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Résumé 

La transition énergétique vers des sources d’énergie renouvelable est essentielle pour contrer le 

réchauffement climatique. Toutefois, les coûts élevés des nouvelles technologies peuvent retarder 

cette transition. Par conséquent, l’étude de l’apprentissage technologique endogène (ETL) est une 

stratégie cruciale, notamment pour les technologies émergentes pour lesquelles on prévoit un 

développement considérable dans les prochaines décennies. L'ETL suggère qu'à mesure qu'une 

technologie mature, ses coûts diminuent en raison des effets d'apprentissage qui découlent de 

l'accumulation d'expérience et de l’augmentation des investissements. 

Pour tenir compte des effets de l’ETL, les modèles d'évaluation intégrée (IAM) sont couramment 

utilisés comme cadre de modélisation. Les IAM visent à décrire les processus humains et terrestres 

ainsi que leurs interactions pour fournir des perspectives sur le changement environnemental et le 

développement durable. Parmi ces modèles, AD-MERGE évalue les effets régionaux et mondiaux 

des politiques de réduction des émissions de gaz à effet de serre.  

Ce mémoire explore la mise en œuvre de l’apprentissage technologique endogène au sein d’AD-

MERGE 2.0 en comparant deux approches distinctes : l’approche Manne-Barreto et l’approche 

MERGE-ETL. La première utilise une courbe d'apprentissage à un facteur en fonction de la 

production cumulée, tandis que la seconde utilise une courbe d'apprentissage à deux facteurs basée 

sur la capacité cumulée. Trois technologies de l'hydrogène sont intégrées en tant que nouvelles 

technologies d'apprentissage pour chaque approche. Lors de la résolution des deux modèles, des 

méthodes directes et heuristiques sont utilisées, puisque l'incorporation des équations ETL dans 

un modèle énergétique génère un problème d'optimisation non-linéaire et non-convexe. 

Après avoir comparé les deux approches et avoir effectué l’analyse de leurs forces et faiblesses, 

l'approche sélectionnée sera intégrée dans les versions ultérieures d'AD-MERGE 2.0. Compte tenu 

de la crise climatique alarmante, cette étude fournit aux décideurs des outils pour comprendre 

l'intégration graduelle des technologies renouvelables dans le mix énergétique et leurs implications 

pour l'économie à long terme. 

 

Mots clés : apprentissage technologique endogène, modèle d’évaluation intégrée, optimisation, 

énergie, hydrogène
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Abstract 

Transitioning from conventional to renewable energy sources is crucial to mitigate climate change. 

However, the high initial costs of new technologies can delay this transition. Therefore, studying 

endogenous technological learning (ETL) is a vital strategy, especially for emerging technologies 

expected to develop significantly in the coming decades. ETL suggests that as a technology 

matures, its costs decrease due to learning effects from the accumulation of experience and 

increased investments.  

To consider the effects of ETL, Integrated assessment models (IAM) are commonly used as 

modelling frameworks. IAMs aim to describe human and earth system processes and their 

interactions to provide insights into environmental change and sustainable development. Among 

these models, AD-MERGE evaluates the regional and global effects of greenhouse gas emissions 

reduction policies. 

This thesis explores the implementation of endogenous technological learning in AD-MERGE 2.0, 

comparing two distinct approaches: the Manne-Barreto approach and the MERGE-ETL approach. 

The former uses a one-factor learning curve based on cumulative production, while the second 

employs a two-factor learning curve based on cumulative capacity. Three hydrogen technologies 

are incorporated as new learning technologies for each approach. Direct and heuristic-based 

methods are used when solving the two models, as incorporating ETL equations into an energy 

model generates a non-linear and non-convex optimization problem. 

After comparing the two approaches and analyzing their strengths and limitations, the preferred 

approach will be integrated into subsequent versions of AD-MERGE 2.0. Considering the 

alarming climate crisis, this study provides decision-makers with tools to understand the gradual 

integration of renewable technologies into the energy mix and its implications for the long-term 

economy. 

 

Keywords: endogenous technological learning, integrated assessment model, optimization, 

energy, hydrogen
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Chapter 1  
Introduction 

The transition from conventional to renewable energies is essential to mitigate the impacts of 

climate change. However, the high initial cost of new technologies makes them less commercially 

attractive than conventional solutions, hindering this transition. For instance, low-carbon hydrogen 

is a promising energy source but has yet to be cost-competitive in reaching greenhouse gas 

emission levels (Layzell, Young, Lof, Leary & Sit, 2020). In Canada, two critical factors 

influencing the adoption of hydrogen are its cost competitiveness compared to other energy 

sources and its potential for decarbonization (Natural Resources Canada, 2020). Therefore, 

endogenous technological learning (ETL) has become increasingly important, especially for 

emerging technologies that expect significant development in the coming decades (Mattsson, 

2019). Technological learning suggests that as a technology matures, its costs decrease due to 

learning effects, allowing for a more accurate projection of the energy transition timeline. 

 

1.1 Integrated assessment models 

Mathematical models can be used to support decision-making related to climate change strategies. 

Multiple aspects, including economics, energy systems, and climate science, are incorporated into 

these models to provide useful information to policymakers (Weyant, 2018). Integrated assessment 

models (IAM) are well-known models that aim to describe human and earth system processes and 

their interactions to offer insights into environmental change and sustainable development (United 

Nations Framework Convention on Climate Change [UNFCCC], n.d.). These models are typically 

categorized into top-down and bottom-up approaches (Bahn, Haurie & Zachary, 2004). 

 

Top-down models are focused on the economy and consider energy as a subsector of the overall 

economy (Mattsson, 1997). These models rely on macroeconomic theory, and the economy 

influences the energy system indirectly. Generally, top-down models that include technological 

learning analyze the influence of learning on abatement activity costs and assess the energy sector's 

response to abatement strategies (Kahouli-Brahmi, 2008). On the other hand, bottom-up models 

are focused on technology and optimize the technical energy system with its environment 
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(Mattsson, 1997). Technological learning is usually incorporated in bottom-up models as they 

provide a more detailed view of the energy sector and its technological options (Bahn et al., 2004; 

Kahouli-Brahmi, 2008). 

 

Top-down and bottom-up approaches complement each other, allowing for different questions to 

be answered. Developing hybrid models can incorporate both approaches and overcome their 

limitations. 

 

1.2 Climate change scenarios 

Integrated assessment models and other climate models can be adjusted to reflect different paths 

that may occur under various climate policies. The Intergovernmental Panel on Climate Change 

(IPCC) employs shared socio-economic pathways (SSP) in its sixth assessment report to provide 

a framework for these projections. SSP-based scenarios are designed to explore the possible 

impacts of different socio-economic developments on greenhouse gas (GHG) emissions under 

varying climate policies (IPCC, 2022). Five scenarios have been proposed to describe potential 

global trajectories. SSP1 describes a path of sustainability, focusing on growth and equality. SSP2 

is a “middle of the road” scenario, where the world follows a path similar to historical patterns. 

SSP3 describes a scenario of regional rivalry, with a resurgence of nationalism and concerns about 

competition and security. SSP4 depicts a world of increasing inequality, where intra— and 

international gaps continue to grow. Finally, SSP5 focuses on fossil-fueled development, with 

rapid growth in the global economy and energy use. Each scenario differs in its level of 

technological advancement, investment, policies, and global population (Hausfather, 2018; Riahi 

et al., 2017). 

 

1.3 Overview of MERGE 

MERGE is a global integrated assessment model that evaluates the regional and global effects of 

GHG emissions reduction policies. It follows a hybrid approach and comprises four interlinked 

modules: an energy module (Energy Technology Assessment [ETA]), a macroeconomic module 

(MACRO), a climate module, and a damage module. The ETA module describes the energy sector 

using a bottom-up approach, whereas the MACRO module describes the economic sector using a 
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top-down approach (Bahn, de Bruin & Fertel, 2019). The model was developed by Manne, 

Mendelsohn and Richels in 1995. 

 

The figure below illustrates how the different modules interact in MERGE. 

 

Figure 1.1: Overview of the MERGE modules (Bahn, 2018) 

Note: From The Contribution of Mathematical Models to Climate Policy Design: a 

Researcher’s Perspective by O. Bahn, 2018, Environmental Modelling & Assessment 

(2018) 23:691–701. Copyright 2018 by O. Bahn. 

 

In the initial model, the years 1990 to 2050 are segmented into 10-year time steps, and then 25-

year time steps are used until 2200. It distinguishes among nine geopolitical regions: Canada, 

Australia, and New Zealand (CANZ); China; Eastern Europe and the Former Soviet Union 

(EEFSU); India; Japan; Mexico and OPEC (MOPEC); the USA; Western Europe (WEUR); and 

the rest of the world (ROW). Like many other IAMs, MERGE maximizes the Negishi welfare, a 

measure of global welfare. The model is non-linear and convex and is implemented in GAMS, the 

General Algebraic Modeling Language. For more information on the model and its submodules, 

see Manne, Mendelsohn & Richels, 1995 or Bahn et al., 2019. 

 

Versions of MERGE 

 

In addition to the initial MERGE model (1995), a version with endogenous technological learning, 

MERGE-ETL (2002), has been implemented, as well as a version with adaptation, AD-MERGE 

1.0 (2019), which is based on MERGE version 5. 
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The latest version of MERGE, currently under development, is AD-MERGE 2.0. This version is 

based on AD-MERGE 1.0 (2019) but has been updated and fine-tuned to reflect recent data. The 

original nine regions of MERGE have been divided into 15: the United States; Western Europe 

(WEUR); Japan and South Korea (JSK); Canada (CAN); Australia and New Zealand (ANZ); 

Russia (RUS); China; India; Middle East (MEA); Mexico (MEX); Africa; Other Eurasia (OEA); 

Brazil (BRA); Other Central America and Latin America (CLA); and Other Asia (OAS). This 

regional disaggregation accounts for geographical features, political coalitions, and data 

availability that better reflect current trends. Compared to the previous version, the base year has 

been updated to 2015. The time step for the first period is five years; for subsequent periods from 

2020 to 2210, the time step is ten years. The model is calibrated to a newer version of the SSP2 

scenario. Ongoing projects include incorporating new technologies such as hydrogen and adding 

a transportation sector into the existing model. 

 

1.4 Research problem 

This study aims to incorporate endogenous technological learning into AD-MERGE 2.0, the latest 

version of the MERGE model. Two approaches will be employed to implement endogenous 

technological learning: the Manne-Barreto approach, which is more straightforward and based on 

a one-factor learning curve, and the MERGE-ETL approach, which is more complex and based on 

a two-factor learning curve. The objective is to compare the complexity of equations, the solving 

process, and the solution quality of both approaches. After comparing the two methods, the 

preferred version will be implemented permanently into the model for future works. 

 

This thesis is structured as follows: Chapter 1 introduces the context of the study, the MERGE 

framework, and the research question. Chapter 2 presents a breakdown of the existing literature on 

endogenous technological learning. Chapter 3 describes how previous and current versions of 

MERGE address endogenous technological learning. Chapter 4 explains the optimization 

techniques used to solve non-linear and non-convex problems. Chapter 5 defines the ETL 

equations and how they are incorporated into the model. Chapter 6 details the data collection 

process used to update the characteristics of new learning technologies. Chapter 7 presents the 
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solving results of each version of the model. Finally, Chapter 8 summarizes the study, results, and 

limitations and elaborates on future extensions. 
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Chapter 2  

Literature review 

This chapter discusses the concept of technological learning and its origins. It then focuses on how 

this concept is specifically applied to energy models and how it is modelled within them. 

Additionally, other learning effects and uncertainties are addressed, as well as how other energy 

models incorporate technological learning. Finally, it explores how technological learning impacts 

decision-making processes. 

 

2.1 Technological learning 

Technological learning refers to the idea that technology improvements increase over time as the 

technology matures. This progress can result from various effects, such as increased labour 

efficiency, better equipment, or knowledge transfer. Technology improvements can be measured 

as cost reductions, number of units produced, or overall productivity increase. This concept can be 

modelled as a learning curve where progress is observed with acquired experience. Several 

function shapes can be used as learning curves depending on the desired learning effect. Learning 

curves can be expressed as log-linear, sigmoid, exponential growth, or even power-law functions 

(Newell, & Rosenbloom, 1980; Yelle, 1979). The speed at which the learning occurs is called the 

“learning rate” and is usually defined in economics as the price reduction for each doubling of the 

cumulative production or capacity. Depending on the complexity of the task, the learning rate will 

vary, which will impact the steepness of the learning curve. A higher learning rate implies that the 

learning occurs more rapidly, making the improvements more significant. Usually, improvements 

are accelerated in the early learning process. After a certain number of executions, the speed at 

which the improvements occur decreases, eventually reaching a plateau (Ritter & Schooler, 2001). 

Little to no further improvement is observed during this stationary stage until additional 

innovations restart the learning process. This plateau is often called the “floor cost”, the lowest 

cost a technology can attain (Rout, Blesl, Fahl, Remme, & Voß, 2009). 

 

Learning curves can be applied in various fields, such as psychology or economics. However, in 

this study, learning curves refer specifically to organizational learning, which focuses on the 
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performance of organizational units, such as manufacturing plants, and factors in the effects of 

technological developments (Argote & Epple, 1990). This approach differs from a limited focus 

on labour or behavioural learning and will be referred to as “technological learning” throughout 

this thesis. 

 

Initially modelled to describe how the costs in the aircraft industry decrease with each additional 

unit produced (Wright, 1936), this concept, also described as the “cost-quantity relationship” 

(Thompson, 2010), gained significant traction in the latter half of the 20th century. Data from 

aircraft production during World War II enabled many industries to begin integrating learning 

curves into their processes (Asher, 1956; Yelle, 1979). Technological learning has since been 

extended to other sectors, including energy modelling, where it helps understand how technology 

costs can influence energy production, consumption, and environmental outcomes within the 

framework of integrated assessment models. New technologies typically have higher costs and 

sometimes greater environmental impacts than conventional technologies. However, as they 

mature, learning effects contribute to reducing costs and environmental impacts, making them 

more appealing (Thomassen, Van Passel & Dewulf, 2020). 

 

The following figure (Ouassou, Straus, Fodstad, Reigstad & Wolfgang, 2021) shows a standard 

learning curve, following Wright’s experience curve. 

 

Figure 2.1: A one-factor learning curve with a learning rate of 20%. The blue curve represents 

the cost per unit as a function of installed capacity. After a doubling of capacity, the cost is 

reduced by 20%. 
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Note: From Applying Endogenous Learning Models in Energy System Optimization by J. A. 

Ouassou et al., 2021, Energies, 14, 4819. Copyright 2021 by Ouassou et al. 

 

 

2.2 Modelling technological learning 

Considering the non-negligible impact of learning on technology costs in the development of 

economic models or the assessment of repetitive task costs, it is essential to integrate technological 

learning into the equation. This integration can be modelled either exogenously or endogenously 

within an energy framework. 

 

2.2.1 Exogenous versus endogenous learning 

With exogenous learning, technology costs are independent of investment, economic choices, or 

environmental conditions. Technology costs will usually be a function of time defined before 

solving. This means that the cost function associated with technological advancements, which is 

time-dependent and already projected for the given time horizon, will begin to decrease in later 

years independently of the accumulated experience. Consequently, in a cost-minimization context, 

the model will only incorporate new technologies in later stages when their cost has significantly 

reduced and become financially viable. In reality, investments must be made for the costs to 

decrease dynamically over time (Zeyen, Victoria & Brown, 2023).  

 

On the other hand, endogenous learning considers technology costs as a variable that varies 

dynamically during the optimization process (Ouassou et al., 2021). In other words, until 

production starts, the learning process and cost reductions will not begin. Incorporating learning 

curves endogenously in the model usually results in a more accurate representation of the cost 

function but is computationally more expensive because of the non-convexity of these curves 

(Bahn & Kypreos, 2003). 

 

2.2.2 One-factor learning curve (learning-by-doing) 

The previous definition of the learning curve depicts the relationship between cost and 

accumulated experience. When technological learning emerges from experience only, it is referred 
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to as “learning-by-doing”. This is modelled with a one-factor learning curve, where technological 

learning improves and becomes more cost-effective with accumulated experience.  

 

Learning-by-doing (LBD) adheres to a one-factor learning curve that can be defined in terms of 

the investment cost for the technology 𝑘 (Bahn & Kypreos, 2003; Marcucci, 2012): 

 

𝐼𝑁𝑉𝐶𝑘 = {
𝐴𝑘 ⋅ 𝐶𝐶𝑘

−𝑏𝑘 , if 𝐼𝑁𝑉𝐶𝑘 ≥ 𝑙𝑘

𝑙𝑘 , otherwise
 

 

Where 𝐴𝑘 is the investment cost at unit capacity, 𝐶𝐶𝑘 is the cumulative capacity, 𝑏𝑘 is the learning-

by-doing index, and 𝑙𝑘 is the floor cost for technology 𝑘.  

 

Technological learning is often described in terms of cumulative (installed) capacity in energy 

models. However, it can also be defined in terms of the cumulative number of units produced 

(Thomassen et al., 2020). 

  

For an electric technology 𝑘, cumulative installed capacity is defined as follows (Bahn & Kypreos, 

2003): 

𝐶𝐶𝑘,𝑡 = 𝐶𝐶𝑘,0 +
∑ 10 ∙ 𝑃𝐸𝑘,𝑟,𝜏

𝜏∈[1,𝑡]
𝑟𝑒𝑔𝑖𝑜𝑛𝑠,𝜏

𝑙𝑖𝑓𝑒𝑘 ∙ 𝑙𝑓𝑘 ∙ 0.00876
 

 

Where 𝐶𝐶𝑘,0 is the cumulative capacity at the beginning of the time horizon, 𝑃𝐸𝑘,𝑟,𝜏 is the yearly 

generation of electricity (TkWh) in the region 𝑟, 𝑙𝑖𝑓𝑒𝑘 is the technology’s lifetime (in years), 𝑙𝑓𝑘 

its load factor, and 8760 is the number of hours in a year. For non-electric technologies, the formula 

is similar but expressed in EJ. 

 

When expressed in terms of cumulative production, the learning-by-doing cost curve can be 

defined as follows (Ouassou et al., 2021): 

 

𝐶(𝑥) = 𝐶0 (
𝑥

𝑥0
)

𝑏𝑙𝑏𝑑
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Where 𝐶(𝑥) is the cost of producing 𝑥 units, 𝐶0 and 𝑥0 corresponds to values observed at time 𝑡0, 

and 𝑏𝑙𝑏𝑑 is the learning-by-doing index.  

Focusing solely on learning-by-doing may not accurately capture the full extent of a particular 

technology's learning effects, as it does not consider research and development (R&D) 

expenditures (Jamasb, 2006). This limitation can result in overestimating and underestimating 

learning rates (Ouassou et al., 2021). Technological learning can be modelled using a two-factor 

learning curve known as “learning-by-searching” to achieve a more comprehensive representation 

of learning effects. 

 

2.2.3 Two-factor learning curve (learning-by-searching) 

In a two-factor learning curve, more investments in the research will lead to better technological 

progress, thus reducing technology costs. In the early stages, technological progress will likely 

arise from R&D expenditures rather than the accumulation of experience, as the technology is not 

yet commercially viable for the installed capacity to grow (Jamasb, 2006). 

  

Learning-by-searching (LBS) can be modelled with a two-factor learning curve (Bahn & Kypreos, 

2003; Magne, Kypreos & Turton, 2010; Marcucci, 2012): 

 

𝐼𝑁𝑉𝐶𝑘 = {
𝐴𝑘 ⋅ 𝐶𝐶𝑘

−𝑏𝑘𝐶𝑅𝐷𝑘
−𝑐𝑘 ,  if 𝐼𝑁𝑉𝐶𝑘 ≥ 𝑙𝑘

𝑙𝑘 , otherwise
 

 

Where 𝐶𝑅𝐷 is the cumulative R&D expenditures and 𝑐𝑘 is the learning-by-searching index. 

 

2.2.4 Other learning effects 

While using a two-factor learning curve may provide a better representation of learning effects 

compared to a one-factor learning curve, it still has some limitations. The transfer of knowledge 

from other countries or industries, called “spillover”, plays a significant role in technological 

progress at various levels (Lee, Kim, Choi & Koo, 2022) and is not accounted for in the previous 

two-factor learning curve. Spillovers can also arise from other technologies, where a group of 

technologies shares a common component technology that experiences learning (Anandarajah, 

McDowall & Ekins, 2013).  
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To account for technological spillovers from other regions, the investment cost function can be 

modified (Marcucci, 2012):  

 

𝐼𝑁𝑉𝐶𝑘,𝑟 = {
𝐴𝑘 ⋅ (∑ 𝑎𝑖,𝑟𝐶𝐶𝑖,𝑘

𝑖∈𝑅

)

−𝑏𝑘

(∑ 𝑎𝑖,𝑟𝐶𝑅𝐷𝑖,𝑘

𝑖∈𝑅

)

−𝑐𝑘

, if 𝐼𝑁𝑉𝐶𝑘 ≥ 𝑙𝑘

𝑙𝑘 , otherwise

 

 

Where 𝑎𝑖,𝑟 is the spillover coefficient from the region 𝑖 to the region 𝑟. 

 

Other learning effects that have direct and indirect effects on technical, economic, and 

environmental performance have also been introduced in the literature, such as learning-by-using, 

learning-by-interaction, learning-by-implementing and more. These learning effects can be 

factored in by introducing additional terms to the investment cost function (Junginger, van Sark & 

Faaij, 2010; Sagar & Van der Zwaan, 2006; Thomassen et al., 2020). However, including 

additional factors increases the complexity of the learning curve and the uncertainty related to the 

combination of often correlated learning rates (Ouassou et al., 2021). 

 

2.2.5 Uncertainties when modelling ETL 

When modelling endogenous technological learning in an energy system model, various 

uncertainties can impact the outcome of the analysis, leading to inaccurate conclusions. One source 

of uncertainty is the estimation of learning rates, which describe how quickly the cost reduces 

along the learning curve (Mattsson, 2019). Different studies in the literature show significant 

variability in estimated learning rates (Rubin, Azevedo, Jaramillo & Yeh, 2015). Furthermore, 

uncertainties may also arise when modelling technological learning regionally or globally. 

Economic and geographic factors specific to different regions can influence learning rates, 

introducing potential biases when approximating regional learning rates from global learning rates.  

Estimating learning rates for new technologies can also be challenging, as they often lack sufficient 

historical data and might follow different learning curves than conventional technologies in the 

early development stages (Ouassou et al., 2021). When dealing with uncertain learning rates, 

technological improvements can be estimated with the ratio of cumulative capacity over initial 
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capacity (Lee et al., 2022) or by performing a Monte Carlo simulation to estimate uncertain 

learning rates (Kim, Koo, Lee & Yoon, 2012).   

 

2.3 Solving ETL problem in energy models 

Moreover, incorporating learning curves makes the model non-linear and non-convex, which leads 

to increased computational complexity and higher solving times. Traditional solvers can be used 

but may not guarantee optimal solutions for such models. Consequently, algorithms or heuristics 

that can handle non-convexity are required to provide near-optimal solutions.  

 

Two main approaches are used to integrate experience curves in energy system models (Mattsson, 

2019): direct non-linear implementation and piecewise linear approximation of cumulative costs 

or cumulative capacity. The first approach is the most straightforward but may result only in locally 

optimal solutions. Piecewise linear approximation does not depend on the initial starting point of 

the solver and can be faster than commercial solver algorithms (Zeyen et al., 2023). Even though 

the piecewise linear approximation solution may not be globally optimal, it provides a lower bound 

to the direct non-linear approach. A post-optimization calculation of the piecewise linear solution 

with the continuous learning curve provides an upper bound to the optimum (Mattsson, 2019). One 

can be assured that the solution is accurate by reducing the gap between the lower and upper 

bounds. 

 

2.3.1 How ETL is modelled and solved in other energy models 

Many energy models have solved endogenous technological learning and explored various 

approaches. Comparing solving methods, model types, and learning curve implementations can 

provide a more comprehensive understanding of the modelling methods. 

 

In the TIMES (The Integrated MARKAL-EFOM System) model, endogenous technological 

learning is modelled using global cumulative capacity. The cumulative cost curve is approximated 

using a piecewise linear approximation and includes clustered learning options to account for 

spillovers from other technologies (Loulou, Lehtilä, Kanudia, Remme & Goldstein, 2016). The 

endogenous technological learning problem is a Mixed Integer Programming (MIP) problem and 
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is solved with solvers such as CPLEX, EXPRESS, or GUROBI. Because MIP problems are more 

complex to solve, technological learning is activated with an “on-off” switch using $SET ETL 

‘YES’ and is usually only applied in TIMES when necessary (Goldstein, Kanudia, Lehtilä, Remme, 

& Wright, 2016). 

 

In the WITCH (World Induced Technical Change Hybrid) model, endogenous technological 

learning is modelled with learning-by-doing and R&D expenditures. Learning-by-doing is specific 

to wind and solar technologies and is defined in terms of the cumulative installed world capacity. 

R&D affects backstop technologies, batteries for electric vehicles, and the overall system energy 

efficiency. The model assumes perfect technology spillovers and learning rates are constant across 

countries; the model uses five-year time steps, which are assumed to be sufficient for a complete 

flow of technology transfer across firms. The interactions between world regions are modelled as 

a non-cooperative Nash game that is solved recursively. The WITCH model is solved numerically 

in GAMS/CONOPT (Bosetti, Massetti, Tavoni, 2007). 

 

In the GENIE (Global ENergy system with Internalized Experience curves) model, experience 

curves determine investment costs endogenously. To simplify the solving complexity, only 

technologies with a significant potential for cost reductions are treated with experience curves, 

whereas other technologies are considered to have constant investment costs. The model assumes 

perfect spillover, where technology information transfers freely between regions without delay. 

Technology characteristics are identical in all regions and are described as one global learning 

curve (Mattsson, 1997). The model is solved with MINOS in AMPL, but since there is no 

guarantee of an optimal solution, global optimization techniques like simulated annealing are used 

to confirm the solution. Most often, the solution found by MINOS is confirmed by the ones 

produced by heuristic techniques (Mattsson & Wene, 1997). 

 

In the MESSAGE (Model for Energy Supply Strategy Alternatives and their General 

Environmental Impact) model, technological learning is modelled endogenously, where specific 

investment cost is a function of the cumulative installed capacity. In an earlier version of the model, 

“MESSAGE III”, non-convexity is addressed with a mixed-integer programming (MIP) extension 

inside the linear formulation (Seebregts et al., 1998). A branch-and-bound algorithm searches the 



14 

 

solution space along the tree of possible decisions for integer variables to find the optimal solution 

(Messner, 1997). The model is implemented in GAMS and solved with CPLEX. In a reduced-form 

version of MESSAGE studied by Leibowicz, the model is coupled with a technology market model 

structured as a Cournot competition. The technology market model is implemented in GAMS as a 

non-linear program (NLP) and is solved using CONOPT (Leibowicz, 2015). 

 

In the REMIND (REgional Model of INvestment and Development) model, endogenous 

technological learning is modelled through learning-by-doing with a global learning curve and 

internalized spillovers for renewable energy technologies in the power sector (Luderer et al., 

2015). In a recent study on REMIND, different multi-level learning approaches are studied to 

measure the impact of technology diffusion and the regional costs of mitigation policies (Zhang, 

Bauer, Yin & Xie, 2020). This study compares regionalized learning with and without 

interregional spillovers and multi-level learning with varying cost components. The model 

computes the market equilibrium as a Pareto optimal solution that maximizes global welfare or a 

non-cooperative Nash solution that maximizes regional welfare (Luderer et al., 2015). The model 

is implemented in GAMS and solved with CONOPT (Aboumahboub et al., 2020; Luderer et al., 

2015). 

 

In RICE (Regional Integrated model of Climate and the Economy), the original model is enhanced 

with endogenous technological learning in two versions: an R&D-driven one and an LBD-driven 

one (Castelnuovo, Galeotti, Gambarelli & Vergalli, 2005; Junginger et al., 2010). The learning 

curve is modelled as a function of installed capacity. This paper aims to compare the learning 

effects of both factors separately. The two versions are implemented in GAMS and are solved with 

basic simulations under alternative scenarios. Although the two versions result in different outputs, 

they lead to similar qualitative patterns. However, this paper does not explore the interaction 

between R&D and learning-by-doing. 

The following table summarizes the implementation of endogenous technological learning in the 

six models mentioned above. 
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Table 2.1: Comparison of the implementation of ETL in other energy models 

Model Type of model 
1 or 2-factor 

learning curve 
Language Solving method 

TIMES Bottom-up 2FLC GAMS 

Mixed-integer 

programming (CPLEX, 

EXPRESS, or GUROBI) 

WITCH Hybrid 
1FLC (wind, solar) 

2FLC (backstops) 
GAMS 

Non-linear solver 

(CONOPT) 

GENIE Bottom-up 1FLC AMPL 

Non-linear solver 

(MINOS) and simulated 

annealing 

MESSAGE Bottom-up 2FLC GAMS 
Mixed-integer 

programming (CPLEX) 

REMIND Hybrid 1FLC GAMS 
Non-linear solver 

(CONOPT) 

RICE Hybrid 
1FLC (LBD only) 

1FLC (R&D only) 
GAMS Simulation 

 

 

2.4 Decision-making with ETL 

Technological learning can have a significant impact on political decisions. When making choices, 

governments must consider their unique national circumstances, including existing energy 

infrastructures and resource availabilities. The data must be reliable as it influences the evaluation 

of energy costs and mitigation scenarios. For instance, when considering the adoption of new 

hydrogen-based energy sources, the Government of Canada bases its decision on cost 

competitiveness and its potential for decarbonization. However, decision-making becomes more 

complex when multiple objectives are pursued, such as preserving existing economic activities 

and developing new industries while minimizing greenhouse gas emissions. 

 

Moreover, the choice of technology must be accepted by politicians, industries, and the public. 

Accurate learning rates are vital as they significantly influence the evaluation of energy costs and 

mitigation scenarios. Therefore, having precise data is essential when considering alternative 

strategies, long-term consequences, and risks. Depending on the government's risk behaviour, 

uncertain learning rates and cost differences can influence the decision to support a technology. 

Variables such as costs, timing, regional implications, public receptivity, and energy security will 

all impact the decision process. Therefore, incorporating technological learning in decision tools 
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can be beneficial in evaluating different pathways and the impact of each decision on the economy 

and the environment. 

 

To summarize, technological learning refers to the idea that technological costs reduce over time 

as a technology matures. Various types of learning curves, including one-factor and two-factor 

learning curves, can be used to model endogenous technological learning. Estimating learning 

rates and computational complexity can result in uncertainties and challenges when incorporating 

learning curves into energy system models. Additionally, technological learning can influence 

mitigation efforts for climate change during political decision-making processes. 
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Chapter 3  

ETL in MERGE 

3.1 ETL in previous versions of MERGE 

Endogenous technological learning has been a topic of interest in energy modelling for decades. 

Although it was not initially included in the first version of MERGE, it has been added and 

modified in subsequent versions. 

  

• MERGE (1995) 

Endogenous technological learning is not considered in the first version of MERGE. Instead, 

technological learning is specified exogenously over time (Kypreos, 2005). It is assumed that 

generating costs of energy technologies decline at a rate of 0.5% per year due to autonomous 

technological progress. 

 

• MERGE-ETL (2002) 

The first implementation of endogenous technological learning in MERGE was introduced by 

Bahn and Kypreos in 2002. In this version, called “MERGE-ETL”, six electric (solar photovoltaic, 

wind turbine, new nuclear designs, integrated coal-gasification with combined cycle, gas fuel cell 

and gas turbine combined cycle) and two non-electric (hydrogen from solar photovoltaic and 

hydrogen from biomass) technologies are subject to learning, which follows a two-factor learning 

curve in terms of the cumulative capacity. This formulation assumes global technological learning 

without spillover, as there is no technological distinction between regions. In their study, Bahn and 

Kypreos compare several types of learning: a one-factor learning curve, a two-factor learning 

curve with exogenous or endogenous R&D investments, and a two-factor learning curve with 

knowledge stock formulation. Because of the non-convexity caused by the increasing returns 

mechanism, a heuristic iterative approach in three steps is used to solve the model (Bahn & 

Kypreos, 2003). 
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The following figure shows the solving loop of MERGE-ETL as described by Bahn & Kypreos 

(2002). 

 

 

 

 

 

 

 

Note: From MERGE-ETL: An Optimisation Equilibrium Model with Two Different Endogenous 

Technological Learning formulations by O. Bahn and S. Kypreos, 2002, PSI Report, 02(16). 

Copyright 2002 by Bahn & Kypreos. 

 

This heuristic comprises three steps. First, the original MERGE model is initially solved without 

technological learning (step 1). The demands of electric (E) and non-electric energy (N) are fixed 

and are used as starting levels for the ETA-ETL submodule. The ETA-ETL model contains the 

ETA equations of MERGE and the equations related to endogenous technological learning. This 

submodule corresponds to the bottom-up part of the MERGE model in which technological 

learning occurs. With the inclusion of the ETL equations, the resulting model ETA-ETL becomes 

non-convex. The total cumulative cost curve is then linearized by defining a piece-wise linear 

approximation, and the model is solved using mixed-integer programming (step 2). Once the ETA-

ETL model is solved, the energy demands E and N are again fixed and used as starting levels for 

the MERGE-ETL model. The latter includes the complete set of equations in MERGE with the 

ETL equations and is solved using a direct non-linear solver (step 3). Once the MERGE-ETL is 

solved, the demands E and N are again fixed. Steps 2 and 3 are repeated until the new demands 

stop varying within a given margin. Because the initial MERGE model in step 1 is convex, the 

solution is global. The solutions of step 1 and step 2 serve as starting points for solving ETA-ETL 

1. Original 

MERGE  

model 

2. ETA-ETL  

with fixed 

demands as in 

MERGE-(ETL) 

3. MERGE-ETL 

starting from 

previous levels 

DEMAND 

LOOP 

Figure 3.1: An iterative procedure to solve MERGE-ETL 
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and MERGE-ETL, which generally yield a reasonable approximation of the global optimum's 

location. Therefore, the final solution is assumed to be global after all iterations. 

 

• MERGE with learning-by-doing (2004) 

Endogenous technological learning is simplified and reimplemented in the original MERGE 

model. This version follows Manne and Barreto’s mathematical formulation, in which endogenous 

technological learning is modelled using a one-factor learning curve using cumulative production 

(Manne & Barreto, 2004). Two learning technologies, “LBDE” and “LBDN”, representing electric 

and nonelectric learning-by-doing technologies respectively, are modelled. In this version, LBD is 

a parameter that is turned on or off in the input file. Since there are only two learning technologies, 

the model is solved with CONOPT3 and Manne and Barreto reported that the solution is equivalent 

to the output provided by the global solver BARON (Branch-And-Reduce Optimization 

Navigator).  

 

Manne and Barreto’s formulation (2004) of learning costs associated with a technology 𝑘 at time 

period 𝑡: 

Learning cost𝑘  = ∑ 𝑖𝑛𝑐𝑙𝑘

𝑘

∗ 𝑃𝑘,𝑡 [
𝐶𝑃𝑘,𝑡

𝐶𝑃𝑘,0
]

𝑙𝑟𝑘

 

 

Where 𝑖𝑛𝑐𝑙𝑘 is the initial learning cost, 𝑃𝑘,𝑡 is the production of energy, 𝐶𝑃𝑘,𝑡 is the cumulative 

global production, and 𝑙𝑟𝑘 is the learning rate.  

 

• MERGE-ETL for Switzerland (2012) 

In 2012, Marcucci applied MERGE-ETL to the Swiss energy system. This formulation of 

MERGE-ETL compares several endogenous technological learning scenarios with different 

spillover levels between regions. This version follows Bahn and Kypreos’s mathematical 

formulation for the two-factor learning curve but includes exogenous spillovers. The model is 

solved using Bahn and Kypreos’s iterative heuristic. 
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• AD-MERGE 1.0 (2019) 

In AD-MERGE (Bahn et al., 2019), endogenous technological learning still follows Manne and 

Barreto’s formulation without significant changes. LBD can be switched off depending on the 

scenario and the model is solved using CONOPT3. 

 

3.2 Methodology 

This thesis aims to explore the implementation of endogenous technological learning in AD-

MERGE 2.0. To achieve this, two approaches are compared: the Manne-Barreto approach (2004), 

which uses a one-factor learning curve with learning-by-doing in terms of cumulative production, 

and the MERGE-ETL approach (2002), which uses a two-factor learning curve in terms of 

cumulative capacity.  

 

1. Manne-Barreto approach 

Starting from the formulation that is already in AD-MERGE 1.0 (using a one-factor learning 

curve), more learning technologies are added: instead of having only LBDE and LBDN, one 

electric technology, one non-electric technology, and three hydrogen technologies are 

incorporated into a new set of technologies subject to learning-by-doing. This implies adding 

initial learning costs, learning rates and initial cumulative production for each technology. The 

data is also updated using a 2015 base year and updated regions. This model is then solved 

using a direct non-linear solver. 

 

2. MERGE-ETL approach 

The one-factor learning curve is defined in terms of the cumulative capacity (instead of the 

cumulative production in Manne-Barreto’s approach), and a second factor is incorporated into 

the learning curve. The two-factor learning curve is applied to the same five learning 

technologies as in the Manne-Barreto approach. This allows the R&D expenditures to be 

included in the technology costs. This implies introducing new learning parameters, R&D 

expenditures for each technology, and equations to compute the cumulative capacity. New data 

is incorporated to reflect the 2015 base year with updated regions. The model is then solved 

using the iterative heuristic approach described in Figure 3.1 on page 18.  
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Once the two approaches are implemented, the solutions are compared. Based on the quality of 

the solution, the solving time, the complexity of the equations, the data availability, and other 

factors, recommendations are made for the preferred implementation. The preferred approach will 

be kept in future versions of AD-MERGE 2.0.
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Chapter 4  

Optimization techniques for solving non-convex, non-linear 

problems 

Optimization problems can be solved using many algorithms, depending on the problem type. As 

mentioned, incorporating endogenous technological learning in energy models brings non-

convexity into a non-linear model due to the increasing returns linked to the accumulation of 

experience. While a conventional non-linear solver can generate a feasible or even optimal 

solution, there is no guarantee that this solution is global. Obtaining a local optimum could be 

acceptable in some instances, but in the case of scenario analysis in energy models, a global 

optimum is usually preferred for better decision-making. Finding the global optimum usually 

requires more calculations for each iteration, which increases solving time. However, when the 

local optimum is estimated to be “good enough”, one can decide to use this solution instead of the 

global one to avoid dealing with high solving complexity. For both the Manne-Barreto and 

MERGE-ETL approaches, an appropriate solving technique is needed to address the non-

convexity. 

 

4.1 NLP algorithms 

Conventional non-linear solvers can be used even if they do not guarantee global optimality, as 

they can still generate reasonable optimal solutions. Initially, AD-MERGE 1.0 was solved using 

CONOPT3, and early versions of AD-MERGE 2.0 are solved using CONOPT4, as it provides a 

better solution in reduced computation time. Even if a global solution is not found, it can still be 

considered an acceptable solution for the decision-maker's needs.  

 

• CONOPT 

CONOPT is a generalized reduced gradient (GRG) algorithm designed to solve large and sparse 

non-linear models (GAMS, 2024b). CONOPT is a local solver and, therefore, is not best suited for 

non-convex models, as it is not developed to test for convexity. 



23 

 

CONOPT4 is the latest version of the CONOPT algorithm. It has been developed and tuned for 

models where CONOPT3 cannot provide an adequate solution or ends in a locally infeasible 

solution. It can accommodate larger non-linear models with more than 100,000 variables and 

constraints. With the updated formulation of learning-by-doing with five learning technologies, 

AD-MERGE 2.0 has over 75,000 constraints with more than 123,000 variables. Therefore, 

CONOPT4 is more suitable than CONOPT3. 

 

Because CONOPT cannot guarantee the finding of all optimal solutions in a non-convex model, it 

can miss crucial optima in the solving process. Using a solver, like Knitro, that is designed to solve 

non-convex models can be an alternative. 

 

• KNITRO 

Artelys Knitro is an optimization software library primarily designed to find local solutions of 

large continuous non-linear models (Artelys, 2023). It can solve non-linear and non-convex 

problems. While Knitro cannot guarantee to find the global optimum, a multi-start algorithm can 

be used to provide better optimality. For NLP problems, Knitro provides four different algorithms, 

such as barrier methods, active set methods, or sequential quadratic programming methods, that 

can run separately or parallelly (GAMS, 2024c). For the solving of AD-MERGE 2.0 with Knitro, 

a version with and without multi-start is tested as it increases the chances of finding the global 

optimum. 

 

To increase the chance of finding the global optimum, solvers specifically designed to solve non-

linear models at global optimality, like BARON, can be used.  

 

• BARON 

The Branch-And-Reduce Optimization Navigator (BARON) is a global optimization software for 

many types of problems that can solve non-linear and non-convex problems to global optimality 

(Sahinidis, 2023). BARON uses branch-and-reduce, cutting planes, heuristics, and domain 

reduction techniques. Many options can be used with the solver to increase the chances of finding 

the global optimum. For example, setting the number of branch-and-reduce iterations, using a 
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multi-start heuristic, or changing the branching selection strategy. For the solving of AD-MERGE 

2.0 with BARON, the model is executed with and without specifying the number of branch-and-

reduce iterations. When specified, the number of iterations is set to unlimited through the maxiter 

option. Unlike CONOPT and Knitro, BARON can guarantee to provide a global optimum. In 

addition, similar to Knitro, BARON can handle non-convexity. 

 

For license availability purposes, the versions of AD-MERGE 2.0 solved with BARON and Knitro 

are running on the NEOS server hosted by the University of Wisconsin-Madison. 

 

4.2 Heuristics 

Heuristics can also be used to solve non-convex problems and reduce computation time. In several 

models with endogenous technological learning, piecewise linear approximation has been used to 

solve the model and find a global optimum (Seebregts, 1999). This transforms the problem into a 

mixed-integer programming problem and can simplify the mathematical complexity of the 

linearized submodule and improve the solution's quality. However, compared to a direct approach, 

solving endogenous technological learning by a heuristic-based method requires additional steps, 

and the overall number of equations and constraints is greater. Compared to general NLP solvers, 

this heuristic can provide, with few uncertainties, that the optimum is global. However, the solving 

time will usually be longer. 

  

The heuristic used by Bahn and Kypreos is implemented for solving AD-MERGE 2.0 with ETL. 

In GAMS, the solvers MIP and CONOPT4 are used throughout the solving loop.
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Chapter 5  
Modelling ETL in AD-MERGE 2.0 

This chapter presents the equations of the two approaches in the GAMS code and details the steps 

to run the code. The equations have been incorporated into the version of AD-MERGE 2.0 

extracted on February 19th, 2024. Modifications made to the general model after this date are not 

included.  

 

5.1 Manne-Barreto approach 

The Manne-Barreto approach is implemented in two files: a data file containing sets and 

parameters, and a main file containing the equations. 

 

• Data file 

In the data file, several sets and parameters related to learning technologies are incorporated. In 

addition, exogenous costs reductions are removed. The following sets contain the learning 

technologies. 

 

SETS 

    lbdet(et)   Electricity technologies with learning-by-doing 

                /igcc/ 

                 

    lbdnt(nt)   Nonelectric technologies with learning-by-doing 

                /rnew/ 

                 

    lbdht(ht)   Hydrogen technologies with learning-by-doing 

                /electrolysis, coal-h2-CCS, gas-h2-CCS/; 

 

Note: Hydrogen technologies with learning are neither electric nor nonelectric. They belong to a 

separate category, “LBDH.” This is because their production function is PH instead of PN or PE. 

For electric and non-electric learning technologies, the data related to igcc and rnew have not been 

updated since their initial implementation as learning technologies. These technologies should 

eventually be updated for a more accurate output. They are kept in the model to provide a 

framework for future learning technologies. 
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The following sets contain the technologies without learning. 

 

SET  

NLBDE(ET)  index of ET technologies without learning; 

NLBDE(ET)=ET(ET)-LBDET(ET) ; 

 

SET 

NLBDE_nonvre(et) interserction of nonvre(et) and NLBDE(et); 

NLBDE_nonvre(et) = NLBDE(et) * nonvre(et); 

  

SET 

NLBDN(NT)  index of NT technologies without learning; 

NLBDN(NT)=NT(NT)-LBDNT(NT) ; 

 

SET 

NHT(ht) hydrogen technologies without learning 

/coal-h2,gas-h2/; 

 

The following parameters contain the technology characteristics for learning technologies 

(electric, non-electric and hydrogen, respectively). 

 

PARAMETERS 

    inlce(LBDET)   initial learning cost - $ per thousand kwh 

    cpe0(LBDET)    initial cumulative production - tkwh 

    lrne(LBDET)    learning parameter; 

 

TABLE LBDETP(LBDET , *)  LEARNING BY DOING PARAMETERS - ELECTRIC TECHNOLOGIES 

 

        inlce    cpe0   lrne 

IGCC     50.0     1    -.0893; 

 

 

PARAMETERS 

    inlcn(LBDNT)   initial learning cost - $ per GJ 

    cpn0(LBDNT)    initial cumulative production - GJ 

    lrnn(LBDNT)    learning parameter; 

 

TABLE LBDNTP(LBDNT , *)  LEARNING BY DOING PARAMETERS - NONELECTRIC TECHNOLOGIES 

 

        inlcn    cpn0   lrnn 

RNEW     6.0      1    -.1520; 

 

PARAMETERS 

    inlch(LBDHT)   initial learning cost - $ per GJ 

    cph0(LBDHT)    initial cumulative production - GJ 
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    lrnh(LBDHT)    learning parameter; 

 

TABLE LBDHTP(LBDHT , *)  LEARNING BY DOING PARAMETERS - HYDROGEN TECHNOLOGIES 

 

                inlch    cph0     lrnh 

electrolysis     5.0       1     -.2009 

coal-h2-CCS     23.81      1     -.0893 

gas-h2-CCS      07.99      1     -.0740; 

 

• Main file 

In the main file, the formulation of the cost of energy is modified. The terms related to energy 

production are updated in the cost of energy equation. For technologies without learning, the sets 

of technologies are updated to keep only the needed technologies. In the following code, only the 

modified lines are included. 

 

costnrg(rg,tp,sw)$(pp(tp) and st(tp,sw))..     

EC(rg,tp,sw) =g= .001 * (                     

 

*   Electric production cost (without learning) 

sum((NLBDE_nonvre,ts),PE(NLBDE_nonvre,tp,ts,rg,sw)*ecst(NLBDE_nonvre,tp,rg)*  

cstred(tp)) 

                    + …                                                            

                     

* Hydrogen production cost (without learning) 

 + sum(nht, PH(nht,tp,rg,sw)*hcst(nht,tp,rg)* cstred(tp)) 

 

* Non-electric production cost (without learning) 

 + sum(NLBDN, PN(nlbdn,tp,rg,sw)*ncst(nlbdn,rg)* cstred(tp)) 

 

*   Electric lbde learning costs 

+ sum((LBDET,ts),LBDETP(LBDET,'inlce')*PE(LBDET,tp,ts,rg,sw)*(CPE(tp,sw,lbdet)/ 

LBDETP(LBDET,'cpe0'))**LBDETP(LBDET,'lrne')) 

 

*   Nonelectric lbdn learning costs 

+ sum(LBDNT,LBDNTP(LBDNT,'inlcn')*PN(LBDNT,tp,rg,sw)*(CPN(tp,sw,lbdnt)/ 

LBDNTP(LBDNT,'cpn0'))**LBDNTP(LBDNT,'lrnn')) 

                 

*   Hydrogen lbd learning costs 

+ sum(LBDHT,LBDHTP(LBDHT,'inlch')*PH(LBDHT,tp,rg,sw)*(CPH(tp,sw,lbdht)/ 

LBDHTP(LBDHT,'cph0'))**LBDHTP(LBDHT,'lrnh')) 
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                + … ); 

 

• Execution 

To run the model using the Manne-Barreto approach, the files containing the updated LBD 

formulation must be used. This new formulation enables the use of multiple electric and non-

electric learning technologies. To implement additional technologies, the corresponding 

technology characteristics need to be added to the data file. The solving process of this approach 

is the same as that of AD-MERGE 2.0 without LBD. 

 

The user has to make sure that $setglobal lbd = yes in the input scenario. However, if using 

lbd = no, the code might not run smoothly. In this case, it is preferable to use a version of AD-

MERGE 2.0 without the new LBD equations. 

 

5.2 MERGE-ETL approach 

The MERGE-ETL approach, similar to the Manne-Barreto approach, involves using a data file 

and a main file. However, because the solving loop of the MERGE-ETL approach is implemented 

in three steps that are modelled separately, it uses one data file and three main files, one for each 

submodule. 

 

• Data file 

In the data file, the following technology characteristics are incorporated. Similarly to the Manne-

Barreto approach, sets of technologies with learning are defined. 

SETS 

    etl(et)      ELECTRICITY TECHNOLOGIES WITH LEARNING 

                 /igcc/ 

                  

    ntl(nt)      NON ELECTRIC TECHNOLOGIES WITH LEARNING 

                 /rnew/ 

                  

    htl(ht)      HYDROGEN TECHNOLOGIES WITH LEARNING 

                 /electrolysis, coal-h2-ccs, gas-h2-ccs/; 
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Note: Similarly to the Manne-Barreto approach, hydrogen technologies with learning are neither 

electric nor nonelectric. They belong to a separate category, “HTL.” Again, the data related to igcc 

and rnew have not been updated since their initial implementation as learning technologies. 

 

The following sets are the technologies without learning. 

SET 

NETL(ET)  index of ET technologies without learning; 

NETL(ET)=ET(ET)-ETL(ET) ; 

 

SET 

NETL_nonvre(et) interserction of nonvre(et) and NETL(et); 

NETL_nonvre(et) = NETL(et) * nonvre(et); 

  

SET 

NNTL(NT)  index of NT technologies without learning; 

NNTL(NT)=NT(NT)-NTL(NT) ; 

 

SET 

NHT(ht) hydrogen technologies without learning 

/coal-h2,gas-h2/; 

 

The following parameters and equations are related to learning-by-doing and learning-by-

searching. 

PARAMETER 

pr(etl)  progress ratio for learning-by-doing 

/igcc          0.94/ 

 

prn(ntl)  progress ratio for learning-by-doing 

/rnew       0.90/ 

 

prh(htl)  progress ratio for learning-by-doing 

/electrolysis       0.87 

coal-h2-ccs        0.94 

gas-h2-ccs         0.95/ 

 

prrd(etl)  progress ratio related to R&D 

/igcc          0.96/ 

 

prrdn(ntl)  progress ratio related to R&D 

/RNEW       0.95/ 
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prrdh(htl)  progress ratio related to R&D 

/electrolysis   0.99 

coal-h2-ccs    0.94 

gas-h2-ccs     0.99/ 

 

cap0(etl)  initial capacity in GW 

/igcc          0.48/ 

 

cap0n(ntl)  initial capacity in EJ per year 

/rnew        1./ 

 

cap0h(htl)  initial capacity in EJ 

/electrolysis       0.006 

coal-h2-ccs        0.024 

gas-h2-ccs         0.080/ 

 

cf(etl)  capacity (load) factor 

/igcc          0.7/ 

 

cfn(ntl)  capacity (load) factor 

/rnew       1/ 

 

cfh(htl)  capacity (load) factor 

/electrolysis   0.55 

coal-h2-ccs    0.9 

gas-h2-ccs     0.9/ 

 

spcost1(etl) specific investment cost in 2000 (in USD per kW) 

/igcc 2019.59/ 

 

spcostfl(etl) floor investment cost (in USD per kW) 

/igcc 562.08/ 

 

spcost1n(ntl) specific investment cost in 2015 (in USD per GJ) 

/rnew 6/ 

 

spcostfln(ntl) floor investment cost (in USD per GJ) 

/rnew    2.25/ 

 

spcost1h(htl) specific investment cost in 2015 (in USD per GJ) 

/electrolysis    5 

coal-h2-ccs     23.81 

gas-h2-ccs      7.99/ 

 

spcostflh(htl) floor investment cost (in USD per GJ) 
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/electrolysis    1.25 

coal-h2-ccs     11.91 

gas-h2-ccs      4.00/ 

 

life(etl)  life time in years 

/igcc            30/ 

 

lifen(ntl)  life time in years 

/rnew       30/ 

 

lifeh(htl)  life time in years 

/electrolysis    25 

coal-h2-ccs     40 

gas-h2-ccs      40/ 

 

crd0(etl)  initial cumulative R&D spending in 1989 (billion USD90) 

/igcc         7.05/ 

 

crd0n(ntl)  initial cumulative R&D spending in 1989 (billion USD90) 

/RNEW        1.0/ 

 

crd0h(htl)  initial cumulative R&D spending in 2015 (billion USD2015) 

/electrolysis    0.46 

coal-h2-ccs     2.10 

gas-h2-ccs      3.57/; 

 

TABLE ard_exo(ETL,tp)  annual R&D expenditures in billion USD90 

              2020    2030    2040    2050    2060    2070    2080    2090    

2100    2110    2120    2130    2140    2150    2160 

igcc          1.16    1.59    2.16    2.72    3.36      4      4.2    4.7      5       

5.5     5.7     5.8     5.9     6       6.1; 

 

TABLE ardn_exo(ntl,tp)  annual R&D expenditures in billion (USD90) 

                2015    2020    2030    2040    2050    2060    2070    2080    

2090    2100    2110    2120    2130    2140    2150    2160 

RNEW                    0.20    0.26    0.33    0.41    0.51    0.8     0.9     

1       1.1     1.2     1.1     1.1     1.0     1       1; 

 

TABLE ardh_exo(htl,tp)  annual R&D expenditures in billion (USD2015) 

                2015    2020    2030    2040    2050    2060    2070    2080    

2090    2100    2110    2120    2130    2140    2150    2160 

electrolysis    0.19    0.66    10      11      12      13      14      15      

15.5    15      15      14.5    14      14      14      13.5     

coal-h2-ccs     2.10    2.11    7.8      8      9       10      10.5    11      

11.5    12      12.5    12      12      12      12      11.5   



32 

 

gas-h2-ccs      3.57    3.58    13.26    14     15      16      16      16      

16.5    16      16      15.5    15      15      15      14.5; 

 

The following parameters and equations are related to the formulation of the learning curve. 

 

PARAMETERS 

aanew(etl)   specific cost at unit cum. cap. and R&D expenditures 

aannew(ntl)  specific cost at unit cum. cap. and R&D expenditures 

aahnew(htl)  specific cost at unit cum. cap. and R&D expenditures 

        

bb(etl)      learning by doing index 

bbn(ntl)     learning by doing index 

bbh(htl)     learning by doing index 

 

ccf(etl)     learning by searching index 

ccfn(ntl)    learning by searching index 

ccfh(htl)    learning by searching index 

 

crd(tp,etl)  cumulative R&D expenditures (exogenous) 

crdn(tp,ntl) cumulative R&D expenditures (exogenous) 

crdh(tp,htl) cumulative R&D expenditures (exogenous) 

 

spcost(etl)  SC0: specific investment cost in $ per kW 

spcostn(ntl) SC0: specific investment cost in $ per GJ 

spcosth(htl) SC0: specific investment cost in $ per GJ; 

 

bb(ETL)   = -log(pr(ETL))/log(2); 

bbn(NTL)  = -log(prn(NTL))/log(2); 

bbh(HTL)  = -log(prh(HTL))/log(2); 

 

ccf(ETL)  = -log(prrd(ETL))/log(2); 

ccfn(NTL) = -log(prrdn(NTL))/log(2); 

ccfh(HTL) = -log(prrdh(HTL))/log(2); 

 

crd(TP,ETL)=crd0(ETL)+sum(TPP$(ord(TPP)LE ord(TP)),nyper(TPP)*ard_exo(ETL,TPP)); 

crdn(TP,NTL)=crd0n(NTL)+sum(TPP$(ord(TPP)LEord(TP)),nyper(TPP)*ardn_exo(NTL,TPP)

); 

crdh(TP,HTL)=crd0h(HTL)+sum(TPP$(ord(TPP)LEord(TP)),nyper(TPP)*ardh_exo(HTL,TPP)

); 

                                  

spcost(ETL) = sum(rg,1000*param(ETL)*cstfr(ETL)*ecst(ETL,"2015",rg)/crfac(ETL)); 

spcostn(NTL)= sum(rg,paramn(NTL)*cstfrn(NTL)*ncst(NTL,rg)/crfacn(NTL)); 

spcosth(HTL)= sum(rg,paramh(HTL)*cstfrh(HTL)*hcst(HTL,"2015",rg)/crfach(HTL)); 

 

aanew(ETL) = spcost(ETL) * (cap0(ETL)**bb(ETL)) * (crd0(ETL)**ccf(ETL)); 
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aannew(NTL) = spcostn(NTL) * (cap0n(NTL)**bbn(NTL)) * (crd0n(NTL)**ccfn(NTL)); 

aahnew(HTL) = spcosth(HTL) * (cap0h(HTL)**bbh(HTL)) * (crd0h(HTL)**ccfh(HTL)); 

 

• Main file (MIP formulation) 

In the main file of the MIP formulation, only the ETA-ETL module is solved. This is where the 

piecewise linear approximation of the cost function is included. The following equations assign 

the initial and maximum cumulative cost for each learning technology. 

 

* Assignment of initial cumulative cost 

ccost0(ETL)= aanew(ETL) / (1-bb(ETL)) * (cap0(ETL)**(1-bb(ETL))); 

ccost0n(NTL) = aannew(NTL) / (1-bbn(NTL)) * (cap0n(NTL)**(1-bbn(NTL))); 

ccost0h(HTL) = aannew(HTL) / (1-bbh(HTL)) * (cap0n(HTL)**(1-bbh(HTL))); 

 

* Assignment of the maximum cumulative cost 

ccostm(ETL)= aanew(ETL) / (1-bb(ETL)) * (ccapm(ETL)**(1-bb(ETL))); 

ccostmn(NTL) = aannew(NTL) / (1-bbn(NTL)) * (ccapmn(NTL)**(1-bbn(NTL))); 

ccostmh(HTL) = aannew(HTL) / (1-bbh(HTL)) * (ccapmn(HTL)**(1-bbh(HTL))); 

 

The following loops compute the weighting of the segment lengths.  

 

weig('0',ETL)=0; 

scount=1; 

LOOP(KP$(ORD(KP) GE 2), 

  weig(KP,ETL)$(ORD(KP) LE SEG(ETL) + 1) = 

  (2**(-SEG(ETL)+scount-1))/(sum(RP$(ORD(RP) LE SEG(ETL)),2**(-SEG(ETL)+ORD(RP)-

1))); 

  scount=scount+1; 

  ); 

 

weign('0',NTL)=0; 

scount=1; 

LOOP(KP$(ORD(KP) GE 2), 

  weign(KP,NTL)$(ORD(KP) LE SEGn(NTL)+1) = 

  (2**(-SEGn(NTL)+scount-1))/(sum(RP$(ORD(RP) LE SEGn(NTL)),2**(-

SEGn(NTL)+ORD(RP)-1))); 

  scount=scount+1; 

  ); 

   

weigh('0',HTL)=0; 

scount=1; 

LOOP(KP $(ORD(KP) GE 2), 

  weigh(KP,HTL)$(ORD(KP) LE SEGn(HTL)+1) = 



34 

 

  (2**(-SEGn(HTL)+scount-1))/(sum(RP$(ORD(RP) LE SEGn(HTL)),2**(-

SEGn(HTL)+ORD(RP)-1))); 

  scount=scount+1; 

 ); 

 

The following equations compute the cumulative cost at each kink point. 

 

ccostk('0',ETL)=ccost0(ETL); 

scount=1; 

LOOP(KP $(ORD(KP) GE 2), 

  ccostk(KP,ETL) $(ORD(KP) LE SEG(ETL)+1)= 

    ccostk(KP-1,ETL)+((ccostm(ETL)-ccost0(ETL))*weig(KP,ETL)); 

  scount=scount+1; 

  ); 

   

ccostkn('0',ntl)=ccost0n(ntl); 

scount=1; 

LOOP(KP $(ORD(KP) GE 2), 

  ccostkn(KP,ntl) $(ORD(KP) LE SEGn(ntl)+1)= 

  ccostkn(KP-1,ntl) + ( (ccostmn(ntl)-ccost0n(ntl))*weign(KP, ntl)); 

  scount=scount+1; 

  ); 

   

ccostkh('0',htl)=ccost0h(htl); 

scount=1; 

LOOP(KP $(ORD(KP) GE 2), 

  ccostkh(KP,htl) $(ORD(KP) LE SEGn(htl)+1)= 

  ccostkh(KP-1,htl) + ( (ccostmh(htl)-ccost0h(htl))*weigh(KP, htl)); 

  scount=scount+1; 

  ); 

 

The following equations compute the cumulative capacity at each kink point. 

 

ccapk(KP,ETL)$(ORD(KP) LE SEG(ETL)+1) = 

((1-bb(ETL))*ccostk(KP,ETL)/aanew(ETL))**(1/(1-bb(ETL))); 

   

ccapkn(KP,NTL)$(ORD(KP) LE SEGn(NTL)+1) = 

((1-bbn(NTL))*ccostkn(KP,NTL)/aannew(NTL) )**(1/(1-bbn(NTL))); 

   

ccapkh(KP,HTL)$(ORD(KP) LE SEGn(HTL)+1) = 

((1-bbh(HTL))*ccostkh(KP,HTL)/aannew(HTL))**(1/(1-bbh(HTL))); 

 

The following equations are related to the interpolation of the cumulative cost. 

 

* Assignment of beta coeff. for interpolation of cumulative cost 
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beta(KP,ETL) $(ORD(KP) LE SEG(ETL)+1)= 

  (ccostk(KP,ETL)-ccostk(KP-1,ETL))/(ccapk(KP,ETL)-ccapk(KP-1,ETL)); 

   

betan(KP,NTL) $(ORD(KP) LE SEGn(NTL)+1)= 

  (ccostkn(KP,NTL)-ccostkn(KP-1,NTL))/(ccapkn(KP,NTL)-ccapkn(KP-1,NTL)); 

   

betah(KP,HTL) $(ORD(KP) LE SEGn(HTL)+1)= 

  (ccostkh(KP,HTL)-ccostkh(KP-1,HTL))/(ccapkh(KP,HTL)-ccapkh(KP-1,HTL)); 

   

* Assignment of alpha coeff. for interpolation of cumulative cost 

alph(KP,ETL) $(ORD(KP) LE SEG(ETL)+1)=  

  ccostk(KP-1,ETL) - beta(KP,ETL)*ccapk(KP-1,ETL); 

   

alphn(KP,NTL) $(ORD(KP) LE SEGn(NTL)+1)= 

  ccostkn(KP-1,NTL) - betan(KP,NTL)*ccapkn(KP-1, NTL); 

 

alphh(KP,HTL) $(ORD(KP) LE SEGn(HTL)+1)= 

  ccostkh(KP-1,HTL) - betah(KP,HTL)*ccapkh(KP-1, HTL);   

 

The next equations define the cumulative capacity for learning technologies. 

 

CAPE(RG, ETL,TP,ts) $(ORD(TP) GT 2) .. 

  sum(sw,PE(ETL,TP,ts,RG,sw))/(CF(ETL)*UNITS(ETL)) =E= SUM(TT$((ORD(TT) LE 

ORD(TP)) AND (ORD(TT) GT ORD(TP)-LIFE(ETL)/NYPER(TP))), 

 EINV(RG,ETL,TT)*nyper(TT)) + 

sum(sw,PE(ETL,"2015",ts,RG,sw))/(CF(ETL)*UNITS(ETL))*resid(TP); 

                         

CAPNE(RG, NTL,TP) $(ORD(TP) GT 2) .. 

  sum(sw,PN(NTL,TP,RG,sw))/CFN(NTL) =E= SUM(TT$((ORD(TT) LE ORD(TP)) AND 

(ORD(TT) GT ORD(TP)-LIFEN(NTL)/NYPER(TP))), 

  NINV(RG,NTL,TT)*nyper(TT)) + sum(sw,PN(NTL,"2015",RG,sw))/CFN(NTL)*resid(tp); 

                         

CAPH(RG, HTL,TP) $(ORD(TP) GT 2) .. 

  sum(sw,PH(HTL,TP,RG,sw))/CFN(HTL) =E= SUM(TT$((ORD(TT) LE ORD(TP)) AND 

(ORD(TT) GT ORD(TP)-LIFEN(HTL)/NYPER(TP))), 

  HINV(RG,HTL,TT)*nyper(TT)) + sum(sw,PH(HTL,"2015",RG,sw))/CFN(HTL)*resid(tp); 

                       

GROWTH(ETL,TP) $(ORD(TP) GT 2) .. 

  GCAP(ETL,TP) =E=  SUM(TT $ ((ORD(TT) LE ORD(TP)) AND (ORD(TT) GT 2)), 

                        SUM (RG, EINV(RG,ETL,TT)*nyper(TT))/CAP0(ETL)) +1.0; 

    

GROWTHN(NTL,TP)$(ORD(TP) GT 1) .. 

   GCAPN(NTL,TP) =E= SUM(TT $ (ORD(TT) LE ORD(TP)), SUM(RG, SUM(SW, 

PN(NTL,TT,RG,SW)*nyper(TT)))/CAP0N(NTL)) + 1.0; 
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GROWTHH(HTL,TP)$(ORD(TP) GT 1) .. 

   GCAPH(HTL,TP) =E= SUM(TT $ (ORD(TT) LE ORD(TP)), SUM(RG, SUM(SW, 

PH(HTL,TT,RG,SW)*nyper(TT)))/CAP0N(HTL)) + 1.0; 

 

GROWTHI(ETL,TP) $(ORD(TP) LE 2) ..  GCAP(ETL,TP) =E= 1.0; 

GROWTHNI(NTL,TP)$(ORD(TP) LE 1) ..   GCAPN(NTL,TP) =E= 1.0;  

GROWTHHI(HTL,TP)$(ORD(TP) LE 1) ..   GCAPH(HTL,TP) =E= 1.0; 

    

The following equations define the cumulative capacity interpolation and the cumulative cost 

interpolation. 

 

EQCCAP(TP,ETL)..  GCAP(ETL,TP) * CAP0(ETL) =E=  

  SUM(KP$((ORD(KP) GE 2)$(ORD(KP) LE SEG(ETL)+1)), LAMBD(TP, ETL, KP )); 

     

EQCCAPN(TP,NTL )..  GCAPN(NTL,TP ) * CAP0N(NTL) =E=  

  SUM(KP$((ORD(KP) GE 2)$(ORD(KP) LE SEGN(NTL)+1)), LAMBDN(TP,NTL,KP)); 

   

EQCCAPH(TP,HTL )..  GCAPH(HTL,TP ) * CAP0N(HTL) =E=  

  SUM(KP$((ORD(KP) GE 2)$(ORD(KP) LE SEGN(HTL)+1)), LAMBDH(TP,HTL,KP)); 

   

* Force sum of binary variables delta to 1 

EQDEL(TP, ETL ).. 

  SUM(KP$((ORD(KP) GE 2)$(ORD(KP) LE SEG(ETL)+1)), DELTA(TP,ETL,KP)) =E= 1; 

   

EQDELN(TP,NTL).. 

  SUM(KP$((ORD(KP) GE 2)$(ORD(KP) LE SEGN(NTL)+1)), DELTAN(TP,NTL,KP)) =E= 1; 

   

EQDELH(TP,HTL).. 

  SUM(KP$((ORD(KP) GE 2)$(ORD(KP) LE SEGN(HTL)+1)), DELTAH(TP,HTL,KP)) =E= 1; 

   

* Cumulative Cost Interpolation 

EQCCOS(TP,ETL ).. 

  CCOST(TP,ETL) =E=  

  SUM(KP$((ORD(KP) GE 2)$(ORD(KP) LE SEG(ETL)+1)), 

      LAMBD(TP,ETL,KP)*BETA(KP,ETL)+DELTA(TP,ETL,KP)*ALPH(KP,ETL)); 

       

EQCCOSN(TP,NTL).. 

  CCOSTN(TP,NTL) =E= 

  SUM(KP$((ORD(KP) GE 2)$(ORD(KP) LE SEGN(NTL)+1)), 

  LAMBDN(TP,NTL,KP)*BETAN(KP,NTL)+DELTAN(TP,NTL,KP)*ALPHN(KP,NTL)); 

   

EQCCOSH(TP,HTL).. 

  CCOSTH(TP,HTL) =E= 

  SUM(KP$((ORD(KP) GE 2)$(ORD(KP) LE SEGN(HTL)+1)), 

  LAMBDH(TP,HTL,KP)*BETAH(KP,HTL)+DELTAH(TP,HTL,KP)*ALPHH(KP,HTL)); 
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* Constraints on lambda 

EQLOG1(TP,ETL,KP)$((ORD(KP) GE 2)$(ORD(KP) LE SEG(ETL)+1)).. 

  LAMBD(TP,ETL,KP) =G= CCAPK(KP-1,ETL)*DELTA(TP,ETL,KP); 

   

EQLOG1N(TP,NTL,KP)$((ORD(KP) GE 2)$(ORD(KP) LE SEGN(NTL)+1)).. 

  LAMBDN(TP,NTL,KP) =G= CCAPKN(KP-1,NTL)*DELTAN(TP,NTL,KP); 

   

EQLOG1H(TP,HTL,KP)$((ORD(KP) GE 2)$(ORD(KP) LE SEGN(HTL)+1)).. 

  LAMBDH(TP,HTL,KP) =G= CCAPKH(KP-1,HTL)*DELTAH(TP,HTL,KP); 

 

EQLOG2(TP,ETL,KP)$((ORD(KP) GE 2)$(ORD(KP) LE SEG(ETL)+1)).. 

  LAMBD(TP,ETL,KP) =L= CCAPK(KP,ETL)*DELTA(TP,ETL,KP); 

   

EQLOG2N(TP,NTL,KP)$((ORD(KP) GE 2)$(ORD(KP) LE SEGN(NTL)+1)).. 

  LAMBDN(TP,NTL,KP )=L= CCAPKN(KP,NTL)*DELTAN(TP,NTL,KP); 

   

EQLOG2H(TP,HTL,KP)$((ORD(KP) GE 2)$(ORD(KP) LE SEGN(HTL)+1)).. 

  LAMBDH(TP,HTL,KP )=L= CCAPKH(KP,HTL)*DELTAH(TP,HTL,KP); 

     

* Investments to be discounted 1st period 

EQIC1(RB,ETL).. 

  ICOST(RB,ETL) =E= CCOST(RB,ETL) * (crd(RB,ETL)**(-ccf(ETL))) - ccost0(ETL) * 

(crd0(ETL)**(-ccf(ETL))); 

                       

EQIC1N(RB,NTL).. 

  ICOSTN(RB,NTL) =E= CCOSTN(RB,NTL) * (crdn(RB,NTL)**(-ccfn(NTL))) - 

ccost0n(NTL) * (crd0n(NTL)**(-ccfn(NTL))); 

                        

EQIC1H(RB,HTL).. 

  ICOSTH(RB,HTL) =E= CCOSTH(RB,HTL) * (crdh(RB,HTL)**(-ccfh(HTL))) - 

ccost0n(HTL) * (crd0n(HTL)**(-ccfh(HTL))); 

 

* Investments to be discounted , other periods 

EQIC2(TP+1,ETL).. 

  ICOST(TP+1,ETL) =E= CCOST(TP+1,ETL) * (crd(TP+1,ETL)**(-ccf(ETL))) - 

CCOST(TP,ETL) * (crd(TP,ETL)**(-ccf(ETL))); 

                         

EQIC2N(TP+1,NTL).. 

  ICOSTN(TP+1,NTL) =E= CCOSTN(TP+1,NTL) * (crdn(TP+1,NTL)**(-ccfn(NTL))) - 

CCOSTN(TP,NTL) * (crdn(TP,NTL)**(-ccfn(NTL))); 

                          

EQIC2H(TP+1,HTL).. 

  ICOSTH(TP+1,HTL) =E= CCOSTH(TP+1,HTL) * (crdh(TP+1,HTL)**(-ccfh(HTL))) - 

CCOSTH(TP,HTL) * (crdh(TP,HTL)**(-ccfh(HTL))); 
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The following equation corresponds to the updated formulation of the cost of energy with a two-

factor learning curve. In the MIP formulation, this is the objective function. Only the modified 

lines are included. 

OBJETAMIP.. 

    COSTMIP =g= .001 * ( 

* Electric costs, discounted 

SUM((TP,ETL,rg), 0.001 *ICOST(TP,ETL) *(1-SALV_INV(ETL,TP)) * 

       (1+depr(rg))**(-nyper(tp)*time(TP))) 

* Non-Electric learning costs, discounted 

+ SUM((TP,NTL,rg), ICOSTN(TP,NTL) *(1-SALV_INVN(NTL,TP)) * 

       (1+depr(rg))**(-nyper(tp)*time(TP)))  

* Hydrogen learning costs, discounted 

+ SUM((TP,HTL,rg), ICOSTH(TP,HTL)*(1-SALV_INVH(HTL,TP))* 

(1+depr(rg))**(-nyper(tp)*time(TP)))             

* Discounted non-learning part of generation cost of tech with learning 

+ SUM((TP,RG), (1+depr(rg))**(-nyper(tp)*time(TP)) * DISCPP(tp) * ( 

         SUM((sw,ETL,ts), (1.-cstfr(ETL))*PE(ETL,TP,ts,RG,sw) *ECST(ETL,tp,RG))  

+ SUM((sw,NTL), (1.-cstfrn(NTL))*PN(NTL,TP,RG,sw)*NCST(NTL,RG)) 

+ SUM((sw,HTL), (1.-cstfrh(HTL))*PH(HTL,TP,RG,sw)*HCST(HTL,tp,RG)))) 

*   Costs for electric technologies without learning                     

+ sum((NETL_nonvre,ts,tp,rg,sw),    

PE(NETL_nonvre,tp,ts,rg,sw)*ecst(NETL_nonvre,tp,rg)* cstred(tp)) 

                       

                    + … 

                     

*   Costs for hydrogen technologies without learning                     

+ sum(nht, PH(nht,tp,rg,sw)*hcst(nht,tp,rg)* cstred(tp)) 

 

*   Costs for non-electric technologies without learning                     

+ sum(nntl, PN(nntl,tp,rg,sw)*ncst(nntl,rg)* cstred(tp)) 

 

                    + … )); 

 

• Main file (NLP formulation) 

In the main file of the NLP formulation, the whole AD-MERGE model with ETL equations is 

solved. The data file contains the same information as the MIP formulation. The following 

equations compute the cumulative capacity for each learning technology, but without linearization. 

 

CAPE(RG, ETL,TP) $(ORD(TP) GT 2) .. 

  sum((ts,sw),PE(ETL,TP,ts,RG,sw)/(CF(ETL)*UNITS(ETL))) =E=  sum((ts,sw),SUM(TT$ 

((ORD(TT) LE ORD(TP)) AND (ORD(TT) GT ORD(TP)-LIFE(ETL)/NYPER(TP))), 
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EINV(RG,ETL,TT)*nyper(TT)) + 

PE(ETL,"2015",ts,RG,sw)/(CF(ETL)*UNITS(ETL))*RESID(TP)); 

 

GROWTH(ETL,TP) $(ORD(TP) GT 2) .. 

  GCAP(ETL,TP) =E=  SUM(TT $ ((ORD(TT) LE ORD(TP)) AND (ORD(TT) GT 2)), 

                        SUM (RG, EINV(RG,ETL,TT)*nyper(TT) )/CAP0(ETL)) +1.0 ; 

 

GROWTHI(ETL,TP) $(ORD(TP) LE 2) ..  GCAP(ETL,TP) =E= 1.0; 

                      

CAPNE(RG, NTL,TP) $(ORD(TP) GT 2) .. 

  sum(sw,PN(NTL,TP,RG,sw)/CFN(NTL)) =E=  sum(sw,SUM(TT $ ((ORD(TT) LE ORD(TP)) 

AND (ORD(TT) GT ORD(TP)-LIFEN(NTL)/NYPER(TP))), 

NINV(RG,NTL,TT)*nyper(TT)) + PN(NTL,"2015",RG,sw)/CFN(NTL)*resid(tp)); 

 

    

GROWTHN(NTL,TP)$(ORD(TP) GT 1) .. 

   GCAPN(NTL,TP) =E= SUM(TT $ (ORD(TT) LE ORD(TP) ), SUM ((RG,sw), 

PN(NTL,TT,RG,sw)*nyper(TT))/(CAP0N(NTL)*CFN(NTL)*LIFEN(NTL))) +1.0 ; 

 

GROWTHNI(NTL,TP)$(ORD(TP) LE 1) ..   GCAPN(NTL,TP) =E= 1.0; 

    

CAPH(RG, HTL,TP) $(ORD(TP) GT 2) .. 

  sum(sw,PH(HTL,TP,RG,sw)/CFH(HTL)) =E=  sum(sw,SUM(TT $ ((ORD(TT) LE ORD(TP)) 

AND (ORD(TT) GT ORD(TP)-LIFEH(HTL)/NYPER(TP))), 

HINV(RG,HTL,TT)*nyper(TT)) + PH(HTL,"2015",RG,sw)/CFH(HTL)*resid(tp)); 

    

GROWTHH(HTL,TP)$(ORD(TP) GT 1) .. 

   GCAPH(HTL,TP) =E= SUM(TT $ (ORD(TT) LE ORD(TP) ), SUM ((RG,sw), 

PH(HTL,TT,RG,sw)*nyper(TT) )/(CAP0H(HTL)*CFH(HTL)*LIFEH(HTL))) +1.0 ; 

 

GROWTHHI(HTL,TP)$(ORD(TP) LE 1) ..   GCAPH(HTL,TP) =E= 1.0;  

 

 

The following equation is the updated formulation of the cost of energy with a two-factor 

learning curve for the NLP formulation. Only the modified lines are included. 

 

costnrg(rg,tp,sw)$(pp(tp) and st(tp,sw))..    EC(rg,tp,sw) =g= .001 * ( 

*   Learning costs electric 

sum((ETL,ts), (((gcap(ETL,TP)**(1-bb(ETL)))*(crd(TP,ETL)**(-ccf(ETL))) - 

                    (gcap(ETL,TP-1)**(1-bb(ETL)))*(crd(TP-1,ETL)**(-ccf(ETL)))) 

/ (1-bb(ETL))* cap0(ETL)*spcost(ETL) * (crd0(ETL)**ccf(ETL)) * (1-

salv_inv(ETL,TP-1)))$(ord(TP) GT 2)) 

+ sum(etl,( ((gcap(ETL,"2015")**(1-bb(ETL)))*(crd("2015",ETL)**(-ccf(ETL))) - 

1*(crd0(ETL)**(-ccf(ETL)))) / (1-bb(ETL)) 
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                    *cap0(ETL) *spcost(ETL) * (crd0(ETL)**ccf(ETL)) * (1-

salv_inv(ETL,"2015")))$(ord(TP) EQ 1)) 

                 

* Learning costs non-electric 

+ sum(NTL, (((gcapn(NTL,TP)**(1-bbn(NTL)))*(crdn(TP,NTL)**(-ccfn(NTL))) - 

                    (gcapn(NTL,TP-1)**(1-bbn(NTL)))*(crdn(TP-1,NTL)**(-

ccfn(NTL)))) / (1-bbn(NTL))* cap0n(NTL)*spcostn(NTL) * (crd0n(NTL)**ccfn(NTL)) * 

(1-salv_invn(NTL,TP-1)))$(ord(TP) GT 2)) 

                    + sum(ntl,( ((gcapn(NTL,"2015")**(1-

bbn(NTL)))*(crdn("2015",NTL)**(-ccfn(NTL))) - 1*(crd0n(NTL)**(-ccfn(NTL)))) / 

(1-bbn(NTL)) 

                    *cap0n(NTL) *spcostn(NTL) * (crd0n(NTL)**ccfn(NTL)) * (1-

salv_invn(NTL,"2015")))$(ord(TP) EQ 1)) 

                     

* Learning costs hydrogen 

+ sum(HTL, (((gcaph(HTL,TP)**(1-bbh(HTL)))*(crdh(TP,HTL)**(-ccfh(HTL))) - 

                    (gcaph(HTL,TP-1)**(1-bbh(HTL)))*(crdh(TP-1,HTL)**(-

ccfh(HTL)))) / (1-bbh(HTL))* cap0h(HTL)*spcosth(HTL) * (crd0h(HTL)**ccfh(HTL)) * 

(1-salv_invh(HTL,TP-1)))$(ord(TP) GT 2)) 

                    + sum(htl,( ((gcaph(HTL,"2015")**(1-

bbh(HTL)))*(crdh("2015",HTL)**(-ccfh(HTL))) - 1*(crd0h(HTL)**(-ccfh(HTL)))) / 

(1-bbh(HTL)) 

                    *cap0h(HTL) *spcosth(HTL) * (crd0h(HTL)**ccfh(HTL)) * (1-

salv_invh(HTL,"2015")))$(ord(TP) EQ 1)) 

 

*   Costs for energy supplies that are not learning 

+ sum((ETL,ts), (1.-cstfr(ETL)) * PE(etl,tp,ts,rg,sw) * ecst(etl,tp,RG)) 

+ sum((NTL,ts), (1.-cstfrn(NTL)) * PN(ntl,tp,rg,sw) * ncst(ntl,rg)) 

+ sum((HTL,ts), (1.-cstfrh(HTL)) * PH(htl,tp,rg,sw) * hcst(htl,tp,RG))   

 

*   Costs for electric and nonelectric energy supplies (without learning) 

+ sum((NETL_nonvre,ts), PE(NETL_nonvre,tp,ts,rg,sw)*ecst(NETL_nonvre,tp,rg)* 

cstred(tp)) 

                       

+ … 

                                         

* Hydrogen production cost (without learning) 

+ sum(nht, PH(nht,tp,rg,sw)*hcst(nht,tp,rg)* cstred(tp)) 

 

* Non-electric production cost (without learning) 

+ sum(nntl, PN(nntl,tp,rg,sw)*ncst(nntl,rg)* cstred(tp)) 

 

+ … ); 
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Additionally, the following equation is updated to account for R&D expenditures. 

 

cc(rg,pp,sw)$st(pp,sw)..     Y(rg,pp,sw) =e= 

C(rg,pp,sw) + I(rg,pp,sw) + EC(rg,pp,sw) + MD(rg,pp,sw) + NTX("nmr",pp,rg,sw) 

+ 0.001*SUM(ETL, ard_exo(ETL,PP)) 

+ 0.001*SUM(NTL, ardN_exo(NTL,PP)) 

+ 0.001*SUM(HTL, ardh_exo(HTL,PP)); 

 

• Execution 

To run the model using the MERGE-ETL approach, the files containing the ETL equations need 

to be executed in the correct order. The solving loop is implemented in three different models but 

can eventually be automated for more iterations. However, having three separate models is more 

manageable for debugging. Each model file has its own data and report files. 

1. The first file to run is AD-MERGE 2.0 without ETL. After solving the model, a GDX file 

containing the demands E and N is generated.  

2. The second file to run is the MIP formulation. It takes the demands stored in the previous 

GDX file (generated from AD-MERGE) as input. This file contains only the ETA 

equations and the ETL equations. This file contains the piecewise linear approximation of 

the cost function. After solving the model, the new demands E and N are stored in a new 

GDX file. 

3. The third file to run is the NLP formulation. Again, it takes the demands stored in the GDX 

file (generated from the MIP model) as input. This file contains the complete AD-MERGE 

and ETL equations (without linearization). After solving the model, the new demands E 

and N are stored in a new GDX file. 

4. If needed, the MIP and NLP formulation are solved again until the demands E and N stop 

changing. The user has to make sure to input the correct GDX file when running the MIP 

formulation more than once. The first time the MIP model is solved, it takes the GDX from 

AD-MERGE as input, but for subsequent solves, it takes the GDX from the NLP model as 

input. 

The user has to make sure that $setglobal lbd = no in the input scenario because the two-factor 

learning curve is used instead of the LBD formulation. 
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Chapter 6  

Learning data for hydrogen technologies 

Reliable data is crucial to produce accurate results in any analysis. However, obtaining good ETL 

data can be a challenge since the data varies from country to country. Furthermore, when merging 

countries into regions, the accuracy of the data is further compromised. When using global learning 

rates, technologies are assumed to be learning identically in different parts of the world without 

distinction between countries. This approach can be problematic since other countries have 

different technological capabilities and adopt new technologies at a different pace. Analyzing new 

technologies can also be difficult since no historical data is usually available. In such cases, 

learning parameters can be derived from similar conventional technologies with similar learning 

patterns. 

 

6.1 Technology characteristics 

When adding new learning technologies to the model, many parameters must be added as well. 

Depending on the type of learning curve implemented, installed capacities, cumulative production, 

R&D data, learning-by-doing rate, and learning-by-searching rate must be input into the model. 

An additional difficulty is finding data that match the base year used in the model. For instance, 

AD-MERGE 2.0 uses 2015 as a base year, whereas AD-MERGE 1.0 uses 2000 as a base year. All 

data must be updated and actualized in terms of the base year. Some promising technologies in the 

early 2000s might be mature today and therefore irrelevant to study as learning technologies. 

Learning technologies must be selected carefully to be relevant and insightful. Two technologies 

have been kept since the MERGE-ETL approach: integrated gasification combined cycle (IGCC) 

and renewables (RNEW), which come from biomass. These technologies were the first to be 

implemented as learning technologies in AD-MERGE 2.0 as they served as testers for solving the 

model. These technologies were modelled in the 2002 version of MERGE-ETL and were still used 

in AD-MERGE 1.0 as non-learning technologies. Since they were already in the model, adding 

their learning parameters from already available data was simpler. It is important to note that the 

learning parameters of IGCC and RNEW have not been updated because the choice of electric and 

non-electric learning technologies is likely to change in further versions of AD-MERGE 2.0. 
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Because the integration of hydrogen into the model constitutes a big part of the current research 

works on AD-MERGE 2.0, the current study of learning effects is focused mainly on hydrogen 

technologies.  

 

The first hydrogen technology incorporated as a learning technology is electrolysis, which uses 

electricity to split water into hydrogen and oxygen (U.S. Department of Energy, 2020). The device 

in which this process occurs is known as an electrolyser. The latter comes in different sizes and 

can produce hydrogen on a small to large scale. Several forms of electrolysis exist: polymer 

electrolyte membrane or proton exchange membrane (PEM), alkaline, solid oxide electrolyser cell 

(SOEC) and anion exchange membrane (AEM). SOEC and AEM are maturing, while PEM and 

alkaline are commercially available (IEA, 2023c). Since the type of electrolysis currently being 

implemented in AD-MERGE 2.0 is PEM, learning effects are only specific to PEM electrolysers. 

Currently, hydrogen production from electrolysis accounts for less than 5% of total hydrogen 

production (IEA, 2023c). 

 

Hydrogen production from coal gasification with carbon capture and storage (CCS) is the second 

hydrogen technology incorporated as a learning technology. This technology is known as “coal-

h2-CCS” in the model. This process involves mixing coal with an oxidant like steam, air, or oxygen 

to create a synthetic gas consisting of hydrogen, carbon dioxide and other gases and particles. After 

cleaning, cooling, and shifting, the synthetic gas mainly comprises hydrogen and carbon dioxide 

(Megía, Vizcaíno, Calles & Carrero, 2021). The hydrogen can be used after purification while the 

carbon dioxide is captured and sequestered (Midilli, Kucuk, Topal, Akbulut & Dincer, 2021). 

Currently, hydrogen production from coal without CCS accounts for approximately 20% of total 

hydrogen production (IEA, 2023c). Coal gasification (without CCS) is a mature technology and is 

expected to be augmented with other renewable technologies, as well as the incorporation of the 

CCS process over the long term (National Energy Technology Laboratory [NETL], n.d.). 

 

The final hydrogen technology implemented as a learning technology is steam-methane reforming 

(SMR) of natural gas with CCS defined as “gas-h2-CCS” in the model. During steam-methane 

reforming, methane reacts with steam to produce hydrogen and carbon monoxide (U.S. 

Department of Energy, 2020). The remaining carbon monoxide can then be captured and stored 
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(with CCS) or not (without CCS). Natural gas reforming (without CCS) is a mature and advanced 

technology, but its counterpart with CCS is emerging (Lewis et al., 2022). Most hydrogen 

production comes from natural gas (without CCS), representing approximately 60% of the total 

production, while hydrogen production from fossil fuels with CCS, including coal gasification, 

accounts for 0.6% (Global CCS Institute, 2021; IEA, 2023c).  

 

The following three tables summarize the techno-economic characteristics of hydrogen 

technologies in the model. The data source is provided for each parameter.  
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Table 6.1: Learning characteristics for electrolysis 

Technology Parameter Value Source 

electrolysis 

Learning-by-doing rate 13% Hydrogen Council, 2020 

Learning-by-searching rate 1% Estimation using IRENA, 2020 

Capacity factor 55% IEA, 2023c 

Initial capacity (EJ) 0.006 IEA, 2023c 

Global maximum capacity (EJ) 23.915 IEA, 2021b 

Initial cumulative R&D spending  

(billion USD 2015) 
0.46 IEA, 2021a 

Lifetime (years) 25 IEA, 2023c 

Floor cost (USD/GJ) 1.25 NREL, 2022 

 

Table 6.2: Learning characteristics for coal-H2 with CCS 

Technology Parameter Value Source 

coal-h2-CCS 

Learning-by-doing rate 6% Rubin et al., 2015 

Learning-by-searching rate 6% Estimation using IEA, 2023d 

Capacity factor 90% NREL, 2022 

Initial capacity (EJ) 0.024 IEA, 2023e 

Global maximum capacity (EJ) 2.000 IEA, 2023e 

Initial cumulative R&D spending  

(billion USD 2015) 
2.10 IEA, 2023d 

Lifetime (years) 40 NREL, 2022 

Floor cost (USD/GJ) 11.91 NREL, 2022 

 

Table 6.3: Learning characteristics for gas-H2 with CCS 

Technology Parameter Value Source 

gas-h2-CCS 

Learning-by-doing rate 5% Rubin et al., 2015 

Learning-by-searching rate 1% Estimation using IEA, 2023d 

Capacity factor 90% NREL, 2022 

Initial capacity (EJ) 0.080 IEA, 2023e 

Global maximum capacity (EJ) 6.696 IEA, 2023e 

Initial cumulative R&D spending  

(billion USD 2015) 
3.57 IEA, 2023d 

Lifetime (years) 40 NREL, 2022 

Floor cost (USD/GJ) 4.00 NREL, 2022 

https://hydrogencouncil.com/wp-content/uploads/2020/01/Path-to-Hydrogen-Competitiveness_Full-Study-1.pdf
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf
https://www.iea.org/reports/global-hydrogen-review-2023
https://www.iea.org/reports/global-hydrogen-review-2023
https://www.iea.org/data-and-statistics/charts/global-installed-electrolysis-capacity-by-technology-2015-2020
https://www.iea.org/reports/global-hydrogen-review-2021
https://www.iea.org/reports/global-hydrogen-review-2023
https://www.nrel.gov/hydrogen/h2a-production-models.html
https://doi.org/10.1016/j.enpol.2015.06.011
https://www.iea.org/reports/world-energy-investment-2023
https://www.nrel.gov/hydrogen/h2a-production-models.html
https://iea.blob.core.windows.net/assets/86ede39e-4436-42d7-ba2a-edf61467e070/WorldEnergyOutlook2023.pdf
https://iea.blob.core.windows.net/assets/86ede39e-4436-42d7-ba2a-edf61467e070/WorldEnergyOutlook2023.pdf
https://www.iea.org/reports/world-energy-investment-2023
https://www.nrel.gov/hydrogen/h2a-production-models.html
https://www.nrel.gov/hydrogen/h2a-production-models.html
https://doi.org/10.1016/j.enpol.2015.06.011
https://www.iea.org/reports/world-energy-investment-2023
https://www.nrel.gov/hydrogen/h2a-production-models.html
https://iea.blob.core.windows.net/assets/86ede39e-4436-42d7-ba2a-edf61467e070/WorldEnergyOutlook2023.pdf
https://iea.blob.core.windows.net/assets/86ede39e-4436-42d7-ba2a-edf61467e070/WorldEnergyOutlook2023.pdf
https://www.iea.org/reports/world-energy-investment-2023
https://www.nrel.gov/hydrogen/h2a-production-models.html
https://www.nrel.gov/hydrogen/h2a-production-models.html
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Several transformations and assumptions are made to ensure the data meets the model’s criteria. 

When a range of values is provided, the middle value is used. Capacities in exajoules have been 

converted from MV or GW. Monetary values that were not available in USD 2015 have been 

converted using an inflation multiplicator. When a value is unavailable, such as learning-by-

searching rates, it is estimated using available data and assumptions. Estimations follow the 

methodology of Glenk, Holler and Reichelstein in their analysis of the cost and conversion 

efficiency of hydrogen technologies (Glenk, Holler, & Reichelstein, 2023).  Initial values are for 

the base year (2015). In this table, the floor cost is the levelized cost in the year 2050, and the 

global maximum capacities are projected in the year 2050. The chosen learning rates are 

conservative and vary significantly in the literature. Choosing higher learning rates will usually 

imply an earlier implementation of the technology.  

 

6.2 R&D investments 

In the MERGE-ETL approach, R&D budget data is updated using the International Energy Agency 

database (IEA, 2023a). This dataset contains detailed public budgets for energy Research, 

Development and Demonstration (RD&D) for countries that are part of the IEA. The annual data 

by country is expressed in 2022 prices and exchange rates. Data is converted in the model to USD 

2015 and aggregated into corresponding regions. Some countries that are not part of IEA do not 

have an available R&D budget in this database. Their values are estimated and based on other data 

sources. 
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Chapter 7  

Results 

The following table compares the solutions of each version of AD-MERGE 2.0. The first version 

is the original AD-MERGE 2.0 model without endogenous technological learning, with learning-

by-doing switched off. The second version is the same but with learning-by-doing switched on 

(only LBDE and LBDN). These two first versions are the baseline versions for comparison 

purposes. The third version is an updated version of learning-by-doing with more technologies 

(igcc, rnew, electrolysis, coal-h2-CCS, gas-h2-CCS). Lastly, the fourth version includes the two-

factor learning curve with the linearization process and the same learning technologies as in 

version 3. 

Table 7.1: Comparison of solving methods for ETL in AD-MERGE 2.0 

Model version Solver Optimum Solving time1 

1. Original AD-MERGE 

2.0, lbd = no 
CONOPT4 Global 1 

2. Original AD-MERGE 

2.0, lbd = yes 
CONOPT4 Local 0.55 

3. Manne-Barreto approach 

(with more technologies) 

CONOPT4 Local 1.14 

BARON Local 
3.50 (without maxiter) 

0.14 (with maxiter) 

Knitro Local 6.96 

4. MERGE-ETL approach 
CONOPT4, 

MIP 
Global2 2.13 

1 For comparison purposes, the solving time of AD-MERGE 2.0 without ETL and without LBD is set to 1 and 

is used as a baseline. Because solving time depends on the computer processing power, each solving time is 

expressed in terms of the solving time of AD-MERGE 2.0. For reference, the solving time of model 1 is 00:48:19. 

2 The linear approximation is solved until global optimality, which gives a reasonable approximation of the 

global optimum in the final model. Therefore, the optimum of the MERGE-ETL approach is assumed to be 

global. 
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As previously mentioned, the first model is the baseline. If endogenous technological learning is 

not required in the analysis, this version can be used instead. Because model 1 does not include 

ETL equations, the formulation is convex; therefore, the local optimum is also a global optimum. 

Model 2 with LBDE and LBDN can also be used for a vague estimation of the learning-by-doing 

effects on electric and non-electric technologies without being specific to technologies. The 

computation time of model 2 is reduced because of the formulation of learning-by-doing equations. 

When activating the LBD parameter, technologies like solar and wind are removed from the model 

as they are integrated into the technology “LBDE”, and similarly for non-electric technologies. It 

is also important to note that the initial formulation of LBD in model 2 has not been updated since 

its implementation in 2004. Therefore, the data and technologies might be different from current 

trends. Lastly, with the inclusion of learning-by-doing into model 2, the optimum is no longer 

global. 

 

Model 3 includes five learning technologies subject to learning-by-doing. This version allows the 

exploration of the gradual implementation of new technologies with returns on adoption without 

the complexity of a two-factor learning curve. When solved with CONOPT4, the solution is 

improved with a slightly longer computation time. However, this solution is not guaranteed to be 

a global optimum. When solved without the maxiter option, BARON fails to provide a global 

optimum, and the computation time is tripled compared to the baseline. In this case, the solution 

is local, and the impact on the objective value is negative. When solved with unlimited branch-

and-reduce iterations, BARON provides a local solution that is slightly better than without the 

maxiter option but is still not as good as the CONOPT solution. However, when unlimited 

iterations are specified, the computation time is reduced, representing as little as 0.14 of the 

baseline’s solving time. Overall, when solved with BARON, the objective value found is 

significantly reduced compared to the CONOPT one.  

 

When solved with Knitro without multi-start, the solution is the same as the one found with 

CONOPT, which is an improvement compared to the baseline. However, the solving time is 

considerably higher than with other methods. When solved with multi-start, Knitro is not able to 

provide a solution within the allocated time. By fixing a time limit on each starting point and 

reducing the number of multi-start points, Knitro can provide feasible solutions but no optima. In 
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these instances, neither BARON nor Knitro are able to provide a global solution or provide a better 

solution than CONOPT. One of the reasons BARON and Knitro perform poorly could be linked 

to the presence of infinite bounds on some variables that limit the algorithm’s ability to infer 

appropriate bounds (GAMS, 2024a). 

 

Overall, solving version 3 with CONOPT is preferable, as it provides the best solution in less time. 

Compared to the baseline, this version generates a better objective value, and the quantity of 

hydrogen produced is greater, particularly for electrolysis. 

 

Model 4 includes the same five learning technologies but uses a two-factor learning curve. Because 

the solving loop has three steps, three submodules must be executed to solve the whole model. 

First, the model is solved without ETL; this is equivalent to running the baseline. Then, the ETA 

module with a linearized cost curve is solved, and finally, the complete non-linear model with ETL 

equations is solved. This results in a higher computational time and increased complexity as many 

equations and submodules are implemented. The iterative process between the MIP solution and 

the subsequent NLP solution ensures the final solution is global. 

 

Overall, model 4 provides a better objective value and hydrogen production than model 1 and 

model 2, which means incorporating ETL equations benefits the model. The solving time is higher, 

as expected, because the solving is executed in three steps. The complexity is also much higher. 

Compared to model 3, model 4 has a slightly higher objective value and hydrogen production is 

higher throughout the time horizon. For the same learning-by-doing rate, hydrogen production 

from electrolysis is higher in model 4, as it also includes cost reductions from R&D expenditures. 

As for the choice of technologies, the final energy mix is similar in both models 3 and 4. In 

addition, model 4 generates an optimum that is assumed to be global, but the complexity and 

solving time are higher. 

 

The following figures on the next page show the production of hydrogen after solving models 1, 

2, and 3.  

 



50 

 

 

Figure 7.1: Production of hydrogen per year in model 1. This is the output of the original AD-MERGE 

2.0 without ETL, solved by CONOPT4. 

 

Figure 7.2: Production of hydrogen per year in model 3. This is the output of the Manne-Barreto 

formulation using the one-factor learning curve solved by CONOPT4. 

 

Figure 7.3: Production of hydrogen per year in model 4. This is the output of the MERGE-ETL 

formulation using the two-factor learning curve, solved with the iterative heuristic. 
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In Figure 7.1, an issue arises with the production of gas-h2 and gas-h2-ccs. Because cost reductions 

are specified exogenously, the model starts producing hydrogen from natural gas with CCS in 

2100 because it becomes more cost-competitive than without CCS. The “low-cost” natural gas 

reforming with CCS temporarily replaces the production of natural gas reforming without CCS. In 

this case, the cost reductions are time-dependent and do not account for acquired experience and 

investments. In reality, CCS technologies should be incorporated gradually as they accumulate 

experience, and their cost should decrease over time based on this accumulation of experience.  

 

In both Figure 7.2 and Figure 7.3, the issue concerning the exogenous cost reductions is rectified 

as the two formulations imply endogenous cost reductions. Because natural gas reforming is a 

mature technology with a low initial cost, it is preferred over its counterpart with CCS.  

 

With the Manne-Barreto approach, the two technologies with CCS are barely incorporated into the 

energy mix as their chosen learning rates are conservative. They are incorporated only at the end 

of the time horizon, as the model wants to respect the lower bound imposed on these technologies. 

With the MERGE-ETL formulation, hydrogen production primarily comes from electrolysis and 

natural gas without CCS. Similarly to the Manne-Barreto approach, even with endogenous cost 

assumptions, mature fossil-fuel-based hydrogen technologies are prioritized over new ones as they 

have lower costs than emerging technologies. However, in both ETL models, increasing learning 

rates of CCS technologies will incorporate them sooner. 

 

For an additional comparison, Figure 7.4 and Figure 7.5 on the next page show the production of 

electric and non-electric energy in 2015, 2030, 2050 and 2100 for the baseline, the MERGE-ETL 

approach and the Manne-Barreto approach. The two graphs show that the baseline model has a 

higher overall energy production. This is because it doesn't account for endogenous technological 

advancements, which mainly come from hydrogen production. As the baseline model produces 

less hydrogen compared to other models, other energy sources are used to compensate for the gap. 

For the Manne-Barreto approach, the production of the two learning technologies IGCC and 

RNEW is higher and incorporated earlier than the other models, which could be attributed to the 

learning effects.  



52 

 

 

Figure 7.4: Production of electric energy per year for the baseline (model 1) solved with CONOPT4, the 
Manne-Barreto approach (model 3) solved with CONOPT4 and the MERGE-ETL approach (model 4) 

solved with the heuristic loop. 

 

 

Figure 7.5: Production of non-electric energy per year for the baseline (model 1) solved with CONOPT4, 

the Manne-Barreto approach (model 3) solved with CONOPT4 and the MERGE-ETL approach (model 4) 

solved with the heuristic loop. This graph does not include the production hydrogen.  
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Chapter 8  

Conclusion 

This study aimed to implement endogenous technological learning in AD-MERGE 2.0 in two 

distinct ways: the Manne-Barreto approach, which was initially implemented in MERGE in 2004 

through a one-factor learning curve, and the MERGE-ETL approach, which was initially 

implemented in 2002 through a two-factor learning curve.  

 

When compared, each approach was found to have its own advantages and disadvantages. 

Ultimately, the model user must weigh these factors to determine which approach is best suited 

for their needs. 

 

Both the Manne-Barreto approach and the MERGE-ETL approach provided a better solution than 

the baseline without endogenous technological learning. The Manne-Barreto approach has a 

simpler implementation, and the solving time is comparable to the baseline’s solving time. On the 

other hand, the MERGE-ETL approach performs better than the Manne-Barreto approach but the 

computational complexity and solving time are higher. 

 

The two implementations allow the user to choose the preferred approach depending on the nature 

of the analysis. They produce valid outputs but to a different degree of precision. One should opt 

for the MERGE-ETL approach to analyze the impact of different learning effects in different 

scenarios. The two-factor learning curve allows more flexibility to adjust learning from the 

accumulation of experience or the R&D expenditures. On the other hand, if one wants to account 

for learning without making it the centre of the analysis and without increasing the complexity of 

the model, then the Manne-Barreto approach is sufficient. 

 

Because of the additional parameters linked with the R&D expenditures, gathering all regional and 

technological data related to the second factor in the learning curve can be difficult. Learning-by-

doing has been extensively researched in the past decades, allowing for an extensive range of 
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available data. If data collection is an issue, it can be easier to work with learning-by-doing only, 

using the Manne approach, as more data is available in the literature.  

 

Regardless of the chosen approach, it is essential to have reliable data. The choice of accurate 

learning parameters is essential to a precise analysis. The more complex the approach is, the more 

data is needed, and the more the accuracy is reduced if data is not accurate. There are various 

layers to explore when analyzing data related to technological learning. For instance, learning rates 

usually differ from one technology to another, but learning rates can vary from region to region 

and throughout time. In addition, learning rates are not always constant along the learning curve, 

depending on the maturity stage of the technology. Dealing with several countries in a single region 

can add more uncertainty; each country has its own infrastructure and technological advancement. 

This study assumed a constant learning rate per technology without regional distinctions. Adding 

regional and temporal dimensions to the learning rates could add depth to the analysis in future 

works. The model also assumed perfect spillover between regions, using global learning rates 

instead of regional ones. This means that as soon as a technology is available in a region, it is also 

available globally. A possible extension could be to model technological learning with spillovers 

by using regional learning rates and by analyzing the effect of a larger or smaller spillover 

coefficient.  

 

Additionally, a sensitivity analysis of learning rates could extend this study. There is considerable 

uncertainty associated with the learning rates of learning technologies. When updating the 

characteristics of learning technologies in Chapter 3, some learning rates have been estimated by 

calculation and assumptions or by choosing a value from a range of learning rates. The 

conservative learning rates chosen in this study did not significantly change the final energy mix. 

However, higher learning rates could have led to an earlier implementation of emerging 

technologies. Conservative learning rates have been used in this study because they follow the 

trends of a middle-of-the-road pathway, as in the SSP2 scenario. By comparing several versions 

of the model using different learning rates in a one—or two-factor learning curve, decision-makers 

can observe the impact of the learning effect on the output. This sensitivity analysis can provide 

them with various scenarios to understand the implications of learning rates on technology costs, 

globally or regionally. 
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Another possible extension of this study could be to study the impact of segmentation of the 

piecewise linear approximation to optimize the generated solution. Adding more segments to the 

linear approximation will usually provide a more accurate approximation, but the computation 

time will increase. The decision-maker must balance the trade-off between precision and 

computation time. Again, this could be performed using a sensitivity analysis to determine the 

optimal number of segments to use in the linear approximation and its effect on the computation 

time and the quality of the solution.  

 

Additionally, different algorithms can be used. In this study, the direct non-linear solvers 

CONOPT, BARON and Knitro were tested in addition to using an iterative heuristic approach. 

BARON and Knitro performed poorly in solving the Manne-Barreto approach, but further analyses 

can be explored. For instance, solution times and the search for optimal solutions can be improved 

by using the different solver options. For BARON and Knitro, only a few solver options have been 

used, but many more can be used. Incorporating different solvers into the heuristic approach could 

also be interesting to see if the output changes. Using a global solver like BARON for the MERGE-

ETL formulation could be a great way to confirm that the optimal solution is indeed a global 

optimum. 

 

Moreover, only PEM electrolysis is included in the model. However, PEM electrolysers account 

for 30% of electrolysis capacity, while alkaline electrolysers account for 60%, and the remaining 

10% is attributed to SOEC and AEM electrolysers (IEA, 2023c).  The proportion of hydrogen 

production from electrolysis is expected to increase considerably in the following years, and 

including all types of electrolysers in AD-MERGE could be beneficial. In addition, because SOEC 

and AEM electrolysers are still maturing, studying their learning effects will give valuable insights 

to decision-makers. 

 

As mentioned previously, decision-makers have different behaviours based on their priorities. 

While some may be more climate-oriented and optimistic about the energy transition, they might 

value more technological development, resulting in an earlier incorporation of clean energy into 

the energy mix. Some other decision-makers might prioritize economic development and continue 
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investing in fossil-fueled energies that are already commercially viable and accessible. The results 

of AD-MERGE 2.0 based on SSP2 showed that fossil-fueled-based energies were still an essential 

part of the energy mix. A possible extension of this study could be to explore the impact of 

endogenous technological learning through different SSP-based scenarios to have different 

perspectives on the world’s outcome. For example, SSP1 emphasizes sustainable development 

with lower energy consumption. It could be informative to examine how technological 

developments might change if sustainability became an even higher priority. However, this 

exploration could be tedious, as it would imply recalibrating the whole model to a new scenario.  

 

Finally, it is essential to note that the AD-MERGE 2.0 model is still changing and is not final. 

Other industries and sectors in the model are still evolving and will be finalized in the following 

months. In addition, data should also be continuously updated periodically in the following years 

for the model predictions to remain accurate.  

 

The model must align with the energy trends of the next few years. Although Canada's potential 

for hydrogen is still in its early stages, significant developments are expected in the next 25 years. 

Like many other nations, Canada has committed to achieving net-zero GHG emissions by 2050. 

However, Canada has a history of missing its GHG reduction targets and must now work harder 

to achieve the 2050 goal. The energy sources that have the potential to contribute significantly to 

the net-zero target are limited, but the most important ones are electricity, hydrogen, and biofuels 

(Layzell, 2023). In addition to low-cost energies with a high potential for decarbonization, Canada 

requires a resilient energy system that can withstand disruptions to ensure that the transition to 

sustainable energy is reliable and long-lasting. 

 

The number of hydrogen projects that are announced every year is considerably increasing and 

needs to be tracked and deployed to achieve net zero emissions targets (IEA, 2023b). While it is 

still early for emerging technologies, there is an increasing potential to explore CCS technologies 

for mature technologies. For these technologies, such as steam-methane reforming and coal 

gasification, production costs can be reduced because existing facilities and knowledge can be 

used. However, the learning effects are smaller, and the floor cost will be achieved quickly. For 
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now, even though coal gasification plants with CCS are in operation, their carbon footprint is too 

high (IEA, 2023c) to compete with green hydrogen. 

 

Overall, this study aimed to explore the impact of endogenous technological learning in an energy 

model. Whether technological learning is incorporated exogenously or endogenously via a one—

or two-factor learning curve, it still impacts the output in different ways. Understanding the impact 

of ETL can help diversify the energy mix, adjust the energy transition timeline, and reduce 

technology costs. Modelling learning effects into a global model provides a reasonable picture of 

today's economy, which can then be used as a tool for real-life decision-making.
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