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Abstract

In this thesis, we present a comprehensive comparison of different machine learning meth-

ods for forecasting stock market returns. Forecasting stock market returns has always

been a popular topic among researchers. This study tests a wide range of models, includ-

ing traditional linear regression, regularization techniques (Lasso, Ridge, and Elastic Net),

ensemble methods (Random Forest and XGBoost), and advanced neural networks such as

feedforward neural networks, Recurrent Neural Networks (RNN), and Long Short-Term

Memory (LSTM) networks for predicting the S&P 500 index.

The empirical results indicate that, while complex machine learning models such as

Random Forest and multi-layer neural networks achieve high R2 values in-sample, regular-

ization methods such as Lasso and Lasso-based combinations outperform the benchmark

model in the Diebold-Mariano test and produce more robust out-of-sample results. Highly

complex models—including RNNs, LSTM, and XGBoost—tend to overfit the training

data: despite their high in-sample R2, they do not perform as well during testing or in

out-of-sample periods.
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Résumé

Dans ce mémoire, nous présentons une comparaison approfondie de différentes méthodes

d’apprentissage automatique pour la prévision des rendements boursiers. La prévision

des rendements boursiers a toujours été un sujet populaire parmi les chercheurs. Cette

étude teste un large éventail de modèles, notamment la régression linéaire traditionnelle,

les techniques de régularisation (Lasso, Ridge et Elastic Net), les méthodes d’ensemble

(Random Forest et XGBoost) ainsi que des réseaux de neurones avancés tels que les

réseaux de neurones feedforward, les réseaux de neurones récurrents (RNN) et les réseaux

de mémoire à long terme (LSTM) pour la prédiction de l’indice S&P 500.

Les résultats empiriques indiquent que, bien que des modèles d’apprentissage automa-

tique complexes comme Random Forest et les réseaux de neurones à plusieurs couches

obtiennent des valeurs élevées de R2 in-sample, les méthodes de régularisation telles que

Lasso et les combinaisons basées sur Lasso surpassent le modèle de référence au test de

Diebold-Mariano et produisent des résultats out-of-sample plus robustes. Les modèles

très complexes — incluant les RNN, LSTM et XGBoost — ont tendance à surajuster les

données d’entrâınement : malgré leurs bons résultats in-sample en R2, leurs performances

sont moins satisfaisantes lors des tests ou en période out-of-sample.
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Chapter 1

Introduction

Predicting stock market returns has been one of the most widely studied topics in fi-

nancial economics for decades. A variety of approaches have been applied, ranging from

econometric models such as linear and nonlinear regressions to time-series forecasting

techniques. In more recent research, many researchers have explored the use of machine

learning methods to forecast equity market returns.

Researchers have widely used non-parametric models for forecasting stock market

returns. However, these models face challenges due to their reliance on high-dimensional

datasets, leading to the so-called “curse of dimensionality,” as they consider too many

factors. On the other hand, parametric methods are also used, but they tend to be rigid

and often result in overfitting (Rossi 2018).

When a model is trained and evaluated on the same period of data, it can lead to

misleading conclusions. Although the selected models may perform well in-sample, they

often fail to generalize out-of-sample. Several studies, including D. B. Nelson and Kim

(1993), Stambaugh (1999), J. Y. . Campbell and Yogo (2006), and Lewellen et al. (2010),

have highlighted these issues. While some of these biases can be mitigated using statistical

methods, they cannot be completely eliminated (Rossi 2018).

In their influential article, Welch and Goyal (2008) evaluate the performance of sev-

eral OLS models for stock return prediction by employing measures such as R2, SSE,

and RMSE, and benchmark these models against a simple historical average. Their find-

ings indicate that most OLS models generally fail to outperform the historical average

in out-of-sample forecasts. Building on this, subsequent research such as J. Y. Campbell

and Thompson (2008) investigates whether introducing certain restrictions—like exclud-
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ing predictors with negative coefficients or generating forecasts only when the predicted

return is positive—can enhance predictive accuracy. These methodological adjustments

aim to align model forecasts more closely with established economic theory. In this the-

sis, a central question is whether the models we develop can statistically outperform the

historical average, and whether R2 is an appropriate metric for evaluating such outper-

formance.

In this research, we employed a variety of machine learning models—including reg-

ularization techniques, neural networks, random forests, LSTM, and RNN—to predict

aggregate stock market returns, measured as monthly S&P 500 index returns.

We began our analysis with linear regression, followed by the application of reg-

ularization techniques such as Ridge, Elastic Net, and Lasso regression to determine

whether these methods—by reducing the dimensionality of our dataset—could improve

the forecasting accuracy of linear models. Next, we incorporated statistical techniques

like Principal Component Analysis (PCA) and Partial Least Squares (PLS), combin-

ing them with linear regression, Lasso, Ridge, and Elastic Net to assess whether these

integrated approaches could further enhance model performance.

In the following stage, we explored more advanced machine learning models. Neural

networks, which attempt to mimic how the human brain processes information, and

random forest, which splits the data into subgroups and fits a model to each, allow for

more flexible pattern detection. We also implemented XGBoost, an ensemble method

that combines multiple weak learners to construct a more robust model.

Finally, we examined LSTM and RNN models, which are types of neural networks

with recursive architectures. RNNs are designed with memory capabilities, while LSTMs

feature both short-term and long-term memory. Our objective was to investigate whether

these memory-enhanced models could improve the prediction of stock market returns.

Overall, our goal is to determine which of these machine learning models perform best

in forecasting stock market returns and to assess how their predictive accuracy can be

effectively measured. To this end, we utilize traditional performance metrics such as R2

as well as statistical tests like the Diebold-Mariano test to compare model performance.

Our findings show that complex models such as RNNs, LSTMs, and XGBoost, al-

though they perform well in terms of R2 in the in-sample evaluation, tend to perform

poorly out-of-sample, which can be caused by overfitting. On the other hand, simpler
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models such as linear regression and regularization methods (Lasso, Ridge, Elastic Net),

despite not showing very high in-sample R2, sometimes outperform more complex models

out-of-sample and produce positive R2 values. Combining these methods with PLS and

PCR can improve their forecasting power in certain cases.

Famous models such as Random Forests and multilayer neural networks, although

they showed positive out-of-sample R2, did not demonstrate statistically significant im-

provement over the naive model (a simple average) according to the Diebold-Mariano

test used in our research.

In terms of robustness, we observed that parameters such as the regularization pa-

rameter λ and the rolling window size can have a significant effect on our results and on

the forecasting accuracy metric R2 used in this study.
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Chapter 2

Literature review

Predicting stock market returns has been a popular topic among researchers for nearly a

century, with efforts tracing back to the 1920s. A well-known study by Welch and Goyal

(2008) introduced an approach where the equity premium at time t was regressed on

various lagged predictor variables. Despite strong theoretical and empirical interest in

these predictors, their effectiveness has remained contentious.

In their comprehensive analysis, Welch and Goyal (2008) tested a wide range of pre-

dictors for the equity premium that had been previously suggested in the academic liter-

ature. Their study examined financial variables such as dividend-price ratios, earnings-

price ratios, interest rates, inflation rates, book-to-market ratios, Treasury Bill rates,

term spreads, and stock variance to evaluate model performance. The authors divided

the data into two main periods: the in-sample (IS) period, where models were trained,

and the out-of-sample (OOS) period, where models were tested on previously unseen

data. They chose a rolling window of 120 months (10 years) for the in-sample period

and used monthly U.S. stock market data from 1926 to 2006. For each step, the models

were evaluated out-of-sample using the subsequent month, and the training window was

moved forward by one month each time. The OLS model, in particular, performed poorly

in terms of R2, especially during out-of-sample evaluation.

Their findings show that most models struggled to maintain predictive power over

time—particularly when more recent data and major economic shocks, such as the Oil

Shock of the 1970s (which affected many countries, including the U.S.), were included.

This underscores the inherent difficulty of using traditional financial indicators to fore-

cast equity premiums, as well as the complexity of predicting stock market returns with
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simple linear models when stock market dynamics are often driven by complex, nonlinear

patterns.

Machine Learning in Empirical Asset Pricing

With the introduction of machine learning into empirical asset pricing, new approaches

have emerged for forecasting stock returns. The study by Gu et al. (2020) offers a

comprehensive analysis of how various machine learning methods perform in this context.

While traditional regression-based models remain foundational and provide strong causal

interpretation, they often fall short in capturing the complex and nonlinear structures

observed in today’s financial markets.

Gu et al. (2020) conducted an extensive empirical analysis involving nearly 30,000

individual stocks over a 60-year period (1957–2016). They employed a wide set of predic-

tors and applied advanced machine learning techniques to forecast stock returns. Their

results demonstrate that nonlinear models such as neural networks and random forests

consistently outperform traditional approaches like OLS. In addition to predictive mod-

eling, they utilized dimensionality reduction techniques such as Principal Component

Analysis (PCA), Partial Least Squares (PLS), and regularization methods to identify

the most influential variables. These reduced feature sets were then used as inputs to

machine learning models, further enhancing predictive performance.

Furthermore, the authors tested various neural network architectures by varying the

number of hidden layers. Among the models they evaluated, the three-layer neural net-

work (referred to as NN3) achieved the best out-of-sample R2, highlighting the advantage

of deeper architectures in capturing nonlinear relationships in the data. Their findings

indicate that applying machine learning methods can significantly improve forecasting of

stock market returns, especially for out-of-sample predictions.

The authors also enhanced the R2 of linear models by applying Principal Compo-

nent Regression (PCR). In contrast, machine learning models—such as random forests

and neural networks—demonstrated substantial improvements by effectively handling

nonlinearity and uncovering hidden patterns in large datasets with numerous predictor

variables.

Moreover, Gu et al. (2020) identified consistent predictive signals across various meth-
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ods, including momentum, liquidity, and volatility. This consistency suggests that while

underlying financial phenomena persist, machine learning models are better equipped to

detect and leverage these signals due to their flexibility and robustness. The authors

also discussed practical considerations for implementing these models, such as sample

splitting for estimation and validation, hyperparameter tuning, and the use of robust

objective functions to avoid overfitting and enhance predictive performance.

Regularization Methods

Regularization techniques such as Ridge, Lasso, and Elastic Net have become essential

tools in modern statistical learning and are widely used for forecasting financial data.

Ridge regularization, introduced for linear models, addresses multicollinearity among

predictors by shrinking coefficients and stabilizing model estimates (Hastie 2020). This

approach is especially valuable in high-dimensional settings, where the number of pre-

dictors may exceed the number of observations. Regularization not only helps prevent

overfitting but can also aid in selecting the most relevant variables by reducing the influ-

ence of less informative predictors.

Lasso, introduced by Tibshirani (1996), modifies the ordinary least squares (OLS)

cost function by adding an ℓ1 regularization term, which is the sum of the absolute

values of the coefficients. This allows Lasso to perform variable selection by shrinking

some coefficients exactly to zero, resulting in more interpretable models. The resulting

sparsity makes Lasso especially valuable when only a subset of predictors is believed to

be relevant.

Ridge, introduced by Hoerl and Kennard (1970), is another regularization method

that modifies the OLS cost function by adding an ℓ2 penalty term, which is proportional

to the sum of the squared coefficients. Ridge regularization reduces the size of some

coefficients but does not set any of them exactly to zero.

Elastic Net, proposed by Zou and Hastie (2005), combines the strengths of both Ridge

and Lasso by including both ℓ1 and ℓ2 penalties. This approach is particularly effective

when predictors are highly correlated, as it tends to select groups of related variables

rather than choosing only one.

Building on these methods, Yuan and Lin (2007) developed a group-based regular-
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ization approach that applies Lasso penalties at the group level, allowing for structured

variable selection. This method is particularly well-suited for domains where predictors

are naturally grouped, such as industry sectors in finance or categories in textual data.

A related study by Neba et al. (2023) conducted a comparative analysis of various

regression models, including Ridge, Lasso, Elastic Net, and Random Forest, to predict

Netflix’s stock prices. In their research, they evaluated model performance using the Root

Mean Squared Error (RMSE) as the primary metric. Their findings showed that Lasso

achieved the lowest RMSE, closely followed by Elastic Net. Both models outperformed

Random Forest, highlighting the effectiveness of regularization techniques in stock price

forecasting.

Similarly, Ding (2023) applied the Elastic Net method to forecast the closing price of

Apple stock. In their study, various forecasting accuracy metrics—such as Mean Squared

Error (MSE) and R-squared—were used to assess the model’s performance. The results

indicated that Elastic Net effectively captured patterns in Apple’s closing price, reinforc-

ing its suitability for financial time series forecasting.

In their research, Chun et al. (2024) used a variety of machine learning models, in-

cluding penalized linear methods like Lasso and Elastic Net, as well as deep learning

and tree-based models, to forecast stock returns and exchange rates. They employed 137

different financial and economic indicators from both the Korean and U.S. stock markets

to predict stock market returns. They found that Lasso and Elastic Net outperformed

traditional benchmarks in forecasting accuracy.

These regularization approaches have been successfully applied across various areas in

economics and finance, offering both improved predictive performance and interpretabil-

ity. Due to their simplicity and the clarity they provide, these methods form the method-

ological foundation for many modern machine learning models used in empirical financial

forecasting.

Tree-Based and Ensemble Methods

Decision trees, first introduced by Breiman et al. (1984), are among the most popular

machine learning methods for classification tasks. Their appeal lies in their intuitive

structure and the use of efficient greedy algorithms, which quickly identify key decision
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points for classifying data and allow the model to be run separately for each group to find

the best fit for each category. However, checking all possible splits is both time-consuming

and computationally costly. As a result, decision trees typically select the best split at

each step without considering the implications for future splits (Kelly and Xiu 2023).

XGBoost, introduced by Chen and Guestrin (2016), is a scalable machine learning

method that employs tree boosting. It builds on the idea of combining multiple weak

learners—typically decision trees—in a sequential manner, where each new tree aims to

correct the errors of its predecessors. XGBoost minimizes a loss function through additive

model updates, making it highly effective at handling complex, nonlinear relationships in

data.

One of the standout features of XGBoost is its ability to handle sparse data. It

introduces a sparsity-aware split-finding algorithm that enhances computational efficiency

by focusing only on non-missing entries, thereby reducing time complexity. Additionally,

XGBoost employs a weighted quantile algorithm to find optimal split points in large

datasets.

In related research, Zhang (2023) used the XGBoost algorithm to improve time series

forecasting in the stock market by predicting patterns in high-frequency time series data.

They also applied regularization techniques to help prevent overfitting. Their findings,

evaluated using Mean Squared Error (MSE), show that the XGBoost algorithm improves

predictive accuracy, particularly in short-term forecasts.

Similarly, Wang (2022) focused on Chinese stock market returns, comparing the

performance of three models—XGBoost, Random Forest, and Ordinary Least Squares

(OLS)—in forecasting stock returns using financial indicators. Their results indicate

that both XGBoost and Random Forest outperformed OLS, with Random Forest slightly

outperforming XGBoost. However, the study noted that using only 640 trading days of

data to train the models might not be sufficient to fully capture the complexity of the

stock market.
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Advanced Machine Learning Models: Neural Networks

and RNNs

There is a long history of using advanced machine learning methods such as neural net-

works for financial forecasting. As an early example, White (1988) compared neural

network methods with the autoregressive (AR) model for predicting daily IBM stock re-

turns and found that neural networks performed better than the AR model, which served

as the benchmark. This conclusion was based on a comparison of the R2 values for the

two models.

In another research, Atsalakis and Valavanis (2009) used artificial neural networks

(ANNs), including feedforward, recurrent, and hybrid models, to predict stock prices,

returns, and indices for stock market forecasting. Their findings suggest that these models

can capture the nonlinear patterns of financial data much better than traditional models

such as ARIMA. The study also highlights the importance of training neural networks

properly and selecting appropriate input variables when using ANN models.

Recursive neural networks (RNNs) and Long Short-Term Memory (LSTM) networks

are widely used in time series analysis and sequence modeling, valued for their ability to

capture information from previous time steps that influence future outcomes. However,

RNNs often face challenges such as vanishing and exploding gradients. LSTM networks,

with their more sophisticated neural architecture and gating mechanisms, address these

issues by regulating the flow of information more efficiently. These gates help LSTM

models maintain long-term dependencies more effectively (Cong et al. 2020).

D. M. Q. Nelson et al. (2017) used Long Short-Term Memory (LSTM) networks for

forecasting stock market returns. They applied the LSTM model to predict Brazilian

stock prices using historical data and technical indicators. Specifically, their model was

designed to classify whether the stock price would rise in the next 15 minutes, framing the

problem as a binary classification task. The predictive accuracy of the LSTM model was

evaluated and compared against other benchmark models, such as Multi-Layer Percep-

trons (MLP) and Random Forests, using metrics including Mean Squared Error (MSE),

Root Mean Squared Error (RMSE), and directional accuracy (the proportion of correctly

predicted upward and downward movements). Their findings showed that the LSTM

model outperformed these traditional models in terms of predictive accuracy.
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In another study, Zhu (2020) used Recurrent Neural Network (RNN) models to pre-

dict Apple’s stock price using data from Yahoo Finance over a ten-year period. They

implemented a two-layer RNN architecture and evaluated the model’s performance using

Mean Squared Error (MSE) and Mean Absolute Error (MAE) metrics. The study found

that RNNs are effective for predicting short-term movements in stock market returns.

The close match between the predicted and actual values is shown in Figure 2.1, where

the RNN model was applied with a timestep of 10.

Figure 2.1: Predicted vs. actual Apple stock price using RNN model with timestep =

10 (Zhu 2020).

In financial markets, LSTM models have also been applied to historical asset data,

enhancing predictions of asset returns and their distributions (Cong et al. 2020). De-

spite their advantages, LSTMs are not without limitations; they can still experience

gradient-related issues and instability in input feature usage, sometimes leading to ex-

treme outputs. Thus, advanced RNNs may not always be the ideal choice for every

application.
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Chapter 3

Data

3.1 Dataset

In this analysis, we use monthly S&P 500 data from January 1871 to December 2021.

The dataset comprises 21 key variables essential for financial analysis. These include the

market index value (Index), dividend yield (D12), earnings yield (E12), and the book-to-

market ratio (b/m). Interest rates are represented by the Treasury bill rate (tbl), yields

on AAA-rated and BAA-rated corporate bonds (AAA and BAA), and the long-term

government bond yield (lty).

Other variables include net total issuance (ntis), long-term returns (ltr), and corpo-

rate bond returns (corpr). Market volatility is captured by stock variance (svar), while

the dataset also includes value-weighted returns on the CRSP index, both with and with-

out dividends (CRSP SPvw and CRSP SPvwx). Additionally, the dataset features the

dividend-price ratio (dp), earnings-price ratio (ep), dividend-earnings ratio (de), term

spread (tms), default yield spread (dfy), risk-free rate (rf), and the market return minus

the risk-free rate (rmrf).

These variables provide a comprehensive foundation for forecasting the S&P 500 using

different methods. In my analysis, I calculated several financial factors using the initial

variables in the dataframe. Specifically, I computed the dividend ratio and earnings ra-

tio by dividing the past 12 months’ dividends (D12) and earnings (E12) by the index,

respectively. Additionally, I calculated the dividend-earnings ratio by dividing the past

12 months’ dividends (D12) by earnings (E12) to assess how much of the earnings have

been paid out as dividends to shareholders. I also calculated the term spread (tms) by
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subtracting the Treasury bill rate from the long-term government bond rate, which illus-

trates the difference between long-term and short-term interest rates—a useful indicator

of economic conditions. Lastly, I derived the default yield spread (dfy) by subtracting

the AAA corporate bond rate from the BAA rate, providing a measure of credit risk.

These parameters help improve the accuracy of stock market return predictions and are

valuable tools for financial analysis.

As shown in Table 3.1, stock market returns have changed over time. To understand

these movements, we examined the summary statistics for our main target variable,

CRSP SPvw, covering the period from June 1947 to November 2022. During this time,

the average monthly return across all 10-year subperiods remained positive, generally

ranging between 0.5% and 1.5%. The standard deviation of returns—our measure of

volatility—was relatively stable, mostly falling between 3.4% and 4.5%. However, in the

most recent period (2017–2022), volatility increased slightly to 5.12%. It is important to

note that this latest subperiod covers only 5 years and 5 months, not a full decade, which

could partially explain the higher volatility. Still, this may suggest that the market has

become more volatile in recent years.

The largest monthly decline recorded was approximately –21.6%, while the high-

est gain reached about 16.8%. Although maximum and minimum returns varied across

different decades, the fact that both the average and median returns remained positive

underscores the market’s long-term growth. These summary statistics help us understand

the overall behavior of the data before applying any forecasting models.

Period Count Mean Std Dev Min 25% 50% 75% Max

1947-06-01 to 1957-06-01 121 0.0153 0.0372 -0.0983 -0.0133 0.0170 0.0459 0.0958

1957-06-02 to 1967-06-02 120 0.0088 0.0339 -0.0807 -0.0112 0.0150 0.0307 0.1083

1967-06-03 to 1977-06-03 120 0.0048 0.0453 -0.1175 -0.0206 0.0022 0.0375 0.1681

1977-06-04 to 1987-06-04 120 0.0142 0.0434 -0.0975 -0.0132 0.0139 0.0419 0.1352

1987-06-05 to 1997-06-05 120 0.0123 0.0409 -0.2158 -0.0070 0.0157 0.0379 0.1141

1997-06-06 to 2007-06-06 120 0.0069 0.0434 -0.1431 -0.0175 0.0109 0.0374 0.0985

2007-06-07 to 2017-06-07 120 0.0068 0.0436 -0.1670 -0.0151 0.0123 0.0333 0.1090

2017-06-08 to 2022-11-01 65 0.0109 0.0512 -0.1220 -0.0161 0.0203 0.0406 0.1289

Table 3.1: Summary Statistics of CRSP SPvw Returns by Decade (1947–2022)
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3.2 Data processing

The first step in processing our data is to assess the relevance of the features, identifying

which ones are most useful for predicting the target variable. This helps reduce the com-

plexity of the problem. The Pearson correlation coefficient (PCC) is a classical method

for measuring the linear correlation between two variables (Niu et al. 2022). PCC values

range from –1 to 1, with higher absolute values indicating stronger linear relationships be-

tween features and the target variable. In our analysis, we used this approach to identify

and visualize the most influential predictors.

Figure 6 presents the Pearson correlation coefficient (PCC) chart for our data. This

chart highlights the correlations between different features, allowing us to assess the

relevance and relationships among them.

Figure 3.1: Correlation Matrix of Selected Features
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Chapter 4

Mthodology

4.1 Linear Regression

Linear regression models the relationship between a dependent variable y and one or more

independent variables X. The simple linear regression model can be represented as:

y = Xβ + ϵ (4.1)

In Equation 4.1, y is the vector of observations, X is the matrix of input features,

β is the vector of coefficients, and ϵ is the error term. The coefficients β, as shown in

Equation 4.2, are typically estimated using the Ordinary Least Squares (OLS) method,

which minimizes the residual sum of squares:

β̂ = argmin
β

n∑
i=1

(yi −Xiβ)
2 (4.2)

Linear regression is considered one of the simplest machine learning methods. In our

experiment, we used a rolling window approach with a size of 120 months (10 years) to

train and test the model. We advanced the window one month at a time, regressing

the value-weighted return of the stock market on various features. The results were not

promising, especially for the out-of-sample R2 values.

We also tested model performance using the top three principal components from Prin-

cipal Component Analysis (PCA) and the top three features from Partial Least Squares

(PLS) as inputs, to assess whether dimensionality reduction could further enhance the

predictive power of linear regression. Notably, PCA selects components with the greatest
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variance-explaining power, while PLS identifies features most correlated with the target

variable. As a result, these approaches can improve the interpretability of our regression

models.

4.2 Lasso

Lasso (Least Absolute Shrinkage and Selection Operator) adds an L1 regularization term

to linear regression, as shown in Equation 4.3, allowing it to shrink some coefficients to

zero. This effectively selects a simpler model and reduces the dimensionality of the data:

β̂ = argmin
β

(
n∑

i=1

(yi −Xiβ)
2 + λ

p∑
j=1

|βj|

)
(4.3)

Unlike Ridge regression, Lasso performs both shrinkage and variable selection by

forcing some coefficients to be exactly zero. This makes it especially useful when we

suspect that only a few predictors are truly relevant.

In our experiment, we set λ = 0.0001, as higher values could shrink all coefficients

to zero. We applied the same rolling window strategy as in linear regression, using a

120-month window to train the model and predicting the 121st observation. This process

was repeated by sliding the window forward one month each time the model was run.

We also tested model performance using the top three principal components from

PCA and the top three features from PLS as inputs, to assess whether dimensionality

reduction could further enhance the predictive power of Lasso regression. Notably, PCA

selects components with the greatest variance-explaining power, while PLS identifies fea-

tures most correlated with the target variable. As a result, these approaches can improve

the interpretability of our Lasso regression models. Lasso regression is similar to lin-

ear regression, but it incorporates a shrinkage (regularization) term that penalizes large

coefficients.

4.3 Ridge

Ridge regression, also known as L2 regularization, addresses the issue of multicollinearity

by modifying the least squares objective function. It adds a penalty to the size of the

coefficients to prevent overfitting, as shown in Equation 4.4:
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β̂ = argmin
β

(
n∑

i=1

(yi −Xiβ)
2 + λ

p∑
j=1

β2
j

)
(4.4)

This technique is especially helpful when predictor variables are highly correlated,

which can cause the design matrix XTX to become nearly singular. By adding λI to the

diagonal, Ridge regression ensures that all eigenvalues are positive, thereby improving

numerical stability.

Ridge regression reduces the variance of the estimates at the cost of introducing a small

amount of bias. This trade-off often leads to better generalization in high-dimensional

settings.

In our experiment, we set λ < 0.001 to avoid excessive shrinkage. We used the same

10-year rolling window approach as in previous models, aiming to improve prediction

accuracy by stabilizing the coefficient estimates rather than eliminating them.

As with linear regression and Lasso regression, we also trained our Ridge model using

the top three features selected by both PCA and PLS to examine whether this approach

could further improve model performance.

4.4 Elastic Net

Elastic Net combines both L1 (Lasso) and L2 (Ridge) regularization, providing a balanced

approach that leverages the strengths of both techniques. This method is particularly ad-

vantageous when dealing with datasets that exhibit high multicollinearity or when feature

selection is important. The objective function of Elastic Net is given in Equation 4.5:

β̂ = argmin
β

(
n∑

i=1

(yi −Xiβ)
2 + λ1

p∑
j=1

|βj|+ λ2

p∑
j=1

β2
j

)
(4.5)

In Equation 4.5, λ1 and λ2 are the regularization parameters associated with the Lasso

and Ridge penalties, respectively. In practice, these terms are often combined through a

mixing parameter α, such that:

λ1 = αλ, λ2 = (1− α)λ

where λ is the overall regularization strength and α ∈ [0, 1] determines the balance

between the Lasso (L1) and Ridge (L2) components. In our study, we set α = 0.5, giving
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equal weight to both penalties. This approach allows us to benefit from the sparsity

induced by Lasso and the stability provided by Ridge regularization.

We applied the same rolling window procedure as described earlier, using 120 months

of data for training and generating out-of-sample predictions for the subsequent month.

In each window, the Elastic Net regression leveraged the strengths of both Lasso and

Ridge penalties through the specified mixing parameter, as described above.

Figure 4.1: Constraint balls for Ridge, Lasso, and Elastic Net regularization. The sharp

edges and corners of Lasso and Elastic Net allow for variable selection in addition to

shrinkage (Hastie 2020).

Figure 4.1 illustrates the geometric constraints imposed by each regularization method.

While Ridge’s circular constraint leads to uniform shrinkage, the diamond shapes of Lasso

and Elastic Net introduce edges that can push some coefficients to exactly zero, thereby

enabling feature selection as well as shrinkage.

4.5 Neural Networks

Neural networks are a class of models inspired by the structure and function of the human

brain. They consist of layers of interconnected nodes, commonly referred to as neurons.

The output of a neural network with L layers can be expressed as shown in Equation 4.6:

ŷ = f
(
W [L] · f

(
W [L−1] · . . . f

(
W [1] ·X + b[1]

)
+ . . .+ b[L−1]

)
+ b[L]

)
(4.6)

In Equation 4.6, W [l] and b[l] denote the weights and biases for the lth layer, respec-

tively, and f represents the activation function.

Neural networks aim to mimic certain processes of the human brain and are widely

used in various applications, particularly in data science, such as prediction, computer
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vision, and classification tasks. These models are composed of multiple layers, each

containing several neurons (nodes). In each layer, every input is multiplied by a corre-

sponding weight, and the results are summed and passed through an activation function

to produce the output of each neuron, as shown in Equation 4.7:

z =
n∑

i=1

wixi + b (4.7)

The concept of neural networks was first introduced in 1943 by McCulloch and Pitts

(McCulloch and Pitts 1943). In the earliest models, a threshold was used to compare

the output of the neuron’s function in order to determine whether it should ”fire” (i.e.,

transmit the signal to the next neuron) or remain inactive. In modern neural networks,

this threshold mechanism is typically replaced by a bias term, which serves a similar

purpose but offers greater flexibility during training.

There are several types of neural networks. Some, such as feedforward models, pass

information only in one direction—from input to output. Others, such as recurrent neu-

ral networks, include feedback loops that allow information to flow backward between

neurons. The primary goal of all these models is to discover patterns in data. In this

thesis, I apply various neural network architectures to forecast stock market returns using

my dataset.

4.5.1 Activation Function

Activation functions are a crucial component of neural networks. Without them, neural

networks would be equivalent to linear models, lacking the ability to capture complex

nonlinear patterns in data.
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Figure 4.2: Comparison of activation functions: Sigmoid, Tanh, and ReLU.

As illustrated in Figure 4.2, the three most common activation functions are Sigmoid,

Tanh, and ReLU. Since our goal is to predict the returns of the stock market - which can

be both positive and negative - we selected the Tanh activation function for our models.

.

4.5.2 Neural Architecture

We experimented with different neural network architectures, ranging from a simple net-

work (NN1) with one hidden layer to more complex networks (NN2 to NN5) with up to

five hidden layers. The number of hidden layers can significantly influence the model’s

performance, as shown in Figure 4.3. As the number of hidden layers increases in our

models, the number of neurons also rises, resulting in more calculations per epoch. Each

epoch corresponds to one complete pass of the data through all the layers. This increase

in complexity can yield a more powerful model with greater forecasting capacity.
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Figure 4.3: Neural Network Architectures: NN1 and NN5

4.5.3 Cross-Validation with Neural Networks

To further refine our approach, we integrated cross-validation with our neural network

models. We tested five different neural architectures—two NN4 models and three NN5

models—across each in-sample period, with each period spanning ten years (120 months).

For each period, the model with the highest R2 value was selected for out-of-sample

prediction. The results showed a slight improvement in performance.

4.6 Random Forest

Decision trees are among the most common regression methods used for forecasting.

They work by splitting the data based on different features at each step and performing

a regression within each split. Decision trees are also well known as powerful clustering

algorithms. Random Forest is an ensemble learning method that improves upon decision

trees by building multiple trees and combining their outputs to enhance accuracy and

reduce overfitting. The Random Forest model is represented by Equation 4.8:

ŷ =
1

B

B∑
b=1

ŷb(x) (4.8)

In the Equation 4.8, ŷb(x) is the prediction from the bth tree, and B is the total number

of trees in the forest. One of the key parameters in a Random Forest model is the number

of estimators, which refers to the number of decision trees used in the ensemble. In our
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study, we implemented the Random Forest algorithm with varying numbers of decision

trees and evaluated its performance. As in previous sections, we used an in-sample

period of 120 months and an out-of-sample period of one month, moving forward month

by month.

4.7 XGBoost

XGBoost (Extreme Gradient Boosting) is a highly efficient and scalable machine learning

algorithm designed for supervised learning tasks. It is based on the concept of gradient

boosting, in which a number of weak learners—typically shallow decision trees—are com-

bined. These trees are trained sequentially, with each new tree attempting to correct the

errors made by the previous ones. This iterative process helps build a stronger predictive

model over time.The objective function for XGBoost is shown in Equation 4.9:

Obj(θ) =
n∑

i=1

l(ŷi, yi) +
K∑
k=1

Ω(fk) (4.9)

In the Equation 4.9, l(ŷi, yi) represents the loss function, which measures how well the

model fits the training data. The term Ω(fk) is a regularization component that penalizes

model complexity and helps prevent overfitting. ŷi is the prediction for the ith instance.

What distinguishes XGBoost from traditional boosting algorithms is its use of both

the first and second derivatives (the gradient and the Hessian) of the loss function dur-

ing optimization. This feature enables faster and more accurate learning. XGBoost also

supports parallel computing, dividing the overall task into smaller subtasks that are pro-

cessed simultaneously, which makes it especially effective for large-scale, high-dimensional

datasets. Additionally, it natively handles missing data, contributing to its robustness in

practical applications.

XGBoost further enhances the gradient boosting framework by incorporating a reg-

ularized learning objective that penalizes model complexity. This helps address overfit-

ting and improves generalization. The regularized objective function is defined in Equa-

tion 4.10:

L(ϕ) =
n∑

i=1

l(yi, ŷi) +
K∑
k=1

Ω(fk), (4.10)
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where ŷi is the predicted value for the i-th instance, l is a differentiable convex loss

function, and Ω(fk) is the regularization term that penalizes the complexity of the k-th

tree fk. The regularization term is given by Equation 4.11:

Ω(f) = γT +
1

2
λ∥w∥2, (4.11)

where T is the number of leaves in the tree, w represents the weights on the leaves,

and γ and λ are regularization parameters. This framework encourages the selection

of simpler models, reducing the risk of overfitting and improving the model’s ability to

generalize to unseen data.

In simpler terms, XGBoost builds an ensemble of small decision trees, each improving

upon the previous one, to produce a highly accurate final model.

In our experiment, we implemented XGBoost using 5,000 estimators and applied it

using the same 10-year rolling window structure as our other models. We evaluated its

performance using out-of-sample predictions, aiming to compare its accuracy with both

traditional linear models and other machine learning approaches.

4.8 Recurrent Neural Network (RNN)

Recurrent Neural Networks (RNNs) are a type of neural network specifically designed to

handle sequential or time-based data. Unlike traditional feed-forward neural networks,

which treat each input as independent from the others, RNNs are built to retain informa-

tion over time. They achieve this by passing information from one step of the sequence

to the next, allowing past inputs to influence future predictions.

This memory mechanism makes RNNs particularly useful for tasks where the order

and context of the data matter—such as speech recognition, language modeling, and, in

our case, predicting stock market returns over time.

What makes RNNs unique is their looped architecture, which maintains a hidden

state that carries information forward across time steps. This structure enables them to

learn temporal patterns in data. However, standard RNNs often face challenges when

attempting to capture long-term dependencies due to issues such as the vanishing gradient

problem.

In financial modeling, RNNs are a natural fit because stock market data unfolds over
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time and is influenced by past events. Whether it’s economic indicators or previous price

movements, historical context matters. RNNs are well-suited to capture this kind of

structure, making them a powerful tool for time-series forecasting. The basic structure

and unrolling mechanism of an RNN is illustrated in Figure 4.4.

Figure 4.4: Unrolled structure of a standard Recurrent Neural Network (RNN).(Zhu

2020)

4.8.1 Model Architecture

In our experiment, we implemented a basic RNN with the following configuration:

• Input size: 16 (number of features)

• Hidden layer size: 20

• Number of layers: 2

• Dropout: 0.2 (to reduce overfitting)

• Learning rate: 0.001

The RNN was trained using the Adam optimizer, and the loss was measured using Mean

Squared Error (MSE), a standard evaluation metric for regression tasks. The model was

trained for 100 epochs. We used 75% of the data for training and 25% for testing, allowing

us to assess how well the model generalizes to unseen data.

4.9 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks are an advanced form of Recurrent Neu-

ral Networks (RNNs) designed to capture both short-term and long-term dependencies
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in sequential data. While traditional RNNs are effective at learning from recent past

information, they often struggle with long sequences due to the vanishing gradient prob-

lem—where gradients shrink during backpropagation, making it difficult for the model

to learn long-range relationships.

While standard RNNs often face challenges when attempting to capture long-term

dependencies due to issues such as the vanishing gradient problem, advanced variants such

as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks have

been developed to address these issues. LSTMs overcome this limitation by introducing

a special architecture that includes memory cells, as well as gates (input, forget, and

output gates) that regulate the flow of information. These mechanisms allow LSTMs

to selectively retain or discard information over time, enabling them to learn patterns

across much longer sequences. As a result, LSTMs are widely used in fields such as speech

recognition, text generation, and time-series forecasting—making them a suitable choice

for modeling stock return data, which is highly sequential and influenced by both recent

and older events. The architecture of the LSTM network used in their work is illustrated

in Figure 4.5.

Figure 4.5: LSTM (Long Short-Term Memory) model architecture.(D. M. Q. Nelson et al.

2017)

4.9.1 Model Architecture

For our experiment, we implemented an LSTM model with the following configuration:

• Input Size: 16 (number of input features)
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• Hidden Layer Size: 20

• Number of Layers: 2

• Dropout: 0.2 (to reduce overfitting)

• Learning Rate: 0.001

The model was trained using the Adam optimizer, and performance was measured using

the Mean Squared Error (MSE) loss function, which is commonly used for regression

tasks. Training was conducted over 100 epochs. We used 75% of the data for training

and the remaining 25% for testing, allowing us to evaluate how well the model generalizes

to unseen data.

By applying LSTM to our stock return forecasting problem, we aimed to leverage its

memory capabilities to better capture temporal relationships that may not be immedi-

ately obvious from short-term data alone. .

4.10 Performance Evalution

To compare the performance of our models, we first calculate the in-sample and out-of-

sample R2 values using the formula below:

R2 = 1−

n∑
t=1

(yt − ŷt)
2

n∑
t=1

(yt − ȳ)2
(4.12)

where yt represents the actual values, ŷt represents the predicted values, and ȳ is the

mean of the actual values.

For the models with out-of-sample R2 scores close to zero (ranging from −20% to 5%),

we applied the Diebold-Mariano test (Diebold and Mariano 1995) to assess whether these

models performed better than the simple average. The Diebold-Mariano test statistic is

calculated as shown in Equation 4.13:

DM =
d̄√

1
T
γ̂d(0) + 2

∑h−1
k=1 γ̂d(k)

(4.13)
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where:

• d̄ = 1
T

∑T
t=1 dt is the mean loss differential,

• dt = L (e1,t)− L (e2,t) is the difference between the loss functions of two models,

• γ̂d(k) is the autocovariance of dt at lag k,

• T is the sample size, and

• h is the forecast horizon.

We used the Diebold-Mariano statistical test to evaluate whether each model’s out-

of-sample performance was better than the simple average of stock market returns within

each sample period.

4.11 Applying PCR and PLS for Model Optimiza-

tion

We used Principal Component Analysis (PCA) and Partial Least Squares (PLS) for

dimensionality reduction by applying them to our large dataset before feeding the inputs

into our models.

Principal Component Analysis (PCA) is a dimensionality reduction technique that

transforms a large set of possibly correlated variables into a smaller set of uncorrelated

variables, called principal components. These components are ranked by how much of

the variance in the original dataset they explain, with the first component capturing the

most variance. In practice, PCA helps reduce noise, avoid multicollinearity, and improve

computational efficiency by selecting the most informative features. This is especially

useful in stock market return forecasting, where identifying key patterns in noisy data

can lead to better predictive performance.

Partial Least Squares (PLS) is another dimensionality reduction method; however,

unlike PCA, it focuses on the relationship between the input variables and the target

variable. PLS identifies new components by maximizing the covariance between the

predictors and the response variable. This makes PLS particularly effective for regression

tasks, as it reduces data complexity while emphasizing the features most relevant to
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prediction. In fields such as finance, where variables may be noisy or only weakly related

to the outcome, PLS enhances model interpretability and forecasting accuracy.

First, we applied PCA and selected the top three components based on the amount

of variance they explained in the input data. These components were then used to

train our models. This approach, known as Principal Component Regression (PCR),

has been applied in previous studies where reduced feature sets were used in regression

frameworks (Gu et al. 2020).

We then followed the same approach with PLS, this time selecting the top three

components based on their correlation with the response variable. These components

were also used to train our models, with the goal of improving predictive accuracy by

focusing on the most relevant input features.
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Chapter 5

Empirical Results

5.1 In-Sample Empirical Results

5.1.1 Linear regression results

In this section, we analyze the R2 results of our in-sample linear regression approach, as

shown in Table 5.1. Linear regression achieves strong performance during the in-sample

period, with an R2 of 44.73%. However, combining linear regression with PCA or PLS

does not improve forecasting accuracy in terms of R2. This result is reasonable because

dimensionality reduction techniques such as PCA and PLS reduce the number of predictor

variables, and in the in-sample period where the model is trained, having fewer predictors

typically leads to a lower R2.

Model In-Sample R2

Linear Regression 0.4473
Linear Regression - PCR 0.0721
Linear Regression - PLS 0.1809

Table 5.1: In-Sample R2 for linear regression models.

5.1.2 Regularization methods

The following analysis examines the R2 results of our three in-sample regularization

methods. As shown in Table 5.2, Ridge regression demonstrates the best performance

among them. For all methods, we observe that combining regularization techniques with

PCR or PLS leads to a decrease in R2. This outcome is expected, as both PCR and PLS
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are dimensionality reduction techniques, while regularization methods such as Lasso,

Ridge, and Elastic Net also reduce the effective dimensionality of the data. Although

positive R2 values remain, substantial reductions in dimensionality result in fewer features

in our regression models, which in turn lowers the overall R2.

Model In-Sample R2

Lasso Regression 0.2485
Lasso Regression - PCR 0.0114
Lasso Regression - PLS 0.1204
Ridge Regression 0.4712
Ridge Regression - PCR 0.0883
Ridge Regression - PLS 0.2229
Elastic Net Regression 0.3376
Elastic Net Regression - PCR 0.0094
Elastic Net Regression - PLS 0.0899

Table 5.2: Regularization methods: Lasso, Ridge, and Elastic Net with in-sample R2

values.

5.1.3 Random Forest

In this analysis, we tested different numbers of estimators, each corresponding to a dif-

ferent number of decision trees. The results are shown in Table 5.3. As we can see, the

number of estimators does not have a significant effect on the accuracy of our forecasts

during the in-sample period. This outcome could be due to overfitting in the random

forest models, which may explain why increasing the number of estimators does not lead

to a higher in-sample R2.

Model In-Sample R-squared
100 Estimators 0.8606
1000 Estimators 0.8666
5000 Estimators 0.8649

Table 5.3: In-Sample R2 for Random Forest Models with Different Numbers of Estimators

5.1.4 XGboost

We applied XGBoost, which leverages a large number of weak learners to produce a

stronger forecaster. As shown in Table 5.4, our XGBoost model with 500 estimators per-

forms exceptionally well during the in-sample period, achieving an R2 of 0.6886. However,
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this high R2 is likely due to overfitting during the training phase, as the model benefits

from a large number of learners. As a result, it may not perform as well when tested on

data from a different period than the one it was trained on.

Model In-Sample R2

500 Estimators 0.6886

Table 5.4: In-sample R2 for XGBoost with 5000 estimators.

5.1.5 Neural networks

In our analysis, we used NN1 to NN5 neural architectures to examine how increasing the

number of layers and neurons affects the accuracy of our model’s predictions. Specifically,

we aimed to determine whether a more complex neural architecture would enhance the

model’s forecasting power. As shown in Table 5.5, more complex neural architectures do

not improve forecasting accuracy during the in-sample period. In fact, simpler architec-

tures such as NN1 and NN2 perform better than NN4 and NN5, which have more layers.

In terms of R2, the simpler neural networks deliver better performance in the in-sample

period.

Model In-Sample R2

NN1 0.2395
NN2 0.2382
NN3 0.2220
NN4 0.1987
NN5 0.1845

Table 5.5: In-sample R2 for neural network models.

5.1.6 Cross validation and Neural Networks

We further tested five different neural architectures (two NN4 models and three NN5

models) across each of our in-sample periods. In each rolling window, we selected the

model with the highest R2. The results are presented in Table 5.6. As shown, this

approach does not outperform the simple NN1 neural network model.
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Model In-Sample R2

Through 5 Neural Architectures 0.2067

Table 5.6: In-sample R2 for the model selected from five neural architectures.

5.1.7 RNN and LSTM

RNN and LSTM are deep learning methods that leverage long-term memory. To evaluate

their performance, we trained both models using 75% of the data. The resulting training

set R2 values are presented in Table 5.7. As shown, both models perform well during the

training period.

Metric Value
RNN Train R2 0.7736
LSTM Train R2 0.8836

Table 5.7: Training set R2 values for RNN and LSTM models.
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5.2 Out-of-Sample Empirical Results

5.2.1 Linear regression results

We examine the out-of-sample R2 results for our linear regression model, as shown in

Table 5.8. The linear regression model performs poorly during the out-of-sample period,

with an R2 of -0.2406.

To improve performance, we applied Principal Component Regression (PCR) and

Partial Least Squares (PLS). In the PCR approach, we selected the top three principal

components that captured the highest variance among the predictor variables. In con-

trast, PLS was used to extract three latent factors that maximized covariance with the

target variable, aiming to improve predictive accuracy. These regularization techniques

improved our out-of-sample R2: with PCR, the R2 increased to −0.0742, and with PLS,

it increased to −0.0416. These results suggest that linear regression benefits from these

two dimensionality reduction techniques.

As shown in the last column of Table 5.8, the Diebold-Mariano test p-values for the

linear regression and PCR-enhanced linear regression models are below 5%. This indicates

that, at the 5% significance level, these models outperform the naive benchmark, which

is the simple average model. However, the Diebold-Mariano test p-value for the Linear

Regression - PLS model is above 5%, meaning that, at this significance level, it does not

significantly outperform the simple average model.

The research by Gu et al. (2020) reported positive R2 values of 0.27% for PLS and

0.26% for PCR, which are notably higher than the values we obtained in our model,

namely −7.42% for PCR and −4.16% for PLS.

Model Out-of-Sample R2 DM Test Statistic DM Test P-value
Linear Regression -0.2406 2.1746 0.0297
Linear Regression - PCR -0.0742 2.2704 0.0232
Linear Regression - PLS -0.0416 0.3597 0.7191

Table 5.8: Out-of-sample R2 and Diebold-Mariano (DM) test statistics for linear regres-
sion, PCR, and PLS models.

5.2.2 Regularization methods

We analyze the R2 results of three different out-of-sample regularization methods. As

shown in Table 5.9, the Lasso regularization method demonstrates the best performance
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among them. The PCR and PLS techniques improve the prediction accuracy for both

Lasso and Ridge regression. As in previous sections, we used the top three components for

PCR, which help explain the variance in the predictor variables, and incorporated the PLS

method to account for collinearity with the target variable. However, the overall impact of

these techniques remains relatively small. Additionally, these dimensionality reduction

methods do not appear to influence the performance of the Elastic Net regularization

method.

As shown in the last column of Table 5.9, the only model with a Diebold-Mariano

test p-value below 5% is Lasso Regression - PLS. This indicates that, at the 5% signif-

icance level, we can reject the null hypothesis that the naive model (a simple average)

is better than our model. Consequently, we can conclude that Lasso Regression - PLS

outperforms the simple average model. However, we cannot make the same claim for the

other models based on the Diebold-Mariano test results. This outcome is reasonable, as

Lasso Regression - PLS also has the highest R2 value among the models in Table 5.9.

The results in Table 5.9 show that, in terms of R2, techniques such as Lasso and Ridge

improve predictive performance, particularly Lasso. However, combining these techniques

with PCA or PLS does not necessarily lead to further improvements in R2, suggesting

that combining multiple regularization methods may not be an effective strategy for

enhancing forecasting accuracy.

Model Out-of-Sample R2 DM Test Statistic DM Test P-value
Lasso Regression 0.0246 1.5067 0.1320
Lasso Regression - PCR -0.010 1.1849 0.2360
Lasso Regression - PLS 0.064 -3.2761 0.0011
Ridge Regression -0.1689 1.2246 0.2207
Ridge Regression - PCR -0.0356 0.9203 0.3574
Ridge Regression - PLS -0.0625 0.4175 0.6763
Elastic Net Regression 0.0192 -0.7750 0.4383
Elastic Net Regression - PCR -0.011 0.3362 0.7368
Elastic Net Regression - PLS -0.0238 0.5736 0.5662

Table 5.9: Regularization methods: Lasso, Ridge, and Elastic Net with out-of-sample R2

values.

The performance of our Lasso model, which demonstrates the best results among regular-

ization methods over the overall out-of-sample period, is evaluated in this analysis. The

R2 of our predictions is calculated using rolling 10-year windows, with the analysis up-

dated each month. As shown in Figure 5.1, the model’s accuracy fluctuates significantly

over time, performing worst during the 2008 financial crisis and the surrounding period.
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Figure 5.1: Rolling 10-Year R-squared using the Lasso model, with a vertical line marking
the 2008 Financial Crisis.

This indicates that the model is effective under stable conditions but struggles during

periods of market instability. Notably, Figure 5.1 shows that the R2 of our predictions

across different rolling periods ranges from 0 to nearly 17% for the Lasso model.
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5.3 Features importance

As shown in the heatmap in Figure 5.2, we analyze the importance of different features

in predicting the S&P 500 return using Lasso, Ridge, Elastic Net, PCA, and PLS. The

feature importance results for the Lasso, Ridge, and Elastic Net regularization methods

appear quite similar. In contrast, PCA and PLS display distinct patterns of feature

importance, not only compared to the regularization methods but also in relation to each

other.

Figure 5.2 presents feature importance as follows: for PCA, variables are selected

based on the amount of variance they explain in the predicted variable. A value of

1 means the feature explains the most variance, while lower values indicate a lesser

contribution. In the PLS column, the values show how well each feature explains the

predicted variable—in this case, the S&P 500 return. Here, a value of 1 signifies a major

role in prediction, while a value of 0 indicates no contribution. PLS assigns importance

values between 0 and 1 based on the correlation between each feature and the predicted

variable.

For Lasso, Ridge, and Elastic Net, these regularization methods use increasing penal-

ties that gradually shrink some coefficients to zero. In the heatmap, a value of 1 means

the feature’s coefficient persists the longest as regularization increases, whereas features

with values near zero are those whose coefficients shrink to zero more rapidly.
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Figure 5.2: Feature Importance by Model for Different Regularization Methods: PLS,
PCA, Lasso, Elasti-cNet, and Ridge
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5.3.1 Random Forest

To assess the impact of model complexity, we tested different numbers of estimators—corresponding

to varying numbers of decision trees—for our out-of-sample forecasts. The results are pre-

sented in Table 5.10. As observed, the number of estimators has a noticeable effect on

forecast accuracy, with increasing estimators leading to a slight improvement.

Although the random forest models show varying predictive performance, as measured

by R2, all models yield positive out-of-sample R2 values. However, when applying the

Diebold-Mariano test to compare these models with a simple average model, we find that

the random forests with 100, 1000, and 5000 estimators all yield p-values significantly

greater than 5%. This indicates that we cannot reject the hypothesis that the näıve

model, which uses a simple average, performs better in predicting stock market returns.

This finding contrasts somewhat with the positive R2 values observed for these three

random forest models.

In their research, Rossi (2018) applied boosted regression trees (BRT) to forecast the S&P

500. Their out-of-sample R2 reached 0.30%. As shown in Table 5.10, BRT exhibited lower

performance. They used the same features as the study of Welch and Goyal (2008) train

the BRT model.

Model Out-of-Sample R2 DM Test Statistic DM Test P-value
100 Estimators 0.0389 -0.9257 0.3546
1000 Estimators 0.0464 -1.0816 0.2794
5000 Estimators 0.0496 -1.0553 0.2913

Table 5.10: Out-of-sample R2 for random forest models with different numbers of esti-
mators.

5.3.2 XGboost

To evaluate the performance of gradient boosting, we used XGBoost, which leverages a

large number of weak learners to produce a stronger forecaster. As shown in Table 5.11,

our XGBoost model with 500 estimators performed poorly in the out-of-sample period,

with an R2 of −0.2961. This illustrates that this more complex model performed worse

than a simple average model in forecasting our index during the out-of-sample period.

Because of the poor performance of the XGBoost model in out-of-sample R2, we did not

perform the Diebold-Mariano test to compare it with the naive model.

47



Model Out-of-Sample R2

500 Estimators -0.2961

Table 5.11: Out-of-sample R2 for XGBoost with 5000 estimators.

5.3.3 Neural networks

To evaluate the effect of neural network complexity, we employed architectures NN1

through NN5 to examine how increasing the number of layers and neurons influences

the predictive accuracy of our model. Our primary objective was to assess whether a

more complex neural network structure enhances forecasting performance. As indicated

in Table 5.12, more intricate architectures generally yield higher forecasting accuracy

during the out-of-sample period. This trend contrasts with the in-sample forecasting

results in Table 5.5, where simpler neural architectures with fewer layers achieved better

performance. Specifically, single-layer networks performed well in-sample but poorly out-

of-sample, while deeper multi-layer networks performed better out-of-sample but worse

in-sample. Furthermore, although increasing the number of layers tends to improve the

out-of-sample R2, we observe a slight decline in accuracy from NN4 to NN5, which

is difficult to interpret and may stem from the inherent “black box” nature of neural

networks.

When comparing our neural network models against the näıve model, which repre-

sents a simple average, using the Diebold-Mariano test, we find that NN3, NN4, and

NN5—being more advanced models with three, four, and five layers—exhibit p-values

below 5%. This indicates their superior performance relative to the näıve model at a 5%

significance level. Conversely, NN1 and NN2 yield p-values above 5%, suggesting weaker

predictive performance compared to the simple average model. This observation aligns

with the general expectation that increasing the number of layers enhances model sophis-

tication and predictive capability. However, this trend is not absolute, as evidenced by

our results, where NN5 demonstrates a lower out-of-sample R2 value compared to NN4

and a higher p-value in the Diebold-Mariano test. This anomaly may again be attributed

to the “black box” characteristics of neural networks.

The results of the Diebold-Mariano test and R2 show that increasing the number of neu-

ral architecture layers, and consequently the number of neurons, improves the model’s

out-of-sample forecasting performance.

48



Model Out-of-Sample R2 DM Test Statistic DM Test P-value
NN1 -0.1358 -0.7622 0.4460
NN2 0.0277 0.9545 0.3398
NN3 0.0763 -2.2750 0.0229
NN4 0.0925 -2.6946 0.0070
NN5 0.0808 -2.3794 0.0173

Table 5.12: Out-of-sample R2 for neural network models.

The performance of our NN4 model, which demonstrated the best results over the

total out-of-sample period, was further examined by calculating the R2 of our predictions

using rolling 10-year windows, advancing one month at a time. As shown in Figure 5.3,

the accuracy of the model fluctuates over time, with its weakest performance observed

during the 2008 financial crisis. The R2 values of the NN4 model exhibit substantial

variation across different 10-year periods, ranging from 0 to nearly 30% between 1940

and 2020.

Figure 5.3: Rolling 10-year R2 between S&P500 returns and out-of-sample predictions of
the NN4 model, with a vertical line marking the 2008 Financial Crisis.
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5.3.4 Cross validation and Neural Networks

To further explore model performance, we evaluated five different neural architectures

(two NN4 models and three NN5 models) across each of our out-of-sample periods. In

each rolling window, we selected the model with the highest R2 value. The results are

presented in Table 5.13. As shown, this approach outperforms all the other models we

tested during the out-of-sample period, achieving an R2 of 0.0926. This represents strong

performance for out-of-sample forecasting, especially in a volatile market such as the

stock market.

Model Out-of-Sample R2 DM Test Statistic DM Test P-value
Through 5 Neural Architectures 0.0926 -2.7490 0.0060

Table 5.13: Out-of-sample R2 for the best-performing model selected from five neural
architectures.

5.3.5 RNN and LSTM

RNN and LSTM are deep learning methods designed to capture long-term dependencies

in data. In this analysis, we evaluated their performance by setting aside 25% of the data

as a test set. The R2 values for the test set are presented in Table 5.14. As shown, both

models performed poorly during the test period. Due to their weak out-of-sample R2, we

did not conduct the Diebold-Mariano test to compare them with the naive model.

RNN and LSTM are deep and complex neural architectures that typically perform well

with large datasets. However, our dataset consists of monthly observations, which are

limited in both sample size and number of features. As a result, the models performed

poorly in this setting. In fact, for both RNN and LSTM, the out-of-sample R2 was even

lower than −100%, clearly indicating their weak predictive performance with our dataset.

Metric Value
RNN Test R-squared -2.0070
LSTM Test R-squared -1.0596

Table 5.14: Test R-squared Values for RNN and LSTM Models
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5.4 Robustness

In empirical research, robustness refers to the stability and reliability of results when key

elements of a model are changed. Robustness is crucial because models can be sensitive to

certain assumptions, parameter values, or data configurations. By performing robustness

tests, we can determine whether our findings remain consistent under different modeling

conditions or when using subsets of the data. In forecasting, robustness adds credibility

to model results and supports their practical use in real-world decision-making.

To assess the reliability of our models, this section presents some robustness checks.

We examine how changes to key model parameters—such as regularization strength and

training window size—affect the forecasting performance of our models.

5.4.1 Effect of Regularization Strength

We varied the regularization parameter (λ) for both Ridge and Lasso regression mod-

els. As shown in Table 5.15, this adjustment had distinct effects on each model. Ridge

regression exhibited a gradual improvement in out-of-sample R2 as λ increased. As the

regularization parameter became larger, the R2 values stabilized. This behavior may oc-

cur because all the regression coefficients (β) shrink progressively toward zero. Eventually,

beyond a certain threshold of λ, only the intercept remains, which might explain why we

still observe a positive R2 in some cases. In contrast, Lasso’s performance declined with

higher λ values. The results in the table suggest that there should be an optimal value

of λ for our Lasso model. These findings highlight the importance of carefully tuning λ

for each dataset, as the optimal value can significantly influence forecasting accuracy.
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Model Lambda (λ) Out-of-Sample R2

Ridge 0.0001 -0.1689

Ridge 0.0005 -0.0017

Ridge 0.0010 0.0297

Lasso 0.0001 0.0246

Lasso 0.0005 -0.0529

Lasso 0.0010 -0.0538

Table 5.15: Out-of-sample R2 values for Ridge and Lasso models using different λ values.

This table shows how the predictive performance changes as we adjust the regularization

strength for each model.

As shown in Figure 5.4, we plotted the out-of-sample R2 values against the Ridge regular-

ization parameter λ, for values ranging from 0 to 0.0005. The graph was generated using

50 different points between these λ values, with the model run separately for each value

to compute the corresponding out-of-sample R2. As λ increases, we observe a smooth

rise in out-of-sample R2, although the rate of improvement slows as λ becomes larger.

Figure 5.4: Out-of-sample R2 for Ridge Regression as a function of the regularization
parameter λ.

Figure 5.5 presents the results of our Lasso regression analysis. Using the same ap-

proach, we generated the graph by calculating out-of-sample R2 values for 50 different
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λ settings. Notably, the sensitivity of the Lasso model to λ is different from Ridge re-

gression. There is a distinct peak in performance, with out-of-sample R2 reaching its

maximum at λ ≈ 0.0001, which matches the value used in our initial regularization ex-

periments. Beyond this point, the model’s performance declines as the regularization

parameter increases. While λ = 0.0001 appears to be optimal for our Lasso regression on

this dataset, it is important to note that this value may not be optimal for all datasets.

Figure 5.5: Out-of-sample R2 for Lasso Regression as a function of the regularization
parameter λ. The plot shows 50 λ values, highlighting a peak in performance at λ ≈
0.0001. For larger λ, the Lasso model’s performance decreases.
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5.4.2 Effect of Rolling Window Size

We also tested the robustness of our Random Forest model by altering the size of the

rolling training window. In our baseline setup, we followed Gu et al. (2020) and used a

120-month (10-year) window. To examine the sensitivity of the model to this parameter,

we also tested window sizes of 60 months (5 years) and 240 months (20 years).

As shown in Table 5.16, the model’s out-of-sample R2 varied across window sizes.

The 60-month window resulted in the poorest performance, likely due to limited training

data. Interestingly, the 240-month window also underperformed compared to the 120-

month baseline, despite having a larger training sample. This may suggest that older

data becomes less relevant over time or that a 10-year window strikes an effective balance

between sample size and temporal relevance. These results highlight the importance of

choosing an appropriate training window and raise interesting questions about how well

such configurations generalize across different datasets or markets.

Rolling Window Size (months) Out-of-Sample R2

60 −0.0580

120 0.0389

240 0.0291

Table 5.16: Out-of-sample R2 for Random Forest using different rolling window sizes.

The results show how prediction accuracy varies depending on the amount of historical

data used for training.
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Chapter 6

Coclusion

As we observe, all models exhibit positive R2 values during the in-sample period for

predicting the S&P 500 monthly return. Notably, models such as Random Forest and

XGBoost achieve the highest R2 values in this period. However, it is important to note

that these extremely high R2 values—such as XGBoost with 500 estimators reaching

nearly 1 (R2 = 0.6886)—are most likely a result of overfitting. This overfitting in the

in-sample predictions helps explain why these models fail to perform as well in the out-

of-sample period.

In out-of-sample forecasting, overly complex models such as XGBoost, LSTM, and

RNN exhibit negative out-of-sample R2 values, which stands in stark contrast to their

strong in-sample performance. This discrepancy can be attributed to overfitting. A

similar trend is observed with Random Forest: although it achieves an impressive in-

sample R2 of over 86%, its out-of-sample R2 drops to below 5%, highlighting a significant

decline. By comparison, neural network models have an average in-sample R2 of around

20%, and models such as NN3, NN4, and NN5 maintain an average out-of-sample R2 of

approximately 8%, resulting in a much smaller gap between in-sample and out-of-sample

performance.

In linear regression and regularization methods (Lasso, Elastic Net, and Ridge),

combining these models with Partial Least Squares (PLS) and Principal Component

Regression (PCR)—where PCR uses top features from Principal Component Analysis

(PCA)—leads to a decrease in in-sample R2. This reduction occurs because models

trained on all features are more prone to overfitting during the in-sample period, while

applying PCR and PLS helps mitigate overfitting, resulting in lower in-sample R2. How-
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ever, during the out-of-sample period, combining these techniques with linear regression

and regularization does not significantly improve or reduce the model’s R2. Based on

this evidence, we conclude that these approaches do not specifically enhance model per-

formance.

Random Forest models perform relatively well in the out-of-sample period in terms

of R2, and their performance tends to improve as the number of estimators increases.

For example, training the model with 5000 estimators yields an R2 of 4.96%. However,

according to the Diebold-Mariano test, even at the 80% confidence level, we cannot con-

clude that our Random Forest models significantly outperform the naive simple average

method.

Our neural network models, particularly those with more complex architectures such

as NN4 and NN5, achieve out-of-sample R2 values of 9.25% and 8.08%, respectively.

These are the highest out-of-sample R2 values among all our models. Furthermore, the

Diebold-Mariano test indicates that, at the 95% confidence level, both NN4 and NN5

significantly outperform the naive simple average model.

Based on both the R2 criterion and the Diebold-Mariano test, neural networks demon-

strated superior performance compared to our other models during the out-of-sample

period. In contrast, while the Random Forest model did achieve a positive R2 value, the

Diebold-Mariano test indicates that even the naive simple average model outperformed

it.

Another interesting result from our out-of-sample performance evaluations is that, at

first glance, one might expect more complex models to yield more accurate forecasts of

stock market returns. However, our findings suggest otherwise. For example, both RNN

and LSTM—despite being the most complex models with memory capabilities (including

short-term and long-term memory in LSTM)—produced negative R2 values in the out-of-

sample period. Additionally, with neural networks, increasing the number of layers from

4 to 5 actually led to lower performance: NN4 outperformed NN5 in both R2 and the

Diebold-Mariano test. This suggests there may be a threshold where further increasing

model complexity no longer improves, and may even harm, forecasting accuracy.

Regarding the robustness of our models, we initially used the window size recom-

mended in Welch and Goyal (2008). We then tested the robustness of our results by

varying the window size and found that the 120-month (10-year) window provided the
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best performance among those tested. However, since this finding is based on the same

market dataset, it does not guarantee that this window size is optimal for other datasets

or market conditions.

Regarding the regularization parameter λ, Figure 5.5 shows that λ = 0.0001 is close

to the optimal value, as indicated by the peak in the graph. This result is based on

calculations at 50 different values, so the chosen λ may not be the exact optimum, but

it is near the best value identified for our dataset. However, it is important to note that

this parameter may not be optimal for other datasets or market conditions. Additionally,

since we used R2 as the metric for forecasting accuracy, a different metric could potentially

yield a different optimal value for λ.

In my opinion, the underperformance of advanced models such as RNN, LSTM, and

XGBoost in the out-of-sample period can be attributed to their need for large datasets

to effectively capture complex patterns. Our dataset was relatively limited, both in the

number of features (columns) and in the frequency of observations, as we used monthly

data. Employing daily data would increase the number of rows and could potentially

enhance the performance of these more complex models.

There are also other ways to improve the performance of advanced models such as XG-

Boost and LSTM. One approach is to combine stock return data from multiple markets

to create a larger dataset. However, this strategy presents its own challenges, as differ-

ent markets may have distinct characteristics, experience recessions at different times,

and respond differently to economic shocks. To ensure consistency and improve model

reliability, it would be preferable to combine data from markets with similar features.
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Appendix

Figure 6.1 illustrates the training and testing performance of our RNN model on both the

training and testing sets. The model’s accuracy was measured using Mean Squared Error

(MSE), where each epoch represents one complete pass of the data through the neural

architecture from beginning to end. We analyzed the behavior of the RNN model across

100 epochs, meaning the entire dataset was passed through the network and trained

100 times. As shown in the figure, both the training set and testing set MSE decrease

during the initial epochs. However, after the 20th epoch, the testing set MSE begins

to increase, while the training set MSE continues to slowly decrease toward zero. This

pattern suggests the onset of overfitting after 20 epochs, where the model starts to fit the

training data too closely and loses its generalization ability on new data.

Figure 6.1: RNN: Train Loss vs. Test Loss
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Figure 6.2 illustrates the training and testing performance of our RNN model on both

the training and testing sets, with accuracy measured by the R Squared Error (R2).

Each epoch represents one complete pass of the data through the neural architecture,

from beginning to end. We analyzed the behavior of the RNN model over 100 epochs,

meaning the entire dataset was passed through and trained by the network 100 times.

As shown in the figure, both the training and testing set R2 values increase during the

initial epochs. However, after the 20th epoch, the testing set R2 starts to decrease, while

the training set R2 continues to gradually increase toward 1. This trend indicates that

the model begins to overfit the training data after around 20 epochs, resulting in reduced

performance on unseen data.

Figure 6.2: RNN: Train R2 vs. Test R2

Figure 6.3 illustrates the training and testing performance of our LSTMmodel on both the

training and testing sets. The model’s accuracy was measured using Mean Squared Error

(MSE), with each epoch representing one complete pass of the data through the neural

architecture from start to finish. We analyzed the behavior of the LSTM model over

100 epochs, meaning the entire dataset was passed through and trained by the network

100 times. As shown in the figure, both the training and testing set MSE decrease

during the initial epochs. However, unlike previous models, the testing set MSE begins
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to increase almost immediately, starting from the first few epochs, while the training set

MSE continues to slowly decrease toward zero. This pattern suggests that the LSTM

model starts to overfit the training data very early, resulting in a loss of generalization

on new data.

Figure 6.3: LSTM: Train Loss vs. Test Loss
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Figure 6.4 illustrates the training and testing performance of our LSTM model on both

the training and testing sets, with accuracy measured by the R Squared Error (R2). Each

epoch represents one complete pass of the data through the neural architecture from start

to finish. We analyzed the behavior of the LSTM model over 100 epochs, meaning the

entire dataset was passed through and trained by the network 100 times. As shown in

the figure, both the training and testing set R2 values increase during the initial epochs.

However, the testing set R2 starts to decrease almost immediately, beginning from the

first few epochs, while the training set R2 continues to gradually increase toward 1. This

indicates that the LSTM model begins to overfit the training data very early, leading to

reduced generalization performance on the testing set.

Figure 6.4: LSTM: Train R2 vs. Test R2
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Figure 6.5: This graph shows the out-of-sample predictions of our regression models
— Linear Regression, Lasso, Ridge, and ElasticNet — compared to the actual monthly
returns of the S&P 500 (CRSP SPvw). The black line represents the actual returns,
while the colored lines show each model’s out-of-sample fit over time.

65



Figure 6.6: This graph shows the in-sample predictions of our regression models — Linear

Regression, Lasso, Ridge, and ElasticNet — compared to the actual monthly returns of

the SP 500 (CRSPvw). The black line represents the actual returns, while the colored

lines show each model’s in-sample fit over time.
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