
i

HEC Montréal

Stacking with time-dependent and covariate-dependent weights with survival data

Par

Wei Qin

Département des sciences de la décision

HEC Montréal

Mémoire présenté à HEC Montréal

en vue de l’obtention du grade de Maître ès sciences (M.Sc.)

en Science des données et analytiques d'affaires

Juillet 2021

© Wei Qin, 2021

ii

RÉSUMÉ

L'idée de base du stacking est de combiner k modèles à l’aide d’un modèle linéaire

généralisé. Chaque modèle reçoit un poids différent et, en pratique, ces poids doivent

être estimés à partir des données, généralement par validation croisée. Ce mémoire se

concentre sur les données de survie avec des observations censurées à droite.

Nous savons que la probabilité de survie individuelle diminue avec le temps t, et nous

voulons estimer la fonction de survie en utilisant la méthode du stacking. Nous étudions

deux extensions de la méthode du stacking de base. La première consiste à laisser les

poids être une fonction des covariables x, ce qui peut être intéressant lorsque certains

modèles sont bons dans certaines parties de l'espace des covariables mais pas dans

d'autres parties. Les poids peuvent s'ajuster d'eux-mêmes en fonction des forces des

modèles. La deuxième extension consiste à laisser les poids être une fonction du temps t

où le poids du modèle k change au fur et à mesure que le temps t change. Cela peut être

intéressant lorsque certains modèles sont bons pour estimer la fonction de survie pour

une partie de l'intervalle de temps mais pas dans d'autres parties. Là encore, les poids

peuvent s'ajuster d'eux-mêmes en fonction des forces des modèles.

Ce mémoire combine ces deux extensions. Les poids peuvent dépendre à la fois du

temps t et des covariables x. Ici, nous pouvons utiliser des "model-based trees" pour

diviser le modèle selon x afin d'obtenir les poids à chaque temps t d'une grille. Des

pseudo-observations sont utilisées pour traiter la censure et estimer les poids.

Cette approche offre une nouvelle méthode de stacking pour l'analyse de prédiction des

données de survie. Les résultats de simulations et des applications à des ensembles de

données réelles montrent que cette méthode de stacking pondéré peut effectivement

choisir le bon modèle et lui donner un poids plus élevé. En d'autres termes, cette

méthode de stacking peut combiner automatiquement les bonnes parties de chaque

modèle pour avoir la possibilité d'obtenir un meilleur résultat de prédiction. Une étude

plus approfondie sera nécessaire pour définir la grille de temps appropriée à utiliser pour

optimiser les performances.

iii

Mots-clés : Données de survie, stacking, modèles d'ensemble, poids, temps, covariables

iv

ABSTRACT

The basic stacking idea is to combine 𝐾 models by generalized linear model. Each

model receives a different weight, and in practice, these weights must be estimated from

the data, usually by cross-validation. This thesis focuses on survival data with right-

censored observations.

We know that the individual survival probability decreases with time t, and we want to

estimate the survival function using the stacking method. We investigate two extensions

of the basic stacking method. The first extension is to allow the weights to be a function

of the covariate 𝑋, which may be interesting when some models are good in some parts

of the covariate space, but not in other parts. The weights can adjust themselves

according to the strengths of the models. The second extension is to let the weights be a

function of time 𝑡, where the weight of model k changes as the time 𝑡 changes. This

may be interesting when some models are good to estimate the survival function for

some part of the time range, but not in other parts. Again, the weights can adjust

themselves according to the strengths of the models.

This thesis combines these two extensions. The weights can depend both on the time 𝑡

and covariates 𝑋. Here, we can use "model-based trees" to split the model according to

𝑋 to get the weights at each time 𝑡 of a grid. Pseudo-observations are used to deal with

the censoring and to estimate the weights.

This approach provides a new stacking method for survival data prediction analysis. The

results of simulations and applications to real data sets show that this weighted stacking

method can effectively choose the good performance model and give it a higher weight.

In other words, this stacking method can automatically combine the good parts of each

model to provide the possibility of getting a better prediction result. Further study will

be required to define the appropriate time grid that should be used to optimize the

performance.

Keywords: Survival data, stacking, ensemble models, weights, time, covariates

v

Table of Contents

RÉSUMÉ ... ii

ABSTRACT ...iv

List of tables .. viii

List of figures ...ix

Acknowledgements ..xi

Introduction ... 1

Chapter 1 ... 3

The current practical methods in survival analysis ... 3

1.1 Non-parametric estimation of survival function ... 5

1.2 Cox model... 6

1.3 AFT model .. 8

1.4 Survival trees and forests .. 9

1.5 Other algorithms ... 12

1.5.1 Regularization methods with survival data.. 12

1.5.2 Boosting with survival data ... 13

Chapter 2 ... 15

Stacking methodology ... 15

2.1 Ordinary stacking methodology .. 15

2.2 Latest stacking methods for survival data ... 16

Chapter 3 ... 20

Evaluation method with survival data ... 20

vi

3.1 IAE and ISE .. 20

3.2 IBS score... 21

Chapter 4 ... 25

Methodology ... 25

4.1 Step 1: Select the 𝐾 = 3 models for stacking method .. 25

4.2 Step 2: Select a grid of values for the time range ... 26

4.3 Step 3: Fit models with training data in two different ways ... 27

4.3.1 With all the training data ... 27

4.3.2 With a cross-validation scheme (e.g. 10 fold) ... 27

4.4 Step 4: Optimize the weights with pseudo-observations values ... 27

4.4.1 Pseudo-observation ... 28

4.4.2 Optimize the weights ... 29

4.5 Compute the final estimation for test data .. 31

4.5.1 Compute new data estimate at time grid 𝑡𝑔 .. 31

4.5.2 Compute new data estimate for all time 𝑡 ... 31

4.5.3 Adjustment of estimated survival probability value .. 31

4.6 Clustering stacking methodology ... 32

Chapter 5 ... 33

Simulation study ... 33

5.1 Simulation design ... 33

5.1.1 DGP 1 .. 33

5.1.2 DGP 2 .. 34

vii

5.1.3 DGP 3 .. 34

5.1.4 DGP 4 .. 34

5.2 Simulation results ... 36

5.2.1 Weights presentation ... 36

5.2.2 Performance comparison ... 40

5.3 Supplementary simulation analysis... 43

Chapter 6 ... 51

Real data study .. 51

6.1 Introduction of six selected real data sets ... 51

6.2 Real data sets results ... 54

6.2.1 Weights presentation ... 54

6.2.2 Performance comparison ... 58

Chapter 7 ... 61

Discussion and conclusion .. 61

Appendix ... 62

Appendix [1] ... 62

Appendix [2] ... 64

Appendix [3] ... 69

Appendix [4] ... 73

Appendix [5] ... 74

References ... 78

viii

List of tables

Table 1 Description of the simulations ... 43

Table 2 Descriptions of the real data sets .. 52

ix

List of figures

Figure 1 The integrated Brier score with no censoring ... 23

Figure 2 Kaplan-Meier estimate of the survival curve for 10000 observations of four simulations data sets

 .. 35

Figure 3 Time quantiles weights distribution of stacking method for DGP1 (ntrain=100) 37

Figure 4 Time quantiles weights distribution of stacking method for DGP2 (ntrain=100) 38

Figure 5 Time quantiles weights distribution of stacking method for DGP3 (ntrain=100) 38

Figure 6 Time quantiles weights distribution of stacking method for DGP4 (ntrain=100) 39

Figure 7 Integrated Absolute Error (IAE) boxplots of four simulation data sets (ntrain=100) 40

Figure 8 Integrated Square Error (ISE) boxplots of four simulation data sets (ntrain=100) 41

Figure 9 Integrated Brier Score (IBS) boxplots of four simulation data sets (ntrain=100) 42

Figure 10 Time quantiles weights distribution of general stacking method for DGP1 44

Figure 11 Time quantiles weights distribution of general stacking method for DGP2 45

Figure 12 Time quantiles weights distribution of general stacking method for DGP3 45

Figure 13 Time quantiles weights distribution of general stacking method for DGP4 46

Figure 14 Integrated Absolute Error (IAE) boxplots of four simulation data sets (ntrain=500) 48

Figure 15 Integrated Square Error (ISE) boxplots of four simulation data sets (ntrain=500) 49

Figure 16 Integrated Brier Score (IBS) boxplots of four simulation data sets (ntrain=500) 50

Figure 17 Kaplan-Meier estimate of the survival curve for six real data sets ... 53

Figure 18 Time quantiles weights distribution of stacking method for PBC data 54

Figure 19 Time quantiles weights distribution of stacking method for CSL data 55

Figure 20 Time quantiles weights distribution of stacking method for GBC data 56

x

Figure 21 Time quantiles weights distribution of stacking method for WPBC data 56

Figure 22 Time quantiles weights distribution of stacking method for Veteran data 57

Figure 23 Time quantiles weights distribution of stacking method for NWTCO data 57

Figure 24 Integrated Brier Score (IBS) boxplots of six real data sets ... 59

xi

Acknowledgements

I would like to thank the following people, without whom I would not have been able to

complete this research, and without whom I would have not made it through my

master's degree.

First of all, I would like to express my sincere gratitude to my supervisor Professor

Denis Larocque for his consistent support and guidance throughout this project and the

difficult period of the COVID-19 pandemic. His insight and knowledge always open up

new directions and provide me with detailed, easy-to-understand guidance whenever I

encounter research difficulties. His world-class expertise and rigorous academic attitude

have deeply influenced me for my rest of life.

I would also like to thank my family for all the support they have shown me through this

research. I thank my husband Yu for his patience, encouragement, and support in my

daily life. A special thanks to my parents in China for their understanding and support.

Finally, I would like to thank the members of the jury for their time.

1

Introduction

Survival analysis is used to analyze data in which the time until an event is of interest.

The response is often referred to as a failure time, survival time or event time. Many

medical trials involve following patients for a long time, e.g., time until tumor

recurrence or time until cardiovascular death after some treatment intervention. The

follow-up time for the study may range from a few weeks to many years. Over the

years, survival analysis has been applied in various other domains, such as predicting

the churning of customers, estimating the time at which a equipment failure, etc. In the

former example, the time the person begins to be a customer with a company can be

thought of as the birth event, and the time of leaving the company can be considered the

death event.

In many studies, when we perform survival analysis, it is often the case that we may not

have exact failure times for all observations, as lifetime data are often "censored". This

is because the event has not yet occurred for some subjects at the end of study. This

situation is called right-censoring; that is, some subjects may live longer than the

duration of the study, or left early before experiencing the event of interest. There are

other types of censored data, such as left-censored data, a situation in which when we

start our study, the event has already occurred, but we do not know exactly when.

Therefore, the event time of a left-censored subject has occurred before a particular

time. If we know the event occurred within some interval of time, the observations

would be interval censored. Additionally, due to a systematic selection process inherent

to the study design, the truncation may cause an observation to be incomplete. Among

all these situations of censoring or truncation, right-censoring is the most common

situation for survival analysis in practice.

We are interested in how a risk factor or treatment affects time to disease or some other

event. Many models to link the covariates to the target time 𝑇 are available. The most

popular model is the Cox model (proportional hazard model), which is semiparametric.

This model specifies how the covariates modify the hazard function, but the hazard

2

function itself is not completely specified. Otherwise, the accelerated failure time (AFT)

model is fully parametric. We also have advanced methods like survival trees and

forests, boosting for survival data, and regularization with survival data.

The prediction of survival analysis can be the survival function or survival time. This

thesis focus on survival function to predict the probabilities of event occurrence at time

𝑡 with enough time points. Among all the methods of survival analysis, each model has

its own advantage. This thesis provides a new stacking method which may combine the

benefits of the existing models, and its weights can depend both on time 𝑡 and

covariates 𝑋 to improve prediction performance for right censoring survival data.

3

Chapter 1

The current practical methods in survival analysis

Models like linear regression, decision tree, random forests and boosting for general

data modeling could also be applied to survival data. However, these models should be

modified and adjusted to accommodate the properties of survival data, such as

censoring.

The Cox model, the AFT model and survival forests are currently the most-used

practical methods in survival analysis. The Cox model and the AFT model are

developed from linear regression, while survival forests are based on the general random

forests. To better understand these models, some fundamental concepts must first be

known in survival analysis.

The first basic notion is the survival function. It gives the probability that a subject will

survive past time 𝑡. If we let 𝑇 > 0 denote the response variable, i.e., the survival time,

the survival function is defined as

𝑆(𝑡) = Pr(𝑇 > 𝑡) = 1 − 𝐹(𝑡) (1)

Where 𝐹(𝑡) is the cumulative distribution function of 𝑇.

We could use the time of death of humans as an example. At time 𝑡 = 0, the birth time,

the probability that they will survive time 0 is certain, which means 𝑆(0) = 1. As

humans grow up and time passes by, their survival probability will decrease, the

probability that they will reach their second birthday is less than the probability of

reaching their first birthday, and we can say with certainty that they will not live forever.

This means that when time goes to infinity, death will definitely come. Their survival

probability is 0, 𝑆(∞) = 0. In theory, we could conclude that the survival function is

non-increasing. In practice, we observe events on a discrete time scale like hours, days,

weeks, etc.

4

Another definition is the hazard function ℎ(𝑡). It is the instantaneous rate at which an

event occurs, with the condition that it survives up to time 𝑡. In other words, there is no

previous event. Its definition is:

ℎ(𝑡) = lim
∆𝑡→0

Pr(𝑡<𝑇≤𝑡+∆𝑡|𝑇>𝑡)

∆𝑡
=

𝑓(𝑡)

𝑆(𝑡)
 (2)

where 𝑓(𝑡) is the density function. Another interesting function is the cumulative hazard

function, or integrated hazard function. It is defined by:

𝐻(𝑡) = ∫ ℎ(𝑢)𝑑𝑢
𝑡

0
 (3)

This is the integral of the hazard function up to time 𝑡. It measures the cumulated risk up

to a given time. The greater 𝐻(𝑡) is, the greater the risk that the event occurs by time t.

If any one of the functions ℎ(𝑡), 𝐻(𝑡), or 𝑆(𝑡) is known, we can derive the other two

functions by using the equations:

ℎ(𝑡) = −
𝜕log(𝑆(𝑡))

𝜕𝑡
 (4)

𝐻(𝑡) = −log(𝑆(𝑡)) (5)

𝑆(𝑡) = exp(−𝐻(𝑡)) (6)

Because survival data often has censoring, it is necessary to have a specific notation to

represent it. In this thesis, we define:

• 𝑇𝑖 to be the survival time for the 𝑖th subject

• 𝐶𝑖 to be the censoring time for the 𝑖th subject

• 𝛿𝑖 to be the event indicator

𝛿𝑖 = {
1iftheeventwasobserved(𝑇𝑖 ≤ 𝐶𝑖)

0iftheresponsewascensored(𝑇𝑖 > 𝐶𝑖)

• The observed response as 𝑌𝑖 = min(𝑇𝑖, 𝐶𝑖)

These basic definitions related to survival function will be used in Section 1.1 to 1.5, in

which we briefly introduce the theory of the current practical estimation methods of

5

survival function, including the non-parametric method, the semi-parametric method

Cox model, the full-parametric method AFT model, survival forests and other methods.

1.1 Non-parametric estimation of survival function

To estimate the survival function of one specific group, it may not be necessary to

design a model with estimated parameters. As we know each subject's event time or

censored time, we could calculate its empirical survival probability in a time range by

computing the percentage of survival numbers. The cumulative survival probability

could be computed by the multiplication of survival probabilities of consecutive time

intervals.

Whether or not the data that exist are censored, the non-parametric Kaplan-Meier

method can be used to estimate 𝑆(𝑡). We define 𝑡𝑖 as the time when the event happened,

𝑑𝑖 as the number of events that happened at time 𝑡𝑖, and 𝑛𝑖 as the individuals known to

have survived, but have not yet had an event or been censored up to time 𝑡𝑖.(1 −
𝑑𝑖

𝑛𝑖
) is

exactly the survival probability for the time interval (𝑡𝑖−1,𝑡𝑖). By multiplying the

survival probabilities of consecutive time intervals for 𝑡𝑖 ≤ 𝑡, the Kaplan-Meier

estimator of the survival function 𝑆(𝑡) can be obtained by:

𝑆(𝑡)̂ = ∏ (1 −
𝑑𝑖

𝑛𝑖
)𝑖:𝑡𝑖≤𝑡
 (7)

The Kaplan-Meier estimate is the simplest way of computing the survival over time with

censored observations. It involves the computing of probabilities of occurrence of an

event at a certain point in time and multiplying these successive probabilities by any

earlier computed probabilities to get the final estimate. This method does not involve

covariates 𝑋. Therefore, it can only generally present the survival function of this group,

as we could not get the individual estimated survival function according to specific

characteristics of one subject.

6

1.2 Cox model

The Cox model is a well-recognized statistical technique for analyzing survival data,

and likely the model used most often. This model is based on the risk function. The part

of the effects of the covariates is similar to linear regression without an intercept. For a

subject with covariates values 𝑥1, 𝑥2, … , 𝑥𝑝, its risk function can be written as the

equation ℎ(𝑡|𝑥1, 𝑥2, … , 𝑥𝑝) = ℎ0(𝑡)exp(𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑝𝑥𝑝) where ℎ0(𝑡) is the

baseline hazard function that is left unspecified.

If all the 𝑥𝑖 are equal to zero, ℎ(𝑡|𝑥1, 𝑥2, … , 𝑥𝑝) = ℎ0(𝑡) exp(𝛽1𝑥1 + 𝛽2𝑥2 +⋯+

𝛽𝑝𝑥𝑝) = ℎ0(𝑡) exp(0) = ℎ0(𝑡) ∗ 1 = ℎ0(𝑡), the risk function corresponds to the value

of the baseline hazard function ℎ0(𝑡). ℎ0(𝑡) may vary over time, as it is a function of t.

The parameters 𝛽1, 𝛽2, … 𝛽𝑝 are the effects of the covariates on this baseline hazard

function. From the formula, it is evident that increasing 𝑥𝑗 by 1, with the other

covariates fixed, multiplies the risk by exp(𝛽𝑗). The quantities exp(𝛽𝑗) are called

hazard ratios (𝐻𝑅). A value of 𝛽𝑗 greater than zero, or equivalently a hazard ratio

greater than one, indicates that as the value of the 𝑖th covariate increases, the event

hazard increases and thus the length of survival decreases. In summary,

𝐻𝑅 = 1: No effect

𝐻𝑅 < 1: Reduction in the hazard, increase of survival probability and survival time

𝐻𝑅 > 1: Increase in hazard, decrease of survival probability and survival time

For linear regression, we can usually estimate the parameters by MLE (maximum

likelihood). Since the Cox model is semi-parametric because of the baseline hazard

function, the usual MLE cannot be used to estimate the parameters. However, it is still

possible to estimate the parameters by maximizing the "partial likelihood" function. The

partial likelihood function is defined as follows:

𝐿(𝛽) = ∏
ℎ(𝑡𝑖|𝑋𝑖)

∑ ℎ(𝑡𝑗|𝑋𝑗)𝑗:𝑡𝑗≥𝑡𝑖
𝑖:𝛿𝑖=1

= ∏
exp(𝛽′𝑋𝑖)

∑ exp(𝛽′𝑋𝑗)𝑗:𝑡𝑗≥𝑡𝑖
𝑖:𝛿𝑖=1

 (8)

7

From the formula above, the term
ℎ(𝑡𝑖|𝑋𝑖)

∑ ℎ(𝑡𝑗|𝑋𝑗)𝑗:𝑡𝑗≥𝑡𝑖

 can be considered as the probability that

subject i experiences the event among all the other subjects which are still at risk. To

maximize the product of all the terms of the subject without censoring is the theory of

maximum likelihood. By eliminating the same term ℎ0(𝑡), the estimated parameters 𝛽′̂

for each covariate could be solved through formula (8).

From equation (6), we could get

�̂�(𝑡) = exp (−�̂�(𝑡)) = exp(−ℎ0̂(𝑡) exp(𝛽′̂𝑋))

= exp(−ℎ0̂(𝑡))
exp(𝛽′̂𝑋)=(𝑆0̂(𝑡))

exp(𝛽′̂𝑋) (9)

where 𝑆0̂ is an estimation of the baseline survival function. Chapter 4 of Kalbfleisch and

Prentice (2011)[1] and section 3.5 of Hosmer Jr and Lemeshow (1999)[2] explain how to

get the estimated baseline survival function. The Survival package[3] in R provides the

function basehaz to calculate cumulative baseline hazard for the Cox model which can

be used to calculate the survival function for risk-based algorithms.

The Cox model is a relative risk model, and risk estimations for the test data can be

predicted. The calculated values are the risk for a person with the given set of covariates

relative to an average person. With formula (9), the estimated survival functions of the

test data can also be computed. But it is not straightforward to get a predicted expected

event time, as the estimated survival curve does not always end at 0, for example when

the largest observed time is censored. The estimated median survival time could also be

unavailable if the estimated survival function becomes undefined before it reaches 0.5.

The Cox model is also limited by its restrictive application conditions that the hazards

should be proportional. If the studied variable consisted of a large number of classes, the

hazards were rarely proportional all along the curve, as seen in the example used by F

Bugnard et al. (1994)[4], and in the demonstration that the Cox regression model may

lead to the creation of a false model that does not include only time-independent

predictive factors when violating the proportional hazard assumption in the Cox

8

proportional hazards analysis in Mortality prediction of patients with Acute Coronary

Syndrome by Magdalena Babinska et al. (2015)[5].

1.3 AFT model

The most common fully parametric model with survival data is the accelerated failure

time model (AFT). Linear regression and the exponential function are used for the Cox

proportional hazard model to estimate the effect of the covariates on the risk. The AFT

model assumes that the effect of the covariates works directly on the "time to event" by

accelerating or decelerating. Hence, the model could be written as:

𝑇 = exp(𝛽1𝑥1 + 𝛽1𝑥2 +⋯+ 𝛽𝑝𝑥𝑝)𝑇0 (10)

Here, it is supposed that the exponential function links the covariates X and the

parameters 𝛽 by multiplication to the reference event time 𝑇0 which equals the value T

when all covariates 𝑋 = 0. The linking function could be specified with other functions.

log(𝑇0) is usually used to model the reference time 𝑇0 by

log(𝑇0) = 𝛽0 + 𝜎𝜖 (11)

where 𝜖 is an error term from a given distribution, and 𝜎 is a scale parameter.

Then, we can get

log(𝑇) = log(exp(𝛽1𝑥1 + 𝛽1𝑥2 +⋯+ 𝛽𝑝𝑥𝑝) 𝑇0)

= (𝛽1𝑥1 + 𝛽1𝑥2 +⋯+ 𝛽𝑝𝑥𝑝) + log(𝑇0)

= (𝛽1𝑥1 + 𝛽1𝑥2 +⋯+ 𝛽𝑝𝑥𝑝) + 𝛽0 + 𝜎𝜖 (12)

Assuming that 𝜖 is the 𝑁(0,1) distribution with log(𝑇) as the dependent variable, then

the model is a basic linear regression model, and 𝑇 follows a log-normal distribution.

Other distributions are possible for 𝑇0, thus for 𝑇, like exponential, Weibull, log-normal,

log-logistic, and generalized gamma.

9

Compared with the Cox model where it is sometimes difficult or not available to predict

expected lifetime or median time, the fully parameterized AFT model could provide

solutions.

It can predict a new subject at time 0 and can also compute the predictions for an

ongoing subject at any given time 𝑡∗, even if it is censored. Thus, the expected lifetime

can be obtained by the formula

𝐸[𝑇|𝑇 > 𝑡∗] = 𝑡∗ +
∫ 𝑆𝑇(𝑡)𝑑𝑡
∞
𝑡∗

𝑆𝑇(𝑡∗)
 (13)

where
∫ 𝑆𝑇(𝑡)𝑑𝑡
∞
𝑡∗

𝑆𝑇(𝑡∗)
 is the estimated expected residual lifetime if 𝑆𝑇(𝑡) is replaced by an

estimator from AFT. Similarly, the conditional median given that the subject has

survived up to 𝑡∗ is the value 𝑡𝑚, such that

𝑆𝑇(𝑡𝑚)

𝑆𝑇(𝑡∗)
= 0.5 (14)

Because the AFT model is fully parameterized, it can provide survival function

predictions from time 𝑡 = 0 to the end for a new subject, regardless of whether it is

censored or not. Hence, it offers a potentially useful statistic approach that is based upon

the survival curve rather than the hazard function when the largest observed time is

censored. It can estimate the expected lifetime by formula (13) and (14) as its advantage

compared to the Cox model. In addition, in the study of aging research by William R.

Swindell (2009)[6], most genetic manipulations were found to have a multiplicative

effect on survivorship that is independent of age and well-characterized by the AFT

model’s "deceleration factor". AFT model deceleration factors also provided a more

intuitive measure of treatment effect than the hazard ratio, and were robust to departures

from modeling assumptions.

1.4 Survival trees and forests

Both semi-parametric Cox and full-parameter AFT models have their formulas to build

the model, thus they can fit well with small amounts of data with small variances for the

10

estimated parameters. Furthermore, they can be applied to explain the effects of the

effects of the covariates on the survival time and more commonly used in inference.

In data analysis, random forest is another way to build the model, and it usually has a

high performance for classification or continuous response variables prediction. It is

developed from single decision trees. Under a specifically designed splitting rule,

usually dichotomous method, covariates 𝑋 will be selected for splitting, and the

generated tree may have many branches until a certain requirement is satisfied. A new

subject could find its position at one node of the tree by its covariates 𝑋, and then be

predicted.

But a single tree is an unstable learner in the sense that slight modifications in the data

set can produce a very different tree with respect to the splitting rule. Hence, a large tree

can be considered as a learner with potential for a small bias and a large variance which

can be considered as overfitting. Fortunately, random forest can solve this problem.

A random forest, which is an "ensemble" method, generates hundreds or thousands of

trees randomly, which could repeat the decision tree model many times to stabilize the

result. The combination of the results of these trees may give the best performer in terms

of prediction accuracy. There are many ways to combine trees, and one of the most

popular is Breiman's (2001)[7] idea. This idea can be described as follows:

1) Independently build B trees with bootstrap samples from the original data.

2) At each node of each tree, randomly select a subset of covariates from all the

covariates to find the best split.

3) The final prediction is the average of the predictions of all generated trees from

the bootstrap samples.

Trees and random forests have been extended to survival data. If we want it to fit a

model with survival data, the continuous event time could be considered as the response

variable. A particular split method for survival data is developed as described in the next

paragraph because it is not possible to use the least-squares splitting criterion directly to

find the best split and grow a tree when some observations are censored.

11

Generally, the split will create two nodes, left node 𝐿 and right node 𝑅. We want to

figure out the best split which could show the biggest difference between the two nodes.

With survival data, we are concerned with the survival function. Thus, one strategy is to

find splits such that the survival functions in the two nodes, say 𝑆𝐿(𝑡), 𝑆𝑅(𝑡), are very

different. One way to quantify this difference is to use a statistic designed to test the

hypotheses:

𝐻0:𝑆𝐿(𝑡) = 𝑆𝑅(𝑡)forallt

𝐻1 : ∶ 𝑆𝐿(𝑡) ≠ 𝑆𝑅(𝑡)foratleastonet

Ciampi et al. (1986) [8] provided a splitting rule for survival data in 1986 by using the

log-rank test.

The log-rank test is a non-parametric way to compare the survival distribution of two

samples. The statistic can be represented in the following way:

𝐿𝑅 =
∑ (𝑑𝑅𝑘−𝐸𝑘)
𝐾
𝑘=1

√∑ 𝑉𝑘
𝐾
𝑘=1

 (15)

where

𝐸𝑘 = 𝑑𝑘
𝑌𝑅(𝜏𝑘)

𝑌(𝜏𝑘)
 (16)

and

𝑉𝑘 =
𝑌𝐿(𝜏𝑗)𝑌𝑅(𝜏𝑘)𝑑𝑘(𝑌(𝜏𝑘)−𝑑𝑘)

𝑌2(𝜏𝑘)(𝑌(𝜏𝑘)−1)
 (17)

K is the number of all the distinct observed times in the pooled sample with both groups

combined.𝜏𝑘 represent all possible times that were observed. 𝑌(𝜏𝑘) is the total number

of subjects at risk at time 𝜏𝑘. 𝑌𝑅(𝜏𝑘) is the number of subjects at risk at time 𝜏𝑘 in the

right node. 𝑑𝑘 is the total number of events at time 𝜏𝑘. 𝑑𝑅𝑘 is the number of events at

time 𝜏𝑘 in the right node. Then, we have 𝑌(𝜏𝑘) = 𝑌𝐿(𝜏𝑘) +𝑌𝑅(𝜏𝑘),𝑑𝑘 = 𝑑𝐿𝑘 + 𝑑𝑅𝑘.

12

𝐸𝑘 and 𝑉𝑘 are the mean and variance of 𝑑𝑅𝑗 under the hypotheses 𝐻0. Under 𝐻0, 𝐿𝑅 has

approximately a 𝑁(0,1) standard normal distribution.

1.5 Other algorithms

1.5.1 Regularization methods with survival data

In some cases, e.g. when a large number of covariates show multicollinearity, the

estimated parameters in the Cox and AFT models may have a big variance and this may

affect the prediction performance.

The ridge regression, lasso regression and elastic net are well known as shrinkage

methods that work to reduce this problem by adding a penalty parameter before the

application of maximum likelihood to optimize the parameters. Thus, for the ridge linear

regression, we want the parameters that minimize the sum of squares of the error plus

the ridge penalty :

∑ (𝑌𝑖 − (𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 +⋯+ 𝛽𝑝𝑋𝑝𝑖))
2𝑛

𝑖=1 + λ∑ 𝛽𝑗
2𝑝

𝑗=1 (18)

For the lasso linear regression, the formula is

∑ (𝑌𝑖 − (𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 +⋯+ 𝛽𝑝𝑋𝑝𝑖))
2𝑛

𝑖=1 + λ∑ |𝛽𝑗|
𝑝
𝑗=1 (19)

where λ∑ |𝛽𝑗|
𝑝
𝑗=1 is the 𝐿1 penalty.

The elastic net combines ridge and lasso regression by adding both the 𝐿1 and 𝐿2

penalties. It minimizes

1

𝑛
∑(𝑌𝑖 − (𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 +⋯+ 𝛽𝑝𝑋𝑝𝑖))

2

2𝑛

𝑖=1

+ λ[
1 − α

2∑ 𝛽𝑗
2𝑝

𝑗=1

+ α∑|𝛽𝑗|

𝑝

𝑗=1

]

(20)

13

As before, λ is the shrinkage parameter, and the new parameter α is a weighting factor

between the two penalties. When α = 0, we have the ridge penalty, when α = 1, we

have the lasso penalty, and when α = 0.5, we have the elastic net.

These methods are called regularization methods, and this idea could be integrated into

the Cox model with survival data and its partial likelihood to optimize the parameters;

Simon et al. (2011)[9]. The package glmnet[10] with R is able to fit such models. Benner

et al. (2010)[11] analyzes and compares several 𝐿1 penalized Cox regression methods

such as "standard" ridge regression, the lasso, the elastic net and some modifications of

the lasso like SCAD (smoothly clipped absolute deviation) and adaptive lasso.

1.5.2 Boosting with survival data

Boosting is another effective machine learning method for many kinds of models and

data. Boosting can make a "weak learning algorithm" into a "strong learning algorithm".

Like random forests, it is an ensemble method that combines the prediction from many

models. This is done by building a model from a training data, then creating a second

model that attempts to correct the errors from the first model. Models are added until the

training set is predicted perfectly, or until a maximum number of iterations. Here is a

short description of the basic theory of AdaBoost created by Freund et al. (1996)[12]:

Assume that the variable Y is binary and takes the values -1 and 1, and 𝐺(𝑥) is a

classifier. For a given vector of covariates 𝑥, the classifier 𝐺(𝑥) will return a prediction

�̂�(𝑥) = −1𝑜𝑟1. Initialize the weights 𝑤𝑖 =
1

𝑛
, 𝑓𝑜𝑟𝑖 = 1, … , 𝑛, n is the number of the

subjects. We decide the number of iterations M. For every iteration 𝑚 = 1𝑡𝑜𝑀:

1) Fit the classifier G to the training sample with observations weights 𝑤𝑖. Let �̂�𝑚

be the fitted function.

2) Compute the weighted prediction error 𝑒𝑚 =
∑ 𝑤𝑖𝐼(𝑦𝑖≠�̂�𝑚(𝑥𝑖))
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

3) Compute 𝛼𝑚 = 𝑙𝑜𝑔[
1−𝑒𝑚

𝑒𝑚
]

4) Update the weights by 𝑤𝑖 = 𝑤𝑖𝑒𝑥𝑝 (𝛼𝑚𝐼 (𝑦𝑖 ≠ �̂�𝑚(𝑥𝑖))) , 𝑖 = 1,… , 𝑛

14

5) The final prediction model is �̂�(𝑥) = 𝑠𝑖𝑔𝑛[∑ 𝛼𝑚
𝑀
𝑚=1 �̂�𝑚(𝑥)]

Sourced from course notes by Professor Larocque (2019)[13]

The main idea of boosting is to force the classifier to try to adapt itself to the

observations that were misclassified by increasing their weights. But in the end, the final

classifier is a weighted average of each individual classifier, with weights that depend

on its error. The smaller the error 𝑒𝑚, the larger the weights 𝛼𝑚.

This boosting method, like gradient boosting, can be extended to the Cox model and

AFT model with survival data; due to its auto-correction property, it may have better

performance compared to another model.

15

Chapter 2

Stacking methodology

2.1 Ordinary stacking methodology

When prediction accuracy is more essential than inference study, stacking is a widely

used ensemble method in prediction. The general idea is to fit several models on the

same training data, and then, rather than picking the model with the best performance,

these candidate models are aggregated by using another algorithm to make the final

prediction.

For example, we have a target 𝑌 and 𝑝 covariates 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑝), we have K

supervised learning algorithms to develop a predictive model. If we work on survival

data, these 𝐾 models could be Cox, AFT, survival forests, a regularized model like

lasso, and boosting. If we fit all the models with the same training data, then according

to an evaluation criterion, the best one will be selected with a validation set or by cross-

validation method.

Instead of choosing one model, combining them with stacking may be a smart option.

Let these K fitted models be �̂�1(𝑋), �̂�2(𝑋),… , �̂�𝐾(𝑋). Breiman (1996b)[14] and

LeBlanc and Tibshirani (1996)[15] proposed a linear combination as stacking method

�̂�(𝑋) with the predictions of candidate models as the inputs, it is defined as

�̂�(𝑋) = ∑ 𝛽𝑘�̂�𝑘(𝑋)
𝐾
𝑘=1 (21)

However, we cannot simply fit a regression with Y as a target and the predictions of

candidate models �̂�1(𝑋), �̂�2(𝑋),… , �̂�𝐾(𝑋) as predictors to find the coefficients 𝛽,

because the predictors have been obtained with the training data themselves. In other

words, the target 𝑌 have already been used to get these predictors, and we should not

figure out the coefficients 𝛽 by reusing them. In this case, new data should be used, with

the new target 𝑌 and the predictors got with just new covariate 𝑋, to get the coefficients

𝛽. In this case, it seems that we should split the data into three parts: the training data

16

set, the second data set for finding out the coefficients 𝛽, and the third part for

validation.

Another way to solve it is to use the leave-one-out (LOO) method for these K models.

More precisely, the model is to be fit with all the observations except the 𝑖𝑡ℎ

observation, and then 𝑖𝑡ℎ observation is predicted with this model. Then, we could fit

the regression model to estimate the 𝛽's.

𝑦𝑖 = ∑ 𝛽𝑘�̂�𝑘(−𝑖)(𝑋)
𝐾
𝑘=1 (22)

It is similar with cross-validation methods. For example, we could divide the training

data into 10 folds, and then get the predictions of one of the folds by the model trained

with the data of the other folds. The 𝑖 in the formula (22) could means the fold 𝑖, for 𝑖 =

1,2, … ,10.

CaretEnsemble[16] and H2O[17] are two of the most-used and popular packages in R for

stacking methods or combination of models. For standard data, dozens of models are

available to be combined such as XGBoost, random forest, GBM, lasso, SVM, neural

networks, etc., with several criteria and methods like mean squared error, AUC, and

maximum likelihood to optimize the weights.

The benefit of stacking is obvious, as it allows for the improvement of the performance

of the candidate models by taking advantage of the strength of each model compared to

a single model. However, due to the variability of the assigned weight for each model

and the absence of hyperparameter search for candidate models, the result of stacking

may not always be the best. In addition, the predictions of these different models are

often correlated. Thus, using regularization methods (e.g., ridge or lasso) to select the

appropriate models might be preferable. Moreover, Breiman (1996b)[14] suggested to

impose the constraints that all 𝛽𝑘 ≥ 0.

2.2 Latest stacking methods for survival data

Due to relaxed assumptions that enable robust estimation, non-parametric estimators

(e.g. random survival forest) can often be preferred to parametric (e.g. accelerate failure

17

time) and semi-parametric estimators (e.g. the Cox proportional hazard model). Yet,

even when misspecified, parametric and semi-parametric estimators can possess better

operating characteristics with small sample sizes due to a smaller variance than non-

parametric estimators. Therefore, a bias-variance trade-off is necessary to take

advantage of the low bias of non-parametric when the sample size is not large enough.

Thus, Andrew Wey et al. (2015)[18] proposed the stacking method to combine

parametric, semi-parametric, and non-parametric survival models with stacked survival

models via minimizing the inverse probability of censoring weighted (IPCW) Brier

Score to obtain constrained weights. The performances of survival models are evaluated

by the mean squared error (integrated squared survival error (ISSE)). This stacking

method demonstrates that it performs well across a wide range of scenarios, especially

with non-linear covariate effects, by adaptively balancing the strengths and weaknesses

of individual candidate survival models.

Eric C. Polley and Mark J. van der Laan (2011)[19] introduced a super learner method for

right-censored data by cross-validation through converting the data structure into a

longitudinal data structure collecting at time 𝑡 the change in counting processes by a

defined time window, then by minimizing the squared error loss function on the hazard

to optimize the estimated coefficients of the candidate model for the super learner. The

special feature of this algorithm is to add time as the variable and an additional step of

smoothing in time with different degrees of freedom for time for the candidate

algorithms. This super learner approach elucidates the significance of time to the

greatest degree possible.

Another recent study by Andrew Wey et al. (2016)[20] focuses on estimating restricted

mean treatment effects with stacked survival models. The difference in restricted mean

survival times between two groups is a clinically relevant summary measure in medical

research. Since the estimator for the restricted mean difference is defined by the

estimator for the covariate-adjusted survival distribution, this method proposes a

weighted average of several survival models by minimizing predicted error (the Brier

Score) to get a better estimator of the restricted mean difference. The result

demonstrates that better performance of the covariate-adjusted survival distribution

18

often leads to better mean-squared error of the restricted mean difference. Additionally,

it can perform nearly as well as a Cox regression when the proportional hazard

assumption is satisfied, and significantly better when proportional hazards are violated.

Marzieh K.Golmakani et al. (2020)[21] give us a super learner model for survival data

prediction by finding the best weighted ensemble of the individual algorithms through

minimizing cross-validated risk controls; that is, by minimizing the cross-validated

negative log partial likelihood. Two algorithms for optimizing the weights are proposed.

One is rewriting the formula by the second order Taylor expansion around the vector of

the weights by using the Lagrange formulation. A coarse grid search over tuning

parameter space followed by descent algorithm described in Lorber and Ramadge[22]

could help us in exhaustive grid search within more reasonable values for reducing the

computational challenge when there are more than two candidate models. Another

optimization method is to start with two candidate algorithms and solve the one-

dimension convex combination parameter, sequentially adding one algorithm until all

candidate algorithms are included.

This proposed super learner method could give us the best fit or near-best fit among the

candidate models either with simulation studies or with real clinical data examples.

However, although these candidate algorithms may range from a basic Cox model to

tree-based machine learning algorithms, they must be based on the proportional hazard

framework because the optimization is computed on hazard risk for the observations.

After that, the survival function for any covariate pattern is calculated with the help of

candidate algorithms weights and baseline survival function as in the Cox model.

Because of the candidate model constraints, some algorithms for survival data could not

be included for super learner, such as random survival forest, whose estimate

cumulative hazard function is calculated using Nelson-Aalen estimator. Thus, when a

survival forest algorithm performs best beyond the Cox based algorithms for such a data

set, super leaner has its limit.

19

In the following part of simulation and real data studies, super learner method is

compared with stacking with time-dependent and covariate-dependent weights and other

single models.

20

Chapter 3

Evaluation method with survival data

Generally, once a predictive model for an outcome 𝑌 is developed, we can estimate the

predictions for the validation set. Alternatively, cross-validation may be used to evaluate

the performance of this model by calculating the average error with the true outcome

values. However, with survival data, the goal may be to estimate the survival function

for new subjects, or alternatively, the survival time. But when censoring is present,

evaluating the performance of a model becomes difficult, as we do not know the true

survival time for some of the observations in the validation set. Furthermore, even

without censoring, if the purpose is to estimate the survival function, the true function

for each individual is still unknown with only event time as response variable.

Fortunately, we have a few useful metrics to solve this difficult situation. For a

simulation data set, the survival function for every subject is precisely known, therefore,

Integrated Absolute Error (IAE) and Integrated Square Error (ISE) can be used, such as

the general average error to evaluate model's performance. For a real data set, the

Integrated Brier Score (IBS) (Gerds and Schumacher (2006)[23]; Graf et al. (1999)[24]) is

the most popular method. The details of these metrics are described in the following

subsections.

3.1 IAE and ISE

This thesis focuses on the estimation of the survival function for the simulation data

sets. Its designed function is known exactly; in other words, the survival probabilities at

any time 𝑡 for every test object. Therefore, the general criteria could be used to evaluate

the model's performance by generalized average error. Considering that the outputs

involve the survival probabilities for a period of time, integrated error is applied. Two

commonly used criteria were employed to measure how well the survival function is

estimated; see page 676 of Moradian et al. (2017)[25].

21

Assume that 𝑆 is the true survival function, and that �̂� is the estimated survival function.

The two criteria are the Integrated Absolute Error (IAE) and the Integrated Square Error

(ISE) and are defined by:

𝐼𝐴𝐸 = ∫ |𝑆(𝑡) − �̂�(𝑡)|𝑑𝑡

𝑡
 (23)

and

𝐼𝑆𝐸 = ∫ (𝑆(𝑡) − �̂�(𝑡))2𝑑𝑡

𝑡
 (24)

The equations (23) and (24) measure the survival function error between the true and the

estimated ones. Here the time points of the survival forests model are used to calculate

survival probabilities to get the estimated survival function. The average value of all the

test individual IAE or ISE are computed as the criteria value to evaluate the model

performance for simulation data set. The codes of computing IAE or ISE are presented

in Appendix [1].

3.2 IBS score

IAE and ISE can be applied if the true survival function is well known, i.e. the

simulation data set. But with real data, the survival function of any observation is

unknown, so we would have a problem even without censoring. Hence, if the goal is to

estimate the survival function for the real data set, we cannot use these metrics. There is

another method called IBS (Integrated Brier Score) score which could be useful to solve

this problem and evaluate the performance of a model with censored data (Gerds and

Schumacher (2006)[23]; Graf et al. (1999)[24]).

When the true survival function is known exactly, then its survival probability at any

time 𝑡 is also well known, and its squared error or absolute error could be calculated.

But for the real data, we only know its event time or censoring time. If we know its

event time 𝜏𝑖 for subject 𝑖, let �̂�(𝑡|𝑋) denote its estimated survival function, estimated

by any model, at time t for a subject with covariate vector 𝑋. �̂�(𝑡|𝑋) is an estimation of

the survival probability 𝑃(𝑇 > 𝑡|𝑋). We denote an indicator 𝐼(𝜏𝑖 > 𝑡) that takes a

22

value of 1 if 𝜏𝑖 > 𝑡, and 0 otherwise. Thus, a binary target, 𝐼(𝜏𝑖 > 𝑡) can be considered

as the empirical survival function for subject 𝑖.

In the case where there is no censoring, the Brier Score at any time t is defined as

𝐵𝑆(𝑡) =
1

𝑛
∑ (𝐼(𝜏𝑖 > 𝑡) − �̂�(𝑡|𝑋𝑖))

2𝑛
𝑖=1 (25)

where 𝑛 is the number of subjects.

The Brier Score is a function of 𝑡, and it represents the mean of squared error of the

survival probability for all the subjects. However, a single time 𝑡 cannot explain the

performance of the model, we want to evaluate the model for all range of time. One way

to solve this and get a single performance measure is to compute the integral of 𝐵𝑆(𝑡),

with respect to 𝑡. The Integrated Brier Score is given by

𝐼𝐵𝑆 =
1

max(𝜏𝑖)
∫ 𝐵𝑆(𝑡)𝑑𝑡
max(𝜏𝑖)

0
 (26)

 where 𝜏𝑖 is the event time for subject 𝑖.

The values of IBS have the same meaning as mean squared error with simulated data.

Lower IBS indicates better performance. Basically, the IBS is an integrated weighted

squared distance between the estimated survival function and the empirical survival

curve. The shaded areas of Figure 1 below, sourced from course notes by Professor

Larocque (2019)[13], is the IBS score for a single observation. It compares the estimated

survival curve to the empirical survival curve for that observation. Since the subject

experienced the event at 𝜏𝑖, the empirical survival curve takes a value of 1 between 0

and 𝜏𝑖, and a value of 0 after 𝜏𝑖.

23

Figure 1 The integrated Brier score with no censoring

If we do not know the event time, that means that censoring is present, a weighting

scheme to adjust for it can be applied. It is the inverse probability of censoring weights

(IPCW). Let �̂� denote an estimate of the survival function of the censoring distribution.

It can be the Kaplan-Meier estimate of the censoring distribution, or a more

sophisticated approach that uses the covariates. The Brier Score at any time 𝑡 is

computed as

𝐵𝑆(𝑡) =
1

𝑛
∑ ((�̂�(𝑡 + 𝑋𝑖)

2𝐼(𝜏𝑖 ≤ 𝑡and𝛿𝑖 = 1)�̂�−1(𝜏𝑖) + (1 − �̂�(𝑡|𝑋𝑖))
2𝑛

𝑖=1 𝐼(𝜏𝑖 >

𝑡)�̂�−1(𝑡)) (27)

To put the weights in evidence, this formula can be written in another way:

𝐵𝑆(𝑡) =
1

𝑛
∑ (𝐼(𝜏𝑖 > 𝑡) − �̂�(𝑡|𝑋𝑖))

2
𝑛
𝑖=1 𝑤(𝑡) (28)

Where 𝛿𝑖 = 1 represent that the event has occurred for observation 𝑖 , 𝛿𝑖 = 0 represent

this observation is censored. And 𝑤(𝑡) = 𝐼(𝜏𝑖 ≤ 𝑡𝑎𝑛𝑑𝛿𝑖 = 1)�̂�−1(𝜏𝑖) + 𝐼(𝜏𝑖 >

𝑡)�̂�−1(𝑡) is the IPCW.

Gerds and Schumacher (2006)[23] show that if the censoring model used for �̂� is well

specified, then this formula converges to the right value, that is the expected Brier

Score, given by

24

𝐸[(𝐼(𝑇 > 𝑡|𝑋) − �̂�(𝑡|𝑋))
2

] (29)

In a way, the IBS is a crude estimate of the performance, because the unknown true

survival curve is replaced by the empirical one. But it is hard to do better in this setting.

The package pec in R by Mogensen et al. (2012)[26] can be useful for computing the

Brier Score, with the matrix of predicted survival probabilities under a fitted model

having as many rows as data and as many columns as times and the response variable 𝑌

(event time or censoring time) as inputs.

25

Chapter 4

Methodology

Before explaining the proposed method in detail, here is first a general description of the

key features of the general methodology at a high level. The goal is to have a final

stacking model where the model weights are time-dependent and covariate-dependent.

(1) Select a grid of time points. For example, using quantiles form the Kaplan-Meier

estimation of the survival function of the training data.

(2) For each time point in the grid, apply a stacking method to estimate the survival

function at that point, but such that the weights can depend on the covariates. For

example, using a MOB-tree.

(3) Smooth the estimated values at the time points on the grid to get the global

survival function in such a way that it is monotonically decreasing. For example,

using isotonic regression.

Here is now a detailed description of the method.

4.1 Step 1: Select the 𝑲 = 𝟑 models for stacking method

Three basic, commonly used models have been selected because of their unique

advantage as parametric, semi-parametric and non-parametric model representatives.

They are the accelerate failure time (AFT) model, the Cox proportional hazard model

and random survival forest.

Stacking with these models covers several kinds of classic models for survival data, and

it could compare the performance from the aspects of risk hazard, accelerated time and

random forests to test if the stacking could have an advantage beyond these basic

models.

26

4.2 Step 2: Select a grid of values for the time range

The objective is to develop a stacking model with time-dependent and covariate-

dependent weights. Time-dependent weights are based on the assumption that the

weights of candidate models change with time. For example, it is possible that the AFT

model performs best in the time interval (𝑡1, 𝑡2) and the Cox model performs best in the

time interval (𝑡2, 𝑡3) with (0 < 𝑡1 < 𝑡2 < 𝑡3). Thus, time-dependent weight means that

each period of time corresponds to a different weight for a given subject.

The non-parametric Kaplan-Meier (KM) method could give us an intuitive, overall

description of the survival function for the simulated data set that we will use. Based on

the overall curve, we want to estimate the time-dependent weights, and theoretically, the

weights may change smoothly and have continuous values from time 0 to the maximum

survival time. However, it is not practical to estimate the continuous weights at any time

in condition of the limited data number and the limited computation speed. It is more

practical to use a grid of time points.

However, it is not appropriate to use time points that are equispaced. For example, we

can see from Figure 2 (see section 5.1) that the range of survival time of DGP4 is from 0

to 10, but from time 4 to 10, the survival probability is asymptotically close to 0, and in

very few subjects does the event occur in this time range. This is why we use a time grid

defined by using equispaced quantiles obtained from the Kaplan-Meier estimate of the

survival time.

Define 𝑡0 = 0 < 𝑡1 < ⋯ < 𝑡𝐺 as this time grid, where 𝐺 is the number of time intervals.

For example, if 𝐺 = 9, then 𝑡1 is the 0.1 quantile of the Kaplan-Meier estimate

maximum time (also the maximum observed event time), 𝑡2 is the 0.2 quantile, and so

on. Each time in the grid will be used to build a model to get time-dependent weights.

27

4.3 Step 3: Fit models with training data in two different ways

4.3.1 With all the training data

Firstly, we want to estimate the survival function for each candidate model (Cox, AFT

and survival forests). Their predictions will be used to compare the performances with

each other and with the new stacking method. Thus, a model for each method with all

the training data is fitted. The three models will be used to get estimations for the new

test data.

After this step, we have �̂�𝑘(𝑡|𝑋𝑡𝑒𝑠𝑡) for the new subjects, the estimated survival function

for model k (𝑘 = 1,… , 𝐾 = 3) trained with the complete sample.

4.3.2 With a cross-validation scheme (e.g. 10 fold)

From the general theory of stacking method, to optimize the weights, the training data

predictions of one candidate model �̂�𝑘(𝑡|𝑋𝑡𝑟𝑎𝑖𝑛) fitted with all the training data cannot

be used as predictors because they have been obtained with the data themselves.

Therefore, secondly, each model is fitted with a cross-validation scheme (e.g. 10 folds).

We divided the train data into 10 folds, and each fold is predicted with the model fitted

by the data of 9 other folds. These models are used to get out-of-sample estimations of

the survival function that will be used to optimize the stacking weights.

After this step, we have �̂�𝑘
𝑐𝑣(𝑡|𝑋𝑖), the out-of-sample estimated survival function for the

𝑖𝑡ℎ observation 𝑋𝑖 for model k trained in the CV loop, for 𝑘 = 1,… , 𝐾 = 3 and 𝑖 =

1, … , 𝑛 where 𝑛 is the number of training data. These three models will be used for

optimizing the time-dependent and covariates-dependent weights.

4.4 Step 4: Optimize the weights with pseudo-observations values

From Step 3, we have �̂�𝑘
𝑐𝑣(𝑡|𝑋𝑖) as the out-of-sample estimated survival function for all

the training data, which could be used as the predictors to get the weights. However, due

28

to the censoring, we do not directly have the response variable 𝑌 to fit a model to get the

weights with survival data. Pseudo-observation gives us a solution to solve this problem.

4.4.1 Pseudo-observation

Per Kargn Andersen et al. (2010)[27] introduces the theory and applications of pseudo-

observations in survival analysis including regression models for parameters like the

survival functions in a single points, the restricted mean survival time or state

occupations probabilities in multi-state models (e.g. the competing risks cumulative

incidence function).

Given the information that survival data have special characteristics, right-censoring, or

left-truncation, which make it difficult to develop algorithms. If we have complete data,

the survival time 𝑌 would be observed for all individuals and standard methods for

quantitative data could be applied directly with Y as response variable, or methods for

binary outcomes could be applied by dichotomizing Y as 𝐼(𝑌 ≤ 𝑡). More generally,

methods for repeated binary data could be used for a series of indicators, 𝐼(𝑌 ≤ 𝑡𝑗), 𝑗 =

1, … ,𝑚 (𝑚 is the repeated times) as a response variable. Then, we could set up a model

to get the weights with the predictors �̂�𝑘
𝑐𝑣(𝑡|𝑋𝑖) obtained in step 3. Furthermore, without

censoring, it is possible to get average error for quantitative or binary outcomes.

However, with censored survival data, we fortunately have one way of transforming the

event time or censoring time to continuous response variable by the pseudo-

observations. In other words, the pseudo-observations could replace the incomplete

event time 𝑌.

The basic idea is simple. Let 𝑓(𝑌𝑖) to be the function of event time as response variable.

If the data were complete, 𝑓(𝑌𝑖) would be observed for each individual 𝑖, and the

expected value 𝐸(𝑓(𝑌)) could be estimated by 1/𝑛∑ 𝑓(𝑌𝑖)𝑖 . Conversely, suppose that

the data are incomplete, i.e. some observations are censored and therefore not all 𝑓(𝑌𝑖)

are observed, but a well-behaved estimator, 𝜃, for the expectation 𝜃 = 𝐸(𝑓(𝑌)) is

available anyway, e.g. the Kaplan-Meier estimator for 𝑆(𝑡) = 𝐸(𝐼(𝑌 > 𝑡)). The

pseudo-observation for 𝑓(𝑌) for individual 𝑖, 𝑖 = 1,… , 𝑛, is then defined as

29

𝜃𝑖 = 𝑛 ∗ 𝜃 − (𝑛 − 1)𝜃−𝑖 (30)

where 𝜃−𝑖 is the estimator applied to the sample of size 𝑛 − 1 obtained by eliminating

the 𝑖𝑡ℎ individual from the data set. Intuitively the 𝑖-th pseudo-observation can be

viewed as the contribution of the individual 𝑖 to the 𝐸(𝑓(𝑌)) estimate on the sample of

size n. The idea now is to replace the incompletely observed 𝑓(𝑌𝑖) by 𝜃𝑖. For example

(1) 𝜃𝑖 may be used as an outcome variable in a generalized linear regression model

with some link function g: 𝑔(𝐸(𝑓(𝑌)|𝑋)) = 𝛽0 + ∑𝛽𝑗𝑋𝑗 or

(2) 𝜃𝑖 may be used to compute residuals or in a scatterplot when assessing model

assumptions

The pseudo-observations 𝜃𝑖 will always be used for all 𝑛 subjects and not only for those

where 𝑓(𝑌𝑖) was unobserved. Note that the models themselves are fitted with the

original data. The pseudo-observations are only used as proxy to optimize the weights.

4.4.2 Optimize the weights

In the general method, the stacking weights depend on the covariates and the time. Fix a

value in the time grid 𝑡𝑔. We now want to estimate the weight function �̂�𝑘(𝑡𝑔, 𝑋) (of

time 𝑡𝑔 and covariates 𝑋), for 𝑘 = 1,… , 𝐾 = 3 three selected models in section 4.1, to

obtain the estimates

�̂�(𝑡𝑔|𝑋) = ∑ �̂�𝑘(𝑡𝑔, 𝑋)�̂�𝑘(𝑡𝑔|𝑋)
𝐾
𝑖=1 (31)

With the application of pseudo-observation as an outcome variable for each

individual—either the observed event time or censored data—candidate model weights

will be calculated for each time grid through fitted linear model trees with covariates X

as the splitting variables. Through this method, time-dependent weight and covariates-

dependent weights can both be obtained simultaneously. The details of the different

steps are as follows through the language R.

30

(1) Using the function pseudosurv in the R package pseudo[28], the pseudo-values at

𝑡𝑔 for the original sample can be obtained, call them 𝑃1, 𝑃2, … , 𝑃𝑛. We can then

fit a mob-type tree with the function lmtree in the R package partykit[29]. A mob,

for “model based” tree, is a tree in which a model can be fitted in the nodes. The

covariates are divided in two groups, but the groups can have a non-null

intersection. The first group contains the variables used to fit the within node

model. The second group contains the variables that are used for splitting the

tree. In our case, the dependent variables are the pseudo-values (the 𝑃𝑖),

�̂�𝑘
𝑐𝑣(𝑡𝑔|𝑋𝑖) for 𝑘 = 1,2,3 models are the predictors in the within-node linear

model, and the covariates X are the splitting variables.

(2) We do this for all time intervals 𝐺 times separately and end up with estimated

weights functions �̂�𝑘(𝑡𝑔, 𝑋) , for 𝑘 = 1,… , 𝐾, and 𝑔 = 1,… , 𝐺. Notice that for

one given time point in the grid, we could get more than one node due to the

conditional splitting variables 𝑋. In other words, we get covariates 𝑋 dependent

weights for each time point.

However, using lmtree to optimize the weights can produce weights that can be negative

or greater than 1. It is more reasonable to have weights that satisfy:

(1) The individual weights for model 𝑘 are not negative

(2) The sum of weights of each model is 1

(3) Remove the intercept in the regression model

In fact, this method refers to a regression with constraints so that the weight must be

between 0 and 1. With the response variable pseudo-observation and �̂�𝑘
𝑐𝑣(𝑡𝑔|𝑋𝑖) for 𝑘 =

1,2,3 as the predictors for each node of each time point, the function solve of the

package quadprog[30] in R can help us compute the constrained weights. The R code of

the function for computing the weights is detailed in Appendix [2]. Basically, we build

the mob-tree as usual, but instead of fitting an unconstrained linear model as default in

the terminal nodes, a constrained model is fitted.

31

4.5 Compute the final estimation for test data

4.5.1 Compute new data estimate at time grid 𝒕𝒈

After the last step, we have the weights �̂�𝑘 of each model k for each time point in the

grid 𝑡𝑔, 𝑔 = 1,… , 𝐺. Then, the final estimation for a new point 𝑋𝑛𝑒𝑤 can be computed.

For each time value in the grid, we can get

�̂�(𝑡𝑔|𝑋𝑛𝑒𝑤) = ∑ �̂�𝑘(𝑡𝑔, 𝑋𝑛𝑒𝑤)�̂�𝑘(𝑡𝑔|𝑋𝑛𝑒𝑤)
𝐾
𝑖=1 (32)

We thus have �̂�(𝑡1|𝑋𝑛𝑒𝑤),… , �̂�(𝑡𝐺|𝑋𝑛𝑒𝑤).

4.5.2 Compute new data estimate for all time 𝒕

We want to estimate the survival function for the new individual data, so it is important

and necessary to estimate the survival probability values for all time 𝑡, not only at the

chosen time grid points 𝑡𝑔. There is a simple way to extend the weights to the other

times. If we want to estimate 𝑆(𝑡𝑗) at time 𝑡𝑗 which is not in the time grid, we can use

the weights for the grid point that is the nearest to 𝑡𝑗. For example, suppose that the time

grid is 1.2, 2.6, 4.5, 6.7, 10.1. We want to estimate 𝑆(𝑡𝑗 = 4.1). The nearest time grid

value for 𝑡 = 4.1 is 4.5, thus we use the estimated weights for 𝑡𝑔 = 4.5.

In order to better compare the performances among the selected models, the time

interests of the survival forests model are chosen as the time points to describe the

survival probabilities for all time 𝑡. The R code of the function for predicting the test

data is detailed in Appendix [3].

4.5.3 Adjustment of estimated survival probability value

Because these �̂�(𝑡1|𝑋𝑛𝑒𝑤), … , �̂�(𝑡𝑚𝑎𝑥|𝑋𝑛𝑒𝑤) come from the combination of candidate

models, it is likely to have a case like �̂�(𝑡1|𝑋𝑛𝑒𝑤) < �̂�(𝑡2|𝑋𝑛𝑒𝑤)with𝑡1 < 𝑡2 that goes

against the monotonically decreasing nature of the survival function.

One way to solve this problem is to apply a monotone regression method like isotonic

regression to these values for every new individual to obtain the complete estimated

32

survival function �̂�(𝑡|𝑋𝑛𝑒𝑤) for all 𝑡. One simple isotonic regression method is to make

sure the survival probability at the next time point is no bigger than the previous time

value; if it is not the case, the probability at next time point will be replaced by the value

of previous time point. The R code of the function for isotonic regression is detailed in

Appendix [4].

4.6 Clustering stacking methodology

Sections 4.1 to 4.5 present the steps of the general stacking method with time-dependent

weights and covariates-dependent weights, which assumes the weights may depend on

the time and covariates simultaneously. For a given time point in the grid, a MOB-tree is

used to get covariate-dependent weights. We will also investigate another method as

described here.

For a given time point in the grid, the terminal nodes of the tree provide a grouping of

the observations. Instead of using a tree, a cluster analysis algorithm could be used to

perform the grouping. More precisely, we could apply the clustering K-means algorithm

to do the grouping work. It is possible that it could do better than the linear model tree.

The number of terminal nodes in the tree is used as the group number for the K-means

algorithm for each time point. The package clue[31] in R can predict the K-means groups

for new subject data according to the covariates 𝑋. Within the group, we can get the

constrained weights (positive and sum equal to 1) with the same method proposed in

section 4.4.2 with the package quadprog[30]. Then, the prediction for the test data with

these weights can be obtained.

With all other steps being the same, this clustering stacking method is very similar to the

general stacking method in sections 4.1 to 4.5. It is only slightly different based on the

grouping with covariates 𝑋. Therefore, the prediction results of these two methods may

not differ much.

33

Chapter 5

Simulation study

5.1 Simulation design

In the main simulation study, four Data Generating Processes (DGPs) are used to

generate artificial data. DGP1 is from a master course note by Professor Larocque

(2019)[13] (Page 188) by Professor Denis Larocque. The other three—DGP2, DGP3 and

DGP4—are from "L1 splitting rules in survival forests" by Hoora Moradian et al.

(2017)[25].

Each model is fitted with a training sample of size 100. Then, the performance of the

fitted models is evaluated with an independent test set of size 500. Each simulation is

repeated 50 times. In section 5.3, additional simulation results using training samples of

size 500 will be presented.

The parameter 𝑝𝑎𝑟𝑐𝑒𝑛𝑠 controls the proportion of censoring of DGP 1, while the

parameter 𝛼 controls the proportion of censoring of the other three DGP. With

adjustment of parameter parcens and 𝛼, DGP1 has censoring proportion 0.36. The other

three DGPs have censoring proportion 0.25, 0.3, 0.35, respectively. Here are the detailed

descriptions of the DGPs.

5.1.1 DGP 1

There are 15 covariates. Let 𝑋 = (𝑋1, 𝑋2, … , 𝑋15) have a multivariate normal

distribution with mean 0, variance 1 and correlation 0.3 for each pair of variables. Let

𝑉 = (𝑉1, 𝑉2, … , 𝑉15)be a transformation of 𝑋. Each element of 𝑉 is a function of the

corresponding element of 𝑋. 𝑉6, 𝑉12 are the absolute values of 𝑋6, 𝑋12 respectively.

𝑉7, 𝑉8, 𝑉11 are binary variables that take a value of 1 if the corresponding 𝑋 is larger than

0.5, 0.2, and 0.1 respectively. 𝑉9 is log(𝑋9 + 5), and let 𝑉10 is exp (
𝑋10

3
). The other

variables remain untransformed. The true model is log(𝑇) = 𝑓(𝑉) + log(𝜖) where 𝑓 is

34

a function of the covariates and 𝜖 is an error term from the gamma distribution with

shape parameter 3 and rate parameter 5. The function 𝑓 is as follows:

𝑓(𝑉) = −0.5 +
𝑉1 + 𝑉2 + 0.3 ∗ 𝑉2

2 + 𝑉5 + 𝑉6 − 0.3 ∗ 𝑉5 ∗ 𝑉6 + 𝑉7 +
1

𝑉10 + 3
+ (𝑉3 > 0) ∗ (𝑉1 > 0) − (𝑉3 < 0) ∗ (𝑉1 > 0)

3

In addition, 𝑓(𝑉) is bounded to be within the range of minimum -1.8 and maximum 1.7.

The censoring times are exponentially distributed with rate of (
1

𝑝𝑎𝑟𝑐𝑒𝑛𝑠=1.5
) to make

DGP 1 have censoring proportion 0.36.

5.1.2 DGP 2

This is an altered version of scenario 2 from Sec. 4.1 of Zhu and Kosorok (2012)[32]. Ten

IID (independent and identically distributed) uniform covariates on the interval (0,1) are

available, 𝑋1, … , 𝑋10. Survival times are drawn from an exponential distribution with

mean µ where 𝜇 = 10|sin(𝑋1𝜋 − 1) |+3|𝑋2 − 0.5| + 𝑋3. The censoring times are

uniformly distributed on the interval (0, 𝛼 = 29.1) to make DGP 2 have censoring

proportion 0.25.

5.1.3 DGP 3

This is adapted from scenario 3 in Sect. 4.1 of Zhu and Kosorok (2012)[32]. Twenty-five

covariates 𝑋1, … , 𝑋25 are generated from a multivariate normal distribution with

covariance matrix 𝜎𝑖𝑗 = 0.75|𝑖−𝑗|. The survival time follows a gamma distribution with

shape parameter 𝜇 = 0.5 + 0.3|∑ 𝑋𝑖|
15
𝑖=11 and scale parameter of 2. The censoring times

are uniformly distributed on the interval (0, 𝛼 = 9.5) to make DGP 3 have censoring

proportion 0.3.

5.1.4 DGP 4

This is a dependent censoring DGP. It is adapted from scenario 1 in Sect. 4.1 of Zhu and

Kosorok (2012)[32]. Twenty-five covariates 𝑋1, … , 𝑋25 are generated from a multivariate

normal distribution with covariance matrix𝜎𝑖𝑗 = 0.9|𝑖−𝑗|. The survival time follows an

exponential distribution with mean of 𝜇 = 0.1| ∑ 𝑋𝑖|
20
𝑖=11 . The censoring times are drawn

35

from an exponential distribution with mean 𝜇/(𝛼 = 0.54) to make DGP 4 have

censoring proportion 0.35.

Figure 2 Kaplan-Meier estimate of the survival curve for 10000 observations of four simulations data sets

with censoring proportion 0.36, 0.25, 0.3,0.35 respectively

Figure 2 above shows a Kaplan-Meier estimate of the survival curve for 10000

observations of four simulation data sets, respectively. We could observe that the

maximum survival time for the four data sets is different, approximatively 5, 30, 10, 10,

respectively. And even though DGP3 and DGP4 have similar maximum survival

time—but their survival probabilities change at very different rates—DGP3 falls gently

with time, while DGP4 falls rapidly, and by time 4, the survival probability is almost

down to 0. Overall, the survival curve of DGP1 and DGP4 decreases sharply, while the

survival curve of DGP2 and DGP3 decreases gently. The survival time range for each

DGP is shown in the figure, and then we can define the maximum time of time grid for

each DGP. Section 4.2 explains how the maximum time for making the time grids

should be selected; considering that the training data has only 100 subjects, there are

very few subjects whose event time exceeds time 1.5 if we take DGP1 as an example,

and the same value of pseudo-observation is calculated when time is over 1.5. Thus, we

define 1.5 as the maximum reasonable time for DGP1 to fit model for weighting, and

36

with the same analogy, 15, 5, and 1.5 as max time grid for DGP2, DGP3 and DGP4,

respectively. The code used to generate the simulation data DGPs is detailed in

Appendix [5].

5.2 Simulation results

5.2.1 Weights presentation

After the five methodological steps from section 4.1 to section 4.5, the estimated

predictions of three base survival models (Cox, AFT with loglogistic distribution and

survival forests), stacking method, clustering stacking method and super learning

method for the 50 test data sets. The time points at which the survival probabilities are

predicted in the random forest model are used for the other two single models and

stacking methods for the purposes of the same standard of evaluation, more than

hundreds of time points probabilities are sufficient to reflect the estimated survival

function.

In the stacking part, a linear model tree is fitted with constrained linear coefficients to

optimize the weights. At each time interval, the constrained weights of the three models

are received, where the weights are between 0 and 1 and their sum is exactly 1.

In order to better explain how the weights of the three candidate models vary as a

function of time 𝑡, the quantiles 0.2, 0.4, 0.6 and 0.8 of the time grids are selected to

view the changes. Each group of boxplots corresponds to the distribution for all the

repetition of simulation of one DGP. The weights vary between 0 and 1 due to the

constraints. As a result, the sum of average weights of the candidate models for a given

block of time, such as quantile 0 to 0.2 of the max time grid, should be 1. the average

weights are not shown in the boxplots below, but the median weights can reflect average

model weight for different time intervals.

37

Figure 3 Time quantiles weights distribution of stacking method for DGP1 (ntrain=100)

(Left: general stacking, Right: clustering stacking)

Figure 3 (Left) shows that for DGP 1, the median weights of the algorithm survival

forest (SRC) are close to 0.5 as time ranges from 0 to 20% maximum time grid 1.5, i.e.

from time 0 to time 0.2 ∗ 1.5 = 0.3, compared to 0.25 for model AFT and nearly 0 for

Cox. The weight of each model shifts as the survival time increases, with the survival

forest losing weight ans the other two models gaining. This means that the weights of

the models are time dependent. However, the way that the weights change with time

depends on the data set. For example, for DGP2, DGP3 and DGP4, throughout all their

survival time ranges, the stacking method gives more weights (almost 1) to suvival

forest (SRC), and much less weights to the other two models. Because of the structure of

those DGPs, survival forest outperforms the three basic models for simulation data

38

DGP2, DGP3 and DGP4 across all time ranges. Figure 4, Figure 5 and Figure 6 show

the time quantiles weights distributions for DGP2, DGP3 and DGP4.

Figure 4 Time quantiles weights distribution of stacking method for DGP2 (ntrain=100)

(Left: general stacking, Right: clustering stacking)

Figure 5 Time quantiles weights distribution of stacking method for DGP3 (ntrain=100)

(Left: general stacking, Right: clustering stacking)

39

Figure 6 Time quantiles weights distribution of stacking method for DGP4 (ntrain=100)

(Left: general stacking, Right: clustering stacking)

The left figures above using general stacking method show how the model weights

change as time goes by, and in fact, the linear model tree algorithm regroups the

subjects. For each time grid, nodes (groups) are produced in function of the

characteristics of covariates 𝑋. The number of nodes varies depending on the time grid

and the data sets used. Clustering is another way to optimize the group weights. Section

4.6 describes the technique of clustering stacking methodology, and the K-means

clustering algorithm could give us another option to regroup them with the number of

groups for each time grid the same as the number of nodes of the general stacking

method. The results of this clustering stacking algorithm's time quantiles weights

distribution are shown in the right figures above.

When we compare these rights figures to the left figures of the general stacking method,

It is obvious that they are extremly similar, especially for DGP2, DGP3 and DGP4,

where the figures of the two algorithms are exactly the same. That is because for each

time grid, there is only one root node generated by the linear model tree method. In

other words, all the subjects could be treated as a single group, and the weights for this

time interval have not noted the difference in aspect of the covariates 𝑋. As a

consequence, the result of clustering is identical to the result of general stacking.

40

5.2.2 Performance comparison

Because the accurate survival function for each observation for the simulated data sets is

known, we could calculate the survival probabilities at any time point for each subject.

IAE and ISE can be easily computed as prediction performance criteria for test data sets.

The smaller the integrated error, the better it performs. The following two figures

illustrate IAE and ISE results of three basic models (Cox, AFT, SRC) for survival data,

as well as the new stacking method with time-dependent weights and covariates-

dependent weights and its clustering method. To compare, the super learner proposed by

Marzieh K.Golmakani et al. (2020)[21] is also included, and only two algorithms (Cox

and GBM boosting) are used for risk coefficient optimization to save computational

time.

Figure 7 Integrated Absolute Error (IAE) boxplots of four simulation data sets (ntrain=100)

41

Figure 8 Integrated Square Error (ISE) boxplots of four simulation data sets (ntrain=100)

As performance criteria, IAE and ISE are only applied for simulation data because its

true survival function for each observation is defined. The two results are strikingly

similar. It is frequent that the lower the error, the better the method's efficiency.

Likewise, the lower the variance, the more stable are the performances of the method.

From the figures of IAE and ISE, stacking and cluster method with time-dependent

weights and covariates-dependent weights performs best for DGP1 and DGP2, and

performs nearly best as survival forest for DGP3 and DGP4. While the super learner

method can outperform the basic Cox model, it cannot outperform the survival forest

because its risk optimization algorithm does not include survival forest model, which

has unique advantages for DGP3 and DGP4. Similar to our weights distribution

analysis, the clustering stacking method produces very similar results as compared to

general stacking method.

42

Figure 9 Integrated Brier Score (IBS) boxplots of four simulation data sets (ntrain=100)

In real data, the survival function for any observation is unknown, we just know its

event time or censoring time. Therefore, IAE and ISE criteria could not be applied for

real survival data. Despite the fact that the accurate error for the four simulations can be

calculated, we also want to compare their IBS. Figure 9 give us the similar results with

IAE and ISE. For DGP1, the stacking method and clustering stacking method have the

smallest IBS, and for DGP2, DGP3 and DGP4, they are very close to the best

performance of the survival forest model. This means that we will be able to trust the

IBS-based comparisons with the real data sets.

In conclusion, for the simulation data sets, the two stacking methods could detect

automatically which basic classic model performs best and incorporate the ideal part of

each candidate model to produce better predictions.

43

5.3 Supplementary simulation analysis

The above simulation results are based on a train size 100 and a test size of 500 with 50

repeats. We are also interested in seeing how this stacking method performs as there are

more training data. The same stacking algorithms mentioned in Section 4 are used in a

supplementary experiment.

The supplementary simulation entails increasing the training size from 100 to 500,

keeping the test size constant at 500, using the same maximum time grid (1.5, 15, 5, 1.5

for DGP1 to DGP4) and repeating the simulation 50 times, as described in Table 1.

Table 1 Description of the simulations

 Initial simulation Supplementary simulation

Train size 100 500

Test size 500 500

Maximum time

grid for DGP1 to

DGP4

1.5, 15, 5, 1.5 1.5, 15, 5, 1.5

Theoretically, the more train data we use to fit a model, the more reliable and precise the

prediction becomes, and the smaller the error becomes. To begin, we look at the

weight's charts for the comparison of 100-training size initial simulation and 500-

training size supplementary simulation.

44

Figure 10 Time quantiles weights distribution of general stacking method for DGP1

(Left: ntrain=100, Right: ntrain=500)

When comparing the two weights charts (train size 100 and train size 500) in Figure 10

of DGP1, there is no discernible difference. In other words, even though there are more

data for training, the weights of each model are so divergent (from 0 to 1) that we

cannot be certain which one is better at a given time point. However, since the src

boxplot is more clearly clustered at the bottom of the right chart (train size 500) with a

small weight than left chart (train size 100) with more train data, the simple conclusion

can still be drawn that the SRC model does not work well for this set of simulated data.

45

Figure 11 Time quantiles weights distribution of general stacking method for DGP2

(Left: ntrain=100, Right: ntrain=500)

Figure 12 Time quantiles weights distribution of general stacking method for DGP3

(Left: ntrain=100, Right: ntrain=500)

46

Figure 13 Time quantiles weights distribution of general stacking method for DGP4

(Left: ntrain=100, Right: ntrain=500)

We can see that the weights are more centralized with less dispersion in right chart (train

size 500) compared with left chart (train size 100) in Figure 11 to Figure 13 of DGP 2 to

DGP4. More training data allows us to be more accurate in determining which model

performs best. SRC is clearly the best for DGP2, DGP3 and DGP4. At any time point,

this new stacking approach automatically selects the optimal algorithm SRC and assigns

almost all the weight to this model. The clustering stacking figures (train size 500) for

the four DGPs are not displayed, because they are quite similar to general stacking

method (train size 500).

Now we look at the error and see how the outcome changes as the training size goes

from 100 to 500. Theoretically, test error decreases with training size from a large value

to the stable value. When training size increases, it is normal to see the range of IAE

decrease from level 0.1 (Figure 7) to level 0.05 (Figure 14). The same is true for ISE

which drops from level 0.15 (Figure 8) to level 0.0125 (Figure 15). This is simple to

comprehend because the more data we have, the better the model can do. When

compared to the previous simulation with a training size of 100, IAE and ISE produce

nearly the same results: the stacking or clustering stacking approach can give us nearly

the best performance of all the models. When Cox or AFT performs better, as in the

47

case of DGP1, stacking or clustering stacking provides predictions that are very close to

Cox or AFT. When SRC model performs well, such as DGP2, DGP3 and DGP4,

stacking or clustering stacking provides us predictions that are very close to SRC.

On the one hand, this new stacking method appears to be unable to outperform the best

candidate model while using IAE as the criterion. By using ISE as the criterion,

however, a pleasant surprise can be noticed in DGP1: the ISE of clustering stacking gets

slightly lower as compared to the median, average, or standard deviation than the best

model Cox. This demonstrates that the advantages of different algorithms can be

absorbed by this new stacking approach. However, when one of the candidates has a

overwhelming advantage, such as model SRC in DGP2, DGP3 and DGP4, the stacking

method assign it a near-total 1 weight to it, particularly when there are more training

data (500). As a result, the output of this new stacking is nearly identical to that of the

best candidate algorithm SRC.

48

Figure 14 Integrated Absolute Error (IAE) boxplots of four simulation data sets (ntrain=500)

49

Figure 15 Integrated Square Error (ISE) boxplots of four simulation data sets (ntrain=500)

50

Figure 16 Integrated Brier Score (IBS) boxplots of four simulation data sets (ntrain=500)

It is not shocking that when the training size is increased from 100 to 500, IBS values

also decrease marginally (Figure 16). Since IBS is not as precise as IAE or ISE, it

appears that for DGP1, Cox and AFT are nearly identical, and both stacking work nearly

identically with the best candidate for all four DGPs.

51

Chapter 6

Real data study

6.1 Introduction of six selected real data sets

In this section, we compare the performance of the same methods used in the simulation

study with six real data sets, the same as the ones used in "𝐿1 splitting rules in survival

forests" by Hoora Moradian et al. (2017)[25]: The Primary Biliary Cirrhosis (PBC) data,

the CSL Liver Cirrhosis data, the German Breast Cancer (GBC) study group data, the

Wisconsin Breast Cancer Prognostic (WPBC) data, the Veteran data and the National

Wilm's Tumor Study (NWTCO) data. A brief description of these data sets is presented

in Table 1.

The PBC data is described in the monograph by Fleming and Harrington (1991)[33]. We

use all twelve of its covariates used by Bou-Hamad et al. (2011)[34] plus copper, sgot

and stage. The same 312 patients who participated in the randomized trial are used here.

Missing values are replaced by the median as in Bou-Hamad et al. (2011)[34] and

Fleming and Harrington (1991)[33]. The data is from the R package SMPracticals[35].

The CSL data was obtained by Schlichting et al. (1983)[36] and is provided in the

package timereg[37]. In this example, we only use the six invariant covariates (time, prot,

sex, treat, prot.base and prot.prev). Records are grouped by ID variable, so the number

of observations used is 446 (2481 rows).

The GBSG data (Schumacher et al. (1994)[38]) is obtained from the package mfp[39]. The

data contains 686 observations and eight covariates. There is no missing data.

The WPBC data is available in the UCI machine learning repository (Bache and

Lichman (2013)[40]). We can also find it in package TH.data[41]. There are 198

observations in the data. However, four missing values are replaced by the average.

Thirty-two covariates are used in this example.

52

The Veteran data (Kalbfleisch and Prentice (1980)[42]) is obtained from the package

randomForestSRC[43]. There are 137 observations with no missing values. It contains six

covariates.

Finally, the NWTCO data (Breslow and Chatterjee (1999)[44]) is available in the package

survival[3]. The four relevant covariates, instit, histol, age and stage, are used here. The

data consists of 4088 observations and no missing values.

Table 2 Descriptions of the real data sets

No. Name #

Covariates

Sample

size

%

Censoring

Source

1 PBC 15 312 60 Package SMPracticals

2 CSL 6 446 39 Package timereg

3 GBSG 8 686 56 Package mfp

4 WPBC 32 198 76 Package TH.data

5 Veteran 6 137 7 Package randomForestSRC

6 NWTCO 4 4088 85 Package survival

We can generate and replicate a simulation data set 50 times to obtain reliable results for

comparing the performances, but we cannot generate data for real data. Therefore, the

cross-validation method is used to evaluate and obtain results for real data sets. Here,

each real data set is split into 10 groups. The observations of each group can be used as

test data to be estimated, while the other observations can be used as training data. Thus,

10 results for each real data set are obtained.

Figure 17 below shows Kaplan-Meier estimate of the survival curve for each real data

set. To ensure that each time block has enough subjects with event time to generate the

53

stacking model, we set the maximum time grid as 3000 for PBC data, 8 for CSL data,

2000 for GBSG data, 50 for WPBC data, 300 for Veteran data and 500 for NWTCO

data.

Figure 17 Kaplan-Meier estimate of the survival curve for six real data sets

with censoring proportion 0.6, 0.39, 0.56, 0.76, 0.07, 0.85 respectively

(From left to right, from top to bottom)

54

6.2 Real data sets results

6.2.1 Weights presentation

The simulation data sets have proven that the weights for each candidate model depend

on the time range, and general stacking weights are very similar to clustering stacking

method. However, when it comes to the real data set, things change a bit. As we all

know, clustering regroups the observations based on their different characteristics. For

example, the age or the cell size. Each group would have similar properties that may be

more apparent, and K-means clustering may be a better option for grouping to obtain

constrained weights than linear model tree. That is why the clustering stacking method

is introduced and evaluated.

According to Figure 18 below for PBC data, it appears that the weights of the Cox

method are barely 0, especially for smaller than 0.8 quantiles of maximum time grid

3000. The weights of the AFT method have higher importance (the medians are over 0.5

for each time grid).

Figure 18 Time quantiles weights distribution of stacking method for PBC data

(Left: general stacking, Right: clustering stacking)

55

However, CSL data (Figure 19) is another case. We can only conclude that the Cox

method may be ineffective since its weight is early 0 for most time intervals, but we

cannot discern the importance between the AFT method and survival forest because the

weights have a wide range from 0 to 1 with large variances. Because there is no clear

difference, it seems difficult to tell which candidate algorithm is more appropriate for

this data set, even for a small time range.

Figure 19 Time quantiles weights distribution of stacking method for CSL data

(Left: general stacking, Right: clustering stacking)

56

Figure 20 Time quantiles weights distribution of stacking method for GBC data

(Left: general stacking, Right: clustering stacking)

Figure 21 Time quantiles weights distribution of stacking method for WPBC data

(Left: general stacking, Right: clustering stacking)

57

Figure 22 Time quantiles weights distribution of stacking method for Veteran data

(Left: general stacking, Right: clustering stacking)

Figure 23 Time quantiles weights distribution of stacking method for NWTCO data

(Left: general stacking, Right: clustering stacking)

Figure 20 to Figure 23 show IBS results for GBSG data, WPBC data, Veteran data and

NWTCO data. GBSB, WPBC, and Veteran data have an obvious preference of choosing

models by combing their balance weights or with a single high weight. For example, in

all time ranges, the weight of SRC (survival forests model) is very high for the WPBC

58

data, it could be explained by survival forests model's excellent performance. NWTCO

is a little different from the others, when time is less than the 0.2 quantile, the random

forests model gets a very high weight with a slight variance, as shown in Figure 23.

However, due to its high censoring proportion of 0.85, it is difficult to tell which model

outperforms the others when time is greater than the 0.2 quantile. One explanation may

be the lack of data for large time grids. It emphasizes the importance of having enough

non-censoring data at each time interval to implement the new stacking method.

6.2.2 Performance comparison

Since the true survival function is unknown for real data, The IAE and ISE cannot be

calculated as we did with the artificial data sets. Instead, our primary criterion is the

integrated Brier Score. It can be considered as weighted mean squared error, the smaller

a model's integrated Brier Score is, the better it performs. The graphic below shows the

result of IBS for each candidate method with the stacking method and super learner

algorithm (Marzieh K.Golmakani et al. 2020[21]). Because of multiple iterations of super

learner when optimizing risk, super learner algorithm costs too much time for a large

number of observations, particularly when choosing many candidate models or

complexes models. Here, in order to save time, only the Cox and lasso models are used

to optimize. Nonetheless, NWTCO data took approximately a week to obtain the results

for 4088 observations.

59

Figure 24 Integrated Brier Score (IBS) boxplots of six real data sets

(1: PBC 2: CSL 3: GBSG 4: WPBC 5: Veteran 6: NWTCO)

IBS follows the same criteria analogy with IAE and ISE; the smaller IBS, the better it

perfoms in terms of prediction. Six real data sets all show that the stacking method (or

clustering stacking) performs best or nearly best with low variance. For PBC data

(No.1), super leaner perform the worst, while the other methods have almost the same

performances. For CSL data 2, survival forests performs best because of its smallest

variance, but overall, these models do not have significant difference under the IBS

criteria. For GBSG data 3 and WPBC data 4, stacking method performs much better

than the Cox, AFT and super learner methods, and they perform almost as well as the

survial forest. Although AFT has smaller IBS than the Cox and stacking methods, it has

the largest variance. SRC (survival forests model) perfoms better than the Cox model

60

and the AFT model with Veteran data because of its lowest median IBS and lowest

variance. We also could reach the same conclusion by the analysis of the weights

presentation figures. SRC get the hightest weight among all the three basic models. For

the NWTCO data, because of its high proportion of censoring 0.85, it is difficult to tell

the difference among all the algorithms.

Overall, this new stacking method with time-dependent and covariate-dependent

weights can automatically detect the good parts of each candidate model to avoid

performing the worst, but it is unlike the traditional stacking method with fixed weights

for each candidate model whose simple linear regression usually gives us the middle

performance. Since it can combine ideal parts to produce a new estimated survival

function for each new observation, it can perform near-best of these candidate models.

Furthermore, when the data has grouping properties, such as in WPBC and Veteran

data, the clustering stacking method can be useful and performs better than general

stacking.

61

Chapter 7

Discussion and conclusion

This new stacking method with time-dependent and covariate-dependent weights works

effectively for survival data, and it proves that survival function depends on the time and

covariates at the same time. According to the fixed time grid, it could automatically

choose the ideal parts of each candidate model and combine them together with time-

dependent and covariate-dependent weights. In other words, this new stacking method

can perform nearly the best, no matter if the performance of the candidate algorithm is

good or not. Another advantage of this new stacking method is that we could analyze its

weights representation figures to find out which model is more appropriate for a certain

time range.

However, the number of time grids could affect the performance of the stacking method.

Perhaps selecting 9 as the size of the grid is not optimal. Maybe using equispaced grid

values based on the Kaplan-Meier is not optimal also. Because we cannot know in

advance which time grid that we choose is the best, the result for stacking method is not

perfect, although it performs good enough in our experiments on simulation data sets

and on real data sets. Future studies could investigate the time grid selection to optimize

the prediction results.

Another inconvenience is that this stacking method is somewhat complex, and time-

consuming. Here we use three basic methods; if more candidate models are added in, it

will undoubtedly complicate the process. Due to the weights and grouping work, the

computation of prediction for new observations at hundreds of time points also takes a

lot of time.

In conclusion, with the goal of improving the prediction performance, how to optimize

this new stacking method with time-dependent and covariate-dependent weights is

important for future study and research work, either from the direction of choosing time

grids, or from computing work.

62

Appendix

Appendix [1]

The function iaeise is used to calculate IAE (Integrated absolute error) and ISE

(Integrated square error) for one subject as the criteria value to evaluate the model

performance for the simulation data set with the inputs s (vector of true survival

probabilities), shat (vector of estimated survival probabilities), time (vector of time

points for s and shat) and endpoint (last value for the integration). The function res is

used to calculate IAE and ISE for all test subjects with the inputs true_prob (vector of

true survival probabilities, values followed by next subject at all time points), estimated

(vector of estimated survival probabilities, values followed by next subject at all time

points), time (vector of time points) and npoints (number of time points).

function to compute the IAE and ISE for one subject

iaeise=function(s,shat,time,endpoint){

 # s = vector with the true S (s[1] should be 1)

 # shat = vector with the estimated S (shat[1] should be 1)

 # time = time points for s and shat (time[1] should be 0)

 # endpoint = last value for the integration (must be > last value of time)

 time=c(time,endpoint)

 timediff=diff(time)

 iae=sum(timediff*abs(s-shat))/endpoint

 ise=sum(timediff*(s-shat)^2)/endpoint

 c(iae,ise)

}

Function to get IAE and ISE for all subjects

res=function(true_prob,estimated,time,npoints)

{

 res=NULL

 max_time=max(time)+time[2]-time[1]

 for(i in 1:(length(true_prob)/npoints))

 {

 true_i=true_prob[((i-1)*npoints+1):(i*npoints)]

 test_i=estimated[((i-1)*npoints+1):(i*npoints)]

63

 time_i=time[((i-1)*npoints+1):(i*npoints)]

 addres=iaeise(true_i,test_i,time_i,max_time)

 res=rbind(res,addres)

 }

 return(res)

}

64

Appendix [2]

The function get_weights is used to get the weights based on Cox, AFT and SRC with

the new stacking method as described in Section 4.4. The inputs dattrain (training data

set), dattest (test data set that needed to be standardized with training data set before

being clustered with k-means), k (number of folders of cross-validation scheme), t_grid

(vector of time grids) and formule (formula of target 𝑌 and covariates 𝑋) are needed. A

list of general stacking weights, liner model tree, k-means model and clustering stacking

weights fitted with training data are returned.

function to get the constrained weights, lmtree models and

constrained cluster weights

get_weights=function(dattrain,dattest,k,t_grid,formule)

{

 ntrain=nrow(dattrain)

 per=c(1:ntrain)

 tl=1

 nntest=ceiling(ntrain/k)

 predsrc_cv=list()

 indtest=list()

 for(i in 1:(k-1))

 {

 indtest[[i]]=per[tl:(tl+nntest-1)]

 tl=tl+nntest

 }

 indtest[[k]]=per[(nntest*(k-1)+1):ntrain]

 # k folds

 for(i in 1:k)

 {

 cind=indtest[[i]]

 fitsrc_cv=rfsrc(Surv(y,status)~.,data = dattrain[-cind,],ntree = 200)

 predsrc_cv[[i]]=predict(fitsrc_cv,newdata=dattrain[cind,])

 }

 # AFT model

 pre_median=NULL

 pre_scale=NULL

65

 # k=10 folds

 for (i in 1:k)

 {

 cind=indtest[[i]]

 fitsreg6_cv=survreg(Surv(y,status)~.,data = dattrain[-cind,],dist =
"loglogistic")

 add=predict(fitsreg6_cv,newdata = dattrain[cind,],type = "response")

 add2=fitsreg6_cv$scale

 pre_median=c(pre_median,add)

 pre_scale=c(pre_scale,add2)

 }

 # Cox model

 predcox_cv=list()

 for(i in 1:k)

 {

 cind=indtest[[i]]

 fitcox_cv=coxph(Surv(y,status)~.,data = dattrain[-cind,],x=TRUE)

 predcox_cv[[i]]=survfit(fitcox_cv,newdata=dattrain[cind,])

 }

 # get the combined table for each individual at time t_grid

 # the table result_train contains true survival prob, estimated prob
src,aft,cox and time t_grid.

 result_train=NULL

 for(i in 1:ntrain)

 {

 output_src=NULL

 output_aft=NULL

 output_cox=NULL

 output_t=NULL

 folder=ceiling(i/nntest)

 for(t in 1:length(t_grid))

 {

 num_src=which.min(abs(predsrc_cv[[folder]]$time.interest-t_grid[t]))

 num_cox=which.min(abs(predcox_cv[[folder]]$time-t_grid[t]))

 add1=predsrc_cv[[folder]]$survival[(i-(folder-1)*(nntest)),][num_src]

 add2=1/(1+((t_grid[t]/pre_median[i])^(1/pre_scale[folder])))

 add3=predcox_cv[[folder]][(i-(folder-1)*(nntest))]$surv[num_cox]

66

 add4=t_grid[t]

 output_src=c(output_src,add1)

 output_aft=c(output_aft,add2)

 output_cox=c(output_cox,add3)

 output_t=c(output_t,add4)

 }

 add5=bind_rows(replicate(length(t_grid), dattrain[i,], simplify = FALSE))

result_train_i=data.frame(add5,output_src=output_src,output_aft=output_aft,

 output_cox=output_cox,t=output_t)

 result_train=rbind(result_train,result_train_i)

 }

 # Get pseudo-observations of train group

 pseudo_surv=pseudosurv(time=dattrain$y,event=dattrain$status,tmax = t_grid)

 # From the summary table, we can see that the pseudo-observations based

 # on the Kaplan-Meier estimator have negative value or more than 1.

 # put the pseudo-observations in the table

 pseudo_s=NULL

 for(i in 1:nrow(pseudo_surv$pseudo))

 {

 pseudo_s=c(pseudo_s,pseudo_surv$pseudo[i,])

 }

 result_train$pseudo_s=pseudo_s

 mob_train=list()

 pre_train=list()

 node_train=list()

 nodeid_train=list()

 for(i in 1:length(t_grid))

 {

 mydata=result_train[result_train$t==t_grid[i],]

 mob_train[[i]]<- lmtree(formule,data = mydata)

 pre_train[[i]]=predict(mob_train[[i]],mydata,type = "response")

 node_train[[i]]=predict(mob_train[[i]],mydata,type="node")

 nodeid_train[[i]]=sort(unique(node_train[[i]]))

 }

 train_node=NULL

 for (i in 1:ntrain)

67

 {

 for(j in 1:length(t_grid))

 {

 add=node_train[[j]][i]

 train_node=c(train_node,add)

 }

 }

 result_train$node=train_node

 ntype=3 # number of algorithms

 # To get constrained weights(sum=1,and be positives)

 weights_train=list()

 #predict_train=rep(0,ntrain)

 for(i in 1:length(t_grid))

 {

 weights_train[[i]]=matrix(0,length(nodeid_train[[i]]),3)

 for(j in 1:length(nodeid_train[[i]]))

 {

 indi=which(result_train$t==t_grid[i] &
result_train$node==nodeid_train[[i]][j])

 dati=result_train[indi,]

Rinv=solve(chol(as.matrix(t(dati[,c("output_src","output_aft","output_cox")])
) %*% as.matrix(dati[,c("output_src","output_aft","output_cox")])))

 c=cbind(rep(1,ntype),diag(ntype))

 b=c(1,rep(0,ntype))

 d=as.matrix(t(dati[,"pseudo_s"])) %*%

 as.matrix(dati[,c("output_src","output_aft","output_cox")])

 weights_train[[i]][j,]=solve.QP(Dmat = Rinv,factorized = TRUE,

 dvec = d,Amat = c,bvec =
b,meq=1)$solution

 # compute the predictions with the new weights

 #predict_train[indi]=apply(t(weights_train[[i]][j,] *

 #
as.matrix(t(dati[,c("output_src","output_aft","output_cox")]))),1,sum)

 }

 }

 ###### get cluster weights

 ngroup=NULL

68

 for(i in 1:length(t_grid))

 {

 ngroup[i]=nrow(weights_train[[i]])

 }

 mydata_all=rbind(dattrain[,!(names(dattrain) %in%
c("y","status"))],dattest[,!(names(dattest) %in% c("y","status"))])

 mydata_all_sta=as.data.frame(scale(mydata_all,center = TRUE,scale = TRUE))

 mydata=dattrain[,!(names(dattrain) %in% c("y","status"))]

 mydata_standalise=mydata_all_sta[c(1:nrow(dattrain)),]

 result=list()

 weights_cluster=list()

 my_data=list()

 for(i in 1:length(t_grid))

 {

 result[[i]]=kmeans(mydata_standalise,ngroup[i])

 my_data[[i]]=result[[i]]$cluster

 weights_cluster[[i]]=matrix(0,ngroup[i],ntype)

 for(j in 1:ngroup[i])

 {

 indi=which(my_data[[i]]==j)

 dati=result_train[result_train$t==t_grid[i],][indi,]

Rinv=solve(chol(as.matrix(t(dati[,c("output_src","output_aft","output_cox")])
) %*%

as.matrix(dati[,c("output_src","output_aft","output_cox")])))

 c=cbind(rep(1,ntype),diag(ntype))

 b=c(1,rep(0,ntype))

 d=as.matrix(t(dati[,"pseudo_s"])) %*%
as.matrix(dati[,c("output_src","output_aft","output_cox")])

 weights_cluster[[i]][j,]=solve.QP(Dmat = Rinv,factorized = TRUE,dvec =
d,Amat = c,bvec = b,meq=1)$solution

 }

 }

return(list(weights_train=weights_train,mob_train=mob_train,mob_cluster=resul
t,weights_cluster=weights_cluster))

}

69

Appendix [3]

The function pre_test can get predictions for test data of three candidate models Cox,

AFT, SRC, general stacking and clustering stacking models with the inputs dattrain

(training data set that needed to be standardized with test data set), dattest (test data set),

mob_train (linear model tree obtained from function get_weights), weights_train

(general stacking weights obtained from function get_weights), mob_cluster (k-means

model obtained from function get_weights), weights_cluster (clustering stacking

weights obtained from function get_weights) and t_grid (vector of time grids). The time

points from prediction of SRC model are used for all the other models.

function to get predictions of all the models

pre_test=function(dattrain,dattest,mob_train,weights_train,mob_cluster,weight
s_cluster,t_grid)

{

 ntest=nrow(dattest)

 ntype=3

 # fit 3 models for test group

 # AFT model

 fitsreg6=survreg(Surv(y,status)~.,data = dattrain,dist = "loglogistic")

 test_median=predict(fitsreg6,newdata = dattest,type = "response")

 test_scale=fitsreg6$scale

 # Survival tree

 fitsrc=rfsrc(Surv(y,status)~.,data = dattrain,ntree = 200)

 predsrc=predict(fitsrc,newdata=dattest)

 # Cox model

 fitcox=coxph(Surv(y,status)~.,data = dattrain,x=TRUE)

 predcox=survfit(fitcox,newdata=dattest)

 # Test group frame date set

 result_test=NULL

 t_points=c(0,predsrc$time.interest)

 for(i in 1:ntest)

 {

 output_aft=NULL

 output_cox=NULL

 id=NULL

70

 for(t in 1:length(t_points))

 {

 num_cox=which.min(abs(predcox$time-t_points[t]))

 add2=1/(1+((t_points[t]/test_median[i])^(1/test_scale)))

 add3=predcox$surv[num_cox,i]

 output_aft=c(output_aft,add2)

 output_cox=c(output_cox,add3)

 }

result_test_i=data.frame(id=rep(i,length(t_points)),output_src=c(1,predsrc$su
rvival[i,]),output_aft=output_aft,output_cox=output_cox,t=t_points)

 result_test=rbind(result_test,result_test_i)

 }

 # put the estimated values(stack) with constraints in the data set

 t_med=0.5*(t_grid[-1]+t_grid[-length(t_grid)])

 t_pre=NULL

 for(i in 1:length(t_points))

 {

 if(t_points[i]<=t_med[1]){add=1}

 if(t_points[i]>t_med[length(t_med)]){add=length(t_med)+1}

 for(j in 1:(length(t_med)-1))

 {

 if(t_points[i]>t_med[j] & t_points[i]<=t_med[j+1]){add=j+1}

 }

 t_pre=c(t_pre,add)

 }

 result_test$t_pre=t_pre

 predict_test=NULL

 node_test=NULL

 for(i in 1:nrow(result_test))

 {

 j=result_test[i,]$t_pre

 mydata=dattest[result_test[i,]$id,]

 i_node=predict(mob_train[[j]],mydata,type = "node")

if(length(coef(mob_train[[j]]))>ntype){num_node=which(row.names(coef(mob_trai
n[[j]]))==i_node)}

 if(length(coef(mob_train[[j]]))==ntype){num_node=1}

 add_test=apply(t(weights_train[[j]][num_node,] *

71

as.matrix(t(result_test[i,c("output_src","output_aft","output_cox")]))),1,sum
)

 node_test=c(node_test,num_node)

 predict_test=c(predict_test,add_test)

 }

 result_test$node=node_test

 result_test$stack=predict_test

 mydata_all=rbind(dattrain[,!(names(dattrain) %in%
c("y","status"))],dattest[,!(names(dattest) %in% c("y","status"))])

 mydata_all_sta=as.data.frame(scale(mydata_all,center = TRUE,scale = TRUE))

 test_standalise_unique=mydata_all[c((nrow(dattrain)+1):nrow(mydata_all)),]

test_standalise=test_standalise_unique[rep(seq_len(nrow(test_standalise_uniqu
e)), each = length(t_points)),]

 test_standalise$t_pre=result_test$t_pre

 pre_group=list()

 pre_prob=list()

 test_i=list()

 t_sort=unique(test_standalise$t_pre)

 for(i in 1:length(t_sort))

 {

 test_i[[i]]=test_standalise[test_standalise$t_pre==t_sort[i],]

 pre_group[[i]]=cl_predict(mob_cluster[[t_sort[i]]],
test_i[[i]][,!(names(test_i[[i]]) %in% c("t_pre"))])

pre_prob[[i]]=rep(0,nrow(test_standalise[test_standalise$t_pre==t_sort[i],]))

 for (j in 1:nrow(weights_cluster[[i]]))

 {

 indi=which(pre_group[[i]]==j)

 dati=result_test[result_test$t_pre==t_sort[i],][indi,]

 pre_prob[[i]][indi]=apply(t(weights_cluster[[t_sort[i]]][j,] *

as.matrix(t(dati[,c("output_src","output_aft","output_cox")]))),1,sum)

 }

 }

 stack_cluster=rep(0,nrow(result_test))

 for(p in 1:length(t_sort))

 {

72

 tra=which(result_test$t_pre==t_sort[p])

 stack_cluster[tra]=pre_prob[[p]]

 }

 result_test$stack_cluster=stack_cluster

 return(result_test)

}

73

Appendix [4]

The function isotonic is used to render the estimated survival probabilities non-

increasing with time. For any model, the estimated survival probability at time 𝑡 = 0

should be 1, and it should not be greater than the previous time point. We have the

result_test (a table of estimated survival probabilities at all time points fitted by the Cox,

AFT, SRC, general stack, cluster stack and super learner models for all test individuals)

and npoints (number of time points) as inputs.

function to make shat[1]=1 and isotonic regression

isotonic=function(result_test,npoints){

 result=NULL

 for(i in 1:(nrow(result_test)/npoints))

 {

 individu=result_test[(i-1)*npoints+seq(npoints),]

 individu$output_src[1]=1

 individu$output_aft[1]=1

 individu$output_cox[1]=1

 individu$stack[1]=1

 individu$stack_cluster[1]=1

 individu$super[1]=1

 for(j in 2:npoints)

 {

 if(individu$stack[j]>individu$stack[j-
1]){individu$stack[j]=individu$stack[j-1]}

 if(individu$stack[j]<0){individu$stack[j]=0}

 if(individu$stack_cluster[j]>individu$stack_cluster[j-
1]){individu$stack_cluster[j]=individu$stack_cluster[j-1]}

 if(individu$stack_cluster[j]<0){individu$stack_cluster[j]=0}

 }

 result=rbind(result,individu)

 }

 return(result)

}

74

Appendix [5]

DGP1-DGP4 are four Data Generating Processes (DGPs) that produce simulated date

sets. The DGPs are described in detail in Section 5.1. True survival probabilities for

simulated data are calculated using the trueS1-trueS4 functions, which take values from

DGPs and a vector of time points as inputs.

Function to generate artificial survival data DGP1

n = sample size

parcens = parameter(lambda) of the exponential censoring time.

Use it to get the desired proportion of censoring

output = data frame with 21 columns

col1 - col15 = covariates V1-V15

(only V1,V2,V3,V5,V6,V7,V10 are related to the event time)

col16 = y = observed time(true or censored). This is the target variable

col17 = status = 1 = dead(event occured); 0 = alive (censored)

col18 - col21 are used to evaluate the models but are not available for
training and in fact

would not be available in a real applicaiton

col18 = truey = true event time

col19 = cens = ture cencoring time

col20 = truefx = true function of the covariates (log scale)

log(Y) = truefx+epsilon

epsilon if from a gamma(3,5) distribution

col21 = exptruefx = exp(truefx)

Y = exptruefx*exp(epsilon)

DGP1=function(n,parcens)

{

 library(mvtnorm)

 sigma=matrix(0.3,15,15)

 sigma=sigma+0.7*diag(15)

 x=rmvnorm(n,mean = rep(0,15),sigma = sigma)

 x[,6]=abs(x[,6])

 x[,7]=as.numeric(x[,7]>0.5)

 x[,8]=as.numeric(x[,8]>0.2)

 x[,9]=log(x[,9]+5)

75

 x[,10]=exp(x[,10]/3)

 x[,11]=as.numeric(x[,11]>0.1)

 x[,12]=abs(x[,12])

 truefx=-0.5+(x[,1]+x[,2]+0.3*x[,2]^2+x[,5]+x[,6]-0.3*x[,5]*x[,6]+x[,7]+

 1/(x[,10]+3)+(x[,3]>0)*(x[,1]>0)-(x[,3]<0)*(x[,1]>0))/3

 truefx=apply(cbind(truefx,1.7),1,min)

 truefx=apply(cbind(truefx,-1.8),1,max)

 exptruefx=exp(truefx)

 # true value of Y(time) if no censoring

 truey=exptruefx*rgamma(n,3,5)

 # censoring time

 cens=rexp(n,1/parcens)

 # observed time

 y=apply(cbind(truey,cens),1,min)

 # censoring indicator (1 = event occured (dead); 0 = censored (alive))

 status=as.numeric(truey<cens)

 out=data.frame(cbind(x,y,status,truey,cens,truefx,exptruefx))

 out

}

function to compute the true survival function: DGP1

trueS1=function(exptruefx,vectime)

{

 # exptruefx = value from DGP1 function

 # vectime = vector of points where to evaluate S

 pgamma(vectime/exptruefx,3,5,lower.tail = FALSE)

}

Functions to reproduce DGP 2 to 4 from Moradian et al. (2017)[17]

####################### DGP2

DGP2=function(n,alpha)

{

 # n = sample size

 # alpha = parameter for the censoring distribution

 # status = 1 = dead (event occured); 0 = alive (censored)

 dat=data.frame(matrix(runif(n*10),ncol=10))

 names(dat)=paste("x",1:10,sep="")

76

 dat$u=10*abs(sin(dat$x1*pi-1)) + 3*abs(dat$x2-.5) + dat$x3

 dat$truetime=rexp(n,1/dat$u)

 dat$censor=alpha*runif(n)

 dat$y=apply(dat[,c("censor","truetime")],1,min)

 dat$status=as.numeric(dat$truetime<=dat$censor)

 dat

}

function to compute the true survival function DGP2

trueS2=function(u,vectime)

{

 # u = value from DGP2 function

 # vectime = vector of points where to evaluate S

 pexp(vectime, rate = 1/u, lower.tail = FALSE, log.p = FALSE)

}

####################### DGP3

DGP3=function(n,alpha)

{

 # n = sample size

 # alpha = parameter for the censoring distribution

 sigma=diag(25)

 for(i in 1:25){

 for(j in 1:25){

 sigma[i,j]=0.75^{abs(i-j)}

 }

 }

 dat=data.frame(rmvnorm(n,sigma=sigma))

 names(dat)=paste("x",1:25,sep="")

 dat$u=0.5 + 0.3*abs(dat$x11+dat$x12+dat$x13+dat$x14+dat$x15)

 dat$truetime=rgamma(n,shape=dat$u,scale=2)

 dat$censor=alpha*runif(n)

 dat$y=apply(dat[,c("censor","truetime")],1,min)

 dat$status=as.numeric(dat$truetime<=dat$censor)

 dat

}

function to compute the true survival function: DGP3

trueS3=function(u,vectime)

77

{

 # u = value from DGP3 function

 # vectime = vector of points where to evaluate S

 pgamma(vectime,shape=u,scale=2,lower.tail = FALSE)

}

####################### DGP4

DGP4=function(n,alpha)

{

 # n = sample size

 # alpha = parameter for the censoring distribution

 sigma=diag(25)

 for(i in 1:25){

 for(j in 1:25){

 sigma[i,j]=0.9^{abs(i-j)}

 }

 }

 dat=data.frame(rmvnorm(n,sigma=sigma))

 names(dat)=paste("x",1:25,sep="")

dat$u=0.1*abs(dat$x11+dat$x12+dat$x13+dat$x14+dat$x15+dat$x16+dat$x17+dat$x18
+dat$x19+dat$x20)

 dat$truetime=rexp(n,1/dat$u)

 dat$censor=rexp(n,alpha/dat$u)

 dat$y=apply(dat[,c("censor","truetime")],1,min)

 dat$status=as.numeric(dat$truetime<=dat$censor)

 dat

}

function to compute the true survival function: DGP4

trueS4=function(u,vectime)

{

 # u = value from DGP4 function

 # vectime = vector of points where to evaluate S

 pexp(vectime, rate = 1/u, lower.tail = FALSE, log.p = FALSE)

}

78

References

[1] John D Kalbfleisch and Ross L Prentice, The statistical analysis of failure time data,

vol. 360, John Wiley & Sons, 2011.

[2] David W Hosmer Jr and Stanley Lemeshow, Applied survival analysis: regression

modelling of time to event data, Eur Orthodontic Soc, 1999, p.561-562.

[3] Therneau TM, Survival analysis, R package version 3.2-7, 2020.

https://cran.r-project.org/web/packages/survival/survival.pdf

[4] F Bugnard, C Ducrot, D Calavas, Advantages and inconveniences of the Cox model

compared with the logistic model: application to a study of risk factors of nursing cow

infertility, Veterinary Research, BioMed Central, 1994, vol. 25 (2-3), p.134-139.

[5] Magdalena Babińska et al., Limitations of Cox Proportional hazards analysis in

Mortality prediction of patients with acute coronary syndrome, Studied in logic,

grammar and rhetoric, 2015, vol. 43 (56).

[6] William R. Swindell, Accelerated failure time models provides a useful statistic

framework for aging reseache, Exp Gerontol, 2009, Mar, vol. 44 (3), p.190-200.

[7] Leo Breiman, Random forests, Machine learning, 2001, vol. 45 (1), p.5-32.

[8] Antonio Ciampi, Johanne Thiffault, Jean-Pierre Nakache, and Bernard Asselain,

Stratification by stepwise regression, correspondence analysis and recursive partition:

a comparison of three methods of analysis for survival data with covariates,

Computational statistics & data analysis, 1986, vol. 4 (3) p.185-204.

[9] Noah Simon, Jerome Friedman, Trevor Hastie, and Rob Tibshirani, Regularization

paths for cox's proportional hazards model via coordinate descent, Journal of statistical

software, 2011, vol. 39 (5), p.1.

https://cran.r-project.org/web/packages/survival/survival.pdf

79

[10] Jerome Friedman et al., Lasso and Elastic-Net Regularized Generalized Linear

Models, R package version 4.1, 2021.

https://cran.r-project.org/web/packages/glmnet/glmnet.pdf

[11] Axel Benner, Manuela Zucknik, Thomas Hielscher, Carina Ittrich, Ulrich

Mansmann, High-dimensional Cox models: The choice of penalty as part of the model

building process, Biometrical journal, 2010, Feb, vol. 52(1), p.50-69.

[12] Yoav Freund, Robert E Schapire, et al., Experiments with a new boosting

algorithm, Icml, 1996, vol.96, p.148-156.

[13] Denis Larocque, Course notes (Version 3) of advanced statistical learning, HEC

Montreal, 2019.

[14] Leo Breiman, Stacked regression, Marchine learning, 1996b, vol. 24 (1), p.49-64.

[15] Michael LeBlanc and Robert Tibshirani, Combining estimates in regression and

classification, Journal of the American Statistical Association, 1996, vol. 91 (436),

p.1641-1650.

[16] Zachary A. Deane-Mayer and Jared E, Knowles, Ensembles of Caret Models, R

package version 2.0.1, 2019.

https://cran.r-project.org/web/packages/caretEnsemble/caretEnsemble.pdf

[17] Erin LeDell et al., R Interface for the 'H2O' Scalable Machine Learning Platform,

R package version 3.32.0.1, 2020.

https://cran.r-project.org/web/packages/h2o/h2o.pdf

[18] Andrew Wey, John Connett and Kyle Rudser, Combining parametric, semi-

parametric, and non-parametric survival models with stacked survival models,

Biostatistics, 2015, vol. 16 (3), p.537-549.

[19] Eric C. Polley, Mark J. van der Laan, Super Learning for Right-Censored Data,

Targeted Learning: Causal Inference for Observational and Experimental Data,

Springer Series in Statistics, 2011, Chapter 16, p.249-258.

https://cran.r-project.org/web/packages/glmnet/glmnet.pdf
https://cran.r-project.org/web/packages/caretEnsemble/caretEnsemble.pdf
https://cran.r-project.org/web/packages/h2o/h2o.pdf

80

[20] Andrew Wey, David M. Vock, John Connett, and Kyle Rudser, Estimating

restricted mean treatment effects with stacked survival models, Stat Med, 2016, August

30, vol.35 (19), p.3319-3332.

[21] Marzieh K.Golmakani and Eric C.Polley, Super Learner for Survival Data

Prediction, The International Journal of Biostatistics, 2020.

[22] Lorbert A, Ramadge P, Decent methods for tuning parameter refinement,

Proceedings of the Thirteenth International Conference on Artificial Intelligence and

Statistics, 2010, p.469-476.

[23] Thomas A Gerds and Matin Schumacher, Consistent estimation of the expected

brier score in general survival models with right-censored event times, Biometrical

journal, 2006, 48 (6), p.1029-1040.

[24] Erika Graf, Claudia Schmoor, Willi Sauerbrei, and Martin Schumacher, Assessment

and comparison of prognostic classification schemes for survival data, Statistics in

medicine, 1999, vol. 18 (17-18), p.2529-2545.

[25] Hoora Moradian, Denis Larocque and François Bellavance, L1 splitting rules in

survival forests, Lifetime Data Anal, 2017, p. 671-691.

[26] U.B.Mogensen, H.Ishwaran, and T.A. Gerds, Evaluating random forests for

survival analysis using prediction error curves, Journal of statistical software, 2012,

vol. 50 (11), p.1.

[27] Per Kragh Andersen and Maja Pohar Perme, Pseudo-observations in survival

analysis, Statistical Methods in Medical Research, 2010, p.71-99.

[28] Maja Pohar Perme and Mette Gerster, Computes Pseudo-Observations for

Modeling, R package version 1.4.3, 2017.

https://cran.r-project.org/web/packages/pseudo/pseudo.pdf

https://cran.r-project.org/web/packages/pseudo/pseudo.pdf

81

[29] Torsten Hothorn et al., A Toolkit for Recursive Partytioning, R package version

1.2-12, 2021.

https://cran.r-project.org/web/packages/partykit/partykit.pdf

[30] S original by Berwin A. Turlach et al., Functions to Solve Quadratic Programming

Problems, R package version 1.5-8, 2019.

https://cran.r-project.org/web/packages/quadprog/quadprog.pdf

[31] Kurt Hornik, Cluster Ensembles, R package version 0.3-58, 2020.

https://cran.r-project.org/web/packages/clue/clue.pdf

[32] Zhu R and Kosorok MR, Recursively imputed survival trees, J Am Stat Assoc,

2012, vol. 107 (497), p.331-340.

[33] Fleming TR, Harrington DP, Counting processes and survival analysis, Wiley,

Hoboken, 1991.

[34] Bou-Hamad I, Larocque D, Ben-Ameur H, A review of survival trees, Stat Surv,

2011, vol. 5, p.44-71.

[35] Anthony Davison, Practicals for Use with Davison (2003) Statistical Models, R

package version 1.4-3, 2018.

https://cran.r-project.org/web/packages/SMPracticals/SMPracticals.pdf

[36] Schlichting P, Christensen E, Andersen PK, Fauerholdt L, Juhl E, Poulsen H,

Tygstrup N, Prognostic factors in cirrhosis identified by Cox’s regression model,

Hepatology, 1983, vol. 3 (6), p.889-895.

[37] Thomas Scheike with contributions from Torben Martinussen, Jeremy, Flexible

Regression Models for Survival Data, R package version 1.9.8, 2020.

https://cran.r-project.org/web/packages/timereg/timereg.pdf

[38] Schumacher M, Bastert G, Bojar H, Huebner K, Olschewski M, Sauerbrei W,

Schmoor C, Beyerle C, Neumann RL, Rauschecker HF, Randomized 2 × 2 trial

evaluating hormonal treatment and the duration of chemotherapy in node-positive

https://cran.r-project.org/web/packages/partykit/partykit.pdf
https://cran.r-project.org/web/packages/quadprog/quadprog.pdf
https://cran.r-project.org/web/packages/clue/clue.pdf
https://cran.r-project.org/web/packages/SMPracticals/SMPracticals.pdf
https://cran.r-project.org/web/packages/timereg/timereg.pdf

82

breast cancer patients, German breast cancer study group, J Clin Oncol, 1994, vol. 12

(10), p.2086-2093.

[39] original by Gareth, modified by Axel Benner. Multivariable Fractional

Polynomials. R package version 1.5.2, 2015.

https://cran.r-project.org/web/packages/mfp/mfp.pdf

[40] Bache K, Lichman M, UCI machine learning repository, 2013.

http://archive.ics.uci.edu/ml

[41] Torsten Hothorn. TH's Data Archive, R package version 1.0-10, 2019.

https://cran.r-project.org/web/packages/TH.data/TH.data.pdf

[42] Kalbfleisch JD, Prentice RL, The statistical analysis of failure time data, Wiley

series in probability and mathematical statistics, Wiley,1980.

[43] Hemant Ishwaran and Udaya B. Kogalur, Fast Unified Random Forests for

Survival, Regression, and Classification (RF-SRC), Rpackage version 2.10.1, 2021.

https://cran.r-project.org/web/packages/randomForestSRC/randomForestSRC.pdf

[44] Breslow NE, Chatterjee N, Design and analysis of two-phase studies with binary

outcome applied to wilms tumour prognosis, J R Stat Soc Ser C (Appl Stat), 1999, vol.

48 (4), p.457-468.

https://cran.r-project.org/web/packages/mfp/mfp.pdf
http://archive.ics.uci.edu/ml
https://cran.r-project.org/web/packages/TH.data/TH.data.pdf
https://cran.r-project.org/web/packages/randomForestSRC/randomForestSRC.pdf

