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Résumé

Ce mémoire modélise le paramètre d’Amélioration Autonome de l’Efficacité Éner-

gétique (AEEI), un élément crucial de la modélisation à long terme des systèmes

énergétiques et de l’adaptation climatique, qui quantifie le taux auquel les économies

améliorent leur conversion de l’énergie primaire en valeur ajoutée finale indépendamment

des effets liés aux prix, aux revenus, à la structure et aux politiques. Des estima-

tions distinctes du paramètre sont obtenues pour chacune des quinze régions du

monde définies dans le modèle d’évaluation intégrée AD-MERGE 2.0 en utilisant

une spécification de variable latente dérivée de l’estimateur de groupes moyens aug-

mentés (Augmented Mean Groups). Les résultats de ces modèles sont comparés

aux spécifications traditionnelles de tendance déterministe dans un cadre de groupes

moyens et montrent des estimations plus stables et réalistes. Enfin, un cadre de

modèle mixte, qui fait la moyenne des résultats de plusieurs modèles, est utilisé pour

obtenir des estimations consensuelles à la fois au niveau régional et mondial. Cette

méthodologie vise à isoler l’impact exclusif du progrès technologique sous-jacent et à

offrir aux chercheurs un cadre potentiel pour valider les calibrations des paramètres

dans un cadre empirique unifié.
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Abstract

This thesis models the Autonomous Energy Efficiency Improvement (AEEI) pa-

rameter, a critical element of long-term energy system and climate adaptation model-

ing which quantifies the rate at which economies improve their conversion of primary

energy into final value added independent of price, income, structural, and policy ef-

fects. Separate parameter estimates are obtained for each of the fifteen world regions

defined in the AD-MERGE 2.0 Integrated Assessment Model by utilizing a latent vari-

able specification derived from the Augmented Mean Groups panel estimator. Results

from these models are benchmarked to traditional deterministic trend specifications in

a Mean Groups framework and shown to deliver more stable and realistic estimates.

Finally, a mixed-model framework that averages multiple model results is used to de-

rive consensus estimates at both a regional and global level. This methodology seeks

to isolate the exclusive impact of underlying technological progress and to offer re-

searchers a potential framework for validating parameter calibrations within a unified

empirical framework.
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1 Introduction

Energy security and climate adaptation are among the most pressing concerns that indi-

vidual nations and humanity as a whole must face in the coming decades. It is therefore

critically important to understand the nature of energy use and the progress of energy effi-

ciency improvements that have been made in recent years, how they differ among regions,

and at what rate they could be expected to continue in the coming future. This thesis

seeks to complement the existing literature on this subject by modeling the Autonomous

Energy Efficiency Improvement parameter (AEEI), a concept that refers to changes in

energy demand that are not directly attributable to price and income effects and that is

often used as a proxy for broad energy efficiency improvements across entire sectors or

economies.

The ”classic” AEEI parameter focuses solely on changes in energy intensity, defined as

energy used per dollar of GDP, net of price and income effects. However, depending on the

modeling framework it can be extended to net out other effects such as those of changing

energy generation mix, output structure, or government policy (Kaufman, 2004). This

thesis is focused specifically on ”passive” energy efficiency that evolves through organic

market competition, the gradual renewal of the capital stock, and the general advancement

of scientific knowledge. Thus, in addition to the standard price and income effects this

thesis will seek to control for changes in economic structure and energy policy. Structural

change is a particularly important factor as changes in energy intensity can be caused by

transition to service economies and by the relocation of energy-intensive manufacturing

across countries, which can mask underlying changes in energy efficiency (Moreau et al.,

2019).

Properly accounting for the AEEI remains an unresolved issue in both empirical en-

ergy modeling (Liddle, 2023) and theoretical models (Eckaus and Sue Wing, 2007). Recent

literature employs various strategies to model this parameter including econometric esti-

mation, structural modeling, and expert opinion. A major debate in the energy efficiency

literature is how best to specify the AEEI: using an endogenous specification tied to

price or income, or an exogenous specification via a deterministic or stochastic time trend

(Webster et al., 2008; Hunt et al., 2003). This thesis uses panel econometric techniques to

model the AEEI in 15 major regions for the years 1995-2021 using both deterministic and

13



stochastic exogenous trends in a panel regression setting. The regions correspond to those

presented in the latest AD-MERGE 2.0 Integrated Assessment Model (IAM) (Amirmoeini

et al., 2024), and data for them is constructed by aggregating regional indicators across a

total pool of 93 countries.

Given the inherent uncertainty in estimating such a broadly defined concept at such

a high level, a number of model specifications are used to cross-validate the results. This

thesis begins by using pooled OLS models with fixed effects to understand the behavior

of control variables. However, pooled models have several major limitations, specifically

the assumption of homogeneous effects across panel units as well as potential bias caused

by cross-sectional dependence (Pesaran and Smith, 1995; Bond and Eberhardt, 2009).

Furthermore, the time dummies used to control for cross-sectional effects in pooled models

interfere with the estimation of exogenous time trends, which makes them unsuitable to

elicit the AEEI parameter. To address these challenges, this thesis leverages the Mean

Groups (MG) estimator first introduced by Pesaran and Smith (1995) as well as the recent

Augmented Mean Groups (AMG) estimator introduced by Bond and Eberhardt (2009)

and Eberhardt and Teal (2010). The MG model extends the traditional panel models

by averaging together coefficient estimates from individual regressions. The AMG model

further extends the MG model by first estimating a stochastic trend that represents the

evolution of an underlying latent variable assumed to correlate across panel units. This

trend is termed the common dynamic process (CDP) and is incorporated in a second-stage

MG regression to control for dynamic cross-sectional effects (Bond and Eberhardt, 2009).

This thesis follows Eberhardt and Teal (2010) in interpreting the latent variable as a form

of factor productivity, in this case representing the productivity of energy flows in the

wider economy, thereby serving as a proxy for the AEEI. Baseline estimates of the AEEI

using deterministic time trends in an MG setting are used to benchmark the AMG results.

To better isolate the energy efficiency effect, it is important to account for changes in

energy intensity caused by structural changes. A two-step strategy is employed to achieve

this. First, index decomposition analysis (IDA) via the logarithmic mean divisia index

(LMDI) is used to decompose changes in energy intensity into a structural component,

driven by changes in the financial contribution between sectors, and an intensity com-

ponent, driven by the changes in energy intensity of the sectors themselves (Ang, 2004;

2005). The intensity component of the index decomposition better approximates underly-

14



ing energy efficiency; however, given the high level of aggregation of the sectors used in the

decomposition, a substantial amount of structural changes within sectors remains in the

resulting decomposed series (Voigt et al., 2014). Thus, the direct share of industry in total

energy demand is used as an additional control variable in the final regressions to capture

any remaining structural effects that were not accounted for in the index decomposition.

An additional variable controlling for the share of energy supplied by nuclear and renew-

able sources is used as a proxy for government energy policy in the energy system. In order

to overcome potential limitations of small regional sample sizes and uncertainty in model

specification, model averaging techniques are used to generate consensus estimators across

a range of model specifications for the world as a whole and for each region separately

(Buckland, 1997; Hansen, 2007; Greene, 2003).

Overall, the primary research goal of this thesis is to assess whether panel regression

techniques of the kind described above can provide a unified empirical framework to cor-

roborate AEEI parameter values derived from theoretical models. The results indicate

that, with certain caveats, this appears to be the case. The rest of this thesis is organized

as follows: Section 2 presents the literature review on existing energy intensity studies, in-

cluding a discussion of the AEEI in theoretical models of climate change and energy policy,

critiques around its existing formulation, the adjacent literature on empirical estimation,

commonly identified determinants of energy intensity, and the important tendencies in

recent decades. Section 3 describes the data set used in this thesis and explains how the

variables were constructed. Section 4 outlines the methodology used. Section 5 presents

and discusses the results. Finally, Section 6 concludes by answering the research question

and discussing the broader implications of the findings.
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2 Literature Review

This section reviews the fundamental concepts and debates in the current literature re-

garding the modeling of energy efficiency improvements. It starts with the theoretical

concept of autonomous energy efficiency, its definition, use in the current literature, com-

monly assumed values, and critiques. It then proceeds to examine the empirical literature

on modeling energy efficiency and the value this literature holds in understanding the

theoretical models, including the adjacent literature on price and income elasticity and

the wider discussion on determinants of efficiency changes. It concludes with a presenta-

tion of the stylized facts of energy efficiency trends in the world, including convergence in

energy efficiency trends among regions and the impact of offshoring and rebound effects

on accurate measurement of energy efficiency.

2.1 AEEI in Modeling Technological Change

To my knowledge, the concept of autonomous energy efficiency improvement was first

mentioned in the work of Edmonds and Reilly (1983), who introduced a model for studying

the consequences of long-term carbon abatement in the global economy. Although they did

not explicitly give it a name, the authors left room in the model for a parameter meant to

represent technological progress independent of price signals. This parameter is important

in the model’s long-term projections as it allows for the modeling of gradual improvements

in energy use efficiency that occur due to technological advancements, behavioral changes,

or other non-price factors. In the model proposed by Edmonds and Reilly, the efficiency

parameter can be adjusted to reflect different scenarios of technological change, and it can

be switched on or off to assess the impact of automatic efficiency gains on energy demand.

When active, the parameter serves to reduces energy consumption for a given level of

economic activity at a fixed rate over time, thus playing a pivotal role in scenarios exploring

future energy use and policy impacts, allowing modelers to simulate either a world where

energy efficiency continues to improve autonomously or one where such improvements

stagnate.

Since its introduction, there has been an ongoing debate about what this parameter

should represent, how to set its value, or whether it should exist at all. Two literature

surveys conducted by Jacobsen (2001) and Löschel (2002) offer an extensive discussion of
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the state of modeling of technological change in large-scale energy and climate models of

the time, including a discussion of what had then come to be termed the AEEI parame-

ter. They summarize it as a heuristic measure that captures technological advancements

leading to a decoupling of economic growth from energy use. According to their review,

researchers typically treat the AEEI as either a constant or as following a nonlinear time

trend within their models. It is usually included as a distinct coefficient within produc-

tion or cost functions, and can be dis-aggregated to reflect sector-specific technological

change or specified at the economy-wide level to capture structural shifts in the economy

that influence energy consumption. For instance, in Constant Elasticity of Substitution

(CES) production functions, AEEI is often modeled as cost-diminishing technical change,

reflecting the idea that technological improvements inherently lead to less energy being

required per unit of output for any given level of energy prices.

AEEI remains a prominent concept in recent literature. In a comprehensive survey

of commonly used tools for modeling industrial transformation by Elberry et al. (2024),

AEEI is highlighted as one of the most frequently mentioned tools for modeling technolog-

ical change in the context of energy and climate economics. The authors emphasize that

AEEI continues to be widely used in Computable General Equilibrium (CGE) models,

Integrated Assessment Models (IAMs), and other large-scale economic models that seek

to model long-run policy scenarios such as the impact of carbon taxes and climate adap-

tation strategies. Due to their stylized and simplified nature, all of these models continue

to incorporate an AEEI parameter to capture the autonomous improvements in energy

efficiency that are expected to occur independently of price and policy interventions. To

obtain parameter values AEEI is often calibrated based on historical data, but it can be

adjusted within models to explore different scenarios of technological progress.

The survey by Elberry et al. also explores the relationship between AEEI and related

empirical concepts such as endogenous technical change, learning-by-doing, and learning-

by-searching. While AEEI is often exogenously set and reflects historical trends within

the context of a specific modeling framework, the related empirical concepts offer a more

dynamic representation of technological progress, where improvements in energy efficiency

are driven by ongoing investments in R&D, accumulation of production experience, and

economies of scale. The distinction between these approaches is crucial, as it affects the

interpretation of model outcomes and the policy recommendations derived from them. El-
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berry et al. note that there is growing interest in using endogenous and semi-endogenous

forms of technological change to capture more dynamic interactions between energy effi-

ciency improvements and economic factors. Specifically, the authors highlight that 22% of

the tools they reviewed incorporate endogenous technological change, allowing the AEEI

to provide a more realistic and flexible representation of how technological progress can

evolve in response to economic activities and policy interventions. However, the imple-

mentation of such endogenous approaches is still relatively limited, with the majority of

models relying on simpler, exogenous specifications of the AEEI.

To illustrate the role of the AEEI in a modern IAM, a visual schematic of the MACRO

module from the AD-MERGE 2.0 model (Amirmoeni et al., 2024) is shown in Figure 1,

reproduced here with the authors’ permission. This module shows various elements of

the economic and energy system and their interactions in terms of providing inputs to

production, generating pollutants, calculating externalities and damages, and the overall

impact of these elements on climate and welfare. For our purposes, the two most promi-

nent elements are the ESUB and AEEI. ESUB refers to elasticity of substitution and

refers to the ability to substitute energy inputs to production for labor and capital. This

factor is assumed to be heavily affected by price (Bataille et al., 2006), as relatively more

expensive energy would incentivize agents to develop technological innovations aimed at

economizing on energy use. The second factor is AEEI, which represents a more passive

rate of technological innovation that is part of the general operation of market competition

and advancement of human knowledge. There is obviously a strong interaction between

these two components, which is a prominent feature of both the theoretical and empirical

literature reviewed here.

Despite the ubiquity of the AEEI in the literature, there is at present no consensus on

how exactly to model energy efficiency improvement, nor is there an empirical explanation

that has definitively resolved the best approach to modeling this parameter (Webster et

al., 2008; Liddle, 2023). The choice of AEEI values is typically guided by the specific

type of model in question and the level of sectoral disaggregation. For instance, the

original MERGE IAM proposed by Manne et al., (1995) sets the AEEI at 0.5% below

the annual growth rate of income. Bataille et al. (2006) and Webster et al. (2008) both

provide summaries of commonly used AEEI parameter values in IAMs at the time of

their publications. Webster et al. (2008) cite a range of models with AEEI values for
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Figure 1: MACRO module from AD-MERGE 2.0 Model

Source: Amirmoeni et al. (2024).

different regions varying from 1% to 2.6% in more optimistic scenarios, and from 0.00% to

0.25% per year in more pessimistic cases. In their own derivations, Webster et al. (2008)

demonstrate that when estimating a simple empirical model of energy use with price and

income elasticities and an exogenous time trend, the coefficient of the time trend is either

insignificant when income elasticity is allowed to vary, or else yields AEEI values of 2%

or 0.5% when the income elasticity is fixed at 1 or 0.5, respectively. Bataille et al. (2006)

analyze the commonly used calibration of the MIT-EPPA model, citing AEEI figures of

1.98% for China, 1.43% for India, 1.301% for the United States (though this value is

assumed to decrease over time), 1.210% for other OECD countries, and 1.1% for the rest

of the world. According to the authors, these values are set through expert elicitation

and literature review. Their own model seeks to elicit an AEEI value for the Canadian

economy via a calibration exercise, and yields an economy-wide value of 0.57% under

market clearing conditions.

Recent studies further explore the variability in AEEI values across different sectors and

regions, underscoring the complexity and context-specific nature of modeling autonomous
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energy efficiency improvements. Van Ruijven et al (2010) explore the potential evolution

of global residential energy use in the TIMER 2.0 global energy model with assumed AEEI

values of 0.5% to 1.5%. Steinbuks and Neuhoff (2014) focus on efficiency improvements of

the capital stock in the OECD manufacturing industry and find values ranging from 2% to

4% energy efficiency growth per year. Fujimori et al. (2016) test AEEI values for the global

economy in a hindcasting exercise aimed at validating the finding of the AIM/CGE (Asia-

Pacific Integrated Models / Computable General Equilibrium) IAM. They use staggered,

income-dependent values set to 1%, 1.5%, and half of GDP growth for GDP growth rates

of 0-3%, 3-5%, and over 5% respectively, and find that this model accurately reproduces

global aggregate trends but diverges in reproducing regional trends. Wang et al. (2022)

replicate the same approach to modeling the AEEI as Fujimori et al. (2016) but specific

to the Chinese economy. Timilsina et al. (2021) offer a novel approach to calibrating

the AEEI values for the Chinese economy, combining a top-down approach leveraging

macroeconomic data and a bottom-up approach that starts with dis-aggregated sectors to

arrive at an economy-wide value of 1.5%. Finally, Zhang et al. (2024) study the potential

changes to fossil fuel trade and emissions caused by Russia-EU energy decoupling in a

dynamic general equilibrium model with AEEI values between 0.5% and 3% for different

sectors and regions, though it is not immediately clear which exact sectors or regions are

associated with what value or how the values were derived.

2.2 Critiques of the AEEI concept

There have been a number of critiques of the concept of autonomous efficiency improve-

ments. In the aforementioned literature surveys, Jacobsen (2001) and Löschel (2002) both

identify significant challenges and limitations in the measurement and application of AEEI.

A primary concern is the difficulty in accurately quantifying technological change due to its

inherently complex and multifaceted nature. Technological improvements are not uniform

across sectors or regions, leading to variability in the effectiveness of AEEI as a predictive

tool. This heterogeneity complicates the task of setting a universally applicable AEEI

parameter within models. Furthermore, there is an ongoing debate about whether effi-

ciency improvements should be treated as an exogenous factor specified by the researcher

or be derived endogenously from within the model’s own assumptions. While traditionally

considered exogenous, some argue that technological change should be modeled endoge-
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nously, allowing for feedback mechanisms where policy measures and market conditions

influence the rate and direction of technological advancements. Another problem identi-

fied by the authors is the potential for misrepresenting the effects of technological change

when using a constant AEEI. Real-world technological progress is often nonlinear, with

periods of rapid advancement followed by slower growth, which a constant AEEI fails to

capture accurately. This misalignment can over- or under-estimate future energy demand,

affecting the reliability of long-term energy projections. Finally, the surveys also highlight

the issue of policy relevance. As AEEI is a simplification, its application in policy analy-

sis can be problematic. Policymakers may rely on these models for decision-making, but

the assumptions underlying AEEI may not hold in practice, particularly in dynamic and

rapidly evolving technological landscapes. The surveys suggest that more sophisticated

approaches, possibly incorporating endogenous technological change or varying the AEEI

values across sectors and time, could enhance the robustness of these models.

The problems identified have led some authors to conclude that AEEI in its existing

form is not a useful concept or cannot be measured accurately. Kaufman (2004) offers

a description of AEEI as a time trend ”left over” after other factors affecting energy

demand have been accounted for, and argues that this is not a satisfying approach to

modeling technological change. He argues that this formulation lacks a clear causal mech-

anism, and that a proper modeling of technological change should be more explicit about

what exactly is changing in either the underlying structure of the energy system or in

household consumption behaviour. To demonstrate this, he specifies a model of the US

Energy/GDP ratio across the 20th century and uses a Vector Error Correction Model

(VECM) to demonstrate that all long-term energy intensity reductions can be understood

as the equilibrium relationship between energy use and shifting household preferences,

changes in the fuel mix away from coal towards higher-quality fuels, and the impact of

energy prices. He argues that, to the extent that there is an autonomous component, it

is a stochastic trend representing short-term fluctuations around a long-term equilibrium

defined by the underlying structure of energy consumption and production, which is the

true measure of long-run energy intensity declines.

Dowlatabadi and Oravetz (2006) also challenge the concept of AEEI, but from the angle

of indistinct boundaries between price-induced changes and autonomous changes. They

argue that the separation between AEEI and price-induced energy efficiency improvements
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is not as clear-cut as often assumed. The authors suggest that many factors traditionally

lumped into AEEI, such as changes in energy-using behaviors or technological adoption,

could be influenced by price signals, thereby questioning whether efficiency changes are

truly ”autonomous” or are simply the result of long-run price induced changes. They

propose a more integrated approach that considers the interaction between price and non-

price factors in driving energy efficiency improvements. This approach would involve the

use of more granular data and the development of models that capture the feedback loops

between energy prices, technological change, and consumer behavior.

Webster et al. (2008) focus on the inconsistency of AEEI when compared across

different income levels and regions. They argue that AEEI, as commonly applied, fails

to account for the varying income elasticity of energy demand, leading to overgeneralized

assumptions in energy models. According to Webster et al., the AEEI is often assumed

to be constant across different contexts, which oversimplifies the complex relationship

between income growth, energy use, and efficiency improvements. As an alternative, they

propose formulating energy efficiency improvements directly through the mechanism of

income elasticity by recalibrating models to account for different income levels and their

associated energy demand patterns, thereby providing a more accurate representation of

energy efficiency dynamics. In two separate runs of MIT’s EPPA long-term emissions

model, they demonstrate that while both an exogenous and endogenous formulation of

the AEEI yield similar predictions in the short-term, they diverge in their long-term

predictions with the exogenous formulation yielding exaggerated predictions of energy

efficiency growth compared to an endogenous parameter that varies with income growth.

Though not fundamentally discounting the whole concept, two studies by Eckaus and

Sue Wing (2007) and Sue Wing (2008) caution about how exactly AEEI values should be

specified. Their work identifies key drivers of energy intensity in the U.S. economy, in-

cluding technological advancements, structural changes in the economy, and sector-specific

shifts in energy consumption patterns. Historically, structural changes, such as the transi-

tion from manufacturing to less energy-intensive service industries, played a significant role

in reducing energy intensity. However, over time, the emphasis shifted toward improve-

ments within sectors, driven by technological innovation and increased energy efficiency in

industrial processes. These changes are typically measured through the decline in energy-

output ratios across various sectors, indicating how much energy is required to produce a
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unit of output. For example, Eckaus and Sue Wing highlight that by the late 20th cen-

tury, energy-output ratios in U.S. industries had decreased significantly, reflecting both

the impact of technological progress and the broader economic shift towards less energy-

intensive activities. The authors argue that this evolution suggests that models projecting

future energy use should account for both the historical role of structural changes and

the continued impact of technological advancements. In light of these facts, they caution

that commonly applied uniform AEEI values in models may need to be revisited, with a

potential move toward more sector-specific AEEI values that better capture the nuanced

drivers of energy efficiency.

2.3 Empirical studies on energy efficiency

The debate on properly incorporating autonomous energy efficiency improvements in pol-

icy analysis models is adjacent to the debate on modeling technological change in econo-

metric studies. In fact, as Elberry et al. (2024) point out, AEEI and technological change

are essentially the same concepts, with the difference in nomenclature primarily the result

of the specific context in which they are used. Technological change is not directly observ-

able and is therefore modeled through various proxies. Many of the empirical studies that

incorporate proxies for technology are primarily focused on finding the values of other pa-

rameters, most commonly price and income elasticities of energy demand, and hence focus

on the best way to specify technology changes as a control variable (eg., Parker and Liddle,

2016; Liddle and Sadorsky, 2020). Others focus on trying to model technological change

itself through latent variables (eg., Jin and Jorgensen, 2010). This literature is directly

relevant to the empirical methodology used in this thesis, and hence a deeper discussion

will be presented in the Methodology section. However, the key points of this debate are

still worth mentioning here to highlight the parallels with the theoretical debate around

modeling the AEEI.

An early example of the work on technology changes is the study by Jones (1994),

which incorporates many of the themes in this strand of literature. The study concerns

the question of whether exogenous time trends should be included in empirical models of

energy demand. It specifies an autoregressive distributed lag (ARDL) model analyzing the

income and price elasticity of US energy demand with and without a time trend, and finds

that the inclusion of the trend stabilizes the estimated price elasticity from implausibly
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high figures to a more reasonable range of values. Jones proposes that this trend accounts

for the progress of technical change, and that models that fail to incorporate such trends

should be considered invalid on both empirical and theoretical grounds, as they overstate

elasticity estimates and imply that declining energy prices could lead to negative technical

progress. However, Jones admits that in the long-run it remains difficult to precisely

disentangle price-induced technical change (ITC) and autonomous technological progress,

and the researcher must therefore walk a fine line between overstating price elasticities by

failing to control for this effect and overstating the role of technological progress if the

proxy for it is mis-specified.

The debate surrounding the modeling of ITC in the long-run then focuses on the effects

of asymmetric prices. Gately and Huntington (2002) argue for the inclusion of asymmetric

price responses, showing that energy demand reacts differently to price increases than to

decreases. They posit that this asymmetry is crucial for accurately capturing ITC, as it

reflects the reality that technological and behavioral changes driven by price increases are

not fully reversible when prices drop. Huntington (2006) furthers this argument by sug-

gesting that price asymmetry better explains long-term energy demand trends compared

to models using fixed time effects, which may confound ITC with other exogenous fac-

tors. In contrast, Adeyemi and Hunt (2007) explore these models in the context of OECD

industrial energy demand and find that while asymmetry and time dummies are statis-

tically significant, they may function more as substitutes than complements. Their work

raises questions about whether exogenous trend specifications are necessary or if price

asymmetry alone sufficiently captures ITC, suggesting a more nuanced approach may be

needed to account for sector-specific characteristics. These authors collectively advance

the discussion by highlighting the importance of considering both price asymmetry and

potential exogenous trends, while also questioning the one-size-fits-all application of these

models across different sectors.

In parallel to the debate over the proper way to incorporate price effects, Hunt et

al. (2003) focus on the best way to represent the exogenous time trend formulation.

They argue that the main problem with the traditional use of an exogenous trend was

the assumption of a deterministic time trend, which is both a theoretically and empir-

ically problematic way to represent energy demand. Instead, they argue for the use of

a stochastic time trend that they label the Underlying Energy Demand Trend (UEDT),
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which they show is superior both to a deterministic time trend or a cointegrating estima-

tion in modeling energy demand as it produces well-specified models that are free from

the serial correlation and non-normality in residuals produced by more rigid techniques,

and offers more reliable parameter estimates. According to their findings, empirical evi-

dence from UK energy demand data across various sectors consistently favors stochastic

formulations, underscoring their robustness and adaptability in accurately modeling en-

ergy demand trends.The UEDT methodology they developed is now a standard approach

in the literature, and recent studies such as Alarenan et al (2020) and Javid et al (2022)

have successfully applied it to modeling energy demand in Pakistan and Saudi Arabia,

respectively.

Adeyemi and Hunt (2014) merge the two strands of this debate in a study of energy

demand in the OECD manufacturing sector. They argue that a model of energy demand

with both price asymmetry and a stochastic UEDT is the most general case, and that

assumptions such as price symmetry, deterministic trends, or the absence of exogenous

trends are limited versions of this general case achieved via imposed parameter restric-

tions. They then proceed to test which is the preferred model for each of the 15 countries

in their sample, starting from the most general case and only imposing additional restric-

tions if accepted by the data. They find that a model with both price asymmetry and a

stochastic trend is the preferred model in almost all cases, highlighting the complementary

nature of this specification. They also note, however, that in this specification the UEDT

encompasses behavioral and structural changes as well as the role of technological progress,

implying that additional controls would be needed to isolate the impact of technological

progress specifically.

Several other studies effectively corroborate this conclusion. Hunt and Ryan (2015)

model energy as derived demand, and show that the inclusion of a either a nonlinear

exogenous time trend (t and t2) or a stochastic UEDT improves the power of their model

by accounting for technological progress. Jin and Jorgensen (2010) shift the focus on

estimating the impact of technological progress itself by specifying it as a latent factor that

evolves according to a stochastic trend and thereby estimating improvements in technology

in various industrial sectors of the US economy. Finally, Parker and Liddle (2016) use both

asymmetric prices and a common dynamic process, a stochastic trend derived from cross-

sectional time dummies in a first-stage panel regression, to control for the influence of

25



technological changes and economic shocks driven by global trade, economic integration,

and knowledge spillover in a panel study of energy-efficiency in OECD manufacturing.

The discussion in the Methodology section demonstrates that the last two approaches are

complementary, and can be combined to form the model derived in this thesis.

2.4 Determinants of energy intensity

Having established the parameters of the debate and the theoretical and empirical frame-

works within which energy efficiency studies are framed, I now turn to a review of the

modeling of price and income elasticities specifically and the determinants of energy ef-

ficiency more generally. Income and price elasticity are especially important since in the

most basic empirical estimation they are the sole control variable used to estimate the

AEEI, which is simply defined as all energy demand changes not caused by price and

income changes (Liddle 2023). If we are interested in more granular estimates of AEEI as

a representation of technological progress, then it is important to control for other effects

such as structural shifts and fuel mixes (Kaufman, 2004), and the existing literature can

provide a sense of which variables to use for these purposes. The studies reviewed in this

section either model energy demand directly or model the energy intensity of GDP, de-

fined as energy used per dollar of final value added, which represents the inverse of energy

efficiency and is commonly used in efficiency studies.

Early factors impacting energy intensity were identified by Kaufman (1992), who found

that a greater output share of industry and purchases of more energy-intensive goods

tended to increase energy intensity while higher energy prices and a transition to higher-

quality fuels tended to decrease it. Many findings since then have confirmed these early

insights, and have added several more factors not considered by Kaufman. A complete list

of studies reviewed is presented in Table 1. For the purpose of this thesis, the key takeaway

is the importance of controlling for industry output share through index decomposition or

direct modeling approaches, and the significant impact of cross-border trade and capital

flows in driving energy efficiency improvements. The latter insight is crucial as this thesis

leverages cross-sectional dependence in energy intensity trends to elicit the AEEI on the

assumption that global technological trends are at least partially synchronized.
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Study Methodology Sample Factors Causality

Mielnik
and
Goldem-
berg (2002)

Regression
Analysis

20 develop-
ing countries
(1987-1998)

Foreign Direct In-
vestment (FDI)

FDI has a negative effect on energy in-
tensity, likely due to the adoption of
modern technologies brought by FDI

Metcalf
(2008)

Econometric
Analysis, De-
composition
Methodology

U.S. state-level
data from 1970
to 2001

Energy prices, Per
capita income,
Capital-labor ra-
tio, Population
growth, Climate
variables

Higher energy prices and rising per
capita income lead to lower energy
intensity, primarily through improve-
ments in energy efficiency. Capital-
labor ratio and population growth have
mixed effects.

Song and
Zheng
(2012)

Decomposition
Analysis and
Econometric
Analysis

Provincial-
level data
from China
(1995-2009)

Income, Energy
prices, Capital-
labor ratio, Urban-
ization, Policy

Rising income reduces energy intensity,
while energy prices have a limited ef-
fect. Urbanization and capital-labor
ratio show mixed effects. Policy re-
duces energy intensity mainly through
efficiency improvements.

Wang
(2013)

Decomposition
Analysis

Cross-country
data from
100 countries
(1980-2010)

Technological
progress, Capital-
energy ratio,
Labor-energy
ratio, Output
structure

Technological progress, capital accu-
mulation, and changes in output struc-
ture reduce energy intensity, while
labor-energy ratio increases it.

Voigt et al.
(2014)

Decomposition
Analysis

40 major
economies
(1995-2007)

Structural changes,
Technological im-
provements

Technological improvements generally
reduce energy intensity, while struc-
tural changes have mixed effects de-
pending on the country.

Jimenez
and Mer-
cado (2014)

Decomposition
Analysis,
Panel Data
Regression,
Synthetic Con-
trol Method

75 countries,
with a focus on
Latin Ameri-
can countries
(1971-2010)

Per capita income,
Petroleum prices,
Fossil fuel energy
mix, GDP growth

Per capita income and petroleum
prices reduce energy intensity. Fossil
fuel energy mix and GDP growth have
mixed effects.

Filipovic et
al. (2015)

Panel Data
Analysis

EU-28 mem-
ber states
(1990-2012)

Energy prices,
Energy taxes,
GDP per capita,
Final energy con-
sumption per
capita, Growth
of gross inland
consumption

Energy prices, energy taxes, and GDP
per capita have a negative impact on
energy intensity, while final energy
consumption per capita and growth of
gross inland consumption have a posi-
tive impact.

Atalla
and Bean
(2017)

Decomposition
Analysis, Panel
Data Regres-
sion, Cluster
Analysis

39 countries
(1995-2009)

Energy prices,
Income per capita,
Industrial share of
GDP, Investment
to capital ratio,
Total degree-days

Higher energy prices and income per
capita increase energy productivity
(reduce energy intensity). Higher in-
dustrial share reduces energy produc-
tivity. Investment and total degree-
days have mixed effects.

Mahmood
and Talat
(2018)

Panel Data Re-
gression

19 European
countries
(1995-2015)

GDP growth rate,
Population growth
rate, Energy taxes,
Energy prices

GDP growth rate has a negative effect
on energy intensity, population growth
rate has an insignificant effect, and en-
ergy taxes and prices reduce energy in-
tensity.

Antonietti
and Fontini
(2019)

Dynamic Panel
GMM

120 countries
(1980-2013)

Oil price, GDP
growth, Population
density, Industrial
structure

Higher oil prices and GDP growth
reduce energy intensity. Population
density and industrial structure have
mixed effects.

Deichmann
et al.
(2019)

Piecewise Lin-
ear Regression,
Index Decom-
position

137 countries
(1990-2014)

GDP per capita,
Structural change,
Energy efficiency

GDP per capita has a negative effect
on energy intensity with a threshold ef-
fect at $5,000. Structural change and
energy efficiency improvements reduce
energy intensity.

Jain and
Goswami
(2021)

Index Decom-
position Analy-
sis, Panel Data
Regression

South Asian
countries
(1990-2014)

Endowment of
energy resources,
Renewable energy
production, Crude
oil price, Popula-
tion density, GDP
per capita

Endowment of energy resources and
renewable energy production increase
energy intensity, while crude oil price,
population density, and GDP per
capita decrease it.

Continued on next page
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Table 1: (Continued)

Study Methodology Sample Factors Causality

Liao et al.
(2022)

OLS Fixed
Effects Model,
Instrumen-
tal Variable
Analysis

64 large
economies
(1972-2019)

Investment-GDP
ratio, GDP per
capita, Population
density

Higher investment-GDP ratio in-
creases energy intensity. GDP per
capita and population density have
mixed effects.

Sun et al.
(2022)

Logarithmic
Mean Divisia
Index (LMDI)
Approach,
Regression
Analysis

30 Emerg-
ing Market
Countries
(1971-2016)

Energy price,
Technological
progress, Urban-
ization, Industry
structure, Net
energy exporter
status

Energy price increases reduce energy
intensity. Technological progress and
urbanization reduce energy intensity,
while net energy exporter status has
mixed effects.

Djeunankan
et al.
(2023)

FMOLS,
DOLS, CCR,
AMG, Media-
tion Analysis

93 countries
(1995-2015)

Economic com-
plexity, Per capita
GDP, Population
density, Trade
openness

Economic complexity, GDP per capita,
and population density increase energy
efficiency, while trade openness reduces
it.

Table 1: Summary of Studies on Energy Intensity

2.5 Global energy intensity trends

This literature review concludes with a discussion of the key stylized facts identified in

current energy efficiency trends. Specifically, it concerns the questions of rebound effects

that act to counteract energy efficiency savings by increasing energy consumption in re-

sponse to more efficient technology, the tendencies for offshoring and changes in global

industrial structure, and the convergence of energy efficiency trends within and across

regions. An understanding of these tendencies provides important context for analyzing

and interpreting the results of this thesis.

Rebound effects

The rebound effect, a phenomenon where gains in energy efficiency lead to increased en-

ergy consumption, poses significant challenges for achieving energy reduction goals, and

the three papers under review critically examine this effect from different perspectives.

Herring (2006) offers a foundational critique of energy efficiency, arguing that it often

leads to higher overall energy consumption due to economic and behavioral response. He

suggests that the anticipated energy savings from efficiency improvements are frequently

offset by increased demand, particularly in energy-intensive sectors. Stern (2020) expands

on this critique by examining the economy-wide rebound effect. He utilizes a macroeco-
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nomic model to assess how energy efficiency improvements across various sectors influence

overall energy consumption and economic output. Stern’s findings indicate that while

sector-specific efficiency gains can lead to modest energy savings, the cumulative effect

across the economy often results in negligible reductions or even increases in total energy

use. This economy-wide perspective underscores the limitations of sectoral approaches

and the necessity of considering broader economic interactions when evaluating energy

efficiency policies. Building on these analyses, Brockway et al. (2021) provide a com-

prehensive review of rebound effect studies. They find that rebound effects can vary

significantly depending on factors such as the structure of the economy, energy prices, and

technological advancements, but that their overall impact can erode as much as half of any

reduction in energy demand achieved through efficiency improvements. Collectively, these

findings suggest that aggregate data may understate the impact of technological progress

as rebound effects will offset a substantial part of energy efficiency improvements.

Offshoring

Offshoring, the process of structural change whereby countries relocate lower-value added

(and generally energy-intensive) industries to other countries can have a substantial im-

pact on energy intensity without changing energy efficiency. The four studies reviewed

here collectively argue that offshoring distorts the true picture of energy efficiency and

intensity, leading to an overestimation of the benefits of energy efficiency policies when

evaluated at a national level. Lan et al. (2016) use structural decomposition analysis to

evaluate global energy footprints between 1990 and 2010, revealing that affluent countries

tend to offshore their energy-intensive production to less developed nations, resulting in

an apparent but misleading reduction in domestic energy intensity. The findings suggest

that true efficiency gains are often overstated, as they fail to consider the global context

of energy usage. Hardt et al. (2018) provide a focused analysis of the UK, comparing

the impacts of offshoring against domestic efficiency improvements. By decomposing the

UK’s energy consumption, they show that although domestic energy use has decreased,

the global energy footprint linked to UK consumption has not. This indicates that en-

ergy demand has been transferred to other countries, suggesting that offshoring is the

primary driver of perceived efficiency gains. Moreau and Vuille (2018) find a similar ef-

fect in Switzerland and, in a subsequent paper, Moreau et al. (2019) explore the broader
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European context. They identify a trend of ”virtual decoupling,” where reductions in

domestic energy intensity are primarily the result of offshoring energy-intensive activities

rather than true efficiency improvements. Their analysis suggests that the structural ef-

fects of globalization, such as the shift from manufacturing to services and the relocation

of heavy industry, are the main drivers behind the apparent decline in energy intensity

across Europe. These studies emphasize the pivotal role of industrial offshoring in struc-

tural changes and underscore the importance of controlling for the share of industry in

output when modeling energy intensity.

Convergence

The question of global and regional convergence in energy intensity trends has been a

significant area of study, with various researchers examining whether countries and regions

are moving towards similar levels of energy efficiency. This body of work explores whether

convergence exists, and if so, among which regions it is most apparent. The five papers

under review provide a comprehensive analysis of these trends.

Duro et al. (2010) investigate the inequality in energy intensity levels among OECD

countries, employing a methodology that quantifies the dispersion of energy intensity

over time. Their findings suggest a trend towards convergence within the OECD, with

disparities in energy intensity gradually decreasing. This convergence is attributed to

shared technological advancements, similar policy frameworks, and the structural shift

from manufacturing to service-based economies. However, the degree of convergence varies

among member countries, reflecting differences in economic structures and energy policies.

Liddle (2010) expands this analysis by examining energy intensity convergence on a global

scale, using a large data set spanning 111 countries from 1971 to 2006. His study identifies

significant regional differences in convergence trends. While OECD and Eurasian countries

show clear signs of continued convergence, with energy intensities aligning more closely

over time, regions like Sub-Saharan Africa, Latin America, and the Middle East and North

Africa (MENA) display either no convergence or divergence. Liddle’s work highlights the

role of economic structure and energy efficiency practices in driving these trends, noting

that trade and technology transfer among OECD and Eurasian countries have facilitated

convergence, whereas other regions lag behind due to less integration into global markets

and technological advances.
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Jakob et al. (2012) provide a broader perspective by linking convergence in energy use

to economic growth patterns across countries. Their analysis shows that while there is

some evidence of convergence in energy intensity at a global level, this is primarily driven

by economic growth rather than explicit energy policies. The paper argues that economic

growth in developing countries often leads to increased energy efficiency as these countries

industrialize and adopt more advanced technologies. However, the pace of convergence is

uneven, with faster progress observed in countries that are more integrated into the global

economy.

Mulder and de Groot (2012) focus on energy intensity across different sectors and

countries, exploring whether convergence is occurring within specific economic sectors.

Their findings indicate that convergence is more likely in less energy-intensive sectors,

such as services, where technological diffusion and global trade have led to more uniform

practices across countries. In contrast, energy-intensive sectors like manufacturing show

less evidence of convergence, as these sectors are more influenced by local factors such

as energy prices and domestic policy environments. This sectoral analysis provides a

nuanced view of convergence, suggesting that while some global convergence is occurring,

it is highly sector-specific.

Balado-Naves et al. (2023) take a more recent and spatial approach to the study of

energy intensity convergence, incorporating spatial spillovers into their analysis. They

find that convergence is not only a result of direct technological and policy changes within

countries but also of spatial interactions where neighboring countries or regions influence

each other’s energy intensity through trade, policy diffusion, and shared infrastructure.

Their study reveals that regions with strong economic ties and shared borders, such as

those within the European Union, tend to exhibit stronger convergence patterns. However,

regions that are more isolated or less integrated into global networks show weaker or no

convergence trends.

Together, these studies illustrate that global and regional convergence in energy inten-

sity is influenced by a multitude of factors, including economic structure, technological dif-

fusion, trade integration, and spatial interactions. Convergence appears more pronounced

in regions and sectors that are highly integrated into global markets and where techno-

logical advancements are more readily adopted. Conversely, regions and sectors that are

less integrated or more energy-intensive exhibit slower or no convergence. These trends
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have important implications for this thesis, as the methodology employed here leverages

cross-border technology trade as the foundation for its latent variable representation and

relies on international convergence in energy intensity trends to obtain accurate estimates.

Heterogeneity in regional convergence trends implies that parameter estimates must be

treated cautiously, as some regions yield more robust estimates than others.
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3 Data and Variable Construction

The data set used in this thesis is compiled from multiple sources to ensure comprehensive

coverage of the necessary variables. Information on total energy supply by source and

energy use by sector comes from the International Energy Agency’s (IEA) World Energy

Balances (International Energy Agency, 2023). GDP at purchasing power parity (PPP)

and population data are sourced from the World Bank’s World Development Indicators

(WDI) (World Bank, 2023a). Energy price data come from the World Bank’s Commodity

Market Outlook database (World Bank, 2023b). Data on total value added and value

added breakdown by sector, as well as exchange rates and implicit price deflators, are

obtained from the United Nations’ National Income Accounts (NIA) (United Nations

Statistics Division, 2023). The data is aggregated at an annual level for the years 1995-

2021, which covers the period from the consolidation of the post-Soviet republics and the

rapid rise of international trade through the COVID-19 shock and recovery. Data are

aggregated from the national level to build separate data sets for each of the 15 regions

of the AD-MERGE 2.0 model, giving a balanced panel data set of 405 total observations

with 27 years per region.

Prior to aggregation, all data underwent thorough visual inspection to identify and

remove countries with clear data problems and anomalies, such as anomalous spikes, dis-

continuities, or incompleteness in the key variables of GDP and total energy supply. Via

this process, the data set was narrowed down to 93 major countries, which include the

majority of the global economy. Energy source data was treated separately as the IEA

practice is to record missing values whenever a country does not have a particular energy

source (for example, nuclear power), leading to a higher proportion of missingness. For

these series, countries with all missing values or with missing values where the energy

supply clearly originated from or headed to zero were imputed with a value of zero for the

missing component. In other cases missing values were imputed using either linear inter-

polation or Last Observed Carried Forward / First Observed Carried Backward (LOCF

/ FOCB) for edge cases. These methods were chosen for their ease of implementation

and acceptable levels of bias (Moritz and Bartz Beielstein, 2017). In addition to imputing

energy source data, several countries required imputation in their Agriculture and the

so-called ’Non-Energy’ sector energy consumption data. Given the marginal nature of

these sectors in the overall energy use profile and the need to have complete series for
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chained index decomposition, maintaining the completeness of the sample was prioritized

over potential bias from imputation.

3.1 Regional aggregation

Once cleaned and imputed, all country-level data were aggregated into 15 regions to align

with the structure of AD-MERGE 2.0. A map of these regions is show in Figure 2,

reproduced here with the authors’ permission. A summary of the regional energy and GDP

coverage of my final sample is shown in Table 2, with the full list of retained countries and

their respective regions presented in the appendix. To give an idea of how this coverage

aligns with overall global economic activity, Figure 3 shows the total world share of GDP

and Energy use by region for 2019, built from the complete sample available from the IEA

and WDI. As one would expect, the United States, China, and Western Europe account

for over half of the world’s economic activity; however, aggregating individual countries

into larger macro-regions creates groupings that are more comparable to one another in

terms of size versus what we would see if we were trying to directly compare countries on

the scale of, for instance, China and Lithuania.

Most of the data are additive across countries which made the aggregation process

relatively straightforward, though with two important caveats. First, financial value added

by sector in the NIA data is only available in nominal dollars, and was first multiplied

by each country’s PPP adjustment factor obtained from the WDI data set to convert it

into real units. A second important caveat is the construction of the aggregate energy

price indices which required special attention due to the non-additive nature of real price

data. The details of these transformations are presented below, as is a discussion of the

index decomposition methodology employed to isolate the sector intensity and structural

components behind energy intensity changes.
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Figure 2: Region Map from AD-MERGE 2.0 Model

Source: Amirmoeni et al. (2024).

Label Region Energy GDP

AFR Africa 81% 82%

ANZ Australia and New Zealand 100% 100%

BRA Brazil 100% 100%

CAN Canada 100% 100%

CHN China 100% 100%

CLA Other Central and Latin America 73% 79%

IND India 100% 100%

JSK Japan and South Korea 100% 100%

MEA Middle East 84% 79%

MEX Mexico 100% 100%

OAS Other Asia 93% 93%

OEA Other Eurasia 98% 98%

RUS Russia 100% 100%

USA USA 100% 100%

WEU Western Europe 99% 99%

Table 2: Summary of Regional Energy and GDP Coverage
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Figure 3: Regional Shares of Global Energy Use and GDP in 2019

3.2 Sector value added and energy data

Sector-specific data in this study consists of two types - financial value added and energy

use. Value added by sector is available in nominal current dollars in the NIA data set. To

make it comparable across regions and sectors, it was first re-based to constant 2021 dol-

lars using the PPP-adjustment factors obtained from the WDI. This process is imperfect,

as there is no guarantee that an aggregate PPP adjustment factor will apply uniformly

across all sectors (Kander, 2005). However, I believe that any inaccuracy in this adjust-

ment process will be smaller than the problems created by using nominal values, as GDP

measurement can vary widely across vintages and methodologies (Semieniuk, 2024) and

the World Bank’s methodology brings these closer into line with a comparable uniform

measure of real value added that is additive across countries, and therefore represents

the measure of GDP used in this thesis. Sector value added data is available according

the ISIC Revision 3 classification which consists of Agriculture, Manufacturing, Mining

and Utilities, Construction, a merged line for Transport, Storage, and Communication, a

merged line for Trade and Hospitality, and Other Services. To make them comparable to

their corresponding sectors in the IEA data, these lines were merged together to create
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the three main sectors: Agriculture, used directly as a stand-alone line; Industry, repre-

senting the sum of Manufacturing, Mining and Utilities, and Construction; and Services,

representing the sum of the remaining sectors including transportation. It would have

been preferable to keep services and transport separate as transport is itself a major con-

sumer of energy, but unfortunately the presence of the rapidly growing sector of digital

communications in the Transport, Storage, and Communication value added line makes

this direct comparison impossible.

The structure of the energy data is somewhat complicated and requires deeper ex-

planation. The World Energy Balances data set provides two commonly used metrics of

total energy use: Total Energy Supply (TES) and Final Energy Consumption (FEC). TES

represents the total amount of primary energy supplied to an economy over a period of

time from all sources, and represents primary energy production plus net energy imports

and net draw downs on stockpiles, minus marine and aviation bunkers. FEC represents

the final amount of energy consumed by end sectors including industry, transportation,

residential, agriculture, and services sectors. The key difference between the two metrics

is the treatment of intermediate stages of energy used in the generation of electricity and

heat (mostly electricity) and the production of energy products. In the energy balances,

energy used for energy transformation is recorded as a negative, and the net energy use

in transformation is subtracted from TES to obtain FEC. For this reason, studies such as

Deichmann et al. (2019) which explicitly model energy use by sectors as independent vari-

ables use FEC as the numerator in their energy intensity series, as according to them this

avoids complexities in aligning the energy balance accounting. Those studies that use TES

as their numerator, such as Antonietti and Fontini (2019), do not focus on decomposing

energy use into its component sectors as that is not the focus of their analysis.

This thesis focuses on the energy efficiency of the economic system as a whole, and

thus it is critical to model the energy intensity of Total Energy Supply. However, in

order to perform index decomposition analysis, energy used in the economy needs to be

aligned to corresponding sectors of financial value added in the NIA data. As the data

do not align perfectly, certain assumptions need to be made to best align the sectors.

The key caveat is the treatment of energy used in intermediate energy transformation.

In the energy balances data, energy used for transformation in the electrical and energy

industry sectors is treated as an intermediate loss, but from a financial standpoint, these
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operations generate corresponding value added. However, while electricity generation

and energy products are both forms of secondary energy from the standpoint of energy

accounting, they differ substantially in terms of the distribution of value added of the

attendant infrastructure. For example, a report by Alahdad et al. (2020) found that

in Canada in 2019, electricity generation accounted for 1.8% of GDP while the energy

products sector accounted for 7.7%. The energy balances data for the same year shows

that 15% of Canada’s primary energy was consumed by electricity generation while 19%

was consumed by the energy products industry. Thus, while the share of energy use is

very similar between the two sectors, the share of financial value added retained by the

energy products sector is much greater than that by the electricity generation sector.

To address this discrepancy, a split strategy was followed when mapping energy use to

end sectors. The absolute value of energy used by the energy industry in transformation

was mapped to the industry sector to reflect the high-value added nature and diverse

industrial processes used in the production of manufactured goods such as coke and refined

petroleum products. This mapping corresponds organically to the various mining and

processing activities involved in energy products transformation, whose corresponding

financial lines in the chemical and mining industries are part of total industry value added

in the NIA data. By contrast, the absolute value of electricity and heat production losses

were distributed across sectors in proportion to their shares of final electricity and heat

consumption. This reflects the undifferentiated homogeneous nature of electricity and heat

as an intermediate energy flow, with utilities retaining a tiny fraction of the economy’s

financial value disproportionate to their share of energy contribution.

The alternative option of assigning all losses in energy conversion to the industry sector

would reflect the status of utilities in the industry value added line, but would vastly

impact the share of energy used by the industrial sector in the economy in a way that

would obfuscate important energy efficiency gains achieved by that sector. Specifically,

the electrification of the economy and attendant increase in energy efficiency of end-use

sectors could be obscured by the growing energy consumption of the industrial sector if

all energy used in electricity transformation was assigned to it. Since the majority of

financial value added of electricity use is retained by the end consumer, it makes more

sense to map energy transformation losses to those same sectors when aligning energy and

financial data. This approach ensures energy use and value added are matched as closely
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as possible when performing index decomposition.

Following the process outline above, energy use was grouped into three sectors: Indus-

try, Services (including Transport), and Agriculture. Industry is the sum of final energy

consumption by the Industry line plus final energy consumption by the Non-Energy line

which primarily represents auxiliary processes used by Industry, plus the energy used in

energy products transformation. Services is the sum of final energy consumption by the

Residential, Commercial and Public Services, and Transport lines. Agriculture is a stan-

dalone sector. Primary energy used in electricity and heat generation was then distributed

across the aggregated sectors in proportion to their share of final electricity and heat con-

sumption. A complete breakdown of sectors available in the energy balances data and

corresponding mappings to the NIA financial value added data is shown in Table 3.

3.3 Energy intensity index

As demonstrated in Table 1 of the literature review section, index decomposition analysis

(IDA) is a ubiquitous feature of energy efficiency studies. The most commonly used IDA

methodology is the Logarithmic Mean Divisia Index (LMDI), extensively discussed by

Ang (2004; 2005), Ang et al. (2009) and Ang et al. (2010). These studies compare the

LMDI to a number of other index decomposition techniques and find that it satisfies the

important properties of perfect decomposition and reversibility, meaning it does not leave

any unexplained residual term as part of the decomposition methodology and does not

depend on the choice of a base year. Despite this latter property, Ang et al. (2010)

nevertheless suggest the use of a chained index that decomposes changes across adjacent

time periods rather than performing decomposition relative to one fixed period to ensure

the greatest accuracy. Ang et al. (2010) also highlight the ubiquitous use of the LMDI

across organizations and demonstrate multiple cases, such as the application of LMDI

in the IEA and EU-ODEX accounting systems to analyze energy efficiency trends across

several sectors, as well as its use in Australian studies to compute energy savings and

energy performance indicators.

The purpose of index decomposition is to decompose changes of an energy aggregate

between any two periods into a series reflecting the shifting energy intensities of the dis-

aggregated sectors and a series reflecting their relative contribution to the aggregate (Ang
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Flow Type Energy Flow Corresponding NIA
Sector

Supply Total energy supply Total Value Added

Electricity generation

Main activity producer
electricity plants

Distributed according to
sectors’ shares of final
electricity consumption

Autoproducer electricity
plants

Main activity producer
CHP plants

Autoproducer CHP plants

Main activity producer
heat plants

Losses

Energy products

Coke ovens

Industry

Gas works

Blast furnaces

Oil refineries

Other transformation

Energy industry own use

Final energy consumption

Construction Industry

Mining and quarrying Industry

Manufacturing Industry

Transport Services

Residential Services

Commercial and public
services

Services

Agriculture/forestry Agriculture

Non-energy use Industry

Table 3: IEA Energy Flow Sector Mapping
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2004, 2005). For example, we can use it to understand whether declines in energy intensity

between two periods are the result of shifts in economic structure, such as a declining

financial weight of the industrial sector, or the result of changing energy intensity within

the industrial sector, which should more closely resemble technical change. A detailed

derivation of the LMDI is found in Ang (2005) and is worth replicating here to understand

how the data in this thesis will be treated. Assume V is an energy aggregate influenced

by n factors, denoted by x1, x2, . . . , xn. The aggregate variable V can then be expressed

as:

V =
∑
i

Vi =
∑
i

x1,ix2,i · · ·xn,i (1)

The total change in V from an initial period 0 to a final period T can be expressed as

a ratio:

∆Vtot =
V T

V 0
=

∑
i V

T
i∑

i V
0
i

(2)

In the multiplicative LMDI approach, we decompose this ratio into the product of the

effects of the individual factors:

∆Vtot = ∆x1∆x2 · · ·∆xn (3)

where ∆xk is the effect of the k-th factor and is given by:

∆xk = exp

(∑
i

L(V T
i , V 0

i )

L(V T , V 0)
ln

(
xTk,i
x0k,i

))
(4)

Here, L(a, b) represents the logarithmic mean of a and b, defined as:

L(a, b) =
a− b

ln a− ln b
(5)

For the specific case of decomposing changes in energy consumption into activity

(Dact), structure (Dstr), and intensity (Dint) effects, the total energy consumption E can
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be expressed as:

E =
∑
i

QiSiIi (6)

Where Qi represents the activity level of sector i. The share of sector i in total activity

Q is given by Si =
Qi

Q . Additionally, the energy intensity of sector i is denoted by Ii =
Ei
Qi

.

The decomposition of the change in total energy consumption from period 0 to period T

is then given by:

Dtot =
ET

E0
= DactDstrDint (7)

where the components are defined as follows:

Dact = exp

(∑
i

L(ET
i , E

0
i )

L(ET , E0)
ln

(
QT

Q0

))
(8)

Dstr = exp

(∑
i

L(ET
i , E

0
i )

L(ET , E0)
ln

(
ST
i

S0
i

))
(9)

Dint = exp

(∑
i

L(ET
i , E

0
i )

L(ET , E0)
ln

(
ITi
I0i

))
(10)

These formulas allow us to isolate the impact of changes in overall activityDact, sectoral

structureDstr, and sectoral intensityDint on the total energy consumption. Note that some

authors use the terms for structure and activity interchangeably. In practice, most of the

studies are concerned with analyzing just the structural and intensity components, since

the activity component is just a balancing term that keeps the series stable at a fixed value.

In this thesis, the focus is on understanding efficiency changes, hence the focus will be on

decomposing total changes in energy intensity (defined as energy consumption per dollar

of GDP, or E/Q in the index decomposition terminology) into Dint and Dstr where the

sectors i represent Industry, Services, and Agriculture as derived above, the sector financial

shares Si are the shares of final value added in GDP, and the sector intensities Ii are the

kJ of total energy supplied to each sector divided by the final dollar value added of each
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sector.

Decomposition was performed using manual code implemented in R. Chained decom-

position was used to comply with the best practices described in Ang et al. (2010),

meaning that each period was decomposed relative to the previous period. To ensure that

my final results can be interpreted as the AEEI which represents direct changes in energy

efficiency, the resulting decomposition series (which represents ratios of one period versus

another) was then recursively projected onto the original energy intensity series starting

with the value in 1995 to obtain ”counterfactual” series via the formulae:

EIIntt = EIt0 ×
t∏

k=t0+1

Dint,k (11)

EIStrt = EIt0 ×
t∏

k=t0+1

Dstr,k (12)

Here EIIntt represents the evolution of energy intensity in a scenario in which there are

no structural changes between sectors, while EIStrt represents energy intensity in a scenario

in which there are no intensity changes within sectors. The resulting decompositions for

each region are shown in Figure 4, where the scales are normalized to 1 at the base year

for ease of visual comparison.

There are several important observations to make regarding the decomposition plot.

Sectoral intensity is clearly the dominant component driving overall intensity shifts in all

regions except Brazil. This finding aligns with the literature; indeed, the decomposition

plots closely resemble those in Jiminez and Mercado (2014), despite differences in data,

regional aggregation, and the choice of index decomposition technique. However, caution

is needed before interpreting this as an improvement in energy efficiency. As Jiminez and

Mercado note, the effectiveness of index decomposition relies heavily on the granularity

of sectoral dis-aggregation. More detailed dis-aggregations at the sub-sector level (e.g.,

metals, chemicals, transport) in studies such as Voigt et al. (2014) tend to reveal a greater

role for structural shifts in explaining energy intensity changes than is visible in studies

using high-level aggregates. Unfortunately, the more detailed sectoral dis-aggregations

necessary for such analysis are not available for this breadth of data, which requires focus-

ing on more targeted sets of countries, such as the manufacturing sectors of the 15 OECD
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economies studied by Parker and Liddle (2016). Nonetheless, even with more granular

decomposition, Parker and Liddle’s findings support the consensus that sector intensities

are the dominant driver of aggregate intensity.

It is also important to consider the critique by Kander (2005), who argues that fi-

nancial aggregates are problematic for inferring changes in underlying energy efficiency.

She suggests that these aggregates can be misleading because the price of manufactured

goods tends to fall relative to services due to faster productivity growth in manufacturing.

This causes an apparent stagnation or decline in the financial share of manufacturing,

accompanied by stability or even expansion in real output. Consequently, when measured

in constant prices, the relative share of manufacturing remains stable, contradicting the

notion of a real shift to a service economy that would imply reduced material and en-

ergy demands. To address this issue, this thesis employs the share of industry in energy

consumption as an additional layer of structural controls, ensuring that any effects not

captured through index decomposition are accounted for by changes in the real physical

use of energy. However, this strategy also carries risks, as changing energy shares may

reflect differential growth in energy productivity. A further discussion of this issue is

provided in the Methodology section.

3.4 Energy price index

Energy price is a critical control variable for any attempt to model the AEEI, as short-term

price increases may cause greater relative output declines in energy-intensive industries

while long-term increases incentivize investment in energy efficiency technology. Unfortu-

nately, detailed data on energy prices by country were not available for this study. Instead,

country-specific price indices were constructed following the methodology outlined by An-

tonietti and Fontini (2019), who used the real exchange rates of local currency to the

dollar to construct country-specific price indices for the price of oil. The methodology was

adjusted to better reflect the impact of prices on energy use by replacing the consumer

price index (CPI) used in calculating real exchange rates with the implicit price deflator

(IPD). The IPD measures the overall price level of all domestically produced final goods

and services in the economy, and allows for assessing the broader impact of energy price

44



RUS USA WEU

MEX OAS OEA

IND JSK MEA

CAN CHN CLA

AFR ANZ BRA

95 00 05 10 15 20 95 00 05 10 15 20 95 00 05 10 15 20

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

E
ne

gy
 In

te
ns

ity
 In

de
x

Sectoral Intensity Structural Shifts Total Energy Intensity

Figure 4: Energy Intensity Decomposition by Region
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changes in the economy as a whole rather than the more narrow focus on final consumer

prices in the CPI. Data on both the IPD and exchange rates come from the NIA. The

original IPD is indexed to 2015 which was re-based to 2021 to align with the GDP PPP

data.

The resulting formula was generalized to construct price indices for each of the three

major traded international commodities: oil, gas, and coal. The prices for these are

available from the CMO data. For oil and coal, a simple average of world prices was used.

For gas, countries were assigned to one of three gas hubs (HH, TTF, JKM) based on their

region to better reflect the fragmented nature of the natural gas market, and the details

of this mapping are presented in the appendix. Regional-level price indices were then

constructed as a weighted sum of local real commodity prices multiplied by the shares of

their respective fuels in the overall regional energy mix.

Thus, for any individual country j, the price index for commodity i is given by the

formula:

Pi,j =

P $
i × ER

LCU/$
j

IPDLCU
j

100

×

(
IPD$

100

)
(13)

Where Pi,j represents the price index of commodity i for country j, reflecting the real

cost of commodity i in terms of a base year’s purchasing power. The notation P $
i refers

to the annual price of commodity i in US dollars. The term ER
LCU/$
j denotes the annual

exchange rate from US dollars to the local currency unit (LCU) for country j, indicating

how many LCUs one US dollar can purchase. The variable IPDLCU
j represents the annual

Implicit Price Deflator in the local currency units for country j. Finally, IPD$ is the

annual Implicit Price Deflator for the United States. Both IPD’s were normalized to 2021

to align energy prices with the constant 2021 dollars used to measure GDP.

Once price indices are calculated for each commodity, a complete energy price index

for every region R can be constructed by taking the weighted sum of the commodity price

indices for each country j ∈ R and the share of each respective commodity ci (coal, oil,

and natural gas) in the overall regional fuel mix FR:

PEnergy
R =

∑
i

∑
j

(
cij
FR

)
Pij (14)

46



The resulting index for each region is shown in Figure 5. To ensure comparison across

fuel carriers, all commodity prices were first converted into $/MJ using the EIA’s en-

ergy conversion calculator (U.S. Energy Information Administration, 2024) Note that this

formula implies a marginal cost of zero for other energy sources, such as biomass and

waste, renewables, hydro, and nuclear power. This is not entirely accurate, but the costs

for larger projects are primarily capital and maintenance costs as the fuel itself is either

a tiny fraction of costs (nuclear) or non-existent for other renewables sources, while the

price for biomass and waste is assumed to be generally cheaper than that for fossil fuels

in countries that use them to a substantial degree. Thus, while the cost of missing fuel

vectors is not zero, it is lower than that of the fossil fuels measured, and thus the formula

will capture this effect. Another limitation of this index is the absence of electricity price

data or data on energy subsidies. Taken together with the high-level of aggregation, this

price index must be understood as an imperfect but necessary approximation.
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Figure 5: Real Energy Price Index

Finally, in order to model the impact of price asymmetry as suggested by Adeyemi

and Hunt (2014), the resulting price indices were split into asymmetric components rep-

resenting accumulating sequences of price increases and decreases, respectively. These
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components were constructed following Liddle and Sadorsky (2020) as:

P+
t =

t∑
j=1

max(∆Pj , 0) (15)

P−
t =

t∑
j=1

min(∆Pj , 0) (16)

Where P+
t is the accumulating series of price increases and P−

t is the accumulating

series of price decreases. This formulation represents the notion that price increases may

induce structural changes to the energy system that are not reversed when prices de-

cline. The findings in Adeyemi and Hunt (2014), Parker and Liddle (2016), and Liddle

and Sadorsky (2020), among others, all speak to the importance of controlling for price

asymmetry in energy efficiency and demand studies.

3.5 Other data and variable tables

The other data used in this study consists of controls for income and fuel mix. Income is

measured as GDP PPP per capita in constant 2021 international dollars. In terms of fuel

mix, share of nuclear and renewables in the overall energy mix was selected as the main

control variable, as it is most likely to correlate with the wider effort at energy transition

and hence can serve as a proxy for energy policy. Detailed tables of the energy supply and

energy demand structures of each region are available in the appendix.

To interpret model coefficients as elasticities, all values including sector and fuel shares

as well as the index-decomposed energy intensity series were transformed into logarithms.

Since the logarithm of zero is undefined and since the logarithm function changes concavity

about the point x = 1, share data was converted into basis points on a 10,000 point scale

and all values less than 1 on this scale (less than 0.01% on the original scale) were set to

1. This ensures that the logarithmic transformation preserves a value of zero as the base

of the scale. The price index was also transformed to avoid values less than 1, and the

energy intensity of GDP was converted into KJ/$. Summary tables of the final variables

used in my models are presented in Tables 4 and 5.
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Variable Min Max Mean SD

Energy intensity 2394 13132 4862 1779

Intensity decomposition 2448 13132 4905 1771

Structural decomposition 2924 14224 6107 2778

Energy price index 7312 79669 24731 13363

Sum of price increases 0 150918 32557 27493

Sum of price decreases -91722 0 -17826 18869

Income 2530 70174 26461 18105

Share of energy demand by industry 30 70 46 7

Share of energy supplied by nuclear and renewables 0 23 9 6

Table 4: Descriptive Statistics of Variables

Symbol Variable (Transformed) Calculation

EI log energy intensity Energy intensity in kJ / GDP PPP
in constant 2021 $

EIInt log intensity decomposition Counterfactual series of energy in-
tensity if only sector intensities
changed

EIStr log structural decomposition Counterfactual series of energy
intensity if only sector shares
changed

P log energy price index Local currency real energy prices
weighted by fuel share

P+ sum of log price increases Sum of accumulated energy price
increases

P− sum of log price decreases Sum of accumulated energy price
decreases

Y log income GDP PPP per capita in constant
2021 $

EDInd log share of energy demanded
by industry

Share of total energy demand by
the industrial sector, including the
energy products industry

ESNR log share of energy supplied by
nuclear and renewables

Share of total energy supply from
nuclear, hydro, geothermal, solar,
wind, and other (SWO)

Table 5: Variable Symbols and Definitions
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4 Methodology

This thesis uses panel data techniques to elicit AEEI estimates in a global setting. Since

the AEEI is not directly observable, this poses a major challenge. Most of the literature

on empirically modeling energy efficiency, such as Hunt et al. (2003), does so for a given

country with a long time series and can therefore use structural time series techniques to

elicit the unobservable stochastic trend component that represents technological changes

alongside other factors. Those studies that model AEEI at a global level, such as Fujimori

et al. (2016), do so within the context of theoretical CGE or IAM models, and derive the

AEEI from model calibration or by setting fixed parameter values and testing the fit of the

resulting predictions. This thesis is therefore in a narrow niche that seeks to elicit both

global and regional values for the AEEI in a unified and purely empirical framework. To

my knowledge, I have not found any other work that attempts to tackle the question in

this exact manner. That said, there are cross-country panel studies that model the impact

of income and prices on energy efficiency and demand, and which use a control structure

that I believe can be re-purposed to elicit the desired results.

In terms of the existing literature this thesis most closely aligns with the work of

Parker and Liddle (2016) and Liddle and Sadorsky (2020) who investigate global energy

trends using the Augmented Mean Groups (AMG) estimator developed by Bond and

Eberhardt (2009) and Eberhardt and Teal (2010). AMG is an extension of the Mean

Groups (MG) estimator of Pesaran and Smith (1995), originally developed to overcome

the bias caused by imposing homogeneous restrictions on heterogeneous coefficients in a

pooled OLS panel regression. MG models involve estimating separate regressions for each

panel unit, which are assumed to represent idiosyncratic local effects. The estimates are

then averaged to elicit a common mean effect. This methodology is effective when all slopes

are heterogeneous, but can fail to detect the true strength of homogeneous effects when

they exist (Pesaran et al., 1999) and can suffer from cross-sectional dependence among

panel units, which can bias the averaged results (Bond and Eberhardt, 2009). To overcome

this bias, Bond and Eberhardt proposed the AMG estimator, which augments the classic

MG estimator with an underlying stochastic trend termed the common dynamic process

that represents an accumulating sequence of commonly correlated shocks that affect all

panel units and evolve over time, and which is presented in detail in the next section.
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4.1 Derivation of the AMG estimator

Bond and Eberhardt (2009) propose the following two-step procedure designed to address

cross-sectional dependence in panel data models. In the first step, a pooled OLS regres-

sion augmented with time dummies is calculated in differences. The coefficients of the

differenced dummies are then collected into a single vector called the common dynamic

process (CDP). This vector is then appended to the individual panel units, and individ-

ual regressions are run to calculate the Mean Groups estimator. To see how this works

formally, consider a panel data model:

yit = αi + βixit + uit, (17)

where yit is the dependent variable for unit i at time t, xit is the independent variable,

αi is the unit-specific intercept, βi is the unit-specific slope coefficient, and uit is the error

term. To account for cross-sectional dependence, we assume that the error term uit can

be decomposed as:

uit = λift + ϵit, (18)

where ft is a latent variable representing an unobserved common factor that is assumed

to correlate across panel units, λi is the factor loading, ϵit is the idiosyncratic error term.

ft is assumed to evolve according to the process:

ft = ρft−1 + ηt, (19)

Which includes the potential for non-stationarity when ρ = 1. It is important to

note that the estimator remains consistent in this situation. The first step of the AMG

procedure then involves estimating the common dynamic process ft. This can be done by

running a pooled regression with time dummies Dt on the differenced variables:

∆yit = βi∆xit +
T∑
t=2

δt∆Dt + νit, (20)
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where δt are the coefficients on the time dummies, and νit is the differenced error term.

Notice that in this model the matrix of the time dummies D will take the form:



1 0 . . . . . . 0 0 0

−1 1 . . . . . . 0 0 0

0 −1 . . . . . . 0 0 0
...

...
. . .

...

0 0 . . . . . . 1 0 0

0 0 . . . . . . −1 1 0

0 0 . . . . . . 0 −1 1


(21)

That is, the differenced time dummies are not purely instantaneous shocks but rather

the accumulation of shocks over time. The estimated time dummy coefficients δ̂t are then

collected into a vector representing the CDP, with δ̂1 = 0 to initialize the process:

δ̂ =


δ1

δ2
...

δT

 (22)

Whose entries are assumed to represent the underlying common factor:

f̂t = δ̂t. (23)

In the second step, the estimated common dynamic process f̂t is included as an addi-

tional regressor in the original model:

yit = αi + βixit + γif̂t + ϵit. (24)

The model is then estimated separately for each cross-sectional unit i, and the indi-

vidual coefficients β̂i are averaged to obtain the AMG estimator:

β̂AMG =
1

N

N∑
i=1

β̂i. (25)
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This procedure yields consistent and unbiased estimates of the long-run parameters βi

in the presence of cross-sectional dependence, non-stationarity, and heterogeneous slopes.

However, its performance can degrade in the presence of reverse causality, if the number

or nature of the common factor is mis-specified, or in very small sample sizes (Bond and

Eberhardt, 2009). With these caveats in mind, we now turn to the derivation of the AEEI

parameter estimates from these estimated common factors.

4.2 Derivation of the AEEI parameter estimate

The AMG methodology has been successfully applied to global energy studies. Parker and

Liddle (2016) use the AMG estimator to investigate the impact of energy prices on energy

efficiency in the manufacturing sectors of 15 OECD economics. Liddle and Sadorsky (2020)

study the impact of price and income asymmetry on energy demand in a global panel

of 91 countries. Both methodologies include asymmetric price changes, and Liddle and

Sadorsky finds these to be highly significant. Liddle and Sadorsky study energy demand

directly, while Parker and Liddle first use LMDI decomposition to decompose their energy

intensity series into an intensity component, which they term the efficiency component,

and a structural component. Both studies find high statistical significance for the CDP

coefficient, and both authors suggest that the CDP in this setting represents shared global

or regional economic forces, such as technological advancements, policy changes, or market

conditions, that simultaneously influence energy efficiency and demand across multiple

countries or sectors. Thus, the CDP in such studies has a similar intepretation as the

UEDT in Hunt et al. (2003), only it is estimated via cross sectional time dummies rather

than in a structural time series framework.

In both Parker and Liddle (2016) and Liddle and Sadorsky (2020), the CDP is used

as a control variable to account for cross-sectional dependence, and is not the focus of the

study. However, in the original presentation of the AMG methodology, Eberhardt and

Teal (2010) focus on modelling the unobserved latent variable f as that component of a

country’s manufacturing Total Factor Productivity (TFP) that is driven by international

technology trade, foreign investment, and the general progress of technological knowledge

that is assumed to correlate across countries. That is, their study focuses on understanding

the behavior of the common dynamic process itself rather than passively incorporating it

as a control variable in the regression, and treats it as a latent variable that represents
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accumulating technological progress.

This thesis will follow the structure of Parker and Liddle (2016) in using an AMG

framework with asymmetric prices to model the index-decomposed series of energy inten-

sity. However, following Eberhardt and Teal (2010; 2019), I will shift the focus to under-

standing the behavior of the common dynamic process itself. Specifically, I will treat the

latent variable f as representing the accumulation of general technological advancement,

cross-border knowledge spillover, and macroeconomic shocks that affect energy intensity

changes. Between any two periods t − 1 and t, the expected evolution of this process

then becomes E[∆f̂t]. In order to isolate the secular trends in technological progress that

represent autonomous energy efficiency improvement from other shocks that impact en-

ergy intensity but are unrelated to energy efficiency, I will further decompose the common

dynamic process into a deterministic and stochastic component. The derivations that fol-

low are based on the methods presented in the Time Series Econometrics course by Dr.

Giacomo Candian in the Winter 2021 semester.

To give a concrete analogy, it useful to first consider what exactly is happening when

we estimate the ”classic” AEEI by using solely a deterministic trend formulation of the

kind presented in Webster et al. (2008), where E is energy demand:

Et = β1Pt−1 + β2Yt−1 + γt+ ϵt (26)

When we treat the term γ as representing the long-run estimate of the AEEI parameter

(hereafter denoted Â), we are implicitly saying that our expectation of the future evolution

of autonomous energy efficiency improvement is that of the estimated response of energy

demand (or energy efficiency) γ̂ to a deterministic trend with an expected difference of

one. Explicitly:

Â = γ̂E[∆t] = γ̂(1) = γ̂ (27)

This is trivial, but is worth mentioning as it is the basis for the methodology used

to estimate the AEEI in this thesis. Specifically, I treat the unobserved latent variable f

from the AMG estimator as following a random walk with drift:
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ft = µ+ ρft−1 + ηt, (28)

Since the AMG estimator is robust to unit root processes (Eberhardt and Teal, 2010),

it should admit such a formulation. In fact, the graph of the CDP presented in Eberhardt

and Teal clearly shows a stochastic process with a strong underlying time trend. If the

process has a unit root then ρ = 1, then the common dynamic process can be modeled as:

ft = µ+ ft−1 + ηt, (29)

which when differenced yields

∆ft = ft − ft−1 = µ+ ηt, (30)

If we assume that ηt ∼ N(0, σ2) and is independent and identically distributed (i.i.d.),

then the differenced process becomes a constant µ with white noise disturbances, that is

E[ηt] = 0. Since these disturbances are symmetric about 0, they will tend to cancel out as

our time span T → ∞. Thus, at any point in time, our expectation E[∆ft] can be derived

as:

∆ft = µ+ ηt (31)

E[∆ft] = E[µ+ ηt] (32)

= µ+ E[ηt] (33)

= µ+ 0 (since E[ηt] = 0) (34)

E[∆ft] = µ, ∀t (35)

If γ̂i is the estimated coefficient on the CDP for an individual panel unit, then plugging

in the expected difference of the estimated process E[∆f̂ ] into equation (27) in place of

E[∆t] yields the long-run AEEI estimate Âi for region i:
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Âi = γ̂iE[∆f̂ ] = γ̂iµ̂ (36)

Where µ̂ is the estimated mean of the CDP in first differences, and represents the drift

component of the random walk. Following the Augmented Mean Groups methodology,

our global estimator then becomes:

Ā =
1

N

N∑
i=1

Âi =
1

N

N∑
i=1

γ̂iµ̂ = γ̄µ̂ (37)

Conceptually, this means that if our latent variable f represents the full range of

commonly correlated shocks that affect energy intensity across all panel units, including

business cycles, trade flows, and technological changes, then we can further decompose

our estimate of f̂ into a purely stochastic component η̂ that represents business cycles and

other idiosyncratic disturbances that impact energy use but are not related to technological

changes, and a deterministic trend component µ̂ that represents the underlying long-run

evolution in energy efficiency technology. The locally estimated γ̂i will then represent

the strength with which individual regions respond to this underlying efficiency trend,

while the average estimator γ̄ measures the strength of response in the world economy

as a whole. The separate estimation of global mean technology evolution µ̂ and regional

response parameters γ̂i also allows for a more accurate representation of regional dynamics

when technological changes are heterogeneous across regions.

Equations (36) and (37) will be estimated for each region individually and for the

world as a whole, and represent the primary result of this thesis. Essentially, they blend

the energy efficiency study of Parker and Liddle (2016) with the latent representation of

technological progress via a stochastic trend with drift that is found in Jin and Jorgensen

(2010), estimated by explicitly analyzing the common dynamic process in an approach

inspired by Bond and Eberhardt (2009), and Eberhardt and Teal (2010; 2019).

4.3 Model control structure

If AEEI represents that which is ”left over” after other factors have been accounted for

(Kaufman, 2004), then the interpretation of the AEEI should very much depend on what
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type of controls are included in the model during estimation. The common formulation

of the AEEI is that it absorbs all effects not related to price and income (Liddle, 2023).

However, this can vary by model - for instance, the schematic for the TIMER model found

in van Ruijven et al. (2010) clearly shows that AEEI impacts energy demand through a

channel that runs parallel to sectoral change, meaning that it nets out structural shifts as

well. Indeed, if AEEI is to represent changes in technology specifically, then at least some

kind of structural control will have to be included in the empirical setup.

As described in the data section, the first layer of structural controls is the LMDI

decomposition used to construct the dependent variable EIInt, which nets out changes in

the financial contribution of various sectors to focus on changes in intensities within those

specific sectors. However, due to the high level of aggregation when using total Industry,

Services, and Agriculture in the decomposition, substantial residual structural changes will

remain within the the series (Voigt et al., 2014; Kander, 2005). For this reason, although

I also use LMDI I am not comfortable directly calling my dependent variable ”efficiency”

in the same manner as Parker and Liddle (2016), who use a much more granular index

decomposition of the manufacturing industry into its sub-sectors. Instead, I use the share

of energy demanded by industry EDInd as an additional variable to control for structural

changes. To make my AEEI estimate ”autonomous” of government policy as well, I use

the share of energy supply by nuclear and renewables, ESNR, as a proxy for government

energy policy.

Both of these controls are imperfect as they are likely to absorb many adjacent cor-

related effects. For example, the changing share of energy demanded by industry EDInd

may be the result of structural changes due to industrial offshoring, but may also repre-

sent differential rates of energy efficiency improvement in the industry sector versus other

sectors. Likewise, while the changing share of energy supplied by nuclear and renewables

ESNR may represent government policy directed at stimulating energy efficiency more

generally, it may absorb many adjacent effects such as the broader trend towards energy

efficiency driven by electrification and the independent choices of market actors to invest

in variable renewable sources (VRE), which is becoming a common feature of the energy

generation landscape (Amirmoeni et al., 2024).

Additional consideration must be paid to the temporal dynamics of the model. The

high persistence of energy intensity is clearly visible in the regional energy intensity plots
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that were presented in Figure 4. To control for this, studies such as Parker and Lid-

dle (2016) include a lag of the dependent variable in their AMG framework. However,

since the process I am modeling is unobserved and represents the exogenous variation

in energy intensity not accounted for by my control variables, there is a risk that intro-

ducing a lagged dependent variable might absorb much of the very effect I am looking

to measure. Furthermore, lagged dependent variables introduce additional complexities

in deriving long-run coefficients and their variances, and in general the proliferation of

control variables in panel units of 27 observations each may cause the models to become

overfit at the individual region level, even if not necessarily at the aggregate level. Finally,

given the heterogeneous slope estimates in a Mean Groups framework, there is no way of

telling a priori which model specification is the best fit for each region, and while some

may fit better others may destabilize the estimates.

Instead of trying to overcome these complexities by estimating a single optimal global

model, I chose to use a mixed-model approach. Specifically, I estimate multiple model

specifications for each panel unit and for the world as a whole, then average the resulting

coefficient estimates to generate consensus estimates within model classes and across all

models. This methodology offers significant advantages, particularly in contexts where

the true model specification is unknown and sample sizes are small. Buckland (1997)

argues that when the true model is complex or unknown, approximating reality with

simpler models through a mixed-model approach provides a more robust solution. This

is especially relevant when data are sparse, as it avoids the pitfall of overfitting and

acknowledges the potential for multiple models to approximate different aspects of the

data. Furthermore, Hansen (2007) demonstrates that model averaging can achieve lower

mean squared errors compared to selecting a single best model, thereby improving overall

estimation accuracy in finite samples. This approach allows for the incorporation of model

selection uncertainty, leading to more reliable inferences than those obtained by traditional

model selection methods alone.

For simplicity, I opted to average my models using the weighted least squares (WLS)

methodology where the weights are the inverse variances of the individual estimates, ensur-

ing that my consensus models assign greater weight to estimates with better fits (Greene,

2003). Following the approach in Eberhardt (2012) I implement this averaging by regress-

ing the weighted coefficient estimates on a constant. Thus, for a given vector of intercept
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estimates β, a vector of ones 1, and a diagonal matrix of weights W containing the inverse

variances, my WLS consensus estimator is given by:

β̂WLS =
(
1⊤W1

)−1
1⊤Wβ (38)

I estimate a total of 24 models to elicit the AEEI from various angles. To serve as a

control group, I estimate 8 Mean Groups models with deterministic time trends termed

MG-T, that replicate the traditional setup for estimating the AEEI. All models have a

matrix of controls X = [P+ | P− | Y] which contains controls for asymmetric price and

income effects. The models are then partitioned into two groups, static (MG-TS) and

dynamic (MG-TD) indicating the absence or presence of a lagged dependent variable. For

each group, I specify four structural control specifications: (1) with no structural controls,

(2) with controls for the share of industry in energy demand only, (3) with controls for the

share of nuclear and renewables in energy supply only, and (4) with both sets of structural

controls. Structural control variables are contained in the matrix S =
[
EDInd | ESNR

]
.

Thus, the equation for a generic MG-T model for region i becomes:

EIIntit = ϕEIIntit−1 +Xitβ
⊤ + Sitθ

⊤ + γit+ ϵit (39)

Where ϕ, θ1, and θ2 are restricted to 0 depending on the model specification.

Eight AMG and eight AMG with trend (AMG-T) models are specified following this

same template. In the case of the basic AMG model, the deterministic trend component of

the MG-T model is replaced by the common dynamic process f̂ estimated from a first stage

regression in differences containing the same set of control variable as the second-stage

model, thus giving the general AMG specification:

EIIntit = ϕEIIntit−1 +Xitβ
⊤ + Sitθ

⊤ + γif̂t + ϵit (40)

In the case of the AMG-T model, the AMG model is extended to include an deter-

ministic time trend, and thus represents a hybrid of the MG and AMG specification. This

possibility was allowed by Eberhardt and Teal (2010) who suggested that the inclusion
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of additional local time trends might boost the signal from the CDP by netting out local

idiosyncrasies. The formulation of the generic AMG-T model then becomes:

EIIntit = ϕEIIntit−1 +Xitβ
⊤ + Sitθ

⊤ + γif̂t + αit+ ϵit (41)

Note that γ̂i will be the estimated coefficient of the time trend in the MG-T model

and the estimated coefficient of the CDP in the AMG and AMG-T models. This is

done to emphasize the role of these terms as estimates for the AEEI in their respective

specifications. Note also that, in the case of the AMG-T model, the deterministic trend

is appended after the first-stage estimation of the CDP has been completed. For ease of

reference, the model control structures are summarized in Table 6.

Once individual panel units are estimated, I calculate my ”vertical” AMG coefficient

estimates across regions according to equation (25), and then calculate model consensus

estimates ”laterally” for each region and for the world according to equation (38). In the

case of dynamic models, long-run coefficients are derived as β̂(1 − ϕ̂)−1 to account for

the persistence of shocks. Standard errors are then calculated via the Delta method as in

Parker and Liddle (2016). I implement this via the msm package in R.

4.4 Implementation

Stata’s xtmg package developed by Eberhardt (2012) allows for the estimation of MG

and AMG models and allows access to both the aggregate and individual-level results,

but does not allow access to the CDP estimated in the first-stage regression. Thus, I

wrote custom script in R to replicate these estimators, and validated the group-level and

aggregate results against those obtained in Stata to ensure accuracy in implementation.

In the case of AMG, the overall structure is that described by Eberhardt - I first estimate

a pooled OLS manually augmented with time dummies in first differences, then I estimate

group-level regressions. If trends are present in the AMG model, they are appended after

the estimation of the CDP. Standard errors are calculated relative to a z-distribution to

comply with the procedure in the xtmg package.
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Model Trend CDP Dynamic Demand Supply

MG-TS(1) X

MG-TS(2) X X

MG-TS(3) X X

MG-TS(4) X X X

MG-TD(1) X X

MG-TD(2) X X X

MG-TD(3) X X X

MG-TD(4) X X X X

AMG-S(1) X

AMG-S(2) X X

AMG-S(3) X X

AMG-S(4) X X X

AMG-D(1) X X

AMG-D(2) X X X

AMG-D(3) X X X

AMG-D(4) X X X X

AMG-TS(1) X X

AMG-TS(2) X X X

AMG-TS(3) X X X

AMG-TS(4) X X X X

AMG-TD(1) X X X

AMG-TD(2) X X X X

AMG-TD(3) X X X X

AMG-TD(4) X X X X X

CDP is the common dynamic process. Dynamic refers to the presence of a
lagged dependent variable. Demand refers to controls for share of industry in
energy demand. Supply refers to controls for share of nuclear and renewables
in the energy supply.

Table 6: Model Structure Summary

61



5 Results

5.1 Exploratory analysis

Prior to obtaining my main results, I ran pooled OLS models with fixed effects in levels

and differences without any exogenous trends to get a sense of the behavior of my control

variables. The overall panel model specification is:

EIIntit = Gitβ
⊤ + µi + θt + ϵit (42)

Where Git is a matrix of various control variables, µi are country fixed effects and θt

are time fixed effects. Country fixed effects are present in all level model runs. Controls

are layered progressively starting with price (1), income (2), structural controls (3), and

time fixed effects (4). All models are run with and without price asymmetry and in levels

and differences. The results are presented in Table 7 for levels and Table 8 for differences.

Table 7: Panel Results - Levels

No Price Asymmetry Price Asymmetry

Variable (1) (2) (3) (4) (1) (2) (3) (4)

Pt -0.1672*** -0.0216 -0.0122 0.0008

(0.0376) (0.0231) (0.0237) (0.0538)

P+
t -0.0722** -0.0129 -0.0093 0.0058

(0.0182) (0.0175) (0.0223) (0.0668)

P−
t 0.0894* 0.0516 0.0215 -0.0158

(0.0322) (0.0253) (0.0310) (0.0983)

Yt -0.5008*** -0.5513*** -0.5059** -0.4005*** -0.4967*** -0.5083**

(0.0789) (0.0886) (0.1368) (0.0834) (0.1181) (0.1372)

EDInd
t 0.7407* 0.6331 0.6217 0.6417

(0.2851) (0.3270) (0.3149) (0.3326)

ESNR
t 0.0152 0.0271 0.0148 0.0282

(0.0757) (0.0801) (0.0733) (0.0802)

Time effects No No No Yes No No No Yes

Adj R2 0.85 0.94 0.95 0.95 0.91 0.95 0.96 0.95

Within R2 0.26 0.72 0.78 0.47 0.57 0.75 0.78 0.48

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Standard errors are clustered at the region level. Sample size N = 405.

All variables have been within-transformed to remove country fixed effects. The dependent variable is EIInt
t .
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Table 8: Panel Results - Differences

No Price Asymmetry Price Asymmetry

Variable (1) (2) (3) (4) (1) (2) (3) (4)

∆Pt -0.0088 0.0093 0.0072 0.0280*

(0.0052) (0.0047) (0.0045) (0.0125)

∆P+
t 0.0048 0.0129 0.0146 0.0422*

(0.0082) (0.0085) (0.0074) (0.0177)

∆P−
t -0.0290* 0.0035 -0.0049 -0.0039

(0.0118) (0.0098) (0.0093) (0.0267)

∆Yt -0.4108*** -0.4307*** -0.4399*** -0.4068*** -0.4226*** -0.4467***

(0.0511) (0.0556) (0.0559) (0.0502) (0.0546) (0.0599)

∆EDInd
t 0.2176* 0.2372** 0.2202* 0.2398**

(0.0800) (0.0726) (0.0792) (0.0725)

∆ESNR
t -0.0663* -0.0672* -0.0689* -0.0685*

(0.0256) (0.0263) (0.0255) (0.0272)

Constant -0.0140*** -0.0055 -0.0039 -0.0172*** -0.0065 -0.0058

(0.0032) (0.0029) (0.0028) (0.0040) (0.0036) (0.0032)

Time effects No No No Yes No No No Yes

Adj R2 0.00 0.23 0.30 0.31 0.01 0.23 0.30 0.33

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Standard errors are clustered at the region level. Sample size N = 390.

The dependent variable is ∆EIInt
t .

The most salient feature of these results is the behavior of the price variable. When

calculated in levels (as opposed to differences - all models are in logs) price behaves as ex-

pected when included alone, with price increases associated with energy intensity declines.

There is also some evidence of price asymmetry, though price decreases seem to have a

stronger effect than price increases. However, these effects disappear as soon as income

is controlled for. Income is the dominant variable in all models where it is present, and

is associated with a strong decline in energy intensity as is expected in the literature (see

Table 1 in the literature review section). Price becomes statistically insignificant whenever

income is present, and reverses sign when time fixed effects are controlled for. The share

of industry in output tends to increase energy intensity as one would expect, but is usually

not statistically significant. The share of nuclear and renewables in the energy mix has

the wrong sign, but the confidence bounds are so wide that this coefficient is effectively

meaningless.

The situation changes somewhat when we calculate the model in differences. Differenc-

ing the variables renders them stationary and removes any unit roots, thus controlling for

potential spurious correlations, but removing long-run effects. The share of nuclear and

renewables now has the right sign as it is associated with reductions in energy intensity
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and is faintly significant. Share of industry remains positive, is statistically significant

and is ”boosted” in both magnitude and significance when time effects are controlled for.

Income remains the dominant effect and consistently negative. However, the price signal

remains very weak and is generally pointing in the ”wrong” direction, with energy price

increases associated with increasing rather than decreasing energy intensity.

There are several reasons why price might behave this way. The first is the hypothesis

of homogeneous slopes, which is inherent in the pooled OLS model and assumes that all

countries will respond the same way to price signals. We know this is not true, and studies

such as Mukhamediyev et al. (2023) highlight the differences in energy price response

among energy exporters and energy importers, with the latter obviously more affected.

If so, then using a Mean Groups framework should help, as it allows for heterogeneous

responses. Second, there is the possibility of interaction between price and other variables.

Kilian (2008) and Kilian and Zhou (2023) explore the impacts of energy price shocks on

the US economy and find that the timing of these shocks relative to the business cycle

plays a critical role in determining their effects. During periods of economic expansion,

industries may absorb higher energy costs without reducing energy consumption, leading

to an increase in energy intensity. Additionally, the sectoral responses to price shocks

are crucial, as energy-intensive industries, particularly those with limited substitution

possibilities, may continue or even increase their energy use despite rising prices. This

sectoral rigidity, combined with the cyclical nature of the economy, can result in an overall

increase in energy intensity, which diverges from the theoretical expectation of a decrease.

Finally, Liddle and Hasanov (2020) point out that while using highly aggregated energy

prices helps control for endogeneity between price and energy demand, it may obscure

important underlying effects and cause price elasticities to be insignificant in regression

results. Their study used country-level aggregations, so any aggregation problems will be

even worse when using macro-regions as this thesis does.

There is one more thing to note in the exploratory results. In the differenced pooled

OLS model, the constant term is equivalent to a first-differenced time trend, and can

therefore serve as a proxy for the AEEI. This gives us our first ”glimpse” of what the

global AEEI value should be - specifically, we should expect a value in the range of

-0.0172 and -0.0039. With these preliminary results in mind, we now turn to our main

results.
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5.2 Main results

This section presents the results from estimating the MG-T, AMG, and AMG-T mod-

els as described in the methodology section. Table 9 shows the global results for the

MG-T models specified in equation (39), while Tables 10 and 11 present the results for

the AMG and AMG-T models specified in equations (40) and (41). Before running the

models, I tested for cointegration and cross-sectional dependence to better understand the

relationships among my variables and across panel units. Westerlund’s cointegration test

(Westerlund, 2007) on control structures (1) and (4) failed to reject the null hypothesis of

no cointegration, with panel test statistics of -0.937 and -3.687, and p-values above 0.99,

suggesting no long-term equilibrium relationship among the variables. However, Pesaran’s

cross-sectional dependence test results (Pesaran, 2004), shown in Table 12, indicate strong

cross-sectional dependence for all variables except industry. These findings suggest that

any long-term drivers in the model likely stem from unobserved common factors rather

than an equilibrium relationship among the variables themselves. Moreover, the strong

correlation among regions underscores the suitability of the AMG approach, which is ro-

bust to these common factors.

Static models Dynamic models

Variable (1) (2) (3) (4) (1) (2) (3) (4)

Trend -0.0081 -0.0069 -0.0091 -0.0078 -0.002 -0.0015 -0.0011 -0.0009

(0.0053) (0.0046) (0.006) (0.0049) (0.0026) (0.0034) (0.0026) (0.0031)

EIInt
t−1 0.5391*** 0.4658*** 0.4735*** 0.4271***

(0.0628) (0.0585) (0.0608) (0.0622)

P+
t 0.0185 0.0143 0.0196 0.0172 0.0086 0.0076 0.0118 0.0112

(0.0201) (0.0175) (0.0181) (0.0175) (0.0099) (0.0095) (0.0085) (0.0091)

P−
t 0.0146 -0.0019 0.0079 -0.0096 0.0016 -0.0061 -0.0073 -0.0141*

(0.0204) (0.021) (0.0192) (0.0181) (0.0108) (0.0102) (0.0094) (0.0084)

Yt -0.3623*** -0.3568*** -0.3755*** -0.3852*** -0.2482*** -0.2674*** -0.2789*** -0.3105***

(0.0925) (0.0934) (0.1085) (0.0868) (0.0553) (0.0673) (0.0561) (0.0621)

EDInd
t 0.1545 0.1533 0.1176 0.1592***

(0.1088) (0.1121) (0.0817) (0.0578)

ESNR
t -0.1261*** -0.1203*** -0.1259*** -0.1212***

(0.0467) (0.0443) (0.0395) (0.038)

N 405 405 405 405 390 390 390 390

RMSE 0.0244 0.0215 0.0211 0.0193 0.0173 0.0159 0.015 0.014

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. All models include a constant. The dependent variable is EIInt
t .

Table 9: MG-T Results Summary

65



Static models Dynamic models

Variable (1) (2) (3) (4) (1) (2) (3) (4)

CDP 0.9542*** 0.8185*** 1.1153*** 1.0605*** 0.6814** 0.6534** 0.7924*** 0.8454***

(0.3068) (0.2437) (0.2689) (0.2078) (0.3256) (0.3118) (0.2591) (0.2649)

EIInt
t−1 0.561*** 0.512*** 0.4749*** 0.4179***

(0.0624) (0.0613) (0.0641) (0.0678)

P+
t 0.0517* 0.0436** 0.0625*** 0.0567*** 0.0356** 0.0339** 0.0451*** 0.0459***

(0.0266) (0.0211) (0.0237) (0.0187) (0.0174) (0.0158) (0.0136) (0.0126)

P−
t 0.004 -0.0059 -0.0047 -0.0197 0.0024 -0.0041 -0.0004 -0.0056

(0.018) (0.0158) (0.0165) (0.0134) (0.0067) (0.0083) (0.0101) (0.01)

Yt -0.417*** -0.4215*** -0.4231*** -0.4451*** -0.2266*** -0.254*** -0.2456*** -0.2839***

(0.0618) (0.0686) (0.052) (0.0573) (0.0449) (0.0464) (0.0455) (0.0466)

EDInd
t 0.1057 0.1659 0.0864 0.1808***

(0.1162) (0.1162) (0.062) (0.0503)

ESNR
t -0.1399*** -0.1237** -0.1139** -0.1104**

(0.0492) (0.0546) (0.0451) (0.0502)

N 405 405 405 405 390 390 390 390

RMSE 0.0239 0.022 0.0213 0.0195 0.0165 0.0157 0.0145 0.0137

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. All models include a constant. CDP is the common dynamic process.
The dependent variable is EIInt

t .

Table 10: AMG Results Summary

Static models Dynamic models

Variable (1) (2) (3) (4) (1) (2) (3) (4)

CDP 0.9347*** 0.9074*** 1.0691*** 1.0504*** 0.9392*** 0.9422*** 0.9564*** 0.994***

(0.2764) (0.2174) (0.1985) (0.1609) (0.3069) (0.2697) (0.2337) (0.2204)

Trend -0.0028 -0.0028 -0.0027 -0.0024 0.003 0.0023 0.0032 0.0029

(0.0055) (0.0049) (0.0054) (0.0048) (0.0036) (0.0046) (0.0033) (0.0039)

EIInt
t−1 0.4681*** 0.4021*** 0.4212*** 0.3689***

(0.0654) (0.0664) (0.0662) (0.0694)

P+
t 0.0435* 0.0432** 0.0561*** 0.0538*** 0.0376** 0.0378** 0.0442*** 0.0449***

(0.0225) (0.0186) (0.0203) (0.0169) (0.0179) (0.016) (0.0138) (0.0128)

P−
t 0.0019 -0.0139 0.0046 -0.0131 0.0141 0.0009 0.0104 0.0009

(0.0198) (0.0202) (0.019) (0.0177) (0.011) (0.0108) (0.011) (0.0099)

Yt -0.4085*** -0.3995*** -0.422*** -0.4422*** -0.2875*** -0.2926*** -0.2968*** -0.3277***

(0.0909) (0.0963) (0.09) (0.0772) (0.0575) (0.081) (0.0533) (0.0647)

EDInd
t 0.1038 0.1635 0.1002 0.1839***

(0.1114) (0.1093) (0.0825) (0.0543)

ESNR
t -0.1155*** -0.1126*** -0.1213*** -0.1199***

(0.0436) (0.0436) (0.0381) (0.0393)

N 405 405 405 405 390 390 390 390

RMSE 0.0214 0.0198 0.0195 0.0181 0.0153 0.0142 0.0137 0.0128

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. All models include a constant. CDP is the common dynamic process.
The dependent variable is EIInt

t .

Table 11: AMG-T Results Summary
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EIInt P+
t P−

t Yt EDInd ESNR

CD-test 25.17*** 52.22*** 52.38*** 49.18*** -0.28 15.70***

p-value 0.000 0.000 0.000 0.000 0.779 0.000

Null hypothesis: no cross-sectional dependence.

Table 12: Results of Peseran’s Cross-Section Dependence Test

We can see from Tables 9, 10, and 11 that the AMG models consistently outperform

the MG models. While the lagged dependent variable, income, and the share of energy

from nuclear and renewable sources is significant across all simple MG models, all of

them have insignificant price elasticities and trend coefficients. Furthermore, although all

trends are pointing down, the magnitude of their coefficients is substantially diminished

by the inclusion of a lagged dependent variable, confirming my concern that the two would

interfere with one another. Looking at the AMG models, we see that the magnitude and

significance of the income coefficient remains quite strong across all models and is quite

similar to that of the MG models. Likewise, the structural control variables retain the

correct signs and have similar magnitudes and significance levels across all model types.

The two major differences between the MG and AMGmodels are the estimates for price

and income. The high significance of the CDP coefficient in the AMG models suggests

that they are robust to the issue of conflating the exogenous trend and endogenous income

effects highlighted by Webster et al. (2008) and which is clearly the case for the MG

models. The inclusion of a lagged dependent variable does reduce the magnitude of the

coefficient, although the impact on measuring the AEEI is unclear as the same lagged

dependent variable may have boosted the mean of the underlying CDP. Price becomes

significant in the AMG estimator with clear signs of asymmetric price effects; however,

the signs are ”wrong” relative to what theory would predict, meaning that the aggregated

effect of energy price increases across the whole world remains associated with increases

rather than decreases of energy intensity in this model, potentially due to the reasons

highlighted in the exploratory analysis section. Finally, within the AMG models, the

inclusion of a time trend along the CDP does not seem to affect results.

Overall, the results are strongly in favor of the AMG models, which were designed to

handle precisely the kind of cross-sectional dependence we see in this data. The significance

of the CDP term in all model results suggest that leveraging this cross-sectional dependence
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has allowed us to extract valuable information regarding the underlying evolution of energy

intensity trends, and the constancy of the income and structural control coefficients across

MG and non-AMG models suggest that these trends are primarily related precisely to

those unobserved components that we were seeking to estimate. Before we proceed to

derive the model AEEI estimates, however, we must make sure that the CDP estimated

in these models conforms to our model assumptions.

5.3 Analysis of the CDP

In order to derive the AEEI using the mean of the common dynamic process, we must

be sure the process follows a random walk with drift that is mean-stationary with normal

i.i.d. disturbances to conform to the assumptions that underlie the derivations presented

in the methodology section. To do this, it is helpful to visualize the process itself. Figure 6

shows an example of CDP evolution in levels and first differences for the AMG-S1 model,

with the dashed line indicating the differenced mean. The CDP graph for all other models

is qualitatively similar, and the distribution of shocks about the mean of the differenced

processes is shown in Figure 7. Based on visual inspection, the process clearly conform

to our assumptions - all the CDP estimates are symmetrical about a constant mean that

ranges from -0.009 for static specifications to -0.007 for dynamic specifications. That is,

we are looking at a process that represents an accumulating sequence of underlying shocks

to energy intensity with a an average disturbance of 0.7% to 0.9% and that remains steady

across time. Note that the CDP distributions presented in Figure 7 are for the AMG

without trend models, since the AMG-T models append the trend after the first-stage

estimation and therefore have identical CDP’s for identical control specifications.

To formally test the assumptions of stationarity and normality, I employed the Phillips-

Perron (PP) test for residual stationarity and the Jarque-Bera (JB) test for residual nor-

mality. The PP test was chosen for its robustness to serial correlation and heteroskedas-

ticity in the error terms, which are common issues in time series data, particularly when

dealing with small sample sizes (Phillips and Perron, 1988). The null hypothesis of the PP

test is that the differenced CDP series has a unit root, indicating non-stationarity. Table

13 indicates that this hypothesis is rejected at the 5% level for all model specifications,

implying the CDP series are indeed mean-stationary. In parallel, I ran the Jarque-Bera

(JB) test to assess the normality of the residuals. The JB test examines skewness and kur-
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Figure 7: CDP Distributions by Model Specification
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tosis, with a null hypothesis being that the residuals are normally distributed. The large

p-values in Table 13 indicate that we fail to reject this hypothesis and hence can assume

stationarity. Together with the visual inspection, the test results confirm that the CDP

is a sequence of normally-distributed shocks about a stationary mean, indicating that the

underlying process conforms to the assumption of a random walk with drift necessary to

use the CDP in the derivation of long-run AEEI estimates.

Model PP Statistic PP p value JB Statistic JB p value

AMG-S1 -20.5* 0.0214 0.978 0.613

AMG-S2 -21.8* 0.0138 1.74 0.418

AMG-S3 -20.9* 0.0194 0.863 0.649

AMG-S4 -22.1* 0.0124 1.23 0.542

AMG-D1 -20.7* 0.0205 0.334 0.846

AMG-D2 -20.9* 0.0193 0.386 0.824

AMG-D3 -21.1* 0.0180 0.260 0.878

AMG-D4 -21.3* 0.0168 0.137 0.934

Note: The null hypothesis of the Phillips-Perron (PP) test is that the series
has a unit root (i.e., it is non-stationary). The null hypothesis of the Jarque-
Bera (JB) test is that the series is normally distributed.

Table 13: Results of Phillips-Perron and Jarque-Bera Tests

5.4 AEEI estimates

We now turn to the main result of this thesis - the derivation of the global and regional

AEEI results from the model results in the previous section. As described in the method-

ology section, AEEI estimates for MG models are simply the coefficients of the time trend,

while for the AMG models they represent the coefficient of the CDP multiplied by the

mean of the process in first differences. For dynamic models, coefficients are adjusted

to account for the persistence of shocks by dividing the coefficient value by (1 − ϕ̂) to

obtain the long-run estimates, where ϕ̂ is the coefficient on the lagged dependent variable.

Standard errors in this case are obtained via the Delta method, which accounts for the

variance and covariance between variables. This method is necessary because it provides

an accurate estimate of the joint standard error when parameters are correlated, ensur-
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ing that their inter-dependencies are properly reflected, and is the basis for calculating

long-run errors in studies such as Parker and Liddle (2016).

The derived AEEI coefficients are presented in Table 14. As in the main results,

the coefficients on the time trends in the MG models are not significant, and the slope

estimates in the dynamic models remain much smaller than those in static models even

after adjusting for long-term effects. By contrast, the estimates from the AMG models are

significant across all model formulations. Interestingly, the estimates from the static AMG

models with and without trend are similar in magnitude to those in the simple MG model.

This suggests that the issue with modeling the AEEI is not the absence of a deterministic

underlying trend in technological progress, but rather the presence of stochastic noise

that obscures this trend. Controlling for this noise in an AMG setting allows us to elicit

much cleaner parameter estimates. Another interesting effect seen in these results is that

while the presence of a lagged dependent variable tends to absorb part of the exogenous

variation attributed to the trend in the MG model, it actually seems to slightly boost

the magnitude of the results in the AMG models, suggesting that the AMG estimates

remain robust in dynamic specifications. Finally, the addition of an exogenous time trend

in the AMG framework also seems to slightly boost the signal from the CDP, especially for

dynamic models. This could indicate that the trend partly controls for rebound effects or

other local idiosyncratic effects that cause divergence from the underlying global efficiency

trend.

Having examined the global means, we now turn to the regional estimates. For ease

of presentation, the full list of results is in the appendix, and Figure 8 presents AEEI

estimates averaged within each model class - MG-T S/D, AMG S/D, and AMG-T S/D,

for a total of six averages of four models each. AEEI estimates were derived for each model

specification first and then averaged. At this stage the means represent simple averages

as we are exploring model behavior and want to retain a view of the model spread. The

means and 90% confidence intervals are derived by regressing the models on a constant,

and the confidence intervals should be understood as representing the strength of the

model consensus. Note that for India and China there are outliers that are not presented

on the charts.
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Static models Dynamic models

Model Type (1) (2) (3) (4) (1) (2) (3) (4)

MG-T -0.0081 -0.0069 -0.0091 -0.0078 -0.0043 -0.0028 -0.0021 -0.0016

(0.0053) (0.0046) (0.006) (0.0049) (0.0172) (0.0063) (0.0134) (0.0055)

AMG -0.0091*** -0.0072*** -0.0104*** -0.0092*** -0.0115** -0.0097** -0.0109*** -0.0103***

(0.0029) (0.0021) (0.0025) (0.0018) (0.0057) (0.0048) (0.0038) (0.0034)

AMG-T -0.0089*** -0.008*** -0.01*** -0.0091*** -0.0131*** -0.0114*** -0.012*** -0.0112***

(0.0026) (0.0019) (0.0019) (0.0014) (0.0046) (0.0035) (0.0032) (0.0028)

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. For MG models, AEEI is equal to the estimated coefficient of the time
trend. For AMG models, AEEI is derived as the estimated coefficient of the common dynamic process multiplied
by the mean of the process in first differences. For dynamic models, the coefficients have have been multiplied by
α̂(1 − ϕ̂)−1 to derive long-run estimates, where α̂ is the estimated coefficient on the model-specific AEEI proxy
and ϕ̂ is the estimated coefficient of the lagged dependent variable. Standard errors for dynamic models were
calculated via the Delta method. The suffix ”-T” on the model type indicates the presence of a time trend during
estimation. The dependent variable for all models is D(EI)Int

t .

Table 14: Global AEEI Estimates Across Models

There are several things to note about the model results in Figure 8. First, the AMG

estimates at the regional level are generally much more stable then the MG estimates.

While in some regions such as Australia and New Zealand, Russia, and Western Europe,

the MG estimates are in line with the AMG estimates, in almost all other cases they

diverge, sometimes substantially. Second, the dynamic and static formulations of th AMG

model tend to produce similar estimates though in some cases, such Brazil, Canada, and

Japan and South Korea, dynamic models have a wider dispersion in their predictions.

Finally, in the specific case of China and India dynamic models seem unstable. For India,

dynamic formulations of the MG and AMG model fall off the chart in terms of predictions,

though the inclusion of a time trend seems to stabilize the AMG model and produces a

range of estimates for the AMG-TD formulation that are more aligned with the static

version. In the case of China, the dynamic MG model also creates an substantial outlier,

while including a trend in the AMG model also causes it to diverge from the model

consensus though to a lesser degree. We should therefore be especially careful when

interpreting the final consensus AEEI estimates from these two regions.

Having established that the AMG models tend to deliver superior results to the MG

models, Table 15 presents the final consensus AEEI estimates from across all sixteen AMG

model formulations. Results are once again obtained by regressing the model estimates

on a constant, this time using weighted least squares where the weights are the inverse
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variances to stabilize the results around more confident model predictions. Confidence

intervals should be interpreted as representing the strength of the model consensus. Figure

9 shows the same estimates plotted on scatter plot for ease of exposition and analysis.

The results suggest a fairly narrow dispersion of AEEI parameter values, with energy

efficiency growth in the range of 1.5% to 0.5% per year across most regions. Two strong

outliers are Mexico, with an AEEI of over 3%, and the Middle East, which actually shows

positive autonomous energy intensity trends indicating a negative AEEI. The trend for

Mexico is out of line with the results in Jimenez and Mercado (2014), who found that

Mexico’s trends mirrored those of the rest of the CLA region, though they noted that

trends were accelerating at the end of their sample period in 2010. The trends in the

Middle East are aligned with the findings in Liddle (2010), who shows that the Middle

East has broad divergence in energy intensity both within the region and relative to other

regions.

When examining these results, it is important to remember that we are looking at

autonomous energy efficiency improvement rates, not overall improvement rates. Thus,

the estimated AEEI of 0.25% for the United States is lower than the commonly assumed

value of 1% discussed in the literature review; however, it is in line with Ekaus and

Sue Wing (2007) and Sue Wing (2008) who critique those assumptions and suggest that

the real aggregate values are likely to be much lower when structural effects are taken

into account. The lower rates of efficiency improvement in the United States and Russia

are also in line with the findings from Voigt et al. (2014) who find that these economies

experienced lower improvements in energy efficiency overall. The estimated value of 1.09%

for China is lower than the estimate of 1.5% found in Timilsina et al. (2021), but as noted

before China’s estimates have greater uncertainty, and the value of 1.5% falls inside the

estimated 90% confidence bound. The overall global value of 0.95% is very much in line

with the empirical validation carried out by van der Sluijs et al. (2001), who found a

global AEEI of 1%. Perhaps most interestingly, the estimated parameter for Canada is

0.55%, which is almost exactly equal to 0.57% found by Bataille et al. (2006).

Overall, we can say that these findings mirror a number of different AEEI estimates

that were obtained for different regions during different time periods and using different

techniques. The range of values is in line with the recent expert consensus echoed in Zhang

et al. (2024), who use ranges of 0.5% to 3.0% across various regions. This speaks to the
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Region Estimate Std. Error 90% Lower CI 90% Upper CI

AFR -0.0043*** .0009 -0.0057 -0.0029

ANZ -0.0135*** .0008 -0.0148 -0.0122

BRA -0.008*** 0.0014 -0.0103 -0.0057

CAN -0.0055*** 0.0014 -0.0078 -0.0031

CHN -0.0109*** 0.0028 -0.0155 -0.0064

CLA -0.005*** .0007 -0.0062 -0.0038

IND -0.0101*** 0.0014 -0.0124 -0.0079

JSK -0.0088*** 0.001 -0.0105 -0.0072

MEA 0.002 0.0014 -.0004 0.0043

MEX -0.0316*** 0.0015 -0.0341 -0.0291

OAS -0.0086*** .0007 -0.0097 -0.0075

OEA -0.0136*** 0.0016 -0.0163 -0.0109

RUS -0.0044*** .0007 -0.0053 -0.0036

USA -0.0025*** .0007 -0.0036 -0.0014

WEU -0.0126*** .0070 -0.0138 -0.0115

World -0.0095*** .0003 -0.01 -0.0089

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Estimates are the weighted
average of AEEI estimates across all AMG and AMG-T models,
where the weights are the inverse variances. Significance levels
and confidence intervals should be interpreted as the indicating
the strength of the model consensus.

Table 15: AMG Model Consensus Estimates by Region
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power of the AMG methodology in identifying unobserved latent factors that correlate

across countries, which technological progress in the age of globalization surely must be.

However, while the results presented here suggest this methodology is generally successful,

this study has a number of limitations which I will turn to now.

5.5 Limitations

This study uses a latent factor representation of technological change, and the factors

are extracted via cross-sectional time dummies under the assumption that technological

progress is correlated across regions. This makes two assumptions - first, that technologi-

cal progress is indeed a common global process, and second, and that the strength of this

process is roughly equal across panel units, enough so that the shape of their technolog-

ical evolution curves will respond to the common shape of the CDP even if their slope

coefficients are heterogeneous. The first assumption is most likely true, but the second

assumption will strongly dependent upon the choice of regional sample. This study an-

alyzes energy efficiency across the world as a whole, and studies such as Liddle (2010)

and Liddle and Sadorsky (2020) should caution us that divergent trends in certain regions

that may introduce noise for those regions that do share strong common trends. Thus, it

is worth replicating this study either at the level of the macro-regions as defined in the

AD-MERGE 2.0 model or at the level of trade or economic associations such as the EU,

ASEAN, or OECD, to elicit stronger underlying trends.

The second challenge in this study comes from the overall aggregation of the data.

This is especially problematic for the LMDI decomposition results and for measuring the

impact of energy prices. LMDI decomposition requires granularity to better separate

structural and efficiency changes, but data of necessary granularity does not exist at

this breadth of coverage, thus forcing us to use highly aggregated sectors which may

retain many structural shifts within their decomposed series. Likewise, highly aggregated

prices of energy commodities, the inference of local price from exchange rates and fuel

vectors, the absence of data on electricity prices, and the blending of energy importers

and exporters within macro-regions seems to have obscured or muted the impact of price-

induced technological change, as cautioned by Liddle and Hasanov (2020) who noted that

better dis-aggregation can produce more accurate estimates of price elasticies.
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Finally, the CDP is itself an estimated process, and no attempt has been made in this

study to account for its covariance with that of the estimated slope coefficient. Depending

on whether that covariance is negative or positive, the resulting standard errors on the

individual coefficients could either be inflated or excessively optimistic. Given the highly

complex interaction of the CDP and the resulting slope coefficients resulting from the

two-step nature of the AMG estimator, this problem could be overcoming by treating the

estimates of each dummy coefficient in the first stage as normally-distributed measurement

errors about a true underlying shock, and using Monte Carlo techniques to simulate multi-

ple runs of the CDP in each model to better assess the true distribution of final estimates.

In a similar vein, while the use of multi-model averaging helps overcome issues with local

specifications, it doesn’t answer the question of what remains the best model for which

region, and is possible that averaging has biased the standard errors or is not centered on

the optimal estimators. Better model averaging techniques, such as those suggested by

Hansen (2007), could help to mitigate these issues.
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6 Conclusion

This thesis derived empirical estimates for the Autonomous Energy Efficiency Improve-

ment parameter both globally and for each of the fifteen world regions defined in the

AD-MERGE 2.0 Integrated Assessment Model. It built upon established empirical energy

efficiency studies and adhered to the best practices recommended by Adeyemi and Hunt

(2014) by developing a modeling framework that combined energy price asymmetry with

a stochastic exogenous trend. It made this approach more robust by incorporating con-

trols for shifts in the sectoral composition of energy use and generation, thereby isolating

technological change from structural influences. Finally, it introduced a novel element by

extending this framework into panel studies, employing a latent variable representation

of technological progress derived from the common dynamic process in an Augmented

Means Groups model. The approach presented here synthesized the research findings of

Parker and Liddle (2016), Jin and Jorgensen (2010), and Eberhardt and Teal (2010) and

contributed to a unified empirical framework for modeling autonomous energy efficiency

in an international setting.

Overall, the first results of this framework suggest that it is a promising avenue to

pursue in global energy efficiency studies. The stochastic latent variable representation of

energy efficiency generated estimates at both regional and global levels that were superior

to those derived from a simple deterministic trend formulation, thereby addressing the

critiques by Webster et al. (2008) and Hunt et al. (2003). The parameter estimates derived

from the model averages were in line with the consensus on AEEI parameter values in the

current theoretical literature, both at a global level and for certain key regions. Crucially,

the leveraging of cross-sectional dependence to model technological progress allowed me to

utilize information from many regions that would not be available if I were to rely solely

on structural time series frameworks, as many countries currently lack the granularity of

data and length of time span needed to effectively apply such methods.

Certain limitations will need to be resolved before this approach can be effectively

applied in research practice. First, this thesis relied on highly aggregated data across the

world as a whole, which may not share the same trends in energy efficiency and, in turn,

may distort the estimation of the latent variable representation of technological change.

Second, the price elasticities estimated in this thesis were the reverse of those that would
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be predicted by economic theory, suggesting that more granular analysis would be needed

to fully disentangle the impact of energy prices from other effects. Third, no attempt

was made to account for the uncertainty of measurement of the common dynamic process

itself, and the mean of the differenced process was treated as a known quantity when

deriving AEEI values. Finally, in lieu of specifying an optimal model, this thesis relied on

a mixed-modeling framework to stabilize parameter estimates. These aspects would need

to be improved upon if AEEI values derived in such a framework are to serve as robust

estimates for validating theoretical policy models. That said, the framework developed

here lays a strong foundation and offers a flexible approach that future researchers could

build upon and refine in meaningful ways.
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Figure 10: Sector Shares of Energy Demand by Region
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Figure 11: Sector Shares of Energy Supply by Region
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Country Region Country Region Country Region

Algeria AFR Denmark WEU Kyrgyzstan OEA

Argentina CLA Dominican Republic CLA Latvia OEA

Armenia OEA Egypt AFR Lithuania OEA

Australia ANZ Estonia WEU Malaysia OAS

Austria WEU Ethiopia AFR Mexico MEX

Azerbaijan OEA Finland WEU Moldova OEA

Bangladesh OAS France WEU Morocco AFR

Belarus OEA Gabon AFR Mozambique AFR

Belgium WEU Georgia OEA Myanmar OAS

Bolivia CLA Germany WEU Netherlands WEU

Botswana AFR Greece WEU New Zealand ANZ

Brazil BRA Hungary WEU Nigeria AFR

Bulgaria OEA India IND Norway WEU

Cameroon AFR Indonesia OAS Pakistan OAS

Canada CAN Iran MEA Peru CLA

Chile CLA Ireland WEU Philippines OAS

China CHN Israel MEA Poland WEU

Colombia CLA Italy WEU Portugal WEU

Costa Rica CLA Jamaica CLA Romania OEA

Cote d’Ivoire AFR Japan JSK Russia RUS

Croatia OEA Jordan MEA Saudi Arabia MEA

Cyprus WEU Kazakhstan OEA Serbia OEA

Czechia WEU Kenya AFR Singapore OAS

Denmark WEU Kuwait MEA Slovakia WEU

Dominican Republic CLA Kyrgyzstan OEA Slovenia OEA

Egypt AFR Latvia OEA South Africa AFR

Estonia WEU Lithuania OEA South Korea JSK

Ethiopia AFR Malaysia OAS Spain WEU

Finland WEU Mexico MEX Sri Lanka OAS

France WEU Moldova OEA Sweden WEU

Gabon AFR Morocco AFR Switzerland WEU

Georgia OEA Mozambique AFR Syria MEA

Germany WEU Myanmar OAS Tajikistan OEA

Greece WEU Netherlands WEU Tanzania AFR

Hungary WEU New Zealand ANZ Thailand OAS

India IND Nigeria AFR Tunisia AFR

Indonesia OAS Norway WEU Turkey OEA

Iran MEA Pakistan OAS Uganda AFR

Ireland WEU Peru CLA Ukraine OEA

Israel MEA Philippines OAS United Arab Emirates MEA

Italy WEU Poland WEU United Kingdom WEU

Jamaica CLA Portugal WEU United States USA

Japan JSK Romania OEA Uruguay CLA

Jordan MEA Russia RUS Uzbekistan OEA

Kazakhstan OEA Saudi Arabia MEA Vietnam OAS

Kenya AFR Serbia OEA Zambia AFR

Kuwait MEA Singapore OAS

Table 16: Countries and Corresponding Regions
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Static models Dynamic models

Region (1) (2) (3) (4) (1) (2) (3) (4)

AFR 0.002 0.0042 -1e-04 0.0011 0.0044 0.006 -0.0016 7e-04

(0.0051) (0.0043) (0.0071) (0.0058) (0.0093) (0.0065) (0.0125) (0.0086)

ANZ -0.0162** -0.0203*** -0.0251** -0.0177* -0.0151 -0.0198* -0.0269 -0.0208

(0.0068) (0.0057) (0.0105) (0.0092) (0.0213) (0.011) (0.0304) (0.0191)

BRA 0.011* 0.0079 0.0075* 0.0082* 0.0366 0.0186 0.0116* 0.0129*

(0.0064) (0.0061) (0.0044) (0.0045) (0.0421) (0.0198) (0.0066) (0.0068)

CAN 0.0128* 0.0132* 0.0171** 0.0169** 0.0139 0.014 0.0114 0.0113

(0.0066) (0.0068) (0.0083) (0.0084) (0.0109) (0.0112) (0.015) (0.0154)

CHN -0.0485*** -0.0258 -0.0659*** -0.0453** 0.0164 0.096* 0.0545 0.0919

(0.0181) (0.0212) (0.0233) (0.0231) (0.0441) (0.0547) (0.0747) (0.0633)

IND -0.0406*** -0.0458** -0.0428*** -0.0464** -0.1347 -0.2255 -0.145 -0.2253

(0.0139) (0.0193) (0.0151) (0.0199) (0.1644) (0.3064) (0.1774) (0.3107)

JSK 0.0088 -0.0017 0.0083 -0.0088 -0.003 -0.0279 -0.0044 -0.0035

(0.0083) (0.0092) (0.0082) (0.0121) (0.0367) (0.0383) (0.0391) (0.0594)

MEX -0.0168 -0.0102 -0.0136* -0.0108* -0.0899 -0.0222 -0.0287** -0.0195*

(0.0107) (0.0074) (0.0071) (0.0063) (0.0925) (0.0183) (0.0143) (0.0117)

MEA 0.0205*** 0.0201*** 0.0102** 0.0102* 0.0248** 0.0241** 0.0108* 0.0109

(0.0057) (0.0059) (0.0051) (0.0053) (0.0099) (0.0105) (0.0066) (0.0069)

OAS 0.0139*** 0.0143*** 0.0156*** 0.0147*** 0.0141*** 0.0142*** 0.0175*** 0.016**

(0.0036) (0.0036) (0.0043) (0.0045) (0.005) (0.0049) (0.0064) (0.0066)

OEA -0.0308*** -0.0187*** -0.0246*** -0.0151*** -0.0352*** -0.0213*** -0.0225*** -0.018**

(0.0066) (0.0058) (0.0069) (0.0058) (0.0107) (0.0082) (0.0085) (0.0078)

CLA -0.001 4e-04 0.0049 0.0049 5e-04 0.0016 0.0064 0.0065

(0.0054) (0.005) (0.0033) (0.0033) (0.0067) (0.0067) (0.0039) (0.0041)

RUS -0.0063* -0.006 -0.0035 -0.0024 -0.0049 -0.0051 -0.0017 -2e-04

(0.0036) (0.0037) (0.0033) (0.0033) (0.0044) (0.0046) (0.0041) (0.0041)

USA -0.0176*** -0.017*** -0.0155*** -0.0138*** -0.0162*** -0.0157*** -0.0148** -0.0133**

(0.0043) (0.0042) (0.0047) (0.0045) (0.0063) (0.0057) (0.0066) (0.0058)

WEU -0.0131*** -0.0174*** -0.0085** -0.0124** -0.0152** -0.0238** -0.0078 -0.0135*

(0.0041) (0.0042) (0.0041) (0.0049) (0.0064) (0.0095) (0.0054) (0.0077)

N 27 27 27 27 26 26 26 26

N / p 6.75 5.40 5.40 4.50 5.20 4.33 4.33 3.71

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Estimates are the results of individual regressions. The
AEEI is equal to the estimated coefficient on the time trend α̂. For dynamic models, the
coefficients have have been adjusted via the formula α̂(1− ϕ̂)−1 to derive long-run estimates,
where ϕ̂ is the estimated coefficient of the lagged dependent variable. Standard errors for
dynamic models were calculated via the Delta method. N is the sample size per region. N/p
is the amount of observations available per model parameter.

Table 17: MG-T Regional AEEI Estimates
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Static models Dynamic models

Region (1) (2) (3) (4) (1) (2) (3) (4)

AFR 1e-04 -0.0018 -0.0025 -0.0049 -0.0014 -0.0018 -0.0077 -0.0058

(0.0036) (0.0031) (0.0046) (0.0035) (0.0055) (0.004) (0.0076) (0.0048)

ANZ -0.0143*** -0.0127*** -0.018*** -0.0147*** -0.0208** -0.0168** -0.0249** -0.0158***

(0.0039) (0.0035) (0.0049) (0.0037) (0.0082) (0.0068) (0.0097) (0.0059)

BRA -0.0042 -0.0073* -0.0024 -0.0033 -0.0131 -0.012 -7e-04 8e-04

(0.0044) (0.0038) (0.0034) (0.0036) (0.0355) (0.014) (0.0055) (0.0061)

CAN 9e-04 -0.0022 -0.001 -0.0058 -0.0097 -0.0159 -0.0172 -0.0263

(0.0049) (0.0051) (0.006) (0.0062) (0.0126) (0.0149) (0.018) (0.0201)

CHN -0.017** -0.0074 -0.0238** -0.0141 -0.0089 0.0067 -0.0158 -0.002

(0.0078) (0.0079) (0.0105) (0.0091) (0.0108) (0.0109) (0.0147) (0.0119)

IND -0.0146* -0.0121 -0.0172* -0.0148 -0.063 -0.0805 -0.0714 -0.0847

(0.0079) (0.0089) (0.0101) (0.0116) (0.1456) (0.2253) (0.2049) (0.3109)

JSK -0.003 -0.0101** -0.0105* -0.0111** 0.0123 -0.0081 -0.0155 -0.0201

(0.0045) (0.0041) (0.0061) (0.0052) (0.0284) (0.0114) (0.024) (0.0266)

MEX -0.0366*** -0.0281*** -0.026*** -0.0222*** -0.0388*** -0.0331*** -0.031*** -0.0266***

(0.0046) (0.0056) (0.0054) (0.0054) (0.0046) (0.0067) (0.0058) (0.0063)

MEA 0.0088 0.0117 0.0022 0.0052 0.0201 0.0252 0.0037 0.0076

(0.0075) (0.0078) (0.0057) (0.006) (0.0231) (0.0237) (0.0077) (0.0087)

OAS -0.0043 -0.005 -0.0081* -0.0123*** -0.0054 -0.0066 -0.0091 -0.0134***

(0.0038) (0.004) (0.0045) (0.0044) (0.0047) (0.0051) (0.0056) (0.0051)

OEA -0.0245*** -0.0057 -0.0248*** -0.0121* -0.0242** -0.0097 -0.0152 -0.0125

(0.0069) (0.007) (0.0062) (0.0064) (0.012) (0.0098) (0.0098) (0.0086)

CLA -0.0071*** -0.006** -0.0018 -0.0022 -0.0065** -0.0064* -0.0011 -0.0019

(0.0024) (0.0026) (0.0024) (0.0024) (0.003) (0.0034) (0.0024) (0.0026)

RUS -0.0046 -0.0034 -0.0054 -0.004 -0.0056 -0.007 -0.0053 -0.0039

(0.004) (0.0043) (0.0035) (0.0037) (0.0048) (0.0059) (0.0042) (0.0048)

USA -0.0024 -0.0052 -0.0013 -0.0056 0.0043 -0.0041 0.004 -0.0076

(0.0035) (0.0034) (0.0043) (0.0038) (0.0089) (0.0079) (0.0096) (0.007)

WEU -0.0132** -0.0126** -0.0161*** -0.0157*** -0.0148 -0.0135 -0.0133*** -0.0132**

(0.0052) (0.0059) (0.0038) (0.0043) (0.0107) (0.015) (0.0049) (0.0056)

N 27 27 27 27 26 26 26 26

N / p 6.75 5.40 5.40 4.50 5.20 4.33 4.33 3.71

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Estimates are the results of individual regressions
augmented with the common dynamic process estimated from a pooled regression. The AEEI
is derived as the estimated coefficient α̂ of the common dynamic process multiplied by the mean
of the process in first differences. For dynamic models, the coefficients have have been adjusted
via the formula α̂(1 − ϕ̂)−1 to derive long-run estimates, where ϕ̂ is the estimated coefficient
of the lagged dependent variable. Standard errors for dynamic models were calculated via the
Delta method. N is the sample size per region. N/p is the amount of observations available
per model parameter.

Table 18: AMG Regional AEEI Estimates
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Static models Dynamic models

Region (1) (2) (3) (4) (1) (2) (3) (4)

AFR -0.0015 -0.0077* -0.0034 -0.009** -0.0077 -0.0102* -0.0106 -0.0103*

(0.005) (0.004) (0.0056) (0.0045) (0.009) (0.0059) (0.0095) (0.0061)

ANZ -0.0123*** -0.0103*** -0.0152*** -0.0135*** -0.0179** -0.0102*** -0.0223** -0.0131**

(0.0039) (0.0029) (0.0058) (0.0043) (0.0076) (0.0031) (0.0112) (0.0057)

BRA -0.0149*** -0.016*** -0.0101*** -0.0109*** -0.03 -0.0224** -0.0095 -0.0083

(0.0046) (0.0036) (0.0037) (0.0036) (0.0233) (0.0106) (0.0058) (0.0058)

CAN -0.0024 -0.0053 -0.0072 -0.0111* -0.0113 -0.0159 -0.018 -0.0242*

(0.0049) (0.0049) (0.006) (0.0058) (0.0113) (0.0122) (0.0144) (0.0146)

CHN -0.0011 -2e-04 -0.0086 -0.0044 -0.0508 -0.0377* -0.0469 -0.0325*

(0.0137) (0.0126) (0.0138) (0.0123) (0.0348) (0.022) (0.03) (0.0195)

IND -0.0052 -0.0052 -0.0051 -0.005 -0.0118 -0.0139 -6e-04 0.006

(0.0085) (0.0091) (0.0109) (0.0121) (0.0441) (0.052) (0.0574) (0.0759)

JSK -0.0044 -0.0102** -0.0143** -0.0108* 0.0146 -0.0094 -0.0159 -0.0206

(0.0045) (0.0042) (0.0061) (0.0055) (0.0355) (0.012) (0.0244) (0.0289)

MEX -0.0401*** -0.0295*** -0.0284*** -0.0225*** -0.0389*** -0.0329*** -0.0297*** -0.0254***

(0.0052) (0.0065) (0.007) (0.0067) (0.0048) (0.007) (0.0067) (0.0067)

MEA -0.0047 -0.001 -0.005 -8e-04 -0.0017 0.0041 -0.0037 0.001

(0.0074) (0.0081) (0.0064) (0.0068) (0.0103) (0.0132) (0.0067) (0.0083)

OAS -0.0072*** -0.0091*** -0.0091*** -0.0127*** -0.0063* -0.0084*** -0.0084** -0.0125***

(0.0028) (0.0026) (0.0033) (0.0032) (0.0032) (0.0032) (0.0041) (0.004)

OEA -0.0169*** -0.006 -0.0186*** -0.0091 -0.0148* -0.0073 -0.0101 -0.0084

(0.0055) (0.0058) (0.0059) (0.0059) (0.0077) (0.0071) (0.0082) (0.0072)

CLA -0.0103*** -0.0091*** -0.0045* -0.0047* -0.0105** -0.0107** -0.0037 -0.0044*

(0.0028) (0.003) (0.0025) (0.0024) (0.0041) (0.0046) (0.0026) (0.0027)

RUS -2e-04 0.0011 -0.0057 -0.0043 -0.0039 -0.005 -0.0086 -0.007

(0.0053) (0.0054) (0.0054) (0.0054) (0.0064) (0.0076) (0.0066) (0.007)

USA -8e-04 -0.0038 -3e-04 -0.0046 0.0019 -0.0028 0.0022 -0.005

(0.0027) (0.0027) (0.0036) (0.0033) (0.0041) (0.0038) (0.0052) (0.0043)

WEU -0.0112** -0.0076 -0.0145*** -0.0129*** -0.01* -0.0041 -0.0113** -0.0099

(0.0044) (0.0049) (0.0041) (0.0049) (0.0056) (0.008) (0.0047) (0.0066)

N 27 27 27 27 26 26 26 26

N / p 5.40 4.50 4.50 3.86 4.33 3.71 3.71 3.25

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Estimates are the results of individual regressions
augmented with the common dynamic process estimated from a pooled regression. The AEEI
is derived as the estimated coefficient α̂ of the common dynamic process multiplied by the mean
of the process in first differences. For dynamic models, the coefficients have have been adjusted
via the formula α̂(1 − ϕ̂)−1 to derive long-run estimates, where ϕ̂ is the estimated coefficient
of the lagged dependent variable. Standard errors for dynamic models were calculated via the
Delta method. N is the sample size per region. N/p is the amount of observations available
per model parameter.

Table 19: AMG-T Regional AEEI Estimates
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