −Hπ
k x̄t −ηk)

⊺Skui
t +∥ui

t∥2
Rk

}
=

1
2
{
∥xi

t −Hπ
k x̄t −ηk∥2

Qk
+2(xi

t −Hπ
k x̄t −ηk)

⊺Skui
t −∥S⊺k (x

i
t −Hπ

k x̄t −ηk)∥R−1
k

+∥S⊺k (x
i
t −Hπ

k x̄t −ηk)∥R−1
k
+∥ui

t∥2
Rk

}
=

1
2
{
∥xi

t −Hπ
k x̄t −ηk∥2

Qk−SkR−1
k S⊺k

+∥ui
t +R−1

k Sk(xi
t −Hπ

k x̄t −ηk)∥2
Rk

}
. (1.11)

Consider gk(xi
T , x̄T ) and f k(xi

t , x̄t ,ui
t), we refer to Jacobson (1973) for the conditions in

Assumption 3 that guarantee the convexity of the cost functional (1.8) with respect of xi
t

and ui
t .

Coefficients Ak,Fπ
k ,Bk and σk in the agent’s dynamics can be viewed as type-specific

factors with respect to the associated variable. The function bk(t) is an additional deter-

ministic function with the dynamics’ drift. The factor σ0 is a multiplier to the common

noise presented in the environment in which all agents inhabit. There are numerous po-

tential financial applications linked to these variables. For instance, the state xi
t can be

interpreted as the portfolio value, market price of inventory, or monetary reserves of a

fund. The corresponding feedback control ui
t can be regarded as the trade or transaction

rate.

The cost functional that the agent wants to minimize can be viewed as a regulator’s

imposition or the agent’s preference or cost. In this model, parts of the cost functional

include the distance of the agent’s state to a factor of the mean field up to a constant ηk.

From equation (1.8), the impact of the agent’s control action on the cost functional is also

present.

A thorough interpretation of the parameters will be presented in Chapter 2 within the

interbank context.
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1.2.4 Mean Field Dynamics

The mean field dynamics for the agents of the type k is derived from the definition pro-

vided in equation (1.7). An equivalent representation in the infinite-population limit can

be written in the conditional expectation form x̄k
t = E[xi,k

t |F 0
t ], where xi,k

t represents the

state of a representative agent of the type k (Carmona and Delarue, 2018). The mean field

dynamics is then derived as

dx̄k
t =

(
Akx̄k

t +Fπ
k x̄t +Bkūk

t +bk(t)
)

dt +σ0dw0
t (1.12)

where ūk
t ∈ Rm is defined by

ūk
t = lim

Nk→∞

1
Nk

∑
i∈Ik

ui
t .

If the limit exists, ūk
t represents the control mean field of agents of type k ∈ K .

Note that as Nk increases to infinity for all types of agent, by the strong Law of Large

Numbers,

lim
Nk→∞

1
Nk

∑
i∈Ik

∫
dwi

t = 0 (1.13)

or equivalently E[
∫

dwi
t |F 0

t ] = 0.

Subsequently, the state mean field of the population x̄t ∈ RKn can be represented as

the vector x̄⊺t =
[
(x̄1

t )
⊺ . . . (x̄K

t )
⊺
]

satisfying

dx̄t = (Ăx̄t + B̆ūt + m̆t)dt +111Kn×nσ0dw0
t (1.14)

where ūt ∈ RKm represents the population control mean field ū⊺t =
[
(ū1

t )
⊺ . . . (ūK

t )
⊺
]
.

The associated coefficients Ăt ∈ RKn×Kn, B̆ ∈ RKn×Km, m̆t ∈ RKn×1, and 111Kn×n ∈ RKn×n

are defined as in

Ă =


A1eee1 +Fπ

1
...

AKeeeK +Fπ
K

 , B̆ =


B1 0

. . .

0 BK

 , m̆t =


b1(t)

...

bK(t)

 , 111Kn×n =


In
...

In

 . (1.15)

Moreover, the matrix eeek ∈ Rn×Kn is defined as eeek = [0n×n, ...,0n×n,In,0n×n, ...,0n×n],

which has the n×n identity matrix In at the kth block.
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1.3 Solutions to the Infinite-Population Model

1.3.1 Optimal Control Action

Consider the infinite-population LQG risk-sensitive MFG model with common noise pre-

sented in Section 1.2, our objective is to determine the optimal control actions that achieve

the best response using convex analysis. To implement this approach, we adapt the defini-

tion of the Gâteaux derivative described in Ekeland and Témam (1999) and Allaire (2007)

to our specific problem. By using this modified definition, we can identify the control ac-

tion that leads to the vanishing of the Gâteaux derivative of the cost function. Then, given

the exponential nature of the cost integral, we use completion of squares and Girsanov’s

theorem to change the measure and determine the optimal control action.

Definition 1 (Gâteaux Derivative). The cost functional Ji,∞ defined on a neighbourhood

of ui ∈ U i with values in R is Gâteaux differentiable at ui in the direction of ω i ∈ U i if

there exists a Gâteaux differential DJ(ui) such that

⟨DJ(ui),ω i⟩= lim
ε→0

J(ui + εω i)− J(ui)

ε
. (1.16)

Theorem 1 (Gâteaux Derivative Expanded). The Gâteaux derivative of the cost functional

(1.8) in the infinite population case is given by

⟨DJi,∞(ui),ω i⟩=
E
[∫ T

0 (ω i
t )
⊺hk(ε,xi

t , x̄t ,ui
t)dt
]

E
[
exp(Gi

T (u))
] (1.17)

where

Gi
T (u) =

1
γk

[
gk(xi

T , x̄T )+
∫ T

0
f k(xi

t , x̄t ,ui
t)dt
]

(1.18)

hk(ε,xi
t , x̄t ,ui

t) = Mi
1,t

(
S⊺k (x

i
t −Hπ

k x̄t −ηk)+Rkui
t −B⊺

k

∫ t

0
exp
(
A⊺

k (s− t)
)

×
(
Qk(xi

s −Hπ
k x̄s −ηk)+Skui

s
)
ds
)
+B⊺

k exp
(
−A⊺

k t
)
Mi

2,t (1.19)

Mi
1,t = E

[
exp(Gi

T (u))|F i
t
]
, (1.20)
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Mi
2,t = E

[
exp(Gi

T (u))
(

exp
(
A⊺

k T
)
Q̂k(xi

T −Hπ
k x̄T −ηk)+

∫ T

0
exp
(
A⊺

k s
)

×
(

Qk(xi
s −Hπ

k x̄s −ηk)+Skui
s

)
ds
)∣∣∣∣F i

t

]
. (1.21)

Proof. To compute the Gâteaux derivative, we start by deriving the agent’s state as the

solution to the stochastic differential equation (SDE) given by (1.6). We perturb the con-

trol action of the representative agent i and analyze the impact of this perturbation on

the agent’s state, the mean field, and the cost functional. Finally, we use Definition 1 to

derive the Gâteaux derivative of the agent’s cost functional. This approach allows us to

effectively capture the impact of a small perturbation on the agent’s overall performance

and on the entire system.

Consider the transformation yt = exp(−Akt)xi
t . Using Itô’s lemma we can show that

yt satisfies

dyt =−Ak exp(−Akt)xi
tdt + exp(−Akt)

(
[Akxi

t +Fπ
k x̄t +Bkui

t +bk(t)]dt

+σkdwi
t +σ0dw0

t
)
. (1.22)

Integrating both sides of (1.22) from 0 to t and then multiplying by exp(Akt), we get

xi
t = exp(Akt)x0 +

∫ t

0
exp(Ak(t − s))(Fπ

k x̄s +Bkui
s +bk(s))ds+

∫ t

0
exp(Ak(t − s))σkdwi

s

+
∫ t

0
exp(Ak(t − s))σ0dw0

s . (1.23)

Let xi,ε
t denote the solution to (1.6) subject to a perturbed control action ui

t + εω i
t in

the direction of ω i
t ∈ U i. From (1.23), we can write

xi,ε
t = xi

t + ε

∫ t

0
exp(Ak(t − s))Bkω

i
sds. (1.24)

Subsequently, the infinitesimal variation of xi,ε
t is given by

dxi,ε
t = dxi

t + εBkω
i
t dt + εAk

∫ t

0
exp(Ak(t − s))Bkω

i
sds. (1.25)

On the one hand, we observe that the perturbed mean field x̄k,ε
t because of the per-

turbed control action of agent i in type k, if the limit exists, is defined by

x̄k,ε
t = lim

Nk→∞

1
Nk

(
∑

j∈Ik, j ̸=i
x j

t + xi,ε
t

)
. (1.26)
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On the other hand, the mean field of other agents belonging to the other types is not

perturbed. Thus, we note that the population mean field x̄ε
t , if the limits exist, is defined

by

x̄ε
t =

[
(x̄1

t )
⊺ . . . (x̄k,ε

t )⊺ . . . (x̄K
t )

⊺
]
. (1.27)

From (1.26), for the infinite-population model, the impact of the perturbed control action

of agent i on the population mean field is negligible. Hence, we conclude that x̄ε
t = x̄t .

The cost of the perturbed control action ui
t +εω i

t and the corresponding perturbed state

xi,ε
t is given by

Ji,∞(ui + εω
i) = γk logE

[
exp
(

1
γk

(
gk(xi,ε

T , x̄T )+
∫ T

0
f k(xi,ε , x̄t ,ui

t + εω
i
t )dt

))]
.

(1.28)

To simplify the notation, we can define

Gi
T (u) :=

1
γk

(
gk(xi

T , x̄T )+
∫ T

0
f k(xi

t , x̄t ,ui
t)dt
)
. (1.29)

Let Φt = Hπ
k x̄t +ηk. From (1.24), we can write the perturbed integral cost as

Ji,∞(ui + εω
i) = γk logE

[
exp(Gi,ε

T )
]

(1.30)

where

Gi,ε
T =

1
γk

(
gk(xi,ε

T , x̄T )+
∫ T

0
f k(xi,ε

t , x̄t ,ui
t + εω

i
t )dt

)
= Gi

T +
1

2γk
∥ε

∫ T

0
exp(Ak(T − s))Bkω

i
sds∥2

Q̂k
+

1
γk
(xi

T −ΦT )
⊺Q̂kε

×
∫ T

0
exp(Ak(T − s))Bkω

i
sds+

1
γk

∫ T

0

{1
2
∥ε

∫ t

0
exp(Ak(t − s))Bkω

i
sds∥2

Qk

+(xi
t −Φt)

⊺(Qkε

∫ t

0
exp(Ak(t − s))Bkω

i
sds+Sk(εω

i
t )
)
+(ε

∫ t

0
exp(Ak(t − s))

×Bkω
i
sds)⊺Sk(ui

t + εω
i
t )+

1
2
∥εω

i
t∥2

Rk
+(ui

t)
⊺Rkεω

i
t

}
dt. (1.31)
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By reordering the variables, we obtain

Gi,ε
T = Gi

T +
ε

γk
(xi

T −ΦT )
⊺Q̂k

∫ T

0
exp(Ak(T − s))Bkω

i
sds+

ε

γk

∫ T

0

{
(xi

t −Φt)
⊺

×
(
Qk

∫ t

0
exp(Ak(t − s))Bkω

i
sds+Skω

i
t
)
+(
∫ t

0
exp(Ak(t − s))

×Bkω
i
sds)⊺Skui

t +(ui
t)
⊺Rkω

i
t

}
dt +

ε2

2γk
∥
∫ T

0
exp(Ak(T − s))Bkω

i
sds∥2

Q̂k

+
ε2

γk

∫ T

0

{1
2
∥
∫ t

0
exp(Ak(t − s))Bkω

i
sds∥2

Qk

+(
∫ t

0
exp(Ak(t − s))Bkω

i
sds)⊺Skω

i
t +

1
2
∥ω

i
t∥2

Rk

}
dt. (1.32)

According to Definition 1, for the representative agent-i the Gâteaux derivative is

given as

⟨DJi,∞(ui),ω i⟩= lim
ε→0

γk

ε
log

E
[
exp(Gi,ε

T )
]

E
[
exp(Gi

T )
] . (1.33)

As the limit involves an indeterminate quotient, we can employ L’Hôpital’s rule while

applying Talor expansion on exp(Gi,ε
T ) to continue the analysis as in

⟨DJi,∞(ui),ω i⟩= lim
ε→0

γk
1

E[exp(Gi,ε
T )]

∂

∂ε
E

[
exp(Gi

T )

(
1+

ε

γk
(xi

T −ΦT )
⊺Q̂k

×
∫ T

0
exp(Ak(T − s))Bkω

i
sds+

ε

γk

∫ T

0

{
(xi

t −Φt)
⊺(Qk

×
∫ t

0
exp(Ak(t − s))Bkω

i
sds+Skω

i
t
)
+(
∫ t

0
exp(Ak(t − s))Bkω

i
sds)⊺

×Skui
t +(ui

t)
⊺Rkω

i
t

}
dt +O(ε2)

)]
. (1.34)

By linearity of the expectation, we have

⟨DJi,∞(ui),ω i⟩= lim
ε→0

γk
1

E[exp(Gi,ε
T )]

∂

∂ε

[
E(exp(Gi

T )+ εE
(

exp(Gi
T )
( 1

γk
(xi

T −ΦT )
⊺Q̂k

×
∫ T

0
exp(Ak(T − s))Bkω

i
sds+

1
γk

∫ T

0

{
(xi

t −Φt)
⊺(Qk

∫ t

0
exp(Ak(t − s))

×Bkω
i
sds+Skω

i
t
)
+(
∫ t

0
exp(Ak(t − s))Bkω

i
sds)⊺Skui

t +(ui
t)
⊺Rkω

i
t

}
dt
))

+ ε
2E
(

exp(Gi
T )

ε2 O(ε2)

)]
. (1.35)
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Then, we can perform the derivative and obtain

⟨DJi,∞(ui),ω i⟩= lim
ε→0

γk
1

E[exp(Gi,ε
T )]

[
E
(

exp(Gi
T )
( 1

γk
(xi

T −ΦT )
⊺Q̂k

×
∫ T

0
exp(Ak(T − s))Bkω

i
sds+

1
γk

∫ T

0

{
(xi

t −Φt)
⊺(Qk

×
∫ t

0
exp(Ak(t − s))Bkω

i
sds+Skω

i
t
)
+(
∫ t

0
exp(Ak(t − s))Bkω

i
sds)⊺

×Skui
t +(ui

t)
⊺Rkω

i
t

}
dt
))

+2εE
(

exp(Gi
T )

ε2 O(ε2)

)
+ ε

2 ∂

∂ε
E
(

exp(Gi
T )

ε2 O(ε2)

)]
. (1.36)

By performing the limit and simplifying the equation, we obtain

⟨DJi,∞(ui),ω i⟩= 1
E[exp(Gi

T )]

[
E
(

exp(Gi
T )
(
(xi

T −ΦT )
⊺Q̂k

×
∫ T

0
exp(Ak(T − s))Bkω

i
sds+

∫ T

0

{
(xi

t −Φt)
⊺(Qk

∫ t

0
exp(Ak(t − s))

×Bkω
i
sds+Skω

i
t
)
+(
∫ t

0
exp(Ak(t − s))Bkω

i
sds)⊺

×Skui
t +(ui

t)
⊺Rkω

i
t

}
dt
))]

. (1.37)

For clarity, we can transpose and manipulate the order of some matrix multiplications to

get

⟨DJi,∞(ui),ω i⟩= 1
E[exp(Gi

T (u))]
E

[
exp(Gi

T (u))
(∫ T

0
(ω i

s)
⊺B⊺

k exp
(
A⊺

k (T − s)
)
ds

× Q̂k(xi
T −ΦT )+

∫ T

0

(
(ω i

t )
⊺S⊺k (x

i
t −Φt)+(ω i

t )
⊺Rkui

t

)
dt

+
∫ T

0

(∫ t

0
(ω i

s)
⊺B⊺

k exp
(
A⊺

k (T − s)
)
dsQk(xi

t −Φt)

+
∫ t

0
(ω i

s)
⊺B⊺

k exp
(
A⊺

k (t − s)
)
dsSkui

t

)
dt
)]

. (1.38)

As the function within the integral is continuous, by Fubini’s theorem and the change of
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order of integrals (Strang, 1991), the last term in the above equation can be written as

∫ T

0

(∫ t

0
(ω i

s)
⊺B⊺

k exp
(
A⊺

k (t − s)
)
dsQk(xi

t −Φt)+
∫ t

0
(ω i

s)
⊺B⊺

k exp
(
A⊺

k (t − s)
)
dsSkui

t

)
dt

=
∫ T

0
(ω i

s)
⊺
(∫ T

s
B⊺

k exp
(
A⊺

k (t − s)
)
Qk(xi

t −Φt)dt +
∫ T

s
B⊺

k exp
(
A⊺

k (t − s)
)
Skui

tdt
)

ds.

(1.39)

From (1.38) and (1.39), we can then change the integration variable for the second integral

and factor out (ω i
s)
⊺ and substitute (1.39) to get

⟨DJi,∞(ui),ω i⟩= 1
E[exp(Gi

T (u))]
E

[
exp(Gi

T (u))
(∫ T

0
(ω i

s)
⊺
{

S⊺k (x
i
s −Φs)+Rkui

s

+B⊺
k

[
exp
(
A⊺

k (T − s)
)
Q̂k(xi

T −ΦT )+
∫ T

s

(
exp
(
A⊺

k (T − s)
)
Qk(xi

t −Φt)

+ exp
(
A⊺

k (T − s)
)
Skui

t

)
dt
]}

ds
)]

. (1.40)

The inner integral within (1.40) can be split in two terms as in

∫ T

s

(
exp
(
A⊺

k (t − s)
)
Qk(xi

t −Φt)+ exp
(
A⊺

k (t − s)
)
Skui

t
)

dt

=
∫ T

0
exp
(
A⊺

k (t − s)
)(

Qk(xi
t −Φt)+Skui

t
)

dt −
∫ s

0
exp
(
A⊺

k (t − s)
)(

Qk(xi
t −Φt)+Skui

t
)

dt.

(1.41)

Thus, an equivalent expression for the Gâteaux derivative is given by

⟨DJi,∞(ui),ω i⟩= 1
E[exp(Gi

T (u))]
E

[
exp(Gi

T (u))
(∫ T

0
(ω i

s)
⊺
{

S⊺k (x
i
s −Φs)+Rkui

s

+B⊺
k

[
−
∫ s

0
exp
(
A⊺

k (t − s)
)(

Qk(xi
t −Φt)+Skui

t
)

dt

+ exp
(
−A⊺

k s
)(

exp
(
A⊺

k T
)
Q̂k(xi

T −ΦT )

+
∫ T

0
exp
(
A⊺

k t
)(

Qk(xi
t −Φt)+Skui

t
)

dt
)]}

ds
)]

. (1.42)

By taking exp
(
Gi

T (u)
)

inside the integral in (1.42) and applying the tower rule based on
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the filtration F i
s , the Gâteaux derivative then can be written as

⟨DJi,∞(ui),ω i⟩= 1
E
[
exp
(
Gi

T (u)
)]E[∫ T

0
(ω i

s)
⊺

{
Mi

1,s

(
S⊺k (x

i
s −Φs)+Rkui

s

+B⊺
k

[
−
∫ s

0
exp
(
A⊺

k (t − s)
)(

Qk(xi
t −Φt)+Skui

t
)

dt
)

+ exp
(
−A⊺

k s
)
Mi

2,s

]}
ds

]
(1.43)

where

Mi
1,s = E

[
exp
(
Gi

T (u)
)
|F i

s
]
, (1.44)

Mi
2,s = E

[
exp
(
Gi

T (u)
)(

exp
(
A⊺

k T
)
Q̂k(xi

T −ΦT )+
∫ T

0
exp
(
A⊺

k t
)

×
(
Qk(xi

t −Φt)+Skui
t
)
dt
)∣∣∣∣F i

s

]
. (1.45)

Using the Gâteaux derivative given in Theorem 1, we can determine the optimal action

ui,∗
t that minimizes the cost functional (1.8) of the representative agent. A necessary

condition for ui,∗
t ∈ U i to be the optimal control action under P is

⟨DJi,∞(ui,∗),ω i⟩= 0 ∀w ∈ U i. (1.46)

If Assumption 3 holds, this condition is also a sufficient optimality condition for ui,∗
t .

Hence the optimal control action under P is given by

ui,∗
t =−R−1

k

(
B⊺

k exp
(
−A⊺

k t
)[Mi

2,t

Mi
1,t

−
∫ t

0

(
exp
(
A⊺

k s
)(

Qk(xi
s −Φs)+Skui,∗

s
))

ds

]
+S⊺k (x

i
t −Φt)

)
(1.47)

where

Mi
2,t

Mi
1,t

=

EP

exp(Gi
T (u))

(
exp(A⊺

k T)Q̂k(xi
T−ΦT )+

∫ T
0 exp(A⊺

k s)
(

Qk(xi
s−Φs)+Skui,∗

s

)
ds
)∣∣∣∣F i

t


EP[exp(Gi

T (u))|F i
t ]

. (1.48)

We observe that in its current form, the optimal control action is not practicable in

the context of applications. In particular, we are interested in a linear state feedback form
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for the optimal control action as it is very convenient when it comes to implementing the

optimal strategy. However, due to the nonlinearity introduced by the term (1.48) in the

optimal control action, it is not obvious how such a linear form can be achieved at first

glance. By inspecting (1.48) we observe that both the numerator and the denominator are

involved with the exponential term exp(Gi
T (u)). This fact suggests that a linear form for

the optimal control action may be achievable through a change of measure. To investigate

this matter, the initial step involves determining whether or not exp(Gi
T (u)) may represent

a Radon Nikodym derivative. If such a representation is possible, we can transform (1.48)

from a quotient of martingales under the measure P to a martingale under a new measure

denoted by P̂. The subsequent step involves identifying the optimal control under P̂,

followed by applying the equivalent measure theorem to recover the optimal control under

P.

1.3.2 Change of Measure

This section focuses on the derivation of the Radon-Nikodym exponent, which is needed

to transform (1.48) into a martingale under a new probability measure, denoted by P̂. To

achieve this, we adopt a strategy of selecting a set of control coefficients. With the help

of a judiciously chosen variable and its cumulative change with respect to its infinitesimal

difference, Gi
T (u) can be reduced to the desired form. The inspiration behind the intro-

duced change of measure stems from the financial realm, where we evaluate derivatives

under the risk-neutral probability to simplify complex pricing calculations. Specifically,

we transition from the physical world to the risk-neutral setting by quantifying the risk

premium through the Radon-Nikodym exponent.

Theorem 2. Consider the LQG risk-sensitive system described by (1.6), (1.8)-(1.10),

(1.14)-(1.15) and suppose that Assumption 3 holds. The variable Gi
T (u)− Θ0 admits

the representation

Gi
T (u)−Θ0 =− 1

2γ2
k

∫ T

0
∥µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)∥2dt +

1
γk

∫ T

0
µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)dWWW t (1.49)
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with Θ0 ∈ R,µ(t,WWW t)µ(t,WWW t)µ(t,WWW t) = ((XXX t)
⊺HHHk

t +(CCCk
t )

⊺)ΣΣΣk such that

WWW t =

wi
t

w0
t

 , XXX t =

xi
t

x̄t

 , HHHk
t =

 Πk
t Λk

t

(Λk
t )

⊺ ∆k
t

 , (1.50)

CCCk
t =

ϒk
t

Γk
t

 , ΣΣΣ
k =

 σk σ0

000Kn×r 111Kn×nσ0

 (1.51)

with Πk
t ∈ Sn×n, ∆k

t ∈ SKn×Kn, Λk
t ∈ Rn×Kn,ϒk

t ∈ Rn, Γk
t ∈ RKn, if the following condition

is satisfied

ζ (u) =
∫ T

0

( 1
2γk

XXX⊺
t QkQkQkXXX t +

1
γk

ηkηkηkXXX t +
1

2γk
η
⊺
k Qkηk +

1
γk

XXX⊺
t SSSkui,∗

t − 1
γk

η
⊺
k Skui,∗

t

+
1

2γk
(ui,∗

t )⊺Rkui,∗
t +

1
γk
((XXX t)

⊺HHHk
t +(CCCk

t )
⊺){ÃAAkXXX t + B̃BBkui,∗

t + β̃kβkβkūt +M̃MMt}
)

dt

+
1

2γk

∫ T

0
tr
(
σ
⊺
k Π

k
t σk)+σ

⊺
0

(
Π

k
t +2111n×Kn(Λ

k
t )

⊺+111n×Kn∆
k
t 111Kn×n

)
σ0
)
dt

+
1

2γk

∫ T

0
XXX⊺

t dHHHk
t XXX t +

1
γk

∫ T

0
d(CCCk

t )
⊺XXX t +

1
2γk

∫ T

0
dΨ

k
t

+
1

2γ2
k

∫ T

0
∥µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)∥2dt = 0 (1.52)

with Θ0,Ψ
k
t ∈ R,

QkQkQk =

 Qk −QkHπ
k

−(Hπ
k )

⊺Qk (Hπ
k )

⊺QkHπ
k

 , ηkηkηk =
[
−η

⊺
k Qk η

⊺
k QkHπ

k

]
, (1.53)

SSSk =

 Sk

−(Hπ
k )

⊺Sk

 , ÃAAk =

 Ak Fπ
k

000Kn×Kn Ă

 , B̃BBk =

 Bk

000Kn×m

 , (1.54)

β̃kβkβk =

000n×Km

B̆

 , M̃MMt =

bk(t)

m̆t

 , ΣΣΣ
k =

 σk σ0

000Kn×r 111Kn×nσ0

 . (1.55)

Moreover, there exists a probability measure P̂ characterized by the Radon Nikodym vari-

able dP̂
dP = exp

(
Gi

T (u)−Θ0
)
.

Proof. For the sake of clarity and organization, we will employ matrix notation instead

of more cumbersome scalar notation. For this purpose, we consider

XXX t =

xi
t

x̄t

 , HHHk
t =

 Πk
t Λk

t

(Λk
t )

⊺ ∆k
t

 , CCCk
t =

ϒk
t

Γk
t

 (1.56)
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where Πk
t ∈ Sn×n, ∆k

t ∈ SKn×Kn, Λk
t ∈ Rn×Kn,ϒk

t ∈ Rn, Γk
t ∈ RKn. For our purpose, we

define the variable

Θ
k
t =

1
2γk

XXX⊺
t HHHk

t XXX t +
1
γk
(CCCk

t )
⊺XXX t +

1
2γk

Ψ
k
t (1.57)

where Ψk
t ∈ R, HHHk

t ,CCC
k
t ,Ψ

k
t are deterministic. We have

∫ T

0
dΘt = ΘT −Θ0. (1.58)

Then we apply Itô’s lemma to obtain the infinitesimal variations of Θk
t as in

∫ T

0
dΘt =

∫ T

0

{
1

2γk
XXX⊺

t dHHHk
t XXX t +

1
γk

XXX⊺
t HHHk

t dXXX t +
1

2γk
d
〈

XXX⊺HHHk
t XXX
〉

t
+

1
γk

d(CCCk
t )

⊺XXX t

+
1
γk
(CCCk

t )
⊺dXXX t +

1
2γk

dΨ
k
t

}
. (1.59)

By substituting (1.59) in (1.58) and taking all the terms to one side we have

0 =− (ΘT −Θ0)

+
∫ T

0

{
1

2γk
XXX⊺

t dHHHk
t XXX t +

1
γk

XXX⊺
t HHHk

t dXXX t +
1

2γk
d
〈

XXX⊺HHHk
t XXX
〉

t
+

1
γk

d(CCCk
t )

⊺XXX t

+
1
γk
(CCCk

t )
⊺dXXX t +

1
2γk

dΨ
k
t

}
(1.60)

where

dXXX t = {ÃAAkXXX t + B̃BBkui,∗
t + β̃kβkβkū∗t +M̃MMt}dt +ΣΣΣ

kdWWW t (1.61)

with

ÃAAk =

 Ak Fπ
k

000Kn×Kn Ă

 , B̃BBk =

 Bk

000Kn×m

 , β̃kβkβk =

000n×Km

B̆

 , M̃MMt =

bk(t)

m̆t

 (1.62)

ΣΣΣ
k =

 σk σ0

000Kn×r 111Kn×nσ0

 , WWW t =

wi
t

w0
t

 . (1.63)
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For the sake of clarity, we also write Gi
T (u) in terms of XXX ,

Gi
T (u) =

1
γk

[
1
2
∥xi

T −Hπ
k x̄T −ηk∥2

Q̂k

+
∫ T

0

1
2

{
∥xi

t −Hπ
k x̄t −ηk∥2

Qk
+2(xi

t −Hπ
k x̄t −ηk)

⊺Skui,∗
t +∥ui,∗

t ∥2
Rk

}
dt
]

=
1

2γk
XXX⊺

TQ̂kQ̂kQ̂kXXXT +
1
γk

η̂kη̂kη̂kXXXT +
1

2γk
η
⊺
k Q̂kηk +

∫ T

0

{
1

2γk
XXX⊺

t QkQkQkXXX t +
1
γk

ηkηkηkXXX t

+
1

2γk
η
⊺
k Qkηk +

1
γk

XXX⊺
t SSSkui,∗

t − 1
γk

η
⊺
k Skui,∗

t +
1

2γk
(ui,∗

t )⊺Rkui,∗
t

}
dt (1.64)

where

Q̂kQ̂kQ̂k =

 Q̂k −Q̂kHπ
k

−(Hπ
k )

⊺Q̂k (Hπ
k )

⊺Q̂kHπ
k

 , η̂kη̂kη̂k =
[
−η

⊺
k Q̂k η

⊺
k Q̂kHπ

k

]
(1.65)

QkQkQk =

 Qk −QkHπ
k

−(Hπ
k )

⊺Qk (Hπ
k )

⊺QkHπ
k

 ,ηkηkηk =
[
−η

⊺
k Qk η

⊺
k QkHπ

k

]
,SSSk =

 Sk

−(Hπ
k )

⊺Sk

 .
(1.66)

Then, we add together both sides of (1.60) and (1.64) to get

Gi
T (u) =

1
2γk

XXX⊺
TQ̂kQ̂kQ̂kXXXT +

1
γk

η̂kη̂kη̂kXXXT +
1

2γk
η
⊺
k Q̂kηk −ΘT +Θ0 +

∫ T

0

{
1

2γk
XXX⊺

t QkQkQkXXX t

+
1
γk

ηkηkηkXXX t +
1

2γk
η
⊺
k Qkηk +

1
γk

XXX⊺
t SSSkui,∗

t − 1
γk

η
⊺
k Skui,∗

t +
1

2γk
(ui,∗

t )⊺Rkui,∗
t

}
dt

+
∫ T

0

1
γk

XXX⊺
t HHHk

t dXXX t +
∫ T

0

1
γk
(CCCk

t )
⊺dXXX t +

∫ T

0

1
2γk

d
〈

XXX⊺HHHk
t XXX
〉

t

+
∫ T

0

1
2γk

XXX⊺
t dHHHk

t XXX t +
∫ T

0

1
γk

d(CCCk
t )

⊺XXX t +
∫ T

0

1
2γk

dΨ
k
t . (1.67)

The idea is to reduce (1.67) to the form

Gi
T (u)−Θ0 =− 1

2γ2
k

∫ T

0
∥µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)∥2dt +

1
γk

∫ T

0
µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)dWWW t . (1.68)

From (1.67), set the terminal conditions 1
2γk

XXX⊺
TQ̂kQ̂kQ̂kXXXT + 1

γk
η̂kη̂kη̂kXXXT + 1

2γk
η
⊺
k Q̂kηk = ΘT , then

we can consider µ(t,WWW t)µ(t,WWW t)µ(t,WWW t) = (XXX⊺
t HHHk

t + (CCCk
t )

⊺)ΣΣΣk which belongs to the space of adapted

stochastic processes (Ω,FFF ,(F i
t )t∈T,P), especially to the space of square-integrable func-

tions defined on the interval T. Next, we add and subtract the following formula to (1.67)

1
2γ2

k

∫ T

0
∥µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)∥2dt =

1
2γ2

k

∫ T

0
tr
(
(ΣΣΣk)⊺

(
HHHk

t XXX t +CCCk
t

)(
(XXX t)

⊺HHHk
t +(CCCk

t )
⊺
)

ΣΣΣ
k
)

dt.

(1.69)
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Additionally, from (1.6) and (1.14), we can further expand the quadratic variation term

d
〈

XXX⊺HHHk
t XXX
〉

t
= tr

(
σ
⊺
k Π

k
t σk +σ

⊺
0

(
Π

k
t +2111n×Kn(Λ

k
t )

⊺+111n×Kn∆
k
t 111Kn×n

)
σ0

)
dt. (1.70)

Then, (1.67) may be represented as

Gi
T (u) =Θ0 +ζ (u)− 1

2γ2
k

∫ T

0
∥µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)∥2dt +

1
γk

∫ T

0
µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)dWWW t . (1.71)

where

ζ (u) =
∫ T

0

( 1
2γk

XXX⊺
t QkQkQkXXX t +

1
γk

ηkηkηkXXX t +
1

2γk
η
⊺
k Qkηk +

1
γk

XXX⊺
t SSSkui,∗

t − 1
γk

η
⊺
k Skui,∗

t

+
1

2γk
(ui,∗

t )⊺Rkui,∗
t +

1
γk
((XXX t)

⊺HHHk
t +(CCCk

t )
⊺){ÃAAkXXX t + B̃BBkui,∗

t + β̃kβkβkū∗t +M̃MMt}
)

dt

+
1

2γ2
k

∫ T

0
∥µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)∥2dt +

1
2γk

∫ T

0
XXX⊺

t dHHHk
t XXX t +

1
γk

∫ T

0
d(CCCk

t )
⊺XXX t +

1
2γk

∫ T

0
dΨ

k
t

+
1

2γk

∫ T

0
tr
(
σ
⊺
k Π

k
t σk +σ

⊺
0
(
Π

k
t +2111n×Kn(Λ

k
t )

⊺+111n×Kn∆
k
t 111Kn×n

)
σ0
)
dt. (1.72)

Finally, we obtain the following desired form (1.68) for the change of measure

Gi
T (u)−Θ0 = ζ (u)− 1

2γ2
k

∫ T

0
∥µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)∥2dt +

1
γk

∫ T

0
µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)dWWW t (1.73)

given that ζ (u) = 0 is satisfied. In other words, subject to this condition, we have

exp(Gi
T (u)−Θ0) = exp

(
− 1

2γ2
k

∫ T

0
∥µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)∥2dt +

1
γk

∫ T

0
µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)dWWW t

)
. (1.74)

We refer to Duncan (2013) and Karatzas and Shreve (1991) for the fact that (1.74) can

define an equivalent probability measure P̂, such that dP̂
dP = exp

(
Gi

T (u)−Θ0
)

under the

condition ζ (u) = 0. The proof is complete. Thus, exp(Gi
T (u)) is a martingale.

Consider the quotient of martingales
Mi

2,t
Mi

1,t
from equation (1.48) and the constant Θ0

from Theorem 2. The quotient of two expectations will remain unchanged by being mul-

tiplied by a constant value exp(−Θ0) in the numerator and denominator leading to

Mi
2,t

Mi
1,t

=

EP

[
exp(Gi

T (u)−Θ0)

(
exp(A⊺

k T)Q̂k(xi
T−ΦT )+

∫ T
0 exp(A⊺

k s)
(

Qk(xi
s−Φs)+Skui,∗

s

)
ds

)∣∣∣∣F i
t

]
EP[exp(Gi

T (u)−Θ0)|F i
t ]

.

(1.75)
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Recall that from Theorem 2, we obtain a new measure P̂ defined by

dP̂
dP

= exp(Gi
T (u)−Θ0) = exp

(
− 1

2γ2
k

∫ T

0
∥µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)∥2dt +

1
γk

∫ T

0
µ(t,WWW t)µ(t,WWW t)µ(t,WWW t)dWWW t

)
.

(1.76)

Moreover, based on Kuo (2006, Lemma 8.9.2), we obtain the following equality

Mi
2,t

Mi
1,t

= E
[

exp
(
A⊺

k T
)
Q̂k(xi

T −ΦT )+
∫ T

0
exp
(
A⊺

k s
)(

Qk(xi
s −Φs)+Skui,∗

s
)

ds
∣∣∣∣F i

t

]
P̂–a.s. (1.77)

We remark that (1.77) is a martingale under the measure P̂. For the sake of clarity and

organization, we define

M̂i
t = EP̂

[
exp
(
A⊺

k T
)
Q̂k(xi

T −ΦT )+
∫ T

0
exp
(
A⊺

k s
)(

Qk(xi
s −Φs)+Skui,∗

s
)

ds
∣∣∣∣F i

t

]
.

(1.78)

Therefore, under P̂, (1.47) transforms to

ui,∗
t =−R−1

k

[
B⊺

k exp
(
−A⊺

k t
)[

M̂i
t −
∫ t

0

(
exp
(
A⊺

k s
)(

Qk(xi
s −Φs)+Skui,∗

s
))

ds
]
+S⊺k (x

i
t −Φt)

]
. (1.79)

Under P̂, the computed ui,∗
t is an implicit function. Subsequently, in order to obtain an

explicit ui,∗
t , we investigate the existence of a linear feedback control representation under

the new measure.

1.3.3 Linear Feedback Representation of Optimal Control

Using the Theorem 2, we can obtain an implicit control law as shown in equation (1.79).

To investigate the existence of linear feedback control under the new measure P̂, we in-

troduce an adjoint process, which allows us to transform the control function into a linear

process. Specifically, we can identify the control coefficients for the linear feedback con-

trol by equating the drift and diffusion terms of the agent dynamics in equation (1.6) under

the control functions obtained using the martingale representation theorem method, with

the ones derived by applying Itô’s lemma directly to the dynamics under the new mea-

sure P̂. Interestingly, we observe that the control coefficients coincide with the ones used

in order to find the Radon-Nikodym exponent. This result underscores the intimate link

between these vital methods for analyzing and optimizing stochastic processes.
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Theorem 3. For the LQG risk-sensitive system described by (1.6) and (1.8), under the

risk-neutral measure P̂, the optimal control action satisfying (1.79) admits the linear state

feedback representation

ui,∗
t =−R−1

k

[
(B⊺

k Π
k
t +S⊺k )x

i
t +(B⊺

k Λ
k
t −S⊺k Hπ

k )x̄t +B⊺
k ϒ

k
t −S⊺k ηk

]
(1.80)

where

dΠk
t =

{
−Πk

t Ak −A⊺
k Πk

t −Qk +(Πk
t Bk +Sk)R−1

k (B⊺
k Πk

t +S⊺k )

− 1
γk

[
Πk

t σkσ
⊺
k Πk

t +(Πk
t +Λk

t 111Kn×n)σ0σ
⊺
0 (Π

k
t +111n×Kn(Λ

k
t )

⊺)

]}
dt

Πk
T = Q̂k

(1.81)



dΛk
t =

{
−Πk

t Fπ
k −Λk

t Āt −A⊺
k Λk

t +QkHπ
k +(Πk

t Bk +Sk)R−1
k (B⊺

k Λk
t −S⊺k Hπ

k )

− 1
γk

[
Πk

t σkσ
⊺
k Λk

t +(Πk
t +Λk

t 111Kn×n)σ0σ
⊺
0 (111n×Kn∆k

t +Λk
t )

]}
dt

Λk
T =−Q̂kHπ

k

(1.82)

dϒk
t =

{
−Πk

t bk(t)−Λk
t m̄t −A⊺

k ϒk
t +Qkηk +(Πk

t Bk +Sk)R−1
k (B⊺

k ϒk
t −S⊺k ηk)

− 1
γk

[
Πk

t σkσ
⊺
k ϒk

t +(Πk
t +Λk

t 111Kn×n)σ0σ
⊺
0 (ϒ

k
t +111n×KnΓk

t )
]}

dt

ϒk
T =−Q̂kηk.

(1.83)

d∆k
t =

{
−(Hπ

k )
⊺QkHπ

k +∆k
t Āt + Ā⊺

t ∆k
t −2(Fπ

k )⊺Λk
t

+
(
(Λk

t )
⊺Bk − (Hπ

k )
⊺Sk
)

R−1
k

(
B⊺

k Λk
t −S⊺k Hπ

k

)
− 1

γk

[
(Λk

t )
⊺σkσ

⊺
k Λk

t +((Λk
t )

⊺+∆k
t 111Kn×n)σ0σ

⊺
0 (Λ

k
t +111n×Kn∆k

t )

]}
dt

∆k
T =−(Hπ

k )
⊺Λk

T

(1.84)
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

dΓk
t =

{
−(Hπ

k )
⊺Qkηk − (Fπ

k )⊺ϒk
t − (Λk

t )
⊺bk(t)−∆k

t m̄t − (Āt)
⊺Γk

t

+
(
(Λk

t )
⊺Bk − (Hπ

k )
⊺Sk
)

R−1
k

(
B⊺

k ϒk
t −S⊺k ηk

)
− 1

γk

[
(Λk

t )
⊺σkσ

⊺
k ϒk

t +((Λk
t )

⊺+∆k
t 111Kn×n)σ0σ

⊺
0 (ϒ

k
t +111n×KnΓk

t )
]}

dt

Γk
T =−(Hπ

k )
⊺ϒk

T

(1.85)



dΨk
t =

{
−η

⊺
k Qkηk −2(ϒk

t )
⊺bk(t)−2(Γk

t )
⊺m̄t − tr(σ⊺

0 (Π
k
t +2111n×Kn(Λ

k
t )

⊺

+111n×Kn∆k
t 111Kn×n)σ0)− tr(σ⊺

k Πk
t σk)+((ϒk

t )
⊺Bk −η

⊺
k Sk)R−1

k (B⊺
k ϒk

t −S⊺k ηk)

− 1
γk

[
(ϒk

t )
⊺σkσ

⊺
k ϒk

t +((ϒk
t )

⊺+(Γk
t )

⊺111Kn×n)σ0σ
⊺
0 (ϒ

k
t +111n×KnΓk

t )
]}

dt

Ψk
t =−η

⊺
k ϒk

T .

(1.86)

with

Āt =


Ā1
...

ĀK

 ∈ RKn×Kn, m̄t =


m̄1
...

m̄K

 ∈ RKn, (1.87)

and for k ∈ {1,2, ...,K}

Āk =
[
Ak −BkR−1

k (B⊺
k Π

k
t +S⊺k )

]
eeek +Fπ

k −BkR−1
k (B⊺

k Λ
k
t −S⊺k Hπ

k ), (1.88)

m̄k =bk +BkR−1
k S⊺k ηk −BkR−1

k B⊺
k ϒ

k
t . (1.89)

Furthermore, the diffusion terms satisfy the following equations

Π
k
t σk = exp

(
−A⊺

k t
)
Zi

t (1.90)

(Πk
t +Λ

k
t 111Kn×n)σ0 = exp

(
−A⊺

k t
)
Z0

t . (1.91)

In addition, ui,∗
t satisfies Condition (1.52) under P̂.

Proof. Under P̂, we define the adjoint process (pi
t)t∈T where as

pi
t = exp

(
−A⊺

k t
)[

M̂i
t −
∫ t

0

(
exp
(
A⊺

k s
)(

Qk(xi
s −Φs)+Skui,∗

s
))

ds
]

P̂–a.s. (1.92)
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By the martingale representation theorem, there exists a F i
t -adapted process (Zs)s∈T such

that

M̂i
t = M̂i

0 +
∫ t

0
Zi

sdŵi
s +
∫ t

0
Z0

s dŵ0
s . (1.93)

Under P̂, we adopt the following ansatz for the adjoint process

pi
t = Π

k
t xi

t +Λ
k
t x̄t +ϒ

k
t P̂–a.s., (1.94)

where Πk
t ∈ Sn×n, Λk

t ∈ Rn×Kn and ϒk
t ∈ Rn are deterministic functions of time.

We substitute (1.94) in (1.79) to get

ui,∗
t =−R−1

k

[
B⊺

k (Π
k
t xi

t +Λ
k
t x̄t +ϒ

k
t )+S⊺k (x

i
t −Φt)

]
=−R−1

k

[
(B⊺

k Π
k
t +S⊺k )x

i
t +(B⊺

k Λ
k
t −S⊺k Hπ

k )x̄t +B⊺
k ϒ

k
t −S⊺k ηk

]
P̂–a.s. (1.95)

Subsequently, the mean field of control actions is given by ū⊺t =
[
(ū1

t )
⊺ . . . (ūK

t )
⊺
]

where

ūk
t =−R−1

k

[
(B⊺

k Π
k
t +S⊺k )x̄

k
t +(B⊺

k Λ
k
t −S⊺k Hπ

k )x̄t +B⊺
k ϒ

k
t −S⊺k ηk

]
P̂–a.s. (1.96)

We then substitute (1.93) in (1.92), and apply Itô’s lemma to get

d pi
t =−

{
A⊺

k pi
t +Qk(xi

t −Hπ
k x̄t −ηk)+Skui,∗

t

}
dt

+ exp
(
−A⊺

k t
)
Zi

t dŵi
t + exp

(
−A⊺

k t
)
Z0

t dŵ0
t P̂–a.s. (1.97)

Next, we substitute (1.95) in (1.97), which results in

d pi
t =−

{
A⊺

k

{
Π

k
t xi

t +Λ
k
t x̄t +ϒ

k
t

}
+Qk(xi

t −Hπ
k x̄t −ηk)

−SkR−1
k

[
(B⊺

k Π
k
t +S⊺k )x

i
t +(B⊺

k Λ
k
t −S⊺k Hπ

k )x̄t +B⊺
k ϒ

k
t −S⊺k ηk

]}
dt

+ exp
(
−A⊺

k t
)
Zi

t dŵi
t + exp

(
−A⊺

k t
)
Z0

t dŵ0
t , P̂–a.s. (1.98)

By reordering the terms, the above equation is expressed as

d pi
t =
{
−A⊺

k Π
k
t −Qk +SkR−1

k (B⊺
k Π

k
t +S⊺k )

}
xi

tdt

+
{
−A⊺

k Λ
k
t +QkHπ

k +SkR−1
k (B⊺

k Λ
k
t −S⊺k Hπ

k )
}

x̄tdt

+
{
−A⊺

k ϒ
k
t +Qkηk +SkR−1

k B⊺
k ϒ

k
t −SkR−1

k S⊺k ηk

}
dt

+ exp
(
−A⊺

k t
)
Zi

t dŵi
t + exp

(
−A⊺

k t
)
Z0

t dŵ0
t , P̂–a.s. (1.99)
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Next, we apply Itô’s lemma to (1.94) to get

d pi
t = dΠ

k
t xi

t +Π
k
t dxi

t +dΛ
k
t x̄t +Λ

k
t dx̄t +dϒ

k
t , P̂–a.s. (1.100)

In order to obtain the dynamics that pi
t satisfies under P̂, it is essential to derive both the

agent’s and the mean field dynamics under the new measure P̂. From Theorem 2, and by

expanding the term µ(t,WWW t)µ(t,WWW t)µ(t,WWW t), the Wiener processes under P are given by

dŵi
t =dwi

t −
1
γk

σ
⊺
k (Π

k
t xi

t +Λ
k
t x̄t +ϒ

k
t )dt (1.101)

dŵ0
t =dw0

t −
1
γk

σ
⊺
0 (Π

k
t xi

t +Λ
k
t x̄t +111n×Kn(Λ

k
t )

⊺xi
t +111n×Kn∆

k
t x̄t +ϒ

k
t +111n×KnΓ

k
t )dt.

(1.102)

Thus, under P̂, the dynamics (1.6) and (1.14) are, respectively, expressed as

dxi
t =
(

Akxi
t +Fπ

k x̄t +Bkui,∗
t +bk(t)

)
dt +σk

(
dŵi

t +
1
γk

σ
⊺
k (Π

k
t xt +Λ

k
t x̄t +ϒ

k
t )dt

)
+σ0

(
dŵ0

t +
1
γk

σ
⊺
0 (Π

k
t xi

t +Λ
k
t x̄t +111n×Kn(Λ

k
t )

⊺xi
t

+111n×Kn∆
k
t x̄t +ϒ

k
t +111n×KnΓ

k
t )dt

)
P̂–a.s., (1.103)

dx̄t =(Ăx̄t + B̆ū∗t + m̆t)dt +111Kn×nσ0

(
dŵ0

t +
1
γk

σ
⊺
0 (Π

k
t xi

t +Λ
k
t x̄t

+111n×Kn(Λ
k
t )

⊺xi
t +111n×Kn∆

k
t x̄t +ϒ

k
t +111n×KnΓ

k
t )dt

)
P̂–a.s. (1.104)

Now, we substitute the control action (1.95) and the mean field of control actions (1.96)

in the above agent and mean field dynamics under P̂ to obtain

dxi
t =
[
Ak −BkR−1

k (B⊺
k Π

k
t +S⊺k )

]
xi

tdt +
[
Fπ

k −BkR−1
k (B⊺

k Λ
k
t −S⊺k Hπ

k )
]

x̄tdt

+
[
−BkR−1

k

[
B⊺

k ϒ
k
t −S⊺k ηk

]
+bk(t)

]
dt +σk

(
dŵi

t +
1
γk

σ
⊺
k ((Π

k
t )

⊺xi
t +Λ

k
t x̄t +ϒ

k
t )dt

)
+σ0

(
dŵ0

t +
1
γk

σ
⊺
0 (Π

k
t xi

t +Λ
k
t x̄t +111n×Kn(Λ

k
t )

⊺xi
t +111n×Kn∆

k
t x̄t +ϒ

k
t +111n×KnΓ

k
t )dt

)
(1.105)
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and

dx̄t =(Āt x̄t + m̄t)dt

+111Kn×nσ0

(
dŵ0

t +
1
γk

σ
⊺
0 (Π

k
t xi

t +Λ
k
t x̄t +111n×Kn(Λ

k
t )

⊺xi
t

+111n×Kn∆
k
t x̄t +ϒ

k
t +111n×KnΓ

k
t )dt

)
(1.106)

where

Āt =


Ā1
...

ĀK

 ∈ RKn×Kn, m̄t =


m̄1
...

m̄K

 ∈ RKn×1, (1.107)

and for k ∈ {1,2, ...,K}

Āk =
[
Ak −BkR−1

k (B⊺
k Π

k
t +S⊺k )

]
eeek +Fπ

k −BkR−1
k (B⊺

k Λ
k
t −S⊺k Hπ

k ), (1.108)

m̄k =bk +BkR−1
k S⊺k ηk −BkR−1

k B⊺
k ϒ

k
t . (1.109)

Finally, we substitute the derived agent dynamics and mean field dynamics under P̂ in

(1.100) to obtain the dynamics that pi
t satisfies as

d pi
t =dΠ

k
t xi

t +
{

Π
k
t Ak −Π

k
t BkR−1

k (B⊺
k Π

k
t +S⊺k )

+
1
γk

[
Π

k
t σkσ

⊺
k Π

k
t +(Πk

t +Λ
k
t 111Kn×n)σ0σ

⊺
0 (Π

k
t +111n×Kn(Λ

k
t )

⊺)
]}

xi
tdt

+dΛ
k
t x̄t +

{
Π

k
t Fπ

k −Π
k
t BkR−1

k (B⊺
k Λ

k
t −S⊺k Hπ

k )+Λ
k
t Āt

+
1
γk

[
Π

k
t σkσ

⊺
k Λ

k
t +(Πk

t +Λ
k
t 111Kn×n)σ0σ

⊺
0 (111n×Kn∆

k
t +Λ

k
t )
]}

x̄tdt

+dϒ
k
t +
{
−Π

k
t BkR−1

k B⊺
k ϒ

k
t +Π

k
t BkR−1

k S⊺k ηk +Π
k
t bk(t)+Λ

k
t m̄t

+
1
γk

[
Π

k
t σkσ

⊺
k ϒ

k
t +(Πk

t +Λ
k
t 111Kn×n)σ0σ

⊺
0 (ϒ

k
t +111n×KnΓ

k
t )
]}

dt

+Π
k
t σkdŵi

t +(Πk
t +Λ

k
t 111Kn×n)σ0dŵ0

t , P̂–a.s. (1.110)

Since the two SDEs (1.99) and (1.110) that pi
t satisfies must align for every sample path

of the Wiener processes, it is necessary for both the drift coefficients and the diffusion

coefficients to be identical. Equating the drift coefficients of (1.99) and (1.110), we have
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

dΠk
t =

{
−Πk

t Ak −A⊺
k Πk

t −Qk +(Πk
t Bk +Sk)R−1

k (B⊺
k Πk

t +S⊺k )

− 1
γk

[
Πk

t σkσ
⊺
k Πk

t +(Πk
t +Λk

t 111Kn×n)σ0σ
⊺
0 (Π

k
t +111n×Kn(Λ

k
t )

⊺)

]}
dt

Πk
T = Q̂k

(1.111)



dΛk
t =

{
−Πk

t Fπ
k −Λk

t Āt −A⊺
k Λk

t +QkHπ
k +(Πk

t Bk +Sk)R−1
k (B⊺

k Λk
t −S⊺k Hπ

k )

− 1
γk

[
Πk

t σkσ
⊺
k Λk

t +(Πk
t +Λk

t 111Kn×n)σ0σ
⊺
0 (111n×Kn∆k

t +Λk
t )

]}
dt

Λk
T =−Q̂kHπ

k

(1.112)

dϒk
t =

{
−Πk

t bk(t)−Λk
t m̄t −A⊺

k ϒk
t +Qkηk +(Πk

t Bk +Sk)R−1
k (B⊺

k ϒk
t −S⊺k ηk)

− 1
γk

[
Πk

t σkσ
⊺
k ϒk

t +(Πk
t +Λk

t 111Kn×n)σ0σ
⊺
0 (ϒ

k
t +111n×KnΓk

t )

]}
dt

ϒk
T =−Q̂kηk.

(1.113)

By equating the diffusion coefficients of (1.99) and (1.110), we obtain

Π
k
t σk = exp

(
−A⊺

k t
)
Zi

t , (1.114)

(Πk
t +Λ

k
t 111Kn×n)σ0 = exp

(
−A⊺

k t
)
Z0

t . (1.115)

Now, our focus turns to characterizing ∆k
t , Γk

t , and Ψk
t . For the change of measure to be

valid, and consequently, the obtained equations (1.111)–(1.113) to hold, it is essential to

satisfy the condition (1.52). To do so, we substitute the control action (1.95), the mean

field of control actions (1.96), and equations (1.111)–(1.113) into condition (1.52) under

P̂, resulting in

ζ (u) =
∫ T

0

(
1

2γk
(x̄t)

⊺(Hπ
k )

⊺QkHπ
k x̄t +

1
γk

η
⊺
k QkHπ

k x̄t +
1

2γk
η
⊺
k Qkηk +

1
2γk

[
(x̄t)

⊺((Hπ
k )

⊺Sk
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− (Λk
t )

⊺Bk)− (ϒk
t )

⊺Bk +(ηk)
⊺Sk
]
R−1

k

[
(B⊺

k Λ
k
t −S⊺k Hπ

k )x̄t +B⊺
k ϒ

k
t −S⊺k ηk

]
+

1
γk

[
(x̄t)

⊺((Fπ
k )⊺Λ

k
t +∆

k
t Āt)x̄t +((ϒk

t )
⊺Fπ

k +(Γk
t )

⊺Āt)x̄t)+(x̄t)
⊺(Λk

t )
⊺bk(t)

+(x̄t)
⊺
∆

k
t m̄t +(ϒk

t )
⊺bk(t)+(Γk

t )
⊺m̄t

]
+

1
2γ2

k
(x̄t)

⊺
(
(Λk

t )
⊺
σkσ

⊺
k Λ

k
t +((Λk

t )
⊺

+∆
k
t 111Kn×n)σ0σ

⊺
0 (Λ

k
t +111n×Kn∆

k
t )
)

x̄t +
1

2γ2
k

tr
(
(ΣΣΣk)⊺HHHk

t XXX t(CCCk
t )

⊺
ΣΣΣ

k

+(ΣΣΣk)⊺CCCk
t (XXX t)

⊺HHHk
t ΣΣΣ

k +(ΣΣΣk)⊺CCCk
t (CCC

k
t )

⊺
ΣΣΣ

k
)

dt +
1

2γk

∫ T

0
tr(σ⊺

k Π
k
t σk

+σ
⊺
0

(
Π

k
t +2111n×Kn(Λ

k
t )

⊺+111n×Kn∆
k
t 111Kn×n)σ0

)
dt +

1
2γk

∫ T

0
(x̄t)

⊺d∆
k
t x̄t

+
1
γk

∫ T

0
(dΓ

k
t )

⊺x̄t +
1

2γk

∫ T

0
dΨ

k
t = 0, P̂–a.s. (1.116)

To satisfy the above condition, we further impose the following constraints on the coeffi-

cients of the control action:



d∆k
t =

{
−(Hπ

k )
⊺QkHπ

k +∆k
t Āt + Ā⊺

t ∆k
t −2(Fπ

k )⊺Λk
t

+
(
(Λk

t )
⊺Bk − (Hπ

k )
⊺Sk
)

R−1
k

(
B⊺

k Λk
t −S⊺k Hπ

k

)
− 1

γk

[
(Λk

t )
⊺σkσ

⊺
k Λk

t +((Λk
t )

⊺+∆k
t 111Kn×n)σ0σ

⊺
0 (Λ

k
t +111n×Kn∆k

t )

]}
dt

∆k
T =−(Hπ

k )
⊺Λk

T

(1.117)

dΓk
t =

{
−(Hπ

k )
⊺Qkηk − (Fπ

k )⊺ϒk
t − (Λk

t )
⊺bk(t)−∆k

t m̄t − (Āt)
⊺Γk

t

+
(
(Λk

t )
⊺Bk − (Hπ

k )
⊺Sk
)

R−1
k

(
B⊺

k ϒk
t −S⊺k ηk

)
− 1

γk

[
(Λk

t )
⊺σkσ

⊺
k ϒk

t +((Λk
t )

⊺+∆k
t 111Kn×n)σ0σ

⊺
0 (ϒ

k
t +111n×KnΓk

t )

]}
dt

Γk
T =−(Hπ

k )
⊺ϒk

T

(1.118)
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

dΨk
t =

{
−η

⊺
k Qkηk −2(ϒk

t )
⊺bk(t)−2(Γk

t )
⊺m̄t − tr(σ⊺

0 (Π
k
t +2111n×Kn(Λ

k
t )

⊺

+111n×Kn∆k
t 111Kn×n)σ0)− tr(σ⊺

k Πk
t σk)+((ϒk

t )
⊺Bk −η

⊺
k Sk)R−1

k (B⊺
k ϒk

t −S⊺k ηk)

− 1
γk

[
(ϒk

t )
⊺σkσ

⊺
k ϒk

t +((ϒk
t )

⊺+(Γk
t )

⊺111Kn×n)σ0σ
⊺
0 (ϒ

k
t +111n×KnΓk

t )

]}
dt

Ψk
t =−η

⊺
k ϒk

T .

(1.119)

We have derived the optimal control under P̂. Now, we investigate its relationship

with the optimal control action under the original measure P.

Theorem 4. Under the risk-sensitive measure P, the optimal control action for the LQG

risk-sensitive system, described by (1.6)–(1.10), admits the linear state feedback repre-

sentation

ui,∗
t =−R−1

k

[
(B⊺

k Π
k
t +S⊺k )x

i
t +(B⊺

k Λ
k
t −S⊺k Hπ

k )x̄t +B⊺
k ϒ

k
t −S⊺k ηk

]
, (1.120)

where Πk
t , Λk

t , and ϒk
t are characterized by (1.81)–(1.86) given in Theorem 3.

Proof. Consider the sample space Ω. Then, ui,∗
t admits the representation

ui,∗
t =−R−1

k

[
(B⊺

k Π
k
t +S⊺k )x

i
t +(B⊺

k Λ
k
t −S⊺k Hπ

k )x̄t +B⊺
k ϒ

k
t −S⊺k ηk

]
, P̂–a.s. (1.121)

if and only if

P̂
({

ν |ui,∗
t (ν) ̸=−R−1

k

[
(B⊺

k Π
k
t +S⊺k )x

i
t(ν)+(B⊺

k Λ
k
t −S⊺k Hπ

k )x̄t(ν)+B⊺
k ϒ

k
t −S⊺k ηk

]})
= 0,

(1.122)

where ν ∈ Ω represents a state of the world. By Girsanov theorem, P̂ is a measure equiv-

alent to P. Thus, by the equivalence of measure, (1.122) implies that

P
({

ν |ui,∗
t (ν) ̸=−R−1

k

[
(B⊺

k Π
k
t +S⊺k )x

i
t(ν)+(B⊺

k Λ
k
t −S⊺k Hπ

k )x̄t(ν)+B⊺
k ϒ

k
t −S⊺k ηk

]})
= 0.

(1.123)
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Thus, under P, the optimal control action admits the representation (1.120) with the re-

spective control coefficients. In other words, (1.120) makes the Gâteaux derivative (1.17)

zero. Therefore, it is the optimal control action that minimizes the cost functional (1.8)

given the dynamics of the system (1.6).

1.3.4 Nash Equilibrium

Definition 2 (Nash Equilibrium). A set of strategies {ui, i = 1,2, . . .} ∈ U 1 ×·· ·×U N

achieves the Nash equilibrium for all N plays given the cost functional Ji for each if for

every agent i ∈N with any admissible strategy u ∈ U i

Ji(u1, . . . ,ui, . . . ,uN)≤ Ji(u1, . . . ,ui−1,u,ui+1, . . . ,uN). (1.124)

In other words, in the Nash equilibrium, no agent will be better off, specifically in this

case, with a smaller cost, if it unilaterally deviates from the strategies established by the

equilibrium.

Theorem 5. Consider the optimal control (1.120) obtained in Theorem 4 for LQG risk-

sensitive system. For the infinite-population model given the system described by the

dynamics (1.6) and the cost functional (1.8), the set of the optimal controls {ui,∗, i =

1,2, . . .} for agents yields a Nash equilibrium.

Proof. Considering that all agents adhere to the optimal strategies outlined in Theorem 4,

we can establish the validity of the theorem statement. In situations where an individual

agent i chooses to diverge from the set of strategies unilaterally, the influence on the mean

field will be insignificant. Consequently, on the one hand, this prompts the remaining

agents to execute the original control, with the aim of minimizing the cost functional. On

the other hand, as the mean field state is unchanged, by Theorem 4, the optimal control

of the agent i in question remains to be ui,∗. Therefore, any deviation of the agent i from

this optimal control ui,∗ will not lead to a cost reduction.

In this work, our focus is on the infinite-population scenario. The connection between

the obtained Nash equilibrium strategies and the original finite-population system may be
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established by following along the lines of proof in (Liu et al., 2023). More specifically,

it can be shown that these strategies yield an approximate Nash (ε-Nash) equilibrium for

the finite-population system.
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Chapter 2

Application to an Interbank Market

In the context of the interbank market, we undertake a study utilizing the LQG risk-

sensitive model introduced in Section 1.2. Our objective is to acquire a deeper under-

standing of the dynamics involved in interbank lending and borrowing. In this context,

agents represent banks and their state represents the logarithmic monetary reserve (log-

reserve) of the bank. A representative bank, driven by its financial requirements in differ-

ent periods, engages in lending activities by purchasing bonds from the central bank and

lending to other banks, or engages in borrowing activities with the central bank and other

banks, all while striving to minimize operational costs. Within the same framework, the

mean field state is illustrated by the limiting average of the log-reserves held by all banks

participating in the market. Subsequently, we will henceforth denote this mean field state

as the market state. In this chapter, we introduce a simplified version of the model to

give an example. However, the general model can also be used similarly when there is a

demand.

We consider log-reserves of banks and of the market and their control action to be

scalars and reduce the dimension of the matrices by setting K = r = 1. Consequently, the

market exclusively comprises homogeneous banks sharing the same model parameters

each subject to an idiosyncratic shock and a common noise. The common noise in each

case can be viewed as the common impact of the market environment at a macro level on



the banks. In this setting, the banks are correlated due to being impacted by the common

noise as presented in Section 2.2.1. In addition, although independent of each other,

the idiosyncratic and the common shocks will affect the banks by the same factor ρ .

Consequently, the interplay between these shocks has a combined effect on the log-reserve

of an individual bank and the market.

In this section, we begin by presenting an optimization problem in the context of in-

terbank transactions. We consider first the model parameters, presented in Section 1.1 and

1.2, as in Table 2.1. As we are in a homogeneous setting, we consider the same σ as part

of the multiplier for both individual and market shock. Then, we provide an interpretation

General model Ak Fk Bk Hk ηk Q̂k Qk Sk Rk σ0 σk

Interbank market model −a a 1 1 0 q̂ q ξ 1 σρ σ
√

1−ρ2

Table 2.1: Model parameters in the interbank market model.

for each parameter based on Carmona et al. (2015b) and Chang et al. (2023). Next, we

introduce the solution to the problem based on the theorems presented in Section 1.3. We

solve the system of control coefficients numerically and provide an analytical solution

for a simpler case. Subsequently, we define the total and conditional default probability

and proceed to address it utilizing respectively the classical and stochastic Fokker-Planck

equations, drawing inspirations from Ding and Rangarajan (2004) and Carmona et al.

(2015b), by considering the first hitting time of the market and agent state falling be-

low a default threshold. Next, we employ the forward explicit finite differences method

to tackle the probability of default concerning both the individual bank and the entire

market. Then, we examine the influence of parameter variations on the probabilities of

default. Notably, we consider the effects of the common factor ρ , risk-sensitivity, and

liquidity parameters on the reserve of the bank and of the market at equilibrium. In the

end, a comprehensive analysis of the bank’s conditional probability of default will follow,

considering the presence of two distinct trajectories of common noise.

The terminology employed in this section pertains to interbank transactions. Specif-

ically, the concepts of lending and borrowing from the central bank correspond to the
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acquisition and sale, respectively, of government-issued bonds. Moreover, the transaction

rate denotes the controlled measures that a bank undertakes in this process to effectively

manage reserve prerequisites, enhance liquidity, and fulfill regulatory mandates.

Remark that despite our efforts to obtain data for parameter calibration, we were un-

able to access the necessary information due to the confidentiality protocols regarding

monetary reserves held by various institutions. Consequently, we will assign values to

parameters inspired from Carmona et al. (2015b) in the application sections.

2.1 Finite-Population Model

2.1.1 Dynamics

On the probability space (Ω,FFF ,(F
[N]
t )t∈T,P), for bank i, i ∈N, the finite population dy-

namics is given as

dxi
t = {a(x[N]

t − xi
t)+ui

t +b(t)}dt +σ

√
1−ρ2dwi

t +σρdw0
t (2.1)

where t ∈ T. We denote the variable xi
t ∈ R as the log-reserve of the bank at the time t.

The transaction rate ui
t ∈ R represents the money that the bank lends to or borrows from

the central bank during the market activity at each time t. As in the general model, the

market shock is characterized by w0
t ∈ R which is independent of the shock received by

the bank wi
t ∈ R through t ∈ T.The average log-reserve of all the banks in the market at

the time t represents the market state and is captured by x[N]
t ∈ R with dynamics

dx[N]
t = (u[N]

t +b(t))dt +
σ
√

1−ρ2

N ∑
i∈I

dwi
t +σρdw0

t (2.2)

x[N]
t =

1
N ∑

i∈I

xi
t , u[N]

t =
1
N ∑

i∈I

ui
t . (2.3)

In addition, the parameter a ∈ R is the mean reversion rate of the bank’s reserve to-

wards the market state. The liquidity of the bank before market activity at each time t is

represented by b(t). The volatility of the log-reserve of the bank with respect to its own

local shock (underlying uncertainty source) is denoted by σρ ∈ R. The volatility of the
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log-reserve with respect to the global shock that affects the market (i.e. the macroeco-

nomic factors), is characterized by σ
√

1−ρ2 ∈ R. As can be seen from above equation,

an instantaneous coefficient 0 ≤ ρ ≤ 1 is a common multiplier factor for the shock deliv-

ered by the bank itself and by the environment.

In addition, the equivalent assumptions and σ -fields as for the general model in Sec-

tion 1.1 are considered.

2.1.2 Cost Functional

The operational cost of a representative bank to be minimized is modeled by the functional

Ji,[N] = γ logE
{

exp
(

1
γ

(
g(xi

T ,x
[N]
T )+

∫ T

0
f (xi,x[N]

t ,ui
t)dt
))}

(2.4)

where

g(xi
T , x̄T ) =

1
2
(x[N]

T − xi
T )

2q̂ (2.5)

f (xi,x[N]
t ,ui

t) =
1
2

{
(x[N]

t − xi
t)

2q−2(x[N]
t − xi

t)ξ ui
t +(ui

t)
2
}

(2.6)

with q̂, q, ξ ∈ R.

The costs specified for the bank are composed of the terminal g(xi
T ,x

[N]
T ) and running

f (xi,x[N]
t ,ui

t) costs. The degree of risk-sensitivity for bank-i is represented by 1
γ
∈ (0,∞)

and models a risk-averse behaviour. Specifically, the larger 1
γ
, the more risk-averse is

the bank. In the limit, where 1
γ
→ 0, the cost functional reduces to a risk-neutral one.

The terminal cost consists of only a quadratic term associated with the risk undertaken in

connection with the market state at the time T . There are three running cost components

associated with the state of the bank and the market state as well as the control action

at time t. When the log-reserve of the bank significantly differs from the market state,

the penalty for deviation is conveyed through the quadratic cost (x[N]
t − xi

t)
2q. The bank’s

incentive to borrow from or lend to the central bank in relation to the market state is

modeled by −2(x[N]
t − xi

t)ξ ui
t . Remark that ξ > 0 represents the bank’s borrowing or

lending fees for the adjustments in the monetary reserve, guided by the control ui
t . In

other words, if x[N]
t > xi

t , the bank wishes to have ui
t > 0 (i.e. borrowing money). Then, the
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borrowing cost will be added to the running cost (i.e. −2(x[N]
t − xi

t)ξ ui
t > 0). If x[N]

t < xi
t ,

the bank wishes to have ui
t < 0 (i.e. lending money). Subsequently, the gain from lending

will be deduced from the running cost (i.e. −2(x[N]
t −xi

t)ξ ui
t < 0). The transaction cost or

market friction is modeled by the quadratic term (ui
t)

2.

In short, through the trading horizon T, a representative bank wants to minimize its

expected cost (2.4) while being risk-averse and its log-reserve is governed by (2.1).

2.2 Infinite-Population Model

2.2.1 Dynamics

In the infinite population limit, where N → ∞ (see Section 1.2), the log-reserve of the

bank i ∈N at the time t satisfies

dxi
t = {a(x̄t − xi

t)+ui
t +b(t)}dt +σ

√
1−ρ2dwi

t +σρdw0
t (2.7)

where the mean field, x̄t = limN→∞
1
N ∑i∈I xi

t , represents the limiting market state satisfy-

ing

dx̄t = (ūt +b(t))dt +σρdw0
t (2.8)

with

ūt = lim
N→∞

1
N ∑

i∈I

ui
t . (2.9)

From this point forward, we will refer the state x̄t as the market state. Other coefficients

and variables are the same as the ones defined in Section 2.1.1.

Remark that for two banks in the market, bank-i and bank- j with i, j ∈ N such that

i ̸= j. As the Brownian motions wi
t , w j

t and w0
t are independent of each other but the bank

states xi
t and x j

t are influenced by the same common noise w0
t , corr(xi

t ,x
j
t ) = (σρ)2. In

other words, the banks are correlated. In addition, for any bank-i, i ∈ N, corr(xi
t , x̄t) =

(σρ)2.

The same assumptions and σ -fields as for the general model in Section 1.2 in dimension-

reduced form are considered.
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2.2.2 Cost Functional

The operational cost of a representative bank that needs to be minimized is structured

using the identical parameters and variables as described in 2.1.2. The only alteration

is the substitution of the state x[N]
t with the market one x̄t to account for the scenario

involving an infinite population of small banks. This cost is represented by the functional

Ji,∞ = γ logE
{

exp
(

1
γ

(
g(xi

T , x̄T )+
∫ T

0
f (xi, x̄t ,ui

t)dt
))}

(2.10)

where

g(xi
T , x̄T ) =

1
2
(x̄T − xi

T )
2q̂ (2.11)

f (xi, x̄t ,ui
t) =

1
2
{
(x̄t − xi

t)
2q−2(x̄t − xi

t)ξ ui
t +(ui

t)
2} . (2.12)

In order to ensure the convexity of the cost functional, we impose the equivalent con-

ditions as in Assumption 3, i.e.

q̂ ≥ 0, q−ξ
2 ≥ 0. (2.13)

2.3 Optimal Transaction Rate for Infinite-Population

Model

From Theorem 4 and the model described by (2.1), (2.8) and (2.10), the optimal transac-

tion rates {ui,∗, i = 1,2, . . .} for individual banks achieving a Nash equilibrium are char-

acterized by

ui,∗
t =−

[
(Πt +ξ )xi

t +(Λt −ξ )x̄t +ϒt
]
, i ∈N (2.14)
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where
dΠt =

{(
1− σ2

γ

)
Π2

t +
(

2a+2ξ − 2
γ
(σρ)2Λt

)
Πt

−1
γ
(σρ)2(Λt)

2 +ξ 2 −q
}

dt

ΠT = q̂

(2.15)


dΛt =

{
(1− 1

γ
(σρ)2)Λ2

t +
(

a+2Πt +ξ − σ2

γ
Πt − 1

γ
(σρ)2∆t

)
Λt

−
(
ξ +a+ 1

γ
(σρ)2∆t

)
Πt +q−ξ 2

}
dt

ΛT =−q̂

(2.16)


dϒt =

{(
Πt +Λt +a+ξ − σ2

γ
Πt − 1

γ
(σρ)2Λt

)
ϒt − (1

γ
(σρ)2Γt +b(t))Πt

−(1
γ
(σρ)2Γt +b(t))Λt

}
dt

ϒT = 0

(2.17)


d∆t =

{
−1

γ
(σρ)2∆2

t −2(Πt +Λt +
1
γ
(σρ)2Λt)∆t +(1− σ2

γ
)Λ2

t

−2(ξ +a)Λt −q+ξ 2
}

dt

∆T =−ΛT

(2.18)


dΓt =

{(
Πt +Λt − 1

γ
(σρ)2(Λt +∆t)

)
Γt +

(
ϒt −b(t)− σ2

γ
ϒt

)
Λt

+
(
−ξ −a+∆t − 1

γ
(σρ)2∆t

)
ϒt −b(t)∆t

}
dt

ΓT = 0

(2.19)


dΨt =

{(
1− σ2

γ

)
ϒ2

t − 1
γ
(σρ)2Γ2

t −σ2Πt −2(σρ)2Λt

+2
(

Γt − 1
γ
(σρ)2Γt −b(t)

)
ϒt − (σρ)2∆t −2b(t)Γt

}
dt

ΨT = 0.

(2.20)

The resulting market transaction rate ū∗t in the infinite-population model is given by

ū∗t =− [(Πt +ξ )x̄t +(Λt −ξ )x̄t +ϒt ] . (2.21)

Consequently, the following dynamics for individual banks and the market state emerge

dxi
t = {(a−Λt +ξ ) x̄t −(a+Πt +ξ )xi

t −ϒt +b(t)}dt+σ

√
1−ρ2dwi

t +σρdw0
t (2.22)
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dx̄t = (Āt x̄t + m̄t)dt +σρdw0
t (2.23)

where

Āt =−Πt −Λt (2.24)

m̄t = b(t)−ϒt . (2.25)

We provide an example of a simplified optimization problem and provide analytically

the optimal transaction rate of the bank and of the market.

2.3.1 Analytical Solutions for a Specific Scenario

It is interesting to explore the analytical solution to a special case of the model under

consideration. We will give an example there. Consider the question with parameters

of value 1 except a = 10 and we are interested in the analytical solution of the optimal

transaction rate of the bank and of the market.

Consider the dynamics of the bank as

dxi
t = {10(x̄t − xi

t)+ui
t +1}dt +dw0

t (2.26)

dx̄t = (ūt +1)dt +dw0
t (2.27)

where

x̄t =
1
N ∑

i∈I
xi

t ∈ R, ūt =
1
N ∑

i∈I
ui

t ∈ R. (2.28)

Moreover, consider the cost functional is given by

lim
N→∞

Ji,[N] = logE
{

exp
((

g(xi
T , x̄T )+

∫ T

0
f (xi, x̄t ,ui

t)dt
))}

(2.29)

where

g(xi
T , x̄T ) =

1
2
(x̄T − xi

T )
2 (2.30)

f (xi, x̄t ,ui
t) =

1
2
{
(x̄t − xi

t)
2 −2(x̄t − xi

t)u
i
t +(ui

t)
2} . (2.31)
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Proposition 6. The optimal control of the LQG risk-sensitive system with the dynamics

(2.26) and the cost functional (2.29) is given by

ui,∗
t =

(
1− 22exp(22t)

exp(22t)−23exp(22)

)
(x̄t − xi

t). (2.32)

Proof. Considering the optimal control of the bank based on the equation (2.14) with

defined parameters, namely

ui,∗
t =−

[
(Πt +1)xi

t +(Λt −1)x̄t +ϒt
]
. (2.33)

Based on the Section 4 and the parameters defined in this specific case, for the system of

ordinary differential equations (ODES) for control coefficients Πt ,Λt ,ϒt ,∆t ,Γt and Ψt ,

we can see that Πt =−Λt leading dΠt =−dΛt = 22Πt +Π2
t dt

ΠT =−ΛT = 1.
(2.34)

By solving this ODE,

Πt =
−22exp(22c1 +22t)
exp(22c1 +22t)−1

,c1 ∈ R. (2.35)

We can then solve c1 by considering the terminal condition

ΠT =
−22exp(22c1 +22T )
exp(22c1 +22T )−1

= 1. (2.36)

We obtain

Πt =
−22exp(22t)

exp(22t)−23exp(22)
. (2.37)

For ϒt ,  dϒt = 11ϒtdt

ϒT = 0.
(2.38)

However, when solving the above ODE, we obtain

ϒt = c2 exp(11t), c2 ∈ R (2.39)
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which at terminal time, T , is equal to

ϒT = c2 exp(11T ) = 0. (2.40)

Thus, c2 = 0 and ϒt = 0.

As a result, the optimal control is

ui,∗
t = (Πt +1)(x̄t − xi

t)

=

(
1− 22exp(22t)

exp(22t)−23exp(22)

)
(x̄t − xi

t). (2.41)

The rest of the thesis delves into the analysis of the likelihood of default concerning

both the bank’s and the market’s log-reserve in the equilibrium which we refer thereby

as the individual and systemic defaults. The interdependence of the banks is articulated

in the Section 2.2.1. The correlation between banks imposes a risk to the entire market,

identified as the systemic risk. Namely, the systemic risk refers to the probability of the

market default given such relationship between banks. This scrutiny is supplemented by

analyzing the effects of various model parameters on the default probability. Additionally,

the influence of particular trajectories of common noise on default is showcased.

2.4 Individual Default and Systemic Risk

In this section, we investigate the default probability of a representative bank i ∈N and

the systemic risk. We first define these notions by the likelihood of the respective states

dipping below a specific threshold based on Carmona et al. (2015b). We first derive the

Fokker-Planck equation that the respective probability density function satisfies in each

case based on E et al. (2019) and Carmona et al. (2015b). Then, to compute the default

probabilities, we use the analysis of first hitting time and the obtained Fokker-Planck

equations. We refer to Ding and Rangarajan (2004) for the calculation of the default

probability of a general diffusion process using this method.
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2.4.1 Definition of Default Probability and First Hitting Time

The default event can be interpreted as an occurrence wherein either the market or the

agent fails to fulfill the minimum reserve requirements stipulated by the regulator or the

conditions necessary to sustain the functionality of daily operations. As Carmona et al.

(2015b), we consider the same constant default threshold for both the market and the

agent. In this context, the market default can also be seen as the default of a representative

bank that holds the limiting average of the log-reserves of all banks.

We define the probability of a systemic default event as the likelihood of the minimum

market state, governed by the dynamics described in equation (2.23), falling below the

default threshold θ over the time horizon T as

P( min
0≤t≤T

x̄t ≤ θ). (2.42)

We define the probability of the default event of bank-i as the likelihood of the bank’s log-

reserve, governed by the dynamics described in equation (2.22), falling below the default

threshold θ over the time horizon T as

P( min
0≤t≤T

xi
t ≤ θ). (2.43)

We define the conditional probability of the default event of bank-i as the likelihood of the

bank’s log-reserve, governed by the dynamics described in equation (2.22), falling below

the default threshold θ over the time horizon T given (F 0
t )t∈T as

P( min
0≤t≤T

x̄t ≤ θ |F 0
t ). (2.44)

In this scenario, we will conduct an in-depth analysis of the individual default probability

while considering a specific trajectory of common noise. This probability provides a

clearer insight into the default event of bank-i within the context of observed market

shocks.

Over the time horizon T, the event that the minimum of the set of states governed by

the corresponding dynamics falls below the threshold θ is equivalent to the first hitting
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time of the state when it reaches the predefined threshold θ (Ding and Rangarajan, 2004).

Let us define the first hitting time for bank-i as t∗xi := minxi
t=θ

t. Then, we have

P( min
0≤t≤T

xi
t ≤ θ) = P(t∗x̄ ≤ T ). (2.45)

Similarly, we define the first hitting time for the mean-field as t∗x̄ := minx̄t=θ t. The equiv-

alent probability for the systemic event is then given by

P( min
0≤t≤T

x̄t ≤ θ) = P(t∗x ≤ T ). (2.46)

The conditional default probability of a representative bank given (F 0
t )t∈T is equvalently

expressed as in

P( min
0≤t≤T

xi
t ≤ θ |F 0

T ) = P(t
∗
xi

t
≤ T |F 0

T ). (2.47)

2.4.2 Fokker-Planck Equation for Systemic Risk

The probability of market default is considered first, and then a similar approach is applied

to analyze the probability of default for the individual bank. The analysis begins by

investigating through the time horizon T the event of the minimum market state reaching

a certain value at a specific time to determine the probability of the first hitting time. If the

minimum market state reaches the predetermined threshold, the default event occurs. The

probability of the default may be computed from the survival probability density function

p̄(x̄, t) which captures the event in which the market default is not occurred through out the

time horizon T. In order to find p̄(x̄, t), as x̄t is stochastic we employ the Fokker-Planck

method based on Ding and Rangarajan (2004), where this method is used to calculate the

probability of default of a diffusion process.

We solve first the Fokker-Planck partial differential equation (PDE) with respective

boundaries for the probability of the systemic survival described as

∂ p̄(x̄, t)
∂ t

=− ∂

∂ x̄
[(Āt x̄+b(t)−ϒt)p̄(x̄, t)]+

(σρ)2

2
∂ 2 p̄(x̄, t)

∂ x̄2

=−Āt
∂

∂ x̄
[p̄(x̄, t)]− (Āt x̄+b(t)−ϒt)

∂

∂ x̄
[p̄(x̄, t)]+

(σρ)2

2
∂ 2 p̄(x̄, t)

∂ x̄2 . (2.48)
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We consider the absorbing boundaries allowing p(x̄, t) to vanish if it breaks the thresh-

old. Moreover, we impose P(x̄ = ∞) = 0 almost surely. In addition, we define the bound-

ary condition at initial time t = 0 according to a standard normal distribution, denoted as

N (0,1). Hence, the boundaries are

p̄(θ , t) = 0, p̄(∞, t) = 0, p̄(x̄,0)∼ N (0,1) with x̄ ∈ (θ ,∞). (2.49)

It should be noted that the existence of the probability density function p(x̄t , t) as-

sumes that the market state does not break the threshold at time t. Therefore, the proba-

bility of the event that the first hitting time is beyond T can be determined by integrating

p(x̄t ,T ) over all possible x̄ within the boundary of existence. Hence,

P(t∗x̄ > T ) =
∫

∞

a
p̄(x̄,T )dx̄. (2.50)

Hence, the probability of the event that the first hitting time is within the time interval

T is given by

P(t∗x̄ ≤ T ) = 1−
∫

∞

a
p̄(x̄,T )dx̄. (2.51)

2.4.3 Fokker-Planck Equation for Individual Default Probability

The probability of default of a representative bank can be solved in a similar way. We

consider the event of the bank’s state reaching a certain value at a specific time to deter-

mine the probability of the first hitting time. To keep notation concise, we adopt a matrix

representation. The joint dynamics of bank i, (2.22)-(2.23), and the market state (2.23) is

given by

dXXX i
t =

υυυ1

υυυ2

+ΣΣΣdWWW i
t (2.52)

where υυυ1

υυυ2

=

−Πt −a−ξ −Λt +a+ξ

0 −Πt −Λt

xi

x̄

+
b(t)−ϒt

b(t)−ϒt

 (2.53)
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ΣΣΣ =

σ
√
(1−ρ2) σρ

0 σρ

 , WWW i
t =

wi
t

w0
t

 . (2.54)

The analysis begins by examining the joint state of bank-i and the market, denoted

by XXX i, reaching a certain set of values at a specific time to determine the probability of

the first hitting time. The distribution of this state is described by the survival probability

density function p(XXX i, t) satisfying the Fokker-Planck equation

∂ p(XXX i, t)
∂ t

=−∂υυυ1 p(XXX i, t)
∂xi − ∂υυυ2 p(XXX i, t)

∂ x̄

+
1
2

{
σ

2 ∂ 2 p(XXX i, t)
∂ (xi)2 +σ

2
ρ

2 ∂ 2 p(XXX i, t)
∂ (xi)(x̄)

+σ
2
ρ

2 ∂ 2 p(XXX i, t)
∂ (x̄)(xi)

+σ
2
ρ

2 ∂ 2 p(XXX i, t)
∂ x̄2

}
(2.55)

subject to the boundary conditions

p

θ

x̄

 , t
= 0, p

∞

∞

 , t
= 0,

p(XXX ,0)∼ N

0

0

 ,
1 0

0 1

 with (x, x̄) ∈ (θ ,∞)× (−∞,∞). (2.56)

We consider the absorbing boundaries make p(XXX i, t) vanish if it breaks the threshold.

Moreover, we impose P(XXX i = ∞) = 0 almost surely. The boundary condition at initial

time, t = 0, is defined according to a bivariate standard normal distribution with a zero

correlation matrix.

We note that the existence of the probability density function p(XXX i, t) assumes that XXX i

does not break the threshold at time t. Therefore, the probability of the bank’s survival

given a specific market state at time T can be determined by integrating p(XXX i,T ) over all

possible x̄ within the boundary of existence. Hence,

p(xi,T ) =
∫

∞

−∞

p(XXX i,T )dx̄. (2.57)

Following a similar procedure as used for determining the market default probability,

we can determine the probability of the bank experiencing default within the time interval
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T as

P(t∗xi ≤ T ) = 1−
∫

∞

a
p(xi,T )dxi. (2.58)

2.4.4 Stochastic Fokker-Planck Equation for Individual Default

Probability under Specific Common Shock

The conditional probability of default of a representative bank consists of analyzing the

default event given the common noise. The distribution of the conditional default of the

bank may be calculated using the survival probability density function p(xi, t|w0
t ), which,

in turn, can be computed using the Fokker-Planck method as in the previous section. How-

ever, rather than examining a classical PDE as discussed in the previous section, our focus

now shifts to solving a stochastic PDE to take the filtration (F 0
t )t∈T into consideration.

For the agent’s dynamics (2.22) with the optimal control (2.14), the stochastic Fokker-

Planck equation generating p(xi, t|w0
t ) is given by

∂ p(xi, t|F 0
t ) =

{
− ∂{(−ξ −a−Πt)xi +(a−Λt +ξ )x̄t +b(t)−ϒt}p(xi, t|F 0

t )

∂xi
t

+
σ2(1−ρ2)

2
∂ 2 p(xi, t|F 0

t )

∂ (xi
t)

2

}
dt −σ

2
ρ

2 ∂ p(xi, t|F 0
t )

∂xi dw0
t (2.59)

with the boundary conditions

p(θ , t|F 0
t ) = 0, p(∞, t|F 0

t ) = 0, p(xi,0|F 0
0 )∼ N (0,1) with x ∈ (θ ,∞). (2.60)

Following a similar procedure as in previous sections, the conditional probability of

the bank being defaulted within the time interval T is computed via

P(t∗xi ≤ T |F 0
T ) = 1−

∫
∞

a
p(xi,T |F 0

T )dxi. (2.61)

2.5 Numerical Experiments

Given the complexity inherent in specifying the probability of default based on the Fokker-

Plack equations, we employ numerical techniques to adeptly tackle various aspects. This-

includes solving the system of ODEs that the coefficients of optimal control satisfy and
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discerning both systemic and bank-specific conditional and unconditional defaults. We

use numerical solutions to find the probability of default using the Fokker-Planck equa-

tions. Additionally, we carry out a sensitivity analysis by integrating coefficient values

into the equation.

2.5.1 Numerical Method for Control Coefficients

To achive this goal, we utilize the discretization of the time interval T into smaller seg-

ments ∆t∆t∆t. Then, for each coefficient of the optimal control (i.e. Πt ,Λt ,ϒt ,∆t ,Γt and Ψt),

we discretize the respective ODE (i.e. (2.15)-(2.20)). For example, the discretization of

the ODE that Πt satisfy is given by
Π∆(t+1)∆(t+1)∆(t+1)−Π∆t∆t∆t

∆t∆t∆t =
(

1− σ2

γ

)
Π2

∆t∆t∆t +
(

2a+2ξ − 2
γ
(σρ)2Λ∆t∆t∆t

)
Π∆t∆t∆t − 1

γ
(σρ)2(Λ∆t∆t∆t)

2 +ξ 2 −q

ΠT = q̂.

(2.62)

As the six ODEs, that the control coefficients satisfy, are coupled with each other, we

solve a system of six ODEs to Πt ,Λt ,ϒt ,∆t ,Γt ,Ψt . Specifically, we use backward differ-

entiation with Python library solve_ivp in scipy.integrate.

2.5.2 Numerical Method for Fokker-Planck Equations

In order to solve the partial differential equations (2.48), (2.55) and (2.59), we need to

first discretize them. To this purpose, we employ the forward explicit finite differences

method. The probability of default is then calculated using numerical methods for inte-

gration.

1. Systemic Risk

To solve for the probability of the market default (2.42) using the finite differ-

ences method, we employ a two-dimensional grid defined over the underlying vari-

ables time t and market state x̄. We discretize these variables within ranges [t0 =
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0,∆t∆t∆t,2∆t∆t∆t, . . . ,T ] and [θ ,θ +∆x̄∆x̄∆x̄, . . . ,θ +M̄∆x̄M̄∆x̄M̄∆x̄], respectively, where M̄̄M̄M ∈N is chosen

to be sufficiently large and the discretization of the variables t and x̄ are sufficiently

small. At each grid point, we denote the probability as p̄iii
jjj, where iii ∈ N indicates

the time position iii∆t∆t∆t and jjj ∈ N denotes the market state position jjj∆x̄∆x̄∆x̄. Consider the

Fokker-Planck equation for the systemic survival (2.48), its respective discretiza-

tion is

p̄iii
jjj = p̄iii−1

jjj +∆t∆t∆t

{(
−Āiii−1(1+ x̄ jjj)−biii−1 +ϒ

iii−1
)( p̄iii−1

jjj+1 − p̄iii−1
jjj−1

2∆x̄∆x̄∆x̄

)

+
(σρ)2

2

(
p̄iii−1

jjj+1 −2p̄iii−1
jjj + p̄iii−1

jjj−1

∆x̄∆x̄∆x̄2

)}
(2.63)

where Āiii = −Πiii −Λiii. Remark that Ā depends only on time. The forward method

begins with the initial point p̄0
jjj which follows a standard normal distribution N (0,1)

restricted on the space generated by the market state (θ ,θ +M̄∆x̄M̄∆x̄M̄∆x̄]. Remark that in

order to satisfy the absorbing condition at the threshold, we consider p̄iii
θ
= 0 for all

iii, representing condition p̄(θ , t) = 0. Then, the probability p̄ is incremented at each

time and market state step up to the end of the time horizon T .

2. Default Probability of Bank-i

To simplify the notation, the individual bank state will be denoted as x. To solve

for the probability of the individual bank default (2.43) using the finite differ-

ences method, we employ a three-dimensional grid defined over the underlying

variables time t, bank state x and market state x̄. We discretize these variables

within their respective as [t0 = 0,∆t∆t∆t,2∆t∆t∆t, . . . ,T ], [θ ,θ +∆x∆x∆x, . . . ,θ +Nx∆xNx∆xNx∆x] and the

last one [−M̄∆x̄M̄∆x̄M̄∆x̄,(−(M̄+1)∆x̄(M̄+1)∆x̄(M̄+1)∆x̄, . . . ,M̄∆x̄M̄∆x̄M̄∆x̄], where NxNxNx,M̄̄M̄M ∈ N are chosen to be suf-

ficiently large the discretization of the variables t, x and x̄ are sufficiently small.

At each grid point, we denote the probability as piii
jjj,mmm, where iii indicates the time

position iii∆t∆t∆t, jjj ∈ N denotes the bank state position jjj∆x∆x∆x and mmm denotes the market

state position mmm∆x̄∆x̄∆x̄. Subsequently, the discretization of the Fokker-Planck equation
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(2.55) that the default probability of an individual bank satisfies is given by

piii
jjj,mmm = piii−1

jjj,mmm +∆t∆t∆t

{((
Π

iii−1 +a+ξ

)
(1+ x jjj)+

(
Λ

iii−1 −a−ξ

)
x̄mmm −biii−1 +ϒ

iii−1
)

×

(
piii−1

jjj+1,mmm − piii−1
jjj−1,mmm

2∆x̄∆x̄∆x̄

)
+
(
−Āiii−1(1+ x̄mmm)−biii−1 +ϒ

iii−1
)( piii−1

jjj,mmm+1 − piii−1
jjj,mmm−1

2∆x̄∆x̄∆x̄

)

+
1
2

{
σ

2

(
piii−1

jjj+1,mmm −2piii−1
jjj,mmm + piii−1

jjj−1,mmm

∆x̄∆x̄∆x̄2

)
+σ

2
ρ

2

(
piii−1

jjj,mmm+1 −2piii−1
jjj,mmm + piii−1

jjj,mmm−1

∆x̄∆x̄∆x̄2

)

+2σ
2
ρ

2

(
piii−1

jjj+1,mmm+1 − piii−1
jjj+1,mmm−1 − piii−1

jjj−1,mmm+1 + piii−1
jjj−1,mmm−1

4∆x̄∆x̄∆x̄∆x∆x∆x

)}}
(2.64)

where Āiii =−Πiii −Λiii. The forward method begins with the initial point p0
jjj,mmm which

follows a standard bivariate normal distribution N

0

0

 ,
1 0

0 1

 restricted on

space generated by the market and bank’s state, namely (θ ,θ +∆x∆x∆x, . . . ,θ +Nx∆xNx∆xNx∆x]×

[−M̄∆x̄M̄∆x̄M̄∆x̄,(−M̄+1)∆x̄M̄+1)∆x̄M̄+1)∆x̄, . . . ,M̄∆x̄M̄∆x̄M̄∆x̄]. Remark that in order to satisfy the absorbing con-

dition at the threshold, we consider piii
θ ,mmm = 0 for all iii and mmm, representing condition

p(

θ

x̄

 , t) = 0. Then, the probability p is incremented at each time, bank state and

market state step up to the end of the time horizon T .

3. Conditional Default Probability of Bank-i given a Specific Common Shock

To solve the probability of conditional bank default (2.44) using the finite differ-

ences method, we employ a two-dimensional grid defined over the underlying vari-

ables time t and bank state x under the filtration (F 0
t )t∈T. We discretize these

variables within ranges [t0 = 0,∆t∆t∆t,2∆t∆t∆t, . . . ,T ] and [θ ,θ +∆x∆x∆x, . . . ,θ +Nx∆xNx∆xNx∆x] respec-

tively, where NxNxNx ∈ N is chosen to be sufficiently large and the discretization of the

variables t and x are sufficiently small. At each grid point, we denote the probabil-

ity as (p|F 0
iii
)iiijjj, where iii indicates the time position iii∆t∆t∆t and jjj denotes the bank state

position jjj∆x∆x∆x. In this specific case, as the common noise w0
t , namely w0,iii∆t∆t∆t in the

discretization, is known at time iii∆t∆t∆t, we consider the market state at each time iii∆t∆t∆t
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for all xiii∆t∆t∆t from the discretization of its dynamics.

x̄iii∆t∆t∆t = x̄(iii−1)∆t∆t∆t +(Ā(iii−1)∆t∆t∆t x̄(iii−1)∆t∆t∆t + m̄(iii−1)∆t∆t∆t)∆t∆t∆t +σρw0,∆t∆t∆t for all i (2.65)

where

Ā(iii−1)∆t∆t∆t =−Π
(iii−1)∆t∆t∆t −Λ

(iii−1)∆t∆t∆t (2.66)

m̄(iii−1)∆t∆t∆t = b(iii−1)∆t∆t∆t −ϒ
(iii−1)∆t∆t∆t (2.67)

with starting point x̄0. For simplicity, we denote x̄iii∆t∆t∆t as x̄iii in the following text.

Consider the Fokker-Planck equation for the conditional bank’s survival (2.59), its

respective discretization is

(p|F 0
iii
)iiijjj = (p|F 0

iii−1
)iii−1

jjj

+∆t∆t∆t

{((
Π

iii−1 +a+ξ

)
(1+ x jjj)+

(
Λ

iii−1 −a−ξ

)
x̄iii−1 −biii−1 +ϒ

iii−1
)

×

(p|F 0
iii−1

)iii−1
jjj+1 − (p|F 0

iii−1
)iii−1

jjj−1

2∆x∆x∆x

−σ
2
ρ

2
(p|F 0

iii−1
)iii−1

jjj+1 − (p|F 0
iii−1

)iii−1
jjj−1

2∆x∆x∆x
w0,∆t∆t∆t

(2.68)

+
σ2(1−ρ2)

(
(p|F 0

iii−1
)iii−1

jjj+1 −2(p|F 0
iii−1

)iii−1
jjj +(p|F 0

iii−1
)iii−1

jjj−1

)
2∆x̄∆x̄∆x̄2

}
. (2.69)

The forward method begins with the initial point (p|F 0
000
)000jjj which follows a stan-

dard normal distribution N (0,1) restricted on the space generated by bank’s state

(θ ,θ +∆x∆x∆x, . . . ,θ +Nx∆xNx∆xNx∆x]. Remark that in order to satisfy the absorbing condi-

tion at the threshold, we consider (p|F 0
iii
)iii

θ
= 0 for all iii, representing condition

p(θ , t|F 0
t ) = 0. Then, the probability (p|F 0

iii
) is incremented at each time and each

bank’s state step up to the end of the time horizon T .

Note that the forward explicit finite differences method represents a straightforward

yet inherently unstable approach for discretizing and solving PDEs. This instability arises

from its tendency to amplify small discretization errors as they propagate across the grid.
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Achieving reliable outcomes necessitates employing a finer grid. Especially, a more re-

fined time discretization is crucial. Consequently, emphasizing the significance of adopt-

ing a meticulously crafted grid becomes paramount. Alternative numerical techniques,

such as implicit finite differences or the alternating directions implicit method, may be

useful for enhancing the stability and accuracy of implementations (Pichler et al., 2013).

The default probability for the three cases is calculated by evaluating the incremented

probability at time T and employing the trapezoidal rule across the generated grid with

respect to the relevant variables with the use of numpy.trapz. The trapezoidal rule is

a numerical method to approximate the integral using left and right Riemann sums over

the probability curve. The default probability is retrieved at the end by performing a

subtraction as described in equations (2.51), (2.58) and (2.61).

2.5.3 Results and Interpretations: Systemic and Individual Default

Probability

In this section, we conduct a comprehensive analysis on the impact of various parame-

ters on systemic and individual default probabilities based on the outcomes generated by

numerical methods. These tests specifically pertain to unconditional default probabili-

ties defined in Section 2.4.1. The baseline scenario is defined by the parameter values

σ = 0.3, ρ = 0.4, ξ = 1, q = 10, γ = 0.2, a = 2.5, b(t) = 1, for all t, q̂ = 0, the default

threshold θ = −0.7, and the time horizon T = 0.25. Remark that due to the require-

ment of the appropriate grid as mentioned in Section 2.5.2, finding the probability given

an extended time horizon requires a finer grid and thus higher computational time. We

choose this restrained time horizon to reduce the processing time. The results presented

in this subsection and the next one have been carefully selected through rigorous testing

of various parameters and grid settings, identifying the appropriate grid configuration for

the given parameters, and thereby ensuring the attainment of stable outputs. We present

three cases using the parameters of the baseline scenario in which we change one of the

parameters for the numerical analysis unless otherwise mentioned.
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Case 1 Impact of Correlation Coefficient ρ

The magnitude of the shocks that affect both the reserve of the market and bank-

i, i ∈N, is expressed by σ . For the market reserve, this magnitude is multiplied by

a factor of ρ . For the bank-i reserve, the magnitude is multiplied by ρ for the com-

mon shocks and
√

1−ρ2 for the idiosyncratic shocks. As ρ increases, the impact

of the common noise on the overall market increases, leading to a higher probability

of the market default. While this effect on the market is present, the impact of the

idiosyncratic shock on the bank decreases as the associated multiplier of this shock

is
√

1−ρ2. Thus, the common and the idiosyncratic shocks affect the probability

of individual default simultaneously and differently. In addition, as demonstrated in

Section 2.2.1, the correlation between banks is quantified by the factor (σρ)2. On

the one hand, as the parameter ρ is increasing while maintaining other parameters

constant, banks exhibit higher degrees of correlation among themselves. In con-

sequence, the default of one individual bank will lead to a more probable market

default. On the other hand, when ρ is large, the bank is subject to a lower individ-

ual risk but a higher systemic risk. However, because of the strong correlation, this

common market risk is shared more extensively among banks. The current question

revolves around determining the extent of systemic risk that individual banks are ex-

posed to after sharing. The key consideration is whether the benefits of risk sharing

outweigh the challenges posed by a potentially more volatile market environment

on banks. Based on the numerical analysis, we observe that given other parameters

as in the baseline scenario but with σ = 0.2, as ρ increases, the probability of the

systemic default increases while the bank’s default probability decreases as shown

in Figure 2.1. In this scenario, effective sharing of systemic risk among agents

occurs when the correlation coefficient ρ is high. Moreover, along with reduced

individual risk, there is a decrease in the likelihood of individual default. Finally,

we observe that a higher risk-aversion degree, i.e. 1
γ
= 80, reduces the systemic risk
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for any correlation strength among agents.

Figure 2.1: The impact of correlation coefficient ρ on individual and systemic default
probabilities for two degrees of risk sensitivity 1

γ
= 0.2, 80, with the parameter values

σ = 0.2, ρ = 0.4, ξ = 1, q = 10, γ = 0.2, a = 2.5, b(t) = 1, for all t, q̂ = 0, the default
threshold θ =−0.7, and the time horizon T = 0.25.

Case 2 Impact of Risk-Sensitivity Degree 1
γ

The degree of risk sensitivity of a representative bank is expressed by 1
γ
. When

1
γ
> 0, the bank is risk-averse. In addition, the value of 1

γ
expresses the magnitude

of the risk aversion. Thus, a large 1
γ

characterizes the behavior of the bank as ex-

cessively risk averse. As shown in Figure 2.2 simulated from the baseline scenario

but with changing 1
γ
, the probability of individual default diminishes when the bank

exhibits a higher risk-aversion. As a result, for the market setup under study, where

the banks share the same risk-aversion degree, the probability of systemic default

follows a similar pattern and decreases by risk-aversion.

Case 3 Impact of Liquidity b(t)

We consider the case where the liquidity process, b(t) = b, is constant throughout

time. As all banks are homogeneous, by increasing b, both the bank and the system
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Figure 2.2: The impact of risk-aversion degree 1
γ

on individual and systemic default
probabilities with the parameter values σ = 0.3, ρ = 0.4, ξ = 1, q = 10, γ = 0.2, a =
2.5, b(t) = 1, for all t, q̂ = 0, the default threshold θ = −0.7, and the time horizon
T = 0.25.

enhance their liquidity positions, thereby reducing the level of risk they undertake.

Conversely, reducing b signifies a decrease in liquidity, introducing additional risk

for both the bank and the market. From Figure 2.3 generated from the baseline

scenario but with changing b, we observe that as b increases, the probabilities of

both the individual bank and the market state decrease. Furthermore, the effect of

liquidity infusions on the systemic risk and individual default probability becomes

more pronounced with a higher level of risk aversion (e.g. 1
γ
= 80) in the market.

2.5.4 Results and Interpretation: Conditional Default Probability

under Specific Common Shocks

In this section, we analyze the conditional probability of default of a representative bank

given specific trajectories of the common noise (w0
t )t∈T as defined in section 2.4.1. The

baseline scenario is defined by the parameter values x̄0 = 0,σ = 1,ρ = 0.5,ξ = 1,q =

1,γ = 1,a = 1,b(t) = 1, for all t, q̂ = 1, the default threshold θ = −0.7 and the time
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Figure 2.3: The impact of liquidity parameter b on the individual and systemic default
probabilities for two degrees of risk sensitivity 1

γ
= 0.2, 80, with the parameter values

σ = 0.3, ρ = 0.4, ξ = 1, q = 10, a = 2.5, b(t) = 1, for all t, q̂ = 0, the default threshold
θ =−0.7, and the time horizon T = 0.25.

horizon T = 0.25. We consider two trajectories for the common shock, respectively,

denoted by (P1)t∈T and (P2)t∈T. Under trajectory P2 the market state experiences a

larger number of negative shocks compared to P1.

The equilibrium market state under trajectories P1 and P2 is depicted in Figure 2.4.

From (2.61), the time evolution of the conditional density function of the bank p(xi, t|F 0
t )

within the survival set (θ ,∞) is illustrated in Figure 2.5. In other words, the figure depicts

the conditional probability density of the bank that has not defaulted up to time t. We

observe that as time goes by, the respective cumulative distribution function decreases,

indicating an increase in the conditional probability of default. This observation is further

demonstrated in Table 2.2 where we present the associated conditional probability of in-

dividual default under trajectory P1 over time. We observe that for the baseline setting,

the conditional probability of individual default escalates over the course of time. Fur-

thermore, in Figure 2.4, we observe that a critical event happens around t ∈ [0.05,0.1],

leading to the market state being closer to the default threshold. As the bank aims to

track the market state, this negative impact is also translated into the bank’s conditional

probability of default. This event is demonstrated in Table 2.2, where the conditional
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probability of the bank’s default increases sharply around the same time.

Figure 2.4: Market state over time under the trajectories P1 and P2 described in Section
2.5.4 with parameter values x̄0 = 0,σ = 1,ρ = 0.5,ξ = 1,q = 1,γ = 1,a = 1,b(t) = 1,
for all t, q̂ = 1, the default threshold θ =−0.7.

Consider the economic environment under the common shock P2 characterized by

a greater magnitude of negative shocks at certain times, for which the market state is

depicted in 2.4. We observe that the market state under P2 moves more closely to the

default threshold compared to P1, capturing the amplified negative shocks in the market.

From (2.61), the respective time evolution of the conditional density function of the bank

p(xi, t|F 0
t ) within the survival set (θ ,∞) is presented in Figure 2.6. According to Table

2.2, we observe that as the bank is experiencing more adversity under P2, the probability

of default increases compared to P1. We also remark that in both cases, from Figure 2.4,

the market has not defaulted.
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Figure 2.5: Bank survival probability distribution over time under the trajectory P1 de-
scribed in Section 2.5.4 with parameter values x̄0 = 0,σ = 1,ρ = 0.5,ξ = 1,q = 1,γ =
1,a = 1,b(t) = 1, for all t, q̂ = 1, the default threshold θ =−0.7.

Time
Conditional Probability of

Individual Default under P1
Conditional Probability of

Individual Default under P2

0 0.2578 0.2578
0.05 0.6599 0.6610
0.1 0.8634 0.8675

0.15 0.9545 0.9588
0.2 0.9854 0.9883

0.25 0.9957 0.9971

Table 2.2: Probability of individual default over time with parameter values x̄0 = 0,σ =
1,ρ = 0.5,ξ = 1,q = 1,γ = 1,a = 1,b(t) = 1, for all t, q̂ = 1, the default threshold θ =
−0.7 subject to the trajectories P1 and P2 described in Section 2.5.4.
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Figure 2.6: Bank survival probability distribution over time under the trajectory P2 de-
scribed in Section 2.5.4 with parameter values x̄0 = 0,σ = 1,ρ = 0.5,ξ = 1,q = 1,γ =
1,a = 1,b(t) = 1, for all t, q̂ = 1, the default threshold θ =−0.7.
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Conclusion

This paper delves into the exploration of LQG risk-sensitive MFGs where agents are

influenced by a common noise in their dynamics and wish to minimize an exponential cost

functional. We focus on a scenario where the number of agents approaches infinity. The

optimal strategies of agents, leading to a Nash equilibrium for the system, admit a linear

feedback representation in terms of the state and the mean field. Moreover, risk sensitivity

degree, the covariance of the common shock and the covariance of the idiosyncratic shock

explicitly affect the coefficients of the optimal strategy.

Applying this framework, we extend our investigation to an interbank transaction

context. Our study encompasses the analysis of individual and market default scenar-

ios across various parameter settings. Furthermore, an examination of individual default

is conducted under specific trajectories of the common market noise. Our investigation

reveals insightful outcomes in the context of interbank transactions, where agents, in this

case banks, exhibit homogeneity and correlation, as specified in Chapter 2. We observe

that high correlation among these banks contributes to diminished probability of individ-

ual default due to the benefits of risk-sharing yet heightened market default probability as

the default of one bank leads to a higher chance of the market default. Additionally, banks

with lower risk aversion are prone to experience an elevated individual default risk. As a

consequence in this homogeneous setting, the systemic risk increases as well. However,

higher degrees of risk-aversion shared by all banks, improve the systemic risk. Moreover,

introducing liquidity infusions within the institutions helps to mitigate systemic and indi-

vidual default risks, a factor that becomes more influential in the presence of higher levels



of risk aversion. Finally, upon investigating the conditional probability of an individual

bank default under the influence of specific economic shocks, greater negative shocks

exerted upon banks correspond to elevated probabilities of default.

The significance of this research lies in its contribution to comprehending risk-sensitive

decision-making amid the presence of common noise. Through our analysis, we provide

insights that enhance the understanding of how agents’ optimal strategies adapt to a dy-

namic environment characterized by risk aversion and interconnectedness.

Future studies can build upon the presented LQG risk-sensitive MFG model with com-

mon noise, considering its limitations. Due to the variational approach taken for the anal-

ysis of the optimal control, the considered cost functional needs to be convex with respect

to its variables. This characteristic is ensured by the imposed assumptions (i.e. Assump-

tion 3 and the nonnegativity of 1/γk implying the risk aversion of the agents). Further

research could be valuable in exploring conditions when agents exhibit risk-seeking be-

havior, that is, when 1/γk is negative. Additionally, it could be intriguing to investigate the

existence of an approximate Nash (ε-Nash) equilibrium in the finite-population system in

subsequent research.
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Appendix A: Convex Analysis Overview

Let V be a reflexive Banach space, with corresponding dual space V ∗, and V be a non-

empty closed convex subset of V .

Definition 3 (Gâteaux Derivative (Ekeland and Témam, 1999; Allaire, 2007)). The func-

tion J defined on a neighbourhood of u ∈V with values in R is Gâteaux differentiable at

u in the direction of ω ∈V if there exists a Gâteaux differential DJ(u) ∈V ∗ such that

⟨DJ(u),ω⟩= lim
ε→0

J(u+ εω)− J(u)
ε

. (70)

Theorem 7 (Euler Equality (Firoozi et al., 2020)). If J is convex, continous, proper and

Gâteaux differentiable with continuous derivative DJ(u) such that ω generates the whole

space V, then

⟨DJ(u),ω⟩= 0, ∀ω ∈V, (71)

which implies that

J(u) = inf
v∈V

J(v) ⇔ DJ(u) = 0. (72)
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Appendix B: Distributions of Bank’s

Reserve and Market State

This appendix aims to specify the distribution of both the bank’s log-reserve and the mar-

ket state under the obtained market equilibrium described by transaction strategies (2.14).

We specify the distribution of the bank’s log-reserve and of the market by substituting the

optimal transaction rate into their respective dynamics and solving the equations. Con-

cluding this section, we provide an analytical illustration by assigning specific values to

the parameters.

Proposition 8. Given the optimal transaction rate of the market (2.21) and the subsequent

market dynamics (2.23), the market state follows the normal distribution

x̄t ∼ N (µx̄t ,σ
2
x̄t
) (73)

with

µx̄t =exp
(∫ t

0
Āτdτ

)
x̄0 +

∫ t

0
exp
(∫ t

s
Āτdτ

)
{b(s)−ϒs}ds (74)

σ
2
x̄t
=σ

2
ρ

2
∫ t

0
exp
(

2
∫ t

s
Āτdτ

)
ds. (75)

Proof. Consider the optimal transaction rate (2.21) and the market dynamics (2.23). For

clarity, we consider Āt = −Πt −Λt . Then, we define ȳt = exp
(
−
∫ t

0 Āτdτ
)

x̄t . With the
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use of Itô’s lemma, the SDE that ȳt satisfies is given by

dȳt =−exp
(
−
∫ t

0
Āτdτ

)
Āt x̄tdt − exp

(
−
∫ t

0
Āτdτ

)
[{Āt x̄t +b(t)−ϒt}dt +σρdw0

t ]

= exp
(
−
∫ t

0
Āτdτ

)
[{b(t)−ϒt}dt +σρdw0

t ]. (76)

Integrating both sides of the above equation, we obtain

exp
(
−
∫ t

0
Āτdτ

)
x̄t − x̄0 =

∫ t

0
exp
(
−
∫ s

0
Āτdτ

)
[{b(s)−ϒs}ds+σρdw0

s ]. (77)

Therefore, the market state can be expressed as

x̄t = exp
(∫ t

0
Āτdτ

)
x̄0 +

∫ t

0
exp
(∫ t

s
Āτdτ

)
[{b(s)−ϒs}ds+σρdw0

s ]. (78)

As
∫ t

0 dw0
t is normally distributed and exp

(∫ t
0 Āτdτ

)
is deterministic, the market state

follows the normal distribution

x̄t ∼ N (µx̄t ,σ
2
x̄t
) (79)

with

µx̄t = exp
(∫ t

0
Āτdτ

)
x̄0 +

∫ t

0
exp
(∫ t

s
Āτdτ

)
{b(s)−ϒs}ds (80)

and

σ
2
x̄t
= E[(x̄t −µx̄t )

2]

= σ
2
ρ

2E
[∫ t

0
exp
(

2
∫ t

s
Āτdτ

)
ds
]

(81)

= σ
2
ρ

2
∫ t

0
exp
(

2
∫ t

s
Āτdτ

)
ds, (82)

where the second equality holds due to Itô’s isometry and the last equality holds as all the

terms inside the integral are deterministic.

Proposition 9. Given the optimal transaction rate (2.14) of the bank i ∈N and the sub-

sequent dynamics (2.22), the state of the bank follows the normal distribution

xi
t ∼ N (µxi

t
,σ2

xi
t
) (83)
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with

µxi
t
=

[
exp
(∫ t

0
Āτdτ

)
− exp(

∫ t

0
Ξτdτ)

]
x̄0 + exp(

∫ t

0
Ξτdτ)xi

0

+
∫ t

0
exp
(∫ t

s
Āτdτ

)
{b(s)−ϒs}ds (84)

σ
2
xi

t
=σ

2(1−ρ
2)
∫ t

0
exp(2

∫ t

s
Ξτdτ)ds+σ

2
ρ

2
∫ t

0
exp
(

2
∫ t

s
Āτdτ

)
ds. (85)

Proof. Consider the optimal transaction rate (2.14) of the bank i ∈ N and the dynamics

(2.22).

We first apply the Itô’s lemma to (x̄t − xi
t) to obtain

d(x̄t − xi
t) = dx̄t −dxi

t

= {Ξt(x̄t − xi
t)}dt −σ

√
(1−ρ2)dwi

t (86)

where Ξt =−ξ −a−Πt .

To solve for (x̄t − xi
t), we define

yi
t = exp

(
−
∫ t

0
Ξτdτ

)
(x̄t − xi

t). (87)

With the use Itô’s lemma, we obtain the SDE

dyi
t =−exp(

∫ t

0
−Ξτdτ)Ξt(x̄t − xi

t)

+ exp(−
∫ t

0
Ξτdτ)[Ξt(x̄t − xi

t)dt −σ

√
(1−ρ2)dwi

t ] (88)

=−exp(
∫ t

0
−Ξτdτ)σ

√
(1−ρ2)dwi

t . (89)

We then integrate both sides of the above equation to obtain

exp(
∫ t

0
−Ξτdτ)(x̄t − xi

t)− (x̄0 − xi
0) =−

∫ t

0
exp(

∫ s

0
−Ξτdτ)σ

√
(1−ρ2)dwi

s. (90)

Subsequently, we have

x̄t − xi
t = exp(

∫ t

0
Ξτdτ)(x̄0 − xi

0)−σ

√
(1−ρ2)

∫ t

0
exp(

∫ t

s
Ξτdτ)dwi

s. (91)
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As the market state x̄t is already characterized by (78), it suffices to substitute it in above

equation to obtain the expression

xi
t = exp

(∫ t

0
Āτdτ

)
x̄0 +

∫ t

0
exp
(∫ t

s
Āτdτ

)
{b(s)−ϒs}ds

+σρ

∫ t

0
exp
(∫ t

s
Āτdτ

)
dw0

s − exp(
∫ t

0
Ξτdτ)(x̄0 − xi

0)

+σ

√
(1−ρ2)

∫ t

0
exp(

∫ t

s
Ξτdτ)dwi

s

=

[
exp
(∫ t

0
Āτdτ

)
− exp(

∫ t

0
Ξτdτ)

]
x̄0 + exp(

∫ t

0
Ξτdτ)xi

0

+
∫ t

0
exp
(∫ t

s
Āτdτ

)
{b(s)−ϒs}ds+σ

√
(1−ρ2)

∫ t

0
exp(

∫ t

s
Ξτdτ)dwi

s

+σρ

∫ t

0
exp
(∫ t

s
Āτdτ

)
dw0

s . (92)

Given that w0
t is independent of wi

t for all t ∈ T and all exponents are deterministic func-

tions, the state of the bank follows the normal distribution

xi
t ∼ N (µxi

t
,σ2

xi
t
) (93)

with

µxi
t
=

[
exp
(∫ t

0
Āτdτ

)
− exp(

∫ t

0
Ξτdτ)

]
x̄0 + exp(

∫ t

0
Ξτdτ)xi

0

+
∫ t

0
exp
(∫ t

s
Āτdτ

)
{b(s)−ϒs}ds (94)

and

σ
2
xi

t
= E[(xi

t −µxi
t
)2]

= E
[

σ
2(1−ρ

2)
∫ t

0
exp(2

∫ t

s
Ξτdτ)ds+σ

2
ρ

2
∫ t

0
exp
(

2
∫ t

s
Āτdτ

)
ds
]

(95)

= σ
2(1−ρ

2)
∫ t

0
exp(2

∫ t

s
Ξτdτ)ds+σ

2
ρ

2
∫ t

0
exp
(

2
∫ t

s
Āτdτ

)
ds, (96)

where the last equality holds as all functions inside of the integral are deterministic.

Given the complexity of the integrals, we can employ numerical methods to solve the

distribution of the bank’s log-reserve and the market state under optimal control. Consider

vi



the control coefficients solved in Section 2.5.1 and the Proposition 8 and 9, the algorithm

in mpmath.quad can be used to perform different integrals.

In case of a simpler optimization problem, the distribution for the bank and for the

market can be solved analytically. We provide an analytical solution for a simplified op-

timization problem based on Section 2.3.1. We can derivate the distribution of the bank’s

log-reserve and of the market under the optimal transaction rate based on Propositions 8

and 9.

Proposition 10. The distribution of the bank’s state based on the dynamics (2.26) and the

market state based on (2.27) under the optimal transaction rate (2.32) are

xi
T ∼ N (µxi

T
,σ2

xi
T
) (97)

with

µxT =x̄0 +[exp(ln(23exp(22)− exp(22T ))− ln(23exp22)−1−11T )] (xi
0 − x̄0)+T

(98)

σ
2
xT

=T (99)

and

x̄T ∼ N (µx̄T ,σ
2
xt
) (100)

with

µx̄T =x̄0 +T (101)

σ
2
xT

=T. (102)

Proof. Consider the Proposition 9, under the dynamics (2.26), the state of the bank under

the optimal transaction rate (2.32) is

xi
T ∼ N (µxi

T
,σ2

xi
T
) (103)
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with

µxT = x̄0 +

[
exp
(∫ T

0
(−11+

22exp(22τ)

exp(22τ)−23exp(22)
)dτ

)]
(xi

0 − x̄0)+
∫ T

0
ds

= x̄0 +
[
exp
(
ln(23exp(22)− exp(22T ))

− ln(23exp22)−1−11T
)]
(xi

0 − x̄0)+T (104)

σ
2
xT

=
∫ T

0
ds = T. (105)

Consider the Proposition 8, under the dynamics (2.26), the market state under the

optimal transaction rate (2.32) follows the distribution

x̄T ∼ N (µx̄T ,σ
2
xt
) (106)

with

µx̄T = x̄0 +
∫ T

0
ds = x̄0 +T (107)

σ
2
xT

=
∫ T

0
ds = T. (108)
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