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Résumé

Avec la popularité de l’intelligence artificielle, les algorithmes d’apprentissage automa-

tique sont envisagés pour un nombre croissant de problèmes. En ce qui concerne la classi-

fication binaire, la plupart des algorithmes peuvent fournir une estimation de la probabilité

qu’un événement se présente, mais il se peut qu’il n’y ait pas de résultats mathématiques

pour garantir leur convergence. Après avoir examiné les résultats de convergence pour les

arbres de classification et les forêts aléatoires dans la littérature, nous considérons un cer-

tain nombre de contextes différents dans lesquels les probabilités estimées sont utilisées

et démontrons que certaines pourraient être affectées négativement par des estimations

biaisées. Nous exécutons ensuite une simulation Monte Carlo approfondie inspirée de

neuf ensembles de données pour évaluer numériquement la capacité de ces algorithmes

d’apprentissage automatique à fournir des estimations appropriées des probabilités mal-

gré le manque de résultats théoriques de convergence. Nous constatons que bien que les

arbres et les forêts peuvent mieux performer en classification, leur capacité à estimer les

probabilités dépasse rarement celle de la régression logistique, même lorsque la régres-

sion logistique est mal spécifié.
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Abstract

With the rising popularity of artificial intelligence, machine learning algorithms are being

considered for an increasing number of problems. Regarding binary classification, most

algorithms can provide an estimate of the probability that an event will occur. However,

there may be no mathematical results to guarantee their consistency. After reviewing con-

vergence results for classification trees and random forests in the literature, we consider

several different settings in which the estimated probabilities are utilized and demonstrate

that some could be negatively impacted by biased estimates. We then run an extensive

Monte Carlo simulation inspired by nine data sets to assess numerically the ability of

those machine learning algorithms to provide appropriate estimates of the probabilities

despite the lack of theoretical consistency results. We find that while trees and forests

may perform better at classification, their ability to estimate probabilities rarely exceeds

that of logistic regression, even when the logistic regression is misspecified.

Keywords
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Introduction

Binary classification refers to supervised learning problems where the target variable

is binary. Logistic regression is a classical model that will provide the estimated proba-

bility of an event based on covariates. When a logistic regression is correctly specified,

traditional results on likelihood inference guarantee the consistency of the estimator (e.g.

Casella and Berger, 2002).

For practical problems, however, the simplicity of classification trees and their straight-

forward interpretation often makes them a more attractive choice than logistic regression.

The classification and regression trees algorithm (CART) of Breiman et al. (1984), for in-

stance, is widespread and easily available in the rpart R package (Therneau et al., 2015) or

as PROC HPSPLIT in SAS (SAS Institute Inc, 2015). An ensemble of trees may be used

to improve the performance of single trees. Based on bagging, random forests (Breiman,

2001) present a robust alternative that typically performs very well for classification and

regression problems.

With regard to classification, the target variable could represent an immutable state

or the occurrence of an event. Examples of immutable state problems are the authentic-

ity of a banknote, mineral characteristics of a rock, defectiveness of a mechanical part,

or disease status. The development and assessment of classification algorithms typically

assume that the binary target is fixed. In such situations, each subject has a true state

and their true probability of being in a given state can only be zero or one. The fact that

algorithms provide different values can be attributed to the uncertainty in the classifica-

tion. Apart from immutable state target variables, there are numerous situations where

1



the target represents an event that could occur or not. Consider for instance the default on

a loan, recidivism after an offense, customer churn, or propensity to respond to a survey.

In these cases, each subject can have a true probability in (0,1) that represents a level of

risk. A correctly specified logistic regression is a consistent estimator for that value. In

general, when a logistic regression is well specified, no subject can have a probability as

extreme as zero or one.

Today, classification trees and random forests are considered to be a superior alter-

native to logistic regression in different problems. For instance, Zhao et al. (2016) use

random forests for proximity matching using propensity scores in a causal inference prob-

lem. Westreich et al. (2010) discuss employing decision trees for estimating propensity

scores. Moreover, uplift modeling is a specific case of causal inference where the goal is

to evaluate the effect of a marketing action. As mentioned in Sołtys et al. (2015), although

a two-model approach may not be optimal in many applications, it can still be competi-

tive in certain scenarios. This approach makes use of the probability estimates directly,

predicted by two separate models. In a different field of application, Gelein et al. (2018)

use machine learning methods to derive propensity scores to adjust for nonresponse in

surveys.

Classification trees and random forests have been extensively studied. Their abil-

ity to rank subjects is partially supported by theoretical results and observed in practice.

However, regarding the estimation of probabilities, even Breiman et al. (1984) warned

that pruned trees could lead to poor probability estimates. During pruning, the goal is

to prevent the algorithm from overfitting the data. The classification accuracy is maxi-

mized, leading to highly homogenous leaves. Although they focus on algorithm C4.5,

Provost and Domingos (2003) and Provost and Domingos (2000) also mention that clas-

sification trees generally provide poor estimates of the probabilities due to their design.

Margineantu and Dietterich (2003) consider a Laplace correction as well as modifications

to the pruning mechanism in an attempt to improve probability estimates with finite sam-

ples. Besides pruning that is applied once a tree is built, pruning that occurs due to early

stopping has a negative effect on the probability estimates. The tree stops growing early

2



because of the default parameter setting of the complexity parameter in the rpart package,

requiring a minimum improvement in relative error to create a new split. The smaller the

number of terminal nodes in a decision tree, the fewer individual probability estimates

there are. This partly leads to the poor performance of decision trees with default settings

in estimating probabilities.

In terms of model assessment, Monte Carlo simulations are a popular tool to evaluate

whether a model performs reasonably well. In the context of causal inference, Setoguchi

et al. (2008) compare the ability of classification trees and other methods to properly esti-

mate a causal effect in seven different scenarios where the logistic regression is correctly

specified. For survey methods, Buskirk and Kolenikov (2015) consider random forests

as an alternative to logistic regression for propensity score weighting. In both cases, the

simulations assess the final result of the method rather than the quality of the individual

probability estimates. Lastly, Chawla and Cieslak (2006) run experiments with unbal-

anced data sets that aim to assess the quality of probability estimates given by decision

trees and ensembles of those trees, specifically bagged decision trees. They compare the

performance of the estimates given by a decision tree with regular leaf frequencies, es-

timates that have been smoothed with a Laplace correction, and estimates produced by

bagged trees. The performance measures the authors employ all use the class label as the

truth. Since they use data sets where the true class describes an immutable state, the class

label as the true probability is appropriate.

In this paper, we run extensive simulations that focus on the estimation of the prob-

abilities rather than on a specific method that uses those probabilities. To obtain more

realistic and practically useful results, the simulated models are inspired by real data sets,

nine of them in total. All of the data sets have a target variable that represents a possible

event rather than an immutable state. Each data set is used to determine two genera-

tive models: one based on the assumption of a logistic regression, and a second one that

features a structure akin to a tree, which makes it misspecified in regard to the logistic

regression.

The next section reviews consistency results for trees and forests, followed by Chap-

3



ter 1, which summarizes methods that use probability estimates and how they interact with

the probabilities. Chapter 2 introduces the different data sets and the generative models

that are used in the simulation. Chapter 3 presents the Monte Carlo simulations and the

results. The conclusion will highlight the key findings and directions for potential future

research.
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Literature review

The consistency of a supervised learning algorithm for classification can have differ-

ent meanings. One is the consistency of the algorithm when it is a class target predictor

and the other is the consistency when it is a probability estimator. By making assumptions

about the data or modifying CART or the random forest methodology, different authors

have derived consistency results for the class target predictor. This means that individuals

are properly ranked by the algorithm with respect to their real probabilities. Other re-

sults show the consistency of the target predictor in a regression context, which has been

discussed to be applicable to the consistency of probability estimators for binary classi-

fication by some authors (e.g. Malley et al., 2012). In general, the consistency of proba-

bility estimators is a different problem than the consistency of class target predictors. As

Breiman (1996) mentions, the probability estimates obtained with the standard decision

tree construction method “are poor estimates of the true class probabilities”. Thus, the

ranking induced by the estimates from trees and forests may be correct, while the proba-

bilities themselves remain biased. The following review includes consistency results for

regression and classification trees and forests which are achieved by either altering the

construction and splitting mechanism for the trees or making assumptions about the data.

An important theorem that serves as the basis of consistency results for trees and

random forests is that of Devroye et al. (1996). The authors establish consistency results

for the probability estimators in partitioning algorithms. More specifically, they prove

consistency for classification rules that partition the data space into disjoint cells and

make a classification in each cell depending on the majority of the label of the variables.

5



A major assumption in this theorem is that the label information is not used to construct

the partition, meaning that the target variable may not play a role in the creation of the tree.

In addition, the partitions may change with the number of observations and may depend

on the data points. In regards to the CART methodology used to construct decision trees,

the theorem presented by Devroye et al. (1996) is not applicable, since CART uses the

label information to create the splits based on information gain at each node. If the labels

are ignored for the creation of the partition, the performance of the decision tree or random

forest will be poor and the algorithm might not converge in practice. Nevertheless, the

findings of Devroye et al. (1996) are helpful in deriving further theorems and expanding

the results to averaged classifiers, such as the random forest.

In a technical report, Breiman (2004) discusses the consistency of the target predic-

tor in a regression context where the random forest algorithm is simplified. His proof

also implies consistency for the class target predictor in the binary classification case and

consequently this implies the consistency for the probability estimator. He compares the

simplified model to an adaptive nearest neighbor method with a smart distance measure.

This concept was introduced by Lin and Jeon (2002), who show that random forests can

be viewed as weighted layered nearest neighbors and therefore can make use of their con-

sistency properties. Breiman alters how individual tree splits are made in the original

CART methodology. Instead of predefining the variable mtry, which defines how many

variables are randomly selected at each iteration to choose the best split from, each vari-

able is associated with a probability of inclusion. The individual probabilities sum to one.

Then, at each node, a variable to split on is randomly selected based on its associated

probability. Depending on whether a strong or weak variable is selected, the split is either

made at the midpoint of all values or on a randomly selected value, respectively. It is

assumed that the expected value of the target variable only depends on the strong vari-

ables. In addition to this alteration, no bootstrapping of the training data is performed.

Breiman’s analysis yields that bootstrapping does not play a role in proving consistency.

In fact, it is the random selection of the split variables at each node that is crucial in prov-

ing consistency. He shows that the difference between the true response variable and the
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estimated response variable goes to zero as the sample size increases and that the rate

of convergence only depends on the strong variables. Breiman notes that the assumption

of a linear loss function, meaning the midpoint of a variable is the best cut for a strong

variable, could be problematic in practice since it depends on a large sample size in the

nodes. If this is not the case, the individual target variable value will be more important

for making cuts and getting consistent results.

Expanding on Breiman’s work, other authors have discussed consistency results when

making modifications to the algorithm used for the construction of trees and random

forests. Biau et al. (2008) discuss the universal consistency of averaging rules. Random

forests are an example of an averaged classifier and consist of a collection of randomized

base tree classifiers. The classification forest outputs the majority vote of the class pre-

dicted by the individual trees. To prove that averaging classifiers are consistent if their

base classifiers are, they first look at a purely random forest which was first considered

by Breiman (2000). In this model, the individual trees are not split based on CART and

an impurity measure. Instead, a random uniform selection of a leaf is made at each step

of the construction. The split variable is then selected uniformly at random and the split

itself is made according to a uniform random variable on the length of the selected split

coordinate. This procedure is repeated k times and in the end, the majority vote for each

class is taken in every leaf. The consistency applies to the binary class target predictor.

The consistency of the classifier is equivalent to saying that the probability of error goes

towards Bayes risk, which is the minimum between the probability that Y =1 given x and

1 minus this probability. In the binary classification setting, this also implies consistency

of the probability estimator for this random splitting mechanism. The authors continue by

proving how based on a consistent base learner, the voting classifier and averaging clas-

sifier are also consistent. Biau et al. (2008) further discuss that the standard Breiman’s

random forest classification algorithm, in which the trees are grown until each node con-

tains one case, is not universally consistent.

In a different paper, Biau (2012) analyzes the random forest in a regression context

and proves consistency of the target predictor. The author does an elaborate analysis of

7



the simple random forest proposed by Breiman (2004). Again, the splitting process is

altered from the original CART method. For each node, a random variable is selected

with a predefined probability, which could be determined with a second sample, and then

a split is made on the midpoint of said variable. Biau (2012) shows that under a spar-

sity framework the rate of convergence of the algorithm only depends on the number of

strong variables, which is very useful in high-dimensional regression when the number of

variables can be much larger than the sample size.

Denil et al. (2013) take a different approach to prove consistency, as the authors ana-

lyze consistency in an online setting for multi-class classification tasks. The consistency

refers to the class target predictor as well as the probability estimator. The authors adjust

the conventional methodology for tree splitting by dividing the training data into a set of

structure points and a set of estimation points. The structure points are used exclusively

for the splitting process, i.e. for the split criterion and location of potential splits of the

trees. The estimation points are used exclusively for making predictions, i.e. whenever a

data point that is queried ends up in a leaf, said points are used to estimate the class prob-

abilities. By splitting the points used for estimating and partitioning, the authors make

use of the theorem proposed by Devroye et al. (1996) for partitioning algorithms and the

consistency of the probability estimator is theoretically proven.

Other consistency results for random forests focus on assumptions on the data rather

than the modification of the CART methodology when building the individual trees. Scor-

net et al. (2015) prove L2 consistency for the original random forest algorithm in an

additive regression model context. The only difference to the original algorithm is that

bootstrapping is replaced by subsampling, which doesn’t play a role in proving consis-

tency, as noted by Breiman (2004). The authors conclude that by controlling the variation

of the regression function within each cell with either a good choice of the total number

of leaves (when the trees aren’t fully grown) or a good subsampling rate (when the trees

are fully grown) L2 consistency can be ensured. However, n needs to be large enough

so that the variation of the regression function within a cell of a random tree is small.

Along with the additive regression requirement, all components must be continuous. The
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authors make further assumptions for trees that are fully grown. According to Scornet

et al. (2015), the presented theorems are the first consistency results for Breiman’s forests

given that all assumptions are satisfied. Since the consistency proof is in the regression

setting, the consistency is valid for the predicted target itself, which is an average of the

average target variable in each leaf of the trees.

Klusowski (2021) gives consistency results for decision trees in the additive regression

context. The author expands on the paper of Scornet et al. (2015) and proves universal

consistency for decision trees in the high dimensional additive regression model context.

Hence, the consistency addressed refers to the predicted regression target variable. The

standard CART methodology for tree construction is used with the minor adjustment that

there can be only one observation remaining in any leaf. Other assumptions on the data

are made in addition to it being expressed as an additive model. The author mentions that

one of the issues with additive models is that they are not able to capture interaction effects

between the predictor variables. This problem is solved by allowing for model misspeci-

fication. In general, it is difficult to incorporate interaction terms into a greedy modeling

context (such as the standard CART) and thus it is unclear whether a general consistency

theory can be developed. Both of the above proofs by Scornet et al. (2015) and Klusowski

(2021) refer to the consistency of the target predictor in a regression setting. However,

as Malley et al. (2012) examine, consistent target predictors in the regression setting sup-

posedly give consistent probability estimators in the binary classification setting.

Malley et al. (2012) run a simulation study examining nonparametric models being

used as probability machines. This is a slightly different approach to the standard clas-

sification algorithm and stems from the idea that consistent predictors in the regression

setting will be consistent probability estimators for binary classification under the same

conditions. They note that the conditional probability problem P(Y = 1|x) is equal to the

nonparametric regression problem E(Y |x) and thus any algorithm that performs well for

nonparametric regression also performs well for probability estimation for binary clas-

sification problems. Instead of applying the standard algorithm used for a classification

random forest, the authors use the algorithm for regression random forests in the ran-
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domForest R package. The deciding difference is the way in which the final outputs are

predicted. In the classification case, a majority vote is taken in each terminal node and

thus each leaf gives a class (0 or 1) as an output. Then, the final probability estimate given

by the forest is obtained by taking the mean of these outputs. In the case of regression,

the y values are averaged in each leaf and then averaged again over all trees. Malley et al.

(2012) use four data sets to run simulations. For two of the data sets there are no“real”

probability models and the target variables, which are appendicitis and diabetes, are im-

mutable states. The results from the simulated data with available true probabilities show

that the regression random forest does slightly better than the classification random forest

for both data sets but it is not clear that either probability estimator is consistent based on

the true and predicted probabilities.

In this paper, the focus lies on numerically assessing whether decision trees and ran-

dom forests are consistent probability estimators when the target variable describes the

occurrence of an event. The standard random forest algorithm for classification was used

because it is most commonly applied in practice for these types of problems and the goal

was to examine whether the standard classification algorithms are consistent probabil-

ity estimators. As the literature has revealed, the consistency results for the regression

random forests are closest to the algorithm used in practice. For classification trees, con-

sistency results still rely on simplified versions of the algorithm. Thus, the objective is to

see how classification trees and random forests perform empirically and whether they are

consistent probability estimators.

10



Chapter 1

Methods using probability estimates

Various methods make use of the predicted probabilities in binary classification prob-

lems including model assessment methods, propensity scores, and uplift modeling. For

some of these methods, the values of the probabilities are important and the selected algo-

rithm must be a consistent probability estimator in order to get reliable outcomes from the

chosen method. On the contrary, some methods are invariant to monotonic transforma-

tions of the estimated probabilities and a reliable ranking of the probabilities is sufficient.

Several examples will be discussed and assigned to the appropriate scenario in this sec-

tion.

1.1 Model assessment

Predicted probabilities are used in certain model assessment techniques. Consider

for example receiver operating characteristic (ROC) curves and lift charts. The ROC

curve is commonly used to measure the performance of a machine learning model in the

binary classification setting. It plots the false positive rate versus the true positive rate

achieved by the fitted machine learning model. The area under the curve (AUC) can then

be calculated and used as a final measure. The larger this value, the better the model

does in terms of classifying the target variable. One of the benefits of this performance

measure is that it remains unchanged regardless of the selected classification threshold.
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Every position along the curve corresponds to a different threshold and consequently the

AUC takes all possible thresholds into account. Furthermore, it measures the ranking of

the predictions, rather than the actual predicted values. Flach (2016) states that it is a

normalized version of the Wilcoxon-Mann-Whitney sum of ranks test. Therefore, even if

the actual predictions may be off by a large margin of error, the AUC will not be affected

as long as the ranking of the predictions is good.

Another model assessment method is the lift chart. As per Blattberg et al. (2008),

this tool allows companies to segment their customers into groups that classify which

ones will be profitable when targeted in a marketing campaign. It does this by comparing

the use of a machine learning model to target customers for marketing decisions versus

randomly selecting them and obtaining the usual response rate. A graphical display of the

lift shows the number or percentage of customers targeted on the x-axis and a ratio of the

numbers of true responses on the y-axis. The point on the x-axis with the largest distance

from the baseline (equivalent to a random guess) to the results from the model prediction

has the highest lift score. Just as for the AUC, the lift chart is a ranking-based mechanism.

It does not require the probability estimator to be consistent.

1.2 Propensity scores

Apart from their use in model assessment, probability estimates are utilized to cre-

ate propensity scores in survey sampling methods. Rosenbaum and Rubin (1983) define

propensity scores as the conditional probability of being assigned to a treatment given a

group of observed covariates. They are used in survey sampling to imitate characteristics

of randomized controlled trials, as the samples collected are non-random in nature and

thus can have strong confounding bias. More specifically, they balance the individuals

and create similar groups of treated and untreated subjects. In most cases, they are used

for causal inference when the goal is to measure the effect of a treatment on a population.

Austin (2011) summarizes four different methods in which propensity scores are used.

The first two are matching on the propensity score and stratifying on the propensity
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score. These methods require the machine learning models to produce reliable rankings

of class probabilities and not reliable class probabilities themselves. In matching, subjects

will often be matched in a pair-wise fashion, where one untreated subject is matched with

a treated subject that has the most similar propensity score. Based on a sample of matched

individuals, the treatment effect can be estimated by subtracting the proportion of the un-

treated subjects experiencing a target variable event from the proportion of the treated

subjects in a binary setting. Rosenbaum and Rubin (1983) describe taking the difference

of the mean outcomes in a continuous target variable setting. Next, stratification on the

propensity score is defined as ranking subjects based on their propensity scores and then

separating the subjects into subsets. The subsets are created by using predefined thresh-

olds of the propensity scores. There are common approaches to the creation of subsets,

like dividing the subjects into five equal-sized groups using the propensity score. Just as

for matching, this method relies on good rankings of the probabilities.

Other methods Austin (2011) discusses are the inverse probability of treatment weight-

ing using the propensity score and covariate adjustment using the propensity score. In the

first method, weights are created by using the inverse of the propensity score. Based on

the weights, a new sample is created in which the distribution of measured covariates is

independent of the treatment assignment. The idea is to weight the survey sample in a

way that makes it representative of the true population. Thus, it becomes clear that in

this scenario, a reliable probability estimate is needed. If the machine learning model is

inconsistent for probability estimation, the weighting will be done incorrectly. In conse-

quence, the estimated average treatment effect is unreliable. The last method discussed in

the paper is covariate adjustment. Austin (2011) explains that in this method, a model is

fitted on an indicator variable for the treatment status and the estimated propensity score

to predict the outcome variable. Then, the treatment effect estimate is determined using

the coefficient from the fitted regression model. It is crucial that the relationship between

the propensity score and the outcome has been correctly modeled. The difference between

the first three methods and the last is that they separate the design from the analysis of the

study. However, as already emphasized, the last two methods both are sensitive to errors
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in the values of the probability estimates used as the propensity scores.

1.3 Uplift modeling

In uplift modeling, the goal is to measure the causal effect that a treatment such as a

marketing campaign has on customer behavior. Gutierrez and Gérardy (2017) review the

different types of uplift modeling techniques that have been studied in the literature. The

three main approaches for uplift modeling are the two-model approach, the class transfor-

mation method, and lastly modeling the uplift directly. In the two-model approach, there

are two separate models which are based on the treatment and the control group respec-

tively. The predictions of the control-based model are subtracted from the predictions

of the treatment-based model to yield the uplift of an individual. The class transforma-

tion method creates a new target variable which is not only a binary variable indicating

a positive response or not but rather a multiplication of responses and new indicators for

whether an observation belongs to the treatment or control group. Details are explained

by Gutierrez and Gérardy (2017). Lastly, modeling uplift directly takes into account the

change in response between treatment and control groups directly in the model fitting

process.

Several authors discuss modeling the uplift directly using the decision tree algorithm.

Since it is the change in the class probability that is of interest in uplift modeling, us-

ing the direct modeling approach can yield better results. Rzepakowski and Jaroszewicz

(2012) use decision tree algorithms based on CART and 4.5 and make adjustments to the

splitting criteria and pruning methods. The approach is based on the idea of wanting to

maximize the differences between the treatment and control class distributions. Hence,

they use the Kullback-Leibler divergence, Euclidean distance, and the chi-squared di-

vergence statistics that serve as splitting criteria. Other authors that propose methods

adjusting the splitting criteria of decision trees to model uplift directly are Chickering and

Heckerman (2000) and Radcliffe and Surry (2011).

The two-model approach has the advantage of being simpler than the other two meth-
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ods and that any classification model can be implemented. Furthermore, Zaniewicz and

Jaroszewicz (2013) state that if the uplift is strongly correlated with the target class or if

the number of training observations is large enough, the models can give accurate proba-

bility estimates. Gutierrez and Gérardy (2017) write that it has been observed to perform

well. However, Radcliffe and Surry (2011) show scenarios in which using two models

causes the inability to capture certain uplift signals and this approach is outperformed by

the other models such as direct uplift modeling. In general, since there are two separate

probabilities in this approach, the effect of biased estimates can be even stronger than in

a single classification model.

1.4 Cost and profit-based modeling

In settings where it is important to take into account the increase in revenue or the

differing costs of a false positive versus a false negative, it is crucial to use consistent

probability estimators. In the uplift modeling setting, two-stage modeling is a process in

which two separate models are fit. First, a model is created to predict whether a customer

that has received a treatment will purchase a product or not. Second, a model is fitted in

order to predict the number of sales that will be made through each individual. Gubela

et al. (2020) propose different types of two-stage uplift models. One such model includes

applying a classification model to identify customers that will make a purchase such that

the revenue exceeds zero and a regression model built on these buyers to predict the

response value, such as the purchase volume. The use of consistent probability estimators

is necessary to get the most reliable expected revenues.

Other settings that rely on consistent probability estimators are ones in which misclas-

sification costs differ depending on the scenario. Zadrozny and Elkan (2001) describe that

in the medical field, for example, the cost of prescribing a drug to a patient with an allergy

is significantly higher than not prescribing a drug to a person without any allergies, given

that alternative treatments are available. Another example is one-to-one marketing. The

cost of not contacting a person who would respond positively to an offer is much higher
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than the cost of contacting a person who does not take the offer. For these problems, the

goal is to assign the class to an observation that will lead to the lowest expected cost. In

the case that the cost is known in advance, this is a multiplication of the probability that

an instance belongs to class 1 and the cost associated with predicting class 0 if the true

class is class 1. Obtaining accurate expected costs is important in these cases.

1.5 Summary

Table 1.1 summarizes the discussed methods and classifies them into whether they are

invariant to monotonic transformations of the probability estimates or whether they are

methods that may be negatively affected by the bias (or in general, lack of consistency) of

the probability estimates. The former is listed under the “Invariant” column and the latter

under the “Affected by bias” column. It is important to choose an appropriate machine

learning model for the latter methods to avoid the negative effects of biased estimates.

The experiments described in this paper will highlight the differences between logistic re-

gression, a method that is known to be a consistent probability estimator under reasonable

assumptions, decision trees, and random forests. For classification problems, we could not

locate proofs of consistency for the standard tree and random forest construction methods

in the rpart and randomForest R packages when they are used as probability estimators.

The next chapter will introduce the data sets used in the Monte Carlo simulations.

Table 1.1: Summary of methods using probability estimates.

Invariant Affected by bias
ROC curve Propensity score weighting
Lift chart Two-model approach (uplift)
Propensity score matching Two-stage modeling (uplift or other)
Propensity score stratification Cost-based decisions
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Chapter 2

Presentation of the data sets and true

probability models

In order to assess the ability of tree-based methods to give reliable probability esti-

mates, Monte Carlo experiments were conducted for nine different binary classification

data sets. The data sets were used to establish two separate probability models. The first

model called LGM was based on a logistic regression function. The second one, called

TM, was based on a structure akin to a decision tree, making it a misspecified model for

the logistic regression. The data sets were used to determine the “true models” by fitting

either a logistic regression (for the LGM) or a decision tree (for the TM). The R glm and

rpart functions were used to this end. For one of the data sets that did not include a tar-

get variable, the true probabilities were generated from manually determined equations

rather than a fit. Details of the fit to determine the “true models” will be discussed in the

corresponding data section.

To generate the probabilities for the LGM, a logistic regression was fitted to the orig-

inal data set and then a bi-directional stepwise based on AIC was run. The variables that

were selected during the stepwise process were then used to fit a logistic model whose

estimated parameters were thereafter considered as the “true values”. These lead in turn

to true probabilities for all observations of the data set. For every iteration of our simula-
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tion, new target variables were then generated as Bernoulli variables with a probability of

success equal to those true probabilities that remained unchanged throughout the Monte

Carlo experiment.

For the TM, the true probabilities were generated based on a decision tree rather than

a logistic model, meaning that a logistic model would be misspecified in this scenario.

The tree was fitted to the original data without pruning. The idea behind this strategy was

to let the tree grow to a large enough size so that a larger amount of unique probabilities

would be generated. In fact, it is noted in the literature that the pruning mechanism of

trees and their size influence the probability estimates. Larger grown trees can be better

for probability estimation, as discussed by Provost and Domingos (2003). Furthermore,

Setoguchi et al. (2008) and Bauer and Kohavi (1999) found in their experiments that prun-

ing mechanisms increased the bias of estimates versus their unpruned counterparts. Apart

from the complexity parameter, the maximum depth parameter was adjusted according to

the size of the data set. For example, if the data set had 14,927 observations, the maxi-

mum depth that could be set was 11. This would lead to a maximum of 211 = 2048 leaves,

which means that the average number of observations per leaf corresponds to the default

minimum of 7 observations per node. Once the decision tree was fitted to the data, it was

deemed to be the data-generating process, or the “truth”, and provided a “true probability”

for each individual in the data set. Those true probabilities were then used in the Monte

Carlo simulation to generate new target variables from a Bernoulli at each repetition of

the simulation.

Table 2.1 summarizes each data set. The post-processing column shows the number of

observations and variables that remained once the data sets were processed and ready to

be used for the simulation experiments. The target variable is included in the “Variables”

column. The following subsections provide detailed descriptions of each data set.
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Table 2.1: Data set summaries.

Data set Original Post-processing
Observations Variables Observations Variables

Census 31,997 651 6,000 11
Iowa recidivism 26,020 17 26,020 10
HMEQ 5,960 14 5,960 22
German Credit 1,000 21 1,000 21
Marketing Promotion 64,000 9 12,800 9
Bank Marketing 4,119 21 4,118 21
Churn 10,000 14 10,000 11
Internet Churn 72,274 11 14,916 10
Loan 9,578 14 9,578 14

2.1 Data set descriptions

2.1.1 Census data

Buskirk and Kolenikov (2015) compare random forest and logistic regression models

in response propensity weighting and stratification. The propensity scores are used to

correct for nonresponse biases and consequently ensure the validity of survey estimates.

For the data in their experiment, the authors use information from the 2012 US Health

Interview Survey. They keep the variables with no missing values in the original data and

use two separate probability models to generate true probabilities. In this case, the data

set does not contain a target variable. The models are generated by hand as possible data-

generating processes. A similar process was followed for our version of these simulations,

but our goal was to look at the quality of the probability estimates. We took data from

the 2019 US Health Interview Survey1 which includes variables from the Sample Adult

Interview and Paradata files. Eleven predictor variables with no missing values in the

original data and based on the selection of Buskirk and Kolenikov (2015) were chosen

to create the new data set. More specifically, nine categorical variables, one binary, and
1https://www.cdc.gov/nchs/nhis/2019nhis.htm. Accessed: 2022-02-15
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one numerical variable were selected. The target variable for this data set was whether an

individual responded to the survey or not. Table 2.2, presented at the end of the chapter,

shows a summary of the variables included in this experiment.

Most of the variables the authors use in their data set were recovered in the 2019 cen-

sus data. However, some of the variables were excluded or replaced. The household tele-

phone status (telstat) and the number of working cellphones in the household (wrkceln)

were replaced by TELCEL_A and TELCURWRK_A. Furthermore, the overall functional

limitation variable (alchronr2) was replaced with a general health question (PHSTAT_A)

and the late sample adult interviews (lateinta) and employment status (wrkcata) variables

were not included as they weren’t available in the 2019 census data. A sample of 6,000

was taken from the original sample size of 31,997 for the simulations.

Several preprocessing steps were undertaken to prevent errors in the simulations. For

TELCEL_A, TELCURWRK_A, and PHSTAT_A two of the categories (or survey an-

swers) had a very low number of instances (less than 0.2% of the data). The categories

indicated a respondent answering with “Don’t Know” or “Refused” for the three survey

questions. The rows with these two answers were therefore deleted. Furthermore, three of

the categories for the education level variable were combined to create a sufficient number

of entries for each category.

Once the preprocessing was completed, the true probabilities representing the re-

sponse probabilities of the surveyees were created and target variables simulated. The

probabilities were calculated using slight variations of the equations presented by Buskirk

and Kolenikov (2015). The first equation, referred to in this paper as LGM, is a simple

logistic regression interaction term model. For this experiment, the same coefficients as

in the paper were used.

Logistic regression-based probability model (LGM)

P(Y = 1|x) = 1
1+ e−1.63+0.028age+0.48(sex=female)−0.57(race=black)+0.32(race=white)

(2.1)
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The second model, referred to as TM, has more complex interactions between the

variables and tree-like cuts. The coefficients differ slightly from the ones used by Buskirk

and Kolenikov (2015). The adjustment was made to get a similar distribution of the

probabilities compared to the LGM. Note that the census data did not come with a target

variable like the other eight data sets. For this reason, the definition of the LGM and

TM followed a different process. While a fit on the other eight data sets yields the true

models, manually defined equations were utilized for the census data to generate the true

probabilities.

Tree-based probability model (TM)

P(Y = 1|x) = 0.01
[

age−2
(age

50

)5
]
−0.07(income < $35,000)−

0.06(income > $100,000)(education < high school)

+0.1(education ∈ {high school, some college, bachelors})

+0.2(education > bachelors)+0.04(sex=female)

+0.02(has cell phone){−0.04+[0.04(sex=female)+0.02(sex=male)](51− age)}

+0.08(has landline)[0.06(sex=female)+0.01(sex=male)](
√

age−5.5)

+0.06(sex=male)
(2.2)

Once the true probabilities were obtained using these two probability models, the

target variables were simulated for each of them. This was repeated 1,000 times (once

for each repetition of our simulation) for all observations and for both probability models.

The percentage of respondents was about 57%.

2.1.2 Iowa recidivism data

The Iowa recidivism data set includes information about criminal offenders being re-

admitted to prison within a three-year period. The recidivism rate is around 33%. The data

is provided by the Iowa Department State of Corrections under the Creative Commons
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Attribution 4.0 International Public License2. Preprocessing for this data set required the

removal of several variables that described the recidivism that occurred in more detail

and could thus not be used as predictors. Additionally, the offense type variable was re-

moved due to collinearity with the offense subtype variable, and the prison release year

was removed due to collinearity with the recidivism reporting year. The difference be-

tween these years was three for every individual. For the race and offense classification

variables, several categories were combined to create sufficient entries in every category.

Moreover, one row was removed that contained the single occurrence of a category for

the release type variable. Other rows containing missing values or single categories with

a very low number of entries (less than 0.07% of the data set) were removed. The final

data set used for the experiment is summarized at the end of the chapter in Table 2.3. The

target variable describes whether recidivism within three years for an individual occurred.

2.1.3 HMEQ data

The Home Equity (HMEQ) data set contains information about bank customers and

whether they defaulted on past home equity loans or were seriously delinquent3. The tar-

get variable includes 80% of individuals who repaid their loans and 20% who defaulted.

In this data set, there was a significant amount of missing values for nine of the ten nu-

merical variables. As a solution for these missing values, additional indicator variables

were created for each of them, indicating a 1 if there was a missing value. The missing

values were then imputed by the mean value of the non-missing values of each respective

variable. For the two categorical variables, there were several missing values. These were

treated as an additional category. The details of the variables are described in Table 2.4.
2https://data.iowa.gov/Public-Safety/3-Year-Recidivism-for-Offenders-Released-from-Pris/mw8r-

vqy4. Accessed: 2022-03-04
3https://www.kaggle.com/ajay1735/hmeq-data. Accessed: 2022-02-10
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2.1.4 German credit data

The German Credit data set (Dua and Graff, 2017)4 is a collection of bank customer

data that classifies a customer as either a “good” (70%) or “bad” (30%) credit risk. It con-

tains 1,000 observations and 20 predictor variables, which include eleven categorical, two

binary, and seven numerical variables. The binary variables V19 and V20 were treated

as numerical values. For V4, two of the eleven categories were combined to ensure an

adequate amount of entries in all categories. The variables of this data set are described

in detail in Table 2.5.

2.1.5 Marketing promotion campaign data

The Marketing Promotion Campaign Uplift Modelling data set contains customer in-

formation and the historical use of discounts or Buy One Get One free promotions (Moro

et al., 2014)5. The target variable is an indication of whether the customer bought a new

offer or not. About 15% of the customers make a purchase after receiving an offer and

85% do not. Few preprocessing steps were performed for this data set. First, the offer

variable was transformed from a categorical into a binary variable by changing the entries

to one if they were “Discount” or “Buy One Get One” and zero otherwise. Second, a

sample of the data was taken to conduct the experiment, which was 20% of the original

number of observations. Table 2.6 gives a detailed description of the variables.

2.1.6 Bank marketing data

This data set comprises information about clients and direct marketing campaigns of a

Portuguese banking institution6. The target variable describes whether a client subscribes

to a term deposit or not. Around 11% of the clients subscribe and 89% do not. The data

set that was used has 10% of the original observations. It has 4,119 observations and 20
4https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data). Accessed: 2022-03-02
5https://www.kaggle.com/datasets/davinwijaya/customer-retention. Accessed: 2022-01-24
6https://archive.ics.uci.edu/ml/datasets/bank+marketing. Accessed: 2022-03-09
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predictor variables. For data preprocessing, the one entry of “illiterate” for the education

variable was changed to “unknown” to ensure enough entries per category. For the default

variable, the one row with the answer “yes” was removed and only the answers “no” and

“unknown” remained. The default and contact variables were both treated as numerical

values. The final data set used for the experiment is summarized in Table 2.7.

2.1.7 Churn data

The next data set used in these experiments is a churn data set for a bank indicating

whether an individual left the bank or not7. In total, 20% of the individuals exit the com-

pany and 80% do not. A 20% churn rate appears to be rather large and therefore it seems

reasonable to assume that the data could have been undersampled. The documentation of

the data set does not refer to such preprocessing steps. The original data set has 10,000

observations and 13 predictor variables, including two categorical, three binary, and eight

numerical variables. For this experiment, the row number, surname, and customer ID

were removed. No additional preprocessing was required. The detailed description of the

variables is shown in Table 2.8.

2.1.8 Internet churn data

The internet churn data set contains information about customers using different in-

ternet services including subscription type, duration, bills, and internet usage8. The target

variable indicates whether a customer canceled the service. There is a 55% churn rate.

As has been noted for the previous data set, it seems like the data could have been un-

dersampled. Corresponding preprocessing steps were not included in the data set docu-

mentation. Since the original data set has over 72,000 observations, a sample of 15,000

was used for this simulation. Additional preprocessing steps included the removal of the

id and download_avg variables. Download_avg was removed to prevent predictions of
7https://www.kaggle.com/datasets/mathchi/churn-for-bank-customers. Accessed: 2022-03-26
8https://www.kaggle.com/datasets/mehmetsabrikunt/internet-service-churn. Accessed: 2022-03-27
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zero and one in the LGM and the id was redundant. Next, the rows with missing values

for upload_avg were removed as they made up less than 0.6% of the observations. For

the remaining_contract variable, a significant amount of entries had missing values. As a

consequence, an indicator variable was added to the data set and the missing values were

replaced by the mean of the non-missing data. The description of the variables used in

the experiments is shown in Table 2.9.

2.1.9 Loan data

Finally, the loan data set contains information about people who borrowed money and

whether they paid back the loan or not9. Around 16% of the people have not paid their

loans back. No preprocessing was necessary for this data set as there were no missing

values and no collinearity issues. Table 2.10 summarizes all variables.

9https://www.kaggle.com/itssuru/loan-data. Accessed: 2022-03-09
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Chapter 3

Monte Carlo simulations

While some consistency results for decision trees and random forests as class target

predictors exist, the consistency as probability estimators in the case of mutable states has

not been theoretically proven for the algorithms used in practice. Therefore, we evaluate

numerically the ability of the CART and random forest algorithms to provide good prob-

ability estimates. To this end, six machine learning models were selected, which include

two logistic regression models, as they are proven to be consistent probability estimators

when correctly specified, two decision trees, and two random forests. They are described

in detail in the next section.

With nine different data sets, there were a total of eighteen true probability models;

nine LGMs (that are well-specified logistic regressions) and nine TMs (that are misspeci-

fied models for a logistic regression and feature a structure that should be advantageous to

trees and forests). For each of the eighteen probability models, the six machine learning

models were trained and then used to give predictions for a validation set. This was done

in a Monte Carlo simulation with 1,000 repetitions. While the predictor variables and the

original sample size remained unchanged, a new target variable was created in each repe-

tition based on the true probabilities from the LGM and TM. Training and validation sets

were generated by randomly partitioning the data into 80% training and 20% validation

set. This split was performed for each repetition.
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Once the predictions for each machine learning model in the simulation were ob-

tained, the performance was measured in terms of bias and RMSE for each individual

true value. The bias was calculated by subtracting the true probability of an observation

from the predicted probability for that observation. The RMSE was calculated for each

observation over all iterations. More specifically, for each observation, the true probabil-

ity was subtracted from the predicted probability and squared. Then the mean and square

root were taken. Since the validation sets were randomly generated at each iteration, a

given observation was not always selected in the validation set. Thus the sample size used

for the RMSE calculation was not the same for every individual. It represents the total

number of times an observation occurred in the validation sets throughout the simulation.

In the next section, the six machine learning algorithms are described in detail.

3.1 Machine learning model selection

3.1.1 Logistic regression

The first model is a simple logistic regression model fit on all variables using the glm

function in R with binomial family setting.

3.1.2 Logistic regression with interaction terms and step function

The second logistic regression model required additional steps. First, interaction terms

for all the numerical variables in a data set were created. These terms were a single

multiplication of two variables at a time. Certain interaction terms were removed if they

caused rank-deficiency problems. Binary variables were included to create these terms

except for the new indicator variables of the HMEQ data set since this would have led

to computational issues. Multiplications of binaries times themselves were removed. A

logistic regression model was fitted on the new data set including original variables and

new interaction term variables. Then, a stepwise algorithm running in both directions was

used as a variable selection strategy. The default settings of the R step function were kept.
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3.1.3 Decision tree with default parameter settings

The decision tree model was applied using all default parameters of the R rpart func-

tion. The default complexity parameter (cp) of 0.01 requires a minimum improvement of

0.01 of the relative error to create a new split. The tree stops growing if no split can im-

prove said error by at least 0.01 or when the number of observations in a node (minsplit)

is less than 20. The maxdepth parameter is set to 30 by default and determines the maxi-

mum depth of the tree. The root node has a depth of zero.

3.1.4 Decision tree with adjusted parameter settings

For the second decision tree model, three of the hyperparameters were adjusted. To

this end, a grid search was performed. The values for the hyperparameter search included

minsplit set to 1, 2, 5, 10, 20, maxdepth set to 3, 5, 10, 20, and cp set to -1 or 0.01.

The different hyperparameter values were chosen so that the tree has the option to grow

larger than the default cp permits, but not too large (maxdepth) so that there would still

be many observations in the leaves. The area under the receiver operating characteristics

(AUC) curve was calculated for every hyperparameter combination and the combination

with the highest AUC was selected for the simulations. This AUC was selected as a

performance measure to mimic the model selection process in a practical setting when

the true probabilities are unknown.

3.1.5 Random forest with default parameter settings

The random forest model utilized the default parameters in the randomForest function

of R. The model runs in classification mode if the target variable is a factor. The trees

in the forest are grown to their maximum size in this setting. The default number of

minimum observations in the terminal nodes is one (nodesize). The default number of

trees grown in the forest (ntree) is 500, and the default value for the number of variables

randomly sampled as candidates for each split (mtry) is the square root of the number of

variables.
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3.1.6 Random forest with adjusted parameter settings

For the adjusted random forest model, three of the hyperparameters were changed

from their default values. A grid search was performed to determine the best combination.

The parameters were ntree with the values 300, 500, 1000, nodesize with 1, 50, 100, 500,

and mtry with 3,6, and 9. Since the trees in the forests grow to their maximum possible

size, the nodesize values included larger values of up to 500. The AUC was calculated

for every hyperparameter combination and the combination with the highest area was

selected. Note that for the marketing data set, the mtry parameter 9 was removed from the

hyperparameter search since there are only eight predictor variables in the data set. Both

the adjusted tree and adjusted random forest have a small advantage over the other models

because the hyperparameters were selected based on their performance on a validation

set. They are implicitly the best of a collection of models (that were included in the grid

search), thus this could slightly bias the performance to their advantage.

3.2 Results

In the following sections, the results of the six machine learning algorithms are pre-

sented for each data set. First, the generated probabilities from the LGM and TM are

discussed. This is followed by a comparison of the bias and RMSE for all algorithms as

well as their predictive behaviors. The selected hyperparameters for the tree-based algo-

rithms are also presented for each data set. Lastly, the performances of the algorithms

will be summarized over all nine data sets at the end of the chapter based on two different

ranking systems.

3.2.1 Census data

The generated probabilities of the LGM and the TM followed very similar distri-

butions. The distribution for the LGM had a mean, median, and standard deviation of

0.5622, 0.5710, and 0.1514 respectively. The probabilities ranged from 0.1550 to 0.8683.
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For the TM, the mean, median, and standard deviation were 0.5815, 0.5986, and 0.1355

respectively. The probabilities ranged from 0.1694 to 0.8569. For both probability mod-

els, there is a similar amount of probabilities in the middle of the probability range. Figure

3.1 shows the true versus predicted probabilities of the logistic regression model for both

the LGM and TM. The boxplots illustrate through varying widths that the number of en-

tries that fall in the groups 0.35-0.40, 0.40-0.45, to 0.70-0.75 are almost the same. There

are fewer entries for the groups that are closer to the extreme ends of the range, i.e. groups

0.15-0.20, 0.20-0.25, 0.80-0.85, and 0.85-0.90. All probability boxplots for the LGM and

TM for the census data are presented in the appendix in Figure 1 and Figure 2, respec-

tively. The hyperparameters selected by the grid search for the adjusted decision tree and

adjusted random forest for both probability models are shown in Table 3.1.

(a) LGM (b) TM

Figure 3.1: Census data: true probabilities vs predicted probabilities for the logistic
regression based on the LGM and TM. Individual values of all data points from 1,000

replicates are displayed.

The detailed bias and RMSE results of the Monte Carlo simulations are listed in Table

1 in the appendix. For both probability models, the logistic regression with step function

performs best for both bias and RMSE with median values of 0.0000 and 0.0230 for the
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Table 3.1: Census data: hyperparameters found by the grid search for the tree and RF
models.

Tree RF
Model (minsplit, maxdepth, cp) (ntree, nodesize, mtry)
LGM (20, 3, -1) (1000, 100, 3)
TM (20, 5, -1) (300, 500, 6)

LGM and values -0.0003 and 0.0338 for the TM respectively. The simple logistic regres-

sion model follows closely. The next best are the decision tree models, with the adjusted

tree performing better than the default tree for the LGM (median RMSE of 0.0683 versus

0.0801), but slightly worse for the TM (median RMSE of 0.0937 versus 0.0759 respec-

tively). It is important to note that the decision tree with default parameters gives only

a few unique values of probabilities as predictions in a single iteration. Thus, it is also

insightful to look at the true probabilities versus predicted probabilities (see Figure 1 and

Figure 2 in the appendix). For both probability models, the majority of the predictions

of the default decision tree stay between 0.35 and 0.65. Lastly, the random forest models

perform the poorest for the census data. Especially for the TM, the adjusted random forest

has a very large median RMSE of 0.2505. Examining the true versus predicted probabil-

ity graph reveals that the model has pushed a majority of the predictions to either zero or

one.

3.2.2 Iowa recidivism data

For the Iowa recidivism data set, the distribution of the LGM had a mean, median,

and standard deviation of 0.3338, 0.3357, and 0.1410. The range was 0.0000 to 0.8058.

For the TM, the mean, median, and standard deviation were 0.3338, 0.3333, and 0.1929.

The probabilities ranged from 0 to 1. For the LGM, the middle probability groups are

slightly more populated than the groups on the ends. In general, groups larger than 0.60

aren’t heavily populated. There is a trend where the entries per group increase slightly

until around 0.45 and then decrease thereafter. For the TM, the number of entries per
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(a) LGM bias (b) TM bias

(c) LGM RMSE (d) TM RMSE

Figure 3.2: Census data: boxplots for the bias and RMSE for the 1,000 repetitions of the
LGM and TM. Descriptive statistics for the values shown in each boxplot may be found

in Table 1 of the appendix.

probability group fluctuates along the entire range. However, the probabilities are more

skewed towards 0. Figure 3.3 shows these behaviors in the probability boxplots for the

logistic regression. All of the remaining boxplots for the LGM and TM are presented in

the appendix in Figure 3 and Figure 4, respectively. The hyperparameters selected by the
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grid search for the adjusted decision tree and adjusted random forest for both probability

models are shown in Table 3.2.

(a) LGM (b) TM

Figure 3.3: Iowa recidivism data: true probabilities vs predicted probabilities for the
logistic regression based on the LGM and TM. Individual values of all data points from

1,000 replicates are displayed.

Table 3.2: Iowa recidivism data: hyperparameters found by the grid search for the tree
and RF models.

Tree RF
Model (minsplit, maxdepth, cp) (ntree, nodesize, mtry)
LGM (10, 5, -1) (300, 100, 9)
TM (10, 5, -1) (1000, 50, 6)

The boxplots in Figure 3.4 show clear differences for bias and RMSE for both prob-

ability models. Both logistic regression models perform almost the same. They have a

median bias of 0.0040 each and median RMSE of 0.0765 and 0.0761 for the TM. The

next best in both scenarios is the adjusted tree with median bias and RMSE of -0.0021

and 0.1193 for the TM. The adjusted decision tree is able to follow the general trend of

the true probabilities well. However, there is more variance in the predictions versus the
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logistic regression models (see Figure 4 in the appendix for further illustration). For the

default decision tree, note that it has a lower median RMSE value than both random for-

est models for the LGM and TM but it is clear that the model is unable to give correct

estimates. It predicts the same probability for all observations in every iteration. The rea-

son why this behavior doesn’t reflect in the bias and RMSE graphs is that the prediction

is closer to the true probabilities for most of the data points. As mentioned, the mid-

dle groups are more populated and the default decision tree’s prediction for those middle

probability groups is closer to the true probability more often than the predictions of the

random forests. For both random forest models, the predicted values for true probabilities

within the first six probability groups are pushed to zero. This is why the forests perform

poorly. The median bias and RMSE for the default random forest are -0.0598 and 0.1862

for the TM. For the adjusted random forest these values are -0.1124 and 0.1744, which is

much higher than the logistic regression models.

3.2.3 HMEQ data

The distribution of the LGM for the HMEQ data set had a mean, median, and standard

deviation of 0.8005, 0.9394, and 0.2806. The range was 0 to 0.9996. For the TM, the

mean, median, and standard deviation were 0.8005, 0.9668, and 0.3047. The probabilities

ranged from 0 to 1. For both of these probability distributions, it is clear that most of the

generated probabilities were very close to one. Figure 5 and Figure 6 in the appendix

show the true versus predicted probabilities of all machine learning algorithms for the

LGM and TM respectively. The probability group sizes are indicated through varying

boxplot widths. The hyperparameters selected by the grid search for the adjusted decision

tree and random forest for both probability models are shown in Table 3.3.

In terms of bias and RMSE, the simple logistic regression outperforms the other five

machine learning models for the LGM closely followed by the logistic regression with

step function. The median RMSEs are at least five times as high for the tree-based models

in this case. For the TM, although the bias of the adjusted decision tree and logistic
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(a) LGM bias (b) TM bias

(c) LGM RMSE (d) TM RMSE

Figure 3.4: Iowa recidivism data: boxplots for the bias and RMSE for the 1,000
repetitions of the LGM and TM. Descriptive statistics for the values shown in each

boxplot may be found in Table 2 of the appendix.

regression with step function has almost the exact same absolute values, the quantiles are

closer together for the adjusted tree, which is advantageous in terms of predictions. This

is well reflected in the RMSE median values, with the adjusted tree having a median of

0.0202 and the logistic regression step model having a median of 0.0390. Interestingly, the
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Table 3.3: HMEQ data: hyperparameters found by the grid search for the tree and RF
models.

Tree RF
Model (minsplit, maxdepth, cp) (ntree, nodesize, mtry)
LGM (5, 5, -1) (1000, 1, 3)
TM (20, 10, -1) (300, 50, 3)

adjusted random forest has a median bias of 0.0299, which is almost 30 times as high as

the absolute median bias values of the two best-performing models. However, in terms of

RMSE it comes second in the ranking. This can be explained by the predictive behavior

seen in Figure 6 in the appendix. While the median value of the predictions is further

away from the true probability for the most populated probability group, the variance of

the predictions is very low in comparison to the logistic regression models and default

random forest. Note that the adjusted decision tree has the largest range between the 25th

and 75th percentile due to the extreme variance of predictions for every observation.

3.2.4 German credit data

For the German credit data set the mean, median, and standard deviation of the LGM

were 0.3000, 0.2206, and 0.2480 respectively. The probabilities ranged from 0.0019 to

0.9511. For the TM, these statistics were 0.3000, 0.2458, and 0.2879. The range was 0

to 1. The probability distributions indicate that most of the data is between 0 and 0.2 for

both of the models. However, a notable difference is that for the LGM the probabilities

are distributed among the groups in a way that the number gradually decreases: 144

probabilities between 0-0.05, 140 between 0.05-0.10, 98 between 0.10-0.15, 85 between

0.15-0.20, to finally one entry in the group 0.95-1. The TM generates probabilities that are

not distributed following a trend. For the group between 0-0.05 there are 340 probabilities,

for 0.05-0.10 there are 32, for 0.10-0.15 there are 41, for 0.15-0.20 there are 28, and 0.20-

0.25 there are 118. Figure 8 in the appendix shows the true versus predicted probabilities

of the six algorithms for the TM and indicates the probability group sizes through the
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(a) LGM bias (b) TM bias

(c) LGM RMSE (d) TM RMSE

Figure 3.5: HMEQ data: boxplots for the bias and RMSE for the 1,000 repetitions of the
LGM and TM. Descriptive statistics for the values shown in each boxplot may be found

in Table 3 of the appendix.

boxplot widths. Figure 7 in the appendix shows the true and predicted probabilities for

the LGM. The hyperparameters selected by the grid search for the adjusted decision tree

and random forest for both probability models are shown in Table 3.4.

The bias plot for the LGM in Figure 3.6 indicates that the adjusted tree outperforms
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Table 3.4: German credit data: hyperparameters found by the grid search for the tree and
RF models.

Tree RF
Model (minsplit, maxdepth, cp) (ntree, nodesize, mtry)
LGM (5, 3, -1 ) (1000, 100, 3)
TM (20, 5, -1) (1000, 1, 6)

the simple regression model in terms of the median (0.0010 versus -0.0078 for the logistic

regression). However, it has a bigger range between the 25th and 75th percentile. Analyz-

ing the RMSE graph paints a different picture. In this case, the simple logistic regression

function performs the best with a median value of 0.1020. The adjusted random forest

has the next best median value of 0.1056 followed by the default random forest. This is

explained by the fact that the median predicted values of the adjusted decision tree are

closer to the true probabilities for the first few probability groups that are most heavily

populated. Nevertheless, the variance of those predictions is much higher for the adjusted

tree than it is for both of the random forests. This is why they have significantly lower

RMSEs. For the TM, the difference between the different machine learning models is

more difficult to assess as they have similar 25th and 75th percentiles. The lowest me-

dian for the bias is 0.0106 for the adjusted tree followed by the adjusted random forest

with a median of 0.0258. The lowest RMSE values are those of the random forests with

medians of 0.1405 and 0.1414 for the adjusted random forest and default random forest

respectively. The next best model is the logistic regression with a median of 0.1637.

3.2.5 Marketing promotion campaign data

For the marketing promotion campaign data, the probabilities of the LGM had mean,

median, and standard deviation values of 0.1430, 0.1335, and 0.0592, respectively with a

range of 0.0394 to 0.4581. The probabilities of the TM had a mean, median, and standard

deviation of 0.1430, 0.1200, and 0.1198. The range was 0 to 0.7500. The true proba-

bilities generated by the LGM were such that there was a general steady decline in the
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(a) LGM bias (b) TM bias

(c) LGM RMSE (d) TM RMSE

Figure 3.6: German credit data: boxplots for the bias and RMSE for the 1,000 repetitions
of the LGM and TM. Descriptive statistics for the values shown in each boxplot may be

found in Table 4 of the appendix.

number of entries per probability group. There are exceptions for the first two probability

groups. The first group with probabilities between 0-0.05 has only 270 entries (out of

the 12,800 total observations) and the second has 2,954. The third has 4,013 entries and

afterward, there is a steady decrease. For the TM, the entries per group do not follow a
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general trend. However, the fluctuations are not as extreme as in the German Credit data.

Figure 9 and Figure 10 in the appendix show the true versus predicted probabilities for

all the machine learning algorithms for the LGM and TM respectively. The hyperparam-

eters selected by the grid search for the adjusted decision tree and random forest for both

probability models are shown in Table 3.5.

Table 3.5: Marketing promotion campaign data: hyperparameters found by the grid
search for the tree and RF models.

Tree RF
Model (minsplit, maxdepth, cp) (ntree, nodesize, mtry)
LGM (20, 3, -1) (300, 50, 6)
TM (20, 5, -1) (1000, 1, 6)

The LGM shows the clear superiority of the logistic regression models in terms of bias

and RMSE. The adjusted decision tree is the third-best model. Both random forest models

perform the poorest. For the TM, the difference in performance between the logistic

regression models and the adjusted decision tree isn’t as large as in the LGM. The median

biases are not too far from each other. The median values are 0.0068, 0.0097, and 0.0032

respectively for the logistic regression, logistic regression with step function, and adjusted

decision tree. The RMSE plot gives a more detailed indication of the performance since

predictions that are further away from the true probabilities are penalized more. Here, the

lowest median RMSE values are the ones from the logistic regression models with 0.0529

and 0.0504. The adjusted tree is not far behind with 0.0598. Both random forest models

perform the worst with median values of 0.1057 and 0.1286 for the default random forest

and adjusted random forest respectively.

3.2.6 Bank marketing data

The probabilities generated from the LGM had mean, median, and standard deviation

values of 0.1095, 0.0220, and 0.2034, respectively with a range of 0.0002 to 0.9999. The

probabilities of the TM had a mean, median, and standard deviation of 0.1095, 0.0005,
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(a) LGM bias (b) TM bias

(c) LGM RMSE (d) TM RMSE

Figure 3.7: Marketing promotion campaign data: boxplots for the bias and RMSE for the
1,000 repetitions of the LGM and TM. Descriptive statistics for the values shown in each

boxplot may be found in Table 5 of the appendix.

and 0.2396. The range was 0 to 1. Hence the bulk of the probabilities was very close to

zero, especially for the TM. For the LGM, 68.0% of the probabilities were below 0.05

and for the TM this percentage was 74.5%. This is partly the reason why the biases of

the different machine learning models are all very close in median values as well as their
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25th and 75th percentiles. Figure 11 and Figure 12 in the appendix show the true ver-

sus predicted probabilities for all the machine learning algorithms for the LGM and TM

respectively. The boxplot widths indicate the true probability group sizes. The hyperpa-

rameters selected by the grid search for the adjusted decision tree and random forest for

both probability models are shown in Table 3.6.

Table 3.6: Bank marketing data: hyperparameters found by the grid search for the tree
and RF models.

Tree RF
Model (minsplit, maxdepth, cp) (ntree, nodesize, mtry)
LGM (20, 5, -1) (500, 100, 3)
TM (20, 5, -1) (1000, 1, 9)

For the LGM, the adjusted tree and random forest have the lowest absolute value

of the median bias of approximately 0.0016 (Figure 3.8). The next best bias is that of

the logistic regression with step function, which has an absolute median bias of 0.0018.

In fact, both logistic regression models, the adjusted tree, and the default random forest

have almost the same absolute median bias values. An easier distinction can be made for

the RMSE. In this case, the logistic regression models have the lowest median values of

0.0105 and 0.0113 followed by the adjusted tree with a median of 0.0173. For the TM,

the adjusted random forest is closest to zero with a median bias of -0.0005 followed by

the logistic regression step model with a median of 0.0033. The lowest median RMSE is

that of the adjusted tree with 0.0076 followed by the logistic regression with step function

with 0.0123.

3.2.7 Churn data

The probabilities generated from the LGM had a mean, median, and standard devia-

tion of 0.2037, 0.1532, and 0.1633, respectively with a range of 0.0114 to 0.9333. The

probabilities of the TM had a mean, median, and standard deviation of 0.2037, 0.0712,

and 0.2788. The range was 0 to 1. Figure 13 and Figure 14 in the appendix show the
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(a) LGM bias (b) TM bias

(c) LGM RMSE (d) TM RMSE

Figure 3.8: Bank marketing data: boxplots for the bias and RMSE for the 1,000
repetitions of the LGM and TM. Descriptive statistics for the values shown in each

boxplot may be found in Table 6 of the appendix.

true versus predicted probabilities for the six algorithms for the LGM and TM respec-

tively. The hyperparameters selected by the grid search for the adjusted decision tree and

random forest for both probability models are shown in Table 3.7.

Figure 3.9 reveals that for the LGM again a clear distinction can be made between the
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Table 3.7: Churn data: hyperparameters found by the grid search for the tree and RF
models.

Tree RF
Model (minsplit, maxdepth, cp) (ntree, nodesize, mtry)
LGM (20, 5, -1) (1000, 50, 6)
TM (20, 5, -1) (500, 1, 6)

six different machine learning models. Especially the RMSE plot highlights the superi-

ority of the logistic regression models in predicting probabilities correctly. The simple

logistic regression has the lowest absolute median RMSE of 0.0132 followed by the lo-

gistic regression with step function with a median of 0.0222. The adjusted tree has the

third-lowest RMSE (0.0562) and the adjusted random forest performs the worst with a

median of 0.1087.

The contrast for the TM in terms of performance is not as high as for the first probabil-

ity. However, the RMSEs of both logistic regression models have significantly increased.

In terms of bias, the logistic regression with step function, adjusted tree, random for-

est, and adjusted forest perform very similarly. This is also reflected in the RMSE plot.

However, the logistic regression with step function still yields the lowest mean RMSE of

0.0667. This is followed by the adjusted decision tree with 0.0753 and then the random

forest with 0.0807 median RMSE.

3.2.8 Internet churn data

For the internet churn data, the probabilities generated from the LGM had a mean,

median, and standard deviation of 0.5539, 0.7058, and 0.3721, respectively with a range

of 0.0004 to 0.9990. The probabilities of the TM had a mean, median, and standard devi-

ation of 0.5539, 0.8354, and 0.4504. They ranged from 0 to 1. Figure 15 and Figure 16

in the appendix show the true versus predicted probabilities for the six machine learning

algorithms for the LGM and TM respectively. The hyperparameters selected by the grid

search for the adjusted decision tree and random forest for both probability models are
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(a) LGM bias (b) TM bias

(c) LGM RMSE (d) TM RMSE

Figure 3.9: Churn data: boxplots for the bias and RMSE for the 1,000 repetitions of the
LGM and TM. Descriptive statistics for the values shown in each boxplot may be found

in Table 7 of the appendix.

shown in Table 3.8.

As for the previous data set, both logistic regression models are visibly superior to the

other machine learning models for the LGM. The bias plot also shows that the majority

of the bias of the logistic regression model is much closer to zero than for the other four
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Table 3.8: Internet churn data: hyperparameters found by the grid search for the tree and
RF models.

Tree RF
Model (minsplit, maxdepth, cp) (ntree, nodesize, mtry)
LGM (10, 5, -1) (1000, 50, 6)
TM (20, 10, -1) (1000, 50, 6)

models. In terms of median RMSE, the simple logistic regression has the lowest value of

0.0074. Next is the step logistic regression with 0.0105 followed by the adjusted decision

tree with 0.0400.

For the TM, the random forests are the best-performing machine learning models,

slightly outperforming the adjusted decision tree. Analyzing Figure 16 in the appendix

reveals that the first two and last two probability groups have the largest number of en-

tries. The random forests give the least biased predictions for these extreme probability

groups with lower variance than the other models. The median RMSE of the adjusted ran-

dom forest is 0.0222, that of the default random forest is 0.0363 and that of the adjusted

decision tree follows closely with 0.0371. The simple logistic regression model has the

highest median RMSE of 0.0991.

3.2.9 Loan data

Finally, the mean, median, and standard deviation of the LGM for the loan data set

were 0.1601, 0.1386, and 0.0939 respectively. The probabilities ranged from 0.0129 to

0.9646. For the TM, the mean, median, and standard deviation were 0.1601, 0.1043, and

0.1626. The probabilities ranged from 0 to 1. Figure 17 and Figure 18 in the appendix

show the true versus predicted probabilities for the six machine learning algorithms for

the LGM and TM respectively. The hyperparameters selected by the grid search for the

adjusted decision tree and random forest for both probability models are shown in Ta-

ble 3.9.

As can be seen in Figure 3.11, both of the logistic regression models perform best

55



(a) LGM bias (b) TM bias

(c) LGM RMSE (d) TM RMSE

Figure 3.10: Internet churn data: boxplots for the bias and RMSE for the 1,000
repetitions of the LGM and TM. Descriptive statistics for the values shown in each

boxplot may be found in Table 8 of the appendix.

for the LGM according to bias and RMSE. The median RMSE for the simple logistic

regression is 0.0138 and that of the logistic regression step model is 0.0229. The third

best is the adjusted decision tree with a median RMSE of 0.0421.

For the TM, the performances are more similar for both bias and RMSE. The random
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Table 3.9: Loan data: hyperparameters found by the grid search for the tree and RF
models.

Tree RF
Model (minsplit, maxdepth, cp) (ntree, nodesize, mtry)
LGM (20, 3, -1) (1000, 50, 6)
TM (10, 5, -1) (1000, 50, 9)

forest has the lowest absolute median bias of 0.0137, followed closely by both logistic

regression models (0.0165 and 0.0147 respectively). In terms of RMSE, however, the

logistic regression models do the best. The median RMSE values for the TM are 0.0582

and 0.0599 for the simple and step logistic regression models respectively. The next best

model is the adjusted decision tree with a median RMSE of 0.0711.

3.3 Discussion of results

To assess the predictive capabilities of six different machine learning algorithms, we

ranked them for both median bias and median RMSE for every data set and for both

probability models (LGM and TM). The ranking was done in two different ways. First,

the algorithms were ranked for each data set separately according to the absolute median

bias and the median RMSE, and then a final rank was obtained by taking the mean of the

individual ranks. There was only one tie for the internet churn data between the adjusted

decision tree and the adjusted random forest for the median bias. The tie was broken in

favor of the algorithm that had a lower absolute mean bias. Table 3.10 shows the rankings

of the algorithms in terms of absolute median bias for both probability models. Table 3.11

shows the rankings of the machine learning algorithms in terms of median RMSE for both

probability models.

The second set of rankings was based on the median bias and median RMSE values

for each algorithm and data set. The final rank was determined according to the average

absolute median bias and average median RMSE values. Table 3.12 and Table 3.13 show
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(a) LGM bias (b) TM bias

(c) LGM RMSE (d) TM RMSE

Figure 3.11: Loan data: boxplots for the bias and RMSE for the 1,000 repetitions of the
LGM and TM. Descriptive statistics for the values shown in each boxplot may be found

in Table 9 of the appendix.

these rankings. There is a slight change when using the average values versus the indi-

vidual rankings, except for the RMSE ranking for the LGM. The changes are a result of

errors being very close to each other for the algorithms for some of the data sets.

The top three machine learning algorithms for the LGM are the same for both bias
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Table 3.10: Rankings of the biases for six different machine learning algorithms on data
generated from the LGM and TM. The ranks are calculated for each of the nine data sets.

The average rank across the data sets provides a global ranking.

Data set
BIAS LGM Rank 1 2 3 4 5 6 7 8 9 Ave Rank
LG 1 2 2 1 3 2 4 1 1 2 2.00
LG Step 2 1 1 2 4 1 3 2 2 3 2.11
Adj Tree 3 3 4 4 1 3 1 3 3 4 2.89
RF 4 5 5 3 5 5 2 4 5 1 3.89
Tree 5 4 3 6 2 4 6 5 4 5 4.33
Adj RF 6 6 6 5 6 6 5 6 6 6 5.78
BIAS TM Rank 1 2 3 4 5 6 7 8 9 Ave Rank
Adj Tree 1 3 2 2 1 1 4 4 1 4 2.44
LG Step 2 1 3 1 3 3 2 3 5 2 2.56
RF 3 5 5 4 5 6 3 2 3 1 3.78
Adj RF 4 6 6 5 2 5 1 1 2 6 3.78
LG 5 4 4 3 4 2 5 5 6 3 4.00
Tree 6 2 1 6 6 4 6 6 4 5 4.44

and RMSE in all four tables. The best overall performing algorithm is the simple logistic

regression, followed by the logistic regression with step function and the adjusted decision

tree. The average ranks and average bias/RMSE values show that there is a notable gap in

performance between the logistic regression and tree-based models. The default decision

tree ranks among the middle two machine learning algorithms in all of the tables for the

LGM. However, it should not be used to predict probabilities since it only gives a few

unique probabilities in each iteration and thus struggles to give correct values. This is

partly explained by the fact that the tree stops growing once no split improves the relative

error by more than 0.01. This leads to a small number of unique probability estimates

because of the smaller number of terminal nodes. The default decision tree has better bias

and RMSE when the bulk of the true probabilities isn’t at extreme ends and the median

predictions are closer to the true p around the middle groups of the probability range. It

does better than the random forests because it has a much lower variance in predictions.

In general, it is likely to give inaccurate estimates as has been noted by authors such

as Breiman (1996), Provost and Domingos (2003), and Zadrozny and Elkan (2001) in
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Table 3.11: Rankings of the RMSE for six different machine learning algorithms on data
generated from the LGM and TM. The ranks are calculated for each of the nine data sets.

The average rank across the data sets provides a global ranking.

Data set
RMSE LGM Rank 1 2 3 4 5 6 7 8 9 Ave Rank
LG 1 2 1 1 1 1 1 1 1 1 1.11
LG Step 2 1 2 2 4 2 2 2 2 2 2.11
Adj Tree 3 3 3 3 5 3 3 3 3 3 3.22
Tree 4 4 4 5 6 4 5 5 4 4 4.56
RF 5 5 5 6 3 5 6 4 5 5 4.89
Adj RF 6 6 6 4 2 6 4 6 6 6 5.11
RMSE TM Rank 1 2 3 4 5 6 7 8 9 Ave Rank
LG Step 1 1 1 4 4 1 2 1 5 2 2.33
Adj Tree 2 4 3 1 5 3 1 2 3 3 2.78
LG 3 2 2 5 3 2 5 6 6 1 3.56
Adj RF 4 6 5 2 1 6 3 4 1 5 3.67
RF 5 5 6 6 2 5 4 3 2 4 4.11
Tree 6 3 4 3 6 4 6 5 4 6 4.56

literature. Lastly and surprisingly, both random forest models are among the three worst-

performing machine learning algorithms in all of the tables for the LGM. Intuitively, a

more similar performance or improved performance compared to the decision trees would

be expected since forests have been proven to give better results than single trees when

predicting a class target. It becomes clear from the results that the ability of an algorithm

to give good rankings of probabilities versus the ability to give good probability estimates

themselves are very different problems.

For the TM, the rankings are not as straightforward. While the adjusted decision tree

ranks first, followed by the logistic step model in terms of bias (Table 3.10), it ranks

second for the RMSE after the logistic step model (Table 3.11). The RMSE emphasizes

larger biases, thus the ranking indicates that the logistic step model has a lower variance

in its predictions than the adjusted decision tree. The ranking completely changes when

using the average absolute median biases (Table 3.12) and average median RMSEs (Ta-

ble 3.13). Now, the simple logistic regression ranks second in terms of RMSE with a

slightly lower average of 74.56 versus that of the adjusted decision tree with a mean of
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Table 3.12: Rankings of the machine learning algorithms based on the mean absolute
value of biases (times 1,000) for the LGM and TM.

Data set
BIAS LGM Rank 1 2 3 4 5 6 7 8 9 Ave Bias
LG 1 0 0 1 8 0 2 0 0 0 1.28
LG Step 2 0 0 1 11 0 2 1 0 1 1.83
Adj Tree 3 3 3 15 1 9 2 1 2 3 4.30
Tree 4 9 1 35 7 9 21 21 2 21 14.09
RF 5 36 60 13 16 117 2 10 14 0 29.87
Adj RF 6 71 161 16 82 118 18 80 19 83 71.95
BIAS TM Rank 1 2 3 4 5 6 7 8 9 Ave Bias
Adj Tree 1 5 2 1 11 3 7 18 0 18 7.11
LG Step 2 0 4 1 27 10 3 17 14 15 10.09
LG 3 8 4 12 31 7 11 45 18 16 16.93
Tree 4 1 0 32 50 23 22 55 10 55 27.59
RF 5 29 60 17 32 108 4 6 2 14 30.10
Adj RF 6 240 112 30 26 33 0 2 0 66 56.65

75.24. The default decision tree is last for the TM for both bias and RMSE when using

the pure rankings but performs third to last in the rankings based on average values. As

already observed for the LGM, the random forests perform worse than the logistic regres-

sion models and adjusted tree in terms of RMSE. They seem to have difficulties in giving

unbiased estimates of probabilities that fall within the middle of a given probability range.

They do exceptionally well when almost all of the probabilities are either very close to

zero or very close to one or both. This indicates that they may perform better in the

case where the target variable is an immutable state. In the random forest algorithm, the

default setting for the number of observations per terminal node is one for classification

problems. This could be part of the issue for random forests to give reliable probability

estimates. However, in the simulations, the number of observations of the terminal nodes

was altered in the adjusted random forest model in the hyperparameter selection process.

Utilizing minimum node sizes of 1, 50, 100, and 500 did not lead to significantly differing

probability estimates. Note that the minsplit parameter of the decision tree, however, has

a larger effect on the probability estimates and small node sizes can lead to worse esti-

mates. In the adjusted decision tree models, for most of the terminal nodes, the number of
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Table 3.13: Ranking of the machine learning algorithms based on the mean RMSE
(times 1,000) for the LGM and TM.

Data set
RMSE LGM Rank 1 2 3 4 5 6 7 8 9 Ave RMSE
LG 1 44 21 10 102 10 10 13 7 14 25.80
LG Step 2 23 21 16 128 14 11 22 11 23 29.84
Adj Tree 3 68 101 50 165 35 17 56 40 42 63.90
Tree 4 80 105 64 214 41 29 89 74 57 83.63
RF 5 116 173 68 111 114 35 76 77 59 92.16
Adj RF 6 150 188 59 106 114 22 109 90 89 102.91
RMSE TM Rank 1 2 3 4 5 6 7 8 9 Ave RMSE
LG Step 1 34 76 39 190 50 12 67 62 60 65.55
LG 2 52 76 40 164 53 21 107 99 58 74.56
Adj Tree 3 94 119 20 193 60 8 75 37 71 75.24
Tree 4 76 126 32 204 61 22 104 58 86 85.49
RF 5 112 186 68 141 106 18 81 36 73 91.40
Adj RF 6 250 174 31 140 129 17 89 22 82 103.76

observations was much larger than the minsplit value because of the maxdepth parameter.

While the logistic regression models were consistent probability estimators for the

LGM, the decision trees and random forests did not seem to be consistent probability

estimators for the TM. Even the adjusted decision tree with the same parameter settings

as the tree used to generate probabilities in the TM did not yield performances that seem

compatible with consistency (e.g. TM for the internet churn data). Using the average bias

and RMSE medians further illustrates that for the LGM, the difference in performance

between the two logistic regressions and the adjusted tree is much larger than the differ-

ence between these algorithms for the TM. For the LGM, the average median RMSE of

the adjusted tree is twice as large as that of the logistic regression step model, which is the

second-best performing algorithm. The difference between the simple logistic regression

(second-best) and the adjusted tree (third-best) for the TM is low. However, in compar-

ison to the logistic regression step model which is the first best algorithm, the RMSE of

the adjusted tree is about 15% larger.

Some of the main shortcomings of the logistic regression that have been largely crit-

icized are model misspecification and dealing with missing values, as discussed for ex-
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ample by Zhao et al. (2016). In our simulations, the missing values were either kept as

their own category for categorical values, the rows were removed if there were not too

many of them (less than 1% of observations), or the missing values were replaced by the

mean values of the variable and corresponding indicator variables added to the data set.

The results revealed that dealing with the missing values in this way can still lead to both

logistic regression models giving better probability estimates than the trees. Regarding

model misspecification, the results revealed that the simple logistic regression, in terms

of average RMSE values for the TM, is slightly better than the adjusted decision tree.

This indicates that a simple regression model still has a better chance of outperforming a

decision tree and random forest at probability estimation and as discussed in the previous

paragraph, the difference in performance for the LGM is extreme. Naturally, there are

specific distributions that will make a simple logistic regression fail in giving the correct

probability estimates. An example of this is data distributed uniformly in a square where

the Euclidean distances to the center of the square indicate the true probabilities (Mease

et al., 2007). In this case, a simple interaction term between the two variables is neces-

sary for the logistic regression to become a consistent estimator. Adding this interaction

term makes the logistic regression outperform the tree-based models (based on a simple

experiment).

A further takeaway from the experiments is the stark contrast between an algorithm’s

ability to predict the correct target class versus the ability to predict the correct probability.

For example, when doing the hyperparameter search for the tree models for the internet

churn data set, the AUCs for the TM went as high as 0.97. However, the probability

graphs in the appendix reveal that except for the two extreme probability groups closest

to zero and one, the algorithms are unable to give satisfactory probability estimates. Con-

sequently, the AUC or other ranking-based assessment techniques are inapplicable to the

assessment of probability estimates. Another idea that was examined was whether the

imbalance of the data set affected the model performance. The results did not yield any

indications of more imbalanced data sets being easier for a specific type of algorithm.

Lastly, it was analyzed whether the number of observations in the data set and variables
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had an impact on the algorithm’s predictive abilities. For the three data sets with the

smallest number of observations (HMEQ, German credit, and the bank marketing data

set), either the adjusted decision tree or the adjusted random forest had the lowest median

RMSE values. These three data sets also had at least twenty variables, whereas the others

had nine to fourteen. This observation is not valid for the fourth data set for which the

adjusted random forest ranks first (internet churn). A more detailed investigation would

be necessary to see if this observation could be made into a general statement.
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Conclusion

Decision trees and random forests are being increasingly suggested for binary clas-

sification problems due to certain advantages over parametric models, such as a logistic

regression. The main advantages include the avoidance of model misspecification, the

automatic handling of missing variables, and the ability to deal with small sample sizes,

high-dimensional feature spaces, and complex data structures (Scornet et al., 2015). De-

cision trees have proven to perform extremely well and robustly in predicting the correct

class label in classification problems and random forests often allow to further improve

this performance. Although the tree-based algorithms perform very well for the actual

classification, this is not the case for the probability estimates. While in some cases, the

target variable describes an immutable state, there are situations where the event of in-

terest may or may not happen. There is a notion of risk in these scenarios and the true

probabilities of the target variable range between zero and one. In such cases, consistency

would be a welcome property of the chosen probability estimator.

While some consistency results exist for decision trees and random forests as both

class target predictors and probability estimators, they are based on highly simplified

versions of the tree and forest building mechanism and thus cannot be translated to the

methods employed in practice, such as the rpart and randomForest packages in R. As de-

scribed in Chapter 1, utilizing consistent probability estimators is crucial in certain cases

as uncontrolled bias, for instance, could have dire consequences. Examples include the

direct weighting of survey samples using propensity scores, cost-sensitive decisions, and

uplift modeling with the two-model approach. The consistency results for regression by
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Scornet et al. (2015) and Klusowski (2021) come closest to the algorithm used in practice.

However, these algorithms are continuous target predictors of regression problems.

In order to evaluate the performance of the probability estimates of tree-based mod-

els, a Monte Carlo simulation was performed for nine data sets including real data and

simulated data. Two probability models were used to generate the true probability of

events that drove the generation of the binary response variable. The LGM was a lo-

gistic regression-based model, whereas the TM was a tree-based model which yielded a

data structure for which logistic regression would be misspecified, and hence inconsistent.

Using the generated probabilities from the two models, six different machine learning al-

gorithms were trained on the data sets. These were two logistic regression models, two

decision trees, and two random forests. The probability estimates of the six machine

learning algorithms were then compared for both probability models using the bias and

RMSE as performance measures.

The results of the simulations showed that the difference in performance for the LGM

between the logistic regressions and tree-based algorithms was substantial. The results for

the TM did not show a difference as clear as for the LGM, since all algorithms had a harder

time predicting the correct probabilities. Most importantly, the simulations revealed that

the logistic regression models that are consistent estimators for the LGM generally per-

form better than the tree-based models for the TM. The tree-based methods, although

giving good estimates for the LGM in some cases, do not seem to be consistent probabil-

ity estimators for either probability model and are more variant in their predictions. An

important takeaway from the TM is that on average, a logistic regression performs better

than the tree-based models in terms of RMSE for probability estimation although the true

p is based on a tree structure, i.e. even if it is misspecified.

In practice, the true probability distribution is unknown. Thus it is advisable to use

a machine learning model that performs well in different types of scenarios. Based on

the findings of our simulations, decision trees cannot be recommended for probability

estimation and are inferior to the logistic regression model for probability estimation in

realistic data scenarios.
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The results of the simulations encourage further studies of the topic. Additional data

sets could be considered to compare the probability estimates using other types of gener-

ative models and performance measures. Moreover, one could analyze how changing the

terminal node size in a classification tree impacts the probability estimates in an empirical

setting. One could also look into adding interaction terms of higher orders for the logis-

tic regression step model. This could possibly make the difference in performance even

higher for the TM. Another possible study could be using the regression setting in the R

randomForest package and examining how much this could improve the probability esti-

mates of single trees or random forests, expanding on the work of Malley et al. (2012).

It would be interesting to assess these ideas in more extensive empirical studies and to

examine whether there is a large difference between data sets describing immutable states

versus the occurrence of an event.
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Appendix

Bias and RMSE tables

The following tables show summary statistics of the bias and RMSE values of the six

machine learning algorithms for every data set and both probability models (LGM and

TM). The true values were multiplied by 1,000.

Table 1: Census data: bias and RMSE (times 1,000) based on 1,000 replicates of the
LGM and TM.

BIAS LGM LG LG step Tree Adj tree RF Adj RF
MIN -732 -732 -431 -743 -661 -518
MAX 717 717 472 647 567 480
MEAN ≈ 0 ≈ 0 ≈ 0 ≈ 0 33 55
MEDIAN ≈ 0 ≈ 0 -9 -3 36 71
BIAS TM LG LG step Tree Adj tree RF Adj RF
MIN -759 -759 -419 -747 -603 -497
MAX 825 825 472 818 526 596
MEAN ≈ 0 ≈ 0 ≈ 0 ≈ 0 26 134
MEDIAN -8 ≈ 0 1 5 29 240
RMSE LGM LG LG step Tree Adj tree RF Adj RF
MIN 18 13 18 36 57 47
MAX 514 511 258 203 273 263
MEAN 47 27 85 75 121 155
MEDIAN 44 23 80 68 116 150
RMSE TM LG LG step Tree Adj tree RF Adj RF
MIN 19 20 13 32 55 77
MAX 344 184 278 233 297 439
MEAN 57 37 79 96 119 245
MEDIAN 52 34 76 94 112 250

i



Table 2: Iowa recidivism data: bias and RMSE (times 1,000) based on 1,000 replicates
of the LGM and TM.

BIAS LGM LG LG step Tree Adj tree RF Adj RF
MIN -479 -479 -479 -804 -695 -561
MAX 447 447 425 936 758 671
MEAN ≈ 0 ≈ 0 ≈ 0 1 -46 -130
MEDIAN ≈ 0 ≈ 0 -1 -3 -60 -161
BIAS TM LG LG step Tree Adj tree RF Adj RF
MIN -851 -853 -676 -1000 -812 -958
MAX 858 859 552 1000 896 914
MEAN ≈ 0 ≈ 0 ≈ 0 1 -40 -91
MEDIAN 4 4 ≈ 0 -2 -60 -112
RMSE R1 LG LG step Tree Adj tree RF Adj RF
MIN ≈ 0 ≈ 0 19 28 17 ≈ 0
MAX 159 159 449 396 404 402
MEAN 23 24 116 109 170 187
MEDIAN 21 21 105 101 173 188
RMSE TM LG LG step Tree Adj tree RF Adj RF
MIN 9 10 3 2 0 0
MAX 776 777 667 730 703 754
MEAN 106 106 156 146 179 176
MEDIAN 76 76 126 119 186 174

ii



Table 3: HMEQ data: bias and RMSE (times 1,000) based on 1,000 replicates of the
LGM and TM.

BIAS LGM LG LG step Tree Adj tree RF Adj RF
MIN -538 -994 -925 -996 -780 -748
MAX 597 994 935 1000 756 740
MEAN ≈ 0 ≈ 0 ≈ 0 1 3 11
MEDIAN 1 1 -35 -15 13 16
BIAS TM LG LG step Tree Adj tree RF Adj RF
MIN -937 -982 -1000 -1000 -869 -887
MAX 983 1000 1000 1000 944 990
MEAN ≈ 0 ≈ 0 1 1 4 30
MEDIAN -12 -1 -32 1 17 30
RMSE LGM LG LG step Tree Adj tree RF Adj RF
MIN ≈ 0 ≈ 0 7 9 2 1
MAX 224 400 899 765 536 598
MEAN 20 31 98 92 82 74
MEDIAN 10 16 64 50 68 59
RMSE TM LG LG step Tree Adj tree RF Adj RF
MIN ≈ 0 ≈ 0 18 0 6 14
MAX 939 940 936 895 820 931
MEAN 88 87 87 92 96 80
MEDIAN 40 39 32 20 68 31

iii



Table 4: German credit data: bias and RMSE (times 1,000) based on 1,000 replicates of
the LGM and TM.

BIAS LGM LG LG step Tree Adj tree RF Adj RF
MIN -746 -917 -924 -924 -603 -693
MAX 742 998 951 981 598 494
MEAN 1 2 1 ≈ 0 2 -109
MEDIAN -8 -11 7 1 16 -82
BIAS TM LG LG step Tree Adj tree RF Adj RF
MIN -1000 -1000 -1000 -1000 -802 -787
MAX 996 1000 1000 1000 722 759
MEAN ≈ 0 1 -1 -1 1 4
MEDIAN 31 27 50 11 32 26
RMSE LGM LG LG step Tree Adj tree RF Adj RF
MIN 2 5 18 51 24 5
MAX 293 504 538 488 355 489
MEAN 99 129 190 177 123 143
MEDIAN 102 128 214 165 111 106
RMSE TM LG LG step Tree Adj tree RF Adj RF
MIN 16 18 25 30 22 17
MAX 859 811 618 659 585 599
MEAN 193 212 215 215 171 169
MEDIAN 164 190 204 193 141 140

iv



Table 5: Marketing promotion campaign data: Biases and RMSEs (times 1,000) for the
LGM and TM

BIAS LGM LG LG step Tree Adj tree RF Adj RF
MIN -203 -411 -324 -301 -426 -425
MAX 200 559 115 785 324 682
MEAN ≈ 0 ≈ 0 ≈ 0 ≈ 0 -115 -115
MEDIAN ≈ 0 ≈ 0 9 9 -117 -118
BIAS TM LG LG step Tree Adj tree RF Adj RF
MIN -621 -629 -616 -714 -750 -747
MAX 387 646 153 1000 440 874
MEAN ≈ 0 ≈ 0 ≈ 0 ≈ 0 -114 1
MEDIAN 7 10 23 3 -108 -33
RMSE LGM LG LG step Tree Adj tree RF Adj RF
MIN 4 6 3 16 26 33
MAX 83 216 315 231 267 256
MEAN 11 16 47 40 119 118
MEDIAN 10 14 41 35 114 114
RMSE TM LG LG step Tree Adj tree RF Adj RF
MIN 5 7 3 18 1 1
MAX 592 590 607 563 719 615
MEAN 76 77 88 87 124 136
MEDIAN 53 50 61 60 106 129

v



Table 6: Bank marketing data: bias and RMSE (times 1,000) based on 1,000 replicates
of the LGM and TM.

BIAS LGM LG LG step Tree Adj tree RF Adj RF
MIN -911 -999 -941 -1000 -704 -757
MAX 660 979 962 962 668 678
MEAN ≈ 0 ≈ 0 ≈ 0 ≈ 0 5 -40
MEDIAN -2 -2 21 2 -2 -18
BIAS TM LG LG step Tree Adj tree RF Adj RF
MIN -939 -1000 -1000 -1000 -885 -889
MAX 934 1000 1000 1000 849 921
MEAN ≈ 0 ≈ 0 ≈ 0 ≈ 0 3 6
MEDIAN 11 3 22 7 4 ≈ 0
RMSE LGM LG LG step Tree Adj tree RF Adj RF
MIN ≈ 0 2 5 4 7 1
MAX 253 429 801 578 380 562
MEAN 30 37 64 62 58 57
MEDIAN 10 11 29 17 35 22
RMSE TM LG LG step Tree Adj tree RF Adj RF
MIN ≈ 0 1 8 3 1 ≈ 0
MAX 864 851 756 763 691 643
MEAN 79 77 88 81 72 71
MEDIAN 21 12 22 8 18 17

vi



Table 7: Churn data: bias and RMSE (times 1,000) based on 1,000 replicates of the
LGM and TM.

BIAS LGM LG LG step Tree Adj tree RF Adj RF
MIN -148 -466 -737 -911 -538 -554
MAX 153 428 592 823 569 742
MEAN ≈ 0 ≈ 0 ≈ 0 ≈ 0 2 -72
MEDIAN ≈ 0 -1 21 -1 -10 -80
BIAS TM LG LG step Tree Adj tree RF Adj RF
MIN -985 -972 -821 -1000 -773 -820
MAX 884 838 882 923 828 896
MEAN ≈ 0 ≈ 0 ≈ 0 ≈ 0 1 8
MEDIAN 45 17 55 18 6 2
RMSE LGM LG LG step Tree Adj tree RF Adj RF
MIN 1 3 8 14 14 10
MAX 48 114 503 332 318 220
MEAN 14 25 99 67 78 104
MEDIAN 13 22 89 56 76 109
RMSE TM LG LG step Tree Adj tree RF Adj RF
MIN 2 ≈ 0 5 4 3 1
MAX 980 889 751 721 716 695
MEAN 162 107 137 113 102 106
MEDIAN 107 67 104 75 81 89

vii



Table 8: Internet churn data: bias and RMSE (times 1,000) based on 1,000 replicates of
the LGM and TM.

BIAS LGM LG LG step Tree Adj tree RF Adj RF
MIN -372 -742 -845 -955 -581 -750
MAX 427 992 926 1000 779 850
MEAN ≈ 0 ≈ 0 ≈ 0 ≈ 0 17 17
MEDIAN ≈ 0 ≈ 0 -2 -2 14 19
BIAS TM LG LG step Tree Adj tree RF Adj RF
MIN -995 -1000 -932 -1000 -835 -869
MAX 923 956 994 1000 892 927
MEAN ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 -7
MEDIAN -18 -14 -10 0 -2 0
RMSE LGM LG LG step Tree Adj tree RF Adj RF
MIN ≈ 0 ≈ 0 4 6 3 2
MAX 147 369 909 777 491 510
MEAN 8 14 91 57 79 92
MEDIAN 7 11 74 40 77 90
RMSE TM LG LG step Tree Adj tree RF Adj RF
MIN 1 ≈ 0 4 0 0 0
MAX 974 967 920 702 754 816
MEAN 163 128 89 64 55 54
MEDIAN 99 62 58 37 36 22

viii



Table 9: Loan data: bias and RMSE (times 1,000) based on 1,000 replicates of the LGM
and TM.

BIAS LGM LG LG step Tree Adj tree RF Adj RF
MIN -721 -965 -814 -856 -647 -701
MAX 462 901 464 821 661 636
MEAN ≈ 0 ≈ 0 ≈ 0 ≈ 0 12 -76
MEDIAN ≈ 0 -1 21 3 ≈ 0 -83
BIAS TM LG LG step Tree Adj tree RF Adj RF
MIN -835 -1000 -851 -1000 -902 -967
MAX 887 1000 172 1000 732 812
MEAN ≈ 0 ≈ 0 ≈ 0 ≈ 0 10 -69
MEDIAN 16 15 55 18 14 -66
RMSE LGM LG LG step Tree Adj tree RF Adj RF
MIN 4 6 4 15 20 14
MAX 145 365 804 566 450 439
MEAN 17 31 69 54 65 91
MEDIAN 14 23 57 42 59 89
RMSE TM LG LG step Tree Adj tree RF Adj RF
MIN 5 7 3 15 3 1
MAX 756 736 841 722 715 792
MEAN 94 99 115 110 105 113
MEDIAN 58 60 86 71 73 82

ix



Boxplots of the true probability vs the predicted

probability

The following graphs are boxplots of the true probabilities versus the predicted proba-

bilities of each machine learning algorithm and probability model for the nine data sets.

Individual values of all data poitns from 1,000 replicates are displayed.
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