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RÉSUMÉ 

L'idée de base du stacking est de combiner k modèles à l’aide d’un modèle linéaire 

généralisé. Chaque modèle reçoit un poids différent et, en pratique, ces poids doivent 

être estimés à partir des données, généralement par validation croisée. Ce mémoire se 

concentre sur les données de survie avec des observations censurées à droite.  

Nous savons que la probabilité de survie individuelle diminue avec le temps t, et nous 

voulons estimer la fonction de survie en utilisant la méthode du stacking. Nous étudions 

deux extensions de la méthode du stacking de base. La première consiste à laisser les 

poids être une fonction des covariables x, ce qui peut être intéressant lorsque certains 

modèles sont bons dans certaines parties de l'espace des covariables mais pas dans 

d'autres parties. Les poids peuvent s'ajuster d'eux-mêmes en fonction des forces des 

modèles. La deuxième extension consiste à laisser les poids être une fonction du temps t 

où le poids du modèle k change au fur et à mesure que le temps t change. Cela peut être 

intéressant lorsque certains modèles sont bons pour estimer la fonction de survie pour 

une partie de l'intervalle de temps mais pas dans d'autres parties. Là encore, les poids 

peuvent s'ajuster d'eux-mêmes en fonction des forces des modèles. 

Ce mémoire combine ces deux extensions. Les poids peuvent dépendre à la fois du 

temps t et des covariables x. Ici, nous pouvons utiliser des "model-based trees" pour 

diviser le modèle selon x afin d'obtenir les poids à chaque temps t d'une grille. Des 

pseudo-observations sont utilisées pour traiter la censure et estimer les poids. 

Cette approche offre une nouvelle méthode de stacking pour l'analyse de prédiction des 

données de survie. Les résultats de simulations et des applications à des ensembles de 

données réelles montrent que cette méthode de stacking pondéré peut effectivement 

choisir le bon modèle et lui donner un poids plus élevé. En d'autres termes, cette 

méthode de stacking peut combiner automatiquement les bonnes parties de chaque 

modèle pour avoir la possibilité d'obtenir un meilleur résultat de prédiction. Une étude 

plus approfondie sera nécessaire pour définir la grille de temps appropriée à utiliser pour 

optimiser les performances. 
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ABSTRACT 

The basic stacking idea is to combine 𝐾 models by generalized linear model. Each 

model receives a different weight, and in practice, these weights must be estimated from 

the data, usually by cross-validation. This thesis focuses on survival data with right-

censored observations.  

We know that the individual survival probability decreases with time t, and we want to 

estimate the survival function using the stacking method. We investigate two extensions 

of the basic stacking method. The first extension is to allow the weights to be a function 

of the covariate 𝑋, which may be interesting when some models are good in some parts 

of the covariate space, but not in other parts. The weights can adjust themselves 

according to the strengths of the models. The second extension is to let the weights be a 

function of time 𝑡, where the weight of model k changes as the time 𝑡 changes. This 

may be interesting when some models are good to estimate the survival function for 

some part of the time range, but not in other parts. Again, the weights can adjust 

themselves according to the strengths of the models. 

This thesis combines these two extensions. The weights can depend both on the time 𝑡 

and covariates 𝑋. Here, we can use "model-based trees" to split the model according to 

𝑋 to get the weights at each time 𝑡 of a grid. Pseudo-observations are used to deal with 

the censoring and to estimate the weights. 

This approach provides a new stacking method for survival data prediction analysis. The 

results of simulations and applications to real data sets show that this weighted stacking 

method can effectively choose the good performance model and give it a higher weight. 

In other words, this stacking method can automatically combine the good parts of each 

model to provide the possibility of getting a better prediction result. Further study will 

be required to define the appropriate time grid that should be used to optimize the 

performance. 

Keywords: Survival data, stacking, ensemble models, weights, time, covariates 
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Introduction 
 

Survival analysis is used to analyze data in which the time until an event is of interest. 

The response is often referred to as a failure time, survival time or event time. Many 

medical trials involve following patients for a long time, e.g., time until tumor 

recurrence or time until cardiovascular death after some treatment intervention. The 

follow-up time for the study may range from a few weeks to many years. Over the 

years, survival analysis has been applied in various other domains, such as predicting 

the churning of customers, estimating the time at which a equipment failure, etc. In the 

former example, the time the person begins to be a customer with a company can be 

thought of as the birth event, and the time of leaving the company can be considered the 

death event. 

In many studies, when we perform survival analysis, it is often the case that we may not 

have exact failure times for all observations, as lifetime data are often "censored". This 

is because the event has not yet occurred for some subjects at the end of study. This 

situation is called right-censoring; that is, some subjects may live longer than the 

duration of the study, or left early before experiencing the event of interest. There are 

other types of censored data, such as left-censored data, a situation in which when we 

start our study, the event has already occurred, but we do not know exactly when. 

Therefore, the event time of a left-censored subject has occurred before a particular 

time. If we know the event occurred within some interval of time, the observations 

would be interval censored. Additionally, due to a systematic selection process inherent 

to the study design, the truncation may cause an observation to be incomplete. Among 

all these situations of censoring or truncation, right-censoring is the most common 

situation for survival analysis in practice. 

We are interested in how a risk factor or treatment affects time to disease or some other 

event. Many models to link the covariates to the target time 𝑇 are available. The most 

popular model is the Cox model (proportional hazard model), which is semiparametric. 

This model specifies how the covariates modify the hazard function, but the hazard 
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function itself is not completely specified. Otherwise, the accelerated failure time (AFT) 

model is fully parametric. We also have advanced methods like survival trees and 

forests, boosting for survival data, and regularization with survival data. 

The prediction of survival analysis can be the survival function or survival time. This 

thesis focus on survival function to predict the probabilities of event occurrence at time 

𝑡 with enough time points. Among all the methods of survival analysis, each model has 

its own advantage. This thesis provides a new stacking method which may combine the 

benefits of the existing models, and its weights can depend both on time 𝑡 and 

covariates 𝑋 to improve prediction performance for right censoring survival data. 
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Chapter 1 

The current practical methods in survival analysis 

Models like linear regression, decision tree, random forests and boosting for general 

data modeling could also be applied to survival data. However, these models should be 

modified and adjusted to accommodate the properties of survival data, such as 

censoring. 

The Cox model, the AFT model and survival forests are currently the most-used 

practical methods in survival analysis. The Cox model and the AFT model are 

developed from linear regression, while survival forests are based on the general random 

forests. To better understand these models, some fundamental concepts must first be 

known in survival analysis. 

The first basic notion is the survival function. It gives the probability that a subject will 

survive past time 𝑡. If we let 𝑇 > 0 denote the response variable, i.e., the survival time, 

the survival function is defined as 

𝑆(𝑡) = Pr(𝑇 > 𝑡) = 1 − 𝐹(𝑡)                                                    (1) 

Where 𝐹(𝑡) is the cumulative distribution function of 𝑇. 

We could use the time of death of humans as an example. At time 𝑡 = 0, the birth time, 

the probability that they will survive time 0 is certain, which means 𝑆(0) = 1. As 

humans grow up and time passes by, their survival probability will decrease, the 

probability that they will reach their second birthday is less than the probability of 

reaching their first birthday, and we can say with certainty that they will not live forever. 

This means that when time goes to infinity, death will definitely come. Their survival 

probability is 0, 𝑆(∞) = 0. In theory, we could conclude that the survival function is 

non-increasing. In practice, we observe events on a discrete time scale like hours, days, 

weeks, etc. 
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Another definition is the hazard function ℎ(𝑡). It is the instantaneous rate at which an 

event occurs, with the condition that it survives up to time 𝑡. In other words, there is no 

previous event. Its definition is: 

ℎ(𝑡) = lim
∆𝑡→0

Pr(𝑡<𝑇≤𝑡+∆𝑡|𝑇>𝑡)

∆𝑡
=

𝑓(𝑡)

𝑆(𝑡)
                                                (2) 

where 𝑓(𝑡) is the density function. Another interesting function is the cumulative hazard 

function, or integrated hazard function. It is defined by: 

𝐻(𝑡) = ∫ ℎ(𝑢)𝑑𝑢
𝑡

0
                                                             (3) 

This is the integral of the hazard function up to time 𝑡. It measures the cumulated risk up 

to a given time. The greater 𝐻(𝑡) is, the greater the risk that the event occurs by time t. 

If any one of the functions ℎ(𝑡), 𝐻(𝑡), or 𝑆(𝑡) is known, we can derive the other two 

functions by using the equations: 

ℎ(𝑡) = −
𝜕log⁡(𝑆(𝑡))

𝜕𝑡
                                                          (4) 

𝐻(𝑡) = −log⁡(𝑆(𝑡))                                                        (5) 

𝑆(𝑡) = exp⁡(−𝐻(𝑡))                                                       (6) 

Because survival data often has censoring, it is necessary to have a specific notation to 

represent it. In this thesis, we define: 

• 𝑇𝑖 to be the survival time for the 𝑖th subject 

• 𝐶𝑖 to be the censoring time for the 𝑖th subject 

• 𝛿𝑖 to be the event indicator 

𝛿𝑖 = {
1⁡if⁡the⁡event⁡was⁡observed⁡⁡⁡⁡⁡⁡⁡⁡(𝑇𝑖 ≤ 𝐶𝑖)

0⁡if⁡the⁡response⁡was⁡censored⁡(𝑇𝑖 > 𝐶𝑖)
 

• The observed response as 𝑌𝑖 = min⁡(𝑇𝑖, 𝐶𝑖)  

These basic definitions related to survival function will be used in Section 1.1 to 1.5, in 

which we briefly introduce the theory of the current practical estimation methods of 
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survival function, including the non-parametric method, the semi-parametric method 

Cox model, the full-parametric method AFT model, survival forests and other methods. 

1.1 Non-parametric estimation of survival function 

To estimate the survival function of one specific group, it may not be necessary to 

design a model with estimated parameters. As we know each subject's event time or 

censored time, we could calculate its empirical survival probability in a time range by 

computing the percentage of survival numbers. The cumulative survival probability 

could be computed by the multiplication of survival probabilities of consecutive time 

intervals. 

Whether or not the data that exist are censored, the non-parametric Kaplan-Meier 

method can be used to estimate 𝑆(𝑡). We define 𝑡𝑖 as the time when the event happened, 

𝑑𝑖 as the number of events that happened at time 𝑡𝑖, and 𝑛𝑖 as the individuals known to 

have survived, but have not yet had an event or been censored up to time 𝑡𝑖.⁡(1 −
𝑑𝑖

𝑛𝑖
) is 

exactly the survival probability for the time interval ( 𝑡𝑖−1,⁡𝑡𝑖). By multiplying the 

survival probabilities of consecutive time intervals for 𝑡𝑖 ≤ 𝑡, the Kaplan-Meier 

estimator of the survival function 𝑆(𝑡) can be obtained by: 

𝑆(𝑡)̂ = ∏ (1 −
𝑑𝑖

𝑛𝑖
)𝑖:𝑡𝑖≤𝑡
                                                            (7) 

The Kaplan-Meier estimate is the simplest way of computing the survival over time with 

censored observations. It involves the computing of probabilities of occurrence of an 

event at a certain point in time and multiplying these successive probabilities by any 

earlier computed probabilities to get the final estimate. This method does not involve 

covariates 𝑋. Therefore, it can only generally present the survival function of this group, 

as we could not get the individual estimated survival function according to specific 

characteristics of one subject.  
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1.2 Cox model 

The Cox model is a well-recognized statistical technique for analyzing survival data, 

and likely the model used most often. This model is based on the risk function. The part 

of the effects of the covariates is similar to linear regression without an intercept. For a 

subject with covariates values 𝑥1, 𝑥2, … , 𝑥𝑝, its risk function can be written as the 

equation ℎ(𝑡|𝑥1, 𝑥2, … , 𝑥𝑝) = ℎ0(𝑡)exp⁡(𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑝𝑥𝑝) where ℎ0(𝑡) is the 

baseline hazard function that is left unspecified.  

If all the 𝑥𝑖 are equal to zero, ℎ(𝑡|𝑥1, 𝑥2, … , 𝑥𝑝) = ℎ0(𝑡) exp(𝛽1𝑥1 + 𝛽2𝑥2 +⋯+

𝛽𝑝𝑥𝑝) = ℎ0(𝑡) exp(0) = ℎ0(𝑡) ∗ 1 = ℎ0(𝑡), the risk function corresponds to the value 

of the baseline hazard function ℎ0(𝑡). ℎ0(𝑡) may vary over time, as it is a function of t. 

The parameters 𝛽1, 𝛽2, … 𝛽𝑝 are the effects of the covariates on this baseline hazard 

function. From the formula, it is evident that increasing 𝑥𝑗 by 1, with the other 

covariates fixed, multiplies the risk by exp⁡(𝛽𝑗). The quantities exp⁡(𝛽𝑗) are called 

hazard ratios (𝐻𝑅). A value of 𝛽𝑗 greater than zero, or equivalently a hazard ratio 

greater than one, indicates that as the value of the 𝑖th covariate increases, the event 

hazard increases and thus the length of survival decreases. In summary, 

𝐻𝑅 = 1: No effect 

𝐻𝑅 < 1: Reduction in the hazard, increase of survival probability and survival time 

𝐻𝑅 > 1: Increase in hazard, decrease of survival probability and survival time 

For linear regression, we can usually estimate the parameters by MLE (maximum 

likelihood). Since the Cox model is semi-parametric because of the baseline hazard 

function, the usual MLE cannot be used to estimate the parameters. However, it is still 

possible to estimate the parameters by maximizing the "partial likelihood" function. The 

partial likelihood function is defined as follows: 

𝐿(𝛽) = ∏
ℎ(𝑡𝑖|𝑋𝑖)

∑ ℎ(𝑡𝑗|𝑋𝑗)𝑗:𝑡𝑗≥𝑡𝑖
𝑖:𝛿𝑖=1

= ∏
exp⁡(𝛽′𝑋𝑖)

∑ exp⁡(𝛽′𝑋𝑗)𝑗:𝑡𝑗≥𝑡𝑖
𝑖:𝛿𝑖=1

                              (8) 
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From the formula above, the term 
ℎ(𝑡𝑖|𝑋𝑖)

∑ ℎ(𝑡𝑗|𝑋𝑗)𝑗:𝑡𝑗≥𝑡𝑖

 can be considered as the probability that 

subject i experiences the event among all the other subjects which are still at risk. To 

maximize the product of all the terms of the subject without censoring is the theory of 

maximum likelihood. By eliminating the same term ℎ0(𝑡), the estimated parameters 𝛽′̂ 

for each covariate could be solved through formula (8).  

From equation (6), we could get 

𝑆̂(𝑡) = exp (−𝐻̂(𝑡)) = exp(−ℎ0̂(𝑡) exp(𝛽′̂𝑋)) 

= ⁡exp⁡(−ℎ0̂(𝑡))
exp⁡(𝛽′̂𝑋)=⁡(𝑆0̂(𝑡))

exp⁡(𝛽′̂𝑋)                            (9) 

where 𝑆0̂ is an estimation of the baseline survival function. Chapter 4 of Kalbfleisch and 

Prentice (2011)[1] and section 3.5 of Hosmer Jr and Lemeshow (1999)[2] explain how to 

get the estimated baseline survival function. The Survival package[3] in R provides the 

function basehaz to calculate cumulative baseline hazard for the Cox model which can 

be used to calculate the survival function for risk-based algorithms. 

The Cox model is a relative risk model, and risk estimations for the test data can be 

predicted. The calculated values are the risk for a person with the given set of covariates 

relative to an average person. With formula (9), the estimated survival functions of the 

test data can also be computed. But it is not straightforward to get a predicted expected 

event time, as the estimated survival curve does not always end at 0, for example when 

the largest observed time is censored. The estimated median survival time could also be 

unavailable if the estimated survival function becomes undefined before it reaches 0.5. 

The Cox model is also limited by its restrictive application conditions that the hazards 

should be proportional. If the studied variable consisted of a large number of classes, the 

hazards were rarely proportional all along the curve, as seen in the example used by F 

Bugnard et al. (1994)[4], and in the demonstration that the Cox regression model may 

lead to the creation of a false model that does not include only time-independent 

predictive factors when violating the proportional hazard assumption in the Cox 
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proportional hazards analysis in Mortality prediction of patients with Acute Coronary 

Syndrome by Magdalena Babinska et al. (2015)[5]. 

1.3 AFT model 

The most common fully parametric model with survival data is the accelerated failure 

time model (AFT). Linear regression and the exponential function are used for the Cox 

proportional hazard model to estimate the effect of the covariates on the risk. The AFT 

model assumes that the effect of the covariates works directly on the "time to event" by 

accelerating or decelerating. Hence, the model could be written as:  

𝑇 = exp⁡(𝛽1𝑥1 + 𝛽1𝑥2 +⋯+ 𝛽𝑝𝑥𝑝)𝑇0                                      (10) 

Here, it is supposed that the exponential function links the covariates X and the 

parameters 𝛽 by multiplication to the reference event time 𝑇0 which equals the value T 

when all covariates 𝑋 = 0. The linking function could be specified with other functions. 

log(𝑇0) is usually used to model the reference time 𝑇0 by  

log(𝑇0) = 𝛽0 + 𝜎𝜖                                                       (11) 

where 𝜖 is an error term from a given distribution, and 𝜎 is a scale parameter. 

Then, we can get 

log(𝑇) = log(exp(𝛽1𝑥1 + 𝛽1𝑥2 +⋯+ 𝛽𝑝𝑥𝑝) 𝑇0) 

= (𝛽1𝑥1 + 𝛽1𝑥2 +⋯+ 𝛽𝑝𝑥𝑝) + log(𝑇0) 

= (𝛽1𝑥1 + 𝛽1𝑥2 +⋯+ 𝛽𝑝𝑥𝑝) + 𝛽0 + 𝜎𝜖                               (12) 

Assuming that 𝜖 is the 𝑁(0,1) distribution with log(𝑇) as the dependent variable, then 

the model is a basic linear regression model, and 𝑇 follows a log-normal distribution. 

Other distributions are possible for 𝑇0, thus for 𝑇, like exponential, Weibull, log-normal, 

log-logistic, and generalized gamma. 
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Compared with the Cox model where it is sometimes difficult or not available to predict 

expected lifetime or median time, the fully parameterized AFT model could provide 

solutions.  

It can predict a new subject at time 0 and can also compute the predictions for an 

ongoing subject at any given time 𝑡∗, even if it is censored. Thus, the expected lifetime 

can be obtained by the formula 

𝐸[𝑇|𝑇 > 𝑡∗] = 𝑡∗ +
∫ 𝑆𝑇(𝑡)𝑑𝑡
∞
𝑡∗

𝑆𝑇(𝑡∗)
                                                 (13) 

where 
∫ 𝑆𝑇(𝑡)𝑑𝑡
∞
𝑡∗

𝑆𝑇(𝑡∗)
 is the estimated expected residual lifetime if 𝑆𝑇(𝑡) is replaced by an 

estimator from AFT. Similarly, the conditional median given that the subject has 

survived up to 𝑡∗ is the value 𝑡𝑚, such that 

𝑆𝑇(𝑡𝑚)

𝑆𝑇(𝑡∗)
= 0.5                                                                   (14) 

Because the AFT model is fully parameterized, it can provide survival function 

predictions from time 𝑡 = 0  to the end for a new subject, regardless of whether it is 

censored or not. Hence, it offers a potentially useful statistic approach that is based upon 

the survival curve rather than the hazard function when the largest observed time is 

censored. It can estimate the expected lifetime by formula (13) and (14) as its advantage 

compared to the Cox model. In addition, in the study of aging research by William R. 

Swindell (2009)[6], most genetic manipulations were found to have a multiplicative 

effect on survivorship that is independent of age and well-characterized by the AFT 

model’s "deceleration factor". AFT model deceleration factors also provided a more 

intuitive measure of treatment effect than the hazard ratio, and were robust to departures 

from modeling assumptions. 

1.4 Survival trees and forests 

Both semi-parametric Cox and full-parameter AFT models have their formulas to build 

the model, thus they can fit well with small amounts of data with small variances for the 



10 
 

estimated parameters. Furthermore, they can be applied to explain the effects of the 

effects of the covariates on the survival time and more commonly used in inference. 

In data analysis, random forest is another way to build the model, and it usually has a 

high performance for classification or continuous response variables prediction. It is 

developed from single decision trees. Under a specifically designed splitting rule, 

usually dichotomous method, covariates 𝑋 will be selected for splitting, and the 

generated tree may have many branches until a certain requirement is satisfied. A new 

subject could find its position at one node of the tree by its covariates 𝑋, and then be 

predicted. 

But a single tree is an unstable learner in the sense that slight modifications in the data 

set can produce a very different tree with respect to the splitting rule. Hence, a large tree 

can be considered as a learner with potential for a small bias and a large variance which 

can be considered as overfitting. Fortunately, random forest can solve this problem.  

A random forest, which is an "ensemble" method, generates hundreds or thousands of 

trees randomly, which could repeat the decision tree model many times to stabilize the 

result. The combination of the results of these trees may give the best performer in terms 

of prediction accuracy. There are many ways to combine trees, and one of the most 

popular is Breiman's (2001)[7] idea. This idea can be described as follows: 

1) Independently build B trees with bootstrap samples from the original data.  

2) At each node of each tree, randomly select a subset of covariates from all the 

covariates to find the best split. 

3) The final prediction is the average of the predictions of all generated trees from 

the bootstrap samples. 

Trees and random forests have been extended to survival data. If we want it to fit a 

model with survival data, the continuous event time could be considered as the response 

variable. A particular split method for survival data is developed as described in the next 

paragraph because it is not possible to use the least-squares splitting criterion directly to 

find the best split and grow a tree when some observations are censored.  
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Generally, the split will create two nodes, left node 𝐿 and right node 𝑅. We want to 

figure out the best split which could show the biggest difference between the two nodes. 

With survival data, we are concerned with the survival function. Thus, one strategy is to 

find splits such that the survival functions in the two nodes, say 𝑆𝐿(𝑡), 𝑆𝑅(𝑡), are very 

different. One way to quantify this difference is to use a statistic designed to test the 

hypotheses: 

𝐻0:⁡𝑆𝐿(𝑡) = 𝑆𝑅(𝑡)⁡for⁡all⁡t⁡ 

𝐻1 : ∶ ⁡ 𝑆𝐿(𝑡) ≠ 𝑆𝑅(𝑡)⁡for⁡at⁡least⁡one⁡t 

Ciampi et al. (1986) [8] provided a splitting rule for survival data in 1986 by using the 

log-rank test.  

The log-rank test is a non-parametric way to compare the survival distribution of two 

samples. The statistic can be represented in the following way:  

𝐿𝑅 =
∑ (𝑑𝑅𝑘−𝐸𝑘)
𝐾
𝑘=1

√∑ 𝑉𝑘
𝐾
𝑘=1

                                                           (15) 

 

where  

𝐸𝑘 = 𝑑𝑘
𝑌𝑅(𝜏𝑘)

𝑌(𝜏𝑘)
                                                               (16) 

and 

𝑉𝑘 =
𝑌𝐿(𝜏𝑗)𝑌𝑅(𝜏𝑘)𝑑𝑘(𝑌(𝜏𝑘)−𝑑𝑘)

𝑌2(𝜏𝑘)(𝑌(𝜏𝑘)−1)
                                                 (17) 

K is the number of all the distinct observed times in the pooled sample with both groups 

combined.⁡𝜏𝑘 represent all possible times that were observed. 𝑌(𝜏𝑘) is the total number 

of subjects at risk at time 𝜏𝑘. 𝑌𝑅(𝜏𝑘) is the number of subjects at risk at time 𝜏𝑘 in the 

right node. 𝑑𝑘 is the total number of events at time 𝜏𝑘. 𝑑𝑅𝑘 is the number of events at 

time 𝜏𝑘 in the right node. Then, we have 𝑌(𝜏𝑘) = 𝑌𝐿(𝜏𝑘) +𝑌𝑅(𝜏𝑘),⁡𝑑𝑘 = 𝑑𝐿𝑘 + 𝑑𝑅𝑘. 
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𝐸𝑘 and 𝑉𝑘 are the mean and variance of 𝑑𝑅𝑗 under the hypotheses 𝐻0. Under 𝐻0, 𝐿𝑅 has 

approximately a 𝑁(0,1) standard normal distribution. 

1.5 Other algorithms 

1.5.1 Regularization methods with survival data 

In some cases, e.g. when a large number of covariates show multicollinearity, the 

estimated parameters in the Cox and AFT models may have a big variance and this may 

affect the prediction performance. 

The ridge regression, lasso regression and elastic net are well known as shrinkage 

methods that work to reduce this problem by adding a penalty parameter before the 

application of maximum likelihood to optimize the parameters. Thus, for the ridge linear 

regression, we want the parameters that minimize the sum of squares of the error plus 

the ridge penalty : 

∑ (𝑌𝑖 − (𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 +⋯+ 𝛽𝑝𝑋𝑝𝑖))
2𝑛

𝑖=1 + λ∑ 𝛽𝑗
2𝑝

𝑗=1                    (18) 

For the lasso linear regression, the formula is 

∑ (𝑌𝑖 − (𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 +⋯+ 𝛽𝑝𝑋𝑝𝑖))
2𝑛

𝑖=1 + λ∑ |𝛽𝑗|
𝑝
𝑗=1                    (19) 

where λ∑ |𝛽𝑗|
𝑝
𝑗=1  is the 𝐿1 penalty. 

The elastic net combines ridge and lasso regression by adding both the 𝐿1 and 𝐿2 

penalties. It minimizes 

1

𝑛
∑(𝑌𝑖 − (𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 +⋯+ 𝛽𝑝𝑋𝑝𝑖))

2

2𝑛

𝑖=1

+ λ[
1 − α

2∑ 𝛽𝑗
2𝑝

𝑗=1

+ α∑|𝛽𝑗|

𝑝

𝑗=1

] 

(20) 
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As before, λ is the shrinkage parameter, and the new parameter α is a weighting factor 

between the two penalties. When α = 0, we have the ridge penalty, when α = 1, we 

have the lasso penalty, and when α = 0.5, we have the elastic net. 

These methods are called regularization methods, and this idea could be integrated into 

the Cox model with survival data and its partial likelihood to optimize the parameters;  

Simon et al. (2011)[9]. The package glmnet[10] with R is able to fit such models. Benner 

et al. (2010)[11] analyzes and compares several 𝐿1 penalized Cox regression methods 

such as "standard" ridge regression, the lasso, the elastic net and some modifications of 

the lasso like SCAD (smoothly clipped absolute deviation) and adaptive lasso. 

1.5.2 Boosting with survival data 

Boosting is another effective machine learning method for many kinds of models and 

data. Boosting can make a "weak learning algorithm" into a "strong learning algorithm".  

Like random forests, it is an ensemble method that combines the prediction from many 

models. This is done by building a model from a training data, then creating a second 

model that attempts to correct the errors from the first model. Models are added until the 

training set is predicted perfectly, or until a maximum number of iterations. Here is a 

short description of the basic theory of AdaBoost created by Freund et al. (1996)[12]:  

Assume that the variable Y is binary and takes the values -1 and 1, and 𝐺(𝑥) is a 

classifier. For a given vector of covariates 𝑥, the classifier 𝐺(𝑥) will return a prediction 

𝐺̂(𝑥) = −1⁡𝑜𝑟⁡1. Initialize the weights 𝑤𝑖 =
1

𝑛
, 𝑓𝑜𝑟⁡𝑖 = 1, … , 𝑛, n is the number of the 

subjects. We decide the number of iterations M. For every iteration 𝑚 = 1⁡𝑡𝑜⁡𝑀: 

1) Fit the classifier G to the training sample with observations weights 𝑤𝑖. Let 𝐺̂𝑚 

be the fitted function. 

2) Compute the weighted prediction error 𝑒𝑚 =
∑ 𝑤𝑖𝐼(𝑦𝑖≠𝐺̂𝑚(𝑥𝑖))
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 

3) Compute 𝛼𝑚 = 𝑙𝑜𝑔⁡[
1−𝑒𝑚

𝑒𝑚
] 

4) Update the weights by 𝑤𝑖 = 𝑤𝑖𝑒𝑥𝑝 (𝛼𝑚𝐼 (𝑦𝑖 ≠ 𝐺̂𝑚(𝑥𝑖))) , 𝑖 = 1,… , 𝑛 
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5) The final prediction model is 𝐺̂(𝑥) = 𝑠𝑖𝑔𝑛[∑ 𝛼𝑚
𝑀
𝑚=1 𝐺̂𝑚(𝑥)] 

 

Sourced from course notes by Professor Larocque (2019)[13] 

The main idea of boosting is to force the classifier to try to adapt itself to the 

observations that were misclassified by increasing their weights. But in the end, the final 

classifier is a weighted average of each individual classifier, with weights that depend 

on its error. The smaller the error 𝑒𝑚, the larger the weights 𝛼𝑚. 

This boosting method, like gradient boosting, can be extended to the Cox model and 

AFT model with survival data; due to its auto-correction property, it may have better 

performance compared to another model.  
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Chapter 2 

Stacking methodology 

2.1 Ordinary stacking methodology 

When prediction accuracy is more essential than inference study, stacking is a widely 

used ensemble method in prediction. The general idea is to fit several models on the 

same training data, and then, rather than picking the model with the best performance, 

these candidate models are aggregated by using another algorithm to make the final 

prediction.  

For example, we have a target 𝑌 and 𝑝 covariates 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑝), we have K 

supervised learning algorithms to develop a predictive model. If we work on survival 

data, these 𝐾 models could be Cox, AFT, survival forests, a regularized model like 

lasso, and boosting. If we fit all the models with the same training data, then according 

to an evaluation criterion, the best one will be selected with a validation set or by cross-

validation method. 

Instead of choosing one model, combining them with stacking may be a smart option. 

Let these K fitted models be 𝑚̂1(𝑋), 𝑚̂2(𝑋),… , 𝑚̂𝐾(𝑋). Breiman (1996b)[14] and 

LeBlanc and Tibshirani (1996)[15] proposed a linear combination as stacking method 

𝑚̂(𝑋) with the predictions of candidate models as the inputs, it is defined as 

𝑚̂(𝑋) = ∑ 𝛽𝑘𝑚̂𝑘(𝑋)
𝐾
𝑘=1                                                     (21) 

However, we cannot simply fit a regression with Y as a target and the predictions of 

candidate models 𝑚̂1(𝑋), 𝑚̂2(𝑋),… , 𝑚̂𝐾(𝑋) as predictors to find the coefficients 𝛽, 

because the predictors have been obtained with the training data themselves. In other 

words, the target 𝑌 have already been used to get these predictors, and we should not 

figure out the coefficients 𝛽 by reusing them. In this case, new data should be used, with 

the new target 𝑌 and the predictors got with just new covariate 𝑋, to get the coefficients 

𝛽. In this case, it seems that we should split the data into three parts: the training data 
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set, the second data set for finding out the coefficients 𝛽, and the third part for 

validation.   

Another way to solve it is to use the leave-one-out (LOO) method for these K models. 

More precisely, the model is to be fit with all the observations except the 𝑖𝑡ℎ 

observation, and then 𝑖𝑡ℎ observation is predicted with this model. Then, we could fit 

the regression model to estimate the 𝛽's. 

𝑦𝑖 = ∑ 𝛽𝑘𝑚̂𝑘(−𝑖)(𝑋)
𝐾
𝑘=1                                                     (22) 

It is similar with cross-validation methods. For example, we could divide the training 

data into 10 folds, and then get the predictions of one of the folds by the model trained 

with the data of the other folds. The 𝑖 in the formula (22) could means the fold 𝑖, for 𝑖 =

1,2, … ,10. 

CaretEnsemble[16] and H2O[17] are two of the most-used and popular packages in R for 

stacking methods or combination of models. For standard data, dozens of models are 

available to be combined such as XGBoost, random forest, GBM, lasso, SVM, neural 

networks, etc., with several criteria and methods like mean squared error, AUC, and 

maximum likelihood to optimize the weights.  

The benefit of stacking is obvious, as it allows for the improvement of the performance 

of the candidate models by taking advantage of the strength of each model compared to 

a single model. However, due to the variability of the assigned weight for each model 

and the absence of hyperparameter search for candidate models, the result of stacking 

may not always be the best. In addition, the predictions of these different models are 

often correlated. Thus, using regularization methods (e.g., ridge or lasso) to select the 

appropriate models might be preferable. Moreover, Breiman (1996b)[14] suggested to 

impose the constraints that all 𝛽𝑘 ≥ 0. 

2.2 Latest stacking methods for survival data 

Due to relaxed assumptions that enable robust estimation, non-parametric estimators 

(e.g. random survival forest) can often be preferred to parametric (e.g. accelerate failure 
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time) and semi-parametric estimators (e.g. the Cox proportional hazard model). Yet, 

even when misspecified, parametric and semi-parametric estimators can possess better 

operating characteristics with small sample sizes due to a smaller variance than non-

parametric estimators. Therefore, a bias-variance trade-off is necessary to take 

advantage of the low bias of non-parametric when the sample size is not large enough. 

Thus, Andrew Wey et al. (2015)[18] proposed the stacking method to combine 

parametric, semi-parametric, and non-parametric survival models with stacked survival 

models via minimizing the inverse probability of censoring weighted (IPCW) Brier 

Score to obtain constrained weights. The performances of survival models are evaluated 

by the mean squared error (integrated squared survival error (ISSE)). This stacking 

method demonstrates that it performs well across a wide range of scenarios, especially 

with non-linear covariate effects, by adaptively balancing the strengths and weaknesses 

of individual candidate survival models.  

Eric C. Polley and Mark J. van der Laan (2011)[19] introduced a super learner method for 

right-censored data by cross-validation through converting the data structure into a 

longitudinal data structure collecting at time 𝑡 the change in counting processes by a 

defined time window, then by minimizing the squared error loss function on the hazard 

to optimize the estimated coefficients of the candidate model for the super learner. The 

special feature of this algorithm is to add time as the variable and an additional step of 

smoothing in time with different degrees of freedom for time for the candidate 

algorithms. This super learner approach elucidates the significance of time to the 

greatest degree possible. 

Another recent study by Andrew Wey et al. (2016)[20] focuses on estimating restricted 

mean treatment effects with stacked survival models. The difference in restricted mean 

survival times between two groups is a clinically relevant summary measure in medical 

research. Since the estimator for the restricted mean difference is defined by the 

estimator for the covariate-adjusted survival distribution, this method proposes a 

weighted average of several survival models by minimizing predicted error (the Brier 

Score) to get a better estimator of the restricted mean difference. The result 

demonstrates that better performance of the covariate-adjusted survival distribution 
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often leads to better mean-squared error of the restricted mean difference. Additionally, 

it can perform nearly as well as a Cox regression when the proportional hazard 

assumption is satisfied, and significantly better when proportional hazards are violated. 

Marzieh K.Golmakani et al. (2020)[21] give us a super learner model for survival data 

prediction by finding the best weighted ensemble of the individual algorithms through 

minimizing cross-validated risk controls; that is, by minimizing the cross-validated 

negative log partial likelihood. Two algorithms for optimizing the weights are proposed. 

One is rewriting the formula by the second order Taylor expansion around the vector of 

the weights by using the Lagrange formulation. A coarse grid search over tuning 

parameter space followed by descent algorithm described in Lorber and Ramadge[22] 

could help us in exhaustive grid search within more reasonable values for reducing the 

computational challenge when there are more than two candidate models. Another 

optimization method is to start with two candidate algorithms and solve the one-

dimension convex combination parameter, sequentially adding one algorithm until all 

candidate algorithms are included. 

This proposed super learner method could give us the best fit or near-best fit among the 

candidate models either with simulation studies or with real clinical data examples. 

However, although these candidate algorithms may range from a basic Cox model to 

tree-based machine learning algorithms, they must be based on the proportional hazard 

framework because the optimization is computed on hazard risk for the observations. 

After that, the survival function for any covariate pattern is calculated with the help of 

candidate algorithms weights and baseline survival function as in the Cox model.  

Because of the candidate model constraints, some algorithms for survival data could not 

be included for super learner, such as random survival forest, whose estimate 

cumulative hazard function is calculated using Nelson-Aalen estimator. Thus, when a 

survival forest algorithm performs best beyond the Cox based algorithms for such a data 

set, super leaner has its limit. 
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In the following part of simulation and real data studies, super learner method is 

compared with stacking with time-dependent and covariate-dependent weights and other 

single models.  
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Chapter 3 

Evaluation method with survival data 

Generally, once a predictive model for an outcome 𝑌 is developed, we can estimate the 

predictions for the validation set. Alternatively, cross-validation may be used to evaluate 

the performance of this model by calculating the average error with the true outcome 

values. However, with survival data, the goal may be to estimate the survival function 

for new subjects, or alternatively, the survival time. But when censoring is present, 

evaluating the performance of a model becomes difficult, as we do not know the true 

survival time for some of the observations in the validation set. Furthermore, even 

without censoring, if the purpose is to estimate the survival function, the true function 

for each individual is still unknown with only event time as response variable. 

Fortunately, we have a few useful metrics to solve this difficult situation. For a 

simulation data set, the survival function for every subject is precisely known, therefore, 

Integrated Absolute Error (IAE) and Integrated Square Error (ISE) can be used, such as 

the general average error to evaluate model's performance. For a real data set, the 

Integrated Brier Score (IBS) (Gerds and Schumacher (2006)[23]; Graf et al. (1999)[24]) is 

the most popular method. The details of these metrics are described in the following 

subsections. 

3.1 IAE and ISE 

This thesis focuses on the estimation of the survival function for the simulation data 

sets. Its designed function is known exactly; in other words, the survival probabilities at 

any time 𝑡 for every test object. Therefore, the general criteria could be used to evaluate 

the model's performance by generalized average error. Considering that the outputs 

involve the survival probabilities for a period of time, integrated error is applied. Two 

commonly used criteria were employed to measure how well the survival function is 

estimated; see page 676 of Moradian et al. (2017)[25].  
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Assume that 𝑆 is the true survival function, and that 𝑆̂ is the estimated survival function. 

The two criteria are the Integrated Absolute Error (IAE) and the Integrated Square Error 

(ISE) and are defined by: 

𝐼𝐴𝐸 = ∫ |𝑆(𝑡) − 𝑆̂(𝑡)|𝑑𝑡
⁡

𝑡
                                                    (23) 

and 

𝐼𝑆𝐸 = ∫ (𝑆(𝑡) − 𝑆̂(𝑡))2𝑑𝑡
⁡

𝑡
                                                   (24) 

The equations (23) and (24) measure the survival function error between the true and the 

estimated ones. Here the time points of the survival forests model are used to calculate 

survival probabilities to get the estimated survival function. The average value of all the 

test individual IAE or ISE are computed as the criteria value to evaluate the model 

performance for simulation data set. The codes of computing IAE or ISE are presented 

in Appendix [1]. 

3.2 IBS score 

IAE and ISE can be applied if the true survival function is well known, i.e. the 

simulation data set. But with real data, the survival function of any observation is 

unknown, so we would have a problem even without censoring.  Hence, if the goal is to 

estimate the survival function for the real data set, we cannot use these metrics. There is 

another method called IBS (Integrated Brier Score) score which could be useful to solve 

this problem and evaluate the performance of a model with censored data (Gerds and 

Schumacher (2006)[23]; Graf et al. (1999)[24]).  

When the true survival function is known exactly, then its survival probability at any 

time 𝑡 is also well known, and its squared error or absolute error could be calculated. 

But for the real data, we only know its event time or censoring time. If we know its 

event time 𝜏𝑖 for subject 𝑖, let 𝑆̂(𝑡|𝑋) denote its estimated survival function, estimated 

by any model, at time t for a subject with covariate vector 𝑋. 𝑆̂(𝑡|𝑋) is an estimation of 

the survival probability 𝑃(𝑇 > 𝑡|𝑋). We denote an indicator 𝐼(𝜏𝑖 ⁡> 𝑡) that takes a 
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value of 1 if 𝜏𝑖 ⁡> 𝑡, and 0 otherwise. Thus, a binary target, 𝐼(𝜏𝑖 > 𝑡) can be considered 

as the empirical survival function for subject 𝑖. 

In the case where there is no censoring, the Brier Score at any time t is defined as 

𝐵𝑆(𝑡) =
1

𝑛
∑ (𝐼(𝜏𝑖 > 𝑡) − 𝑆̂(𝑡|𝑋𝑖))

2𝑛
𝑖=1                                       (25) 

where 𝑛 is the number of subjects. 

The Brier Score is a function of 𝑡, and it represents the mean of squared error of the 

survival probability for all the subjects. However, a single time 𝑡 cannot explain the 

performance of the model, we want to evaluate the model for all range of time. One way 

to solve this and get a single performance measure is to compute the integral of 𝐵𝑆(𝑡), 

with respect to 𝑡. The Integrated Brier Score is given by 

𝐼𝐵𝑆 =
1

max⁡(𝜏𝑖)
∫ 𝐵𝑆(𝑡)𝑑𝑡
max⁡(𝜏𝑖)

0
                                            (26) 

 where 𝜏𝑖 is the event time for subject 𝑖. 

The values of IBS have the same meaning as mean squared error with simulated data. 

Lower IBS indicates better performance. Basically, the IBS is an integrated weighted 

squared distance between the estimated survival function and the empirical survival 

curve. The shaded areas of Figure 1 below, sourced from course notes by Professor 

Larocque (2019)[13], is the IBS score for a single observation. It compares the estimated 

survival curve to the empirical survival curve for that observation. Since the subject 

experienced the event at 𝜏𝑖, the empirical survival curve takes a value of 1 between 0 

and 𝜏𝑖, and a value of 0 after 𝜏𝑖. 
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Figure 1 The integrated Brier score with no censoring 

If we do not know the event time, that means that censoring is present, a weighting 

scheme to adjust for it can be applied. It is the inverse probability of censoring weights 

(IPCW). Let 𝐺̂ denote an estimate of the survival function of the censoring distribution. 

It can be the Kaplan-Meier estimate of the censoring distribution, or a more 

sophisticated approach that uses the covariates. The Brier Score at any time 𝑡 is 

computed as 

𝐵𝑆(𝑡) =
1

𝑛
∑ ((𝑆̂(𝑡 + 𝑋𝑖)

2𝐼(𝜏𝑖 ≤ 𝑡⁡and⁡𝛿𝑖 = 1)𝐺̂−1(𝜏𝑖) + (1 − 𝑆̂(𝑡|𝑋𝑖))
2𝑛

𝑖=1 𝐼(𝜏𝑖 >

𝑡)𝐺̂−1(𝑡))                                                                                               (27) 

To put the weights in evidence, this formula can be written in another way: 

𝐵𝑆(𝑡) =
1

𝑛
∑ (𝐼(𝜏𝑖 > 𝑡) − 𝑆̂(𝑡|𝑋𝑖))

2
𝑛
𝑖=1 𝑤(𝑡)                                   (28) 

Where 𝛿𝑖 = 1 represent that the event has occurred for observation 𝑖 , 𝛿𝑖 = 0 represent 

this observation is censored. And  𝑤(𝑡) = 𝐼(𝜏𝑖 ≤ 𝑡⁡𝑎𝑛𝑑⁡𝛿𝑖 = 1)𝐺̂−1(𝜏𝑖) + 𝐼(𝜏𝑖 >

𝑡)𝐺̂−1(𝑡) is the IPCW. 

Gerds and Schumacher (2006)[23] show that if the censoring model used for 𝐺̂ is well 

specified, then this formula converges to the right value, that is the expected Brier 

Score, given by  
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𝐸[(𝐼(𝑇 > 𝑡|𝑋) − 𝑆̂(𝑡|𝑋))
2

]                                                (29) 

In a way, the IBS is a crude estimate of the performance, because the unknown true 

survival curve is replaced by the empirical one. But it is hard to do better in this setting. 

The package pec in R by Mogensen et al. (2012)[26] can be useful for computing the 

Brier Score, with the matrix of predicted survival probabilities under a fitted model 

having as many rows as data and as many columns as times and the response variable 𝑌 

(event time or censoring time) as inputs.  
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Chapter 4 

Methodology 

Before explaining the proposed method in detail, here is first a general description of the 

key features of the general methodology at a high level. The goal is to have a final 

stacking model where the model weights are time-dependent and covariate-dependent. 

(1) Select a grid of time points. For example, using quantiles form the Kaplan-Meier 

estimation of the survival function of the training data. 

(2) For each time point in the grid, apply a stacking method to estimate the survival 

function at that point, but such that the weights can depend on the covariates. For 

example, using a MOB-tree. 

(3) Smooth the estimated values at the time points on the grid to get the global 

survival function in such a way that it is monotonically decreasing. For example, 

using isotonic regression. 

Here is now a detailed description of the method. 

4.1 Step 1: Select the 𝑲 = 𝟑 models for stacking method 

Three basic, commonly used models have been selected because of their unique 

advantage as parametric, semi-parametric and non-parametric model representatives. 

They are the accelerate failure time (AFT) model, the Cox proportional hazard model 

and random survival forest. 

Stacking with these models covers several kinds of classic models for survival data, and 

it could compare the performance from the aspects of risk hazard, accelerated time and 

random forests to test if the stacking could have an advantage beyond these basic 

models. 
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4.2 Step 2: Select a grid of values for the time range 

The objective is to develop a stacking model with time-dependent and covariate-

dependent weights. Time-dependent weights are based on the assumption that the 

weights of candidate models change with time. For example, it is possible that the AFT 

model performs best in the time interval (𝑡1, 𝑡2) and the Cox model performs best in the 

time interval (𝑡2, 𝑡3) with (0 < 𝑡1 < 𝑡2 < 𝑡3). Thus, time-dependent weight means that 

each period of time corresponds to a different weight for a given subject.  

The non-parametric Kaplan-Meier (KM) method could give us an intuitive, overall 

description of the survival function for the simulated data set that we will use. Based on 

the overall curve, we want to estimate the time-dependent weights, and theoretically, the 

weights may change smoothly and have continuous values from time 0 to the maximum 

survival time. However, it is not practical to estimate the continuous weights at any time 

in condition of the limited data number and the limited computation speed. It is more 

practical to use a grid of time points.  

However, it is not appropriate to use time points that are equispaced. For example, we 

can see from Figure 2 (see section 5.1) that the range of survival time of DGP4 is from 0 

to 10, but from time 4 to 10, the survival probability is asymptotically close to 0, and in 

very few subjects does the event occur in this time range. This is why we use a time grid 

defined by using equispaced quantiles obtained from the Kaplan-Meier estimate of the 

survival time. 

Define 𝑡0 = 0 < 𝑡1 < ⋯ < 𝑡𝐺 as this time grid, where 𝐺 is the number of time intervals. 

For example, if 𝐺 = 9, then 𝑡1 is the 0.1 quantile of the Kaplan-Meier estimate 

maximum time (also the maximum observed event time),  𝑡2 is the 0.2 quantile, and so 

on.  Each time in the grid will be used to build a model to get time-dependent weights. 
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4.3 Step 3: Fit models with training data in two different ways 

4.3.1 With all the training data 

Firstly, we want to estimate the survival function for each candidate model (Cox, AFT 

and survival forests). Their predictions will be used to compare the performances with 

each other and with the new stacking method. Thus, a model for each method with all 

the training data is fitted. The three models will be used to get estimations for the new 

test data.  

After this step, we have 𝑆̂𝑘(𝑡|𝑋𝑡𝑒𝑠𝑡) for the new subjects, the estimated survival function 

for model k (𝑘 = 1,… , 𝐾 = 3) trained with the complete sample.  

4.3.2 With a cross-validation scheme (e.g. 10 fold) 

From the general theory of stacking method, to optimize the weights, the training data 

predictions of one candidate model 𝑆̂𝑘(𝑡|𝑋𝑡𝑟𝑎𝑖𝑛) fitted with all the training data cannot 

be used as predictors because they have been obtained with the data themselves.  

Therefore, secondly, each model is fitted with a cross-validation scheme (e.g. 10 folds). 

We divided the train data into 10 folds, and each fold is predicted with the model fitted 

by the data of 9 other folds. These models are used to get out-of-sample estimations of 

the survival function that will be used to optimize the stacking weights.  

After this step, we have  𝑆̂𝑘
𝑐𝑣(𝑡|𝑋𝑖), the out-of-sample estimated survival function for the 

𝑖𝑡ℎ observation 𝑋𝑖 for model k trained in the CV loop, for 𝑘 = 1,… , 𝐾 = 3 and 𝑖 =

1, … , 𝑛 where 𝑛 is the number of training data. These three models will be used for 

optimizing the time-dependent and covariates-dependent weights. 

4.4 Step 4: Optimize the weights with pseudo-observations values 

From Step 3, we have 𝑆̂𝑘
𝑐𝑣(𝑡|𝑋𝑖) as the out-of-sample estimated survival function for all 

the training data, which could be used as the predictors to get the weights. However, due 
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to the censoring, we do not directly have the response variable 𝑌 to fit a model to get the 

weights with survival data. Pseudo-observation gives us a solution to solve this problem. 

4.4.1 Pseudo-observation 

Per Kargn Andersen et al. (2010)[27] introduces the theory and applications of pseudo-

observations in survival analysis including regression models for parameters like the 

survival functions in a single points, the restricted mean survival time or state 

occupations probabilities in multi-state models (e.g. the competing risks cumulative 

incidence function). 

Given the information that survival data have special characteristics, right-censoring, or 

left-truncation, which make it difficult to develop algorithms. If we have complete data, 

the survival time 𝑌 would be observed for all individuals and standard methods for 

quantitative data could be applied directly with Y as response variable, or methods for 

binary outcomes could be applied by dichotomizing Y as 𝐼(𝑌 ≤ 𝑡). More generally, 

methods for repeated binary data could be used for a series of indicators, 𝐼(𝑌 ≤ 𝑡𝑗), 𝑗 =

1, … ,𝑚 (𝑚 is the repeated times) as a response variable. Then, we could set up a model 

to get the weights with the predictors 𝑆̂𝑘
𝑐𝑣(𝑡|𝑋𝑖) obtained in step 3. Furthermore, without 

censoring, it is possible to get average error for quantitative or binary outcomes. 

However, with censored survival data, we fortunately have one way of transforming the 

event time or censoring time to continuous response variable by the pseudo-

observations. In other words, the pseudo-observations could replace the incomplete 

event time 𝑌. 

The basic idea is simple. Let 𝑓(𝑌𝑖) to be the function of event time as response variable. 

If the data were complete, 𝑓(𝑌𝑖) would be observed for each individual 𝑖, and the 

expected value 𝐸(𝑓(𝑌)) could be estimated by 1/𝑛∑ 𝑓(𝑌𝑖)𝑖 . Conversely, suppose that 

the data are incomplete, i.e. some observations are censored and therefore not all 𝑓(𝑌𝑖) 

are observed, but a well-behaved estimator, 𝜃, for the expectation 𝜃 = 𝐸(𝑓(𝑌)) is 

available anyway, e.g. the Kaplan-Meier estimator for 𝑆(𝑡) = 𝐸(𝐼(𝑌 > 𝑡)). The 

pseudo-observation for 𝑓(𝑌) for individual 𝑖, 𝑖 = 1,… , 𝑛, is then defined as 
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𝜃𝑖 = 𝑛 ∗ 𝜃 − (𝑛 − 1)𝜃−𝑖                                                     (30) 

where 𝜃−𝑖 is the estimator applied to the sample of size 𝑛 − 1 obtained by eliminating 

the 𝑖𝑡ℎ individual from the data set. Intuitively the 𝑖-th pseudo-observation can be 

viewed as the contribution of the individual 𝑖 to the 𝐸(𝑓(𝑌)) estimate on the sample of 

size n. The idea now is to replace the incompletely observed 𝑓(𝑌𝑖) by 𝜃𝑖. For example  

(1) 𝜃𝑖 may be used as an outcome variable in a generalized linear regression model 

with some link function g: 𝑔(𝐸(𝑓(𝑌)|𝑋)) = 𝛽0 + ∑𝛽𝑗𝑋𝑗 or 

(2) 𝜃𝑖 may be used to compute residuals or in a scatterplot when assessing model 

assumptions 

The pseudo-observations 𝜃𝑖 will always be used for all 𝑛 subjects and not only for those 

where 𝑓(𝑌𝑖) was unobserved. Note that the models themselves are fitted with the 

original data. The pseudo-observations are only used as proxy to optimize the weights. 

4.4.2 Optimize the weights 

In the general method, the stacking weights depend on the covariates and the time. Fix a 

value in the time grid 𝑡𝑔. We now want to estimate the weight function 𝛼̂𝑘(𝑡𝑔, 𝑋) (of 

time 𝑡𝑔 and covariates 𝑋), for 𝑘 = 1,… , 𝐾 = 3 three selected models in section 4.1, to 

obtain the estimates 

𝑆̂(𝑡𝑔|𝑋) = ∑ 𝛼̂𝑘(𝑡𝑔, 𝑋)𝑆̂𝑘(𝑡𝑔|𝑋)
𝐾
𝑖=1                                             (31) 

With the application of pseudo-observation as an outcome variable for each 

individual—either the observed event time or censored data—candidate model weights 

will be calculated for each time grid through fitted linear model trees with covariates X 

as the splitting variables. Through this method, time-dependent weight and covariates-

dependent weights can both be obtained simultaneously. The details of the different 

steps are as follows through the language R. 
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(1) Using the function pseudosurv in the R package pseudo[28], the pseudo-values at 

𝑡𝑔 for the original sample can be obtained, call them 𝑃1, 𝑃2, … , 𝑃𝑛. We can then 

fit a mob-type tree with the function lmtree in the R package partykit[29]. A mob, 

for “model based” tree, is a tree in which a model can be fitted in the nodes. The 

covariates are divided in two groups, but the groups can have a non-null 

intersection. The first group contains the variables used to fit the within node 

model. The second group contains the variables that are used for splitting the 

tree. In our case, the dependent variables are the pseudo-values (the 𝑃𝑖 ), 

𝑆̂𝑘
𝑐𝑣(𝑡𝑔|𝑋𝑖) for 𝑘 = 1,2,3 models are the predictors in the within-node linear 

model, and the covariates X are the splitting variables. 

(2) We do this for all time intervals 𝐺 times separately and end up with estimated 

weights functions 𝛼̂𝑘(𝑡𝑔, 𝑋) , for 𝑘 = 1,… , 𝐾, and 𝑔 = 1,… , 𝐺. Notice that for 

one given time point in the grid, we could get more than one node due to the 

conditional splitting variables 𝑋. In other words, we get covariates 𝑋 dependent 

weights for each time point. 

However, using lmtree to optimize the weights can produce weights that can be negative 

or greater than 1. It is more reasonable to have weights that satisfy: 

(1) The individual weights for model 𝑘 are not negative 

(2) The sum of weights of each model is 1 

(3) Remove the intercept in the regression model  

In fact, this method refers to a regression with constraints so that the weight must be 

between 0 and 1. With the response variable pseudo-observation and 𝑆̂𝑘
𝑐𝑣(𝑡𝑔|𝑋𝑖) for 𝑘 =

1,2,3 as the predictors for each node of each time point, the function solve of the 

package quadprog[30] in R can help us compute the constrained weights. The R code of 

the function for computing the weights is detailed in Appendix [2]. Basically, we build 

the mob-tree as usual, but instead of fitting an unconstrained linear model as default in 

the terminal nodes, a constrained model is fitted.  
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4.5 Compute the final estimation for test data 

4.5.1 Compute new data estimate at time grid 𝒕𝒈 

After the last step, we have the weights 𝛼̂𝑘 of each model k for each time point in the 

grid 𝑡𝑔, 𝑔 = 1,… , 𝐺. Then, the final estimation for a new point 𝑋𝑛𝑒𝑤 can be computed. 

For each time value in the grid, we can get 

𝑆̂(𝑡𝑔|𝑋𝑛𝑒𝑤) = ∑ 𝛼̂𝑘(𝑡𝑔, 𝑋𝑛𝑒𝑤)𝑆̂𝑘(𝑡𝑔|𝑋𝑛𝑒𝑤)
𝐾
𝑖=1                                    (32) 

We thus have 𝑆̂(𝑡1|𝑋𝑛𝑒𝑤),… , 𝑆̂(𝑡𝐺|𝑋𝑛𝑒𝑤).  

4.5.2 Compute new data estimate for all time 𝒕 

We want to estimate the survival function for the new individual data, so it is important 

and necessary to estimate the survival probability values for all time 𝑡, not only at the 

chosen time grid points 𝑡𝑔.  There is a simple way to extend the weights to the other 

times. If we want to estimate 𝑆(𝑡𝑗) at time 𝑡𝑗 which is not in the time grid, we can use 

the weights for the grid point that is the nearest to 𝑡𝑗. For example, suppose that the time 

grid is 1.2, 2.6, 4.5, 6.7, 10.1. We want to estimate 𝑆(𝑡𝑗 = 4.1). The nearest time grid 

value for 𝑡 = 4.1 is 4.5, thus we use the estimated weights for 𝑡𝑔 = 4.5. 

In order to better compare the performances among the selected models, the time 

interests of the survival forests model are chosen as the time points to describe the 

survival probabilities for all time 𝑡. The R code of the function for predicting the test 

data is detailed in Appendix [3]. 

4.5.3 Adjustment of estimated survival probability value 

Because these 𝑆̂(𝑡1|𝑋𝑛𝑒𝑤), … , 𝑆̂(𝑡𝑚𝑎𝑥|𝑋𝑛𝑒𝑤) come from the combination of candidate 

models, it is likely to have a case like 𝑆̂(𝑡1|𝑋𝑛𝑒𝑤) < 𝑆̂(𝑡2|𝑋𝑛𝑒𝑤)⁡with⁡𝑡1 < 𝑡2 that goes 

against the monotonically decreasing nature of the survival function. 

One way to solve this problem is to apply a monotone regression method like isotonic 

regression to these values for every new individual to obtain the complete estimated 
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survival function 𝑆̂(𝑡|𝑋𝑛𝑒𝑤) for all 𝑡. One simple isotonic regression method is to make 

sure the survival probability at the next time point is no bigger than the previous time 

value; if it is not the case, the probability at next time point will be replaced by the value 

of previous time point. The R code of the function for isotonic regression is detailed in 

Appendix [4]. 

4.6 Clustering stacking methodology 

Sections 4.1 to 4.5 present the steps of the general stacking method with time-dependent 

weights and covariates-dependent weights, which assumes the weights may depend on 

the time and covariates simultaneously. For a given time point in the grid, a MOB-tree is 

used to get covariate-dependent weights. We will also investigate another method as 

described here. 

For a given time point in the grid, the terminal nodes of the tree provide a grouping of 

the observations. Instead of using a tree, a cluster analysis algorithm could be used to 

perform the grouping. More precisely, we could apply the clustering K-means algorithm 

to do the grouping work. It is possible that it could do better than the linear model tree. 

The number of terminal nodes in the tree is used as the group number for the K-means 

algorithm for each time point. The package clue[31] in R can predict the K-means groups 

for new subject data according to the covariates 𝑋. Within the group, we can get the 

constrained weights (positive and sum equal to 1) with the same method proposed in 

section 4.4.2 with the package quadprog[30]. Then, the prediction for the test data with 

these weights can be obtained. 

With all other steps being the same, this clustering stacking method is very similar to the 

general stacking method in sections 4.1 to 4.5. It is only slightly different based on the 

grouping with covariates 𝑋. Therefore, the prediction results of these two methods may 

not differ much.  
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Chapter 5 

Simulation study 

5.1 Simulation design 

In the main simulation study, four Data Generating Processes (DGPs) are used to 

generate artificial data. DGP1 is from a master course note by Professor Larocque 

(2019)[13] (Page 188) by Professor Denis Larocque. The other three—DGP2, DGP3 and 

DGP4—are from "L1 splitting rules in survival forests" by Hoora Moradian et al. 

(2017)[25]. 

Each model is fitted with a training sample of size 100. Then, the performance of the 

fitted models is evaluated with an independent test set of size 500. Each simulation is 

repeated 50 times. In section 5.3, additional simulation results using training samples of 

size 500 will be presented. 

The parameter 𝑝𝑎𝑟𝑐𝑒𝑛𝑠 controls the proportion of censoring of DGP 1, while the 

parameter 𝛼 controls the proportion of censoring of the other three DGP. With 

adjustment of parameter parcens and 𝛼, DGP1 has censoring proportion 0.36. The other 

three DGPs have censoring proportion 0.25, 0.3, 0.35, respectively. Here are the detailed 

descriptions of the DGPs. 

5.1.1 DGP 1 

There are 15 covariates. Let 𝑋 = (𝑋1, 𝑋2, … , 𝑋15) have a multivariate normal 

distribution with mean 0, variance 1 and correlation 0.3 for each pair of variables. Let 

𝑉 = (𝑉1, 𝑉2, … , 𝑉15)⁡be a transformation of 𝑋. Each element of 𝑉 is a function of the 

corresponding element of 𝑋.  𝑉6, 𝑉12 are the absolute values of 𝑋6, 𝑋12 respectively. 

𝑉7, 𝑉8, 𝑉11 are binary variables that take a value of 1 if the corresponding 𝑋 is larger than 

0.5, 0.2, and 0.1 respectively. 𝑉9 is log(𝑋9 + 5), and let 𝑉10 is exp (
𝑋10

3
). The other 

variables remain untransformed. The true model is log(𝑇) = 𝑓(𝑉) + log(𝜖) where 𝑓 is 
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a function of the covariates and 𝜖 is an error term from the gamma distribution with 

shape parameter 3 and rate parameter 5. The function 𝑓 is as follows: 

𝑓(𝑉) = −0.5 +
𝑉1 + 𝑉2 + 0.3 ∗ 𝑉2

2 + 𝑉5 + 𝑉6 − 0.3 ∗ 𝑉5 ∗ 𝑉6 + 𝑉7 +
1

𝑉10 + 3
+ (𝑉3 > 0) ∗ (𝑉1 > 0) − (𝑉3 < 0) ∗ (𝑉1 > 0)

3
 

In addition, 𝑓(𝑉) is bounded to be within the range of minimum -1.8 and maximum 1.7. 

The censoring times are exponentially distributed with rate of (
1

𝑝𝑎𝑟𝑐𝑒𝑛𝑠=1.5
) to make 

DGP 1 have censoring proportion 0.36. 

5.1.2 DGP 2 

This is an altered version of scenario 2 from Sec. 4.1 of Zhu and Kosorok (2012)[32]. Ten 

IID (independent and identically distributed) uniform covariates on the interval (0,1) are 

available, 𝑋1, … , 𝑋10. Survival times are drawn from an exponential distribution with 

mean µ where 𝜇 = 10|sin(𝑋1𝜋 − 1) |+3|𝑋2 − 0.5| + 𝑋3. The censoring times are 

uniformly distributed on the interval (0, 𝛼 = 29.1) to make DGP 2 have censoring 

proportion 0.25. 

5.1.3 DGP 3 

This is adapted from scenario 3 in Sect. 4.1 of Zhu and Kosorok (2012)[32]. Twenty-five 

covariates 𝑋1, … , 𝑋25 are generated from a multivariate normal distribution with 

covariance matrix 𝜎𝑖𝑗 = 0.75|𝑖−𝑗|. The survival time follows a gamma distribution with 

shape parameter 𝜇 = 0.5 + 0.3|∑ 𝑋𝑖|
15
𝑖=11  and scale parameter of 2. The censoring times 

are uniformly distributed on the interval (0, 𝛼 = 9.5) to make DGP 3 have censoring 

proportion 0.3. 

5.1.4 DGP 4 

This is a dependent censoring DGP. It is adapted from scenario 1 in Sect. 4.1 of Zhu and 

Kosorok (2012)[32]. Twenty-five covariates 𝑋1, … , 𝑋25 are generated from a multivariate 

normal distribution with covariance matrix⁡𝜎𝑖𝑗 = 0.9|𝑖−𝑗|. The survival time follows an 

exponential distribution with mean of 𝜇 = 0.1| ∑ 𝑋𝑖|
20
𝑖=11 . The censoring times are drawn 
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from an exponential distribution with mean 𝜇/(𝛼 = 0.54) to make DGP 4 have 

censoring proportion 0.35. 

 

Figure 2 Kaplan-Meier estimate of the survival curve for 10000 observations of four simulations data sets 

with censoring proportion 0.36, 0.25, 0.3,0.35 respectively 

Figure 2 above shows a Kaplan-Meier estimate of the survival curve for 10000 

observations of four simulation data sets, respectively. We could observe that the 

maximum survival time for the four data sets is different, approximatively 5, 30, 10, 10, 

respectively.  And even though DGP3 and DGP4 have similar maximum survival 

time—but their survival probabilities change at very different rates—DGP3 falls gently 

with time, while DGP4 falls rapidly, and by time 4, the survival probability is almost 

down to 0. Overall, the survival curve of DGP1 and DGP4 decreases sharply, while the 

survival curve of DGP2 and DGP3 decreases gently. The survival time range for each 

DGP is shown in the figure, and then we can define the maximum time of time grid for 

each DGP. Section 4.2 explains how the maximum time for making the time grids 

should be selected; considering that the training data has only 100 subjects, there are 

very few subjects whose event time exceeds time 1.5 if we take DGP1 as an example, 

and the same value of pseudo-observation is calculated when time is over 1.5. Thus, we 

define 1.5 as the maximum reasonable time for DGP1 to fit model for weighting, and 
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with the same analogy, 15, 5, and 1.5 as max time grid for DGP2, DGP3 and DGP4, 

respectively. The code used to generate the simulation data DGPs is detailed in 

Appendix [5]. 

5.2 Simulation results 

5.2.1 Weights presentation  

After the five methodological steps from section 4.1 to section 4.5, the estimated 

predictions of three base survival models (Cox, AFT with loglogistic distribution and 

survival forests), stacking method, clustering stacking method and super learning 

method for the 50 test data sets. The time points at which the survival probabilities are 

predicted in the random forest model are used for the other two single models and 

stacking methods for the purposes of the same standard of evaluation, more than 

hundreds of time points probabilities are sufficient to reflect the estimated survival 

function. 

In the stacking part, a linear model tree is fitted with constrained linear coefficients to 

optimize the weights. At each time interval, the constrained weights of the three models 

are received, where the weights are between 0 and 1 and their sum is exactly 1. 

In order to better explain how the weights of the three candidate models vary as a 

function of time 𝑡, the quantiles 0.2, 0.4, 0.6 and 0.8 of the time grids are selected to 

view the changes. Each group of boxplots corresponds to the distribution for all the 

repetition of simulation of one DGP. The weights vary between 0 and 1 due to the 

constraints. As a result, the sum of average weights of the candidate models for a given 

block of time, such as quantile 0 to 0.2 of the max time grid, should be 1. the average 

weights are not shown in the boxplots below, but the median weights can reflect average 

model weight for different time intervals.  
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Figure 3 Time quantiles weights distribution of stacking method for DGP1 (ntrain=100) 

(Left: general stacking, Right: clustering stacking)  

Figure 3 (Left) shows that for DGP 1, the median weights of the algorithm survival 

forest (SRC) are close to  0.5 as time ranges from 0 to 20% maximum time grid 1.5, i.e. 

from time 0 to time 0.2 ∗ 1.5 = 0.3, compared to 0.25 for model AFT and nearly 0 for 

Cox. The weight of each model shifts as the survival time increases, with the survival 

forest losing weight ans the other two models gaining. This means that the weights of 

the models are time dependent. However, the way that the weights change with time 

depends on the data set. For example, for DGP2, DGP3 and DGP4, throughout all their 

survival time ranges, the stacking method gives more weights (almost 1) to suvival 

forest (SRC), and much less weights to the other two models. Because of the structure of 

those DGPs, survival forest outperforms the three basic models for simulation data 
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DGP2, DGP3 and DGP4 across all time ranges. Figure 4, Figure 5 and Figure 6 show 

the time quantiles weights distributions for DGP2, DGP3 and DGP4. 

  

Figure 4 Time quantiles weights distribution of stacking method for DGP2 (ntrain=100) 

(Left: general stacking, Right: clustering stacking)  

  

Figure 5 Time quantiles weights distribution of stacking method for DGP3 (ntrain=100) 

(Left: general stacking, Right: clustering stacking)  
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Figure 6 Time quantiles weights distribution of stacking method for DGP4 (ntrain=100) 

(Left: general stacking, Right: clustering stacking)  

The left figures above using general stacking method show how the model weights 

change as time goes by, and in fact, the linear model tree algorithm regroups the 

subjects. For each time grid, nodes (groups) are produced in function of the 

characteristics of covariates 𝑋. The number of nodes varies depending on the time grid 

and the data sets used. Clustering is another way to optimize the group weights. Section 

4.6 describes the technique of clustering stacking methodology, and the K-means 

clustering algorithm could give us another option to regroup them with the number of 

groups for each time grid the same as the number of nodes of the general stacking 

method. The results of this clustering stacking algorithm's time quantiles weights 

distribution are shown in the right figures above. 

When we compare these rights figures to the left figures of the general stacking method, 

It is obvious that they are extremly similar, especially for DGP2, DGP3 and DGP4, 

where the figures of the two algorithms are exactly the same. That is because for each 

time grid, there is only one root node generated by the linear model tree method. In 

other words, all the subjects could be treated as a single group, and the weights for this 

time interval have not noted the difference in aspect of the covariates 𝑋. As a 

consequence, the result of clustering is identical to the result of general stacking. 
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5.2.2 Performance comparison 

Because the accurate survival function for each observation for the simulated data sets is 

known, we could calculate the survival probabilities at any time point for each subject. 

IAE and ISE can be easily computed as prediction performance criteria for test data sets. 

The smaller the integrated error, the better it performs. The following two figures 

illustrate IAE and ISE results of three basic models (Cox, AFT, SRC) for survival data, 

as well as the new stacking method with time-dependent weights and covariates-

dependent weights and its clustering method. To compare, the super learner proposed by 

Marzieh K.Golmakani et al. (2020)[21] is also included, and only two algorithms (Cox 

and GBM boosting) are used for risk coefficient optimization to save computational 

time. 

 

Figure 7 Integrated Absolute Error (IAE) boxplots of four simulation data sets (ntrain=100) 
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Figure 8 Integrated Square Error (ISE) boxplots of four simulation data sets (ntrain=100) 

As performance criteria, IAE and ISE are only applied for simulation data because its 

true survival function for each observation is defined. The two results are strikingly 

similar. It is frequent that the lower the error, the better the method's efficiency. 

Likewise, the lower the variance, the more stable are the performances of the method. 

From the figures of IAE and ISE, stacking and cluster method with time-dependent 

weights and covariates-dependent weights performs best for DGP1 and DGP2, and 

performs nearly best as survival forest for DGP3 and DGP4. While the super learner 

method can outperform the basic Cox model, it cannot outperform the survival forest 

because its risk optimization algorithm does not include survival forest model, which 

has unique advantages for DGP3 and DGP4. Similar to our weights distribution 

analysis, the clustering stacking method produces very similar results as compared to 

general stacking method. 
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Figure 9  Integrated Brier Score (IBS) boxplots of four simulation data sets (ntrain=100) 

In real data, the survival function for any observation is unknown, we just know its 

event time or censoring time. Therefore, IAE and ISE criteria could not be applied for 

real survival data. Despite the fact that the accurate error for the four simulations can be 

calculated, we also want to compare their IBS. Figure 9 give us the similar results with 

IAE and ISE. For DGP1, the stacking method and clustering stacking method have the 

smallest IBS, and for DGP2, DGP3 and DGP4, they are very close to the best 

performance of the survival forest model. This means that we will be able to trust the 

IBS-based comparisons with the real data sets. 

In conclusion, for the simulation data sets, the two stacking methods could detect 

automatically which basic classic model performs best and incorporate the ideal part of 

each candidate model to produce better predictions.  
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5.3 Supplementary simulation analysis 

The above simulation results are based on a train size 100 and a test size of 500 with 50 

repeats. We are also interested in seeing how this stacking method performs as there are 

more training data. The same stacking algorithms mentioned in Section 4 are used in a 

supplementary experiment. 

The supplementary simulation entails increasing the training size from 100 to 500, 

keeping the test size constant at 500, using the same maximum time grid (1.5, 15, 5, 1.5 

for DGP1 to DGP4) and repeating the simulation 50 times, as described in Table 1. 

Table 1 Description of the simulations 

 Initial simulation Supplementary simulation  

Train size 100 500 

Test size 500 500 

Maximum time 

grid for DGP1 to 

DGP4 

1.5, 15, 5, 1.5 1.5, 15, 5, 1.5 

 

Theoretically, the more train data we use to fit a model, the more reliable and precise the 

prediction becomes, and the smaller the error becomes. To begin, we look at the 

weight's charts for the comparison of 100-training size initial simulation and 500-

training size supplementary simulation.  
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Figure 10 Time quantiles weights distribution of general stacking method for DGP1 

(Left: ntrain=100, Right: ntrain=500)  

When comparing the two weights charts (train size 100 and train size 500) in Figure 10 

of DGP1, there is no discernible difference. In other words, even though there are more 

data for training, the weights of each model are so divergent (from 0 to 1) that we 

cannot be certain which one is better at a given time point. However, since the src 

boxplot is more clearly clustered at the bottom of the right chart (train size 500) with a 

small weight than left chart (train size 100) with more train data, the simple conclusion 

can still be drawn that the SRC model does not work well for this set of simulated data.  
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Figure 11 Time quantiles weights distribution of general stacking method for DGP2 

(Left: ntrain=100, Right: ntrain=500)  

 

 

Figure 12 Time quantiles weights distribution of general stacking method for DGP3 

(Left: ntrain=100, Right: ntrain=500)  

 



46 
 

 

Figure 13 Time quantiles weights distribution of general stacking method for DGP4 

(Left: ntrain=100, Right: ntrain=500)  

We can see that the weights are more centralized with less dispersion in right chart (train 

size 500) compared with left chart (train size 100) in Figure 11 to Figure 13 of DGP 2 to 

DGP4. More training data allows us to be more accurate in determining which model 

performs best. SRC is clearly the best for DGP2, DGP3 and DGP4. At any time point, 

this new stacking approach automatically selects the optimal algorithm SRC and assigns 

almost all the weight to this model. The clustering stacking figures (train size 500) for 

the four DGPs are not displayed, because they are quite similar to general stacking 

method (train size 500). 

Now we look at the error and see how the outcome changes as the training size goes 

from 100 to 500. Theoretically, test error decreases with training size from a large value 

to the stable value. When training size increases, it is normal to see the range of IAE 

decrease from level 0.1 (Figure 7) to level 0.05 (Figure 14). The same is true for ISE 

which drops from level 0.15 (Figure 8) to level 0.0125 (Figure 15). This is simple to 

comprehend because the more data we have, the better the model can do. When 

compared to the previous simulation with a training size of 100, IAE and ISE produce 

nearly the same results: the stacking or clustering stacking approach can give us nearly 

the best performance of all the models. When Cox or AFT performs better, as in the 
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case of DGP1, stacking or clustering stacking provides predictions that are very close to 

Cox or AFT. When SRC model performs well, such as DGP2, DGP3 and DGP4, 

stacking or clustering stacking provides us predictions that are very close to SRC.  

On the one hand, this new stacking method appears to be unable to outperform the best 

candidate model while using IAE as the criterion. By using ISE as the criterion, 

however, a pleasant surprise can be noticed in DGP1: the ISE of clustering stacking gets 

slightly lower as compared to the median, average, or standard deviation than the best 

model Cox. This demonstrates that the advantages of different algorithms can be 

absorbed by this new stacking approach. However, when one of the candidates has a 

overwhelming advantage, such as model SRC in DGP2, DGP3 and DGP4, the stacking 

method assign it a near-total 1 weight to it, particularly when there are more training 

data (500). As a result, the output of this new stacking is nearly identical to that of the 

best candidate algorithm SRC. 
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Figure 14 Integrated Absolute Error (IAE) boxplots of four simulation data sets (ntrain=500) 
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Figure 15 Integrated Square Error (ISE) boxplots of four simulation data sets (ntrain=500) 
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Figure 16 Integrated Brier Score (IBS) boxplots of four simulation data sets (ntrain=500) 

 

It is not shocking that when the training size is increased from 100 to 500, IBS values 

also decrease marginally (Figure 16). Since IBS is not as precise as IAE or ISE, it 

appears that for DGP1, Cox and AFT are nearly identical, and both stacking work nearly 

identically with the best candidate for all four DGPs. 
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Chapter 6 

Real data study 

6.1 Introduction of six selected real data sets 

In this section, we compare the performance of the same methods used in the simulation 

study with six real data sets, the same as the ones used in "𝐿1 splitting rules in survival 

forests" by Hoora Moradian et al. (2017)[25]: The Primary Biliary Cirrhosis (PBC) data, 

the CSL Liver Cirrhosis data, the German Breast Cancer (GBC) study group data, the 

Wisconsin Breast Cancer Prognostic (WPBC) data, the Veteran data and the National 

Wilm's Tumor Study (NWTCO) data. A brief description of these data sets is presented 

in Table 1. 

The PBC data is described in the monograph by Fleming and Harrington (1991)[33]. We 

use all twelve of its covariates used by Bou-Hamad et al. (2011)[34] plus copper, sgot 

and stage. The same 312 patients who participated in the randomized trial are used here. 

Missing values are replaced by the median as in Bou-Hamad et al. (2011)[34] and 

Fleming and Harrington (1991)[33]. The data is from the R package SMPracticals[35].  

The CSL data was obtained by Schlichting et al. (1983)[36] and is provided in the 

package timereg[37]. In this example, we only use the six invariant covariates (time, prot, 

sex, treat, prot.base and prot.prev). Records are grouped by ID variable, so the number 

of observations used is 446 (2481 rows). 

The GBSG data (Schumacher et al. (1994)[38]) is obtained from the package mfp[39]. The 

data contains 686 observations and eight covariates. There is no missing data. 

The WPBC data is available in the UCI machine learning repository (Bache and 

Lichman (2013)[40]). We can also find it in package TH.data[41]. There are 198 

observations in the data. However, four missing values are replaced by the average. 

Thirty-two covariates are used in this example.  
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The Veteran data (Kalbfleisch and Prentice (1980)[42]) is obtained from the package 

randomForestSRC[43]. There are 137 observations with no missing values. It contains six 

covariates. 

Finally, the NWTCO data (Breslow and Chatterjee (1999)[44]) is available in the package 

survival[3]. The four relevant covariates, instit, histol, age and stage, are used here. The 

data consists of 4088 observations and no missing values. 

Table 2 Descriptions of the real data sets 

No. Name # 

Covariates 

Sample 

size 

% 

Censoring 

Source 

1 PBC 15 312 60 Package SMPracticals 

2 CSL 6 446 39 Package timereg 

3 GBSG 8 686 56 Package mfp 

4 WPBC 32 198 76 Package TH.data 

5 Veteran 6 137 7 Package randomForestSRC 

6 NWTCO 4 4088 85 Package survival 

 

We can generate and replicate a simulation data set 50 times to obtain reliable results for 

comparing the performances, but we cannot generate data for real data. Therefore, the 

cross-validation method is used to evaluate and obtain results for real data sets. Here, 

each real data set is split into 10 groups. The observations of each group can be used as 

test data to be estimated, while the other observations can be used as training data. Thus, 

10 results for each real data set are obtained.  

Figure 17 below shows Kaplan-Meier estimate of the survival curve for each real data 

set. To ensure that each time block has enough subjects with event time to generate the 
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stacking model, we set the maximum time grid as 3000 for PBC data, 8 for CSL data, 

2000 for GBSG data, 50 for WPBC data, 300 for Veteran data and 500 for NWTCO 

data. 

 

Figure 17 Kaplan-Meier estimate of the survival curve for six real data sets 

with censoring proportion 0.6, 0.39, 0.56, 0.76, 0.07, 0.85 respectively  

(From left to right, from top to bottom) 
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6.2 Real data sets results 

6.2.1 Weights presentation  

The simulation data sets have proven that the weights for each candidate model depend 

on the time range, and general stacking weights are very similar to clustering stacking 

method. However, when it comes to the real data set, things change a bit. As we all 

know, clustering regroups the observations based on their different characteristics. For 

example, the age or the cell size. Each group would have similar properties that may be 

more apparent, and K-means clustering may be a better option for grouping to obtain 

constrained weights than linear model tree. That is why the clustering stacking method 

is introduced and evaluated. 

According to Figure 18 below for PBC data, it appears that the weights of the Cox 

method are barely 0, especially for smaller than 0.8 quantiles of maximum time grid 

3000. The weights of the AFT method have higher importance (the medians are over 0.5 

for each time grid). 

 

Figure 18 Time quantiles weights distribution of stacking method for PBC data 

(Left: general stacking, Right: clustering stacking)  
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However, CSL data (Figure 19) is another case. We can only conclude that the Cox 

method may be ineffective since its weight is early 0 for most time intervals, but we 

cannot discern the importance between the AFT method and survival forest because the 

weights have a wide range from 0 to 1 with large variances. Because there is no clear 

difference, it seems difficult to tell which candidate algorithm is more appropriate for 

this data set, even for a small time range. 

 

Figure 19 Time quantiles weights distribution of stacking method for CSL data 

(Left: general stacking, Right: clustering stacking)  
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Figure 20 Time quantiles weights distribution of stacking method for GBC data 

(Left: general stacking, Right: clustering stacking)  

 

Figure 21 Time quantiles weights distribution of stacking method for WPBC data 

(Left: general stacking, Right: clustering stacking)  
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Figure 22 Time quantiles weights distribution of stacking method for Veteran data 

(Left: general stacking, Right: clustering stacking)  

  

Figure 23 Time quantiles weights distribution of stacking method for NWTCO data 

(Left: general stacking, Right: clustering stacking)  

Figure 20 to Figure 23 show IBS results for GBSG data, WPBC data, Veteran data and 

NWTCO data. GBSB, WPBC, and Veteran data have an obvious preference of choosing 

models by combing their balance weights or with a single high weight. For example, in 

all time ranges, the weight of SRC (survival forests model) is very high for the WPBC 
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data, it could be explained by survival forests model's excellent performance. NWTCO 

is a little different from the others, when time is less than the 0.2 quantile, the random 

forests model gets a very high weight with a slight variance, as shown in Figure 23. 

However, due to its high censoring proportion of 0.85, it is difficult to tell which model 

outperforms the others when time is greater than the 0.2 quantile. One explanation may 

be the lack of data for large time grids. It emphasizes the importance of having enough 

non-censoring data at each time interval to implement the new stacking method. 

6.2.2 Performance comparison 

Since the true survival function is unknown for real data, The IAE and ISE cannot be 

calculated as we did with the artificial data sets. Instead, our primary criterion is the 

integrated Brier Score. It can be considered as weighted mean squared error, the smaller 

a model's integrated Brier Score is, the better it performs. The graphic below shows the 

result of IBS for each candidate method with the stacking method and super learner 

algorithm (Marzieh K.Golmakani et al. 2020[21]). Because of multiple iterations of super 

learner when optimizing risk, super learner algorithm costs too much time for a large 

number of observations, particularly when choosing many candidate models or 

complexes models. Here, in order to save time, only the Cox and lasso models are used 

to optimize. Nonetheless, NWTCO data took approximately a week to obtain the results 

for 4088 observations. 
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Figure 24 Integrated Brier Score (IBS) boxplots of six real data sets 

(1: PBC   2: CSL   3: GBSG   4: WPBC  5: Veteran  6: NWTCO) 

IBS follows the same criteria analogy with IAE and ISE; the smaller IBS, the better it 

perfoms in terms of prediction. Six real data sets all show that the stacking method (or 

clustering stacking) performs best or nearly best with low variance. For PBC data 

(No.1), super leaner perform the worst, while the other methods have almost the same 

performances. For CSL data 2, survival forests performs best because of its smallest 

variance, but overall, these models do not have significant difference under the IBS 

criteria. For GBSG data 3 and WPBC data 4, stacking method performs much better 

than the Cox, AFT and super learner methods, and they perform almost as well as the 

survial forest. Although AFT has smaller IBS than the Cox and stacking methods, it has 

the largest variance. SRC (survival forests model) perfoms better than the Cox model 
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and the AFT model with Veteran data because of its lowest median IBS and lowest 

variance. We also could reach the same conclusion by the analysis of the weights 

presentation figures. SRC get the hightest weight among all the three basic models. For 

the NWTCO data, because of its high proportion of censoring 0.85, it is difficult to tell 

the difference among all the algorithms. 

Overall, this new stacking method with time-dependent and covariate-dependent 

weights can automatically detect the good parts of each candidate model to avoid 

performing the worst, but it is unlike the traditional stacking method with fixed weights 

for each candidate model whose simple linear regression usually gives us the middle 

performance. Since it can combine ideal parts to produce a new estimated survival 

function for each new observation, it can perform near-best of these candidate models. 

Furthermore, when the data has grouping properties, such as in WPBC and Veteran 

data, the clustering stacking method can be useful and performs better than general 

stacking. 
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Chapter 7 

Discussion and conclusion 

This new stacking method with time-dependent and covariate-dependent weights works 

effectively for survival data, and it proves that survival function depends on the time and 

covariates at the same time. According to the fixed time grid, it could automatically 

choose the ideal parts of each candidate model and combine them together with time-

dependent and covariate-dependent weights. In other words, this new stacking method 

can perform nearly the best, no matter if the performance of the candidate algorithm is 

good or not. Another advantage of this new stacking method is that we could analyze its 

weights representation figures to find out which model is more appropriate for a certain 

time range.  

However, the number of time grids could affect the performance of the stacking method. 

Perhaps selecting 9 as the size of the grid is not optimal. Maybe using equispaced grid 

values based on the Kaplan-Meier is not optimal also. Because we cannot know in 

advance which time grid that we choose is the best, the result for stacking method is not 

perfect, although it performs good enough in our experiments on simulation data sets 

and on real data sets. Future studies could investigate the time grid selection to optimize 

the prediction results. 

Another inconvenience is that this stacking method is somewhat complex, and time-

consuming. Here we use three basic methods; if more candidate models are added in, it 

will undoubtedly complicate the process. Due to the weights and grouping work, the 

computation of prediction for new observations at hundreds of time points also takes a 

lot of time. 

In conclusion, with the goal of improving the prediction performance, how to optimize 

this new stacking method with time-dependent and covariate-dependent weights is 

important for future study and research work, either from the direction of choosing time 

grids, or from computing work. 
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Appendix 

Appendix [1] 

The function iaeise is used to calculate IAE (Integrated absolute error) and ISE 

(Integrated square error) for one subject as the criteria value to evaluate the model 

performance for the simulation data set with the inputs s (vector of true survival 

probabilities), shat (vector of estimated survival probabilities), time (vector of time 

points for s and shat) and endpoint (last value for the integration). The function res is 

used to calculate IAE and ISE for all test subjects with the inputs true_prob (vector of 

true survival probabilities, values followed by next subject at all time points), estimated 

(vector of estimated survival probabilities, values followed by next subject at all time 

points), time (vector of time points) and npoints (number of time points).  

# function to compute the IAE and ISE for one subject 

iaeise=function(s,shat,time,endpoint){ 

  # s = vector with the true S (s[1] should be 1) 

  # shat = vector with the estimated S (shat[1] should be 1) 

  # time = time points for s and shat  (time[1] should be 0) 

  # endpoint = last value for the integration (must be > last value of time) 

  time=c(time,endpoint) 

  timediff=diff(time) 

  iae=sum(timediff*abs(s-shat))/endpoint 

  ise=sum(timediff*(s-shat)^2)/endpoint 

  c(iae,ise) 

} 

###################################################### 

# Function to get IAE and ISE for all subjects  

res=function(true_prob,estimated,time,npoints) 

{ 

  res=NULL 

  max_time=max(time)+time[2]-time[1] 

  for(i in 1:(length(true_prob)/npoints)) 

  {  

    true_i=true_prob[((i-1)*npoints+1):(i*npoints)] 

    test_i=estimated[((i-1)*npoints+1):(i*npoints)] 
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    time_i=time[((i-1)*npoints+1):(i*npoints)] 

    addres=iaeise(true_i,test_i,time_i,max_time) 

    res=rbind(res,addres) 

  } 

  return(res)  

} 
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Appendix [2] 

The function get_weights is used to get the weights based on Cox, AFT and SRC with 

the new stacking method as described in Section 4.4. The inputs dattrain (training data 

set), dattest (test data set that needed to be standardized with training data set before 

being clustered with k-means), k (number of folders of cross-validation scheme), t_grid 

(vector of time grids) and formule (formula of target 𝑌 and covariates 𝑋) are needed. A 

list of general stacking weights, liner model tree, k-means model and clustering stacking 

weights fitted with training data are returned. 

# function to get the constrained weights, lmtree models and 

# constrained cluster weights 

get_weights=function(dattrain,dattest,k,t_grid,formule) 

{ 

  ntrain=nrow(dattrain) 

  per=c(1:ntrain) 

  tl=1 

  nntest=ceiling(ntrain/k) 

  predsrc_cv=list() 

  indtest=list() 

  for(i in 1:(k-1)) 

  { 

    indtest[[i]]=per[tl:(tl+nntest-1)] 

    tl=tl+nntest   

  } 

  indtest[[k]]=per[(nntest*(k-1)+1):ntrain] 

  # k folds 

  for(i in 1:k) 

  {  

    cind=indtest[[i]] 

    fitsrc_cv=rfsrc(Surv(y,status)~.,data = dattrain[-cind,],ntree = 200) 

    predsrc_cv[[i]]=predict(fitsrc_cv,newdata=dattrain[cind,])   

  } 

  # AFT model 

  pre_median=NULL 

  pre_scale=NULL 
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  # k=10 folds 

  for (i in 1:k)  

  { 

    cind=indtest[[i]] 

    fitsreg6_cv=survreg(Surv(y,status)~.,data = dattrain[-cind,],dist = 
"loglogistic") 

    add=predict(fitsreg6_cv,newdata = dattrain[cind,],type = "response") 

    add2=fitsreg6_cv$scale 

    pre_median=c(pre_median,add) 

    pre_scale=c(pre_scale,add2) 

  }  

  # Cox model 

  predcox_cv=list() 

  for(i in 1:k) 

  { 

    cind=indtest[[i]] 

    fitcox_cv=coxph(Surv(y,status)~.,data = dattrain[-cind,],x=TRUE) 

    predcox_cv[[i]]=survfit(fitcox_cv,newdata=dattrain[cind,])  

  } 

  # get the combined table for each individual at time t_grid 

  # the table result_train contains true survival prob, estimated prob 
src,aft,cox and time t_grid. 

  result_train=NULL 

  for(i in 1:ntrain) 

  {  

    output_src=NULL 

    output_aft=NULL 

    output_cox=NULL 

    output_t=NULL 

    folder=ceiling(i/nntest) 

    for(t in 1:length(t_grid)) 

    { 

      num_src=which.min(abs(predsrc_cv[[folder]]$time.interest-t_grid[t])) 

      num_cox=which.min(abs(predcox_cv[[folder]]$time-t_grid[t])) 

      add1=predsrc_cv[[folder]]$survival[(i-(folder-1)*(nntest)),][num_src] 

      add2=1/(1+((t_grid[t]/pre_median[i])^(1/pre_scale[folder]))) 

      add3=predcox_cv[[folder]][(i-(folder-1)*(nntest))]$surv[num_cox] 
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      add4=t_grid[t] 

      output_src=c(output_src,add1) 

      output_aft=c(output_aft,add2) 

      output_cox=c(output_cox,add3) 

      output_t=c(output_t,add4) 

    } 

    add5=bind_rows(replicate(length(t_grid), dattrain[i,], simplify = FALSE)) 

    
result_train_i=data.frame(add5,output_src=output_src,output_aft=output_aft, 

                              output_cox=output_cox,t=output_t) 

    result_train=rbind(result_train,result_train_i) 

  } 

  # Get pseudo-observations of train group 

  pseudo_surv=pseudosurv(time=dattrain$y,event=dattrain$status,tmax = t_grid) 

  # From the summary table, we can see that the pseudo-observations based  

  # on the Kaplan-Meier estimator have negative value or more than 1.  

  # put the pseudo-observations in the table 

  pseudo_s=NULL 

  for(i in 1:nrow(pseudo_surv$pseudo)) 

  { 

    pseudo_s=c(pseudo_s,pseudo_surv$pseudo[i,]) 

  } 

  result_train$pseudo_s=pseudo_s 

  mob_train=list() 

  pre_train=list() 

  node_train=list() 

  nodeid_train=list() 

  for(i in 1:length(t_grid)) 

  { 

    mydata=result_train[result_train$t==t_grid[i],] 

    mob_train[[i]]<- lmtree(formule,data = mydata) 

    pre_train[[i]]=predict(mob_train[[i]],mydata,type = "response") 

    node_train[[i]]=predict(mob_train[[i]],mydata,type="node") 

    nodeid_train[[i]]=sort(unique(node_train[[i]])) 

  } 

  train_node=NULL 

  for (i in 1:ntrain) 
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  {  

    for( j in 1:length(t_grid)) 

    { 

      add=node_train[[j]][i] 

      train_node=c(train_node,add) 

    } 

  } 

  result_train$node=train_node 

  ntype=3 # number of algorithms 

  # To get constrained weights(sum=1,and be positives) 

  weights_train=list() 

  #predict_train=rep(0,ntrain) 

  for(i in 1:length(t_grid)) 

  { 

    weights_train[[i]]=matrix(0,length(nodeid_train[[i]]),3)  

    for(j in 1:length(nodeid_train[[i]])) 

    { 

      indi=which(result_train$t==t_grid[i] & 
result_train$node==nodeid_train[[i]][j]) 

      dati=result_train[indi,] 

      
Rinv=solve(chol(as.matrix(t(dati[,c("output_src","output_aft","output_cox")])
) %*% as.matrix(dati[,c("output_src","output_aft","output_cox")]))) 

      c=cbind(rep(1,ntype),diag(ntype)) 

      b=c(1,rep(0,ntype)) 

      d=as.matrix(t(dati[,"pseudo_s"])) %*%  

        as.matrix(dati[,c("output_src","output_aft","output_cox")]) 

      weights_train[[i]][j,]=solve.QP(Dmat = Rinv,factorized = TRUE, 

                                      dvec = d,Amat = c,bvec = 
b,meq=1)$solution 

      # compute the predictions with the new weights 

      #predict_train[indi]=apply(t(weights_train[[i]][j,] *  

      #                              
as.matrix(t(dati[,c("output_src","output_aft","output_cox")]))),1,sum) 

    } 

  } 

  ###### get cluster weights 

  ngroup=NULL 
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  for(i in 1:length(t_grid)) 

  { 

    ngroup[i]=nrow(weights_train[[i]]) 

  } 

  mydata_all=rbind(dattrain[,!(names(dattrain) %in% 
c("y","status"))],dattest[,!(names(dattest) %in% c("y","status"))]) 

  mydata_all_sta=as.data.frame(scale(mydata_all,center = TRUE,scale = TRUE)) 

  mydata=dattrain[,!(names(dattrain) %in% c("y","status"))] 

  mydata_standalise=mydata_all_sta[c(1:nrow(dattrain)),] 

  result=list() 

  weights_cluster=list() 

  my_data=list() 

   

  for(i in 1:length(t_grid))   

  {  

    result[[i]]=kmeans(mydata_standalise,ngroup[i]) 

    my_data[[i]]=result[[i]]$cluster 

    weights_cluster[[i]]=matrix(0,ngroup[i],ntype) 

    for(j in 1:ngroup[i]) 

    { 

      indi=which(my_data[[i]]==j) 

      dati=result_train[result_train$t==t_grid[i],][indi,] 

      
Rinv=solve(chol(as.matrix(t(dati[,c("output_src","output_aft","output_cox")])
) %*%  

                        
as.matrix(dati[,c("output_src","output_aft","output_cox")]))) 

      c=cbind(rep(1,ntype),diag(ntype)) 

      b=c(1,rep(0,ntype)) 

      d=as.matrix(t(dati[,"pseudo_s"])) %*% 
as.matrix(dati[,c("output_src","output_aft","output_cox")]) 

      weights_cluster[[i]][j,]=solve.QP(Dmat = Rinv,factorized = TRUE,dvec = 
d,Amat = c,bvec = b,meq=1)$solution 

    } 

  }   

return(list(weights_train=weights_train,mob_train=mob_train,mob_cluster=resul
t,weights_cluster=weights_cluster)) 

}  
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Appendix [3] 

The function pre_test can get predictions for test data of three candidate models Cox, 

AFT, SRC, general stacking and clustering stacking models with the inputs dattrain 

(training data set that needed to be standardized with test data set), dattest (test data set), 

mob_train  (linear model tree obtained from function get_weights), weights_train 

(general stacking weights obtained from function get_weights), mob_cluster (k-means 

model obtained from function get_weights), weights_cluster (clustering stacking 

weights obtained from function get_weights) and t_grid (vector of time grids). The time 

points from prediction of SRC model are used for all the other models. 

# function to get predictions of all the models 

pre_test=function(dattrain,dattest,mob_train,weights_train,mob_cluster,weight
s_cluster,t_grid) 

{ 

  ntest=nrow(dattest) 

  ntype=3 

  # fit 3 models for test group 

  # AFT model 

  fitsreg6=survreg(Surv(y,status)~.,data = dattrain,dist = "loglogistic") 

  test_median=predict(fitsreg6,newdata = dattest,type = "response") 

  test_scale=fitsreg6$scale 

  # Survival tree 

  fitsrc=rfsrc(Surv(y,status)~.,data = dattrain,ntree = 200) 

  predsrc=predict(fitsrc,newdata=dattest) 

  # Cox model 

  fitcox=coxph(Surv(y,status)~.,data = dattrain,x=TRUE) 

  predcox=survfit(fitcox,newdata=dattest) 

  # Test group frame date set 

  result_test=NULL 

  t_points=c(0,predsrc$time.interest) 

  for(i in 1:ntest) 

  {  

    output_aft=NULL 

    output_cox=NULL 

    id=NULL 
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    for(t in 1:length(t_points)) 

    { 

      num_cox=which.min(abs(predcox$time-t_points[t])) 

      add2=1/(1+((t_points[t]/test_median[i])^(1/test_scale))) 

      add3=predcox$surv[num_cox,i] 

      output_aft=c(output_aft,add2) 

      output_cox=c(output_cox,add3) 

    } 

result_test_i=data.frame(id=rep(i,length(t_points)),output_src=c(1,predsrc$su
rvival[i,]),output_aft=output_aft,output_cox=output_cox,t=t_points) 

    result_test=rbind(result_test,result_test_i) 

  } 

  # put the estimated values(stack) with constraints in the data set 

  t_med=0.5*(t_grid[-1]+t_grid[-length(t_grid)]) 

  t_pre=NULL 

  for(i in 1:length(t_points)) 

  {  

    if(t_points[i]<=t_med[1]){add=1} 

    if(t_points[i]>t_med[length(t_med)]){add=length(t_med)+1} 

    for(j in 1:(length(t_med)-1)) 

    { 

      if(t_points[i]>t_med[j] & t_points[i]<=t_med[j+1]){add=j+1} 

    } 

    t_pre=c(t_pre,add) 

  } 

  result_test$t_pre=t_pre 

  predict_test=NULL 

  node_test=NULL 

  for(i in 1:nrow(result_test)) 

  { 

    j=result_test[i,]$t_pre 

    mydata=dattest[result_test[i,]$id,] 

    i_node=predict(mob_train[[j]],mydata,type = "node") 

if(length(coef(mob_train[[j]]))>ntype){num_node=which(row.names(coef(mob_trai
n[[j]]))==i_node)} 

    if(length(coef(mob_train[[j]]))==ntype){num_node=1} 

    add_test=apply(t(weights_train[[j]][num_node,] *  
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as.matrix(t(result_test[i,c("output_src","output_aft","output_cox")]))),1,sum
) 

    node_test=c(node_test,num_node) 

    predict_test=c(predict_test,add_test) 

  } 

  result_test$node=node_test 

  result_test$stack=predict_test 

  mydata_all=rbind(dattrain[,!(names(dattrain) %in% 
c("y","status"))],dattest[,!(names(dattest) %in% c("y","status"))]) 

  mydata_all_sta=as.data.frame(scale(mydata_all,center = TRUE,scale = TRUE)) 

  test_standalise_unique=mydata_all[c((nrow(dattrain)+1):nrow(mydata_all)),] 

  
test_standalise=test_standalise_unique[rep(seq_len(nrow(test_standalise_uniqu
e)), each = length(t_points)),] 

  test_standalise$t_pre=result_test$t_pre 

  pre_group=list() 

  pre_prob=list() 

  test_i=list() 

  t_sort=unique(test_standalise$t_pre) 

  for(i in 1:length(t_sort)) 

  { 

    test_i[[i]]=test_standalise[test_standalise$t_pre==t_sort[i],] 

    pre_group[[i]]=cl_predict(mob_cluster[[t_sort[i]]], 
test_i[[i]][,!(names(test_i[[i]]) %in% c("t_pre"))]) 

    
pre_prob[[i]]=rep(0,nrow(test_standalise[test_standalise$t_pre==t_sort[i],])) 

    for (j in 1:nrow(weights_cluster[[i]])) 

    { 

      indi=which(pre_group[[i]]==j) 

      dati=result_test[result_test$t_pre==t_sort[i],][indi,] 

      pre_prob[[i]][indi]=apply(t(weights_cluster[[t_sort[i]]][j,] *  

                                    
as.matrix(t(dati[,c("output_src","output_aft","output_cox")]))),1,sum) 

    } 

  }  

  stack_cluster=rep(0,nrow(result_test)) 

  for(p in 1:length(t_sort)) 

  { 
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    tra=which(result_test$t_pre==t_sort[p]) 

    stack_cluster[tra]=pre_prob[[p]] 

  } 

  result_test$stack_cluster=stack_cluster 

  return(result_test)   

}  
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Appendix [4] 

The function isotonic is used to render the estimated survival probabilities non-

increasing with time. For any model, the estimated survival probability at time 𝑡 = 0 

should be 1, and it should not be greater than the previous time point. We have the 

result_test (a table of estimated survival probabilities at all time points fitted by the Cox, 

AFT, SRC, general stack, cluster stack and super learner models for all test individuals) 

and npoints (number of time points) as inputs. 

# function to make shat[1]=1 and isotonic regression 

isotonic=function(result_test,npoints){ 

  result=NULL 

  for(i in 1:(nrow(result_test)/npoints)) 

  {  

    individu=result_test[(i-1)*npoints+seq(npoints),] 

    individu$output_src[1]=1 

    individu$output_aft[1]=1 

    individu$output_cox[1]=1 

    individu$stack[1]=1 

    individu$stack_cluster[1]=1 

    individu$super[1]=1 

    for(j in 2:npoints) 

    { 

      if(individu$stack[j]>individu$stack[j-
1]){individu$stack[j]=individu$stack[j-1]} 

      if(individu$stack[j]<0){individu$stack[j]=0} 

      if(individu$stack_cluster[j]>individu$stack_cluster[j-
1]){individu$stack_cluster[j]=individu$stack_cluster[j-1]} 

      if(individu$stack_cluster[j]<0){individu$stack_cluster[j]=0} 

    } 

    result=rbind(result,individu) 

  } 

  return(result) 

}   
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Appendix [5] 

DGP1-DGP4 are four Data Generating Processes (DGPs) that produce simulated date 

sets. The DGPs are described in detail in Section 5.1. True survival probabilities for 

simulated data are calculated using the trueS1-trueS4 functions, which take values from 

DGPs and a vector of time points as inputs. 

# Function to generate artificial survival data DGP1 

# n = sample size 

# parcens = parameter(lambda) of the exponential censoring time.  

#         Use it to get the desired proportion of censoring 

# output = data frame with 21 columns 

# col1 - col15 = covariates V1-V15 

#           (only V1,V2,V3,V5,V6,V7,V10 are related to the event time) 

# col16 = y = observed time(true or censored). This is the target variable 

# col17 = status = 1 = dead(event occured); 0 = alive (censored) 

# col18 -  col21 are used to evaluate the models but are not available for 
training and in fact 

#                would not be available in a real applicaiton 

# col18 = truey = true event time 

# col19 = cens = ture cencoring time 

# col20 = truefx = true function of the covariates (log scale) 

#                log(Y) = truefx+epsilon 

#                epsilon if from a gamma(3,5) distribution 

# col21 = exptruefx = exp(truefx) 

#                Y = exptruefx*exp(epsilon) 

DGP1=function(n,parcens) 

{ 

  library(mvtnorm) 

  sigma=matrix(0.3,15,15) 

  sigma=sigma+0.7*diag(15) 

  x=rmvnorm(n,mean = rep(0,15),sigma = sigma) 

  x[,6]=abs(x[,6]) 

  x[,7]=as.numeric(x[,7]>0.5) 

  x[,8]=as.numeric(x[,8]>0.2) 

  x[,9]=log(x[,9]+5) 
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  x[,10]=exp(x[,10]/3) 

  x[,11]=as.numeric(x[,11]>0.1) 

  x[,12]=abs(x[,12]) 

  truefx=-0.5+(x[,1]+x[,2]+0.3*x[,2]^2+x[,5]+x[,6]-0.3*x[,5]*x[,6]+x[,7]+ 

                 1/(x[,10]+3)+(x[,3]>0)*(x[,1]>0)-(x[,3]<0)*(x[,1]>0))/3 

  truefx=apply(cbind(truefx,1.7),1,min) 

  truefx=apply(cbind(truefx,-1.8),1,max) 

  exptruefx=exp(truefx) 

  # true value of Y(time) if no censoring 

  truey=exptruefx*rgamma(n,3,5) 

  # censoring time 

  cens=rexp(n,1/parcens) 

  # observed time 

  y=apply(cbind(truey,cens),1,min)  

  # censoring indicator (1 = event occured (dead); 0 = censored (alive)) 

  status=as.numeric(truey<cens) 

  out=data.frame(cbind(x,y,status,truey,cens,truefx,exptruefx)) 

  out 

} 

# function to compute the true survival function: DGP1 

trueS1=function(exptruefx,vectime) 

{ 

  # exptruefx = value from DGP1 function 

  # vectime = vector of points where to evaluate S 

  pgamma(vectime/exptruefx,3,5,lower.tail = FALSE) 

} 

 

# Functions to reproduce DGP 2 to 4 from Moradian et al. (2017)[17] 

####################### DGP2 

DGP2=function(n,alpha) 

{ 

  # n = sample size 

  # alpha = parameter for the censoring distribution 

  # status = 1 = dead (event occured); 0 = alive (censored) 

  dat=data.frame(matrix(runif(n*10),ncol=10)) 

  names(dat)=paste("x",1:10,sep="")  
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  dat$u=10*abs(sin(dat$x1*pi-1)) + 3*abs(dat$x2-.5) + dat$x3 

  dat$truetime=rexp(n,1/dat$u) 

  dat$censor=alpha*runif(n) 

  dat$y=apply(dat[,c("censor","truetime")],1,min) 

  dat$status=as.numeric(dat$truetime<=dat$censor) 

  dat 

} 

# function to compute the true survival function DGP2 

trueS2=function(u,vectime) 

{ 

  # u = value from DGP2 function 

  # vectime =  vector of points where to evaluate S 

  pexp(vectime, rate = 1/u, lower.tail = FALSE, log.p = FALSE) 

} 

####################### DGP3 

DGP3=function(n,alpha) 

{ 

  # n = sample size 

  # alpha = parameter for the censoring distribution 

  sigma=diag(25) 

  for(i in 1:25){ 

    for(j in 1:25){ 

      sigma[i,j]=0.75^{abs(i-j)} 

    } 

  } 

  dat=data.frame(rmvnorm(n,sigma=sigma)) 

  names(dat)=paste("x",1:25,sep="") 

  dat$u=0.5 + 0.3*abs(dat$x11+dat$x12+dat$x13+dat$x14+dat$x15) 

  dat$truetime=rgamma(n,shape=dat$u,scale=2) 

  dat$censor=alpha*runif(n) 

  dat$y=apply(dat[,c("censor","truetime")],1,min) 

  dat$status=as.numeric(dat$truetime<=dat$censor) 

  dat   

} 

# function to compute the true survival function: DGP3 

trueS3=function(u,vectime) 
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{ 

  # u = value from DGP3 function 

  # vectime =  vector of points where to evaluate S 

  pgamma(vectime,shape=u,scale=2,lower.tail = FALSE) 

} 

####################### DGP4 

DGP4=function(n,alpha) 

{ 

  # n = sample size 

  # alpha = parameter for the censoring distribution 

  sigma=diag(25) 

  for(i in 1:25){ 

    for(j in 1:25){ 

      sigma[i,j]=0.9^{abs(i-j)} 

    } 

  } 

  dat=data.frame(rmvnorm(n,sigma=sigma)) 

  names(dat)=paste("x",1:25,sep="") 

  
dat$u=0.1*abs(dat$x11+dat$x12+dat$x13+dat$x14+dat$x15+dat$x16+dat$x17+dat$x18
+dat$x19+dat$x20) 

  dat$truetime=rexp(n,1/dat$u) 

  dat$censor=rexp(n,alpha/dat$u) 

  dat$y=apply(dat[,c("censor","truetime")],1,min) 

  dat$status=as.numeric(dat$truetime<=dat$censor) 

  dat 

} 

# function to compute the true survival function: DGP4 

trueS4=function(u,vectime) 

{ 

  # u = value from DGP4 function 

  # vectime =  vector of points where to evaluate S 

  pexp(vectime, rate = 1/u, lower.tail = FALSE, log.p = FALSE) 

} 
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