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1 Introduction

Climate change poses tangible risks to both the environment and the global economy as

a whole. With increased awareness of the physical effects of climate change, governments

worldwide have established objectives to reduce their carbon footprints. This transition

towards carbon neutrality introduces multiple channels through which climate change can

interact with financial markets. In addition to more frequent and variable adverse weather

events that have the ability to impair productive physical assets, producers and investors

must also monitor the added layers of climate-mitigating policies.

These uncertainties related to climate change pose both physical and transitory risks to

commodity producers worldwide. Variability in extreme temperatures, water availability,

and fertilization can have both positive and negative effects on crop yields, posing physical

risks that translate into supply-side uncertainties for agricultural commodities (Antón

et al., 2013; Lewis and Witham, 2012). More strict climate policies aimed at reducing

emissions can increase the costs of extracting fossil fuels or outright limit extraction and

oil exploration, which can create uncertainty in oil and gas supplies (Diaz-Rainey et al.,

2021). Furthermore, the emergence of biofuels as a relatively cleaner source of energy has

increased the connectedness between energy and cereal commodity markets as they are

derived from grains such as corn and soybeans (Mensi et al., 2014).

Commodity producers should pay close attention to climate-mitigating policies as they

can shift investments towards carbon-reducing activities by placing a price on carbon

that monetarily rewards producers for reducing their emissions and increases emissions-

related costs for those that do not. As a result, there is an urgent need to develop and

implement new technologies that can effectively reduce carbon emissions in production,

storage, and transportation (Martinez-Diaz and Keenan, 2020). Another element that is

often overlooked as part of transitory climate change risk is the aspect of social inclusion,

as the increasing awareness of climate change can update both investor and consumer

preferences in the short run (Bolton and Kacperczyk, 2023).

The growing movement in achieving net-zero goals has led researchers to investigate

the links between climate change and financial assets. Numerous studies have shown that

climate uncertainty has a significant impact on equities, bonds, and real assets, either

through cash flow channels or discount rate channels in the long run (Giglio et al., 2021a).

3



However, due to the limited availability of data on climate change, it has been challeng-

ing to study its potential interactions with financial markets at the daily or even monthly

level. To overcome this obstacle, scholars have made use of alternative data by creating

text-based proxies that capture both the physical and transitory risks of climate change,

as highlighted in works of Engle et al. (2020), Batten et al. (2016), Gavriilidis (2021),

and Faccini et al. (2023). Particularly, Ardia et al. (2023) developed both aggregate and

thematic media-based climate change concern indices at the daily level constructed from

a large corpus of news articles. The thematic indices aim to capture different aspects of

unexpected physical and transition climate change concerns, whereas the aggregate index

is a global measure of climate change concerns. The study found that on days when there

were unexpected increases in climate change concerns, equities of lower-emitting firms

outperformed those with higher carbon emissions. On the other hand, commodities are

tangible goods that are consumed and are therefore susceptible to scarcity along with the

forces of supply and demand. They do not constitute claims on equity, debt, or physical

properties, and it is their inventories that are significantly vulnerable to the impact of both

physical and transitory climate change risk. With the rise of globalization and increasing

inflows of speculative capital into commodity futures markets (Basak and Pavlova, 2016;

Cheng and Xiong, 2014), the growing uncertainties associated with combatting climate

change have been responsible for major price fluctuations in agricultural and energy com-

modities (Mensi et al., 2014). Furthermore, commodities prices can respond differently to

uncertainty due to different degrees of speculation, government policies, and dependence

on weather conditions (Joëts et al., 2017)

To this end, we use the aggregate and thematic proxies of climate change concerns

developed by Ardia et al. (2023) to empirically analyze the potential linear and non-linear

relationships between physical and transitory climate change concerns and the futures

contracts returns of various grains (corn, soybeans, wheat, and oats), softs (cotton, cocoa,

and coffee), and energy (crude oil, natural gas, and ethanol) commodities. To achieve

this, we regress the commodity futures returns on the climate change concern indices of

Ardia et al. (2023) contemporaneously and at a lag of one day using the multivariate

regression model and the quantile regression framework of Koenker and Bassett (1978).

The advantage of using the quantile regression framework is that it allows us to study the

non-linear relationships between unexpected climate change concerns and the extremes of
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the return distributions of the commodity contracts. In order to ensure the robustness of

our results, we carefully select potential alternative drivers of commodities futures markets

as contemporaneous control variables in our analysis.

The analysis is conducted using daily returns of the first, second, and third nearby

contracts of the selected commodities between January 2010 to June 2018. A motivating

reason behind using media-based proxies of climate change at the daily level is that

market participants rely on the media as a link between them and the current state of

the world (Nimark and Pitschner, 2019). The media can capture the general public’s

current sentiment related to climate change and also influence it as an agenda-setting

channel (Ardia et al., 2023). Additionally, climate change is transient in nature, and a

daily frequency is preferred to ensure the timeliness of potential market speculation to

spikes in physical or transitory climate change concerns (Ardia et al., 2023).

Our results indicate a statistically significant and positive linear relationship between

the transitory climate change concern proxies and the nearby futures contracts of crude oil

at a lag of one day. This is in line with the findings of Zhou et al. (2023), who report that

periods of high climate policy uncertainty, as measured by the text-based index of Gavri-

ilidis (2021), lead to high crude oil prices on average. In addition, the quantile regression

results reveal statistically significant asymmetries between climate change concerns and

agricultural commodity contract returns that would have otherwise been missed by the

multivariate regression model. We also find that the coefficient estimates of the climate

change concern factors are opposite in signs when the return distributions of the nearby

contracts of select grains and softs commodities are conditioned on their upper and lower

quantile levels. This result indicates that unexpected increases in climate change concerns

can be associated with extremely positive and negative price movements in agricultural

commodity markets at the daily level. This finding can further support the polarizing

ways that climate change can affect agricultural commodities (Lewis and Witham, 2012;

Antón et al., 2013), as we show that periods of high unexpected physical and transitory

climate change concerns are non-linearly related to crop yields.
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2 Literature Review

2.1 Overview

Climate change on aggregate already impacts or is anticipated to impact various real

parts of the economy, including infrastructure, agriculture, and real estate (Antón et al.,

2013), and the nature of climate change itself poses a complex risk for the global financial

system as a whole.

We conduct a literature review that disentangles the relevant sources of climate change

risks and what their implications might be for asset pricing. More specific to commodities,

we review classical theories on the fundamental drivers of commodity futures markets. We

also examine the scope of literature surrounding the actual financialization of commodities

markets, their connectedness, and the potential channels through which they can be

affected by climate change. Lastly, we examine how climate risks have been proxied to

circumvent limited data availability.

2.2 Sources of Climate Change Risks and Their Interactions with Financial

Markets

As commonly examined in relevant literature on climate change risks, we categorize the

sources of uncertainty linked to climate change as physical risk and transition risk.

Physical climate risk encompasses the risks of the direct impairment of productive

assets. Examples would include weather-related events such as extreme temperatures

affecting cropland output or rising sea levels increasing the threat of damaging firms’

coastal production facilities (Giglio et al., 2021a). Painter (2020) finds that there is a risk

premium associated with municipal bonds belonging to coastal communities exposed to

the risk of rising sea levels. An analysis by Giglio et al. (2021b) infers long-run discount

rates when evaluating real estate investments exposed to the adverse effects of climate

change. The magnitude of which countries or regions are exposed to climate disasters

may shape investors’ beliefs about the cost of material damages due to climate change.

Transition risk results from the effects of climate mitigation activities and the overall

process of decarbonization. These risks emerge from new regulations or government policy,

technological innovation, and social or market sentiment (Ardia et al., 2023).

The Paris Agreement poses a global transitional risk as it is a legally binding inter-
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national treaty on combatting climate change that was adopted by 196 parties at the

UN Climate Change Conference in December 2015 (UNFCCC, 2015). Its underlying

goal is to limit the rate of global average temperature increases to 1.5◦C, which is the

pre-industrial level. More countries are establishing carbon neutrality targets and intend

to meet these targets by passing legislation, which can have material implications for

the financial system and the economy. Countries aiming to transition towards carbon

neutrality might impose domestic climate policies, such as the introduction of a carbon

tax, which can impact companies’ operations and disrupt their cash flows. The mone-

tary incentive to reduce emissions can lead to fossil-fuel-dependent assets suffering from

write-downs or devaluations prematurely (Atanasova and Schwartz, 2019). Technolog-

ical change is an important facet of transitory risk. New technologies are needed to

advance net-zero commitments for energy production, distribution, storage, and utiliza-

tion (Martinez-Diaz and Keenan, 2020). Companies with incentives to shift to carbon

neutrality may find themselves having to take a closer look at their factors of produc-

tion as they adapt to greener alternatives. Bolton and Kacperczyk (2023) examine the

technological change in energy production and stipulate that firms located in countries

with a diversified energy mix will be more exposed to uncertainty behind unexpectedly

high costs of green energy production, which would translate to a larger carbon premium.

Moreover, they find that firms located in countries whose energy production mix contains

a larger fraction of renewable energy have lower carbon premia. The authors find that

there is strong evidence suggesting that a country’s energy production mix is a predictor

of how investors price short-term changes in emissions and that the direction of the re-

sults is consistent with the claim that uncertainty about technological change increases

transition risk. The increased awareness and sentiment of climate change can likely shift

consumer and investor behavior. Bolton and Kacperczyk (2023) find that social factors

do not appear to matter for investors’ perception of carbon risk in the long run, but they

do in the short run and that social inclusion in climate mitigation plays a transitory role

in pricing carbon risk. The authors also find that investors have significantly updated

their beliefs about the long-term transitory risk following the Paris Agreement in 2015.

Furthermore, investors view the extent to which tightening climate policy may be costly

to firms as permanent effects (Bolton and Kacperczyk, 2023). Institutional investors are

already screening investments for direct carbon emissions (Bolton and Kacperczyk, 2021).
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Krueger et al. (2019) explore investor approaches to managing climate risk through a sur-

vey of active investment managers and report that market participants, on aggregate,

believe that climate risks have significant implications for portfolio allocation. A growing

number of institutional investors are adopting environmental, social, and corporate gov-

ernance (ESG) sustainability frameworks in their investment processes, which can include

an exclusionary screening of high-polluting firms (Krueger et al., 2019). Larry Fink of

Blackrock writes that climate-integrated portfolios lead to higher risk-adjusted returns

and that there will be a significant reallocation of capital as a response to climate change

(Fink, 2020).

A large amount of literature is being dedicated to how climate risk is priced in various

financial assets, many of which focus on equities and equity valuation. Pastor et al.

(2020) motivate the existence of a carbon premium when finding that equities of “green”

firms outperform “brown” firms where climate change concerns increase unexpectedly.

Kapfhammer et al. (2020) report that when climate risk is high, commodity currencies

tend to depreciate and that unexpected increases in climate change transition risk can

cause lower equity valuations on aggregate. Bolton and Kacperczyk (2023) quantitatively

estimate that firms associated with higher emissions are valued at a discount and track

this effect partly to the exclusionary screening of institutional investors who limit carbon

risk in their portfolios. Engle et al. (2020) report that firms with higher E-scores are

less exposed to climate policy uncertainty and exhibit higher returns during periods of

negative news on the future path of climate change. Ilhan et al. (2023) find that there is

a greater cost of downside risk protection in equity options markets for carbon-intensive

firms when attention towards climate change is high.

2.3 Fundamentals of Commodities Futures Markets: Inventory Risk and

Hedging Pressure

To grasp the potential channels through which climate risk can interact with commodity

markets, we identify the fundamentals underlying the dynamics of commodity futures

markets. Commodity futures are not claims on future cash flows or debt but rather

physical goods with inherent scarcity.

One distinct feature of commodity markets is that they are uniquely subject to inven-

tory risk. Participants in commodities futures markets include speculators who enter the

8



market to seek a profit and commodity producers who enter the market to hedge their

costs related to inventory.

The theory of normal backwardation (Keynes, 1930; Hicks, 1939) is an early study

that explains the relationship between spot prices and futures prices of commodities. It

suggests that commodity futures markets are used as a mechanism for transferring risk,

where long investors earn a risk premium for bearing the future spot risk that commodity

producers want to hedge. The theory of normal backwardation argues that commodity

producers are naturally net short hedgers as they are more prone to insure their spot price

risk. The net hedging pressure hypothesis (Cootner, 1960, 1967) is a generalization of the

theory of normal backwardation and argues that futures prices depend on the net position

of hedgers and speculators. The argument of Cootner (1960, 1967) is again primarily cen-

tered on the risk-sharing mechanism of commodity futures markets but also links hedging

positions to inventory and storage costs. The direct cost of storage includes marginal

costs of warehouse space, interest rate changes, and insurance against physical damage,

while the implied indirect cost is either the threat or benefit it poses to the inventory

holder. The net hedging pressure hypothesis (Cootner, 1960, 1967) poses that holding

inventory exposes the commodity producer to price risk as well as variable storage costs;

a risk-averse commodity producer is willing to pay a premium in the form of insurance

to share this risk. Under the assumption that commodity producers are risk-averse, they

thus enter the futures market to offset the implied risk of holding inventory, and spec-

ulators enter the futures market to seek a profit to bear that risk. When the hedging

positions of commodity producers are net short, futures prices are set at a discount to

expected spot prices at maturity. When hedgers are net long, futures prices are set at a

premium to expected future spot prices at maturity. These market conditions are referred

to as backwardation and contango, respectively. In either market condition, the futures

risk premium is the compensation paid by hedgers to speculators for subsuming the net

demand of hedging spot price risk (Cootner, 1960, 1967).

The theory of storage of Kaldor (1939), Working (1949), and Brennan (1958) assumes

that holders of commodity inventories receive a convenience yield that declines as inven-

tory increases and that futures prices are set through the cost of carry arbitrage. It is

worth noting that expressing the basis to be the difference between nearby and distant

contracts as a percentage of the nearby is synonymous with the concept of carry. In order
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to induce storage, futures prices and expected spot prices have to rise sufficiently over

time to compensate inventory holders for the storage costs. The cost of carry arbitrage

argument is the link between the futures curve and the inventory levels of commodities.

The backwardation and contango cycle is an intrinsic concept of the theory of storage,

which stipulates that scarce levels of inventory are linked to a “backwardated” futures

curve while abundant levels of inventory are linked to a “contangoed” futures curve.

An entire topic in the commodity futures literature has emerged from the theory of

storage and the Keynesian net hedging pressure hypothesis. There has been much debate

about whether the fundamental cause of futures risk premium is dependent on the net

hedging positions of the commodity producers or whether it is dependent on the inven-

tory levels of the commodity itself. Using data provided by CTFC (Commodity Futures

Trading Commission), Gorton et al. (2013) provide evidence that the net positions of

hedgers are contemporaneously correlated with the price level of the futures curve but

that there is no evidence that these positions are correlated with ex-ante risk premiums

of the commodity futures. Gorton et al. (2013) conclude that hedgers simply adjust their

positions according to future prices and that future prices are set based on inventory

levels. In addition, the author also shows that commodity inventories are reflected in the

shape of their respective futures curves and that the futures’ basis, prior futures returns,

and prior spot returns are price-based measures of inventory risk.

In short, the shape of the futures curve contains priced-based measures of inventory

risk as well as general sentiment surrounding the uncertainties related to commodity in-

ventories. In recent studies, authors have attempted to exploit the information contained

in the term structure of the futures curves. Karstanje et al. (2015) make use of the infor-

mation contained in the full futures curve by using Principal Component Analysis on the

term structure of the commodity futures. The authors motivate the use of incorporating

more distant contracts since they have become more traded and liquid over time. In

addition, Schwartz and Smith (2000) pose that long-term contracts provide information

about the equilibrium level while the shape of the term structure can provide insights

into short-term movements. Boons and Prado (2018) construct the basis-momentum in

light of the fact that prior returns and the basis are price-based measures of inventory

risk (Gorton et al., 2013).
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2.4 Financialization of Commodities

Commodity futures markets have evolved since they were first introduced for producers

and manufacturers to share spot-price risk as they have become popular assets to in-

stitutional investors and commodity index traders (Goldstein and Yang, 2015). Basak

and Pavlova (2016), as well as Cheng and Xiong (2014), reference the increasing number

of institutional investors entering commodity futures markets as the financialization of

commodities. Basak and Pavlova (2016) find that futures prices of different commodi-

ties have been displaying increasing correlations as these markets become more and more

“financialized”. They also find that the correlations between equities and commodities

have increased as well, which can motivate connectedness between these two distinct mar-

kets. Cheng and Xiong (2014) argue that this financialization has affected the underlying

mechanisms of commodity futures markets, which are information discovery and risk-

sharing, but note that it has not affected storage. The authors argue that the inflow of

institutional investors and increasing globalization have caused informational frictions in

the futures prices of many key agricultural and energy commodities and that speculators’

heterogeneous expectations can lead to price drifts in these markets. Cheng and Xiong

(2014) also suggest that the inflow of investors helps risk-sharing by mitigating the hedg-

ing pressure of producers (Keynes, 1930; Hicks, 1939), but also recognize that this might

also transmit exogenous shocks from other markets into commodity markets, which might

imply spillover effects. Goldstein and Yang (2015) agree with the notion that financializa-

tion helps with the risk-sharing mechanism but suggest that financial institutions bring

more new information to the futures market, which can improve the information-sharing

mechanism and reduce the overall risk faced by all market participants.

The effects of increasing globalization have been related to a rising dependence struc-

ture between equity and commodity markets. Mensi et al. (2013) deployed a VAR-

GARCH and reported that past shocks of the S&P 500 have significantly influenced

commodity markets, more specifically for gold and oil. Using a copula-based approach,

Mensi et al. (2017a) further report that there is mean dependence between oil and equity

markets in the short run and a tail dependence in the long run.
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2.5 Connectedness of Commodity Markets

The financialization of commodities suggests that individual commodity markets have

been becoming increasingly correlated, but their connectedness goes slightly further. En-

ergy and agricultural commodities have been subject to large price fluctuations in recent

years, some of which occur at the same time (Mensi et al., 2017b; Cheng and Xiong,

2014). Mensi et al. (2014) attribute the likely drivers of these fluctuations to macroe-

conomic uncertainties, economic and financial crises, and climate change. The authors

examine the dynamic spillovers between energy and cereal commodities through VAR-

BEKK-GARCH and VAR-DCC-GARCH models and find significant links between these

markets. They argue that these markets interreact through cost-push effects, the paral-

lel growth of world population with increased economic activity of select countries, and,

notably, climate change uncertainty. They also argue that energy and cereal commodity

markets have been becoming intertwined because of the emergence of biofuels and how

they can be derived from agricultural commodities (Mensi et al., 2014). In addition,

higher energy prices can increase the costs of cultivation, fertilizer, and transportation of

both inputs and outputs (Ji et al., 2018). Kapfhammer et al. (2020) find that there are

substitute effects within different fossil fuel products in countries where the commodity

basket contains a large share of gas exports and associate climate risk with these effects.

Chen et al. (2010) investigate the relationships between the prices of crude oil and corn,

soybeans, and wheat. They empirically show that the price of grains is significantly in-

fluenced by an increase in crude oil prices and the prices of other grains. They also note

that climate change is a common factor that has caused commodity price fluctuations. In

recent years, there has been an emergence of literature supporting the connectedness of

energy and agricultural commodity markets through time-varying vector auto-regression

models and causality-in-quantile approaches (Balcılar et al., 2016; Balcilar et al., 2021).

2.6 Climate Risk and Energy Commodities

The global energy industry has been paying attention to the carbon contents of fossil

fuel energies, especially with rising concerns about reducing carbon emissions. As the

Organization of Petroleum Exporting Countries (OPEC) is dependent on crude oil, they

perceive the pricing of crude oil under new climate regimes as an economic threat (Dike,
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2014). Dike (2014) examines the theoretical grounds for studying the impact of climate

mitigation activities on crude oil prices. Under the assumption that crude oil markets

are competitive, the author finds that climate mitigation activities affect crude oil prices

in the long run and writes that demand shocks driven by energy efficiency, substitution

effects driven by renewable energy, and the distortion of supply and demand equilibrium

driven by the introduction of carbon taxes are potential reasons for the theoretical effect

on fossil fuel markets (Dike, 2014). Atanasova and Schwartz (2019) find that the growth

of oil companies’ fossil fuel reserves has a negative effect on their firm value and associates

the cause to be linked to undeveloped reserves becoming “stranded assets”. Furthermore,

they document that this effect is stronger in countries where climate policy is tighter,

which holds the implication that markets can penalize future investments in undeveloped

reserves due to climate policy risk. Diaz-Rainey et al. (2021) highlight that it seems

as though investors are currently pricing climate policies. In addition, the authors find

that climate policies affected the oil industry through either increased costs or limitations

of exploration, drilling, and production. Zhou et al. (2023) reports that periods of high

climate policy uncertainty result in higher crude oil prices for most of the periods between

2005 and 2021 through a time-varying vector autoregression model.

2.7 Climate Risk and Agricultural Commodities

Liang et al. (2017) show that temperature and precipitation account for approximately

70% of the variations in the total factor productivity growth of the U.S. agricultural

economy and that the projected climate changes could cause productivity to drop by an

average of 2.84% to 4.34% per year under above average emissions scenarios. The authors

also implicitly highlight an important example of how physical climate risks can interact

with transition risks by showing that the aggregate effects of regional climate trends on the

total factor productivity have been outweighed by improvements in technology between

the years 1981 to 2010. Chatzopoulos et al. (2020) find that physical climate extremes

on a regional level can have significant impacts on agriculture markets on both domestic

and international levels. They report that crop prices generally react asymmetrically

to extreme climate shocks with stronger responses to negative anomalies. Gupta and

Pierdzioch (2022) find that integrating climate risks in HAR-RV models improves the

prediction of agricultural commodity price volatility. Physical climate change risks have
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been linked to impacting agricultural commodity prices, such as droughts, flash floods,

and degradation of soil and water supply. Batten et al. (2016) writes that climate change

is most likely to have the greatest effect on agricultural commodities. Antón et al. (2013)

note that climate change affects the variability of weather conditions and the frequency

of abnormal weather events, which greatly contributes to the variability of crop yields.

Lewis and Witham (2012) find that climate change has both positive and negative impacts

on wheat and barley yields. The authors identify these impacts to include temperature

changes, water availability, fertilization, and higher latitude geographic regions.

2.8 Climate Uncertainty Proxies

Since data for proxying climate change uncertainty is limited, the recent academic fo-

cus has shed light on NLP (natural language processing) methods to develop text-based

indices constructed from large corpora of newspaper articles to capture physical and tran-

sitory risks and assess asset pricing implications associated with climate change. Investors

rely on the media as a link between them and the current state of the world (Nimark and

Pitschner, 2019). Though the media can capture the general public’s current sentiment

related to climate change, it can also influence it as an agenda-setting channel (Ardia

et al., 2023).

Engle et al. (2020) extract innovations from a monthly climate news series that are

constructed through textual analysis of Wall Street Journal newspaper articles and con-

struct a climate hedging portfolio based on these innovations. The authors acknowledge

that they do not attempt to distinguish between different types of climate risk. Batten

et al. (2016) constructed a text-based index to capture regulatory climate risk and found

a positive relationship between the price of renewable energy firms and transition risk.

Gavriilidis (2021) constructs a textual-based climate policy uncertainty index constructed

from major U.S. newspapers following the methodology of Baker et al. (2016). The au-

thor’s findings suggest that climate policy uncertainty has a strong and negative effect

on carbon emissions. Kapfhammer et al. (2020) constructed climate risk indices from

word embeddings of news articles published by Dow Jones News Services to explore how

climate change uncertainty affects the currencies of major commodity exporters and find

that the currencies depreciate when transition risk as measured by the news media-based

proxy of transition risk is high. Bua et al. (2022) developed text-based indicators to
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proxy physical and transition climate-related risks and provide evidence supporting a risk

premium in European equity markets for both types of risks. Faccini et al. (2023) use

textual and narrative analysis of Reuters climate-change-related news to construct four

different risk measures of climate uncertainty that are natural disasters, global warming,

international summits, and U.S. climate policy. The climate risk factors constructed by

Faccini et al. (2023) are another text-based measure that is related to natural disasters,

global warming, international summits, and U.S. climate policy. The authors find that

only the climate policy is priced in U.S. equities and that investors are hedging imminent

transition risks from government intervention rather than the actual physical risks of cli-

mate change. Ardia et al. (2023) constructed the daily Media Climate Change Concern

Index (MCCC Index) using news published about climate change topics. The authors

then obtain a proxy for unexpected climate change concerns, which they refer to as the

unexpected media climate change concerns (UMC), using the prediction error of an au-

toregressive time series regression model calibrated on the MCCC index. Notably, the

authors provide evidence suggesting that on days when there is an increase in unexpected

climate change concern as measured by the UMC index, the price of green firms tends to

increase while the price of brown firms tends to decrease. In our paper, we consider the

climate risk proxies developed by Ardia et al. (2023).

3 Methodology

3.1 Overview

To empirically examine the relationship between daily commodity futures returns and un-

expected increases in climate change concerns, we use multivariate and quantile regression

frameworks. We first construct the first, second, and third nearby futures contracts for

various grains, softs, and energy commodities and take their log-returns as the dependent

variables in our analysis. The rationale behind including more distant contracts is that

they have been becoming increasingly more liquid from speculators in commodity markets

(Boons and Prado, 2018).

We motivate the use of many types of commodities by noting that commodity markets

have been becoming more connected since their financialization (Basak and Pavlova, 2016;

Cheng and Xiong, 2014; Goldstein and Yang, 2015). The adverse effects of climate change
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and the inflow of speculators into commodity markets have been responsible for extreme

price movements (Mensi et al., 2014). In addition, it has been documented that increases

in fossil fuel prices often lead to increases in agricultural commodities prices by rising costs

of cultivation and transportation (Ji et al., 2018). Furthermore, the emergence of biofuels

has presented another link between fossil fuel and agricultural commodity markets since

grains are used as an input in biofuel production Mensi et al. (2014). If biofuels are seen

as a substitute for fossil fuels, then a rise in fossil fuel prices can lead to an increase in

demand for agricultural commodities. A larger sample of commodities would allow us to

investigate whether climate change uncertainty is prevalent across these potential links.

To ensure the robustness of our results, we carefully select control variables to include

in the regression models.

3.2 UMC: Climate Change Factors

As the focal point in our analysis, we measure climate change concerns at the daily level

using the global UMC factor developed by Ardia et al. (2023) along with its four un-

derlying thematic indices. The UMC indices aim to capture unexpected climate change

concerns as expressed through the media. Ardia et al. (2023) constructed the UMC in-

dex from climate change-related news published by the New York Times, the Washington

Post, the Los Angeles Times, the Wall Street Journal, the Houston Chronicle, the Chicago

Tribune, the Arizona Republic, the USA Today, the New York Daily News, and the New

York Post newspapers. In addition, they consider articles published by the Associated

Press Newswires and Reuters News. The authors filter out news articles that are not

tagged as “climate change”. With this corpus of articles, the authors apply NLP tech-

niques to infer latent correlated topics among the collection of texts. The authors then

manually label the topics by looking at the top ten most probable words for each inferred

topic. The authors group the individual topics into manually labeled themes using clus-

tering and network analysis, which gives the thematic UMC indices. Table 1 reports the

underlying themes and topics of the UMC index (Ardia et al., 2023).
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Themes/Topics Top ten keywords in terms of probability Risk

Theme 1: Business Impact Transition

Climate summits agreement, country, climate change, nation, world, talk, deal, meeting,

develop, country, summit

Transition

Agreements/actions percent, emission, level, target, greenhouse gas emission, goal, country,

government, greenhouse gas, year

Transition

Climate legislation/regulations bill, state, cap, legislation, vote, lawmaker, measure, program, global

warming, year

Transition

Legal actions state, administration, rule, regulation, agency, plan, court, decision, law,

case

Renewable energy oil, energy, natural gas, gas, pipeline, fossil fuel, renewable energy, wind,

nuclear power, world

Transition

Carbon reduction technologies coal, plant, power plant, electricity, carbon dioxide, technology, power,

utility, gas, year

Transition

Carbon credits market market, price, scheme, government, credit, euro, tonne, carbon, year, per-

mit

Transition

Carbon tax cost, tax, carbon, energy, price, policy, fuel, carbon tax, biofuel, economy Transition

Government programs project, money, fund, program, year, development, government, budget,

funding, plan

Transition

Corporations/investments company, business, climate change, investor, group, investment, firm, in-

dustry, risk, chief executive

Transition

Car industry car, vehicle, standard, methane, gas, year, fuel, industry, automaker, car-

bon dioxide

Transition

Airline industry airline, flight, ship, emission, aviation, plane, air, pollution, shipping, air-

craft

Transition

Theme 2: Environmental Impact Physical

Extreme temperatures year, record, weather, temperature, winter, day, summer, climate change,

heat, global warming

Physical

Food shortage/poverty climate change, people, crop, country, farmer, world, food, woman, agri-

culture, foundation

Physical

Hurricanes/floods flood, storm, hurricane, climate change, sea level, island, disaster, damage,

flooding, risk

Physical

Glaciers/ice sheets ice, glacier, year, scientist, foot, ice sheet, mile, melting, sea ice, satellite Physical

Ecosystems species, animal, plant, bird, disease, climate change, population, year, habi-

tat, extinction

Physical

Forests tree, forests, forest, fire, land, deforestation, carbon, acre, area, soil Physical

Water/drought water, state, region, river, rivers, drink, year, lake, area, dam Physical

Tourism site, town, day, mountain, year, snow, mile, park, foot, people Physical

Arctic wildlife polar bear, sea ice, bear, seal, ice, habitat, species, wildlife, year, popula-

tion

Physical

Marine wildlife fish, water, sea, oceans, ocean, scientist, coral, alga, year, reef Physical

Agriculture shifts food, farm, year, wine, plant, meat, production, farmer, coffee, cow Physical

Theme 3: Societal Debate Transition

Political campaign climate change, issue, leader, president, campaign, election, party, country,

speech, policy

Transition

Social events people, world, time, life, climate change, child, year, student, book, global

warming

Transition

Controversies climate change, science, global warming, scientist, climate, issue, question,

evidence, research, document

Transition

Cities city, people, building, home, energy, light, resident, community, mayor,

group

Transition

Theme 4: Research Physical/Transition

Global warming degree, global warming, warming, world, scientist, year, carbon dioxide,

atmosphere, greenhouse gas, century

Physical/Transition

UN/IPCC Reports report, climate change, risk, impact, global warming, panel, effect, govern-

ment, world, study

Physical/Transition

Scientific Studies study, research, scientist, researcher, data, atmosphere, researchers, cli-

mate, effect, model

Physical/Transition

Table 1: UMC Themes and Topics

This table outlines the 30 topics identified by Ardia et al. (2023) together with the ten keywords with the
highest probability for each topic. The topics are regrouped into four themes.

In our analysis, we examine different facets of climate risk as proxied by the aggre-

gate UMC index, along with its thematic indices: ‘Theme 1: Business Impact’ (“BI”),

‘Theme 2: Environmental Impact’ (“EI”), ‘Theme 3: Societal Debate’ (“SD”), ’Theme 4:
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Research’ (“R”).

An advantage of using the aggregate UMC index along with its thematic indices is that

it allows us to investigate the multiple channels in which climate change risk can interact

with commodity markets. The topics of the BI index capture transition risks that are often

linked to climate policy uncertainty, such as the carbon credits market, the carbon tax,

renewable energy, carbon reduction technologies, climate regulations, agreements/actions,

government programs, investments, and the transportation industry. Climate policies can

lead to increasing costs of extraction of crude oil or limiting the extraction of crude oil

altogether (Diaz-Rainey et al., 2021), as well as placing a price on carbon.

The EI thematic factor covers concerns surrounding the physical impacts that climate

change has on the environment. This includes news on natural disasters, alarming weather

changes, animal wildlife, ecosystems, deforestation, and agriculture shifts. Given the wide

range of topics that the EI factor captures, it is important to note that the events or

concerns covered by the topics may not materialize at the same time. It is, therefore, a

measure of physical climate change concerns on the global environment.

The SD theme represents a transition risk that includes public discourse on climate

change as well as political campaigns. The topic of political campaigns likely captures

policymakers’ speeches and discussions on climate mitigation activities. As noted by

Bolton and Kacperczyk (2023), societal factors appear to matter for investors’ perception

of carbon risk in the short run, and social inclusion plays a transitory role in carbon risk.

The R thematic index captures both physical and transition risk in topics that include

global warming, reports from the United Nations (“UN”) and the Intergovernmental

Panel on Climate Change (“IPCC”), and general scientific studies of the physical impact

of climate change. This likely contains concerns for more urgent emphasis on climate mit-

igation activities based on reports about the current climate environment. Furthermore,

the UN/IPCC reports are comprehensive assessments of the rate of global temperature

increases, as well as options for reducing this rate. It also produces ‘Special Reports’ on

topics agreed to by its member governments (IPCC, 2023).

Given the transient nature of climate change (Ardia et al., 2023), we analyze the

unexpected increases in climate change concerns using daily observations to ensure the

timeliness of the potential market reactions.
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3.3 Controlling for Potential Alternative Drivers of Commodity Markets

Several control variables are introduced to enhance the validity of the potential interac-

tions between climate change concerns and commodity futures’ returns and ensure that

our results are more robust from netting the effects of potential confounders. To control

for extraneous variables, we consider controls for both commodity-specific effects as well

as exogenous sources of risk.

3.3.1 Commodity-Specific Controls: Basis-Momentum

We construct the basis-momentum factor for each individual commodity (Boons and

Prado, 2018). The motivation behind using the basis-momentum factors stems from the

amount of fundamental commodity-specific information embedded in them. We abstain

from using the spot price of commodities in computing the basis-momentum factor due

to their illiquidity and sometimes irregular behavior. Boons and Prado (2018) construct

the basis-momentum factor as follows.

First, the authors define the daily returns of the n-th nearby commodity futures con-

tract at day t.

RTn
t+1 =

F Tn
t+1

F Tn
t

− 1 ,

where F Tn
t is the closing price on day t of the n-th nearby commodity futures contract

with maturity Tn. The basis returns Bt and momentum factor Mt can be written as:

Bt =
F

Tn+1

t

F Tn
t

− 1 and Mt =
t∏

s=t−a

(
1 +RTn

s

)
− 1 ,

for a given aggregation window, a. The basis-momentum factor BMn
t for an individual

commodity is:

BMn
t =

t∏
s=t−a

(
1 +RTn

s

)
−

t∏
s=t−a

(
1 +RTn+1

s

)
,

Since we are using log-returns, the analogous formulation of the basis-momentum factor

is written as:

bmn
t =

t∑
s=t−a

rTn
s −

t∑
s=t−a

rTn+1
s ,

where the aggregation window, a, is chosen to be one month or 20 trading days. In
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our analysis, we consider n = 1; that is, we use the basis-momentum with respect to the

first and second nearby futures contracts of each commodity.

Similar to bond markets, the common primary risk drivers across commodity futures

markets are their levels, slopes, and curvatures of their respective term structures due to

the information that they convey (Karstanje et al., 2015; Gorton et al., 2013). A feature

of the basis-momentum factor that we wish to exploit is that it contains information

about the slope and curvature of the futures curve, which is determined by the decisions

of investors, hedgers, speculators, and intermediaries (Boons and Prado, 2018). Under

the framework of the theory of storage of Kaldor (1939), Working (1949), and Brennan

(1958), the basis provides insight into the net storage costs of the commodity and the

marginal risk premium for holding the commodity. Furthermore, following the logic of

Gorton et al. (2013), the basis and prior returns are price-based measures of commodity

inventory risk and volatility risk.

We use the basis-momentum factor to control for endogenous inventory risks inherent

to commodity futures markets (Boons and Prado, 2018).

3.3.2 Market and Currency Factors

Other than commodity-specific, price-based measures of inventory risk as measured by the

basis-momentum factor, we consider controlling for the broad movements in commodity

markets through the S&P GSCI index returns, which serve as a benchmark measure

for commodity performance. The index is composed of 24 commodities from energy,

agricultural, metal, and livestock sectors, with the commodities being weighted based on

each of their average quantity of production globally.

Exchange rates influence commodity prices and play a role in the way commodity

markets are linked (Harri et al., 2009). The value of currencies has a significant impact

on imported and exported goods in global trade, as many commodities are denominated

in the U.S. dollar. Logically, since most commodities are denominated in the U.S. dollar,

a strengthening dollar can negatively influence commodity demand as it increases the cost

for foreign buyers Conversely, a weakening dollar can increase demand for commodities

denominated in foreign currencies. Exchange rates also show a strong link with the

business cycle and general macroeconomic conditions (Colacito et al., 2020). To control

for the currency impact on commodities, we use the U.S. dollar index. The index is
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geometrically averaged across 6 component currencies, which include the Euro, Japanese

Yen, British Pound, Canadian Dollar, Swedish Krona, and Swiss Franc.

We also consider controlling for potential spillover effects from the equities using the

Fama-French excess market return factor. We acknowledge that commodity markets are

distinct from equity markets, however, the use of an equity-based market factor can be

justified by noting that commodities have been increasing in correlation and connectedness

with equity markets since their financialization (Basak and Pavlova, 2016; Cheng and

Xiong, 2014; Goldstein and Yang, 2015).

3.3.3 Economic and Geopolitical Uncertainty

Aggregate supply and demand shocks drive commodity prices, and in times of a likely

economic disruption looming, the price elasticity of commodity supply and demand in-

creases (Bakas and Triantafyllou, 2020). Higher macroeconomic uncertainty can influence

the decision-making process of economic agents, which can increase the price sensitivity of

shocks (Yin, 2015; Bloom et al., 2007; Bloom, 2009). Wang et al. (2015) provide evidence

of a link between economic policy uncertainty and commodity returns.

To control for the induced volatility that arises from times of economic and political un-

certainty on a daily level, we introduce the Economic Policy Uncertainty Index (“EPU”).

The EPU constructed by Baker et al. (2016) is a daily media-based index reflecting the

frequency of coverage from ten major newspapers. The EPU index has been popular in

recent works in measuring the price impact that economic and financial uncertainty has

on several asset classes.

Furthermore, geopolitical risks have been among the driving factors of commodity

price development (Hudecová and Rajčániová, 2023) and of recent interest in literature

considering the ongoing Russia-Ukraine war. Wars and increased geopolitical tensions

pose a shock and a supply-side disruption to commodity markets, as seen by the impact

the Russia-Ukraine war had on global agriculture prices. Gong and Xu (2022) find that

geopolitical risk significantly impacts the overall connectedness of commodity markets

and how volatility is transmitted from one commodity market to another. We control

for geopolitical risk as a potential extraneous variable in our analysis by introducing the

Geopolitical Risk Index (“GPR”) of Caldara and Iacoviello (2022). It is a news-based

measure of adverse geopolitical events and associated risks.
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The reason for introducing the EPU and GPR indices is that they are specific to global

commodity markets. Each index captures the possible impact of global supply chain

shocks and the uncertainty of future supply shocks on the price. Furthermore, following

our logic for using text-based measures to proxy for climate change concern, investors rely

on news as a means of informing investment decisions and reacting to unexpected shocks

efficiently in markets (Nimark and Pitschner, 2019).

With our control variables thoroughly defined, we next describe our regression frame-

works.

3.4 Multivariate Regression

We examine the linear relationships between commodity contract returns and the aggre-

gate UMC and thematic indices by means of a multivariate linear regression framework

to control for the other potential drivers of the commodity futures returns. We regress

the log-returns of the commodity futures contracts,

rTn
s = log

(
F Tn
s

)
− log

(
F Tn
s−1

)
,

on the UMC (and thematic UMC) under the following framework:

rnt = cst+ βUMCt + γ′CTRLt + εt ,

where rnt is the n-th nearby daily return for a given commodity contract at day t, UMCt is

the examined climate change concern factor at time t, and CTRLt is a vector containing

the controls at time t. The estimates for β and γ are obtained by Ordinary-Least Squares

(OLS).

The control set we use for analysis includes general commodity market conditions con-

trol with the S&P GSCI Index (“SPGSCI”), exchange rate effects with the U.S Dollar

Index (“DXY”), the commodity-specific basis-momentum factors bmn
t , potential exoge-

nous impacts from economic and geopolitical uncertainty using the Economic Policy Un-

certainty Index (“EPU”) and the Geopolitical Risk Index (“GPR”), and the potential

spillovers from equity markets using the Fama-French excess market return factor (“Mkt-

Rf”).
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In addition, we consider one day-lagged values of the climate change factors:

rnt = cst+ βUMCt−1 + γ′CTRLt + εt .

We note that we estimate the coefficients β for each climate change factor separately

to provide insight into the potential ways that climate risks are related to commodities.

The coefficients are estimated with heteroskedasticity and autocorrelation consistent es-

timators of the variance-covariance matrix (Newey and West, 1987) to alleviate potential

serially correlated error terms εt.

3.5 Quantile Regression

Expanding on the multivariate regression analysis, we consider a quantile regression frame-

work that enables us to study the relationship between commodity futures returns and

climate change factors along the entire conditional distribution of the returns. In quan-

tile regression, the quantiles of a dependent variable are assumed to be linearly associated

with a set of conditioning variables, which generally translates into a nonlinear relationship

between the dependent and the independent variables considering the whole distribution

(Koenker and Bassett, 1978). Quantile regression provides a way to find any potential

influences of the magnitude of the response of climate change factors in the tails of the

return distribution, which are not necessarily symmetric around the mean. By their con-

struction, quantile regression frameworks are known to be robust to outliers (Uribe and

Guillén, 2020), which is of relevance when studying commodity futures returns or any

financial time series. In addition, quantile regression models require minimal assump-

tions on the distribution of the underlying data-generating process. We turn to quantile

regression as it allows for more flexibility than linear regression frameworks to model dif-

ferent market or economic scenarios and is more convenient when the error structure is

heterogeneous and not well described by a standard Gaussian distribution.

The quantile regression model is written as:

Qrnt |UMC(τ) = β(τ)UMCt + γ′
(τ)CTRLt + εt .
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The quantile coefficients β(τ), γ(τ) for quantile level τ are found by optimizing:

(β(τ), γ(τ)) = argminβ,γ E
[
ρτ

(
rnt −

(
β(τ)UMCt + γ′

(τ)CTRLt

))]
,

where ρτ (u) = (1 − τ)I(u<0)|u| + τI(u>0)|u| is the loss function. The quantile is defined

as the minimized loss. For each commodity contract, we estimate the coefficients of the

climate change factors at the quantile levels τ = {0.10, 0.15, . . . , 0.85, 0.90}.

Likewise, we also estimate the conditional quantile coefficients of the climate change

factors at a lag of one day.

We then perform the Wald test on the coefficients at each quantile to give us a pre-

liminary idea as to whether there is a nonlinear relationship between climate uncertainty

and commodity contract returns. The Wald test hypotheses are formulated as:

H0 :


β(τ=0.1)

...

β(τ=0.9)

 =


0
...

0

 ,

H1 :


β(τ=0.1)

...

β(τ=0.9)

 ̸=


0
...

0


To further examine the potential asymmetric relationship between the climate change

factors and the commodity returns, we investigate the sequence of quantile regression

summaries and isolate the coefficients of the climate change proxies at the individual

quantile levels.

4 Data

In this section, we outline the data collection and pre-processing methods and describe

the variables used throughout the multivariate and quantile regression analyses. Figure

1 illustrates the prices of the first, second, and third nearby futures contracts for each

commodity throughout the sample period. To provide additional insight into the move-

ments in the term structure of the commodities, we illustrate the differences between the

first and second nearby contracts, as well as the difference between the second and third
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nearby contracts in Figure 2. Table 3 presents the descriptive statistics of the dependent

variables in our analysis.

4.1 Data Collection and Pre-Processing

Commodity Nearby Futures Contracts We first retrieve the raw daily closing prices

of expired futures contracts for various grains, softs, and energy commodities with a

sample period beginning in January 2010 and ending in June 2018. The daily data

is sourced from https://www.barchart.com/ and is padded for holidays. The exchanges

that the chosen commodities trade on are the Chicago Board of Trade (CBOT), New York

Mercantile Exchange (NYMEX), and Intercontinental Exchange (ICE). Table 1 presents

the commodities that we examine in our analysis, their assigned abbreviations, their

contract symbols, and the market exchanges that they trade on. The abbreviations shown

in Table 2 will hereby be used to denote their respective commodities when reporting our

results.

Commodity Abbreviation Symbol Maturity Code Exchange

Grains Corn COR ZC HKNUZ CBOT
Soybeans SOY ZS FHKNQUX CBOT
Wheat WHT ZW HKNUZ CBOT
Oats OAT ZO HKNUZ CBOT

Softs Cotton COT CT HKNVZ CBOT
Coffee COF KC HKNUZ ICE
Cocoa CCO CC HKNUZ ICE

Energy Crude Oil WTI CL FGHJKMNQUVXZ NYMEX
Natural Gas NG NG FGHJKMNQUVXZ NYMEX
Ethanol ETH ZK FGHJKMNQUVXZ CBOT

Table 2: Commodity Information

This table presents the commodities under study, the abbreviation they are referred to as throughout the
analysis, their respective contract symbol, the maturity codes corresponding to their expiry months, and the
exchanges they trade on.

Then, we process the expired futures contracts into continuous time series of first, sec-

ond, and third nearby contracts by rolling the contracts over on the last day of the month

prior to the delivery month of each commodity. We use this precautionary treatment

to avoid irregularities in price movements that can occur as futures contracts approach

maturity, namely stale pricing (Szymanowska et al., 2014).

We take the log-returns of the constructed first, second, and third nearby futures

contracts as the first set of dependent variables in our multivariate regression and quantile
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regression models. That is, the daily return for the n-th nearby commodity futures

contract is:

rns = log
(
F Tn
s

)
− log

(
F Tn
s−1

)
,

where F Tn
t is the daily closing price of the n-th nearby futures contract for a given com-

modity.

Climate Factors: The climate change concern factors of Ardia et al. (2023) were directly

provided by the authors. Table 6 in the appendix reports the descriptive statistics for the

global UMC index along with its underlying thematic indices.

Control Variables: We retrieve daily levels of the U.S Dollar Index and S&P GSCI

Index from https://www.barchart.com/. We use their log-returns in our control set. In

addition, we retrieve the EPU Index (Baker et al., 2016) and GPR Index (Caldara and

Iacoviello, 2022) from https://www.policyuncertainty.com/. We use the constructed basis-

momentum factors for each commodity as the commodity-specific controls. The excess

market return factor is obtained by Kenneth R. French Data Library (French, 2023). The

descriptive statistics of the control variables are reported in Table 6 of the appendix.
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4.2 Data Description

(a) Grains (b) Softs

(c) Energy

Figure 1: Nearby Contract Prices

This figure plots the constructed first (Blue), second (Red), and third (Green) nearby futures contracts of
grains, softs, and energy over the sample period of January 2010 - June 2018.
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In Figure 1, we see that the prices of agricultural commodities display co-movement

during distinct periods. In 2010, droughts in Russia caused a rapid spike in the price

of wheat. Corn, soybeans, and oats experienced a price rally at a lag partly due to

increased demand following the Global Financial Crisis, along with growing concerns

that dry conditions would materialize in other grain-exporting countries. Softs also show

similar behaviors. In 2012, historic droughts in the United States particularly affected

corn producers. With decreased corn yields, demand for wheat increased as a substitute

for feeder grains. In 2014, oats particularly suffered from supply chain issues in Canada,

one of the world’s largest oats exporters. Canada’s accelerating oil exports at the time

posed logistic issues that reduced its grain exports. Crude oil and ethanol experienced

a steady upward trend due to increased energy demand following the rebound from the

2008 Global Financial Crisis. In 2014, increasing shale oil production in the United States

drove crude oil prices down. Ethanol experienced a sharp increase in demand following

the passage of the Renewable Fuel Standard.
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(a) Grains (b) Softs

(c) Energy

Figure 2: Nearby Contract Prices

This figure plots the difference between first and second nearby contracts (Blue) and the difference between
second and third nearby contracts (Red) of grains, softs, and energy over the sample period of January 2010 -
June 2018. Values above zero indicate backwardated markets, while values below zero indicate contangoed
markets.

The basis expressed as the difference in nearby and farther contract prices provides

insight into the general conditions of the respective commodity markets.
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In Figure 2, we observe that wheat, coffee, natural gas, and crude oil appear to be

more contangoed throughout the sample period relative to corn, soybeans, cotton, and

ethanol, which seem to be more backwardated. Cocoa and oats exhibit fluctuations

between backwardated and contangoed markets.

In Table 3, we report descriptive statistics for the first three nearby contract returns

of each commodity.

Commodity Mean Std Skew Kurt Max Q(90) Q(75) Q(50) Q(25) Q(10) Min N ADF

Panel A: First Nearby

Grains COR -0.01 1.75 -1.10 20.12 10.99 1.82 0.90 0.00 -0.94 -1.87 -24.53 2139 -13.11***

SOY -0.00 1.36 -0.64 4.40 6.37 1.54 0.77 0.02 -0.74 -1.55 -10.42 2139 -12.88***

WHT -0.01 1.93 0.33 1.95 9.10 2.23 1.11 -0.06 -1.14 -2.19 -7.94 2139 -13.71***

OAT 0.00 2.07 -0.22 3.72 10.37 2.38 1.17 0.00 -1.16 -2.35 -15.75 2139 -13.97***

Softs COT 0.01 1.80 -1.96 26.22 5.85 2.07 0.89 0.00 -0.84 -1.88 -27.07 2139 -12.82***

COF -0.01 1.96 0.23 1.84 11.79 2.38 1.07 0.00 -1.17 -2.31 -8.42 2139 -13.16***

CCO -0.01 1.67 -0.06 1.41 7.24 1.98 0.95 0.00 -0.94 -2.04 -8.14 2139 -14.1***

Energy WTI -0.00 2.00 0.07 2.87 10.70 2.20 1.06 0.05 -1.08 -2.32 -10.79 2139 -12.86***

NG -0.03 2.49 0.08 1.73 12.79 2.91 1.47 -0.05 -1.54 -3.03 -11.78 2139 -14.09***

ETH -0.00 1.89 -2.01 17.78 9.40 1.93 0.98 0.08 -0.85 -1.80 -19.04 2139 -13.31***

Panel B: Second Nearby

Grains COR -0.01 1.68 -0.14 5.91 11.40 1.80 0.86 0.00 -0.90 -1.82 -12.84 2139 -12.49***

SOY -0.01 1.33 -0.92 9.19 6.31 1.51 0.74 0.00 -0.71 -1.49 -14.35 2139 -12.55***

WHT -0.01 1.82 0.40 2.31 10.28 2.11 1.03 -0.08 -1.11 -2.05 -7.64 2139 -13.49***

OAT -0.01 1.80 -0.18 3.10 8.34 2.06 1.02 0.00 -1.04 -2.07 -14.03 2139 -14.31***

Softs COT 0.01 1.56 -0.48 3.47 5.54 1.75 0.81 0.03 -0.76 -1.74 -11.51 2139 -11.39***

COF -0.01 1.92 0.21 1.68 10.85 2.36 1.02 0.00 -1.13 -2.26 -8.42 2139 -13.21***

CCO -0.01 1.57 -0.04 1.23 7.14 1.83 0.92 0.03 -0.89 -1.96 -6.20 2139 -13.53***

Energy WTI -0.00 1.94 0.03 2.95 10.45 2.13 1.01 0.05 -1.06 -2.28 -10.72 2139 -12.93***

NG -0.03 2.25 0.13 1.25 12.28 2.67 1.36 -0.03 -1.45 -2.79 -8.76 2139 -13.57***

ETH -0.01 1.55 -0.61 4.40 8.87 1.72 0.88 0.06 -0.82 -1.69 -10.73 2139 -13.08***

Panel C: Third Nearby

Grains COR -0.01 1.62 -0.32 8.32 11.65 1.69 0.82 0.00 -0.86 -1.73 -15.25 2139 -12.37***

SOY -0.01 1.28 -0.50 4.49 6.26 1.44 0.71 0.02 -0.69 -1.44 -9.65 2139 -12.6***

WHT -0.01 1.71 0.40 2.43 9.48 2.03 0.97 -0.08 -1.03 -1.91 -7.62 2139 -13.28***

OAT -0.01 1.66 -0.10 3.66 8.41 1.88 0.93 0.00 -0.91 -1.95 -13.05 2139 -14.03***

Softs COT 0.00 1.52 -1.00 7.88 5.58 1.59 0.74 0.05 -0.66 -1.55 -13.76 2139 -12.15***

COF -0.01 1.87 0.22 1.74 10.79 2.29 1.01 0.00 -1.12 -2.19 -8.16 2139 -13.17***

CCO -0.01 1.51 -0.03 1.24 7.08 1.77 0.87 0.03 -0.89 -1.91 -5.88 2139 -13.41***

Energy WTI -0.01 1.89 -0.01 3.01 9.90 2.06 0.97 0.06 -1.02 -2.21 -10.58 2139 -13.00***

NG -0.03 2.09 0.04 1.17 11.30 2.48 1.28 -0.04 -1.36 -2.59 -9.91 2139 -13.36***

ETH -0.01 1.45 -0.71 6.36 8.90 1.62 0.80 0.05 -0.77 -1.61 -12.49 2139 -13.09***

Table 3: Summary Statistics - Nearby Contracts

This table reports the descriptive statistics of the log-returns of the first, second, and third nearby futures
contracts for each commodity. ‘Q(θ)’ denotes the θ-th quantile of the nearby futures contract log-returns. ‘N’
denotes the total number of observations (days). ‘ADF’ denotes the Augmented Dickey-Fuller test statistic.
‘***’ denotes statistical significance at the 1% level, indicating that the null hypothesis of non-stationarity is
rejected in favor of the alternative hypothesis of stationarity.

We confirm the stationarity of each of the variables used in the analysis at the 1%

level, as shown by Augmented Dickey-Fueller test statistics, avoiding the possibility of

spurious regression.
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5 Empirical Results

5.1 Investigating the Linear Relationship Between Climate Change Concerns

and Commodity Futures

We outline the results from regressing the nearby contract returns on the individual

climate change factors after contemporaneously netting the effects of the control variables.

We report the estimated coefficients of the climate change factors in Table 4 for both the

contemporaneous and lagged regression.

Panel A: First Nearby

Grains Softs Energy

COR SOY WHT OAT COT COF CCO WTI NG ETH

Lag 0 UMC -0.04 0.01 -0.18 -0.16 0.04 -0.23 -0.02 -0.02 -0.25 0.00

BI -0.06 0.00 -0.23 -0.22 0.02 -0.22 -0.09 -0.07 -0.22 -0.04

EI -0.12 -0.12 -0.13 0.03 0.10 -0.18 0.05 0.05 -0.21 -0.01

SD -0.06 0.05 -0.16 -0.23 0.00 -0.15 0.03 0.02 -0.19 0.01

R 0.15 0.05 -0.04 0.02 -0.02 -0.21 0.05 -0.06 -0.25 0.13

Lag 1 UMC 0.12 0.07 0.06 0.17 -0.08 -0.06 -0.01 0.13** -0.26 -0.07

BI 0.08 0.08 0.17 0.18 -0.11 -0.01 -0.04 0.15** -0.22 -0.08

EI 0.13 0.05 -0.05 0.06 -0.03 -0.12 0.02 0.05 -0.21 -0.03

SD 0.20** 0.09 0.14 0.24** 0.01 -0.02 -0.01 0.08 -0.20 0.06

R 0.00 0.02 -0.13 0.02 -0.08 -0.19 0.06 0.17*** -0.14 -0.18

Panel B: Second Nearby

Grains Softs Energy

COR SOY WHT OAT COT COF CCO WTI NG ETH

Lag 0 UMC -0.01 0.01 -0.15 -0.09 0.07 -0.24 0.00 -0.01 -0.17 -0.06

BI -0.05 -0.02 -0.19 -0.14 0.06 -0.21 -0.09 -0.06 -0.16 -0.13

EI -0.06 -0.13 -0.12 0.05 0.12 -0.18 0.08 0.06 -0.13 -0.01

SD -0.04 0.05 -0.15 -0.16 0.05 -0.16 0.02 0.02 -0.13 -0.06

R 0.18 0.09 -0.03 0.04 0.03 -0.22 0.07 -0.05 -0.17 0.11

Lag 1 UMC 0.10 0.09 0.01 0.11 -0.02 -0.10 -0.05 0.11 -0.26 -0.08

BI 0.05 0.10 0.12 0.13 -0.08 -0.04 -0.03 0.12** -0.26 -0.09

EI 0.12 0.05 -0.07 0.02 0.01 -0.15 -0.02 0.04 -0.16 -0.03

SD 0.17 0.14 0.10 0.21 0.03 -0.05 -0.06 0.07 -0.20 0.04

R -0.01 0.01 -0.15 -0.02 -0.02 -0.22 0.00 0.14*** -0.14 -0.18

Panel C: Third Nearby

Grains Softs Energy

COR SOY WHT OAT COT COF CCO WTI NG ETH

Lag 0 UMC 0.00 0.00 -0.17 0.02 0.09 -0.24 0.01 -0.01 -0.09 -0.10

BI -0.04 -0.03 -0.19 -0.07 0.05 -0.21 -0.07 -0.06 -0.09 -0.16

EI -0.03 -0.13 -0.15 0.12 0.13 -0.18 0.08 0.06 -0.06 -0.06

SD -0.03 0.05 -0.15 -0.07 0.07 -0.17 0.03 0.02 -0.07 -0.09

R 0.17 0.08 -0.06 0.10 0.04 -0.22 0.08 -0.04 -0.11 0.08

Lag 1 UMC 0.12 0.13 -0.04 0.09 -0.01 -0.12 -0.05 0.09 -0.25 -0.05

BI 0.10 0.12 0.07 0.16 -0.05 -0.05 -0.04 0.11 -0.28** -0.09

EI 0.10 0.09 -0.11 -0.03 0.03 -0.17 -0.02 0.02 -0.15 0.02

SD 0.12 0.15** 0.07 0.18 -0.01 -0.06 -0.06 0.06 -0.19 0.06

R -0.01 0.04 -0.19** -0.01 0.02 -0.23 0.00 0.13** -0.13 -0.13

Table 4: Multivariate Regression Results

This table reports the estimated multivariate regression coefficients of the aggregate UMC and thematic indices.
‘***’ and ‘**’ denotes statistical significance at the 1% and 5% level, respectively.

Grains: The estimated coefficients for the SD factor are significantly positive at the 5%

level when analyzing the returns of the first nearby futures contract for corn and oats, as
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well as the third nearby contract returns for soybeans. Furthermore, the estimate for the

R factor is strongly negative at the 5% level for the third nearby contract of wheat.

Softs: Our analysis indicates that there is no linear relationship between any of the UMC

indices and the mean level of the softs nearby contract return distributions. Nonetheless,

we conduct further investigation to determine if the UMC indices have any nullifying

effects on the return distributions of the softs contract returns when conditioned on their

upper and lower quantile levels.

Energy: When analyzing the returns of crude oil futures contracts, we find that the

estimated coefficients for the aggregate UMC factor are positive at the 5% level for the

first and second nearby contracts, each with a lag of one day. Similarly, the BI thematic

factor shows a positive relationship at the 5% significance level for the first and second

nearby contracts of crude oil. Additionally, we observe positive coefficients for the R

factor at the 1% significance level for the first and second nearby contracts and at the

5% level for the third nearby contract. Furthermore, at a lag of one day, we estimate a

negative coefficient at the 5% level for the BI factor when examining the third nearby

contract of natural gas.

5.2 Investigating the Asymmetric Relationship Between Climate Change

Concerns and Commodity Futures

We now expand the analysis to investigate the relationship between climate change risk

and the entire conditional distribution of commodity returns through the quantile regres-

sion framework. We estimate the coefficients at each quantile level for each of the com-

modity contract returns. In Table 5, we report the results upon applying the Wald tests on

the quantile coefficients β(τ), which can provide insight into potential non-linearities along

the distribution of commodity futures contract returns when regressed on the individual

climate factors.
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Panel A: First Nearby

Grains Softs Energy

COR SOY WHT OAT COT COF CCO WTI NG ETH

Lag 0 UMC - - - - - - - - - -

BI - - ** - - - - - - -

EI *** - - - - - - - - -

SD ** - ** - - - - - *** -

R - ** ** - - - - - - -

Lag 1 UMC - - - - - ** - - - -

BI - - - - - - - - - -

EI - - - - - *** - - - -

SD - - - - - ** - - - -

R - - - - - - - - - -

Panel B: Second Nearby

Grains Softs Energy

COR SOY WHT OAT COT COF CCO WTI NG ETH

Lag 0 UMC ** - - - - - - - - -

BI - - *** - - - - - - -

EI - ** - - - - - - - -

SD *** - ** - - - - - - -

R ** ** *** - - - - - - -

Lag 1 UMC - - - - - ** - - - -

BI - - - - - - *** - - -

EI - - - - - - - - - -

SD - - - - - - ** - - -

R - - - - *** ** *** - - -

Panel C: Third Nearby

Grains Softs Energy

COR SOY WHT OAT COT COF CCO WTI NG ETH

Lag 0 UMC - - - - - - - - - -

BI - - - - - - - - - -

EI - - - - *** - - - - -

SD *** - - - - - - - - -

R - - *** - - - - - - -

Lag 1 UMC - - - - *** ** - - - -

BI - - - - - - *** - - -

EI - - - - *** - - - - -

SD - - - - - ** - - - -

R - - - - *** ** *** - - -

Table 5: Wald Test - Commodity Contract Returns

This table reports the statistical significance of the Wald test statistics indicating non-equal coefficients across
the conditional quantile distributions of the commodity contract returns. ‘***’ and ‘**’ denotes statistical
significance at the 1% and 5% level, respectively.

The Wald test results in Table 5 indicate non-linearities between the first, second, and

third nearby grains contracts and the UMC indices contemporaneously, more specifically

for corn and wheat. On the other hand, the results indicate asymmetries in the relation-

ship between climate change concerns and softs at a lag of one day. We recall that the

Wald tests report the significance of non-equal coefficients when regressing the conditional

quantile commodity contract returns on the climate concern proxies and, therefore, only

provide a preliminary indication of an asymmetric relationship between the dependent
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and independent variables. To further investigate the potential non-linearities between

unexpected climate change concerns and commodity futures, we examine the estimated

coefficients β(τ) at each of the quantile levels.

Without loss in generality, we illustrate the sequences of the quantile regression sum-

maries for grains second nearby contracts at lag 0, softs third nearby contracts at lag one

day, and energy first nearby contracts at a lag of one day. Figures 3, 4, and 5 plot the

sequences of summary results.
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Figure 3: Contemporaneous Quantile Regression Summary - Grains Second Nearby Contracts

This figure plots the coefficients of the UMC aggregate and thematic indices by quantile in the models of second
nearby grains returns at a lag of 0. The quantiles of the dependent variable are on the horizontal axes, and the
coefficients are on the vertical axes. The choked black lines represent the quantile regression coefficient estimates,
and the gray shaded boundaries represent the 90% confidence interval of the quantile coefficient estimates.

In Figure 3, we observe that the contemporaneous coefficient estimates of the UMC

and thematic indices are decreasing as the quantile levels of the conditioned returns of

corn and wheat increase.

When examining corn, we notice that the coefficient estimates of the UMC, EI, and

SD factors are significantly positive when the returns are conditioned on lower quantiles.

We also notice that the BI and SD factors show significance in the upper quantiles of
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the conditional distributions of corn nearby contracts. In addition, the SD factor is

significantly negative when examining the distribution of oats conditioned on the upper

quantiles.

We observe a similar pattern in wheat for the coefficients of each of the UMC indices.

Lower quantile levels are generally associated with positive coefficients of the climate

change factor, while we observe statistically significant negative coefficients at the upper

quantile ranges.
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Figure 4: Lagged Quantile Regression Summary - Softs Third Nearby Contracts

This figure plots the coefficients of the UMC aggregate and thematic indices by quantile in the models of third
nearby softs returns at a lag of 1. The quantiles of the dependent variable are on the horizontal axes, and the
coefficients are on the vertical axes. The choked black lines represent the quantile regression coefficient estimates,
and the gray shaded boundaries represent the 90% confidence interval of the quantile coefficient estimates.

For the third nearby contract of cotton and cocoa, we notice that the coefficients

displayed in Figure 4 for the UMC, BI, SD, and R factors are decreasing at upper quantile

levels. For coffee, however, we see the opposite pattern. The estimated coefficients of the

climate change proxies are negative at the lower conditional quantiles of coffee and increase

in the quantile level.
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Figure 5: Lagged Quantile Regression Summary - Energy Third Nearby Contracts

This figure plots the coefficients of the UMC aggregate and thematic indices by quantile in the models of the
first nearby energy returns models at a lag of 0. The quantiles of the dependent variable are on the horizontal
axes, and the coefficients are on the vertical axes. The choked black lines represent the quantile regression
coefficient estimates, and the gray shaded boundaries represent the 90% confidence interval of the quantile
coefficient estimates.

In Figure 5, we notice that the coefficient estimates when opining on crude oil are

consistent across the entirety of its conditional quantile distribution for the UMC, BI, and

EI factors. We also point out that the coefficient estimates for the SD and R thematic

indices increase for distribution conditioned on the 80th percentile level and above.

In addition, we observe the estimates to increase in conditional quantile levels in a

38



similar fashion when examining the nearby contract returns for ethanol at the one-day

lag as well. The coefficient estimates for the SD factor are statistically significant and

positive for extreme upper quantiles

5.3 Discussion

In this section, we elaborate on the empirical results of each of the commodity groups.

We note that we abstain from making causal inferences throughout our discussion.

Grains: We observe that the societal debate thematic index displays a positive rela-

tionship with the first nearby contracts of corn and oats, as well as the third nearby

contract of soybeans, each being at a lag of one day. We expand on this by revealing

that unexpected increases in climate change concerns are non-linearly related to com-

modity contracts through the quantile regression results. Though the OLS estimates did

not provide significance for the grains’ second nearby contracts contemporaneously, we

identify a statistically significant relationship between the climate change concern proxies

at the tails of the return distribution of corn and wheat. This highlights the advantage

of using the quantile regression framework, as the relationships at the extremes of the

return distributions would have otherwise been missed by the OLS method.

In Figure 3, we see that an increase in climate change concerns has a positive relation-

ship with bearish corn markets. This is shown by the climate change proxies at the lower

quantiles. This result is intuitive by noting that bearish corn markets are most likely

directly related to abundant supplies and increased crop yields. Therefore, an unexpected

increase in climate change concerns can ignite speculation on the supply and increase

prices.

We also find that there is a negative relationship between climate change concerns

and bullish wheat markets. This means that an unexpected increase in climate change

concerns can lead to speculation on increased crop yields due to more favorable weather

conditions and, consequently, lower returns. Although this result appears to contradict

that of corn, the interactions between climate change and agriculture are quite complex.

Climate change affects the variability of weather conditions, and its impact on crops is

highly dependent on their respective geography Antón et al. (2013). The difference in the

way climate change concerns affect corn and wheat illustrates the potential positive and

negative effects that climate change can have on crop yields, which is consistent with the
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findings of Lewis and Witham (2012). Our results are consistent with the general finding

of Chatzopoulos et al. (2020), which is that climate change is asymmetrically associated

with agricultural commodities.

Softs: Climate change concerns also exhibit a relationship in the extremes of cotton,

cocoa, and coffee return distributions. According to the results of the quantile regression

analysis, bullish cotton and cocoa markets have a negative relationship with the aggregate

UMC index at a lag of one day. Furthermore, in bearish coffee markets, the potential

influence of climate change concerns is negative, while it is positive during bullish mar-

kets. Similar to the results obtained when examining grain commodities, it appears that

climate change concerns can have both a positive and negative impact on crop yields

for agricultural commodities (Lewis and Witham, 2012). This highlights the heterogene-

ity across agricultural commodity markets, which is likely due to their dependence on

their respective geographies. Unlike grain commodities, however, non-linearities between

climate change concerns and softs appear to occur in more distant contracts.

Energy: For energy, we remarkably observe that, at a lag of one day, the unexpected

increases in climate change concerns result in upward pressure on the term structure of

the crude oil futures. When isolating for the potential asymmetries of the first nearby

contracts of the energy commodities with unexpected climate change factors at a lag

of one day, we find that increases in climate change concerns are positively associated

with oil up-markets. More specifically, the societal debate and research thematic indices

positively relate to crude oil in the extreme right tail of its return distribution. A logical

reason for this can likely be attributed to the public rhetoric in political campaigns and

agenda-setting research associated with climate change and how social inclusion can play

a role in transitory role in climate risk in the short term, as stipulated by Bolton and

Kacperczyk (2023). The business impact thematic index is also positively related to the

first and second crude oil nearby contracts. As previously discussed, the business impact

index captures business-related concerns on climate mitigation efforts. As examined by

Diaz-Rainey et al. (2021), investors seem to price climate policies affecting the oil industry

through either increased costs or limitations in exploration, drilling, and production, which

pose a supply-side risk to the crude oil market.

In addition, we reveal the societal debate thematic index to be positively related to

ethanol’s first nearby contracts at a lag of one day when conditioned on its upper quan-
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tile. We find a significant negative relationship for natural gas when looking at the lagged

coefficient of the business impact thematic index for its second nearby contract. A po-

tential reason for this might be due to investments in natural gas extraction as it is a

substitute for relatively cleaner energy than oil and coal and thus increases speculation

on an increased supply.

6 Conclusion

With the acceleration of climate mitigating activities and growing awareness of the physi-

cal impacts of variable weather events, rising climate change concerns are shown to have a

significant relationship with global commodity markets at the daily level. This paper uses

a multivariate regression framework to empirically analyze the unconditional relationship

between the commodity futures contracts and the climate change concern proxies of Ardia

et al. (2023). Additionally, we examine potential non-linearities between commodity fu-

tures markets and climate change by use of the quantile regression framework of Koenker

and Bassett (1978).

Our results reveal that climate change concerns are associated with commodity contract

returns conditioned on their upper and lower quantile levels. We emphasize the robustness

of our results as several key commodity-specific and global drivers of commodity markets

are contemporaneously controlled for in the regression frameworks. Our findings uncover

that there is a positive link between transition climate risk and crude oil futures contract

returns at a lag of one day over the full sample period. Furthermore, we shed light on

the possibility that the potential relationship between climate change and agricultural

commodities is non-linear.

We acknowledge the limitations of our analysis by noting that a more precise study of

the physical effects of climate change concerns on agricultural commodities would most

likely require geographic climate change concern proxies. Even though increased global-

ization and the inflow of speculative capital into commodities futures markets can bring

rise to their respective connectedness, extreme price movements related to increased cli-

mate change concerns may not be uniform across different markets, making it difficult to

pinpoint any causal relationship. Additionally, although studying unexpected increases in

climate change concerns at the daily level is preferred for the sake of timeliness, analyzing

daily commodities futures contract returns foregoes the opportunity of using critical in-
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formation, such as the net positions of hedgers and speculators provided by the CFTC at

a weekly basis. Further research could focus on the relationship between climate change

concerns and products such as commodity-linked notes or commodity options, as we can

suspect them to be more susceptible to financial speculation.
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7 Appendix

In this appendix, we provide additional information on the data for the climate change

concern factors and control variables. In Tables 6 and 7, respectively.

Control Variable mean sd skew kurt max Q(90) Q(75) Q(50) Q(25) Q(10) min N ADF

DXY 0.01 0.47 -0.04 1.36 1.87 0.58 0.27 0.01 -0.27 -0.55 -2.29 2139 -12.54 ***

SPGSCI -0.03 1.21 -0.23 1.77 4.78 1.38 0.65 0.00 -0.71 -1.47 -7.33 2139 -12.63 ***

EPU 1.05 0.62 1.54 3.45 4.91 1.87 1.34 0.90 0.61 0.43 0.03 2139 -6.12 ***

GPRD 103.04 38.23 1.27 2.92 354.05 151.33 121.93 95.59 76.8 61.57 25.32 2139 -9.25 ***

Mkt-Rf 0.05 0.96 -0.44 4.44 4.97 1.11 0.53 0.07 -0.36 -1.05 -6.97 2139 -13.41 ***

bm - COR 0.01 2.30 1.20 16.78 13.87 1.01 0.42 0.06 -0.36 -1.30 -18.30 2139 -8.14 ***

bm - SOY 0.00 1.52 -1.89 14.66 6.87 1.14 0.38 0.01 -0.23 -0.92 -12.10 2139 -9.40 ***

bm - WHT 0.00 0.96 0.10 1.28 4.07 1.18 0.48 -0.02 -0.51 -1.16 -3.62 2139 -10.44 ***

bm - OAT 0.04 3.19 -0.34 2.56 10.85 3.79 1.49 -0.03 -1.34 -3.35 -15.39 2139 -11.19 ***

bm - COT 0.02 3.28 -0.87 14.11 19.98 3.00 1.07 -0.12 -1.11 -2.48 -26.78 2139 -10.41 ***

bm - COF -0.01 0.70 0.54 7.04 5.04 0.78 0.26 -0.04 -0.29 -0.75 -3.82 2139 -10.94 ***

bm - CCO 0.00 1.19 0.25 11.75 11.12 1.17 0.49 -0.01 -0.49 -1.23 -10.37 2139 -13.24 ***

bm - WTI 0.02 0.68 0.4 5.61 4.17 0.64 0.25 0.02 -0.21 -0.70 -3.38 2139 -8.84 ***

bm - NG 0.00 2.21 -0.08 4.96 15.96 2.69 1.02 0.01 -1.15 -2.35 -16.37 2139 -8.62 ***

bm - ETH -0.01 2.68 0.05 7.41 19.33 2.40 1.06 0.06 -0.98 -2.70 -18.82 2139 -10.83 ***

Table 6: Summary Statistics - Control Variables

This table reports the descriptive statistics of the control variables used throughout the analysis. ‘Q(θ)’ denotes
the θ-th quantile of the control variable. ‘N’ denotes the total number of observations (days). ‘ADF’ denotes the
Augmented Dickey-Fuller test statistic. ‘***’ denotes statistical significance at the 1% level, indicating that the
null hypothesis of non-stationarity is rejected in favor of the alternative hypothesis of stationarity.

Climate Factor mean sd skew kurt max Q(90) Q(75) Q(50) Q(25) Q(10) min N ADF

UMC 0.04 0.31 0.81 1.74 1.66 0.42 0.21 0.00 -0.16 -0.31 -0.88 2139 -10.49 ***

BI 0.03 0.31 1.12 3.59 2.05 0.40 0.19 0.00 -0.16 -0.31 -0.75 2139 -10.09 ***

EI 0.04 0.33 1.15 2.34 2.03 0.47 0.21 -0.00 -0.20 -0.32 -0.75 2139 -11.67 ***

SD 0.04 0.34 1.10 2.92 2.13 0.45 0.22 -0.02 -0.19 -0.33 -0.89 2139 -9.78 ***

R 0.04 0.32 1.42 4.69 2.33 0.43 0.20 -0.01 -0.18 -0.29 -1.03 2139 -11.24 ***

Table 7: Summary Statistics - Climate Factors

This table reports the descriptive statistics of the daily UMC climate change concern factors of Ardia et al.
(2023). ‘Q(θ)’ denotes the θ-th quantile of the UMC climate change concern factors. ‘N’ denotes the total
number of observations (days). ‘ADF’ denotes the Augmented Dickey-Fuller test statistic. ‘***’ denotes
statistical significance at the 1% level, indicating that the null hypothesis of non-stationarity is rejected in favor
of the alternative hypothesis of stationarity.
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