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Résumé

Les produits dérivés axés sur la volatilité figurent parmi les principaux instruments de
gestion des risques offerts par l’ingénierie financière. Ce mémoire vise à répondre à la
problématique de la réplication et de l’évaluation de ce type de produit. Nous présentons
des stratégies de réplication pour un produit dérivé dont le sous-jacent est la variation
quadtratique de l’indice S&P 500. La stratégie de couverture se divise en deux étapes
distinctes. Tout d’abord, il y a une réplication statique avec un portefeuille d’options
d’achat et de vente, puis une composante dynamique sur le marché des contrats à terme.
Nous explorons divers horizons (1 mois, 3 mois, 6 mois et 1 an).

Nous commençons par tester ces stratégies dans un environnement simulé, puis nous les
appliquons aux données réelles. Nous constatons une performance globale satisfaisante
de la réplication. Cependant, des écarts extrêmes se manifestent pour certains jours.
Nous procédons alors à une analyse statistique des erreurs relatives de réplication à
l’aide de régressions linéaires. Notre analyse révèle que ces écarts peuvent être expliqués
par deux facteurs principaux. Premièrement, une erreur de troncature par rapport aux
limites de l’intégrale numérique lors de l’évaluation du portefeuille statique d’options.
Deuxièmement, une meilleure performance de la réplication pendant les périodes de crise
caractérisées par une combinaison de chocs négatifs sur le sous-jacent et une augmentation
de la volatilité implicite pour les options à parité (at-the-money) de 30 jours.

Nous identifions également que ces mêmes facteurs influent lors de l’évaluation de ce
contrat. Ainsi, nous suggérons l’utilisation d’un modèle paramétrique qui nous permet
d’évaluer le contrat par extrapolation tout en restant cohérent avec la surface de volatilité
risque-neutre. Enfin, nous étendons l’utilisation de cette estimation paramétrique à un
deuxième contrat portant sur les événements extrêmes négatifs.

Mots-clés: volatilité; couverture de produits dérivés; évènements extrêmes; variation
quadratique; gestion des risques; discontinuités

1



Abstract

Derivatives focused on volatility are among the key risk management instruments pro-
vided by financial engineering. This thesis aims to address the challenge of replicating
and evaluating such products. We present replication strategies for a derivative with an
underlying futures contract on the S&P 500 index. Its payoff approximates the quadratic
variation of the index. The replication strategy comprises two distinct steps. Initially,
there is a static replication involving a portfolio of call and put options, followed by a dy-
namic component in the futures market. Various horizons (1 month, 3 months, 6 months,
and 1 year) are explored.

We begin by testing these strategies in a simulated environment and then apply them
to real data. We observe an overall satisfactory performance in replication. However,
extreme deviations occur on certain days. We then proceed with a statistical analysis
of the relative replication errors using linear regressions. Our analysis reveals that these
deviations can be explained by two main factors. Firstly, there is a truncation error
concerning the limits of the numerical integral when evaluating the static options portfolio.
Secondly, there is an higher replication performance during crisis periods characterized
by a combination of negative shocks to the underlying asset and an increase in the 30-day
at-the-money implied volatility.

We also identify that these same factors influence the valuation of this contract. There-
fore, we suggest using a parametric model that allows us to assess the contract through
extrapolation while remaining consistent with the risk-neutral volatility surface. Finally,
we extend the use of this parametric estimation to a second contract related to extreme
negative events.

Keywords: volatility; derivatives replication; option market; extreme events; quadratic
variation; jump diffusion; volatility trading; risk management
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niques appliqués à ce monde aléatoire des marchés financiers.
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Kahneman, pionnier de l’économie et de la finance comportementale, qui nous a quittés
en mars 2024.

Finalement, je veux remercier mes parents, ma famille et mes amis pour leur soutien tout
le long de mes études.

3



Contents

1 Introduction 9
1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Trading the Variance 11
2.1 S&P 500 process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Classical variance trading strategies . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Straddle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Variance swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Carr-Madan Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Risk-neutral contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Variance contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Rare disaster index (RIX) . . . . . . . . . . . . . . . . . . . . . . . 18

3 Implementation 20
3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Monte Carlo study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 The Stochastic volatility Jump Model . . . . . . . . . . . . . . . . 24
3.2.2 Strategies replications . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.4 Additional testings . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Empirical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 Implementation methodology . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 Empirical trading results . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.4 Regression analysis of the relative error . . . . . . . . . . . . . . . . 42

4 Valuation of the risk-neutral contracts 48
4.1 Valuation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Trapezoidal method . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Valuation using the Volatility surface model . . . . . . . . . . . . . . . . . 49
4.3 Results of valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Valuation of the variance contract . . . . . . . . . . . . . . . . . . . 50
4.3.2 Valuation of the RIX . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Conclusion 54

6 References 55

A RIX derivations 58

B Pseudo-Algorithm of the simulation 61

C Regression analysis 62
C.1 Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

D Volatility surface model 64
D.1 RMSE of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4



D.2 Bayesian extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

E Options trading strategies 69

5



List of Figures

1 Daily S&P 500 level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Daily S&P 500 log returns . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Payoff of straddle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4 Time series of the quantity of the market’s call options . . . . . . . . . . . 21
5 Time series of the quantity of the market’s put options . . . . . . . . . . . 22
6 Time series of the average strike distance ∆K of the market’s put options . 23
7 Time series of the average strike distance ∆K of the market’s call options . 23
8 Box plot of the relative replication errors on different scales . . . . . . . . . 30
9 Box plot of the relative replication errors on different integration bounds

gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
10 Time series of the futures price for the numerical example. . . . . . . . . . 36
11 Time series of the empirical replication for different maturities. . . . . . . . 38
12 Panel of the relative error of the replication for different maturities. . . . . 39
13 Time series of the moneyness of the market’s call options . . . . . . . . . . 40
14 Time series of the moneyness of the market’s put options . . . . . . . . . . 41
15 Variance contract Valuation by Methods . . . . . . . . . . . . . . . . . . . 51
16 Comparative time series of the moneyness between the two valuation method 52
17 RIX Valuation by Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
18 Panel of the daily estimated parameter of the IV surface model . . . . . . 65
19 RMSE of the IV model on the volatility surface . . . . . . . . . . . . . . . 67
20 Strip, strap and strangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6



List of Tables

1 Descriptive statistics of the S&P 500 volatility surface by moneyness (i.e,
puts with M > 0 and calls with M < 0) . . . . . . . . . . . . . . . . . . . 20

2 Parameters for the SVJ model used for the simulation study. . . . . . . . . 25
3 Descriptive statistics of ϵ in % and RRMSE for the Monte-Carlo Simulation

concerning the discretization scale . . . . . . . . . . . . . . . . . . . . . . . 29
4 Descriptive statistics for ϵ and RRMSE in the Monte Carlo Simulation

concerning the truncation error. . . . . . . . . . . . . . . . . . . . . . . . . 31
5 RRMSE of the interaction of the two Integration error sources . . . . . . . 33
6 Sub-sample of the characteristics of the contracts for rollover on different

maturities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7 Results of the replication of BqvT payoff for the numerical example . . . . 36
8 Descriptive statistics of the relative error for the Empirical replication . . . 37
9 Descriptive statistics of the maximum strike moneyness . . . . . . . . . . 41
10 Descriptive statistics of the minimum strike moneyness . . . . . . . . . . . 41
11 Regression analysis without variable selection on all maturities . . . . . . . 42
12 Regression analysis for the one-month rollover . . . . . . . . . . . . . . . . 43
13 Regression analysis for the three-month rollover . . . . . . . . . . . . . . . 45
14 Regression analysis for the six-month rollover . . . . . . . . . . . . . . . . 46
15 Regression analysis for the one-year rollover . . . . . . . . . . . . . . . . . 47
16 Descriptive statistics of PSt on a 30 days variance contract . . . . . . . . 51
17 Descriptive statistics of PSt on a 30 days RIX . . . . . . . . . . . . . . . . 53
18 Correlation Matrix for the one-month rollover . . . . . . . . . . . . . . . . 62
19 Correlation Matrix for the three-month rollover . . . . . . . . . . . . . . . 63
20 Correlation Matrix for the six-month rollover . . . . . . . . . . . . . . . . . 63
21 Correlation Matrix for the one-year rollover . . . . . . . . . . . . . . . . . 63
22 Descriptive statistics of the RMSE S&P 500 options by moneyness . . . . 67
23 Descriptive statistics of the RMSE S&P 500 options by maturity . . . . . . 67

7



List of Acronyms

ARMSE Average Root Mean Square Error

ATM At-the-money

Bqv Bondarenko’s quadratic variation

CBOE Chicago Board Options Exchange

FRED Federal Reserve Economic Data

IV Implied volatility

NYSE New York Stock Exchange

OTC Over-the-counter

OTM Out-of-the-money

RRMSE Relative Root Mean Square Error

RSE Residual Standard Error

SVJ Stochastic volatility jump model

8



1 Introduction

The objective of this paper is to study the replication and propose a solution to deal with
the mark-to-market of complex derivatives contracts exposed to the risk-neutral moments
of the SP 500 index, such as the variance contract presented in Bondarenko (2014) [6] and
the rare disaster index (RIX) of Gao et al. (2018) [24]. The relevance of such agreements
can be driven from a historical perspective by the successions of financial crises: the
Asian crisis (1997), Russian crisis (1998), the dot-com bubble (2000), the global financial
crisis (2008), and recently, the COVID-19 pandemic (2020). These contracts lack liquidity
because they are traded over-the-counter (OTC). This characteristic can create a practical
challenge for financial agents exposed to these contracts in their books. The current paper
addresses this issue by focusing on replication strategies involving liquid traded assets and
by evaluating those contracts with the assistance of the IV parametric model of François
et al. (2022) [22].

1.1 Literature Review

For the replication of derivatives contracts, several approaches have been studied in the
literature. The first approach is the option tracking, present in Black, Scholes, and Mer-
ton (1973) [5], Boyle and Emanuel (1980) [7], Derman and Taleb (2005) [19] and Hull
and White (2017) [28]. This approach involves a dynamic rebalancing position in the
underlying asset combined with one or two options based on the Greeks. This strategy
employs option sensitivities to track the movement of the underlying asset. Therefore,
the replication is dependent on the pricing formula which is model-dependent.

The second approach consists of static hedging, as presented in Carr and Madan (1998)
[11] and Carr and Wu (2002) [13]. The replication strategy requires a continuum of
options with the same time-to-maturity as the derivatives to be hedged. More precisely,
static replication involves a buy-and-hold strategy with the purchase of many options at
the initial date of the contract. The performance of the replication is directly related to
the availability of the options market in terms of strike prices. In contrast to the previous
approach, this one is model-free.

The third replication approach found in the literature is the global hedging risk mini-
mization (GHRM). This methodology consists of resolving a replication problem by op-
timization. The method consists of identifying the self-financing trading strategies that
minimize the distance between the payoff and the strategy terminal value. The objective
function (the distance) depends on some risk measure. In the work of Xu (2006) [37], the
general approach is presented. Civatic and Karatzas (1999) [16] use the expected hedging
shortfall, Sekine(2004) [35] minimizes the tail value-at-risk, Remillard and Rubenthaler
(2009) [34] consider the expected squared hedging error, and François, Gauthier and
Godin (2012) [23] propose an adaptation for regime-switching models.

This research paper aligns itself with the replication method presented in Bondarenko
(2014) [6], which falls under the second approach with two replication parts: a static one
and a dynamic one. In addition, this thesis answers also the mark-to-market problem
for some families of contracts using the continuum of options in the static replication
approach. We investigate the limited valuation and replication of such contracts in terms
of the availability of a continuous volatility surface. The problem is answered with the use
of the implied volatility surface model of François et al. (2022) [22]. In contrast with the
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works of Bondarenko (2014) [6] and Gao et al. (2018) [24] that use standard trapezoidal
numerical integration. Our approach involves the volatility surface model and answers
the discretization error by possibly interpolating/extrapolating the options prices. The
convenience of the fitting model is the reliability of its calibration on the risk-neutral
volatility surface.

This paper’s takeaway can be summarized in two main points. Firstly, it focuses on
studying the replication strategy for this product type using liquid traded assets. Secondly,
it introduces mark-to-market valuation tools pertinent to the financial agents involved
in such derivative contracts. The aim is to provide investors with the opportunity to
benefit from convex payoffs (insurance) during extreme events while simplifying the pricing
process for these contracts.

This thesis is structured as follows: In Section 2, we provide a historical overview of
various strategies employed in trading variances and introduce the contracts under study.
Section 3 focuses on the implementation of variance contract replication. Subsection
3.1 presents the data, while subsection 3.2 delves into replicating the variance contract
within a Monte Carlo simulation environment. Moving on to Section 3.3, a similar study is
conducted using real data. In subsection 3.3.4, we perform a linear regression analysis on
the relative errors of our replications. In Section 4, we compare two valuation methods for
the contracts: the classical trapezoidal technique and the IV surface model. Subsequently,
we present the results of the valuation. Finally, in Section 5, we conclude the thesis.

In summarizing our findings, we note that the methodologies we employ for replicating and
valuing our contracts typically produce highly favorable results. However, a limitation
arises from a truncation error in the static option portfolio, which is defined by the
minimum and maximum strikes available at the inception date. Concerning a small
number of replications, this results in a diminished payoff for the static option portfolio,
thereby causing a notable difference between the replication and target values.
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2 Trading the Variance

In the current section, we present a historical perspective for different variance trading
strategies. Our focus is on various measures of the S&P 500 index’s variance. Afterward,
we introduce classical volatility trading strategies such as the straddle and the variance
swap. Finally, we present the risk-neutral contracts based on the work of Bondarenko
(2014) [6] and Gao et al. (2018) [24], jointly with the theoretical framework in use for
their replication.

2.1 S&P 500 process

The S&P 500 index is the financial market’s main benchmark proxy of the US economy,
the index is composed of the five hundred most capitalized firms in the New York exchange
(NYSE). Another market’s proxy is the measure of the volatility of the S&P 500 index
quantified by the VIX index. This index is often seen as the systemic risk indicator or
the fear sentiment of the economy. The construction of the VIX index is closely tied to
our variance contract. This relation is detailed in Subsection 2.4.1.

Regarding liquidity, the S&P 500’s derivatives follow a specific structure, where futures
and options are traded daily. Dewynne and Putyatin (1999) [20] highlight the crucial
role of market liquidity in the replication and valuation of derivatives. Consequently,
the liquidity of S&P 500’s derivatives creates favorable conditions for constructing more
complex financial products.

Figures 1 and 2 present the level and the log returns of the S&P 500 index. We observe
the time-varying volatility and jumps, especially during financial turmoils.

Consequently, the S&P 500 index dynamics we consider are characterized by stochastic
volatility and jumps in index prices.

Let Ft,T be the future price at time t of a contract maturity T . As shown in Bates (1996)
[3], {Ft,T}0≤t≤T is a Q martingale. We consider the jump-diffusion dynamics :

dFt,T =
√
Vt−Ft−,TdW

Q
t + Ft−,T ξt−dJt, (1)

where Vt is the stochastic instantaneous variance, WQ is a Brownian motion under the
risk-neutral measure Q and ξt−dJt is the finite activity jump component. Vt− is the
instantaneous variance, and Ft−,T the future price before the jumps occurrence. Note
that {Jt} is also a Q martingale.
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Figure 1: Daily S&P 500 level

Time series that highlights the impact of the financial crisis on the S&P 500 index from January 1, 1996,

to December 31, 2020. The grey shadow highlights key events including the Asian crisis (1997), Russian

crisis (1998), dot-com bubble (2000), global financial crisis (2008), and COVID-19 pandemic (2020).

Figure 2: Daily S&P 500 log returns

Time series that highlights the impact of financial turmoils on the S&P 500 returns from January 1, 1996,

to December 31, 2020. With grey shadow emphasizes the Asian (1997) and Russian crises (1998), the

dot-com bubble (2000), the global financial crisis (2008), and the COVID-19 pandemic (2020).

12



2.2 Classical variance trading strategies

In this subsection, we present well-known trading strategies: the straddle and the variance
swap. This brief presentation of those classical volatility trading strategies provides an
intuitive historical perspective for the construction of the derivative present in Section
2.4.

2.2.1 Straddle

We begin with the simplest trading strategy involving the variance (volatility) exposure:
the straddle. It consists of buying a European call and a European put with the same
maturity and strike price. The straddle payoff is

Πstraddle
t = (St −K)+ + (K − St)

+.

The combination of put and call can be viewed as a positive exposition on the large
movement of an asset. We can imagine a trader involved in an at-the-money straddle
(i.e., the strike equals the spot price). With this consideration, if the index moves largely
away from its initial price, the payoff of the straddle gives a positive gain (i.e., is in-the-
money). In contrast, if the underling asset does not move significantly during the contract
maturity, the straddle gives a small payoff, and the net profit is negative. An investor
expecting a large move can then be long on a straddle, precisely by the non-directional
profile of this trading position. A brief description of the payoff and dynamics is presented
in Figure 3 and is taken from Hull (2018) [27].

Figure 3: Payoff of straddle

Hull, Options, Futures and Other Derivatives. 9th Global Edition, p.267 [27]

Figure 3 represents the profit of the straddle strategy. The financial agents involved in
this strategy are subject to only the cost of the call and the put at initiation. The straddle
profit becomes

Profitstraddlet = (St −K)+ + (K − St)
+ − C(St, K, T )− P (St, K, T ).

Some more flexible extensions of the straddle exist commonly called a strip, a strap, and
a strangle. Those types of contracts are replicated by a dynamic hedging strategy.
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2.2.2 Variance swap

Another related contract is the variance swap introduced by Carr and Madan (1998) [11].
A variance swap is a contract that allows an investor to hedge or speculate on the variance
of an underlying asset. Precisely, this agreement allows us to gain exposure to the future
realized variance. The payoff of the contract relies on the difference between the realized
variance and a fixed variance strike set at the contract inception date h0 = 0. The realized
variance is computed based on the historical returns of the underlying asset.

The realized variance RVH is calculated on the swap’s reference period [0, H].

For 0 = h0 < hi < ... < hn = H,

RVH =
H∑
i=1

(
ln

(
Fhi,H

Fhi−1,H

))2

,

where RVH is the approximation of the quadratic variation and H is the swap maturity
date on 365-day basis.

Typically, annualized RVH represents the floating leg of the variance swap. The fixed leg
represents the fixed variance strike at the inception of the swap.

Considering these swap’s legs settings, the variance swap settlement payoff ΠV S
H is

ΠV S
H = NV S

(
RVH −KV S

0,H

)
,

where NV S is the cash notional of the swap settlement and KV S
0,H is the fixed variance

strike.

The fair strike KV S
0,H is obtained by setting the risk-neutral expectation of the payoff at

the swap’s inception to zero,

EQ
0

[
NV S

(
RVH −KV S

0,H

)]
= 0,

which implies that

KV S
0,H = EQ

0 [RVH ] ∼= EQ
0 [QVH ] ,

where QVH is the quadratic variation on the futures contract over [0, H]. Therefore, the
fixed strike price is defined as the risk-neutral expectation of the quadratic variation.

At the swap’s maturity H, if RVH > KV S
0,H the holder of the swap receive the cash set-

tlement. In case RVH < KV S
0,H , the holder of the swap will pay the cash settlement. It’s

important to note that the variance swap differs from the straddle. Unlike the straddle,
which is limited to the options costs, the variance swap may result in a negative cash flow,
and the swap holder may face margin calls if a significant loss occurs during the swap’s
life.
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2.3 Carr-Madan Framework

In the current subsection, we present the Carr-Madan framework. This framework is the
main tool for the static replication of Bondarenko’s quadratic variation payoff BqvT .

Carr and Madan (1998) [11], propose a static replication strategy based on many positions
in the option market. The strategy involves adopting a buy-and-hold approach, where
the initial investment occurs at the starting date t0 = 0, and all payoffs are received at
the terminal date t. The framework relies on the existence of a continuum of strike prices
for European options.

In Carr Madan (1998) [11], for any twice differentiable function g, the payoff g(Ft,T ) is
replicated by a static portfolio made from a position in a bank account, a futures contract
and a portfolio of put and call options :

g(Ft,T ) = g(F0,T ) + g′(F0,T )(Ft,T − F0,T ) +

∫ F0,T

0

g′′(K)(K − Ft,T )
+dK

+

∫ ∞

F0,T

g′′(K)(Ft,T −K)+dK, (2)

where g′(K) and g′′(K) are the first and second derivatives of g(K). The first term mimics
the static position of a pure discount bond that pays g(F0,T ) at t. The second term is the
payoff from g′(F0,T ) of the amplitude between the terminal and initiation values of the
futures price. The third and fourth terms are the terminal payoff of the European calls
and puts.

This strategy for replication, being model-free, operates without being confined by as-
sumptions about the market structure. The fact that no underlying asset price dynamics
hypothesis is needed provides some robustness to the trading strategy.

However, there is a limitation to this approach. In practice, the absence of a continuum of
strike prices and maturities restricts a straightforward application of the static replicating
portfolio. The presence of these constraints poses a challenge in replicating the variance
contract, particularly involving an error in terms of the truncation and the discretization
scale of the integrals.

2.4 Risk-neutral contracts

In the current subsection, we present the different risk-neutral contracts obtained as the
special cases of the Carr-Madan formula shown in Equation (2).

2.4.1 Variance contract

The contract’s payoff is contingent on the quadratic variation of the futures price over
the period [t, T ]. Using the Carr-Madan formula, the replication of this payoff involves
employing a variety of European puts and calls. The details of this replication process
are explained below.

The variance contract relies on the following derivations involving Equation (1) which
presents the future’s stochastic differential equation.
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Itô‘s lemma leads to

ln(Ft,T ) = ln(F0+,T ) +

∫ t

0+

1

Fu−,T

dFu,T −
1

2

∫ t

0+

1

F 2
u,T

d⟨Fu,T ⟩

+
∑

0+<u≤t

{ln(Fu,T )− ln(Fu−,T )−
1

Fu−,T

∆Fu,T}.

= ln(F0+,T ) +

∫ t

0+

1

Fu−,T

dFu,T −
1

2

∫ t

0+
Vu−du+

∑
0+<u≤t

{ln(1 + ξu∆Ju)− ξu−∆Ju},

where ∆Fu,T = Fu,T − Fu−,T .

A Taylor expansion of ln (1 + ξu∆Ju) around ξu∆Ju for the jump component gives∑
0+<u≤t

{ln(1 + ξu∆Ju)− ξu−∆Ju} ∼=
∑

0+<u≤t

{
ξu−∆Ju +

1

2
ξ2u−(∆Ju)

2 − ξu−∆Ju

}
.

Therefore,

ln(Ft,T ) ∼= ln(F0+,T ) +

∫ t

0+

1

Fu−,T

dFu,T −
1

2

∫ t

0+
Vu−du−

∑
0+<u≤t

1

2
ξ2u−(∆Ju)

2.

Let 0 = t0 < ti < ... < tn = T , with limn→∞maxi∈{1,...,n} (ti − ti−1) = 0.∫ t

0+
Vu−du+

∑
0+<u<t

1

2
ξ2u−(∆Ju)

2 ∼= 2

{∫ t

0+

1

Fu−,T

dFu,T − ln

(
Ft,T

F0+,T

)}
,

∼= 2

{
n∑

i=1

Fti,T − Fti−1,T

Fti−1,T

−
n∑

i=1

ln

(
Fti,T

Fti−1,T

)}
. (3)

The left-hand side Equation of (3) corresponds to the quadratic variation of the log future.
Therefore, the right-hand side of the Equation (3) can be interpreted as an observable
proxy of the quadratic variation.

By Equation (3), we define the “Bondarenko’s quadratic” variation BqvT . This measure
is path-dependent from t0 = 0 to the future’s expiry T .

BqvT = 2

{
n∑

i=1

Fti,T − Fti−1,T

Fti−1,T

−
n∑

i=1

ln

(
Fti,T

Fti−1,T

)}
. (4)
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Using the Carr-Madan formula (1998),

g(Ft,T ) = g(F0,T ) + g′(F0,T )(Ft,T − F0,T ) +

∫ F0,T

0

g′′(K)(K − Ft,T )
+dK

+

∫ ∞

F0,T

g′′(K)(Ft,T −K)+dK.

When g(Ft,T ) = ln(Ft,T ), the expression becomes

ln(Ft,T ) = ln(F0,T ) +
1

F0,T

(Ft,T − F0,T )

−
∫ F0,T

0

1

K2
(K − Ft,T )

+dK −
∫ ∞

F0,T

1

K2
(Ft,T −K)+dK. (5)

which leads to

2

{∫ F0,T

0

1

K2
(K − Ft,T )

+dK +

∫ ∞

F0,T

1

K2
(Ft,T −K)+dK

}

= 2

(
Ft,T − F0,T

F0,T

)
− 2 ln

(
Ft,T

F0,T

)
.

= 2
n∑

i=1

Fti,T − Fti−1,T

Fti−1,T

− 2
n∑

i=1

ln

(
Fti,T

Fti−1,T

)
+ 2

n∑
i=1

{
Fti,T − Fti−1,T

F0,T

−
Fti,T − Fti−1,T

Fti−1,T

}
. (6)

Therefore,

BqvT =
n∑

i=1

Fti,T − Fti−1,T

Fti−1,T

− 2
n∑

i=1

ln

(
Fti,T

Fti−1,T

)

= 2

{∫ F0,T

0

1

K2
(K − Ft,T )

+dK +

∫ ∞

F0,T

1

K2
(Ft,T −K)+dK

}

+ 2
n∑

i=1

(
1

Fti−1,T

− 1

F0,T

)
(Fti,T − Fti−1,T ).

This results in the variance contact BqvT payoff in terms of the following replication
strategy,

BqvT ∼= 2

{∫ F0,T

0

1

K2
(K − Ft,T )

+dK +

∫ ∞

F0,T

1

K2
(Ft,T −K)+dK

}
︸ ︷︷ ︸

Option portfolio OPT

+ 2
n∑

i=1

(
1

Fti−1,T

− 1

F0,T

)(
Fti,T − Fti−1,T

)
︸ ︷︷ ︸

Dynamical strategy DST

.

= OPT +DST .

= RPT .

(7)
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DST represents the dynamic trading strategy, and OPT is the options portfolio. In the-
ory, RPT acts as the replication portfolio, but practical limitations prevent access to a
continuum of strike prices. Furthermore, it’s important to observe that the expiration
date T for the future Ft,T aligns with the expiration date for the terminal payoff of the
options.

The initial mark-to-market valuation of the static buy and hold position depends on the
options prices P (Ft,T , K, T ) and C(Ft,T , K, T ). This valuation consists of the discounted
risk-neutral expectation of the Equation (7) at t0 = 0,

EQ
0

[
e−rTRPT

]
= 2

{∫ F0,T

0

1

K2
P (F0,T , K, T )dK +

∫ ∞

F0,T

1

K2
C(F0,T , K, T )dK

}
. (8)

The risk-neutral expectation of the dynamical strategy DST is zero because of the mar-
tingale property

EQ
0

[
n∑

i=1

(
1

Fti−1,T

− 1

F0,T

)(
Fti,T − Fti−1,T

)]
.

=
n∑

i=1

EQ
0

[
EQ

0

[(
1

Fti−1,T

− 1

F0,T

)(
Fti,T − Fti−1,T

)] ∣∣∣∣Fti−1

]
.

=
n∑

i=1

EQ
0


(

1

Fti−1,T

− 1

F0,T

)
EQ

0

[(
Fti,T − Fti−1,T

) ∣∣∣∣Fti−1

]
︸ ︷︷ ︸
= 0 because Fti,T is a martingale

 .

Concerning the costs associated with this contract, the financial agent must pay the price
of OPT at t0 = 0. Furthermore, replicating the contract incurs additional costs related to
the daily rebalancing of the dynamic trading strategy, which varies by the daily futures
price.

As mentioned earlier in Section 2.1, there is an analogy to make with the well-known VIX
index. In fact, the VIX relies on the variance contract. With T equal 30/365 (30 days)
and r the risk-free rate.

The index is derived using EQ
0

[
e−rTRPT

]
along with a multiplicative factor,

VIX = 100×

√√√√2erT

T

{∫ F0,T

0

1

K2
P (F0,T , K, T )dK +

∫ ∞

F0,T

1

K2
C(F0,T , K, T )dK

}
. (9)

2.4.2 Rare disaster index (RIX)

In the study by Gao et al. (2018) [24], an additional significant financial instrument is
introduced, referred to as the “rare disaster index.” This index adopts a methodology
similar to Bondarenko’s (2014) [6] variance contract but distinguishes itself through its
capability to capture extreme downside market shocks. The RIX is formulated based on
the spread between two options portfolios, as detailed in Appendix A. The first portfolio,

denoted as Π1
t
−, represents the left-tail risk-neutral variance, also identified as JTIX−

∧

in
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Du and Kapadia’s analysis (2012) [21].

EQ
0

[
e−rT

(
ln

Ft,T

F0,T

)2
]−

= Π1
t
− = 2


∫ F0,T

0

(
1− ln

(
K

F0,T

))
K2

P (F0,T , K, T ) dK

 . (10)

The second portfolio, Π2
t
−, closely resembles our variance contract portfolio, with the key

distinction being the inclusion of only the left tail. As outlined by Gao et al. (2018) [24],
this portfolio is designed to capture a moderate volatility shock in the market.

EQ
0

[
e−rTBqvT

]−
= Π2

t
− = 2

{∫ F0,T

0

1

K2
P (F0,T , K, T ) dK

}
. (11)

The formulation of the options portfolio as described in Equation (10) differs from that in
Equation (11) by assigning higher weights to significantly out-of-the-money puts. As the
strike decreases, the put option moves further out-of-the-money. The negative indicator
− specifies that only puts are taken into account. Furthermore, this portfolio exhibits a
directional nature compared to the one presented in Section 2.4.1.

The RIX is defined by the spread between the Equations (10) and (11)

RIX = Π1
t
− − Π2

t
− = 2


∫ F0,T

0

ln
(

F0,T

K

)
K2

P (F0,T , K, T ) dK

 . (12)

The derivations are found in Appendix A.
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3 Implementation

3.1 Data

The financial data indicators are the European options of the S&P 500 index, the future
prices, and the treasury risk-free rate (1 month to 3 years). The OptionMetrics database is
the source for the futures and options prices. For the risk-free rate, we obtain the treasury
rates, available on the FRED database. The methodology used for the data matching of
those three variables is the same as in François et al. (2022) [22]. The matching consists
of having the same expiration date for the futures and the options. For the risk-free rate,
we use the closest one associated with the respected maturity of the derivatives. The data
timeline is from January 4, 1996, to December 31, 2020.

Table 1: Descriptive statistics of the S&P 500 volatility surface by moneyness (i.e, puts
with M > 0 and calls with M < 0)

Calls and Puts
M ≤ −0.2 −0.2 < M ≤ 0 0 < M ≤ 0.2 0 < M ≤ 0.2 M > 0.8 All

Average IV (%) 19.61 14.45 19.28 28.28 48.18 24.52
Standard deviation IV (%) 9.63 6.41 6.94 7.75 13.59 12.45

Number of contracts 671,917 1,859,798 1,945,186 3,441,450 815,069 8,733,420

Descriptive statistics of the daily S&P 500 options implied volatility (IV) surfaces from January 4, 1996,

to December 31, 2020, grouped by buckets of moneyness. M is the moneyness computed in Equation

(38)

As shown in Table 1, our sample is composed of around 30% OTM calls and 70% OTM
puts. The average implied volatility for the puts is also higher than the one of the calls.
This asymmetry in terms of the implied volatility has a direct consequence on the payoff
of the static option portfolio OPT . Moreover, in scenarios where there are fewer calls than
puts, there exists the potential of not capturing positive jumps in the options portfolio
OPT for a given inception date.

We illustrate this disparity in the time series for the number of contracts, as shown in
Figures 4 and 5. Throughout our sample period from January 1996 to December 2020,
we observe an increase in the quantity of out-of-the-money (OTM) options in recent
years. However, it is evident that the numbers of calls consistently remain lower than the
numbers of puts.

Finally, Figures 6 and 7 present the time series of the average strike distance at t0 for
each maturity.
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Figure 4: Time series of the quantity of the market’s call options

Time series of the number of calls for the different roll-overs across our sample, beginning from

January 1996 to December 2020.
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Figure 5: Time series of the quantity of the market’s put options

Time series of the number of puts for the different roll-overs across our sample, beginning from

January 1996 to December 2020.
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Figure 6: Time series of the average strike distance ∆K of the market’s put options

Time series of the average ∆K for the puts, obtained by calculating the daily arithmetic average of the

strike distance across all maturities.

Figure 7: Time series of the average strike distance ∆K of the market’s call options

Time series of the average ∆K for the calls, obtained by calculating the daily arithmetic average of the

strike distance across all maturities.
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3.2 Monte Carlo study

In this section, we present simulations to replicate the payoff BqvT of the variance con-
tract. First, in Subsection 3.2.1, we outline the model characteristics and how it is
discretized. Next, we explain the use of the trapezoidal method to evaluate the static
portfolio OPT payoff, discussing sources of errors such as discretization scale and trun-
cation error. Thirdly, we provide a concise overview of the simulation’s implementation.
Finally, we present simulation results, including a series of tests to determine whether the
replication error is primarily due to the discretization scale or the truncation error.

3.2.1 The Stochastic volatility Jump Model

In this current subsection, we are considering the log price of the S&P 500 index and the
following jump-diffusion process as the one presented in the Bates model [3], under the
physical measure.

dYt =
(
r + ηVt − λE(eξt− − 1)

)
dt+

√
VtdW

P
Yt
+ ξt−dJt.

dVt = κ (θ − Vt) dt+ σ
√
VtdW

P
Vt
.

The future contract in terms of the log prices is obtained through the cash-and-carry rela-
tion Ft,T = exp{Yt + r(T − t)} where r is the risk-free rate, η is the equity risk premium
parameter, κ is the mean-reversion speed of the variance process, θ is the long-run variance
level, Vt is the instantaneous variance and σ is the volatility of the volatility. Jt represents
a Poisson process with intensity λ, and the jump size ξt− are normally distributed with
expectation µξt and standard deviation σξt i.e., ξt− ∼ N(µξt ,σξt

). {Jt}t≥0 is independent
of the two Brownian motions and the jump sizes. The Brownian motions are correlated
with a correlation coefficient ρ i.e., Corr(W P

Yt
,W P

Vt
) = ρ. And E(eξt− ) = e

µ
ξt+

1
2 (σξt

)2 .

3.2.1.1 Model discretization

The model is simulated with the Euler approximation scheme. The time step size is
∆t ∼= T/n, where T is the future’s maturity and n is the number of the simulated steps
(per paths)1. For the variance process, we apply the rule V +

t = (Vt, 0)
+ by taking into

consideration only the positive terminal variance.

We capture the correlation between the Brownian motions by the Cholesky decomposition:
ρZ1 +

√
1− ρ2Z2, where Z1 and Z2 are respectively two independent standard normal

random variables and ρ is the correlation coefficient.

For the jump part, J follows a Poisson distribution with a parameter λ∆t, capturing the
discrete occurrences of jumps within the time step ∆t. The individual jump magnitudes,
Xi, are drawn from a normal distribution with a mean of µξt and a standard deviation
of σξt . Consequently, the cumulative impact of these jumps is discretely approximated as

the sum
∑J

i=1Xi.

In addition Yt+∆ is the log stock price, Ft+∆t,T the futures contract price.

1The value of n is 30 days.
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Following the Euler approximation, the model is

∆t ∼= T/n.

Vt+∆t
∼= Vt + κ

(
θ − V +

t

)
∆t+ σ

√
V +
t ∆t

(
ρZ1 +

√
1− ρ2Z2

)
.

Yt+∆t
∼= Yt +

(
r + ηV +

t − λ
(
eµξt

+ 1
2
σ2
ξt

))
∆t+

√
V +
t ∆tZ1 +

J∑
i=1

Xi.

Ft+∆t,T
∼= exp

(
Yt+∆t e

r∆t
)
.

3.2.1.2 Simulation Parameters

We use the same parameters estimated in Bégin and Gauthier (2020)[4].

Table 2: Parameters for the SVJ model used for the simulation study.

Parameter Value
κ 5.130
θ 0.044
σ 0.520
ρ -0.754
µξt -0.025
σξt 0.040
η 2.526
λ 1.512
n 30
∆t 1/365
r 1.54%

κ is the mean-reversion speed of the variance process, θ is the long run variance level, σ is the volatility
of the volatility, ρ is the two Brownian correlation coefficient and η is equity premium risk parameter.
For the jump part, the intensity is λ with a normally distributed jump size ξt− with expectation µξt and
standard deviation σξt . Additionally, n is the number of scheme step, ∆t is the time step size and r is
the risk-free rate.
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3.2.2 Strategies replications

To replicate the payoff BqvT , a necessary condition is the existence of a portfolio of options
OPT that is constructed on a continuum of the strikes. However, in practice, there is no
existence of such a continuum. To evaluate Equation (7), we use a numerical integration
method : the trapezoidal rule. In our simulations, we evaluate the numerical value of
OPT based on the payoffs of the calls and puts at maturity T . The portfolio weights rely
on the available strikes at t0 = 0. Additionally, the current future price F0,T serves as
an input for defining the integral bounds, while the terminal future price Ft,T is used for
computing options payoffs at maturity T . The emphasis in this section lies in the payoff
replication, thereby eliminating the necessity of options prices.

We evaluate the portfolio OPT by considering the discrete grid with N equally spaced
strike prices

K1 < ... < Kk−1 < F0,T < Kk < ... < KN ,

and we define ∆Ki = Ki+1 − Ki−1 for 2 ≤ i ≤ N − 1, ∆K1 = K2 − K1 and ∆KN =
KN −KN−1.

The approximation of the payoff for the puts leads to∫ F0,T

0

1

K2
(K − Ft,T )

+dK ∼=
k−1∑
i=1

1

2

∆Ki

K2
i

(Ki − Ft,T )
+ . (13)

The approximation of the payoff for the calls leads to∫ ∞

F0,T

1

K2
(Ft,T −K)+dK ∼=

N∑
i=k

1

2

∆Ki

K2
i

(Ft,T −Ki)
+ . (14)

In the case K1 < ... < Kk−1 ≤ F0,T < Kk < ... < KN a correction is required around
F0,T ,

The correction of the payoff for the puts leads to∫ F0,T

0

1

K2
(K − Ft,T )

+dK =

∫ K1

0

1

K2
(K − Ft,T )

+dK +

∫ Kk−1

K1

1

K2
(K − Ft,T )

+dK

+

∫ F0,T

Kk−1

1

K2
(K − Ft,T )

+dK.

∼=
k−1∑
i=2

∫ Ki

Ki−1

1

K2
(K − Ft,T )

+dK.

The correction of the payoff for the calls leads to∫ ∞

F0,T

1

K2
(Ft,T −K)+dK =

∫ Kk

F0,T

1

K2
(Ft,T −K)+dK +

∫ KN

Kk

1

K2
(Ft,T −K)+dK

+

∫ ∞

KN

1

K2
(Ft,T −K)+dK.

∼=
N∑

i=k+1

∫ Ki

Ki−1

1

K2
(Ft,T −K)+dK.
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It’s important to note that the increment ∆Ki = KN−K1

N
in each integral. We choose

these bounds by setting K1 as the lower bound and KN as the upper one, which are
respectively the minimum and maximum of the available strike grid at each replication’s
inception date t0. For simulation purposes, it is assumed that ∆Ki remains constant. As
the value of N increases, the accuracy of approximations improves, leading to a reduction
in the value of ∆Ki. In simpler terms, a higher N leads to a more refined discretization,
thereby enhancing the precision of the calculations.

The precision is also influenced by truncation errors associated with the lower bound
in Equation (13) for put payoffs and the upper bound in Equation (14) for call payoffs.
Consequently, the option’s payoff is directly impacted by the distance betweenK1 andKN

from F0,T , particularly during periods of higher volatility in the underlying asset.

Therefore combining Equations (13) and (14)

OPT = 2

{
k−1∑
i=1

1

2

∆Ki

K2
i

(Ki − Ft,T )
+ +

N∑
i=k

1

2

∆Ki

K2
i

(Ft,T −Ki)
+

}
. (15)

Concerning the dynamic strategy DST , we adjust our position on a daily frequency based

on the trajectory of Ft,T . The position is determined by calculating
(

1
Fti−1,T

− 1
F0,T

)
for

each day t.
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3.2.3 Simulations

In this subsection, our primary objective is to assess the resilience of our replication
portfolio RPT within a singular 30-day strategy horizon. To achieve this, we conduct
simulations on 100,000 paths of the process to determine the terminal price Ft,T . Upon
maturity, for each path j, we compute the spread between our replication portfolio RPT

and the target payoff BqvT . For a more in-depth understanding of the implementation,
the pseudo-algorithm is available in Appendix B.

We begin by simulating our paths with the following characteristics. The initial future
price F0,T = 3257.75, the risk-free rate r = 1.54%, which are observable in the beginning
of January 2020 (2020-01-02), the instantaneous variance V0 = 4.4%, and the maturity
T = 30/365. The time step ∆t of the simulation is 1/365, with n being one day. For each
path j, we compute Equation (4), the target payoff BqvT . We also calculate the two parts
of Equation (7). The static OPT payoff is obtained by Equation (15). The dynamical

strategy DST is rebalancing daily
(

1
Fti−1,T

− 1
F0,T

)
shares at every step n. With the addi-

tion of those two terms, we obtain the replication payoff RPT . We observe that the values
of BqvT and RPT are small. To address this issue, we have opted to apply a scaling trans-
formation to both variables, denoted as sBqvT and sRPT . This type of transformation is
akin to the one employed for the VIX index, as we show in Equation (9). Through this
application, we apply normalization in terms of percentage and maturity simply for aes-

thetic scaling purposes. Finally, by construction RRMSE =
√

1
n

∑n
j=1 (ϵ

(j))
2
, representing

the Relative Root-Square Mean Error of the replication.

Bqv
(j)
T = 2

{
n∑

i=1

F
(j)
ti,T
− F

(j)
ti−1,T

F
(j)
ti−1,T

−
n∑

i=1

ln

(
F

(j)
ti,T

F
(j)
ti−1,T

)}
. (16)

OP
(j)
T = 2

{
k−1∑
i=1

∆Ki

K2
i

(
Ki − F

(j)
t,T

)+
+

N∑
i=k

∆Ki

K2
i

(
F

(j)
t,T −Ki

)+}
. (17)

DS
(j)
T = 2

n∑
i=1

(
1

F
(j)
ti−1,T

− 1

F
(j)
0,T

)(
F

(j)
ti,T
− F

(j)
ti−1,T

)
. (18)

RP
(j)
T = OP

(j)
T +DS

(j)
T . (19)

sBqv
(j)
T =

√
Bqv

(j)
T

1

T
× 100 (20)

sRP
(j)
T =

√
RP

(j)
T

1

T
× 100 (21)

e(j) = sRP
(j)
T − sBqv

(j)
T . (22)

ϵ(j) =
sRP

(j)
T − sBqv

(j)
T

sBqv
(j)
T

. (23)

RRMSE(j) =

√√√√ 1

n

n∑
j=1

(ϵ(j))
2
. (24)
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To assess the effectiveness of replicating our simulated strategy, we propose a series of
test scenarios. As explained in Section 3.2.2, two error sources affect the evaluation of
the options portfolio OPT . The first relates to the increment in strike distance, denoted
as ∆Ki. The second involves the truncation error of the OPT integral. Variations in the
lower and upper bounds of the integral directly influence the payoff of OPT within the
tails.

We employ various testing scenarios to tackle the first concern by adjusting the increment
scale ∆Ki. We propose strategies, each representing a discretization scale of OPT with
∆Ki = {8, 15, 45}. These strike values will provide valuable insights into the behavior
of integration in diverse market settings, particularly concerning the distance between
the strikes. The value ∆Ki = 8 represents the average increment observed on the date
January 2, 2020, for the one-month maturity.

In this preliminary examination, we operate under the assumption of no truncation error in
the evaluation of OPT . To mitigate potential numerical instability, we set the lower bound
as K1 = F0,T − 3000, ensuring a minimum moneyness of 0.0791. For the upper limit, we
define KN = F0,T + 3000, resulting in a maximum moneyness of 1.9209. Additionally, we
approximate the continuous scenario using a constant strike increment ∆Ki = 10−4.

Table 3: Descriptive statistics of ϵ in % and RRMSE for the Monte-Carlo Simulation
concerning the discretization scale

Discretization scale Min. Median Mean Max. SD Quantile (95%) RRMSE
Continuous -0.0017% 0.0006% 0.0011% 0.2012% 0.0096% 0.0001% 0
∆Ki = 8 -13.9627% -0.6971% -1.3476% 0.0306% 1.6368% -4.9772% 0.0212
∆Ki = 15 -28.2542% -0.7059% -2.2033% 0.1914% 3.2262% -9.4191% 0.0390
∆Ki = 45 -81.4669% -0.2327% -3.6650% 1.9686% 6.9482% -19.047% 0.0786

Descriptive statistics are provided for the relative replication error ϵ, defined as ϵ =
(

sRPT−sBqvT

sBqvT

)
,

along with the computation of RRMSE for each discretization scale ∆Ki. Additionally, the analysis

includes other metrics such as the minimum (Min), maximum (Max), 95th percentile (Quantile 95%),

and standard deviation (SD). The simulation encompasses 100,000 paths with a maturity of T = 30
365 .

The parameters align with those presented in Table 2. Integral bounds are set as K1 = 257.55 and

KN = 6257.55 for a future price value of F0,T = 3257.55.

As evident from Table 3, the results align closely with the findings presented in Bon-
darenko’s (2014) [6]. Departures from continuity arise when employing different strategies
with varying strike discretization scales, causing a divergence of OPT from the continuous
scenario. A larger ∆Ki corresponds to a higher relative replication error ϵ and RRMSE,
resulting from an increased gap between the theoretical value BqvT and the reproduced
value RPT .

Furthermore, Figure 8 illustrates the box plot of the replication errors. This box plot
reveals a negatively skewed distribution for the discrete strategies. In contrast, for con-
tinuous replication, the distribution is centered around 0, aligning with the results from
Table 3.
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Figure 8: Box plot of the relative replication errors on different scales

A box plot depicting the relative replication error ϵ across various discretization scales in a simulation

involving 100,000 paths. The maturity is set at T = 30/365, and the parameters in use are taken from

Table 2.
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To address the second issue related to the truncation error, we conducted additional tests
by adjusting the lower bound (LB) for the put parts integration of OPT in Equation (13)
and the upper bound (UB) for the call part of OPT in Equation (14). In theory, these
bounds are 0 and ∞, respectively, as mentioned in Section 3.2.2. However, in practical
market scenarios, these strikes are not traded, which could potentially impact the payoff
of OPT . We propose three alternative strategies, each representing different truncation
error level of OPT . To simplify, we recommend maintaining a consistent gap between
F0,T

2 and the relevant bounds. For the put options, in term of the moneyness we suggest
LB = {0.9463, 0.8465}3, and for the call options, UB = {1.0537, 1.1535}4. In addition, at
the initiation of our simulations on 2020-01-02, we take into account a market-like lower
(puts) and upper (calls) bounds moneyness {0.78279, 1.0590}5, taken from the real strike
grid.

Table 4: Descriptive statistics for ϵ and RRMSE in the Monte Carlo Simulation concerning
the truncation error.

Truncation error (moneyness bounds) Min. Median Mean Max. SD Quantile (95%) RRMSE
None {0.0791, 1.9209} -0.0026% 0.0006% 0.0009% 0.8976% 0.0069% 0.0001% 0

Medium {0.8465, 1.1535} -2.2416% 0.0005% 0.0007% 0.3658% 0.0154% 0.0001% 0.0001
High {0.9463, 1.0537} -98.6084% 0.0003% -3.4644% 0.7419% 10.7573% -24.0420% 0.1130

Market-like {0.7828, 1.0590} -98.9086% -0.7896% -8.8482% 0.0331% 15.7784% -45.9762% 0.1809

Descriptive statistics for the relative replication error ϵ defined as ϵ =
(

sRPT−sBqvT
sBqvT

)
and the compu-

tation of RRMSE for every integration bound gap. The other metrics are respectively the minimum

(Min), maximum (Max), Quantile (95%), and standard deviation (SD). The simulation is on 100,000

paths. The maturity is T = 30/365. The parameters are those of Table 2.

The results presented in Table 4 indicate that the higher the truncation error, the greater
the relative replication error ϵ and RRMSE will be. Intuitively, this gap directly influences
the outcomes of the static portfolio OPT ; potential payoffs resulting from large movements
in the futures contract will not be captured if these moneyness bounds are not sufficiently
far from 1. In the case of positive jumps, the call’s payoff of the replication portfolio RPT

will be lower than BqvT if the upper bound moneyness UB is not significantly greater
than 1. Analogously, in the case of negative jumps, the put’s payoff of RPT will be lower
than BqvT if the lower bound moneyness LB is not sufficiently close to 0.

In the case of market-like truncation, we observe a significantly higher replication error.
Notably, there is an asymmetry in terms of the bounds on each side. The left side of the
truncation, which refers to the integration of the put payoffs, has a moneyness of 0.7828.
In contrast, the right side of the truncation, related to the call payoffs, has a moneyness of
only 1.0590. This asymmetry directly impacts the terminal payoff, OPT , by undervaluing
the call’s payoff in the case of a positive jump.

Additionally, Figure 9 depicts the box plot of the replication errors. This box plot reveals
a negatively skewed distribution as the truncation error increases. In contrast, the distri-
bution is centered around 0 for continuous integration, consistent with the findings from
Table 4.

2The suggested gap is chosen based on the level of the futures price F0,T = 3257.75.
3Those moneyness are obtained by considering LB = {F0,T − 175, F0,T − 500}.
4Those moneyness are obtained by considering UB = {F0,T + 175, F0,T + 500}.
5Those moneyness are obtained by considering LB = 2550 and UB = 3450.

31



Figure 9: Box plot of the relative replication errors on different integration bounds gaps

A box plot depicting the relative replication error ϵ across various truncation error levels in a simulation

involving 100,000 paths. The maturity is set at T = 30/365, and the parameters in use are taken from

Table 2.
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3.2.4 Additional testings

To conclude our simulation testing, we conduct further analyses to identify the primary
sources of error in evaluating Equation (15). This involves exploring the relative contri-
butions of errors from both discretization scale and the truncation.

To evaluate this test, we examine simulated scenarios in which we simultaneously adjust
both sources of errors and calculate their respective RRMSE metrics.

Table 5: RRMSE of the interaction of the two Integration error sources

Discretization scale/Truncation Error None Market-like Medium High
Continuous 0 0.1809 0.0001 0.1130
∆Ki = 8 0.0212 0.6113 0.6051 0.6058
∆Ki = 15 0.0390 0.6177 0.6120 0.6129
∆Ki = 45 0.0786 0.6150 0.6098 0.6131

Results of the RRMSE metric for each testing, where we simultaneously vary the discretization scale and

the truncation error in estimating Equation (17), using 100,000 paths and the parameters specified in

Table 2.

As shown in Table 5, when one factor of error is considered while keeping the other
constant, the truncation error proves to be more dominant in terms of replication error
than the discretization scale. Intuitively, the truncation plays a crucial role in capturing
potential extreme payoffs, impacting the payoff of OPT more than the discretization scale
in the case of jumps in the underlying asset.

Examining the market-like grid indicates a substantially higher relative replication error
RRMSE compared to hypothetical scenarios. Table 4 demonstrates that the imbalance in
the truncation’s bounds undervalues potential call option payoffs during positive jumps.
Conversely, for negative jumps, OPT is more apt to capture them, attributed to a mon-
eyness of 0.7828 for the lower bound LB, lower than what is considered in medium and
high truncation error scenarios.
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3.3 Empirical study

In this section, we delve into various aspects related to applying real data in replicating
the payoff BqvT . We initiate the discussion with an presentation of the data. Following
that, we explore the implementation methodology and provide a numerical example. The
empirical replication results are displayed across various maturities, spanning one, three,
six months, and one year. Subsequently, we conduct an empirical analysis on the relative
replication errors using regression analysis.

3.3.1 Implementation methodology

3.3.1.1 Rollover restrictions

The re-initialization phase of the strategies is driven by the expiration days of the futures
and European options. This involves restrictions for the flexibility of the implementation
of our rollover for the different maturities. To address this limitation, we adhere to a rule
that allows us to practice the closest achievable rollover across various maturities.

For example, let’s consider a 30-day replication strategy, taking our starting date as 2008-
08-18. The futures and options available for this day expire on 2008-09-20. Therefore,
the number of days for replication is 33. The issue is that on 2008-09-20, we may not
find traded futures and options with approximately a 30-day maturity. To address this
limitation, we must identify the closest trading day that offers an equivalent expiration
time. In the case of our example, this date is 2008-09-22. Consequently, we need to
repeat the same process. The next available contracts expire on 2008-10-18, resulting
in a replication period of 26 days. Following this expiry date, our next rollover day is
2008-10-20.

Finally, we extend this methodology to all other horizons. We implement a single repli-
cation strategy for each unique combination of starting and expiring dates. Note that for
a given time horizon, there is no overlap in time.

Table 6: Sub-sample of the characteristics of the contracts for rollover on different matu-
rities

Maturity Starting Date (F0,T ) Expiration Date (Ft,T ) Number of Days OTM Calls at t0 OTM Puts at t0
Monthly 2008-08-18 2008-09-20 33 29 44
Monthly 2008-09-22 2008-10-18 26 44 52
Monthly 2008-10-20 2008-11-22 33 48 80
Quarters 2019-11-15 2020-02-21 98 108 382
Quarters 2020-02-21 2020-05-15 84 148 460
Quarters 2020-05-15 2020-08-21 98 130 290

Semi-annual 2013-12-23 2014-06-21 180 12 39
Semi-annual 2014-06-23 2014-12-20 180 14 40
Semi-annual 2014-12-22 2015-06-19 179 11 49

Annual 2010-01-04 2010-12-31 361 10 13
Annual 2011-01-03 2011-12-30 361 9 11
Annual 2012-01-03 2012-12-31 363 14 26

Presentation of a sub-sample of consecutive rollover computations with their respective starting date,

expiration date, number of days and quantity of OTM options since inception.
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As shown in Table 6, an initial examination of our sample highlights the uneven dis-
tribution of futures and options availability across various expiration dates. The time
remaining until expiration is approximately 1 month, 3 months, 6 months, and 1 year,
with slight variations persisting over time.

3.3.1.2 Replication implementation

The implementation of the replication portfolio RPT relies on the same methodology as
Section 3. There are two main differences between the implementation. The first one
involves the initial and terminal future price F0,T and Ft,T . We take those prices from real
data according to entry and expiring dates selected by the methodology of 3.3.1.1. The
second one is the distance between the strike prices ∆K.

At the initiation of the contract t0 = 0, we adapt Equations (13) and (14) by taking
all the available market’s strike prices Km. The strike distance ∆Km is therefore not
necessarily equidistant. This increment is directly affected by the contracts available at
t0. Note that the superscript m denotes the market’s strikes to contrast with those of
subsection 3.2.2.

We evaluate the payoff of the portfolio OPT by considering the market grid with M
options.

For Km
1 < ... < Km

k−1 < F0,T < Km
k < ... < Km

M
6 ,

OPT = 2

{
k−1∑
i=1

1

2

∆Km
i

(Km
i )2

(Km
i − Ft,T )

+ +
M∑
i=k

1

2

∆Km
i

(Km
i )2

(Ft,T −Km
i )+

}
, (25)

where ∆Km
i = Km

i+1 − Km
i−1 for 2 ≤ i ≤ M − 1, ∆Km

1 = Km
2 − Km

1 and ∆Km
M =

Km
M −Km

M−1.

On the other hand, the execution of the dynamic strategy DST remains unaffected. The

strategy rebalances
(

1
Fti−1,T

− 1
F0,T

)
shares every day t, tracking the empirical trajectory

of the future from F0,T to Ft,T . This rebalancing occurs on a daily frequency for both
short-term and long-term maturities.

Finally, we apply the same scaling that is performed in Equations (20) and (21).

6Note the necessity for a correction if Km
k−1 ≤ F0,T as presented in subsection 3.2.2.
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3.3.2 Numerical example

To provide clarity to our replication implementation, let’s examine the following numerical
example. We consider the monthly replication during the COVID-19 crisis. The starting
date is 2020-03-04 and the expiration date is 2020-04-03. The maturity T = 30/365, the
initial future price F0,T = 3129.15 and the terminal one Ft,T = 2541.77.

The replication result for our example is presented in Table 7. This particular example
precisely captures a financial crisis, with the index losing 20.79%. Consequently, all the
calls in OPT expired worthless, and out of the 156 puts purchased at t0, 117 ended in-
the-money at expiration date. Figure 10 shows the future price evolution during our
example’s reference period.

Table 7: Results of the replication of BqvT payoff for the numerical example

Starting Date Expiration Date F0,T Ft,T BqvT RPT OPT DST sBqvT sRPT ϵ
2020-03-04 2020-04-03 3129.15 2541.77 0.0683 0.0678 0.0399 0.0279 91.1582 90.8240 -0.3666%

Table containing the results of the numerical example computing the replication portfolio RPT for the

COVID-19 crisis from March 4, 2020, to April 3, 2020. F0,T and Ft,T represent the futures prices at

the starting and expiration dates, respectively. BqvT denotes Bondarenko’s quadratic variation value.

OPT is the static portfolio payoff for the period. DST is the value of the dynamic trading strategy at

T . sBqvT is the scaled transformation for BqvT . sRPT is the scaled transformation of RPT and ϵ is the

relative error between sRPT and sBqvT .

Figure 10: Time series of the futures price for the numerical example.

Time series of the future price for the numerical example during the COVID-19 crisis period from
March 4, 2020, to April 3, 2020.
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The first step is to calculate the BqvT payoff with the application of Equation (16) but
taking into account our example’s trajectory of the future from F0,T to Ft,T .

The second step is to take into consideration the strike prices at t0 = 0. For the puts
grid, the moneyness domain is [0.5113, 0.9987]7 with a ∆Km average of 9.58 and a number
of 156 puts. For the calls grid, the moneyness domain is [1.0002, 1.1585]8 with a ∆Km

average of 5 and a number of 100 calls.

The third step is to compute OPT using the inputs of the second step and Equation (25).
The strike distance ∆Km

i and the portfolio’s weights 1/ (Km
i )2 are obtained explicitly

from the observed strike prices grid. The next step is to evaluate OPT by taking into
consideration the terminal futures price Ft,T to obtain the portfolio’s payoff at T .

The fourth step is to compute the dynamical strategy DST with the application of Equa-
tion (18) but taking in the case of our example’s trajectory of the future from F0,T to
Ft,T .

Finally, the last step is to obtain our replication portfolio RPT by simply adding the
results of the third step and fourth step. We then apply the scaled transformation of
Equations (20) and (21) to obtain sBqvT and sRPT .

3.3.3 Empirical trading results

As we implement the trading strategy outlined in Subsection 3.3.1, differences arise be-
tween the scaled theoretical target sBqvT and the value of the scaled replication portfolio
sRPT . To delve deeper into these disparities, we employ the error metrics defined from
Equations (19) to (24) in Section 3.2.3.

Table 8: Descriptive statistics of the relative error for the Empirical replication

Maturity Min. Median Mean Max. SD Quantile (95%) RRMSE Strategies
Monthly -44.8338% -0.9344% -2.1294% 2.2551% 3.6480% -7.8979% 0.0422 777
Quarters -52.7025% -0.7940% -2.6418% 30.0325% 7.0301% -11.6456% 0.0748 156

Semi-annual -30.8768% -1.0141% -2.6697% 28.0913% 6.0364% -13.8805% 0.0657 112
Annual -25.1782% -0.8572% -2.5534% 10.9645% 4.7307% -11.1102% 0.0535 85

Descriptive statistics of the relative error ϵ for the replication, defined in percentage as

100 ×
(

sRPT−sBqvT
sBqvT

)
. The metrics are respectively the minimum (Min), maximum (Max), Quantile

(95%), and the number of strategies.

In Table 8, the outcomes related to ϵ in the real data reflect the effective performance of
the strategies. Initially, we observe a consistently low replication gap of -3% across all
maturities on average. Additionally, the relatively low value of the RRMSE indicates a
generally strong replication performance.

The panels in Figure 11 display the successful replication of the payoff across various
maturities. Both short and long-term strategies successfully capture the spike in volatility,
primarily linked to financial turmoil. Furthermore, Figure 12 presents the time series
of ϵ over time. In the high volatility period corresponding to the financial crisis (grey
shadow), ϵ is impacted only at the beginning of the one-year rollover during the Asian
crisis of 1997.

7This range is obtained with a strike grid of [1600, 3125] for the puts.
8This range is obtained with a strike grid of [3130, 3625] for the calls.
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Figure 11: Time series of the empirical replication for different maturities.

Panel showing the comparison on the different maturities between the scaled empirical replication

sRPT and the target value sBqvT .
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Figure 12: Panel of the relative error of the replication for different maturities.

Panel showing the relative error of the replication ϵ on the different maturities, defined in percentage

of the scaled payoffs as 100×
(

sRPT−sBqvT
sBqvT

)
. With grey shadow emphasizes the Asian (1997) and Russian

crises (1998), the dot-com bubble (2000), the global financial crisis (2008), and the COVID-19 pandemic

(2020). 39



Additionally, we can establish a connection between the truncation error and the money-
ness of the deepest options available on the left and right sides of the volatility surface.
For calls, the upper bound moneyness is calculated by taking the ratio of the maximum
strike Kmax = Km

M available on each contract inception day t0 to the current F0,T . Sim-
ilarly, for puts, the lower bound moneyness is determined by considering the minimum
strike Kmin = Km

1 divided by the current future prices.

Figures 13 and 14 depict a time series for the option moneyness at t0. Additionally, Tables
9 and 10 present the descriptive statistics for these figures.

Figure 13: Time series of the moneyness of the market’s call options

Time series of the moneyness of calls obtained for the maximum strike Kmax, calculated by dividing it

by the initial future prices F0,T across all maturities.
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Figure 14: Time series of the moneyness of the market’s put options

Time series of the moneyness of the puts obtained for the minimum strike Kmin, calculated by dividing

it by the initial future prices F0,T across all maturities.

Table 9: Descriptive statistics of the maximum strike moneyness

Maturity Min. 1st Qu. Median Mean 3rd Qu. Max. Strategies
Monthly 1.032 1.059 1.072 1.087 1.095 1.588 777
Quarterly 1.029 1.113 1.145 1.161 1.189 1.535 156

Semi-annual 1.073 1.178 1.216 1.250 1.290 1.777 112
Annual 1.045 1.258 1.326 1.339 1.418 2.023 85

Descriptive statistics of the maximum strike moneyness. The metrics are respectively the minimum

(Min), maximum (Max), first quantile (1st Qu.),third quantile (3rd Qu.) and the number of strategies

on each maturity.

Table 10: Descriptive statistics of the minimum strike moneyness

Maturity Min. 1st Qu. Median Mean 3rd Qu. Max. Strategies
Monthly 0.3633 0.7061 0.7707 0.7440 0.8052 0.9216 777
Quarterly 0.2244 0.5130 0.5871 0.6067 0.7082 0.9660 156

Semi-annual 0.1674 0.4466 0.5219 0.5193 0.5926 0.8935 112
Annual 0.0908 0.2793 0.3874 0.3932 0.4805 0.7825 85

Descriptive statistics of the minimum strike moneyness. The metrics are respectively the minimum (Min),

maximum (Max), first quantile (1st Qu.),third quantile (3rd Qu.) and the number of strategies on each

maturity.
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3.3.4 Regression analysis of the relative error

In this section, we will examine potential sources of replication errors in our strategies.
To address this, we will conduct a regression analysis on the relative replication error,
denoted as ϵ. This statistical study aims to be inferential rather than an attempt at
forecasting. This focus is primarily due to the fact that the relative error ϵ is computed
at time T and is driven by current and future variables.

Therefore, the response variable is denoted as ϵ. The selection of explanatory variables
is informed by the diverse factors examined in Section 3. The first explanatory vari-
able, contracts, represents the total quantity of calls and puts available at the contract’s
inception date t0. Secondly, to address the truncation error in the integral of the static
portfolio, we also consider the minimum and maximum moneyness ratios: Kmin

F0,T
and Kmax

F0,T
.

Additionally, to account for periods of high volatility, especially during financial turbu-
lence, we include the 30-day at-the-money (ATM) implied volatility at the expiration date

T . Finally, we incorporate the logarithm of the return of the futures contract, ln
(

Ft,T

F0,T

)
,

during the reference period.

After confirming the absence of collinearity9, we estimate the regression model using the
ordinary least squares (OLS) method without variable selection.

ϵ = β1contracts+ β2
Kmin

F0,T

+ β3
Kmax

F0,T

+ β4AtmIVT + β5 ln

(
Ft,T

F0,T

)
+ error. (26)

Table 11: Regression analysis without variable selection on all maturities

Variables One-month Three-month Six-month One-year
contracts 1.546e-05 1.526e-05 0.0001 0.0002

(0.987) (0.310) (0.787) (1.528)
Kmin

F0,T
-0.0727*** -0.1032** -0.0666 -0.0733*

(-4.911) (-2.821) (-1.535) (-2.164)
Kmax

F0,T
0.0358* 0.0695* 0.0284 0.0158

(2.460) (2.192) (0.962) (0.972)
30-day AtmIVT -0.0324 -0.2013* -0.1339 -0.1011·

(-1.258) (-2.087) (-1.255) (-1.744 )

ln
(

Ft,T

F0,T

)
-0.2103*** -0.3624*** -0.2004** -0.1718***

(-5.616) (-3.978) (-2.913) (-4.377)
Degree of freedom 772 151 107 80

Adjusted-R2 0.3118 0.2053 0.2021 0.3462
RSE 0.0350 0.0668 0.0587 0.0433

This table presents the summary of the OLS regression analysis for the relative error (ϵ) across the four

different maturities. The t-test values of the estimators are shown in parentheses. The legend for the

stars is as follows: *** (99.9%), ** (99%), * (95%), · (90%). The fitting quality is measured by the

adjusted R-squared and the residual standard error RSE, accounting for the number of variables in each

model.

9Refer to Appendix C for the correlations matrix.
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The results presented in Table 11 a priori indicate good performance in explaining the
relative errors ϵ in terms of the adjusted R-squared and the RSE. There is coherence in
terms of the variables Kmin

F0,T
and Kmax

F0,T
capturing the truncation error.

However, there are issues with the coherence of the coefficients concerning the 30-day
ATM implied volatility. Firstly, there is no statistical significance for the one-month
horizon regression, which is not intuitively expected since the 30-day ATM should be the
most sensitive for this maturity. Secondly, the coefficient for this explanatory variable is
negative for all the maturities in Table 11, which is also not coherent with the correlation
between AtmIVT and ϵ, varying from 0.0321 to 0.1615 according to our correlation matrix
in Tables 18 to 21. Additionally, there is similarity in the coefficient sign between AtmIVT

and ln
(

Ft,T

F0,T

)
across all maturities, which is also not coherent with the correlation matrix,

since the correlation between those variables varies from -0.4224 to -0.5897.

For all these reasons, we have decided to conduct various regression estimation with
different selections of variables.

Considering the various possibilities of variable combinations, we select the top-performing
six models for the in-sample one-month rollover based on their adjusted R-squared, resid-
ual standard error, economic interpretation, and statistical significance of coefficients10.
We opt for the one-month sample due to its higher number of observations.

The interpretation of the sign for the estimators leads to intuition in the context of relative
error. In fact, ϵ can have a negative value, indicating under-performance of RPT , or a
positive value, indicating over-performance of RPT .

Table 12: Regression analysis for the one-month rollover

Variables (1) (2) (3) (4) (5) (6)
Number of contract 2.524e-05· 4.147e-05***

(1.915) (3.342)
Kmin

F0,T
-0.0615*** -0.0426*** -0.0441*** -0.0359*** -0.0340*** -0.0678***

(-5.825) (-11.15) (-11.320) (-8.940) (-13.840) (-6.541)
Kmax

F0,T
0.0225** 0.0278***

(3.094) (3.885)
30-day ATM IV 0.0557*** 0.0471** 0.0324*

(3.89) (3.150) (2.163)

ln
(

Ft,T

F0,T

)
-0.1457*** -0.1735*** -0.1821***

(-4.655) (-5.895) (-6.166)
Degree of freedom 775 775 774 774 774 774

Adjusted-R2 0.2776 0.2827 0.2852 0.3013 0.3071 0.3106
RSE 0.0359 0.0358 0.0357 0.0353 0.0351 0.0350

This table presents the summary of the OLS regression analysis for the one-month rollover relative error

(ϵ) across six different models. The t-test values of the estimators are shown in parentheses. The legend

for the stars is as follows: *** (99.9%), ** (99%), * (95%), · (90%). The fitting quality is measured by

the adjusted R-squared and the residual standard error RSE, accounting for the number of variables in

each model.

10We perform model selection through an exhaustive search using the regsubsets function from the R
package leaps.
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In Table 12, for the one-month horizon, we observe the impact on the different explanatory
variables selected. We begin by analyzing the regression results for the variables studied
in Section 3.3.4. The total number of contracts has a mild impact on the relative error ϵ;
as the number of contracts increases, the replication tends to shift towards the positive
area (over-replicating). This impact is relatively small in the models that includes these
variables.

For the truncation error, we can see that Kmin

F0,T
has a significant effect on the replication

performance. A rise in this metric corresponds to an elevation in the left-side truncation
error of OPT ’s integral, resulting in under-replication. Analogously, for Kmin

F0,T
, we observe

that an increase in this metric results in a reduction in the right-side truncation error,
leading to a shift of ϵ in the positive area.

However, upon examining the coefficient estimations, it becomes apparent that the max-
imum moneyness appears to be 30 to 45% less impactful than the coefficients for the
minimum moneyness. This observation could be explained by the composition of our
sample, which is predominantly constituted of puts, as demonstrated in Table 1.

Regarding the 30-day At-The-Money (ATM) implied volatility, we observe a significant
and positive impact on our replication performance. This means that when the 30-day
ATM implied volatility spikes, our replication strategy shows improved performance, with
the relative error shifting towards the positive area.

Furthermore, we observe a substantial and statistically significant influence of the log
return during the contract’s reference period (from t0 to T ) on our replication strategy’s
performance. During periods of growth, the replication performance experiences consid-
erable under-performance. Conversely, in periods of significant decline, the replication
over-performs. It’s worth noting that in Model (4) of Table 12, an inverse relationship
is evident between the log return and the At-The-Money (ATM) 30-day implied volatil-
ity.

Additionally, we observe that the performance of Model (4) closely resembles that of
the regression without variable selection in Table 11. The primary distinction lies in
the economic interpretation, which is more intuitive due to the contrast in the signs of

AtmIVT and ln
(

Ft,T

F0,T

)
, as well as its coherence with the correlation matrix.

Finally, upon an overall evaluation of our regression analysis for the one-month rollover,
we observe well-performing models in terms of the adjusted R-squared and RSE. The
variables with the most significant impact are the minimum moneyness Kmin

F0,T
and the log

return ln
(

Ft,T

F0,T

)
.
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Table 13: Regression analysis for the three-month rollover

Variables (1) (2) (3) (4) (5) (6)
Number of contract 4.599e-05 6.692e-05

(1.108) (1.716)
Kmin

F0,T
-0.0700* -0.0564** -0.0570** -0.0386· -0.0494*** -0.0945**

(-2.192) (-2.733) (-2.762) (-1.831) (-4.809) (-2.979)
Kmax

F0,T
0.0139 0.0307·
(0.813) ( 1.779)

30-day ATM IV 0.0379 0.0182 -0.0055
(0.611) (0.282) (-0.089)

ln
(

Ft,T

F0,T

)
-0.2172** -0.2330** -0.2535***

(-2.924) (-3.229) (-3.402)
Degree of freedom 154 154 153 153 153 153

Adjusted-R2 0.1338 0.1321 0.1334 0.1727 0.1883 0.1894
RSE 0.0697 0.0698 0.0697 0.0681 0.0675 0.0674

This table presents the summary of the OLS regression analysis for the three-month rollover relative

error ϵ across six different models. The t-test values of the estimators are shown in parentheses. The

legend for the stars is as follows: *** (99.9%), ** (99%), * (95%), · (90%). The fitting quality is

measured by the adjusted R-squared and the residual standard error RSE, accounting for the number of

variables in each model.

For Table 13, we observe a consistent impact for the minimum moneyness Kmin

F0,T
and the

log returns, similar to the one-month rollover. However, there is a notable contrast in the
impacts of the ATM 30-day implied volatility and the maximum moneyness Kmax

F0,T
, which

are not statistically significant. By referring to Figure 13 and Table 9, and comparing the
time series of the one-month versus the three-month rollovers, we notice a higher average
Kmax

F0,T
and lower volatility clustering during high turbulence periods.

In summary, the models provide an overall good quality in explaining the replication
gaps for the three-month rollover, considering the selected in-sample criteria from the
one-month rollover. The adjusted R-squared ranges from 0.1338 to 0.1894, and the RSE
ranges from 0.0675 to 0.0698.
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Table 14: Regression analysis for the six-month rollover

Variables (1) (2) (3) (4) (5) (6)
Number of contract 2.826e-05 0.0001

(0.175) (0.955)
Kmin

F0,T
-0.0364 -0.0665* -0.0665* -0.0399 -0.0553*** -0.0728·
(-0.930) (-2.416) (-2.405) (-1.400) (-3.675) (-1.818)

Kmax

F0,T
-0.0059 0.0125

(-0.355) (0.719)
30-day ATM IV 0.0435 0.0377 -0.0131

(0.656) (0.508) (-0.194)

ln
(

Ft,T

F0,T

)
-0.1344** -0.1392** -0.1449**

(-2.712) (-2.921) (-2.862)
Degree of freedom 110 110 109 109 109 109

Adjusted-R2 0.15 0.1523 0.1448 0.1986 0.205 0.2021
RSE 0.0606 0.0605 0.0608 0.0588 0.0586 0.0587

This table presents the summary of the OLS regression analysis for the six-month rollover relative error

ϵ across six different models. The t-test values of the estimators are shown in parentheses. The legend

for the stars is as follows: *** (99.9%), ** (99%), * (95%), · (90%). The fitting quality is measured by

the adjusted R-squared and the residual standard error RSE, accounting for the number of variables in

each model.

For Table 14, the impact of Kmin

F0,T
and ln

(
Ft,T

F0,T

)
remains significant, with Models (5) and

(6) explaining the majority of ϵ. With a lower degree of freedom, the adjusted R-squared
is higher than in the three-month rollover, ranging from 0.1448 to 0.205, and a lower RSE
ranging from 0.0586 to 0.0608. Note that in this maturity, Model (5) performs slightly
better than the regression without variable selection in Table 11.
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Table 15: Regression analysis for the one-year rollover

Variables (1) (2) (3) (4) (5) (6)
Number of contract 3.366e-05 0.0002*

(0.275) (2.030)
Kmin

F0,T
-0.0431 -0.0648* -0.0659* -0.0471· -0.0761*** -0.0973**

(-1.376) (-2.477) (-2.477) (-1.893) (-4.586) (-3.047)
Kmax

F0,T
-0.0056 0.0161

(-0.573) (1.533)
30-day ATM IV 0.0109 0.0047 -0.0095

(0.224) (0.088) (-0.209)

ln
(

Ft,T

F0,T

)
-0.1105*** -0.1353*** -0.1373***

(-3.659) (-4.248) (-3.968)
Degree of freedom 83 83 82 82 82 82

Adjusted-R2 0.2035 0.2009 0.1919 0.3047 0.3376 0.3237
RSE 0.0477 0.0478 0.0481 0.0446 0.0436 0.0440

This table presents the summary of the OLS regression analysis for the one-year rollover relative error

(ϵ) across six different models. The t-test values of the estimators are shown in parentheses. The legend

for the stars is as follows: *** (99.9%), ** (99%), * (95%), · (90%). The fitting quality is measured by

the adjusted R-squared and the residual standard error RSE, accounting for the number of variables in

each model.

For Table 15, the impact of Kmin

F0,T
and ln

(
Ft,T

F0,T

)
remains significant, with Models (5) and

(6) explaining the majority of ϵ. In the case of the one-year rollover, these models provide a
better explanation of the replication’s relative performance. Given the longer horizon, the
robustness of the chosen variables is evident in the quality of the fitting. The adjusted
R-squared is higher than in the three and six-month rollovers, ranging from 0.1919 to
0.3047, with a lower RSE ranging from 0.0436 to 0.0481. Furthermore, Model (5) offers
a performance similar to that of the regression in Table 11, but with more significant
explanatory variables.

In summary of this section, the regression analysis demonstrates that the performance of
our replication strategies relies mainly on three variables. The first one is the truncation
error measured by the two minimum and maximum moneyness ratios, Kmin

F0,T
and Kmax

F0,T
.

The second one is the 30-day ATM IV. Finally, the third one is the log return of the
contract’s period (from t0 to T ).
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4 Valuation of the risk-neutral contracts

In this section, we concentrate on the mark-to-market valuation of contracts, aiming to
support financial agents considering purchase or writing these contracts at the incep-
tion date t0 = 0. A comparative analysis of two valuation methods is conducted for a
30-day variance contract and the rare disaster index (RIX). The classical trapezoidal
technique is employed as the first method, while the second method use the volatility
surface model.

4.1 Valuation methodology

For the variance contract, the dynamic part DST being a discrete position on the index
futures contract, the discretization concerns strictly the static portfolio OPT .

The valuation concern the Equation (8),

EQ
0

[
e−rTRPT

]
= 2

{∫ F0,T

0

1

K2
P (F0,T , K, T )dK +

∫ ∞

F0,T

1

K2
C(F0,T , K, T )dK

}
.

For valuing EQ
0

[
e−rTRPT

]
, we use the inception and expiration dates selected through

the methodology in Section 3.3.1.

4.1.1 Trapezoidal method

The first method to evaluate Equation (8) is by approximating the integrals with the use
of numerical techniques such as the trapezoidal rule present in Section 3.2.3

Recalling the notation of Section 3.3.1.2, at the initiation of the contract t0 = 0, Km

represents the available market strike prices, where the superscriptm denotes the market’s
strikes to contrast with those of subsection 3.2.2. Additionally, the strike distance ∆Km

is not equidistant. We adopt the same entry date for the monthly contracts as in Section
3.3. The sole distinction lies in the consideration of option prices here, as opposed to the
terminal payoff at time T . We evaluate the value of the portfolio OPT by considering
the market grid with M options and adapting Equations (13) and (14) with the market’s
option prices P (F0,T , K, T ) and C(F0,T , K, T ).

For Km
1 < ... < Km

k−1 < F0,T < Km
k < ... < Km

M
11,

EQ
0

[
e−rTRPT

] ∼= 2

{
k−1∑
i=1

1

2

∆Km
i

(Km
i )2

P (F0,T , K, T ) +
M∑
i=k

1

2

∆Km
i

(Km
i )2

C(F0,T , K, T )

}
, (27)

where ∆Km
i = Km

i+1 − Km
i−1 for 2 ≤ i ≤ M − 1, ∆Km

1 = Km
2 − Km

1 and ∆Km
M =

Km
M −Km

M−1.

11Note the necessity for a correction if Km
k−1 ≤ F0,T as presented in subsection 3.2.2.
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Additionally, we evaluate the RIX with the same grid but considering only the put’s
strikes

RIX ∼=
k−1∑
i=1

1

2

∆Km
i ln

(
F0,T

Km
i

)
(Km

i )2
P (F0,T , K, T ). (28)

Finally, we apply the identical scaling transformation for both contracts that we apply in
Equations (20) and (21).

4.2 Valuation using the Volatility surface model

The second valuation method involves employing the implied volatility surface model
of François et al. (2022) [22] as detailed in Appendix D. This approach helps assess
EQ

0

[
e−rTRPT

]
across a wide spectrum of options prices. By employing the daily estima-

tors, represented as {β1, β2, β3, β4, β5}, one can effectively interpolate or extrapolate the
implied volatility for each contract initiation date.

By the following IV surface fitting equations,

M =
1√
T
ln

(
Ft,T

K

)
. (29)

σ̂(M,T ) = β1 + β2 exp
(
−
√

T/Tc

)
+ β3

(
M1

M≧0 +
e2M − 1

e2M + 1
1

M<0

)
+ β4

(
1− exp

(
−M2

))
ln (T/Tm + β5(1− exp((3M)3)) ln(T/Tm)1M<0, (30)

where M is the moneyness, T is the time to maturity (365-day basis), Ft,T the future
price, and K is the strike price. β1 captures the long-term at-the-money implied volatility
level, β2 the time to maturity slope, β3 the moneyness slope, β4 the smile attenuation and
β5 the smirk. In addition, the model relates to two fixed values, Tm as the extrapolation
proxy of the longest time to maturity of the sample and Tc as the location of the fast
convexity change in the IV term structure.

To conduct the interpolation and extrapolation of implied volatility, we establish the
strike range as [Km

1 − 20%, Km
M + 10%]. Within this continuous grid, we calculate the

moneyness using Equation (29) and employ it in the model described by Equation (30) to
obtain the implied volatility. Subsequently, this estimated implied volatility serves as an
input in the Black model [5] to price the European options. Note that we consider only
the options prices greater or equals to 0.01$.

Recall the Black model main equation,

C(F0,T , K, T )model = exp(−rT ) [F0,TΦ(D1)−KΦ(D2)] .

P (F0,T , K, T )model = exp(−rT ) [KΦ(−D2)− F0,TΦ(−D1)] .

D1 =
ln(F0,T/K) + 1

2
σ̂2T

σ̂
√
T

.

D2 = D1 − σ̂
√
T .

C(F0,T , K, T )model and P (F0,T , K, T )model are the model’s European calls and puts, r the
risk-free rate, σ̂ the interpolated/extrapolated volatility given by the model in Equation
(30) and Φ(·) is the standard normal cumulative function.
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By this methodology, we obtain a continuous value of the Equations (8) and (12),

EQ
0

[
e−rTRPT

]model
= 2

∫ F0,T

0

1

K2
P (F0,T , K, T )modeldK

+ 2

∫ ∞

F0,T

1

K2
C(F0,T , K, T )modeldK.

(31)

RIXmodel = 2

{∫ F0,T

0

ln(
F0,T

K
)

K2
P (F0,T , K, T )model dK

}
, (32)

where we apply the identical scaling transformation of Equation (21) to both equa-
tions.

This model proves to be relevant for evaluating our contracts for several reasons. Firstly, it
provides access to a daily continuous volatility surface. Additionally, it ensures coherence
with the risk-neutral measure. The model successfully captures stylized facts, including
the smile attenuation and smirk of the S&P 500. Its simplicity of interpretation and
computation further enhances its relevance for practitioners.

Another crucial aspect to consider for an asset pricing model is its consistency with the
absence of arbitrage assumption. François et al. (2022) [22] demonstrate the coherence
of the pricing generated by the model with a limited static arbitrage opportunities. The
demonstration draws inspiration from the work of Davis and Hobson (2007) [17], involv-
ing the construction of a spread portfolio. The key motivation behind considering this
model for our paper is its robustness in handling a continuum of options across various
strikes. With these results, the continuous valuation of EQ

0

[
e−rTRPT

]
becomes straight-

forward.

4.3 Results of valuation

In this subsection, we present the findings of the evaluation of the two contracts. Ini-
tially, we delve into the assessment of the variance contract, followed by the subsequent
examination of the RIX. The valuation of each contract is conducted with a 30-day hori-
zon, and we provide a brief statistical comparison of the two valuation methods for each
contract.

4.3.1 Valuation of the variance contract

Despite the valuation methods of 4.1 and 4.2, another issue arises like in Section 3.3.1.
The concern lies in the selection of available contracts, particularly calls at each rolling
date. Indeed, this problem was also our issue for the replication of RPT in Section 3.3.
Specifically, there is a shortage of available call contracts, especially in the earliest years
of our sample. Note that the proposed parametric model is not subject to this issue, as it
is calibrated daily. Through interpolation or extrapolation, any contract can be evaluated
for any business day in alignment with the risk-neutral volatility surface at time t.

For the 30-day contracts, we consider all the inception dates obtained in Section 3.3.1.
This selection is due only to the comparative purpose of the two models. Only the
trapezoidal method is restricted by quoted options dates standardization.
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To evaluate the spread of the two methods, we suggest the relative metric: PSt =
Pm,t−Pd,t

Pd,t
.

Pm
t and P d

t are respectively the value of the variance contract from the model and the
trapezoidal rule at initiation t0 = 0.

Table 16: Descriptive statistics of PSt on a 30 days variance contract

Min. 1st Qu. Median Mean 3rd Qu. Max. SD
-8.517% 2.294% 6.247% 8.097% 11.555% 47.589% 8.4084%

Descriptive statistics of PSt for the variance contract. The metrics are respectively the minimum (Min),

maximum (Max), first quantile (1st Qu.), third quantile (3rd Qu.), and standard deviation (SD).

Figure 15: Variance contract Valuation by Methods

Comparative time series of the evaluation of the 30-day variance contract, with the trapezoidal method

estimated by scaled Equation (27) and the volatility surface method estimated by scaled Equation (31).

The inception dates t0 align with those in Section 3.3.

According to the findings presented in Table 16, the metrics suggest a low spread on
average, indicating an reasonable fit of the model. Figure 15 illustrates that both models
effectively capture various spikes linked to different financial turmoils. However, a notable
difference arises as the implied volatility (IV) parametric model tends to slightly overes-
timate the variance contract compared to the trapezoidal model, particularly in periods
of low volatility before the 2007-2008 financial crisis.
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To investigate this discrepancy, we leverage the empirical findings from the regression
analysis in Section 3.3.4 by comparing the minimum and maximum moneyness of the
two methods for the one-month variance contract. Figure 16 illustrates insights we can
draw regarding the spread of the two valuation methods. The model’s ability to extrapo-
late/interpolate options prices provides a lower truncation error by offering a larger range
of the strike price grid. The combination of a lower Kmin and greater Kmax results in a
higher value for the options portfolio, as explained in Section 3.3.4.

Additionally, we observe a greater divergence for Kmax, primarily attributed to a larger
proportion of puts than calls in our real data sample. There is also a convergence con-
cerning Kmin during both the financial crisis of 2008 and the COVID-19 crisis.

Figure 16: Comparative time series of the moneyness between the two valuation method

Comparative time series of the moneyness for the minimum Kmin and maximum Kmax strikes, calculated
for the two valuation methods by dividing them by the initial future prices F0,T .
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4.3.2 Valuation of the RIX

In this section, we employ the two methodologies outlined in Section 4.1 to evaluate RIX
contract at t0 = 0. We conduct a comparative analysis similar to that carried out for the
variance contract in the preceding subsection, 4.3.1.

Table 17: Descriptive statistics of PSt on a 30 days RIX

Min. 1st Qu. Median Mean 3rd Qu. Max. SD
-8.851% 21.154 % 43.899% 56.008% 77.674% 345.825% 49.4845%

Descriptive statistics for RIX valuation using the PSt metric. The other metrics are respectively the

minimum (Min), maximum (Max), first quantile (1st Qu.), third quantile (3rd Qu.), and standard devi-

ation (SD).

Figure 17: RIX Valuation by Methods

.
Comparative time series of the evaluation of the RIX, with the trapezoidal method estimated by Equation

(28) and the volatility surface method estimated by Equation (32). The inception dates t0 align with

those in Section 3.3.

As observed in Table 17, the spread is higher for the RIX compared to our other contract.
This difference primarily stems from the construction of the RIX. Referring to Equation
(12), the index is formed based on a specific portfolio of options, which contrasts with
the one outlined in Equation (8). Unlike the variance contract, the RIX aims to capture
only extreme negative returns by considering exclusively out-of-the-money puts, with a
greater emphasis on deep out-of-the-money puts. In other words, the RIX portfolio assigns
weights based on the moneyness level: the deeper out-of-the-money the put, the larger
the assigned weight. Consequently, as observed in Figure 16, the volatility surface model
provides a broader range of deep out-of-the-money puts moneyness, directly influencing
the construction of the RIX portfolio. As illustrated in Figure 17, during higher volatility
periods, the two methods align in evaluating negative extreme events. However, the
contrast becomes evident during calmer periods.
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5 Conclusion

In our research paper, we delve into the challenges associated with the replication and
mark-to-market valuation of a derivative product contingent on the quadratic variation of
the S&P 500. The replication consists of two components: a continuous options portfolio
comprising out-of-the-money European calls and puts options, and a dynamic strategy
involving daily rebalancing on the futures contract.

The contract replication is primarily assessed in a simulated environment for a 30-day
horizon by discretizing the option portfolio using the trapezoidal method. The simulation
results highlight two main potential sources of replication errors, both centered around
the static part: the distance between the strike prices and the truncation error.

Secondly, we replicate the contract using real futures and options data, with a sample
spanning from January 1996 to December 2020. Our replication strategy is evaluated
over four different time horizons: one month, three months, six months, and one year.
In the data study, the strategies generally perform well. However, significant errors are
identified on certain trading days. We conduct a regression analysis on the replication’s
relative errors to identify potential sources of these discrepancies. Our analysis reveals that
these variations are attributed to two key factors. Firstly, there is an error in truncation
concerning the limits of the numerical integral used to evaluate the static options portfolio.
Secondly, there is an enhanced replication performance during crisis periods, characterized
by a combination of negative shocks to the underlying asset and an increase in monthly
implied volatility for at-the-money options.

In Section 4, we observe similar results for the valuation of the contract at the inception
date. Consequently, we introduce a parametric model, based on the findings of François
et al. (2022) [22], which facilitates continuous replication of the static portfolio, allowing
for a comparison with the non-parametric trapezoidal method. Our comparative analysis
focuses on 30-day contracts. The parametric model performs well in capturing both low
and high-volatility periods. Notably, in the earliest part of our sample, the model tends
to overestimate the variance contract, primarily due to its ability to reduce the truncation
error by producing a wider range of strike prices.

After conducting our testing, we extend the comparison to the RIX. Interestingly, our
findings for this contract differ. Given its focus on negative extreme events, the RIX
portfolio comprises only out-of-the-money (OTM) puts, assigning larger weights as the
moneyness of these OTM puts decreases. Our results indicate that both valuation methods
can effectively capture these extreme negative events. However, during low volatility
periods, a noticeable disparity emerges. As the implied volatility (IV) parametric model
can generate a wider range of strikes, the weights of the RIX portfolio are even more
affected since they are also a function of the moneyness of deeper out-of-the-money (OTM)
puts. Consequently, the model tends to overestimate the RIX index in these calmer
periods.

Finally, we highlight the potential for future research to explore the replication and val-
uation of similar derivatives, considering other risk-neutral moments. While our cur-
rent study focuses on the S&P 500 index, there is significant interest in extending these
methodologies to individual stocks, sector-specific exchange-traded funds, and commodi-
ties.
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A RIX derivations

First, the risk-neutral variance of the log returns is

EQ
0

[(
ln

(
Ft,T

F0,T

)
− EQ

0

[
ln

(
Ft,T

F0,T

)])2
]
= VarQ0

(
ln

Ft,T

F0,T

)
.

To build the intuition, we take into consideration the payoff g(Ft,T ) =
(
ln

Ft,T

F0,T

)2
. Apply-

ing the Itô’s lemma, we obtain

(
ln

Ft,T

F0,T

)2

=
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(
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+
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− ln

(
Fu−,T

F0,T

)2

− 2
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(
ln
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F0,T

)
∆Fu

}
. (33)

We apply the Carr-Madan formula (1998) for the payoff
(
ln

Ft,T

F0,T

)2
,

(
ln

Ft,T

F0,T

)2

=

(
ln

F0,T

F0,T

)2

+
2

Ft,T

(
ln

F0,T

F0,T

)
(Ft,T − F0,T )

+ 2


∫ F0,T

0

1− ln
(

K
F0,T

)
K2

(K − Ft,T )
+ dK +

∫ ∞

F0,T

1− ln
(

K
F0,T

)
K2

(Ft,T −K)+ dK

 .

With simplifications, we retrieve the discounted expression of the payoff12

EQ
0

[
e−rT ln

(
Ft,T

F0,T

)2
]
∼= 2


∫ F0,T

0

1 + ln
(

F0,T

K

)
K2

P (F0,T , K, T ) dK

+

∫ ∞

F0,T

1− ln
(

K
F0,T

)
K2

C(F0,T , K, T ) dK

 . (34)

12The method for obtaining a detailed computation of these results is outlined in the study conducted
by Bakshi, Kapadia, and Madan (2003) [2].
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Moving ahead with constructing RIX, we merge the equality of integrated variance and the
jump terms from Equation (3) with the replication results from Carr Madan in Equation
(6). This combination leads to the conclusion that∫ t

0+
Vu−du+

∑
0+<u<t

1

2
ξ2u−(∆Ju)

2

∼= 2

{∫ F0,T

0

1

K2
(K − Ft,T )

+dK +

∫ ∞

F0,T

1

K2
(Ft,T −K)+dK

}

+ 2
n∑

i=1

(
1

Fti−1,T

− 1

F0,T

)
(Fti,T − Fti−1,T ). (35)

Multiplying both sides of Equation (35) by the discount factor and taking the risk-neutral
expectation,

EQ
0

[
e−rT

(∫ t

0+
Vu−du+

∑
0+<u<t

1

2
ξ2u−(∆Ju)

2

)]

∼= 2

{∫ F0,T

0

1

K2
P (F0,T , K, T )dK +

∫ ∞

F0,T

1

K2
C(F0,T , K, T )dK

}
, (36)

similarly to the derivation in Section 2.4.1, the risk-neutral expectation of the dynamic

strategy is EQ
0

[
2
∑n

i=1

(
1

Fti−1,T
− 1

F0,T

)
(Fti,T − Fti−1,T )

]
= 0.

We then connect the risk-neutral expectation of this spread to the construction of the
RIX replicating portfolio. By the use of the result of Equation (36), we apply a spread of

the risk-neutral expectations: EQ
0

[
e−rT ln
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.

By the results of Equations (34) and (36),
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which leads to
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To gain additional insight, let’s analyze the weights outlined in Equation (37). In the first
part, as the strike price decreases, puts shift further out-of-the-money (OTM), resulting
in larger weights for these puts. This implies an anticipation of a greater payoff for puts in
the event of a negative jump. Similarly, in the second part, as the strike price increases,
calls become more OTM, leading to higher weights for these calls and suggesting an
increased expected payoff for them. From a risk management perspective, the objective
is to guard against significant negative jumps. In this context, the section exclusively
involving puts becomes especially relevant.

In contrast to Section 2.4.1, the idea of this portfolio spread is purely from a static

replication perspective. In terms of the portfolio’s notation, Π1
t = EQ

0

[
e−rT ln

(
Ft,T

F0,T

)2]
and Π2

t = EQ
0

[
e−rT ln

(
Ft,T

F0,T

)]
.

By the results obtained in Equation (37) we retrieve the jump tail index JTIX
∧

found in
Du and Kapadia (2012) [21]. Following Gao et al. (2018) [24], we construct the RIX (i.e.,

JTIX−
∧

in Du and Kapadia (2012) [21]). We consider only the downside of the Equation
(37), with negative indicator − specifying that only puts are taken into account.

RIX = Π1
t
− − Π2

t
−.

RIX = 2

{∫ F0,T

0

ln(
F0,T

K
)

K2
P (F0,T , K, T ) dK

}
.
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B Pseudo-Algorithm of the simulation

For further intuition, we provide in this subsection the pseudo-algorithm of the simula-
tion. In the implementation, we consider the risk-neutral parameters given in Table 2:
{κ, θ, σ, ρ, µξt , σξt , λ}. Additionally, we recall the discrete model of Subsection 3.2.1 and
the Equations of Subsection 3.2.3.

For each future path, Bondarenko’s quadratic variation is generated for n days. With
those settings, we can compute BqvT and RPT by obtaining the terminal 30-day future
price.

We refer to the following pseudo-code for the implementation of 100 000 paths j,

1: for j in 1:100 000 do ▷ Initialization of the paths simulations
2: ∆t← T/n ▷ Setting the time step with maturity T and day step n
3: for t in 1:n do ▷ Initialization of the 30 days future trajectory
4: Vt+∆ ← Vt + κ(θ − V +

t )∆t+ σ
√
V +
t

√
∆tZCholesky ▷ Volatility process

5: Yt+∆ ← Yt+
(
r − 1

2
V +
t − e

µξ
t−

+ 1
2
σ2
ξ
t−λ
)
∆t+

√
V +
t ∆tZ1+

∑J
i=1 Zi ▷ Log-stock

6: Ft+∆t,T ← exp
(
Yt+∆,T er∆t

)
▷ Computation of the future

7: DSj
t ← Equation(18) ▷ Computation of the dynamical position at t

8: end for ▷ End of the Future trajectory loop
9: BqvjT ← Equation(16) ▷ Computation of the observed Bqv
10: OP j

t ← Equation(17) ▷ Computation of options portfolio terminal payoff
11: RP j

T ← Equation(19) ▷ Sum of lines (7) and (11) to obtain the replication
12: sBqvjT ← Equation(20) ▷ Scaled transformation of the observed Bqv
13: sRP j

T ← Equation(21) ▷ Scaled transformation for the replication portfolio
14: ej ← Equation(22) ▷ Computation of the Replication Error by lines (13)-(12)
15: ϵj ← Equation(23) ▷ Computation of the relative error
16: end for
17: RRMSE ← Equation(24) ▷ Computation of RRMSE for the whole simulation

Note that ZCholesky is the Brownian decomposition as defined in 3.1. In addition, for each
∆Ki case the difference is the weights

1
K2 of the options terminal payoff we obtain in line

10.
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C Regression analysis

C.1 Correlation Matrix

The following tables display the correlation matrix for each replicating strategy concerning
the various variables selected in the regressions of Section 3.3.4.

Our first concern is with the relative error ϵ in relation to the other variables. This
information is presented in the first columns of Tables 18 to 21.

Since the relative error ϵ is defined as ϵ = (sRPT−SBqvT )
SBqvT

, a negative correlation would
imply under-replication, and a positive correlation would indicate over-replication. We
observe that the sign of the correlation between the sets of explanatory variables and ϵ is
identical.

Firstly, the number of contracts is positively correlated, indicating over-performance when
this variable increases. Secondly, the minimum moneyness Kmin

F0,T
is negatively correlated,

suggesting that an increase in the minimum strike will elevate the truncation error of the
integrals of OPT and cause under-performance of the strategies. Regarding the maximum
moneyness Kmax

F0,T
, there is a positive correlation with ϵ, indicating over-performance of the

strategies when the maximum strike increases. As for the at-the-money 30-day implied
volatility, the correlation is positive, signifying over-performance of the replication when
there is a volatility spike. Analogously, with these variables, the log return is negatively
correlated, suggesting that in the case of positive (negative) jumps, the replication is
under (over) performing.

The remaining correlations between the variables indicate an absence of multicollinearity
that could bias our regression estimation.

Table 18: Correlation Matrix for the one-month rollover

ϵ Number of contracts Kmin

F0,T

Kmax

F0,T
30-day ATM IV ln

(
Ft,T

F0,T

)
ϵ 1

Number of contracts 0.1375 1
Kmin

F0,T
-0.1830 -0.5320 1

Kmax

F0,T
0.1362 0.2404 -0.6808 1

30-day ATM IV 0.1615 0.1059 -0.4576 0.6152 1

ln
(

Ft,T

F0,T

)
-0.1949 0.0359 -0.0687 0.1696 -0.4224 1

Correlation matrix for the one-month replication strategies with the relative error ϵ, the number of

contracts, the minimum and maximum moneyness, the at-the-money 30-day implied volatility, and the

log return on the contract duration (from t0 to T ).
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Table 19: Correlation Matrix for the three-month rollover

ϵ Number of contracts Kmin

F0,T

Kmax

F0,T
30-day ATM IV ln

(
Ft,T

F0,T

)
ϵ 1

Number of contracts 0.1471 1
Kmin

F0,T
-0.1493 -0.5231 1

Kmax

F0,T
0.1263 0.1914 -0.5862 1

30-day ATM IV 0.0321 -0.0796 -0.0814 0.4200 1

ln
(

Ft,T

F0,T

)
-0.2189 0.0830 -0.2083 0.2653 -0.4572 1

Correlation matrix for the three-month replication strategies with the relative error ϵ, the number of

contracts, the minimum and maximum moneyness, the at-the-money 30-day implied volatility, and the

log return on the contract duration (from t0 to T ).

Table 20: Correlation Matrix for the six-month rollover

ϵ Number of contracts Kmin

F0,T

Kmax

F0,T
30-day ATM IV ln

(
Ft,T

F0,T

)
ϵ 1

Number of contracts 0.1180 1
Kmin

F0,T
-0.0493 -0.4679 1

Kmax

F0,T
0.0690 0.1099 -0.2459 1

30-day ATM IV 0.0929 0.1231 0.1244 0.3968 1

ln
(

Ft,T

F0,T

)
-0.2244 0.0604 -0.3330 0.1266 -0.5897 1

Correlation matrix for the six-month replication strategies with the relative error ϵ, the number of con-

tracts, the minimum and maximum moneyness, the at-the-money 30-day implied volatility, and the log

return on the contract duration (from t0 to T ).

Table 21: Correlation Matrix for the one-year rollover

ϵ Number of contracts Kmin

F0,T

Kmax

F0,T
30-day ATM IV ln

(
Ft,T

F0,T

)
ϵ 1

Number of contracts 0.2211 1
Kmin

F0,T
-0.0697 -0.4890 1

Kmax

F0,T
0.2417 0.1654 -0.3138 1

30-day ATM IV 0.0735 -0.0332 0.2452 0.0499 1

ln
(

Ft,T

F0,T

)
-0.2934 0.1949 -0.4600 0.1446 -0.5399 1

Correlation matrix for the one-year replication strategies with the relative error ϵ, the number of contracts,

the minimum and maximum moneyness, the at-the-money 30-day implied volatility, and the log return

on the contract duration (from t0 to T ).
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D Volatility surface model

In François et al. (2022) [22], the parametric volatility surface model is a linear combina-
tion of risk factors. Therefore, this parametric model generates a daily implied volatility
σ̂(M,T ) for a given future’s maturity (365-day basis) T and a moneyness M .

σ̂(M,T ) = β1 + β2 exp
(
−
√

T/Tc

)
+ β3

(
M1

M≧0 +
e2M − 1

e2M + 1
1

M<0

)
+ β4

(
1− exp

(
−M2

))
ln (T/Tm) + β5

(
1− exp

(
(3M)3

))
ln (T/Tm)1M<0,

β1 captures the long-term at-the-money implied volatility level, β2 the time to maturity
slope, β3 the moneyness slope, β4 the smile attenuation and β5 the smirk. In addition, the
model relates to two fixed values: Tm and Tc respectively a proxy of the sample’s largest
maturity and the location of the IV term structure’s convexity change.

Following the estimation procedures in François et al. (2022) [22], the parameters are
obtained using a minimization of the sum of squared errors in terms of implied volatility.
The approach uses a Bayesian regularization to preserve the economic interpretation of
the coefficients. The motivation of this Bayesian add-on is the existence of more than one
set of parameters that fit the observed surface. The set of parameters for a sample’s day
τ , βprior = {ATM1y,τ , Slopeτ , β3,τ−1, β5,τ−1} is clarified in Appendix D.2 .

Moneyness is defined as :

M =
1√
T
ln

(
Ft,T

K

)
. (38)

Here T is the 365-day annualized time to maturity, Ft,T the future price, and K is the
strike price.

The data cleaning consists of the following filtration steps: removing the options quotes
of short expiration dates (less than six days) and the quoted mid-price lower than 0.375$
(or zero bid) price. The following procedure is to exclude all the in-the-money options.
The implied volatility of each mid-price option of the sample is computed by the usage of
the Black formula (1976). The filtering results in an amount of 8,733,420 contracts over
6293 days.
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Figure 18: Panel of the daily estimated parameter of the IV surface model

65



Panels of IV model’s daily calibrated estimators for each sample’s n day τ

Figure 18 above gives us many insights into the behavior of the component of the daily
IV surface model. As demonstrated by François et al. (2022) [22], the level of the at-the-
money IV is relatively low during normal market conditions and high during the financial
crisis (1998 and 2008). The slope of the implied surface is most of the time positive, due
to a positive β2 parameter during periods of high volatility. This attenuation of the smile
to be noisier during financial turmoil. The smile asymmetry captured by β4 is more stable
after the consecutive episode of the financial crisis (2008) and the flash crash of May 2010.
And for β5, the smirk seems to be more apparent in terms of level and volatility in more
recent days.
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D.1 RMSE of the model

For the sake of monitoring the quality of the in-sample fitting of our model, the daily root
mean square error (RMSE) is therefore computed :

RMSE =

√√√√ 1

N

N∑
n=1

(σ(M,T )− σo
T )

2. (39)

The model generates the price, denoted as σ(M,T ), for a specified moneyness (M) and
maturity (T), while σo

T represents the observed implied volatility in the market. The daily
time series is illustrated in Figure 19, and the descriptive statistics for the fitting Root
Mean Square Error (RMSE) concerning moneyness and maturity are presented in Tables
22 and 23.

Figure 19: RMSE of the IV model on the volatility surface

IV Model’s RMSE during the period of 1996-01-03 to 2020-12-31

Table 22: Descriptive statistics of the RMSE S&P 500 options by moneyness

Moneyness M ≤ −0.1(call) −0.1 < M ≤ 0.1 M > 0.1(put) All
Average RMSE 0.0174 0.0237 0.0252 0.0234

Number of contracts 1,490,728 2,054,803 5,187,889 8,733,420
Descriptive statistics of the daily S&P 500 options RMSE from January 4, 1996, to December 31, 2020,

grouped by buckets of moneyness. M is the moneyness computed in Equation (38).

Table 23: Descriptive statistics of the RMSE S&P 500 options by maturity

Maturity T ≤ 60 60 < T ≤ 180 T > 180 All
Average RMSE 0.0213 0.0179 0.0292 0.0234

Number of contracts 3,860,214 2,809,083 2,064,123 8,733,420
Descriptive statistics of the daily S&P 500 options RMSE from January 4, 1996, to December 31, 2020,

grouped by buckets of moneyness. T is the annualized time to maturity on a 365-day basis.
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The RMSE computation provides information on the fitting of the IV model. The average
daily RMSE of the sample is 0.0234. The quality of the fitting deteriorates during extreme
events. In terms of moneyness, Table 22 relates that the error of fitting is subject to a
contrast between the types of options. The number of puts in the sample is greater than
calls. The ARMSE (i.e. Average RMSE) for short and mid-term maturities is below the
sample average, in contrast to long-term maturities where the ARMSE is higher than the
average.

D.2 Bayesian extension

As an add-on the set of prior parameters is :

βprior = {ATM1y,τ , Slopet, β3,τ−1, β5,τ−1},

ATM1y,τ is the observed one year at-the-money implied volatility. In our data, there is
an issue for this measure due to the lack of traded one-year contracts at each market
day. The proxy is to be selected for maturity between 260 and 370 days coupled with the
smallest positive moneyness. This rule of thumb is applied according to the data available
for each day. The same issue arises for the equivalent measure for one month ATM1m,τ .
We apply a similar proxy for the same logistic reason. We selected maturities that are
between 17 and 59 days coupled with the same criteria on the moneyness as previously
mentioned (i.e., smallest positive).

From those approximations, we construct Slopeτ

Slopeτ =
ATM1y,τ − ATM1m,τ

exp(−
√

4/12)

For the two other priors for β3,τ−1 and β5,τ−1 the previous day estimators are taken. No
prior is attributed to β4.
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E Options trading strategies

The extensions of the straddle consist of the strip, the strap, and the strangle. Those
three strategies are close to the straddle but offer flexibility in the order of the direction
view of the trader. In the case of a strip, the position consists of buying one European
call and two European puts, it allows a profit exposure if the large move is negative shock.
Symmetrically a strap consists of two calls, and one put, it allows a profit if the large
deviation is a positive shock. Another alternative is the strangle. This trading consists
of one put and one call with the same expiration date but with a different strike. The
call strike is higher than the put’s strike. This strategy also allows a similar exposition to
that of the straddle but requires a larger move of the underline. The details of the payoff
of those strategies can be found in Hull p.268-269 [27]. Those strategies offer flexibility
for the trader in terms of Greeks sensitivities and transaction costs.

Figure 20: Strip, strap and strangle

Figures 12.11 and 12.11 in Hull: Options, Futures, and Other Derivatives. 9th Global Edition, p.268-
269[27].
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