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ABSTRACT 
 

Certain policies and areas of research require production inputs to be traced all the way up the 

production chain and assigned to consumers to estimate their impact. The contexts range from 

factor content of trade, carbon dioxide (CO2) content of trade, trade in value added, R&D 

content of intermediates, wage structures, and material offshoring effects – all of which need 

domestic and imported input-output data to be computed. Unfortunately, the granularity of 

data required for accurate computations is not available for all countries as it requires a 

tremendous collection effort. As a result, researchers use a proportionality assumption where 

import trade shares are identical in all end uses for each sector.  

Winkler and Milberg (2009), Puzello (2012), and Feenstra and Jensen (2012) have demonstrated 

the assumption’s shortcomings on factor content of trade by using the few countries that 

collect the necessary data, yet, those countries are too few to understand the potential effects 

of the assumption in a globalized world.  

This paper broadens the scope by measuring the limitations of the proportionality assumption 

in factor content of trade computations for 140 countries through simulations, though the 

methodology employed can be applied to all other contexts that make use of input-output 

linkages and trade amongst countries. In the framework of factor content of trade, the 

maximum potential bias found averages 208% through Monte-Carlo simulations and 330% 

through genetic algorithms for all countries across all factors, confirming that restrictions on 

data are not resolved with the proportionality assumption. 
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INTRODUCTION 

 

As globalisation expands and trade increases, economies become more intertwined as they use 

imports not only to satisfy consumption, but largely to satisfy production. Trade, mainly 

consisting of intermediates, makes itself complex to understand and analyze. Goods, rarely 

crossing the boarder only once, are found zigzagging from country to country as they go 

through intricate supply chains bringing new elements of trade to the forefront. Trade is no 

longer just exports minus imports; it is trade in value added (Johnson and Noguera, 2012; 

Nagengast and Stehrer, 2014; Johnson, 2018). Intermediates are not just commodities or raw 

materials, so the notion of R&D content of intermediates takes shape (Nishioka and Ripoll, 

2012). As trade brings new possibilities to some countries, others start to observe impacts on 

their wage structures (Feenstra and Hanson, 1996, 1999; Hummels et al., 2001) and material 

offshoring (Feenstra and Jensen, 2012). Considering the back and forth of supply chains not 

only raises questions on consumers carbon footprint, but also on carbon dioxide (CO2) content 

of trade (Peters and Hertwich, 2008; Caron et al., 2017).  

To identify the linkages in trade, Leontief’s input-output technique provides a framework to 

represent quantities of intermediary products needed by unit of a commodity. Coefficients are 

calculated in input-output matrices, which track flows between sector and country pairs. Input-

output matrices consist of domestic and imported input-output data. As the former are broadly 

available from national statistical agencies, the contrary applies to the latter, where very few 

countries report – too few to extrapolate to the rest of the world. The standard imputation 

approach applied is the proportionality assumption, where imported products are distributed 

proportionally to all destination sectors and final demand according to domestic demand by 

using bilateral trade vectors and the imported input-output matrices.  For example, if 30% of 

wood products in the United States are imported from Canada, it is inferred that 30% of the 

pulp used to make Dunder Mifflin’s paper comes from Canadian wood1. 

 
1 The application of the proportionality assumption in estimating factor content of trade is limited to sectors. The 
application to industry is an extension of the proportionality assumption for illustrative purposes.  
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Empirically, the standard proportionality assumption is limiting as it does not consider 

differences in patterns of world trade present in country-sector pairs that might be explained 

by 'North-North', 'South-South', or North-South' trade.  Some industries, like aircraft, may also 

solely depend on domestic inputs, as Trefler (1995) describes under home bias.  

In cases where more data is available, such as the Asian Input-Output (AIO) tables, which 

provide more precise assessments of input-output structures for China, Indonesia, Korea, 

Japan, Malaysia, Philippines, Singapore, Taiwan, Thailand and the United States, Puzello (2012) 

showed that using the proportionality assumption underrates the relative use of imported 

inputs in the context of factor content of trade, particularly in significant sectors, implying that 

a country’s comparative advantage depends on end-use and not factor endowments. Winkler 

and Milberg (2009) performed an analysis on data from Germany and found that in the case of 

services offshoring, a direct measure and the proportionality assumption had coefficients of 

opposite signs in many cases. A similar study on the USA by Feenstra and Jensen (2012) 

compared firm-level imports to the proportionality assumption and found a correlation of 0.68.  

Assuming proportionality results in many biases by understating uses of imported inputs 

(Puzello, 2012) and overstating domestic factors in countries techniques (Zhu and Trefler, 

2005). With current tendencies in offshoring and their impacts on labour, the National Research 

Council (2006) referred to the proportionality assumption issue as being a considerable 

restriction of present data collection and analysis. Yet, regardless of its shortcomings, the 

proportionality assumption continues to be used by academic researchers and policymakers 

without appropriate consideration for the effects the assumption holds on results.  

Previous research has centered around other direct measures to identify the bias and 

implications of using the standard proportionality assumption (Winkler and Milberg, 2009; 

Puzello, 2012; Feenstra and Jensen, 2012). The approach used in this paper is different in that 

instead of calculating the true bias for the few countries for which data is available, it estimates 

the potential bias in the context of factor content of trade for all countries following the global 

supply chain of all sectors. The potential bias could add confidence to the current method or 

pinpoint areas where the proportionality assumption is an issue.  
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The methodology employed in this paper consists in comparing the proportionality assumption 

to three different approaches2: a random local maximum that maximizes trade flows with 

respect to volume, Monte-Carlo simulations that generate solutions at random, and genetic 

algorithms that generate improved results by transferring from one solution to the next.  

The random local maximum uses trade volumes between country-sector pairs to determine 

trade flows. Larger trade relationships are emphasized to simulate industry competitors 

obtaining inputs from the same source. Such arrangements yield an average bias of 100% for all 

countries across all factors compared to the proportionality assumption.  

Monte-Carlo simulations follow a maximization framework which aims to find the maximum 

potential bias through a multi-start method. The largest bias found averages 208% for all 

countries across all factors compared to the proportionality assumption.  

Genetic algorithms, heuristics formed using neo-Darwinian theory of evolution, are developed 

in line with the maximization framework, but differ from Monte-Carlo simulations as good 

results from one iteration are used to build the next, which allows to find a bias averaging 330% 

for all countries across all factors compared to the proportionality assumption.  

 

 

 

 
2 Python code for measuring bias of the proportionality assumption in factor content computations can be 
downloaded from a GitHub repository, which is available at https://github.com/pszko/FCT-proportionality_bias.  

https://github.com/pszko/FCT-proportionality_bias
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TRACING BACK FACTOR CONTENT OF TRADE 
 

Competitive advantage enables the understanding of trade patterns where exporters have 

superior abilities (or lower costs) in relation to importers. Such relations allow to model 

international economies with the help of Ricardian and Heckscher-Ohlin theories, and in turn, 

those models provide insights to researchers and policy makers. However, when put to the test, 

these trade theories showcase limitations which put in question the models extracted from 

them.   

The Ricardian theory can be used to isolate explanatory variables that interpret trade flows in 

addition to explaining why engaging in trade is mutually beneficial. Following Ricardo, the 

pattern of trade is governed by input requirements ratios. With more than two commodities, 

the makeup of imports and exports is revealed by international differences in production 

functions – comparative factor productivities and demand. However, difficulties arise when 

applying Ricardo’s one-factor model to the actual multi-factor world. Alternatives focus on the 

role of comparative differences in production functions or factor productivities in terms of a 

chosen factor3.  

On the other hand, the Heckscher-Ohlin theory is neither limited to one factor, unlike the 

Ricardian model, nor does it make factor supply peripheral in establishing patterns of trade 

with the assumption of constant returns to scale. The standard Heckscher-Ohlin model assumes 

two factors and presumes that comparative advantage is determined by international 

differences in factor endowments, where a country’s exports use intensively the country’s 

abundant factors.  

The model yields different predictions if production functions for specific industries differ by 

country. These could be balanced by consumption preferences, which can have an offset in 

relative prices elsewhere. Another exclusion appears in production functions that are identical 

but are intensive in different factors, which effectively has the same impact as different 

 
3 With 𝑎1 and 𝑎2 representing the output-factor ratios for country A in activity 1 and 2 and 𝑏1 and 𝑏2 for country B, 
with a 𝑎1 𝑎2⁄ > 𝑏1 𝑏2⁄  relation, country A will export commodity 1 and import commodity 2. Also written as 
𝑎1 𝑏1⁄ > 𝑎2 𝑏2⁄ , asserts the comparative factor productivities (Bhagwati, 1964). 
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production functions. Both scenarios refute the Heckscher-Ohlin proposition, for which 

theorists have had to establish a set of conditions to keep it true4. With these added conditions, 

commodities can be ranked by comparative advantage with the introduction of demand just as 

the Ricardian model, in terms of a chosen factor.  

Bhagwati (1964), brought to surface the lack of scalability of these theorems to the real world. 

By considering factor-intensities of products, with three factors, there are three different ways 

of arranging one production function in relation to another depending on which factor is used 

as a reference input. For example, using land as a refence input, land can be more or less 

capital intensive, more or less labour intensive, and more or less labour intensive with 

reference to capital. The arrangements get more complex with added factors, and their 

interpretability becomes even more difficult.  

Vanek (1968) filled the void with The Factor Proportions Theory for cases with 𝑁 factors, in 

which countries are net exporters of services relatively intensive in factors that they are 

endowed with. Shifting the reference from products to amounts of factor-services embodied in 

goods traded allows for scalability of the Heckscher-Ohlin theorem. A model of international 

price equalization has led Vanek to coining the concept of factor content of trade, where both 

goods and factor prices are equalized internationally under conditions of competition in goods 

and factor markets, free international arbitrage, common constant returns to scale 

technologies, and adequate restrictions on the distribution of world endowments (Davis and 

Weinstein, 2003). Within a general equilibrium framework, the idea of factor content of trade 

supports the evaluations of interactions between endowments, production, absorption and 

trade, helping to confirm trade theories and to address national policies. The Ricardian theory is 

less effective in this perspective as it is difficult to reconcile industrial mixes without the 

implication of factor supply.  

 
4 Conditions are dependant on the definition of factor abundance – either physical or price abundance. For 
physical abundance, conditions are: international identity of production functions, non-reversibility of factor-
intensities, constant returns to scale and diminishing returns along isoquants in each production function, and 
identity of the consumption pattern between countries at each relevant commodity price ratio. For price 
abundance, the condition of identity of the consumption patterns is relaxed, allowing for an easier use of the 
definition; however, it comes with explanatory limitations.  
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From Vanek’s proposition, country factor content of trade can be predicted using endowments 

and shares of world consumption as follows:  

 𝐹𝑖  =  𝑉𝑖 – 𝑠𝑖𝑉𝑤 (1) 

 

where 𝐹𝑖  is country 𝑖’s factor content of trade vector, 𝑉𝑖  is country 𝑖’s endowment vector, 𝑠𝑖 is 

country 𝑖’s portion of world consumption, and 𝑉𝑤  is the world endowment vector. This 

expression of the problem broadens the logic behind the Heckscher-Ohlin theorem in which 

factor content of trade may be determinate even though the patterns of trade may be 

indeterminate (Davis and Weinstein, 2003).  

With endowment data not being available globally and patterns of trade largely consisting of 

trade in intermediates, factor content of trade takes on an enlarged scope to incorporate 

intermediate inputs and outputs in addition to final demand. Leontief’s input-output technique 

facilitates the exercise but requires data to do so.  
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COMPUTING FACTOR CONTENT OF TRADE 

 

Vanek presented factor content of trade as a direct relation between country 𝑖’s endowment 

and country 𝑖’s portion of world consumption considering the world endowment. Reimer 

(2006) and Trefler and Zhu (2010) were able to substantiate the direct relation by bringing out 

algorithms with a relevant definition of 𝐹 based on Deardorff’s (1982) ‘actual’ factor content of 

trade, as well as correct assumptions used to derive 𝐹 related to technology. Earlier studies on 

factor content of trade had used the same technology matrix for all countries or used the 

producers’ technology vector for both inputs and outputs. These simplifications have made the 

calculation of factor content of trade easier at the cost of disregarding the impact of indirect 

factor inputs, making the Vanek proposition (equation 1) violate the linear dependency of 𝐹𝑖 ,  

𝑉𝑖, 𝑉𝑤.  

Reimer (2006) and Trefler and Zhu (2010) calculate country 𝑖’s factor content of trade using: 

 𝐹𝑖  =  𝐷 (𝐼 − 𝐵)−1 𝑇𝑖  (2) 

 

Where 𝐷 is the matrix of direct factor unit requirements, 𝐵 is the input-output matrix, 

(𝐼 − 𝐵)−1 is the Leontief inverse, and 𝑇𝑖 is country 𝑖’s net trade, which is defined as the 

difference between exports and imports and represents direct and indirect factor inputs by 

𝑋𝑖 – 𝑀𝑖.  

The Leontief inverse allows to compute utilization of outputs as inputs. As sectors are co-

dependent where they need more of themselves and other sectors, production can be broken-

down into three parts: 

1. Proportion of a sector used to produce more of that sector 

2. Proportion of other sectors used to produce more of that sector 

3. Proportion of a sector used for final demand and trade 
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The three parts can be transformed into a system of equations consisting of a technology 

matrix (𝐵) based on required resources for production and of demand and trade vectors based 

on final demand and trade constraints.  

The complexity of the input-output matrix 𝐵, which is a square matrix, grows exponentially as 

countries and industries are added. In the case where 𝐵 includes 3 sectors and 3 countries, 𝐵 

takes the following shape: 

𝐵 =

[
 
 
 
 
 
 
𝑏1111 𝑏1112 𝑏1113 𝑏1121 𝑏1122 ⋯ 𝑏1133

𝑏1211 𝑏1212 𝑏1213 𝑏1221 𝑏1222 ⋯ 𝑏1233

𝑏1311 𝑏1312 𝑏1313 𝑏1321 𝑏1322 ⋯ 𝑏1333

𝑏2111 𝑏2112 𝑏2113 𝑏2121 𝑏2122 ⋯ 𝑏2133

𝑏2211 𝑏2212 𝑏2213 𝑏2221 𝑏2222 ⋯ 𝑏2233

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑏3311 𝑏3312 𝑏3313 𝑏3321 𝑏3322 ⋯ 𝑏3333]

 
 
 
 
 
 

= (𝑏𝑖𝑔𝑗ℎ) 

 

indices 𝑖, 𝑔, 𝑗, ℎ represent the output country, output sector, input country and input sector. 

The input-output matrix 𝐵 can be viewed as an aggregation of domestic and imported input-

output matrices. For domestic matrices, where 𝑖 = 𝑗, values are broadly available from national 

statistical agencies that report such data. Using the U.S. as an example, it takes the following 

form: 

𝐵𝑈𝑆𝐴 = [

𝑏𝑈𝑆𝐴1𝑈𝑆𝐴1 𝑏𝑈𝑆𝐴1𝑈𝑆𝐴2 ⋯ 𝑏𝑈𝑆𝐴1𝑈𝑆𝐴ℎ

𝑏𝑈𝑆𝐴2𝑈𝑆𝐴1 𝑏𝑈𝑆𝐴2𝑈𝑆𝐴2 ⋯ 𝑏𝑈𝑆𝐴2𝑈𝑆𝐴ℎ

⋮ ⋮ ⋱ ⋮
𝑏𝑈𝑆𝐴𝑔𝑈𝑆𝐴1 𝑏𝑈𝑆𝐴𝑔𝑈𝑆𝐴2 ⋯ 𝑏𝑈𝑆𝐴𝑔𝑈𝑆𝐴ℎ

]  ∀ 𝑖, 𝑗 = 𝑈𝑆𝐴 

 

For imported matrices, where 𝑖 ≠ 𝑗, values are scarcely available, with certain exceptions like 

the AIO tables. To calculate the factor content of trade or to perform the multiple other 

computations that require the input-output matrix as presented earlier, values need to be 

assumed. The required data for these assumptions is available through bilateral trade vectors 

and the imported input-output matrix, i.e. amounts of imports by sector purchased by firms. 
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This data forms constraints on the imported input-output matrices for every country, which can 

be represented mathematically as follows: 

𝐵𝑈𝑆𝐴 =  
[

𝑏11𝑈𝑆𝐴1 𝑏11𝑈𝑆𝐴2 ⋯ 𝑏11𝑈𝑆𝐴𝑤

𝑏12𝑈𝑆𝐴1 𝑏12𝑈𝑆𝐴2 ⋯ 𝑏12𝑈𝑆𝐴𝑤

⋮ ⋮ ⋱ ⋮
𝑏1𝑦𝑈𝑆𝐴1 𝑏1𝑦𝑈𝑆𝐴2 ⋯ 𝑏1𝑦𝑈𝑆𝐴𝑤

]

Ʃ𝑏11𝑈𝑆𝐴ℎ

Ʃ𝑏12𝑈𝑆𝐴ℎ

⋮
Ʃ𝑏1𝑦𝑈𝑆𝐴ℎ

Ʃ𝑏1𝑔𝑈𝑆𝐴1 Ʃ𝑏1𝑔𝑈𝑆𝐴2 … Ʃ𝑏1𝑔𝑈𝑆𝐴𝑤  

    
∀ 𝑗 = 𝑈𝑆𝐴 𝑎𝑛𝑑 𝑖 = 1
𝑊ℎ𝑒𝑟𝑒 𝑔 = 1,… , 𝑦
𝑎𝑛𝑑 ℎ = 1,… ,𝑤

5 

Where columns are subject to the sums of all imported product 𝑔’s from all country 𝑖’s for a 

sector in 𝑗 = 𝑈𝑆 and rows are subject to bilateral trade between country 𝑖 and the 𝑈𝑆 and all 

sector ℎ’s.  

As imported input-output data in the technology matrix is not widely reported, a standard 

proportionality assumption is used as a workaround, where imported products, per sector, are 

distributed proportionally to destination sectors (final or intermediate) according to domestic 

demand. Mathematically, this is defined by: 

 𝑏𝑖𝑔𝑗ℎ =  
𝑚𝑔𝑗ℎ

∑ 𝑚𝑔𝑗ℎℎ∈𝐻
× 𝑘𝑖𝑔𝑗    𝑓𝑜𝑟 𝑖 ≠ 𝑗 (3) 

 

where 𝑚 represents entries in the imported input-output matrix, 𝑘 represents the bilateral 

trade flows, and indices 𝑖, 𝑔 𝑗, ℎ represent the output country, output sector, input country, 

and input sector. 

Although this method satisfies constraints and its application is straight-forward, there is no 

well-founded reason to believe that a model based on that assumption is an accurate reflection 

of reality. The possible values that 𝑏𝑖𝑔𝑗ℎ can take in the technology matrix while satisfying 

constraints of imported products and bilateral trade are numerous, which raises the question of 

how biased the standard proportionality assumption can be.  

 
5 Where y is the last output sector and w is the last input sector.  
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EARLIER RENDITIONS OF FACTOR CONTENT OF TRADE  

 

There are multiple definitions of the factor content of trade that have been previously used, but 

none represent it as the amount of factors used worldwide to produce a country’s trade flows6 

(Trefler and Zhu, 2010). Trefler (1993, 1995), Davis and Weinstein (2001), Conway (2002), and 

Debaere (2003) have all used variations of: 

 𝐴̅𝑖 = 𝐷𝑖  (𝐼 − 𝐵̅𝑖)
−1 (𝑋𝑖 − 𝑀𝑖) (2) 

 

where 𝐵̅𝑖, the national input-output matrix, which includes national and international sources, 

assumes 𝐵̅𝑖 = 𝐵̅𝑈𝑆𝐴, denoting the same choice-of-technique as the USA for all country 𝑖’s. 

Moreover, 𝐷𝑖 = Ʌ𝑖
−1𝐷𝑈𝑆𝐴, where Ʌ𝑖 is a diagonal matrix in which entries hold values of the 

productivity of factors in country 𝑖 in relation to the United States. Unfortunately, this approach 

does not allow for international technology differences.  

One definition that does allow for international choice-of-technique differences was first 

introduced by Helpman and Krugman (1985) and later presented by Davis and Weinstein 

(2001): 

 𝐹𝑖
𝐷𝑊 = 𝐴̅𝑖𝑋𝑖 − Ʃ𝑗≠𝑖𝐴̅𝑗𝑀𝑖𝑗 (3) 

 

It uses country 𝑗’s technology (𝐴̅𝑗) to evaluate country 𝑗’s output (𝑀𝑖𝑗). Trefler and Zhu (2010) 

demonstrated how without further restrictions on the input-output matrix, there are no 

intermediates traded between country 𝑖 and country 𝑗 – to which Feenstra and Hanson (1996, 

1999), Hummels et al. (2001) and Yi (2003) would tend to refute given their research in global 

vertical production networks, making this definition of factor content of trade non Vanek-

relevant as 𝐹𝑖  is not defined as being equal to 𝑉𝑖 − 𝑠𝑖𝑉𝑤.  

 
6 Previous definitions used 𝐴̅𝑖  instead of 𝐴𝑖.  
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Trefler and Zhu (2000) presented another definition that allows for international choice-of-

technique differences:  

 𝐹𝑖
𝑇 = 𝐴̅𝑖𝑋𝑖

𝑐 − Ʃ𝑗≠𝑖𝐴̅𝑗𝑀𝑖𝑗
𝑐 + 𝐴̅𝑖(𝑋𝑖

𝑦
− 𝑀𝑖

𝑦
) − 𝑠𝑖Ʃ𝑗𝐴̅𝑗(𝑋𝑗

𝑦
− 𝑀𝑗

𝑦
) (4) 

 

It considers both country 𝑖’s exports of consumption goods under 𝑋𝑖
𝑐 and country 𝑖’s imports of 

consumption goods produced in country 𝑗 under 𝑀𝑖𝑗
𝑐 , as well as country 𝑖’s exports of 

intermediate inputs under 𝑋𝑖
𝑦

 and country 𝑖’s imports of intermediate inputs under 𝑀𝑖
𝑦

. Under 

the Vanek null (𝐹𝑖
𝑇 = 𝑉𝑖 − 𝑠𝑖𝑉𝑤), it is a Vanek-relevant definition, but it is ambiguous how to 

interpret 𝐹𝑖
𝑇 if it does not equate to 𝑉𝑖 − 𝑠𝑖𝑉𝑤, rendering it not particularly economically 

meaningful.  

In this paper, the focus is on the impact the proportional imputation of the input-output matrix 

𝐵 has on the calculation of factor content of trade. The criteria of international choice-of-

technique variation, Vanek-relevant 𝐹𝑖, and economical meaningfulness are satisfied with the 

use of datasets that account for technological differences between countries and the use of the 

formula presented by Reimer (2006) and Trefler and Zhu (2010) (equation 2).  
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DATA 

 

This paper uses the GTAP 9 database gathered by the Global Trade Analysis Project at Purdue 

University. National input-output, trade, macroeconomic, and protection data tables 

assembled from the World Bank and IMF macroeconomic and Balance of Payments statistics, 

United Nations Commodity Trade Statistics (Comtrade) Database, and national statistical 

agencies make up the GTAP database. In the GTAP 9 release, data is available for 244 countries 

broken down into 134 individual countries and 6 aggregated regions representing the 

remaining countries7. For each country, data on 57 sectors8 which includes 18 agriculture and 

natural resources sectors, 24 manufacturing sectors, and 15 services sectors, is available.  

Computing factor content of trade requires the domestic input-output (provided by GTAP as 

the VDFM parameter), bilateral trade flows (provided by GTAP as the VXMD parameter), 

imported input-output (provided by GTAP as the VIFM parameter), and factor demand matrices 

(provided by GTAP as the VFM parameter). After separating final demand, including 

consumption, government purchases, and investments from VDFM, all 4 datasets are 

transformed to obtain: 

1. VDFMigjh – domestic input-output matrices9 

2. VXMDigj – bilateral trade flow vectors10 

3. VIFMgjh – imported input-output vectors11 

4. VFMfjh – factor demand matrices12 

 

 
7 See Appendix A for a detailed list of countries and regions 
8 See Appendix B for a detailed list of sectors 
9 VDFM is transformed from a 3-dimensional array table with dimensions of output sector, input sector, and 
output/input country, into VDFMigjh, a collection of domestic input-output matrices for each country. 
10 VXMD is transformed from a 3-dimensional array table with dimensions of output sector, output country, and 
input country, into VXMDigj, a collection of bilateral trade flow vectors for each country. 
11 VIFM is transformed from a 2-dimensional array table with dimensions of output sector, input sector, and input 
country, into VIFMgjh, a collection of import input-output vectors for each country. 
12 VFM is transformed from a 3-dimensional array table with dimensions of factor, sector, and country, into VFMfjh, 
a collection of factor demand matrices for each country. 
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These matrices and vectors can then be used to calculate 𝐹𝑖 = 𝐷 (𝐼 − 𝐵)−1 𝑇𝑖 where 𝐷 is the 

aggregate of factor demand matrices VFMfjh, 𝑇𝑖  is calculated from bilateral trade vectors 

VXMDigj by subtracting imports from exports (𝑋𝑖 − 𝑀𝑖), and 𝐵 is the aggregate of domestic 

input-output matrices VDFMigjh and imputed import matrices. 
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POTENTIAL BIAS OF THE STANDARD PROPORTIONALITY ASSUMPTION 

 

The proportionality assumption, having been outlined as a potentially considerable restriction 

of present data collection and analysis, is evaluated here from a different angle. Instead of 

looking at a few countries where relevant data has been collected, the potential bias of the 

entire global supply chain for all countries and all factors is analyzed through simulations and 

algorithms. As data required for the construction of a technology matrix is available, 𝑏𝑖𝑔𝑗ℎ 

entries can be simulated while satisfying the applicable constraints. To do so, concepts from 

operational research, a field of study that has helped the Allies win the Second World War, are 

borrowed.  

Given an objective function, a simple optimization problem would be resolved by finding its 

maximum at the intersection of the applicable constraints. The construction of matrix 𝐵, 

however, represents a combinatorial optimization problem (COP) where intersections are 

interdependent and dynamic as any updated 𝑏𝑖𝑔𝑗ℎ entry in the respective imported input-

output matrix modifies the applicable constraints for the following imputations:  

 

𝐵𝑈𝑆𝐴 = [

𝑏11𝑈𝑆𝐴1 𝑏11𝑈𝑆𝐴2 ⋯ 𝑏11𝑈𝑆𝐴ℎ

𝑏12𝑈𝑆𝐴1 𝑏12𝑈𝑆𝐴2 ⋯ 𝑏12𝑈𝑆𝐴ℎ

⋮ ⋮ ⋱ ⋮
𝑏1𝑔𝑈𝑆𝐴1 𝑏1𝑔𝑈𝑆𝐴2 ⋯ 𝑏1𝑔𝑈𝑆𝐴ℎ

] ∀ 𝑗 = 𝑈𝑆𝐴 𝑎𝑛𝑑 𝑖 = 1  

 

for instance, 𝑏11𝑈𝑆𝐴1 is constrained by the sum of entries in the first column and first row. 

Under the maximization framework presented in Brief algorithm 1, the order in which 𝑏𝑖𝑔𝑗ℎ is 

imputed has an impact on the values in the same row and column since predecessors alter 

constraints dynamically. This is because entries of a given row must all be less than the sum of 

the entries of the given row and the entries of a given column must all be less than the sum of 

the entries of the given column. Therefore, they have a constraint in common. This is 

mathematically expressed by: 
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 𝑏𝑖𝑔𝑗ℎ = 𝑚𝑖𝑛[ ∑ 𝑏𝑖𝑔𝑗ℎ
̅̅ ̅̅ ̅̅ − ∑ 𝑐𝑖𝑔

𝑖𝑔∈𝐼𝐺𝑖𝑔∈𝐼𝐺

, ∑ 𝑏𝑖𝑔𝑗ℎ
̅̅ ̅̅ ̅̅ − ∑ 𝑟𝑗ℎ

𝑗ℎ∈𝐽𝐻

 

𝑗ℎ∈𝐽𝐻

] (7) 

 

where 𝑐 ∈  𝐶𝑖𝑔𝑗ℎ is the list of immediate predecessors of 𝑏𝑖𝑔𝑗ℎ in column 𝑗ℎ and 𝑟 ∈  𝑅𝑖𝑔𝑗ℎ is 

the list of immediate predecessors of 𝑏𝑖𝑔𝑗ℎ in row 𝑖𝑔 where rows and columns are specified for 

every imported input-output matrix of every country. 

As Matrix 𝐵 is a collection of 140 domestic matrices, where 𝑖 = 𝑗, and 19,460 imported 

matrices, where 𝑖 ≠ 𝑗, the collection can be visualized as: 

 

where domestic matrices are on the diagonal of matrix 𝐵 and matrix 𝐵 contains all possible 

combinations of 140 countries and 57 sectors, resulting in a matrix of size 7980 by 7980. 

Constraints of imported input-outputs are unique to every output sector, 𝑔, as well as every 

input country and input sector, 𝑗ℎ. Bilateral trade constraints, on the other hand, are unique to 

every output country and output sector, 𝑖𝑔, as well as every input country, 𝑗. Following the 

maximization framework, every iteration equates either a row or column constraint, implying 

that one can obtain at most 𝑔 + 𝑗 − 1 non-zero values in every imported matrix13. The brief 

pseudo code to assign non-zero values reads: 

 

 
13 See equation 7 for mathematical representation.  
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BRIEF ALGORITHM 1: MAXIMIZATION FRAMEWORK FOR IMPORTED MATRIX14 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

B_matrix ← empty matrix of size 𝑖𝑔 × 𝑗ℎ 
WHILE bilateral trade constraints AND imported input-output constraints > 0 
    list_igjh ← list of all possible permutations of 𝑖, 𝑔, 𝑗, ℎ 
    𝑖, 𝑔, 𝑗, ℎ ← random selection from values in list 
    IF bilateral constraints[𝑖𝑔𝑗] < imported input-output [𝑔𝑗ℎ] 
        B_matrix[𝑖𝑔𝑗ℎ] += bilateral trade constraint [𝑖𝑔𝑗] 
        bilateral trade constraint [𝑖𝑔𝑗] ← 0  
        imported input-output constraint [𝑔𝑗ℎ] −= bilateral trade constraint [𝑖𝑔𝑗] 
        list_igjh −= 𝑖, 𝑔, 𝑗 ∀ ℎ 
     ELSE 
        B_matrix[𝑖𝑔𝑗ℎ] += imported input-output [𝑔𝑗ℎ] 
        imported input-output constraint [𝑔𝑗ℎ] ← 0 
        bilateral trade constraint [𝑖𝑔𝑗] −= imported input-output constraint [𝑔𝑗ℎ] 
        list_igjh −= 𝑔, 𝑗, ℎ ∀ 𝑖 

 

   

With the GTAP 9 dataset, this implies choosing 113 out of 3249 values, giving (
3249!

(3249−113)!
) =

9.373 … × 10395 possible permutations for every imported matrix, considering the order in 

which 𝑏𝑖𝑔𝑗ℎs are imputed. Each permutation represents a local maximum, and the only way to 

guarantee a global maximum is by calculating every possible permutation, computationally 

unfeasible due to the complexity. As such, to simplify the search of a maximum potential bias, 

genetic algorithms are developed in this paper to find a good solution without trying every 

permutation.  

The bias in this paper is assessed by comparing the mean absolute percent error (MAPE) of the 

factor content of trade calculated using a proportionally imputed matrix 𝐵 and a version of 

matrix 𝐵 imputed through a maximization framework: 

 𝑀𝐴𝑃𝐸 = (
1

𝑛
∑ |

𝑓𝑐𝑡𝑝 − 𝑓𝑐𝑡𝑚

𝑓𝑐𝑡𝑝
|

𝑛

𝑚=1

) × 100 (8) 

 

 
14 See Appendix C for detailed pseudo code of ALGORITHM 1: MAXIMIZATION FRAMEWORK FOR IMPORTED 
MATRIX 
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where 𝑓𝑐𝑡𝑝 is the factor content of trade calculated using the proportionality assumption and 

𝑓𝑐𝑡𝑚 is the factor content of trade calculated using the maximization framework.  
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RANDOM LOCAL MAXIMUM  

 

As a first step, a random local maximum is calculated by arranging the order in which entries 

𝑏𝑖𝑔𝑗ℎ are imputed, starting with entries representing the largest trade relations based on 

volume obtained from their respective constraints of imported products and bilateral trade. In 

the case of paper pulp, if Canada is the largest supplier of wood products to the USA and the 

paper products industry in the USA is the largest importer of wood products, then the random 

local maximum imputes the corresponding entry in the 𝐵 matrix first. The random local 

maximum simulates a likely representation of trade flows where competitors obtain inputs 

from the same source. Random ordering of entries with the same maximum potential volume 

creates the randomness in this simulation.  

The random local maximum serves two main purposes: analyzing the impact of a naïve method 

of maximization on different factors available in the GTAP dataset, which is used to benchmark 

following efforts, and highlighting natural areas of interest based on trade relations15. The naïve 

method renders the results presented in Table 1 where the naïve method is compared to the 

proportionality assumption by measuring the MAPE for all 140 regions.  

 

FACTOR AVERAGE  MAXIMUM MAXIMUM 
REGION 

AGRICULTURAL AND OTHER LOW-SKILLED WORKERS 57.66 2680.36 CIV 

CAPITAL 82.47 4266.69 NOR 

CLERKS 96.48 5959.66 CIV 

LAND 61.32 2120.62 NAM 

NATURAL RESOURCES 233.30 28926.07 XNF 

OFFICERS AND MANAGERIAL PROFESSIONALS 60.64 1178.09 BHR 

SERVICE AND SHOP FLOOR WORKERS 160.79 11965.78 LAO 

TECHNICALLY SKILLED PROFESSIONALS 48.24 694.91 CIV 

MEAN (𝝁) 100.11 7224.02  

 

From Table 1, the value for the agricultural and other low-skilled workers factor varies by 

2680.36% for Côte d'Ivoire when measuring the variation in absolute terms by applying the 

 
15 See Appendix D for TABLE 2 LARGEST RANGES FOR OUTPUT COUNTRY – SECTOR TO INPUT COUNTRY – SECTOR 

TABLE 1: RANDOM LOCAL MAXIMUM MEAN ABSOLUTE PERCENT ERROR ACROSS ALL REGIONS 
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MAPE formula for the random local maximum and the proportionally imputed matrix B to 

derive sector inputs and outputs. 
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MONTE-CARLO SIMULATIONS 

 

As a second step, Monte-Carlo simulations are applied to generate 𝐵 matrices in order to 

examine the extent of bias a multi-start method can have on factor content computations. The 

structure of the simulation model centers around the order in which every 𝑏𝑖𝑔𝑗ℎ is imputed. In 

the context of measuring the maximum potential bias, expectations on results are limited as 

they are dependent on chance. However, we do obtain insights on the potential types of 

distributions for every factor and an estimated value of maximum potential bias.  

To obtain a (1 − 𝛼) confidence interval for the potential maximum bias, the number of Monte-

Carlo simulations required is estimated using: 

 𝑛 =  [(𝑠 × 𝑍𝛼
2⁄
) 𝐸⁄ ]

2

 (9) 

 

where 𝑠 is the estimated standard deviation of the mean obtained from simulations, 𝑍𝛼
2⁄
 is the 

critical value of the normal distribution for 𝛼 2⁄ , and 𝐸 is the precision intended based on the 

shrinking ratio of the upper and lower confidence limits (U, L): 

 𝑈 = 𝑥̅ + 𝑍𝛼
2⁄
𝑠𝑥̅ (10) 

 𝐿 =  𝑥̅ − 𝑍𝛼
2⁄
𝑠𝑥̅ (5) 

 

 

 

 

 

 

 

FIGURE 1: PROBABILITY DENSITY PLOT OF TRADE RELATIONS BASED ON VOLUME 
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After running 3300 simulations, enough to construct a 90% confidence interval and a 5% 

error16, the bias results obtained from the Monte-Carlo method are greater than the random 

local maximum in all but one simulation. With such a result, we can conclude that the 

aggregate of smaller trade relations has a greater impact on factor content of trade than larger 

trade relations as Monte-Carlo simulations do not set a prioritization based on trade volume as 

the random local maximum does. Instead, they are initiated at random, with a greater 

likelihood of maximizing smaller trade relations as they are more frequent, as observed in 

Figure 1: Probability density plot of trade relations based on volume.  

After transforming MAPE from Monte-Carlo simulations to (0, 1)17 to understand the 

distribution of factors, the aggregate of errors all exhibit properties one would expect from log-

 
16 Based on factor-country pair requiring most simulations. All other factor-country pairs hold a higher confidence 
percentage and a lower error percentage at that amount of simulations.  
17 Transforming through  𝑥′ = ((𝑥 − 𝑎′)) ⁄ ((𝑏′ − 𝑎′)) 𝑤ℎ𝑒𝑟𝑒 𝑎′ =  𝑥(1) is the minimum and  b'= x(n) is the 
maximum for every country and every factor.  

FIGURE 2: KERNEL DENSITY OF ESTIMATED MAPE FROM MONTE-CARLO SIMULATIONS 
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normal distributions with varying standard deviations, as illustrated in Figure 2: Kernel density 

of estimated MAPE from Monte-Carlo simulations.  

Nonetheless, when disaggregated, some of the observed distributions at the country level have 

a coefficient of variation greater than 0.33, which implies reasonable suspicion on their 

normality, as presented in Figure 3: Distribution plots of coefficient of variation for factors by 

country. 

With a lack of normality across all factors and countries, the prospect of estimating likely results 

for the factor content of trade is constrained as in many cases multiple values would have the 

same or similar probability. 

 

FIGURE 3: DISTRIBUTION PLOTS OF COEFFICIENT OF VARIATION FOR FACTORS BY COUNTRY 
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In addition to obtaining insights on the types of distributions, Monte-Carlo simulations 

showcase an estimated value of maximum potential bias from a multi-start method, as 

presented in Table 2: MAPE from most biased Monte-Carlo simulation across all regions.  

 

FACTOR AVERAGE MAXIMUM MAXIMUM 
REGION 

AGRICULTURAL AND OTHER LOW-SKILLED WORKERS 318.81 29236.90 CIV 

CAPITAL 302.55 21237.62 IRL 

CLERKS 199.54 14932.51 CIV 

LAND 103.90 1112.23 CHE 
NATURAL RESOURCES 254.49 30564.56 XNF 

OFFICERS AND MANAGERIAL PROFESSIONALS 100.46 1524.93 BHR 

SERVICE AND SHOP FLOOR WORKERS 270.83 18675.09 LAO 

TECHNICALLY SKILLED PROFESSIONALS 116.00 3594.05 IRL 

MEAN (𝝁) 208.32 15109.74  

 

TABLE 2: MAPE FROM MOST BIASED MONTE-CARLO SIMULATION ACROSS ALL REGIONS 
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GENETIC ALGORITHMS 

 

As a third step, heuristics are developed to narrow the search for the global maximum bias. 

Heuristics have proven to be more effective approaches to combinatorial optimization 

problems than multi-start methods, such as Monte-Carlo simulations, at finding a maximum. 

While the computational complexity of the problem is not reduced and there is no guarantee of 

reaching the global maximum, by exploiting the idea of learning by transferring knowledge from 

one solution to the next, heuristics explore the search space more productively, rendering 

better results. 

For the purpose of measuring bias in the proportionality assumption of factor content of trade, 

genetic algorithms (GAs) are developed using neo-Darwinian theory of evolution, where 

learning takes the form of mutation and selection.  

The development and implementation of GAs began in the 1960s under different names. In 

Germany, Ingo Rechenberg and Hans-Paul Schwefel developed Evolutionsstrategie (evolution 

strategy, in English). Bremermann, Fogel and others in the USA worked on evolutionary 

programming. As for the term “genetic algorithm”, it was first used in John Holland’s book 

Adaptation in Natural and Artificial Systems in 1975. The common theme in all this research is 

the notion of mutation and selection for adaptation, which later showcased its capabilities 

when applied to the traveling salesman and to the gas pipeline optimization problems.  

 Starting with a discrete search space 𝑋 and a function: 

 𝑓: 𝑋 ↦ ℝ (12) 

 

A genetic algorithm can be designed to find the maximum bias associated with the 

proportionality assumption as such:  

 argmax
𝑥 ∈𝑋

𝑓 (13) 
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where 𝑥 is a vector of decision variables and 𝑓 is the objective function. A distinct characteristic 

of the genetic algorithm approach is to allow for a departure from the actual variables of the 

original formulation into their biological interpretation. 

The biological analogy starts with a population of feasible solutions. Parents from the 

population are selected to breed new child solutions by crossing over genes. Genes are then 

mutated to obtain stochasticity in the child solutions, a safeguard against getting stuck in sub-

optimal areas of the solution space by ensuring diversity in the population. Child solutions are 

then assessed against the objective function and replace parents in the population if they 

perform better, becoming parents themselves. Breeding stops once a set number of breeds fail 

to be admitted to the population, indicating a maximum being reached given the stopping 

criteria.  

In the development, a lot of flexibility is left in the hands of the researcher, all with their own 

sets of trade-offs: initial population, termination, selection, crossover, and mutation. Finding 

the goldilocks efficiency and efficacy becomes a function of problem understanding and testing. 

Deciding on an initial population that is too large would impede on the efficiency of finding a 

solution in a reasonable time. Too small of a population would constrain the search space, 

limiting the likelihood of finding an optimal solution. Ensuring every combination could be built 

from the initial population by crossover only could narrow the selection of an initial population. 

However, such considerations omit computational requirements of certain problems. Selection, 

crossover, and mutation all have very important impacts on one another. Selecting multiple 

parents influences the distributional and positional bias of crossovers. Mutations, on the other 

hand, have a bearing on the effects of selection. Certain genetic algorithms are built with only 

crossovers, some with only mutations, while others combine both. All variations come with 

compromises, and all have presented success in specific problems (Gendreau and Potvin, 2010).   

A first GA combining both crossovers and mutations to search for the maximum bias of the 

proportionality assumption of factor content of trade is developed, for which the brief pseudo 

code reads: 
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BRIEF ALGORITHM 2: GENETIC ALGORITHM WITH CROSSOVERS AND MUTATIONS18 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

tz_fct = leontief_inverse(VFM, prop_B, trade_tz) 
pop, scores ← initial population of matrix B, corresponding sorted list of bias scores 
WHILE count < 𝑥 AND scores[x] = scores[x+1] ∀ 𝑥 ∈ scores 
    child = cross&mutate 
    child_fct = leontief_inverse(VFM, child_B, trade_child) 
    fit = MAPE (tz_fct, child_fct) 
    IF fit > scores[0] 
        pop[0], scores[0] = child, fit 
        pop, scores = sort(pop, scores) 
        count = 0 
    ELSE 
        count +=1 

 

   

The algorithm starts off by calculating the factor content of trade (𝐹𝑖  =  𝐷 (𝐼 − 𝐵)−1 𝑇𝑖) for all 

countries using the proportionally imputed matrix B (line 1). Next, an initial population of 

feasible 𝐵 matrices is selected19 and each parent is scored based on fit using the MAPE for all 

countries and all factors, representing total average bias between the factor content of trade 

calculated using the proportionally imputed matrix B and each feasible 𝐵 matrix (line 2).  

The following step consists of defining the stopping criteria, genetic algorithms are stochastic 

search methods that could continue indefinitely otherwise. The stopping criteria are ideally 

based on a probabilistic principle that all viable combinations have been assessed; however, 

more practical proxies are applied. For this application, two stopping criteria are defined; sub-

optimal crossovers and mutations in a row reaching a count equal to the number of Monte-

Carlo simulations required for a 90% confidence interval and a 5% error, and a drop in the 

diversity of the population to a pre-set threshold of 1𝑒 − 09 (line 3). The first criterion ensures 

a thorough assessment of search space 𝑋 with a small likelihood of finding values beyond the 

upper limit, especially considering the counter restart with changes to the upper limit (line 10). 

The second criterion takes into account the population diversity in which a drop would indicate 

homogeneous solutions or multiple solutions with the same fit, suggesting a maximum.  

 
18 See Appendix E for detailed pseudo code of ALGORITHM 2: GENETIC ALGORITHM WITH CROSSOVERS AND 
MUTATIONS 
19 The initial population can be selected from the best results of the Monte-Carlo simulations for an enhanced 
initial population which limits future search iterations.  

BRIEF ALGORITHM 2: GENETIC ALGORITHM WITH CROSSOVERS AND MUTATIONS 
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The next step selects parents from the population, crosses their genes, and mutates a portion 

of them. For a seamless exchange, genes are defined by segments of input countries 𝑗 ∀ 𝑖, 𝑔, ℎ, 

where each segment is subject to independent constraints, avoiding the use of computational 

resources to test for feasibility and repairing unfeasible genes (line 4). More granular definitions 

of genes following limits specified by constraints of imported input-outputs and bilateral trade 

offer limited value when considering added computational time of crossovers and mutations.  

 

 

 

 

 

 

Figure 4: Cross and mutate illustrates a simplified cross of two parents (left) to breed a child 

solution (right) where genes for CAN and USA are taken from parent 1 and genes ARG and BRA 

are taken from parent 2. Gene for MEX is mutated, meaning it is not taken from either parent 1 

or parent 2, it is generated through the maximization framework. To avoid positional bias of 

one-point crossovers and distributional bias of multi-point crossovers, the crossover and 

mutation sequence is generated at random for every child solution.  

The factor content of trade is then calculated for the child solution for which a matrix of 

63,680,400 values is inverted and trade vectors 𝑇𝑖 are computed to reflect flows from matrix 𝐵 

(line 5)20.  

Next, the fit is assessed using the mean absolute percent error for all countries and all factors 

between the factor content of trade calculated using the proportionally imputed matrix B and 

the child solution (line 6). If the fit value is greater than the lowest fit in the population, the 

child replaces the parent and the count restarts (lines 7-10). If the fit value is lower than the 

lowest fit in the population, the counter increases by 1 and lines 3 through 12 are repeated.  

 
20 Matrix 𝐵 inversion and trade vectors 𝑇𝑖  computation is required for the proportionality assumption, the random 
local maximum, and Monte-Carlo simulations as well.  

FIGURE 4: CROSS AND MUTATE 
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Various permutations of initial population, selection, crossover, and mutation have been tested 

with populations ranging from 2 to 20, selection varying from 2 to the total population count, 

crossovers reflecting stochastic and proportional sampling based on fit, and mutations shifting 

between a single gene up to half of the phenotype.  

The most efficient and effective genetic algorithm proved to be the algorithm with a population 

of 2 and a single mutated gene. Any increase in parent or mutation count lowered the 

convergence rate incrementally, offering limited expectations from additional testing. As for 

different types of crossovers, they showed no significant impact on the obtained results.  

 

With large initial populations and numerous mutations, genetic algorithms for the application 

of searching for the maximum bias of the proportionality assumption applied to factor content 

of trade shared more with a multi-start method than with a heuristic21. Narrowing the scope of 

transformations presented a way for the genetic algorithm to learn progressively and transmit 

the information to the rest of the population, rendering improved results to any other genetic 

algorithm or Monte-Carlo simulation in less time and iterations. 

The success of the simplest genetic algorithm could be attributed to interactome – indirect 

interactions among genes, or rather lack thereof. Constrained interactions are caused by the 

definition of genes which are segments of input countries 𝑗 ∀ 𝑖, 𝑔, ℎ. Adding interactome 

 
21 Large population and numerous mutations limit the transfer of learning from one solution to the next.  

 
 

FACTOR AVERAGE MAXIMUM MAXIMUM 
REGION 

AGRICULTURAL AND OTHER LOW-SKILLED WORKERS 370.69 34250.65 CIV 

CAPITAL 300.99 19670.91 IRL 

CLERKS 221.29 18181.91 CIV 

LAND 110.64 2931.12 BLR 
NATURAL RESOURCES 246.88 29252.51 XNF 

OFFICERS AND MANAGERIAL PROFESSIONALS 109.01 1571.75 TWN 

SERVICE AND SHOP FLOOR WORKERS 252.84 17084.76 LAO 

TECHNICALLY SKILLED PROFESSIONALS 115.55 3386.63 IRL 

MEAN (𝝁) 215.99 15791.28  

TABLE 3: MAPE FROM MOST BIASED CROSSOVER AND MUTATION GENETIC ALGORITHM ACROSS ALL 

REGIONS 
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requires breaking down genes beyond their constraints of imported input-outputs and bilateral 

trade. However, given the sparsity of imported matrices, their crossover would rarely follow a 

maximization framework, rendering sub-optimal solutions. 

A second GA with only mutations to search for the maximum bias of the proportionality 

assumption of factor content of trade is developed, for which the brief pseudo code reads: 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

 

tz_fct = leontief_inverse(VFM, prop_B, trade_tz) 
p_fct = leontief_inverse(VFM, parent_B, trade_parent) 
fit_p, col_fit_p, bias_p = MAPE(tz_fct, p_fct), CMAPE(tz_fct, p_fct), MMAPE(tz_fct, p_fct) 
WHILE count < 𝑥 
    child_B = shaking(list_ig, list_jh, VXMD_igj, VIFM_gjh, VDFM_igjh) 
    c_fct = leontief_inverse(VFM, child_B, trade_child) 
    fit_c, col_fit_c, bias_c = MAPE(tz_fct, c_fct), CMAPE(tz_fct, c_fct), MMAPE(tz_fct, c_fct) 
    FOR z in range(len(list_j) 
        IF col_fit_c[z] > col_fit_p[z] 
            fit_p[z]= fit_c[z] 
    col_fit_p, bias_ c = mean(fit_p, axis = 0), mean(fit_p) 
    IF bias_p == bias_ c 
        count +=1 
    ELSE 
        bias_p = bias_ c 
        count =0 

 

The algorithm starts off by calculating the factor content of trade (𝐹𝑖  =  𝐷 (𝐼 − 𝐵)−1 𝑇𝑖) for the 

proportionally imputed matrix 𝐵 and for a parent solution (line 1-2). Next, the mean absolute 

percent error for all countries and all factors, the mean absolute percent error for all countries, 

and the overall mean absolute percent error between the proportionally imputed matrix B and 

the parent solution are computed (line 3). The following step consists of the stopping criteria, 

which is simply the number of Monte-Carlo simulations required for a 90% confidence interval 

and a 5% error with the same intuition as the GA with crossovers and mutation (line 4).  The 

next step generates a new matrix 𝐵 in a function defined as shaking which follows the 

instructions defined under algorithm 1 maximization framework for imported matrix and 

adding values from domestic input-output matrices (line 5). Then, the factor content of trade 

(𝐹𝑖  =  𝐷 (𝐼 − 𝐵)−1 𝑇𝑖) and all associated fit and bias measures are computed for the child 

solution (line 6-7). The following steps consist of iterating over each country and comparing the 

fit between the parent gene and child gene. If the child gene has a greater fit, it replaces the 

BRIEF ALGORITHM 3: GENETIC ALGORITHM WITH MUTATIONS 
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parent gene in the solution for the given country (line 8-10). Next, the mean absolute percent 

error for all countries and the overall mean absolute percent error between the proportionally 

imputed matrix B and the new parent solution are computed (line 11). If the bias between the 

old parent and the new parent remains the same, the count increases, otherwise the count 

restarts at 0 (line 12-16).  

 

With only mutations of a single parent, the GA resembles a hill-climbing method, where it 

keeps all previous solutions with the exception of new improvements. This method proves to 

be very efficient in finding the maximum bias associated with the proportionality assumption 

compared to Monte-Carlo simulations and a GA with crossovers and mutations, given the 

results obtained.  

 

 

FACTOR AVERAGE MAXIMUM MAXIMUM 
REGION 

AGRICULTURAL AND OTHER LOW-SKILLED WORKERS 444.26 36115.36 CIV 

CAPITAL 369.85 23131.86 IRL 

CLERKS 291.50 18289.81 CIV 

LAND 343.46 7660.99 TTO 
NATURAL RESOURCES 297.68 33045.13 XNF 

OFFICERS AND MANAGERIAL PROFESSIONALS 187.71 2737.96 TWN 

SERVICE AND SHOP FLOOR WORKERS 533.71 42328.63 LAO 

TECHNICALLY SKILLED PROFESSIONALS 175.62 3867.88 IRL 

MEAN (𝝁) 330.47 20897.20  

TABLE 4: MAPE FROM MOST BIASED MUTATION GENETIC ALGORITHM ACROSS ALL REGIONS 
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CONCLUSION 

 

With a lack of available data, simulations provide a tangible method to estimate the potential 

bias resulting from the use of the proportionality assumption in the calculation of factor 

content of trade. Even though the real bias can only be measured with actual data, simulations 

confirm the National Research Council’s address of the proportionality assumption issue as 

being a considerable restriction of present data collection and analysis. The research presented 

in this paper finds a maximum potential bias averaging 330% for all countries across all factors 

using genetic algorithms and an average bias of 152.72% for all countries across all factors using 

Monte-Carlo simulations in the maximization framework.  

In this regard, simulations, and an emphasis on constraints of imported input-outputs and 

bilateral trade can support policy makers and researchers in cautious assessments of carbon 

dioxide (CO2) content of trade, trade in value added, R&D content of intermediates, wage 

structures, and material offshoring, as well as other areas that depend on linkages in trade. 

Certain countries are more exposed than others to the bias of the proportionality assumption, 

as shown in Table 5: Average maximum bias for all factors of most and least exposed countries:  

 

where country trade flows and factor demand influence the average maximum bias. Countries 

with trading partners that have greater heterogeneity in factor demands (VFMfjh) could have a 

larger potential bias, especially if it is paired with larger volumes of bilateral trade. The opposite 

would apply to countries with a low average maximum bias.  

 

MOST EXPOSED 
COUNTRIES 

AVERAGE MAXIMUM BIAS LEAST EXPOSED 
COUNTRIES 

AVERAGE MAXIMUM BIAS 

CIV 7365.42 BEN 8.90 

LAO 5348.70 NGA 16.97 

XNF 4205.56 NPL 18.78 

IRL 4052.23 KGZ 20.61 

NOR 1704.94 GEO 21.73 

TABLE 5: AVERAGE MAXIMUM BIAS FOR ALL FACTORS OF MOST AND LEAST EXPOSED COUNTRIES 
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Overall, heuristics cannot guarantee finding the global maximum bias of the proportionality 

assumption; however, their use gives a sufficiently good solution considering the complexity of 

the combinatorial optimization problem. On the other hand, Monte-Carlo simulations allow for 

a better understanding of the search space by showcasing the various possible distributions for 

factors and countries. Through this exercise, one can extract findings otherwise only obtainable 

with more data, which is rare.  

In the context of factor content of trade, bias arising from the proportionality assumption 

confirms the possibility of understating or overstating the relative use of imported inputs, 

suggesting that a range of probable error based on this assumption would be meaningful for 

researchers and policymakers, who are trying to understand sources of comparative advantage. 
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APPENDIX A: LIST OF COUNTRIES AND REGIONS 
 

Code Country / Region Description 

AUS Australia 

  - Australia 

  - Christmas Island 

  - Cocos (Keeling) Islands 

  - Heard Island and McDonald Islands 

  - Norfolk Island 

NZL New Zealand 

XOC Rest of Oceania 

  - American Samoa 

  - Cook Islands 

  - Fiji 

  - French Polynesia 

  - Guam 

  - Kiribati 

  - Marshall Islands 

  - Micronesia, Federated States of 

  - Nauru 

  - New Caledonia 

  - Niue 

  - Northern Mariana Islands 

  - Palau 

  - Papua New Guinea 

  - Pitcairn 

  - Samoa 

  - Solomon Islands 

  - Tokelau 

  - Tonga 

  - Tuvalu 

  - United States Minor Outlying Islands 

  - Vanuatu 

  - Wallis and Futuna Islands 

CHN China 

HKG Hong Kong, Special Administrative Region 
of China 

JPN Japan 

KOR Korea, Republic of 

MNG Mongolia 

TWN Taiwan 

XEA Rest of East Asia 

  - Korea, Democratic People's Republic of 

  - Macao, Special Administrative Region of 
China 

BRN Brunei Darussalam 

KHM Cambodia 

IDN Indonesia 

LAO Lao PDR 

MYS Malaysia 

PHL Philippines 

SGP Singapore 

THA Thailand 

VNM Viet Nam 

XSE Rest of Southeast Asia 

  - Myanmar 

  - Timor-Leste 

BGD Bangladesh 

IND India 

NPL Nepal 

PAK Pakistan 

LKA Sri Lanka 

XSA Rest of South Asia 

  - Afghanistan 

  - Bhutan 

  - Maldives 

CAN Canada 

USA United States of America 

MEX Mexico 

XNA Rest of North America 

  - Bermuda 

  - Greenland 

  - Saint Pierre and Miquelon 

ARG Argentina 

BOL Bolivia 

BRA Brazil 

CHL Chile 

COL Colombia 

ECU Ecuador 

PRY Paraguay 

PER Peru 

URY Uruguay 

VEN Venezuela (Bolivarian Republic of) 

XSM Rest of South America 



36 
 

  - Falkland Islands (Malvinas) 

  - French Guiana 

  - Guyana 

  - South Georgia and the South Sandwich 
Islands 

  - Suriname 

CRI Costa Rica 

GTM Guatemala 

HND Honduras 

NIC Nicaragua 

PAN Panama 

SLV El Salvador 

XCA Rest of Central America 

  - Belize 

DOM Dominican Republic P 

JAM Jamaica 

PRI Puerto Rico 

TTO Trinidad and Tobago P 

XCB Rest of Caribbean 

  - Anguilla 

  - Antigua and Barbuda 

  - Aruba 

  - Bahamas 

  - Barbados 

  - British Virgin Islands 

  - Cayman Islands 

  - Cuba 

  - Dominica 

  - Grenada 

  - Haiti 

  - Montserrat 

  - Netherlands Antilles 

  - Saint Kitts and Nevis 

  - Saint Lucia 

  - Saint Vincent and Grenadines 

  - Turks and Caicos Islands 

  - Virgin Islands, US 

AUT Austria 

BEL Belgium 

CYP Cyprus 

CZE Czech Republic 

DNK Denmark 

EST Estonia 

FIN Finland 

  - Aland Islands 

  - Finland 

FRA France 

  - France 

  - Guadeloupe 

  - Martinique 

  - Réunion 

DEU Germany 

GRC Greece 

HUN Hungary 

IRL Ireland 

ITA Italy 

LVA Latvia 

LTU Lithuania 

LUX Luxembourg 

MLT Malta 

NLD Netherlands 

POL Poland 

PRT Portugal 

SVK Slovakia 

SVN Slovenia 

ESP Spain 

SWE Sweden 

GBR United Kingdom 

CHE Switzerland 

NOR Norway 

  - Norway 

  - Svalbard and Jan Mayen Islands 

XEF Rest of European Free Trade Association 

  - Iceland 

  - Liechtenstein 

ALB Albania 

BGR Bulgaria 

BLR Belarus 

HRV Croatia 

ROU Romania 

RUS Russian Federation 

UKR Ukraine 

XEE Rest of Eastern Europe 

  - Moldova 

XER Rest of Europe 

  - Andorra 
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  - Bosnia and Herzegovina 

  - Faroe Islands 

  - Gibraltar 

  - Guernsey 

  - Holy See (Vatican City State) 

  - Isle of Man 

  - Jersey 

  - Macedonia, Republic of 

  - Monaco 

  - Montenegro 

  - San Marino 

  - Serbia 

KAZ Kazakhstan 

KGZ Kyrgyztan 

XSU Rest of Former Soviet Union 

  - Tajikistan 

  - Turkmenistan 

  - Uzbekistan 

ARM Armenia 

AZE Azerbaijan 

GEO Georgia 

BHR Bahrain 

IRN Iran, Islamic Republic of 

ISR Israel 

JOR Jordan 

KWT Kuwait 

OMN Oman 

QAT Qatar 

SAU Saudi Arabia 

TUR Turkey 

ARE United Arab Emirates 

XWS Rest of Western Asia 

  - Iraq 

  - Lebanon 

  - Palestinian Territory, Occupied 

  - Syrian Arab Republic (Syria) 

  - Yemen 

EGY Egypt 

MAR Morocco 

TUN Tunisia 

XNF Rest of North Africa 

  - Algeria 

  - Libya 

  - Western Sahara 

BEN Benin 

BFA Burkina Faso 

CMR Cameroon 

CIV Côte d'Ivoire 

GHA Ghana 

GIN Guinea 

NGA Nigeria 

SEN Senegal 

TGO Togo 

XWF Rest of Western Africa 

  - Cape Verde 

  - Gambia 

  - Guinea-Bissau 

  - Liberia 

  - Mali 

  - Mauritania 

  - Niger 

  - Saint Helena 

  - Sierra Leone 

XCF Rest of Central Africa 

  - Central African Republic 

  - Chad 

  - Congo 

  - Equatorial Guinea 

  - Gabon 

  - Sao Tome and Principe 

XAC South Central Africa 

  - Angola 

  - Congo, Democratic Republic of the 

ETH Ethiopia 

KEN Kenya 

MDG Madagascar 

MWI Malawi 

MUS Mauritius 

MOZ Mozambique 

RWA Rwanda 

TZA Tanzania, United Republic of 

UGA Uganda 

ZMB Zambia 

ZWE Zimbabwe 

XEC Rest of Eastern Africa 

  - Burundi 



38 
 

  - Comoros 

  - Djibouti 

  - Eritrea 

  - Mayotte 

  - Seychelles 

  - Somalia 

  - Sudan 

BWA Botswana 

NAM Namibia 

ZAF South Africa 

XSC Rest of South African Customs Union 

  - Lesotho 

  - Swaziland 

XTW Rest of the World 

  - Antarctica 

  - Bouvet Island 

  - British Indian Ocean Territory 

  - French Southern Territories 
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APPENDIX B: LIST OF SECTORS 
 

Code Sector Description 

PDR Paddy rice 

WHT Wheat 

GRO Cereal grains nec 

V_F Vegetables, fruit, nuts 

OSD Oil seeds 

C_B Sugar cane, sugar beet 

PFB Plant-based fibers 

OCR Crops nec 

CTL Bovine cattle, sheep and goats, horses 

OAP Animal products nec 

RMK Raw milk 

WOL Wool, silk-worm cocoons 

FRS Forestry 

FSH Fishing 

COA Coal 

OIL Oil 

GAS Gas 

OMN Minerals nec 

CMT Bovine meat products 

OMT Meat products nec 

VOL Vegetable oils and fats 

MIL Dairy products 

PCR Processed rice 

SGR Sugar 

OFD Food products nec 

B_T Beverages and tobacco products 

TEX Textiles 

WAP Wearing apparel 

LEA Leather products 

LUM Wood products 

PPP Paper products, publishing 

P_C Petroleum, coal products 

CRP Chemical, rubber, plastic products 

NMM Mineral products nec 

I_S Ferrous metals 

NFM Metals nec 

FMP Metal products 

MVH Motor vehicles and parts 

OTN Transport equipment nec 

ELE Electronic equipment 

OME Machinery and equipment nec 

OMF Manufactures nec 

ELY Electricity 

GDT Gas manufacture, distribution 

WTR Water 

CNS Construction 

TRD Trade 

OTP Transport nec 

WTP Water transport 

ATP Air transport 

CMN Communication 

OFI Financial services nec 

ISR Insurance 

OBS Business services nec 

ROS Recreational and other services 

OSG 
Public Administration, Defense, 
Education, Health 

DWE Dwellings 
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APPENDIX C: ALGORITHM 1 MAXIMIZATION FRAMEWORK FOR IMPORTED MATRIX  
 

ALGORITHM 1 MAXIMIZATION FRAMEWORK FOR IMPORTED MATRIX  
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

PROCEDURE imputing 𝑏𝑖𝑔𝑗ℎ ’s 

B_matrix ← empty matrix of size 𝑖𝑔 × 𝑗ℎ 
i_count ← length 𝑖 
i_list ← list of numbers 0 to 𝑖 
WHILE i_count >= 1 
    i_coor ← random integer between 0 and i_count 
    𝑖 ← item in i_list corresponding to i_coor 
    i_list[i_coor], i_list[i_count - 1] = i_list[i_count - 1], i_list[i_coor] 
    i_count −= 1 
    g_count ← length 𝑔 
    g_list ← list of numbers 0 to 𝑔 
    WHILE g_count >= 1 
        g_coor ← random integer between 0 and g_count 
        𝑔 ← item in g_list corresponding to g_coor 
        g_list[g_coor], g_list[g_count - 1] = g_list[g_count - 1], g_list[g_coor] 
        g_count −= 1 
        j_count ← length 𝑗 
        j_list ← list of numbers 0 to j 
        WHILE j_count >= 1 
            j_coor ← random integer between 0 and j_count 
            𝑗 ← item in j_list corresponding to j_coor 
            j_list[j_coor], j_list[j_count - 1] = j_list[j_count - 1], j_list[j_coor] 
            j_count −= 1 
            IF bilateral constraints [𝑖𝑔𝑗] = 0 
                continue 
            ELSE 
               h_count ← length ℎ 
               h_list ← list of numbers 0 to ℎ 
               WHILE h_count >= 1 
                   h_coor ← random integer between 0 and h_count 
                   ℎ ← item in h_list corresponding to h_coor 
                   h_list[h_coor], h_list[h_count - 1] = h_list[h_count - 1], h_list[h_coor] 
                   h_count −= 1 
                   IF imported input-output [𝑔𝑗ℎ] = 0 
                       continue 
                   ELSE 
                       IF bilateral constraints [𝑖𝑔𝑗] < imported input-output [𝑔𝑗ℎ] 
                           B_matrix[𝑖𝑔𝑗ℎ] += bilateral trade constraint [𝑖𝑔𝑗] 
                           bilateral trade constraint [𝑖𝑔𝑗] ← 0  
                           imported input-output constraint [𝑔𝑗ℎ] −= bilateral trade constraint [𝑖𝑔𝑗] 
                           list_i, list_g, list_j −= 𝑖, 𝑔, 𝑗 
                           break 
                       ELSE 
                           B_matrix[𝑖𝑔𝑗ℎ] += imported input-output [𝑔𝑗ℎ] 
                           imported input-output constraint [𝑔𝑗ℎ] ← 0 
                           bilateral trade constraint [𝑖𝑔𝑗] −= imported input-output constraint [𝑔𝑗ℎ] 
                           list_g, list_j, list_h −= 𝑔, 𝑗, ℎ 
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APPENDIX D: LARGEST RANGES FOR OUTPUT COUNTRY-SECTOR TO INPUT COUNTRY-SECTOR  
 

 

 

LARGEST RANGES FOR OUTPUT COUNTRY – SECTOR TO INPUT COUNTRY – SECTOR 
China – Electronic equipment  → United States of America – Electronic equipment 

Japan – Machinery and equipment nec → China – Machinery and equipment nec 

Saudi Arabia – Oil → United States of America – Petroleum, coal products 

Taiwan – Electronic equipment → China – Electronic equipment 

Australia – Minerals nec → China – Ferrous metals 

Canada – Oil → United States of America – Petroleum, coal products 

Australia – Minerals nec → China – Metals nec 

Nigeria – Oil → United States of America – Petroleum, coal products 

Korea, Republic of – Machinery and equipment nec → China – Machinery and equipment nec 

Saudi Arabia – Oil → Japan – Petroleum, coal products 

Mexico – Electronic equipment → United States of America – Electronic equipment 

China – Machinery and equipment nec → United States of America – Machinery and equipment nec 

Japan – Machinery and equipment nec → United States of America – Machinery and equipment nec 

Mexico – Machinery and equipment nec → United States of America – Machinery and equipment nec 

Germany – Machinery and equipment nec → China – Machinery and equipment nec 

Japan – Motor vehicles and parts → United States of America – Motor vehicles and parts 

Mexico – Motor vehicles and parts → United States of America – Motor vehicles and parts 

Canada – Motor vehicles and parts → United States of America – Motor vehicles and parts 

United Arab Emirates – Oil → Japan – Petroleum, coal products 

Taiwan – Machinery and equipment nec → China – Machinery and equipment nec 

Canada – Chemical, rubber, plastic products → United States of America – Chemical, rubber, plastic products 

Canada – Chemical, rubber, plastic products → United States of America – Education, Health 

China – Electronic equipment → United States of America – Business services nec 

Mexico – Electronic equipment → United States of America – Business services nec 

Germany – Machinery and equipment nec → United States of America – Machinery and equipment nec 

Ireland – Chemical, rubber, plastic products → United States of America – Chemical, rubber, plastic products 

Ireland – Chemical, rubber, plastic products → United States of America – Education, Health 

Korea, Republic of – Chemical, rubber, plastic products → China – Chemical, rubber, plastic products 

Germany – Machinery and equipment nec → United States of America – Construction 

Mexico – Machinery and equipment nec → United States of America – Construction 

China – Machinery and equipment nec → United States of America – Construction 

Japan – Machinery and equipment nec → United States of America – Construction 

China – Chemical, rubber, plastic products → United States of America – Construction 

China – Chemical, rubber, plastic products → United States of America – Chemical, rubber, plastic products 

Venezuela (Bolivarian Republic of) – Oil → United States of America – Petroleum, coal products 

Saudi Arabia – Oil → Korea, Republic of – Petroleum, coal products 

Russian Federation – Oil → Germany – Petroleum, coal products 

Japan – Electronic equipment → China – Electronic equipment 

Germany – Motor vehicles and parts → United States of America – Motor vehicles and parts 

Japan – Chemical, rubber, plastic products → China – Chemical, rubber, plastic products 

Mexico – Oil → USA- Petroleum, coal products 

Rest of Western Asia – Oil → IND- Petroleum, coal products 

Korea, Republic of – Electronic equipment → China – Electronic equipment 

Brazil – Minerals nec → China – Ferrous metals 

Brazil – Minerals nec → China – Metals nec 

China – Electronic equipment → Japan – Electronic equipment 

United States of America – Machinery and equipment nec → China – Machinery and equipment nec 

Saudi Arabia – Oil → IND – Petroleum, coal products 

South Central Africa – Oil → China – Petroleum, coal products 

Germany – Motor vehicles and parts → China – Motor vehicles and parts 
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APPENDIX E: ALGORITHM 2 GENETIC ALGORITHM WITH CROSSOVERS AND MUTATIONS  
 

ALGORITHM 2 GENETIC ALGORITHM WITH CROSSOVERS AND MUTATIONS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

PROCEDURE GA for max bias search with crossovers and mutations 
 
FUNCTION leontief_inverse(VFM, IO, trade) 
    rate = 1/(𝑉𝐹𝑀𝑗ℎ22+𝐼𝑂𝑗ℎ23) ∀ 𝑗ℎ 

    factors24, B = 𝑉𝐹𝑀 ∗ rate, 𝐼𝑂 * rate 
    return 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 ∗ (𝐼 − 𝐵)−1 ∗ 𝑡𝑟𝑎𝑑𝑒 
 
FUNCTION cross&mutate(pop) 
    child ← empty matrix of size 𝑖𝑔-𝑗ℎ 
    FOR country in 𝑗 
        r ←random integer between 0 and pop+1 
        IF x = pop+1 
            child[j] = maximization(𝑗) 
        ELSE 
            child[j] = pop[r] 
    return child 
 
tz_fct = leontief_inverse(VFM, prop_B, trade_tz) 
pop, scores ← initial population of matrix B, corresponding sorted list of bias scores 
WHILE count < 𝑥 AND scores[x] = scores[x+1] ∀ 𝑥 ∈ scores 
    child = cross&mutate 
    child_fct = leontief_inverse(VFM, child_B, trade_child) 
    fit = MAPE (tz_fct, child_fct) 
    IF fit > scores[0] 
        pop[0], scores[0] = child, fit 
        pop, scores = sort(pop, scores) 
        count = 0 
    ELSE 
        count +=1 
 
*where 𝑉𝐹𝑀𝑗ℎ  is the sum of values in column 𝑗ℎ of 𝑉𝐹𝑀 

 

   
 

 

 
22 where 𝑉𝐹𝑀𝑗ℎ is the sum of values in column 𝑗ℎ of 𝑉𝐹𝑀 
23 where 𝐼𝑂𝑗ℎ is the sum of values in column 𝑗ℎ of 𝐼𝑂 
24 A bias due to rounding is introduced during the rate conversion, however, it is negligible on results as it is 
present in the factor content of trade calculated using the proportionality assumption and the maximization 
framework.  


