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Abstract 

Under the current alarming climate change concern, more efforts have been put in academic studies 

to address the global warming issue in both public and private sectors. Particularly, managing 

greenhouse gas emissions in operational and/or supply chain activities has become a common 

practice among researchers. This thesis focuses on production and distribution planning of a two-

level supply chain subjected to the carbon cap-and-trade regulatory mechanism. Cap-and-trade is 

a carbon managing system in which emitting entities are restricted by a carbon cap and are entitled 

to buy or sell allowances in the carbon trading market.  

In this study, we formulate a two-stage stochastic Mixed Integer Linear Programming model 

(MILP) for a manufacturing firm with a single product facing stochastic market demand. The 

firm’s operational decisions are made in two stages. The first stage decision refers to the initial 

emission allowances the firm needs to acquire to cover its overall uncertain level of emissions 

incurred during the planning horizon. The second stage includes major decisions on production 

planning, shipping schedule, inventory holding, and trading of emission allowances. The objective 

is to come up with optimal production and transportation plans and an emissions trading schedule 

to minimize i) the cost of the initially purchased emission rights (in the first stage) and ii) the 

expected total cost related to the production, transportation, inventory holding and emission 

trading (in the second stage) while complying with the total available emission rights that the firm 

has to cover its emissions from those major activities.  

We address the stochasticity in demand by generating different random demand scenarios and 

instances under which the MILP model is correspondingly solved. A baseline parameter set is 

generated, the result of which serves as the benchmark case for our sensitivity analysis in a later 

section, in which we separately vary several key parameters of the model. In order to evaluate the 

impact of carbon price on the performance of the model, we vary the emission permits buying and 

selling prices at the first and the second stage, either simultaneously or separately. We also employ 

the concepts of Value of Stochastic Solution and Expected Value of Perfect Information, which 

are often used to assess the effectiveness of using the deterministic model to approximate the 

stochastic one when the model with uncertainty is hard to solve. In a later part of the study, to take 

into consideration different product types, we extend our planning problem by analyzing different 

types of demand pattern, i.e., stationary, random, sinusoidal, and life cycle patterns. A comparative 

analysis on the performance of these cases is also carried out.  

Through these computational experiments, we have found out that operational decisions on 

production, inventory control, and transportation activities are highly correlated to one another, 

and there are inevitable trade-offs between cost and emissions indicators. Results also show that 

whether the approximation of the stochastic model by the deterministic mean-value model is a 

good one depends heavily on the importance of the emission cost in the total cost function. 

Although the total emission level is not influenced by the allowance trading prices, in our 

experiments, these carbon prices do have certain impacts on the firm’s total cost and its emissions 

trading decisions. It is also shown that different demand patterns can significantly influence the 

model’s computational time as well as the firm’s performance. 

Keywords: Stochastic programming, lot-sizing, heterogeneous vehicles, emissions, carbon cap-

and-trade  
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Chapter 1. Introduction 
 

1.1 Background 

Over the past few decades, greenhouse gas (GHG) emissions have been widely acknowledged as 

one of the most harmful elements to the environment, which are majorly account for the global 

climate change (Chaabane et al., 2010; Zhang & Xu, 2013). In 2007, the Intergovernmental Panel 

on Climate Change (IPCC) also reported that global warming, which is, according to a lot of 

research, caused by the growing concentrations of GHG emissions mostly resulting from human, 

is posing an immense threat to the world’s ecological system and humankind (IPCC, 2007). Since 

then, there have been many reports and scientific studies specifying that if no action is taken, these 

GHGs will lead to significant changes and can devastate the earth’s climate system. Given the 

potential threats of climate change, reducing emissions from greenhouse gases (CO2, CH4, CFCs, 

NOx, etc.), particularly carbon dioxide CO2, has become a global public objective in recent years 

(Bai & Chen, 2016). For simplification purposes, hereafter in this paper, all types of GHGs will 

be represented as carbon dioxide equivalent (CO2e). 

Under the increasing public pressure and the substantial need for protecting the ecosystem from 

those man-made effects, the United Nations (UN), the European Union (EU), countries and 

authorities around the globe have enacted ambitious legislation. They have also established various 

mechanisms, whether they are incentives or mandatory targets, to enable companies and 

organizations to apply those that best suited their circumstances. Some of the common mechanisms 

include the environment management standards by the International Organization for 

Standardization (ISO 14000 family), the Kyoto Protocol, the Paris Agreement, government 

programs such as the EU Emissions Trading System (EU ETS), the New Zealand Emissions 

Trading System (NZ ETS), or the US’s Regional Greenhouse Gas Initiative, private voluntary-

membership organizations such as the Chicago Climate Exchange, the Montreal Climate Exchange, 

and other newly emerged emissions-offset companies (Chaabane et al., 2010; Hua et al., 2011; 

Zhang & Xu, 2013; Toptal et al., 2014; Bai & Chen, 2016; Purohit et al., 2016).  

The ISO 14000 family is a set of practical tools developed by the ISO Technical Committee 

ISO/TC 207 for companies and organizations of any type to manage their environmental 

responsibilities. It encompasses requirements to be used in environmental systems, audits, 

communications, labelling and life cycle analysis, as well as environmental challenges like global 

climate change (ISO, n.d.). 

Adopted by governments since 1997, the Kyoto Protocol is a global treaty where member states 

(currently 192 parties) have committed to scale back their overall greenhouse emissions by a 

minimum of 5 percent below 1990 levels within the first commitment period 2008 to 2012, and by 

a minimum of 18 percent  below 1990 levels within the second commitment period 2013 to 2020 

(United Nations Framework Convention on Climate Change - UNFCCC, n.d.). Those member 

parties, individually or jointly, have to ensure that their aggregated CO2e emissions do not exceed 

their assigned number of tradeable credits (each credit represents the right to emit one metric ton 
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of CO2e), which are calculated based on their quantified emission limitation and reduction 

commitments. 

Another agreement within the UNFCCC is the Paris Agreement. Entered into force on November 

4, 2016, the Paris Agreement has brought all nations into common efforts to combat climate change, 

to adapt to its effects, and to build a sustainable future. Its core objective is to intensify global 

actions against climate change to limit the global temperature rise by below 2 degrees Celsius 

above the pre-industrial level by the end of this century. In addition, at the Paris 21st Conference 

of the Parties in the same year, all the agreed parties have also committed to generate zero net 

GHG emissions by the latter half of this century (UNFCCC, n.d.). 

In Canada, the Pan-Canadian Framework on Clean Growth and Climate Change is a governmental 

plan with an aim to accelerate public and private entities to meet their emissions reduction targets, 

to boost economic growth, and to build resilience to a changing climate. It includes putting a price 

on carbon pollution, implementing emission reduction measures and other actions in enhancing 

the climate change adaptation across all sectors of the economy, to ensure Canadian businesses are 

well-prepared and competitive in the global low-carbon economy (Environment and Climate 

Change Canada, 2016). Readers can refer to the full publication of this framework for more 

detailed information. 

Many studies on supply chains have concluded that supply chain decisions have a significant 

impact on the atmospheric carbon inventory (Purohit et al., 2016), as carbon emissions can be 

generated from almost any kind of industrial and business activities. Supply chain operations such 

as production, freight transportation, warehousing, and inventory management are broadly 

believed as the dominant factors contributing to emissions from manufacturing, wholesale and 

retail, transportation, healthcare, and service industries (Konur, 2014). It is noticeable that carbon 

emissions from different activities are generated in varying ways. For instance, emissions from 

inventory control depends on the quantity of inventory and the holding time, while emissions from 

manufacturing processes are determined based on the lot-size. If the lot-size is small, more 

emissions can incur due to more frequent machine set-ups. On the contrary, if the lot-size is too 

large, inventory holding will experience a larger emission proportion incurred by keeping a large 

quantity in stock (He et al., 2015). 

In general, there are several ways for companies and organizations to reduce their carbon emission 

levels, either by re-planning their operations or investing in carbon emission projects. According 

to Benjaafar et al. (2013), the majority of firms tend to focus on mitigating GHG emissions from 

physical processes by employing effective yet more costly solutions, while neglecting emissions 

from other critical sources. With the carbon emission reduction targets, firms preferably make 

investments in replacing inefficient equipment, building energy-efficient facilities, switching 

production methods, and using greener energy from renewable sources like biomass, wind power, 

solar power, hydro power, or geo-thermal that can produce power with a much lower amount of 

fossil carbon emissions than conventional fossil fuels (Huisingh et al., 2015). However, re-

planning operational decisions for a business’s major activities can also be a cost-efficient 

approach in curbing emissions (Toptal et al., 2014). Provided the influence of supply chain 

decisions on carbon emissions, firms could possibly reduce their emission levels by incorporating 
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environmental elements into their decision models (Benjaafar et al., 2013; Toptal et al., 2014; 

Purohit et al., 2016). For example, firms can incorporate an emission factor into their traditional 

production and distribution planning models either by applying a carbon constraint as in Absi et 

al. (2013) and Zhang and Xu (2013), or by including the emission level and/or the emission cost 

in the objective function as employed in Bektas and Laporte (2011), Jabali et al. (2012), Darvish 

et al. (2017), etc., or applying both techniques as in Hua et al. (2011) and He et al. (2015). 

One would ask why organizations and companies are willing to invest time, effort and capital in 

carbon emission abatement schemes. According to Hoen et al. (2014), there are two main reasons. 

The first one is the pressure from customers and environmental entities as there has been a 

considerable shift in consumer behavior in recognition of the potential impact of industry activities 

on the climate. Some consumers are willing to pay higher prices for environmentally friendly 

products. This can be demonstrated by the considerably higher growth rates of those greener 

products in the textile and food industries (Letmathe & Balakrishnan, 2005). If a firm’s critical 

customers are environmentally inclined, demand of its products could possibly be influenced by 

their different carbon footprint levels. Therefore, to maintain a good corporate image and to retain 

consumers, firms are directed to apply green approaches in one or several of their operational 

activities. A second reason for firms to curb emissions is to serve as a response to the increasing 

governmental regulations on emission and environment protection. Apart from these two above-

mentioned reasons, Van der Veen and Venugopal (2014) also point out a third reason for firms to 

do business in a sustainable way, which they call the altruistic motive. That is, in some cases, firms 

adopt green policies voluntarily just simply because they feel the urge to do good, as long as it 

does not conflict too much with their economic benefits.   

Some of the most common prevailing carbon policies are: 

• Strict carbon cap: Under the strict carbon cap policy, a company needs to ensure its total 

emission level does not exceed a predetermined level (a carbon cap). This level is set to 

comply with either the company’s voluntary green objectives or the regulations imposed 

by government authorities (Chen et al., 2013).  

 

• Carbon cap-and-trade: With the carbon cap-and-trade policy, a company’s emission 

level is also restricted by a carbon cap, but it can buy additional credits in the case that its 

carbon footprint is higher than the initial carbon cap or it can sell the excessive permits if 

its emission level is ultimately lower than the cap. This means that under the cap-and-trade 

policy, emission allowances are tradable through a trading platform, such as the widely 

known EU ETS or the NZ ETS. 

  

• Carbon cap-and-offset: Under cap-and-offset system, a company is subject to a 

predetermined carbon cap, in the meantime, it can also indirectly invest in carbon offset 

projects, which could compensate for its carbon emissions and be used to increase its 

emissions cap. Those projects, also known as clean development mechanisms (CDM) 

under the Kyoto Protocol, are, for instance, low-carbon energy projects (wind farms, solar 

arrays), rural electrification projects using more energy-efficient boilers, or afforestation 
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and reforestation projects, with an aim to “abate carbon emissions by compensating a 

company’s emissions” (Konur et al., 2014). 

 

• Carbon tax: Carbon taxing means that a company is charged on every unit of emissions it 

generates with a fixed price (a tax). Carbon tax is levied on fossil fuels and related products 

such as coal, gas, jet fuel depending on their carbon contents, with an aim to reduce those 

fossil fuel consumption. European nations including Denmark, Norway, Finland, Sweden, 

Netherlands are among the first countries to implement carbon tax policy (Lin & Li, 2011). 

Among these methods, carbon tax and carbon emissions trading are recognized as the most 

effective instruments in the emissions abatement scheme (Labatt & White, 2007; Hua et al., 2011). 

The basic idea of these policies is to put a price on carbon emissions to encourage firms to reduce 

their emissions, either by adjusting operational or investment decisions, in order to create new 

development opportunities and to generate funds for green technology and innovations.  

We limit the scope of this thesis to consider only the emission trading mechanism (carbon cap-

and-trade). A more detailed description of this system will be included in a later section. 

 

1.2 Research objective 

In the context where industrial processes, transportation, and other commercial activities are 

strongly linked to the increasing greenhouse effect by the release of GHGs, along with the growing 

pressure from governments and public concern (Harris et al., 2011), many questions arise on how 

firms make decisions under these environmental restrictions. What are the impacts of uncertainty 

in factors like demands or prices on these decisions? What are the trade-offs between the firm’s 

economic objective and its carbon footprint?  

To answer these questions, many researchers have incorporated carbon emission factors in 

traditional supply chain planning problems, either in the objective function or constraints of the 

model, by examining their problems under one or more emission control policies – carbon cap, 

carbon tax, cap-and-trade, cap-and-offset, etc. Lots of studies in the literature consider the emission 

element in their production, transportation, or inventory planning separately. However, less 

attention is paid to collectively consider emissions from all of these main activities. This study will 

investigate an integrated supply chain problem where cost and emission factors of production, 

inventory control, and transportation are all considered, but it will only focus on the carbon cap-

and-trade mechanism in terms of the environmental regulation. As opposed to deterministic 

demands, this study will consider a more realistic context where demands are uncertain and change 

over time. 

The basic problem setting can be briefly described as follow: We consider a two-level supply chain 

where a firm produces a single product at a factory to meet future market demand. When 

production is completed, the firm can choose to store its finished products either at a temporary 

storage space of the factory or to ship them directly to a central warehouse located further away 

using medium- or heavy-duty trucks or a combination of both. Each of the production, inventory 
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holding, and transportation activities entails costs and emissions. As the firm is assumed to be 

subject to the carbon cap-and-trade policy, it needs to acquire the necessary number of emission 

rights to cover its carbon footprint. Operational decisions are made in two stages. The first-stage 

decision is related to how many emission credits to buy initially when the demand (and hence the 

actual level of emissions) is not yet known. The second-stage decisions are related to the 

manufacturing, inventory holding, transporting processes as well as the recourse decisions on 

further emission credits trading (if any). These second-stage decisions are made after the actual 

demand level is observed. 

The objective of this study is to incorporate the carbon emission element into a two-stage stochastic 

model to help firms come up with an optimal production and transportation schedule and emission 

trading plan at the minimum cost while still comply with the carbon cap restriction. The proposed 

model can serve as a support tool for decision-makers to better understand the trade-offs between 

cost and emissions when facing stochastic demands under the emissions trading rule. It aims at 

examining how environmental factors (carbon emissions) could affect a firm’s production and 

transportation planning decisions.  

 

1.3 Methodology 

To achieve the goals mentioned above, this thesis aims to build a two-stage mixed-integer linear 

programing model with stochastic dynamic demand over a finite planning horizon. It is developed 

for a two-level supply chain problem in which a firm manufactures a single product to satisfy 

uncertain dynamic demands. The setting is as follows. Products are produced at a factory and 

shipped to a central warehouse by different types of trucks (either medium- or heavy-duty or both). 

The firm’s production, inventory control, and transportation activities are characterized by cost 

and emission features, which are then varied for the sensitivity analysis purpose. The firm is 

subject to a carbon cap-and-trade system where its initial emission allowances need to be 

purchased through auctioning. To accommodate the uncertainty in demand, different demand 

scenarios are randomly generated from the uniform and normal distribution. 

The proposed model is solved using the optimizer CPLEX provided by IBM.  

The structure of the thesis is as follows. In the next section, an overview of the literature on green 

lot-sizing and emissions trading is presented. Section 3 describes the basic case for the 

deterministic lot-sizing and transportation planning model and the new model for the case that 

incorporates the two-stage decision setting and emission factors. Section 4 presents numerical 

studies under different sets of parameters (including the discussion of results and sensitivity 

analysis addressing the trade-offs between costs and emissions). Section 5 presents an extensive 

experiment that takes into consideration the possibility of different demand patterns. Finally, the 

last section consists of a conclusion and a discussion on the limitations and possible future research 

directions. 
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Chapter 2. Literature review 

This chapter will provide a review of the various topics that are relevant for this thesis. Section 2.1 

focuses on the methodology and presents a brief review on the general stochastic programming 

and on the stochastic lot-sizing literature. To provide a more comprehensive understanding on the 

approaches that have been investigated to cope with GHGs emissions in supply chain, the next 

sections present a review of those highly relevant studies, which can be divided into four streams. 

Section 2.2 focuses on green lot-sizing and Section 2.3 explores strategic and operational decision 

making in other major corporate activities with environmental elements. Section 2.4 studies the 

operational decisions of firms under the emission trading system as well as under other common 

regulatory mechanisms. Finally, Section 2.5 analyzes different applicable methods in measuring 

carbon emissions. 

 

2.1 Stochastic programming 

Early in 1999, Sen & Higle provided a fundamental tutorial on stochastic programming in which 

they discussed numerous models, ranging from single recourse policies to more general two-stage 

and multi-stage Stochastic Linear Programming (SLP) formulations. This section focuses only on 

the two-stage setting, given that this is the modelling approach used in this thesis.  

• Two-stage stochastic programming is a modeling paradigm where decisions are made under 

one or more sources of uncertainty at two separate periods of time. Decision variables that are 

implemented before an outcome of the random variable is observed are classified as first-stage 

decisions – also regarded as the proactive decisions and are often associated with strategic or 

tactical planning activities such as capacity expansion. On the other hand, those decisions 

implemented after observing the outcome of a random variable are the second-stage or 

recourse decisions, which are often associated with operational decisions. In the second stage, 

for each of the possible observed outcomes of the random variables, corresponding recourse 

decisions are made to assist the organization to adapt to the realized outcome (Sen & Higle, 

1999). This type of practice is also known as recourse planning. Readers interested in recourse 

planning models can refer to Higle (2005) for a more detailed description. 

An example of applying the recourse planning concept is the work by Eppen et al. (1989). In their 

study, a stochastic programming problem with uncertain demand is considered, where the first-

stage decisions are the capacity levels in a network of plants, and the production quantity decisions 

are the recourse decisions. 

Within stochastic programming, an important stream to which much attention has been paid by 

researchers over the years is stochastic lot-sizing, which is often known as the lot-sizing problem 

with uncertain demand. This section will now present a review on the stochastic lot-sizing model. 

 

 



7 
 

➢ Stochastic lot-sizing  

Lot-sizing and scheduling are widely acknowledged to be critical decisions in production planning, 

particularly for companies within the industrial sector. They could have direct impacts on a firm’s 

total cost and efficiency level. In the past, production planning was often considered under 

deterministic settings as it is a lot simpler to resolve production problems without uncertainty. A 

general overview on deterministic lot-sizing can be found in Pochet and Wolsey (2006), Jans and 

Degraeve (2008), and Brahimi et al. (2017). However, uncertainties, either external or internal, 

such as those in demand, productivity, yield loss, etc., can highly affect a firm’s production 

decisions. Therefore, imbedding stochasticity in lot-sizing and scheduling problems is important 

(Hu & Hu, 2016). In our production and transportation planning problem, we will involve the 

uncertainty in market demand. Other papers have looked at other sources of uncertainty like 

uncertainty in setup times (Tas et al., 2019) and yield (Helber et al., 2018). 

To the best of our knowledge, the early stochastic lot-sizing concept can be dated back to 1978 

when Silver expressed that “One should not necessarily use a deterministic lot-sizing rule when 

significant uncertainty exists. A more appropriate strategy might be some form of probabilistic 

modelling”. In his study, he has suggested a heuristic approach for a stochastic lot-sizing problem, 

taking into consideration the normally distributed forecasting error. This non-stationary stochastic 

lot-sizing problem has not been extensively studied until the late 1990s and the start of the 21st 

century. A thorough review on the early stochastic lot-sizing literature can be found in Tarim and 

Kingsman (2004). A recent general review on stochastic lot-sizing can be found in Tempelmeier 

(2013). 

Another aspect that has been studied is the capacitated lot-sizing and scheduling problem with 

sequence-dependent setups reviewed by Ramezanian and Saidi-Mehrabad (2013), Hu and Hu 

(2016, 2018). Ramezanian and Saidi-Mehrabad apply the chance-constrained programming theory 

to transform the stochastic models to the deterministic ones. Hu and Hu (2016) investigate a setting 

where baseline production decisions (production quantity and sequence of production) are made 

at the first stage, and possible updates on the production planning such as overtime production 

decisions are made at the second stage, with a goal to find the best sequence of production 

quantities under random demand with backorders allowed. In their study, demand uncertainty is 

explicitly modelled by applying scenario generation and the most representative scenarios are 

chosen to conduct further analysis. In another paper published in 2018, the authors have extended 

their original problem to a multi-stage stochastic problem which allows decisions to be revised at 

each period based on the previous realization of uncertainty and the decisions taken so far. 

Other authors focus on stochastic lot sizing with a service level constraint (Tempelmeier, 2011; 

Tunc et al., 2014; Helber et al., 2013; Sereshti et al., 2020). Some research has been done to 

integrate stochastic demand in integrated lot-sizing and distribution planning problems (Adulyasak 

et al., 2015; Gruson et al., 2020; Alvarez et al., 2020). Also focusing on lot-sizing, Zhou and Guan 

(2013) extend the formulation of two-stage stochastic problem to allow backlogging and 

uncertainty in costs (cost parameters will increase or decrease after a given time period, following 

a discrete probability distribution). This uncertainty of cost can come from different sources – 
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fluctuations in purchasing costs of resources and materials, promotions and marketing activities, 

fluctuations in interest rate and currency exchange rate, etc. 

At a more strategic level, Drake et al. (2016) employ a two-stage stochastic model for their 

technology choice and capacity investment problem of a firm under the carbon cap-and-trade or 

the carbon tax regulation. At the first stage (investment stage), the firm builds its capacity portfolio 

using 2 types of production technologies (“dirty” or “clean” technology) with corresponding 

investment costs and emissions intensity. After the uncertain demands are known, at the second 

stage, the firm makes production decisions which are constrained by the capacity built at the first 

stage.  

 

2.2 Green lot-sizing 

In the literature on sustainable supply chains that studies lot-sizing problems with environmental 

concerns, many have considered a constant or time-varying deterministic demand, such as the 

work of Hua et al. (2011), Arslan and Turkay (2013), Toptal et al. (2014), Konur (2014), and Absi 

et al. (2013, 2016), etc. However, in recent years, there are rising sources of uncertainty in the 

global supply chain. This has made decision-making under the consideration of environmental 

sustainability increasingly complex. Therefore, more attention has been paid to include stochastic 

elements in green lot-sizing models, of which the uncertainty in demand is the most common topic 

discussed by researchers. They develop it either into a single-period or a multi-period (dynamic) 

stochastic model, e.g., the work of Song and Leng (2012), Hoen et al. (2014), Gong and Zhou 

(2013), and Purohit et al. (2016), etc. 

Most of the current studies on green lot-sizing that consider carbon emission factors (either 

emission cost or emission intensity) incorporate them either in the constraints or directly in the 

objective function of the mathematical model. An overview of these studies will be provided in 

this section, which comprises three main parts. The first part discusses papers using the classical 

economic order quantity (EOQ) model, the second part introduces studies using the newsvendor 

problem, and the third part reviews papers using a Mixed-Integer Programming (MIP) model. 

 

2.2.1 Green lot-sizing with economic order quantity model 

Many studies in the literature use the economic order quantity model – a standard model in the 

classical inventory control theory, as an instrument to help firms come up with optimal lot-sizing 

decisions (either for the production or ordering processes) in order to minimize the total cost of 

replenishment under deterministic setting (Arslan & Turkay, 2013). 

A study by Bonney and Jaber published in 2011 has included the social cost of vehicle emissions 

and the cost of disposing waste into a classical EOQ model to develop an environmentally 

enhanced inventory model. It has shown that the existing inventory management system using 

small batch sizes and short product life cycles can lead to a significant increase in transportation 

costs and CO2 emissions. The authors thus suggest future inventory systems should move towards 
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larger batch sizes, longer product life cycles, and higher quality products to save costs and to 

reduce emissions. Similarly, Arslan and Turkay (2013) also emphasize that in most cases, models 

with sustainability constraints tend to result in larger optimal order quantity than those without 

such constraints. Their work revises the traditional EOQ model to include environmental and/or 

social criteria to obtain their sustainability objectives by using different modeling approaches, i.e., 

direct accounting, carbon tax, direct cap, cap and trade, etc. The study of Van der Veen and 

Venugopal in 2014 has collectively used a multi-objective approach and an energy cost-included 

EOQ model to test the validity of the two different schools of view: whether there are inevitable 

trade-offs or weather there exists a feasible synergy between the economic and environmental 

performance. Their findings indicate that both views are not incompatible but valid depending on 

the values of specific parameters of the emission regulations.    

As there are increasing environmental regulations being put into place by legislative bodies, 

researchers tend to focus on incorporating one or several of these policies into their models, with 

an aim to investigate how these instruments affect their decision makings. A study by Hua et al. 

in 2011 examines how firms react under the carbon emission trading mechanism by involving the 

well-known European ETS and New Zealand ETS. They analyze how carbon related regulatory 

parameters (carbon cap and carbon trading price) affect their optimal EOQ quantities, carbon 

emissions and the total cost level. In their work, the permits buying and selling prices are assumed 

to be equal. Benjaafar et al. (2013) study several simple economic lot-sizing models in which the 

firm faces different environmental regulations (strict carbon cap, carbon tax, carbon cap-and-trade, 

carbon cap-and-offset). In the same year, Chen et al. also analyze the primary factors that influence 

the extent of emission reduction versus the increase in cost under these four carbon policies. They 

further propose essential conditions under which carbon emissions could possibly be reduced by 

adjusting the order quantity without considerable increase in costs. 

Toptal et al. (2014) extend the EOQ model to jointly consider decisions on inventory control and 

investment in carbon reduction of a retailer under different carbon schemes, with an aim to provide 

guidance for companies to make better inventory decisions while utilizing the available 

environmental technologies. He et al. (2015) consider an EOQ-based lot-sizing problem of a 

carbon-intensive firm under carbon tax and carbon cap-and-trade systems where annual market 

demand is fixed. Their study compares the effectiveness of the two policies in terms of cost and 

their impacts on the firm’s operational decisions. They find out that under cap-and-trade regulation, 

the firm’s optimal emissions level as well as its allowances trading plan are contingent on the 

allowances trading prices. 

A recent study by Malik and Kim (2020) involves both direct and indirect emissions from the 

production process in their proposed economic lot-size and production rate model for a single 

vendor-buyer supply chain. In calculating production costs, unlike other studies, they consider the 

possibility to reduce the fixed production setup cost with additional upfront investments in the 

production system. They even apply a changeable unit production cost which can vary depending 

on the quantity of products produced (decreases when production rate is large). 

Tayyab et al. (2019) build a multi-objective model for a multi-stage production system by 

employing the Economic Production Quantity (EPQ) model, the concept of which is similar to the 
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conventional EOQ model. By simultaneously considering two conflicting objectives - minimizing 

cost and minimizing emissions, the optimal sustainable lot-size that they obtain is expected to 

improve both the economic and environmental performances of the system. It is noticeable that 

with the application of analytical optimization technique and a metaheuristic approach, their study 

has successfully involved both the uncertain demand and the highly uncertain defective rate, which 

are acknowledged to be the imperfect nature in the manufacturing process.  

 

2.2.2 Green lot-sizing with newsvendor problem 

As opposed to the EOQ inventory control model, some researchers have studied the emissions 

restricted lot-sizing problem when demands are unknown, either in a single-period or multi-period 

setting. In this section, we will first provide an overview on the studies in which one single lot-

sizing decision is made to cover the stochastic future demand for the whole planning horizon, 

which is commonly known as the newsvendor problem. A review of the studies with a stochastic 

dynamic structure will be presented in a later section. 

The newsvendor problem (also called as newsboy problem) is a single-period lot-sizing model 

for a product with limited shelf life and uncertain future demand, often associated with a fixed 

acquisition price, an item selling price, and a salvage price. When market demand is higher than 

the order quantity, financial losses are incurred and unsatisfied demand is considered lost sales. 

When market demand is lower than the lot-size, losses also occur in the form of excessive 

inventory but the owner is often able to retrieve a portion of revenue from each unsold unit through 

the salvage price. The objective of this type of problem is to come up with an optimal order 

quantity to maximize its expected profit. 

A work by Manikas and Godfrey in 2010 has combined the classical newsvendor model with the 

consideration of carbon emissions by including not only the emission permit purchasing cost but 

also the penalty cost of violating the upper emission limit into their stochastic lot-sizing model. It 

is noted that in their study, substitute products from other suppliers are assumed to exist, but the 

firm has limited authority on how much it can charge to offset the incremental costs resulting from 

the permit prices and penalties.  

Song and Leng (2012) consider a single-period problem for a perishable product under three 

carbon policies, i.e., mandatory cap, cap-and-trade, and emissions tax. Their research provides 

important insights for policy makers in determining the appropriate emission capacity or in 

adjusting the profit structure based on different carbon price levels. Likewise, Hoen et al. (2014) 

examine the impacts of these regulations on a transportation mode selection problem in which they 

focus on the emissions of different transportation modes. Zhang and Xu (2013), however, extend 

the conventional model to a multi-item setting under carbon cap-and-trade regulation. They 

address a common production capacity and an emission quota that will be shared among different 

product types. In Bai and Chen (2016), two distributional robust newsvendor models with dual 

sourcing strategy are built. Dual sourcing is a common approach in supply chain management to 

deal with volatile market demand. They obtain the optimal order quantities by applying the 
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Maximin solving approach, which has been shown to remain effective even under the worst 

demand scenario.  

Similar to many of the studies we have discussed so far, this thesis focuses on the production 

planning of a single product with stochastic demand, yet the main difference is that we consider a 

multi-period setting as opposed to the single-period lot-sizing. It is noticeable that, in our model, 

production quantities can be determined only after the uncertain market demands are realized. 

 

2.2.3 Green lot-sizing with Mixed-Integer Programming model 

Another major area in the literature of green lot-sizing is the stream of studies that employ mixed-

integer programming techniques in deriving the optimal lot-sizing decisions under environmental 

considerations. This section will present an overview of those related papers.  

An early work by Letmathe and Balakrishnan in 2005 was considered among the first attempts to 

develop models that integrate environmental concerns (e.g., carbon emission upper limits, taxes or 

penalties, tradable emission allowances) into production planning problems along with those 

traditional impediments (raw materials, machine capacity, labor hours, storage space, etc.) and 

environmental issues in production planning. They describe two separate mathematical models, 

i.e., a linear programing model for products with only one operating process and a mixed-integer 

linear programing model for products that need more than one operating process, with the objective 

to help firms solve their product mix and production quantity problem under the presence of 

emission thresholds (or taxes) and tradable emission allowances. 

Following the idea of incorporating carbon emission constraints into decision-making models, 

Absi et al. (2013) study a single-item uncapacitated dynamic lot-sizing problem under 4 types of 

carbon emission constraints: periodic, cumulative, global or rolling emission constraint. With a 

multi-sourcing setting (there are various production facilities and transportation modes available 

to satisfy a given demand), carbon emissions in their study are aggregated by each supplying mode, 

i.e., a combination of a production location and a transportation mode. Unlike other studies, the 

upper limit of emission in their research is imposed on the average emission per product rather 

than on the overall emission quantity. This approach is highly relevant and applicable to firms that 

are strategically willing or mandatorily required to display the carbon footprint of their products 

explicitly. In a later study in 2016, the authors further investigate the above problem with an 

extension on the periodic carbon emission constraint, in which a fixed amount of carbon emission 

is associated to the use of a specific supply mode, in addition to the regular unit carbon emission 

(Absi et al., 2016). Helmrich et al. (2015) consider a global emission constraint, which also 

includes emissions from inventory holding.  

Gong and Zhou (2013) employ a stochastic dynamic model to determine the optimal production 

and emission trading strategy in the case of a cement manufacturing company subject to emission 

trading policy. Similarly, Purohit et al. (2016) use an MIP model to fulfil non-stationary stochastic 

demands of a buyer firm and to analyze the impacts of emissions, product, and system related 

parameters on the supply chain performance through extensive computational experiments.  
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Instead of including the emission element in constraints, Darvish et al. (2017) imbed it directly 

into the objective function of their dual integrated production-routing and inventory-routing 

problems under three different objectives – minimization of total costs, routing costs only, or total 

emissions. Their study also provides useful insights on the costs and emissions in an integrated 

supply chain as well as on the cost of being environmentally friendly.   

Recently, Castellano et al. (2019) study a single-vendor multiple-buyer supply network to 

minimize its total expected cost of transportation and emissions in the long term. In the same year, 

Turkensteen and van den Heuvel conduct a realistic assessment of the trade-offs between 

operational costs and carbon emissions with their novel bi-objective lot-sizing model, under a 

deterministic dynamic setting. The most distinguished feature of this study is that they focus on 

the realistic values of the emission parameters acquired from empirical studies as opposed to the 

generic parameters as often employed in historical studies.  

From a broader perspective, Chaabane et al. (2010) use an MIP model to investigate the 

characteristics of a closed-loop supply chain network structure. They study multiple decisions on 

facility location, production lot-sizing, distribution/recycling centers, transportation and carbon 

credits management. One major remark provided by the study is that under the emergence of 

emission trading schemes, it is critical to explicitly consider environmental costs within supply 

chain design. There are a great number of studies on closed-loop supply chain and reverse supply 

chain within the sustainable lot-sizing domain but there will not be mentioned as they are 

considered outside the boundaries of this study.  

A summary of the related studies in green lot-sizing is presented in Table 2.2-1. 
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Table 2.2-1: Summary of the literature in green lot-sizing 

Authors Demand Model 

Emission sources 

Other features Ordering/ 

Production 

Inventory 

holding 

Transport

ation 

Letmathe and Balakrishnan 

(2005) 
Stochastic MIP ✓   

-Multi-item 

-Product mix 

Manikas and Godfrey (2010) Stochastic Newsvendor ✓   
-Emissions penalty cost 

-Disposal fee for unsold units 

Hua et al. (2011) Deterministic EOQ  ✓ ✓  

Bonney and Jaber (2011) Deterministic EOQ   ✓ 
-Costs of emissions and disposing 

waste 

Song and Leng (2012) Stochastic Newsvendor ✓    

Arslan and Turkay (2013) Deterministic EOQ ✓ ✓  -Environmental and social criteria 

Benjaafar et al. (2013) Deterministic EOQ ✓ ✓  
-Single firm or multiple firms 

-Multi-period 

Chen et al. (2013) Deterministic EOQ ✓ ✓   

Zhang and Xu (2013) Stochastic Newsvendor ✓   

-Multi-item with a common 

production capacity and emission 

quota 

Gong and Zhou (2013) Stochastic MIP ✓   
-Production technology selection 

-Stochastic allowance prices 

Absi et al. (2013) Deterministic MIP ✓  ✓ 
-Multi-sourcing 

-Four types of emission constraints 

Toptal et al. (2014) Deterministic EOQ ✓ ✓   

Van der Veen and Venugopal 

(2014) 
Deterministic EOQ ✓ ✓  

-Multi-objective 

-Consider energy usage 

Hoen et al. (2014) Stochastic Newsvendor   ✓ -Transportation mode selection 

He et al. (2015) Deterministic EOQ ✓ ✓  -A carbon-intensive firm 

Helmrich et al. (2015) Deterministic MIP ✓ ✓  -Bi-objective 

Absi et al. (2016) Deterministic MIP ✓  ✓ -Periodic emissions constraints 

Purohit et al. (2016) Stochastic MIP ✓ ✓  -Service level constraints 

Bai and Chen (2016) Stochastic Newsvendor ✓ ✓  -Dual sourcing 

Darvish et al. (2017) 

) 
Deterministic MIP   ✓ -Three types of objective functions 

Turkensteen and van den 

Heuvel (2019) 
Deterministic MIP  ✓ ✓ -Bi-objective 

Castellano et al. (2019) Stochastic MIP ✓  ✓ 
-Single item 

-Single vendor-multiple buyers 

Tayyab et al. (2019) Stochastic EPQ ✓ ✓  

-Single item 

-Bi-objective 

-Uncertain product defective rate 

Malik and Kim (2020) Deterministic EOQ ✓   
-Direct and indirect production 

emissions 

This study Stochastic MIP ✓ ✓ ✓ 
-Single item 

-Multi-period 
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2.3 Other types of operation problems incorporating environmental consideration   

Apart from lot-sizing, environmental elements have also been integrated into other areas of 

operations and supply chain management such as transportation, technology selection, facility 

location, network design, etc. 

Dated back to 1998, Gray and Shadbegian conducted an empirical study to discover the connection 

between environmental regulations and the productivity of a firm through its production 

technology selection and capital allocation investment problem in the pulp and paper industry.  

In supply chain network design, Bauer et al. (2010) incorporate costs of greenhouse gases into a 

linear multicommodity and capacitated network design planning model to minimize emissions 

from the intermodal freight transport activities. Their study also presents computational results of 

an empirical case of a rail freight network in Eastern Europe. A study by Harris et al. in 2011 has 

examined two objectives, i.e., cost minimization and emissions minimization, in their supply chain 

network design problem. Their findings suggest that different objectives could result in different 

optimal network solutions, thus it is essential to address the economic and the environmental 

objectives explicitly in the design of a supply chain. Mallidis et al. (2014) develop two new 

periodic inventory planning models to evaluate the impact of jointly optimizing strategic network 

design decisions (the number and the type of distribution centers and transportation modes to use) 

and tactical inventory planning decisions (the optimal order delivery frequencies and stock levels) 

on the total cost and carbon emissions of a multi-echelon logistics network. 

Transportation makes up about 21% of carbon emissions globally, in which road transportation 

has constituted a large portion, particularly freight transport (Jabali et al., 2012). Given the 

significant contribution of the transportation sector to the total emission inventory as well as the 

critical role of trucking among supply chains, more efforts have been made by researchers to 

include transportation in their optimization models (Castellano et al., 2019). A study in 2012 by 

Jabali et al. has provided a framework to model carbon emissions in a time-dependent vehicle 

routing problem in road freight distribution, which is used to minimize the sum of travel time, fuel 

usage and CO2 emission costs. As fuel consumption is related to emissions, their study illustrates 

that reducing emissions could bring about potential cost reductions, and that minimizing CO2 

emissions by limiting the number of vehicles used can be costly in terms of travel time, but 

“limiting it to a certain extent might be both cost and emission effective”. Similarly, when dealing 

with transportation related activities, Castellano et al. (2019) focus more closely on the 

transporting flows and vehicle routing issues with the consideration of GHG emissions from 

transportation.  

From the perspective of fleet management, a study by Konur in 2014 is considered as the first in 

the literature that explicitly discusses heterogeneous truck types (each associated with a distinct 

cost and an emission factor) in an integrated inventory control and transportation problem with 

carbon emission constraint. Similar to most of the previous studies, his problem considers a 

deterministic inventory control system (classical EOQ model) but it applies Full-truckload (FTL) 

as opposed to Less-than-truckload (LTL) transportation. The experimental results of this study 

illustrate that when the carbon cap becomes tighter, firms tend to increase the number of truck 
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types that are in use, and that using a configuration of different truck types not only reduces cost 

but also emissions. In the same year, the author has extended his scope of research to consider both 

FTL and LTL trucking practices, as being presented in Konur and Schaefer (2014). In the case of 

using an LTL carrier, the firm is subject to a per unit transportation cost and carbon emissions per 

unit shipped. 

It can be seen that, in order to curb emissions from freight transportation more effectively, the 

trend is shifting towards considering different types of vehicles of one transport mode (as in Konur, 

2014) or among different transport modes (as in Hoen et al., 2014). Therefore, vehicle 

configuration and fleet management has become a prevalent issue to consider in order to find the 

most appropriate solution with respect to cost and emissions under environmental policies. With 

that saying, this thesis will look into a two-level supply chain with a transportation system where 

two different types of truck, i.e. medium-duty and heavy-duty truck, are considered. 

 

2.4 Studies incorporating emissions trading and other regulations 

2.4.1 Introduction to emissions trading system (carbon cap-and-trade) 

As early as mid-1970s, the United States Environmental Protection Agency (EPA) began to 

enforce some rules related to the emissions of greenhouse gases, which has triggered the 

emergence of several environmental initiatives, particularly in dealing with the emissions of 

carbon dioxide (Tietenberg, 2006). In the 1990 Clean Air Act Amendments of the United States, 

the very first large-scale sulfur dioxide (SO2) emissions trading system was instituted for the 

electric sector under the framework of the Acid Rain program (Zhao et al., 2010). Since then, this 

tradeable allowance approach has been extended to new geographic areas including Chile and the 

European Union, where a cap-and-trade policy for CO2 (known as the Emission Trading System) 

came into effect in 2005. Meanwhile in the United States, although there was no federal carbon 

reduction requirement, numerous states have launched their own carbon trading system, most 

notably are the Regional Greenhouse Gas Initiative and the Western Climate Initiative, the latter 

also includes four Canadian provinces. These carbon control programs have brought back many 

positive economic impacts in the global effort of curbing greenhouse gases emissions (Zhao et al., 

2010).  

Emissions trading, also known as cap-and-trade, is a market-based policy that controls the 

emissions of GHG pollutants to the air, under which emitting entities are required to possess an 

equivalent amount of emission allowances (a carbon cap) to cover the quantity of emissions they 

generate (He et al., 2012). Under cap-and-trade system, if a firm’s actual carbon emission level 

exceeds its carbon cap, it can buy extra emission allowances (permits) on a carbon trading market 

such as the widely acknowledged European Union Emissions Trading System. On the other hand, 

if the firm’s actual amount of emissions is less than the cap, it can keep the spare allowances to 

cover its future needs or else sell them on the same market. These emission allowance prices are 

volatile and determined either by the regulators or by the trading market itself (Drake et al., 2016). 
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Under a cap-and-trade regime, there are many aspects in the design of the system that can affect 

its economic efficiency and consumer costs. One of the most critical and controversial elements is 

the initial allocation of emission allowances (Zhao et al., 2010). In principle, initial allowances are 

allocated yearly through a regulatory agency, either by auctioning (where polluters purchase 

emission rights from regulators), by giving away fixed amounts free of charge (also known as 

grandfathering), or by allocating based on the present or recent investments and decisions. 

Nevertheless, in all cases, the total amount of emission allowances is limited by a cap, i.e., a pre-

determined upper limit imposed by the regulator either at the industrial, regional or national level, 

which will be gradually tightened over time in order to reach the ultimate emission abatement 

target (He et al., 2012). 

 

2.4.2 The European Union Emissions Trading System  

Among the more than 20 carbon trading platforms worldwide, the emissions trading system of the 

European Union is known as the largest multi-national greenhouse gas emissions trading market 

(Bai & Chen, 2016).  

Being launched by the Directive 2003/87/EC of the European Parliament and the Council on 

October 13, 2003, the EU ETS is intended to guarantee the reduction of greenhouse gas emissions 

from major industrial sectors within the EU, and to serve as an instrument for the EU to meet its 

emission targets in the Kyoto Protocol (Carmona et al., 2009). The system currently operates in 

all European Union countries plus Iceland, Norway and Liechtenstein, covering around 45% of 

the EU’s greenhouse gas emissions from power sector to manufacturing industry and aviation. It 

imposes mandatory participation of more than 11,000 energy-intensive entities (including power 

stations, industrial plants, etc.) and over 500 airlines operating between these countries (European 

Commission, 2019). For these installations, carbon emission allowances (also called EUAs), which 

are used to cover their annual carbon footprint, are allocated annually by the responsible 

governments based on the National Allocation Plans (NAPs). By the end of April 30th each year, 

if they do not submit enough allowances to cover their total emissions of the preceding year, a 

penalty payment will be applied for each ton of excessive emission, e.g., the penalty price is €40 

per ton in the first phase and is €100 in the second phase (Carmona et al., 2009). In 2019, the 

average allowance price on the EU ETS primary auction market is €24.72 per ton of CO2e 

emissions. 

The EU ETS system is now in its third phase that covers the years 2013 to 2020. Compared to its 

two prior phases – Phase 1 (2005-2007) and Phase 2 (2008-2012), several crucial changes have 

been carried out in Phase 3. Starting from 2013, a specified cap for each nation has been replaced 

by a single, EU-wide emissions cap which declines linearly each year by around 1.74%. Table 2.4-

1 shows the annual caps for the stationary installations and the number of aviation allowances put 

into circulation from 2013 to 2020 provided by the European Commission (2019). Another 

noticeable change is that auctioning is now the default method of allowances allocation as opposed 

to the previous free allocation method. Additionally, more sectors and gases have been involved 

in Phase 3.  
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In April 2018, the EU ETS revised its legislative framework to prepare for its next trading period 

– Phase 4 from 2021 to 2030 (European Commission, n.d.). In a report to the European Parliament 

and the Council in 2019, the EU ETS has proved that putting a price on carbon and then trade it 

can help curb emissions. This is illustrated by the fact that, compared to 2017, the emissions from 

those installations covered by the system in 2018 had decreased by 4.1% (approximate 73 million 

tons CO2e), except for the aviation sector where emissions continue to grow by 3.9% or about 2.6 

million tons CO2e (European Commission, 2019).  

Table 2.4-1: EU ETS carbon cap in the 2013-2020 period 

Year Annual cap (installations) Annual aviation allowances put into 

circulation 

2013 2 084 301 856 32 455 296 

2014 2 046 037 610 41 866 834 

2015 2 007 773 364 50 669 024 

2016 1 969 509 118 38 879 316 

2017 1 931 244 873 38 711 651 

2018 1 892 980 627 38 909 625 

2019 1 854 716 381 35 172 897 

2020 1 816 452 135 N/A 
Source: European Commission (2019) 

 

2.4.3 Studies with emissions trading system (carbon cap-and-trade) 

Given the rising popularity of emissions trading systems and their important role in the global 

emissions abatement scheme, there is an increasing number of studies looking into various aspects 

of this carbon controlling mechanism.  

Early in 1996, a study by Laffont and Tirole (1996) analyzed how the trading prices of pollution 

permits in the spot and futures markets could impact a firm’s compliance strategies and production 

planning in a two-period deterministic setting. In their study, polluters can either buy emission 

permits, invest in pollution reduction projects, merely stop production, or outsource their polluting 

activities. Their findings indicate that under the spot market, overinvestment of firms is likely to 

be induced because the permit price exceeds the marginal pollution cost. Companies would rather 

pollute or invest in green technologies than buy emission permits. Meanwhile, the launch of futures 

markets can curtail this situation, as with the futures markets, firms have more incentives to buy 

permits in advance at a lower price that they can use in the future.  

Shortly after the EU ETS went into effect in 2005, more research has been devoted to analyzing 

its effectiveness. A book by Tietenberg in 2006 discusses the role of the emissions allowance 

trading approach in environment protection schemes. By reviewing the accumulated successes of 

emissions trading over the years, it points out the weaknesses and challenges faced by this 

mechanism. The author also emphasizes that not all the emissions trading programs are equal, 

some are better designed than others, and each trading program should be adjusted for each specific 

application. This is followed by the research of Zhao et al. (2010) which focuses on analyzing the 
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impacts of different permits allocation rules (auctioning, grandfathering, output, and investment 

based) on the economic efficiency of the electric power sector. Their arguments indicate that 

among those allocation rules, free allocation could possibly lead to market price distortion while 

the contingent allocation system (also called “output-based” or “input-based” allocation) could 

also distort decision making in production and technology investment. However, despite its 

potential misinterpretation, compared to the inefficiency of auctioning and grandfathering, output-

based policies still receive strong support from political forces and are believed to actually improve 

the overall welfare. This is demonstrated by the fact that most of the national allowance allocation 

plans in the EU ETS are based on such schemes (Dissou, 2005; Fischer & Fox, 2007; Neuhoff et 

al., 2006; Sterner & Muller, 2008, as cited in Zhao et al., 2010). In the same year, Chaabane et al. 

introduce a multi-objective framework to assist firms in designing sustainable supply chains that 

integrate environmental factors. Their study also aims at providing decision makers with insights 

in the tradeoffs between economic and environmental performance.  

At the operational level, Hua et al. (2011) study how firms manage their carbon footprint in 

inventory control by comparing the optimal order quantity derived from the modified carbon-

constrained model with that of the traditional EOQ model. They show that the cap-and-trade 

mechanism does induce retailers to curtail their carbon levels but it ultimately increases their total 

costs, and the optimal lot-sizes under these two models are usually not equal. 

Zhang and Xu (2013) formulate a linear programming model for their multi-item stochastic 

problem in which a single emission quota is shared among different product types. They find out 

that in the presence of a cap-and-trade mechanism, low-emission products will be favored over 

high-emission ones, and total emissions will decrease as the carbon price increases. Gong and 

Zhou (2013), also with the uncertain demand setting, investigate a multiperiod problem of a 

cement company facing stochastic emission trading prices. In their study, the firm covers its 

emissions not only by the initial allowances but also by the amount it trades from the external 

market via forward contracts at the end of the planning horizon, and its optimal emission trading 

and production decisions are to be made before the uncertain demands are realized. Furthermore, 

their research also involves a tactical production technology decision by selecting the green or the 

regular technology or a combination of both for their production process, each of which is 

associated with a specific cost and emission level.  

Purohit et al. (2016) impose cycle service level and emission constraints on their dynamic 

stochastic lot-sizing problem in which emissions generated from purchasing, ordering and 

inventory storing activities are recorded. By analyzing different demand patterns, their study 

shows that the cycle service level and the demand coefficient of variation could have significant 

impacts on total cost and total emissions while increasing the carbon price can eventually reduce 

total costs, total emissions and total inventory. Xu et al. (2017) extend the conventional cap-and-

trade problem by considering a case when the firm can either buy extra credits or adopt green 

technology in production if its actual emissions exceeds the initial permits that are allocated. Their 

findings suggest that green technology is preferable as it can technically reduce the amount of 

emissions generated from production while carbon trade mechanism cannot. They also suggest 

applying a combination of both techniques could help firms survive and gain more market share.  
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Qiu et al. (2017) incorporate fuel consumption and CO2 emissions into the pollution-routing and 

the production inventory and routing problems to form a model for the Pollution Production-

Routing Problem (PPRP) under a cap-and-trade system. Along with production and inventory 

holding costs, their total cost function also covers the cost of lost sales, wages for driver, cost of 

fuel, and cost of emissions. Several carbon price related insights have been derived from the study: 

(1) Operational cost and emissions under this integrated optimization model are lower than those 

obtained from a separate optimization and are more sensitive to changes in the carbon price; (2) 

An increase of the carbon price can lead to a reduction in emissions but a growth in operational 

costs; (3) When transportation costs increase, companies operating under this integrated 

optimization setting or companies with shorter planning horizon are more sensitive to changes of 

the carbon price.  

In most of the studies that entail a carbon cap-and-trade system, the permit trading prices are often 

assumed to be stationary throughout the planning period while only a few takes into account their 

fluctuations. An example is the research by Carmona et al. (2009) that proposes a model for the 

equilibrium price formation of emission allowances under the EU ETS setting when the price 

process is stochastic. Their work identifies the main drivers of variations in carbon prices and also 

provides foundations to help regulatory authorities in designing market rules when a new emission 

trading mechanism is being established. Another example is the work by Drake et al. (2016) that 

investigates the incorporation of both the cap-and-trade and carbon tax policies into their 

technology choice and capacity planning problem, in which a single stochastic emissions price and 

a constant tax rate is respectively considered. The study by Gong and Zhou (2013) mentioned 

above also considers stochastic trading prices. 

Besides, it is worth to mention that carbon permits buying and selling prices are assumed to be the 

same in most of the historical studies, only a few studies in the literature differentiate between 

them, such as Letmathe and Balakrishnan (2005), Gong and Zhou (2013), Chen et al. (2013), He 

et al. (2015), Bai and Chen (2016). The rationale for this differentiation is due to (1) the different 

transaction costs incurred during the permits trading process, which are then reflected in the trading 

prices, (2) the discrepancy between the bid and ask prices in the trading market, as explained in 

Gong and Zhou (2013). 

Similar to the studies that have been reviewed above, this thesis will examine a production and 

transportation planning problem under the carbon cap-an-trade system. However, unlike most of 

the studies, it will also include the cost and emissions of the production process along with those 

resulted from the inventory holding and transportation activities. Furthermore, we differentiate 

between allowances buying and selling prices.  

 

2.4.4 Studies with multiple environmental regulations – Carbon tax, carbon cap, 

carbon cap-and-trade, and/or carbon offsetting 

As mentioned in the introduction part, a variety of environmental systems have been designed and 

implemented by policy makers to curtail GHG emissions. Some of the most common policies are 



20 
 

carbon emission tax, strict carbon cap, carbon cap-and-trade, and carbon cap-and-offset. Although 

they all serve to reduce carbon emissions, each of these regulations would bring about different 

impacts in terms of cost and emissions (Hoen et al., 2014). Therefore, many researchers have 

involved two or more of these regulations in analyzing different aspects of a supply chain.  

Letmathe and Balakrishnan (2005) develop two mathematical models to determine the optimal 

product mix and production quantity in the textile and food industries under three different 

environmental conditions, i.e., threshold emission values, trading of emission allowances, 

penalties and taxes, corresponding to the carbon cap, carbon cap-and-trade, and carbon taxing 

policy. Benjaafar et al. (2013) have provided a general examination on a firm’s reaction in the 

presence of different emission regulations by introducing a set of simple mathematical models 

involving emissions from production, transportation and inventory planning. Their study also 

investigates the possibility of collaboration among firms within the same supply chain and its 

potential impacts on the total cost and emission levels. Their experimental results disclose that 

reducing emissions could be tremendously less costly if firms within the same supply chain 

collaborate (e.g., by placing orders jointly) in their cost-minimizing operation structure.  

Arslan and Turkay (2013) revise the standard EOQ model under five different environmental 

regulations (direct accounting, carbon tax, direct cap, cap-and-trade, and cap-and-offset) to analyze 

the effectiveness of these policies on the sustainability of the firm’s supply chain. Their study 

shows that mechanisms involving a cap (direct cap, cap-and-trade, cap-and-offset) are most 

effective in driving organizations towards greener regulatory policies. Toptal et al. (2014) also 

investigate their integrated inventory control and emission reduction investment model using these 

emissions curbing policies, with an aim to assist policy makers in understanding the impacts of 

each regulation on the profitability of the company and the role of green technologies in its cost 

and carbon footprint level. They find out that, under carbon tax and cap-and-trade, the availability 

of carbon emission reduction investment can further reduce carbon emissions along with reducing 

costs. Therefore, they suggest governments to encourage green technology application when these 

two policies are in place. 

Bai and Chen (2016) address a newsvendor model with a dual sourcing policy of a retailer under 

carbon tax and carbon cap-and-trade, respectively. Numerical solutions are analyzed and compared 

in terms of replenishment lead times and order quantities from the two supply sources. Their study 

has provided useful managerial insights for authorities in setting up the carbon tax rate or carbon 

cap in the reality.  

In transportation mode selection problems, Hoen et al. (2014) have developed an emission-

measuring methodology based on empirical data to analyze the trade-offs between inventory, 

transportation, and emission costs, with an aim to find the most appropriate transportation mode 

among air, road, rail, and water for a given product type. They also investigate the effect of various 

regulations in terms of emissions on the selected transport mode and its corresponding emission 

values. Nonetheless, in their study, emission related costs are found to have little influence on the 

firm’s optimal decision, hence, adding those costs into consideration could barely change the 

selected mode. Similarly, Jin et al. (2014) investigate how different carbon policies influence the 

supply chain network design and transportation mode selection of major retailers, who are believed 
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to account for a huge amount of freight movement. Their findings imply that involving multiple 

sourcing options and redesigning the supply chains of those retailers are essential to achieve a 

drastic decline in emissions, and merely shifting to a more energy-efficient transportation mode 

cannot effectively reduce emissions. 

In analyzing the efficiency of carbon abatement policies, Mandell (2008) divides emitters within 

an economy into two groups (some are subjected to an emission tax and the others follow cap-and-

trade rules) and then compares the efficiency of this structure to that of the uniform policy where 

all emitters are confronted to only one mechanism. His experiment reveals that applying two 

instruments simultaneously can be superior to adopting only one regulation. Similarly, He et al. 

(2012) compare the effectiveness and the efficiency of the two most common systems, i.e., carbon 

tax and carbon cap-and-trade, under a generation expansion planning framework in a competitive 

electricity market. According to them, the two systems are different in the sense that cap-and-trade 

focuses on policy effectiveness when it explicitly limits the total emission quantity by the cap but 

its carbon price is contingent on the market, while carbon taxing emphasizes policy efficiency with 

a predetermined tax rate but on the contrary, the extent of emission reduction has to depend on the 

market manipulation. Given the fact that cap-and-trade and carbon tax are the two most widely 

adopted schemes in practice (Bai & Chen, 2016), there exist contrasting points of view on their 

practicality. Supporters of the carbon tax regime (e.g., Metcalf, 2009, as cited in Jaber et al., 2013 

and Drake et al., 2016) argue that the volatility in emission allowances price under cap-and-trade 

could negatively influence a firm’s profit. However, in their own experiments, Drake et al. (2016) 

have contradictorily found out that the uncertain emissions price in cap-and-trade mechanism 

could generate greater expected profit than the constant carbon tax price.  

In general, the main objective of these above-mentioned models is to measure the effectiveness 

and compatibility of each policy. Most of them have shown that different emission schemes can 

have distinct impacts on the total cost and emissions reduction, and how to choose policy 

parameters plays a critical role in determining the effectiveness of a carbon policy. They also imply 

there are certain challenges during the implementation of carbon policies, e.g., a high carbon tax 

rate could prevent businesses from adapting the policy, or it is difficult for companies and policy 

makers to obtain an agreement on the carbon caps (Jin et al., 2014). 

A summary of these relevant studies considering one or more emission regulations can be found 

in Table 2.4-2. 
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Table 2.4-2: Studies with the carbon cap-and-trade and other emission legislations 

Authors 

Legislations  Allowance buying/selling prices 

Carbon  

cap 

Carbon  

tax 

Cap-and- 

trade 

Cap-and-

offset 
 Equal Differentiated 

Letmathe and 

Balakrishnan (2005) 
✓ ✓ ✓    ✓ 

Mandell (2008)  ✓ ✓   ✓  

Carmona et al. (2009)   ✓   ✓  

Hua et al. (2011)   ✓   ✓  

He et al. (2012)  ✓ ✓   ✓  

Song and Leng (2012) ✓ ✓ ✓    ✓ 

Arslan and Turkay (2013) ✓ ✓ ✓ ✓  ✓  

Benjaafar et al. (2013) ✓ ✓ ✓ ✓  ✓  

Zhang and Xu (2013)   ✓   ✓  

Gong and Zhou (2013)   ✓    ✓ 

Chen et al. (2013) ✓ ✓ ✓ ✓   ✓ 

Toptal et al. (2014) ✓ ✓ ✓   ✓  

Hoen et al. (2014) ✓ ✓ ✓   ✓  

Jin et al. (2014) ✓ ✓ ✓    ✓ 

He et al. (2015)  ✓ ✓    ✓ 

Purohit et al. (2016)   ✓   ✓  

Bai and Chen (2016)  ✓ ✓    ✓ 

Drake et al. (2016)  ✓ ✓   ✓  

Xu et al. (2017)   ✓   ✓  

Qiu et al. (2017)   ✓   ✓  

This study   ✓    ✓ 

 

 

2.5 Emissions measurement techniques 

In recent years, many efforts have been made by firms and authorities to quantify the emissions 

from their activities as a response to the regulatory legislations by which they are confronted, or 

as an instrument to communicate the carbon footprint index of their products to consumers. Given 

the fact that more companies have been required to trim down their carbon emissions, the need for 

companies to monitor their carbon footprint is growing. As such, effective measuring tools play a 

critical role in a company’s efforts to evaluate its environmental impact. In a 2013 study, Absi et 

al. have mentioned several methodologies for calculating carbon emissions, such as Greenhouse 

Gas Protocol, ARTEMIS, EcoTransIT, etc., in which GHG Protocol is the most commonly used 

technique worldwide. The first part of this section will provide a brief introduction to the GHG 

Protocol while the latter parts will present a review of the emissions measuring mechanisms that 

have been employed in the academic studies, focusing on the production, inventory holding, and 

transportation activities. It should be noticed that before measuring emissions, one common 
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implicit assumption to be made by every emission regulatory policy is that those carbon emissions 

are measurable and quantifiable.  

 

2.5.1 Greenhouse Gas Protocol 

Greenhouse Gas Protocol, run by the World Resource Institute and the World Business Council 

for Sustainable Development, is a Non-governmental organization (NGO) - business partnership 

with the aim to establish global standardized frameworks to measure and manage GHG emissions 

from the operations and value chains of the public and private sectors such as governments, 

industry associations, businesses and other organizations. The Protocol comprises various types of 

standards, among which Corporate Standard is aimed to help companies prepare their emissions 

accounting and reporting by providing a five-step calculating process as shown in Figure 2.5-1. 

Before calculating a company’s emissions, it is critical to categorize the sources of GHGs within 

its boundaries. Emissions generally fall within the following four major sources: 1) stationary 

combustion – the combustion of fuels in stationary equipment such as boilers, turbines, engines, 

etc.; 2) mobile combustion – the combustion of fuels in transportation devices such as automobiles, 

trucks, buses, etc.; 3) process emissions – emissions from physical or chemical processes such as 

CO2 from the calcination step in cement manufacturing or the PFC emissions from aluminum 

smelting, etc.; and 4) fugitive emissions – the intentional or unintentional releases such as 

equipment leaks from packing, joints, seals as well as fugitive emissions from coal piles, gas 

processing facilities, wastewater treatment, etc. (GHG Protocol, n.d.). 

Under the GHG Protocol, emissions are classified into 3 scopes: Scope 1 emissions are direct 

emissions generated from owned or controlled assets/sources. Scope 2 emissions are indirect 

emissions from the consumption of purchased energy (e.g., electricity, heat, steam). Scope 3 

emissions refer to all the other indirect emissions from a company’s upstream or downstream 

activities as well as emissions from outsourced or contracted activities that are not included in 

scope 1 and 2. With the inclusion of scope 3 emissions, companies are able to expand their 

emissions inventory boundary along their value chain and to identify all of its relevant GHG 

emissions.  

 

Figure 2.5-1: Steps in identifying and calculating GHG emissions  
(Source: GHG Protocol, n.d.) 
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There are several techniques to measure emissions, ranging from the application of generic 

emission factors, fuel usage data, to direct monitoring. The method of measurement based on 

emission factors is the most common, in which GHG emissions are converted into carbon dioxide 

equivalent quantity CO2e (Chaabane et al., 2010).  

The emission factor is the estimated average emission rate of a certain pollutant released to the 

atmosphere associated with a particular activity (Mtalaa et al., 2009). They are usually expressed 

as the weight of pollutant divided by a unit weight, volume, distance or duration of the emitting 

activity. For instance, it can be the amount of CO2 emitted by the combustion of one liter of fuel 

in a certain engine, or kilograms of particulate emitted per megagram of coal burned, etc.  

Table 2.5-1 presents the CO2 emission factors for the mobile combustion of major fuel types 

provided by the U.S. Environmental Protection Agency. Interested readers can refer to the website 

of EPA for the latest version of the full list of Emission factors for Greenhouse gas inventories 

(U.S. EPA, 2020). 

Table 2.5-1: Mobile combustion CO2 

Table 2.5-1: Mobile combustion CO2 

Fuel type Kg CO2 per gallon 

Residual Fuel Oil 11.27 

Diesel Fuel 10.21 

Kerosene-Type Jet Fuel 9.75 

Biodiesel (100%) 9.45 

Motor Gasoline 8.78 

Aviation Gasoline 8.31 

Ethanol (100%) 5.75 

Liquefied Petroleum Gases (LPG) 5.68 

Liquefied Natural Gas (LNG) 4.50 

Compressed Natural Gas (CNG) 0.05444* 

                       *per standard cubic foot (scf) 
                            Source: U.S. EPA (2020) 

 

2.5.2 Production and inventory emissions measuring techniques 

Greenhouse gas emissions in production activities are usually associated with the amount of 

energy consumed in machine setups plus the variable emissions per unit produced. While 

production processes are believed to account for a certain proportion of a manufacturing firm’s 

GHG emissions, only few papers have explicitly presented its measurement method.  

The works by Jaber et al. (2013) and Castellano et al. (2019) both calculate emissions from their 

production processes (in ton per quantity unit) based on the function described in Bogaschewsky 

(1995), according to which a firm’s energy consumption is correlated to its production rate. This 
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calculation method has been backed up by several researchers as they have found similar patterns 

of energy consumption in different production processes (as referred in Jaber et al., 2013). 

Apart from the direct emissions generated during the production process, a recent study by Malik 

and Kim (2020) also integrates the indirect emissions from the sources that are not directly 

controlled by the firm but related to its production system. They calculate these indirect emissions 

by estimating the electric energy consumptions (kWh), rate of loss energy (%), and the 

cooling/heating/steam energy consumptions (kWh) used to produce a production lot.  

Regarding inventory control in logistics, emissions in storage buildings (depots, warehouses) 

arise from the direct burning of fossil fuels to generate heat and electricity that are used to facilitate 

their operations, hence, their energy consumption depends primarily on the type of product being 

stored. Storage of frozen or perishable goods would require specific space and equipment, 

involving a larger amount of energy required. In the literature, many studies have measured the 

emissions of a storage facility based on its electricity consumption rate and its capacity, measured 

by the size of the warehouse measured in square feet/m2 (area) or m3 (volume) (e.g., Harris et al., 

2011; Mallidis et al., 2014; Turkensteen & van den Heuvel , 2019), while some others tend to 

focus on the energy usage (e.g., Bozorgi et al., 2014).  

A research in 2011 by Harris et al. has examined the emissions of a firm’s storage facilities by 

estimating the annual electricity consumption per warehouse, where specific storing conditions 

(heating or cooling) is not necessary. The amount of energy consumed is then converted into CO2 

emissions through a conversion factor: 

CO2 emissions (kg) = Electricity consumption × Conversion factor × Area of depot 

where, electricity consumption is in kWh/m2, conversion factor is in kg CO2/kWh and varies by 

country. 

Mallidis et al. (2014) apply the same method in measuring the level of emissions for their 

distribution centers (DCs), with an assumption that emissions per time unit of a DC is non-linearly 

related to its capacity. However, instead of measuring the area of the DC (in m2), they measure its 

capacity in volume (cubic meters m3), therefore, in this case, the electricity consumption is in 

kWh/m3. They have examined various sized DCs in the study, each with associated cost and 

emissions indicators as summarized in Table 2.5-2. 

Source: Mallidis et al. (2014) 

Table 2.5-2: Capacity and cost parameters for various sized DCs 
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More recently, Turkensteen and van den Heuvel (2019) relate their warehouse emissions to the 

storage space needed to store the items instead of its actual inventory level, this means no unit 

holding emissions is considered in their case. They come up with a median emission rate for an 

average warehouse by reviewing the emission indicators presented in various studies from 

different nations, which is approximate 33 kg per m2 per year. Similar to the other studies, the 

authors do not consider specific storing requirements (freezing or heating) and according to them, 

up to their paper, there are no studies that explicitly consider the exact number of units in inventory 

as a key driver of carbon emissions.  

With regard to temperature sensitive products, a study by Bozorgi et al. (2014) has proposed the 

use of modular temperature-control units in storing inventory. These units have been widely 

applied within the industrial sector in the form of segmented industrial freezers, partitioned cold 

rooms, walk-in coolers, etc. With this structure, the emissions generated from holding inventory 

is determined by the quantity of cold items held in inventory (or the number of freezers needed), 

the total energy consumption of a freezer within the planning horizon, and the total carbon footprint 

of 1 kW energy.  

It is worth to mention that most of the studies only consider the direct emissions from operating 

the storage units (scope 2 of the emissions in the GHG Protocol), they do not include emissions 

from building the warehouse and the commuting of the staffs operating it. Considering the 

complication in accounting all the indirect emissions generated all the way upstream and 

downstream, this study will also consider the direct emissions falling within the scope 2 boundary 

of the protocol, interpreted as a unit holding emissions per time unit (which is assumed to include 

both the emissions from operating the warehouse and the emissions from holding one item of 

inventory from one period to the next). 

 

2.5.3 Transportation emissions measuring techniques 

In terms of the emissions from transportation, different transportation modes such as air, road, rail, 

or marine are bound to emit varying amounts of greenhouse gases (Bauer et al., 2010). A recent 

report by Wiginton et al. in 2019 shows that in Canada, 10.5% of greenhouse gases emissions are 

from freight transportation, a predominance of which are generated from heavy-duty trucks. 

Heavy-Duty Diesel (HDD) vehicles make up only a small proportion of the road transportation, 

yet with their built-in high durability and reliability along with the increasing volume in goods 

movement, they have become the major contributor to the overall emissions inventory (Barth et 

al., 2005). This section will focus on discussing the emissions measurement techniques employed 

in road transport. 

An early work from 1997 by Marc Ross provided a greenhouse gases estimation method based on 

the amount of energy required to perform the related transportation operations. According to him, 

energy consumption is determined by the vehicle mass, total tractive power, and the efficiency of 

the vehicle powertrain (components that generate power like engine and transmission). For 

electrical vehicles, the total power needed can be directly converted into carbon emissions using a 

conversion factor of electricity supply. In the case of combustion engines, the emissions level is 
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computed by multiplying the amount of power needed for the fuel combustion process and the 

CO2 content of the fuel. This method has been used by many other researchers in the similar field.  

Barth et al. (2005) model the emissions of Heavy-Duty Diesel vehicles as the product of three 

components: fuel rate, engine-out emission indices (grams of engine-out emissions per gram of 

fuel consumed), and any emission after-treatment pass fraction (the ratio of tailpipe to engine-out 

emissions). Their model enables the possibility to measure in-time emissions and to perform 

simulations on a wide variety of traffic scenarios.  

A work by Mtalaa et al. in 2009 provides a comprehensive review of the prevailing measurements 

and models that are used to calculate carbon emissions from truck transportation. According to 

them, the two most popular types of model that have been widely applied in the literature are the 

“Average speed models”, which account for vehicle dynamics using the concept of average speed 

and the “Micro-scale models”, which apply second-by-second speed profiles of a vehicle to 

calculate its fuel consumption and emissions of a particular trip. In terms of calculation tools, direct 

methods that use emission factors are employed if the actual energy consumptions (of petrol, diesel, 

etc.) are known, otherwise, indirect methods will be used if at least one of these requisite indicators 

– the average fuel consumption and the overall distance driven, the traffic flow (in vehicles.km), 

or the total amount of freight transported over one kilometer for each vehicle type (in tons.km), is 

available. However, their study shows that even when many various models have been developed, 

their precision in computing the carbon emissions remains a concern. In the same year, a work by 

McKinnon et al. that examines different methods of carbon auditing within the road freight 

transportation sector of the United Kingdom also highlights the difficulty in collecting an accurate 

and consistent set of emissions data for trucking. The main reason why it is so complex to quantify 

carbon emissions linked to transportation is the high number of parameters that affect these 

emissions. These factors are often grouped into several categories: travel-related factors (driving 

patterns, distance travelled, average speed, degree of acceleration, load on the engine), driving 

behaviors (drag force, resistance, smoothness and consistency of vehicle speed), vehicle 

characteristics (fuels, devices, engine size and type, vehicle mass), and external conditions 

(temperature, humidity, altitude, wind speed and direction) (Mtalaa et al., 2009; Harris et al., 2011; 

Turkensteen & van den Heuvel, 2019). 

In road transport, when calculating emissions, one common assumption used by numerous 

researchers is that each empty truck is associated with a fixed amount of emissions and the overall 

emissions generated by a truck depends on its load and the distance travelled (Konur et al., 2014; 

Hoen et al., 2014; Darvish et al., 2017). Therefore, the total number of trucks used along with their 

loads will determine the total emissions of the retailer’s transportation activities. A similar 

emissions function has also been mentioned in Konur (2014) and Hoen et al. (2014). 

The existing literature on a firm’s transportation planning decisions comprises research that 

employs a single truck type or multiple truck types. From the perspective of considering a single 

truck type in transportation planning, the research of Bektas and Laporte (2011) introduces a 

Pollution-Routing problem (PRP), an extension of the traditional Vehicle Routing Problem (VRP), 

that accounts for greenhouse gas emissions, fuel, travel times and costs. The emission function in 

their study is determined by the vehicle load, speed and other factors, all of which generate the 
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estimation of the energy requirement in joules (J = kg.m2/s2) which is then directly converted into 

fuel consumption (using an energy efficiency rate) and further into GHG emissions (using an 

emissions factor). Their emissions measurement is distinctive from other existing models in the 

sense that it reflects the change in vehicle load as the vehicle travels as opposed to an assumed 

constant load throughout the trip. The study by Qiu et al. (2017) also applies this formulation in 

measuring its emissions from vehicle routing activities in its single-vehicle Pollution Production-

Routing Problem, where a single supplier produces a single product to serve a set of retailers who 

are visited only once by one truck (one tour per period).  

Jabali et al. (2012) introduce an Emissions-based Time-Dependent Vehicle Routing Problem (E-

TDVRP) where the vehicle speed changes throughout the day, i.e., when the vehicle experiences 

free flow speed periods and the periods with congestion, rather than a single constant speed that is 

commonly assumed by previous studies. In their model, the vehicle speed limit is explicitly a part 

of the optimization and the emissions per kilometer is formulated as a function of speed which is 

minimized at a certain speed value.   

On the other hand, some authors consider multiple truck types in their transportation planning 

problems. In the analysis of a US beverage industry, Daccarett Garcia (2009) illustrates that fleet 

management (truck configuration) has potential significant influences not only on transportation 

costs but also on the carbon emissions it generates. In a study conducted in 2014, Konur shows 

that compared to single truck type shipment, multiple truck types shipment can not only reduce 

costs but also emissions. Harris et al. (2011) have provided a distance-based formula that 

calculates the carbon emissions for each vehicle type: Total CO2 (kg) = total distance travelled × 

fuel consumption rate × fuel conversion factor, where the fuel consumption rate is calculated 

based on the vehicle type, speed, and payload. A fuel conversion factor of 2.63 kg/l is used for 

diesel fuel. Turkensteen and van den Heuvel (2019) compute the emissions of their medium and 

large trucks based on the assumption that emissions of a vehicle increase linearly with the weight 

of its load. They measure the emissions of the empty vehicle e’ (fixed emissions per shipment) and 

of the fully loaded vehicle f’ (with known maximum payload capacity) to derive the emissions 

related to the size of the shipment, which is e’ + U (f’ – e’), where U = actual load/payload 

capacity is the percentage of the vehicle’s load. They also differentiate emissions generated 

between Highway and Urban driving conditions. 

Apart from considering two vehicle types – heavy-duty and delivery trucks, Mallidis et al. (2014) 

also take into account the cost and the emissions of the truck’s return trip in their transportation 

planning problem. The cost of the return trip is assumed to be 80% of the forward trip (due to the 

reduction of fuel consumed by an empty truck) whereas its emissions per km of an empty truck 

will be approximately 30% less (considering lower loading factors on the return trips).  

This thesis considers a setting where the firm has different types of trucks available for its 

transportation from the factory to its storage facility, they are medium-duty trucks and heavy-duty 

trucks, each associated with a distinct capacity, per truck cost, and emissions indicators. For 

emissions measurement, we will apply the emission features provided by Turkensteen and van den 

Heuvel (2019) as presented later in Table 4.2-1.  
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Chapter 3. Model formulation 

Before developing the two-stage stochastic lot-sizing model, a deterministic version of the model 

will be presented as the baseline model. Under the deterministic setting, demand per period is 

known with certainty while in the stochastic model, demands are uncertain and modelled by 

different scenarios, and the firm’s decisions are made at two different stages. The goal of both 

models is to find the optimal lot-sizing schedule and the amount of emission permits to buy at the 

lowest level of cost while meeting demand and environmental constraints. 

 

3.1 Problem definition and assumptions 

This study considers a problem in which a firm manufactures a single product with stochastic 

demand over a planning horizon of m periods, and each period is associated with a demand level 

dt. The scope of the study is limited to a two-level supply chain: a product is produced at a factory 

and shipped to a central warehouse. Afterwards, the goods will be delivered to the customers, but 

this is not part of the model. The problem defined comprises main activities from production, 

finished product shipping and inventory holding. Beside these operational decisions, the firm also 

needs to make decisions on the trading of emission allowances as we consider our firm is subject 

to the carbon cap-and-trade system. Under this system, the firm’s carbon footprint from all the 

main operations needs to be recorded and reported. It is necessary for the firm to own enough 

emission allowances (which it can purchase from an emissions trading market) at the end of the 

planning horizon to cover its total emission level. Each of the major operational activities, i.e., 

production, transportation, and inventory holding, entails costs and emissions. The firm’s objective 

is to find the optimal production, distribution, and emissions trading schedule to minimize its 

expected total cost over the planning horizon. A more detailed problem description for each 

activity will be given next. 

 

➢ Production 

We consider a single product problem. At the factory, whenever there is production, a machine 

setup needs to be conducted at a fixed cost and the production system can produce up to its 

available capacity per period. Yet the machine setup condition cannot be carried over to the next 

period, meaning that if the firm wishes to produce in the next period, another setup is required. In 

addition to the fixed production cost (for each setup), a unit variable cost is incurred per unit of 

produced item. The production quantity at a given period is not necessarily equal to the demand 

of that period, meaning that the firm may produce a certain quantity of products in advance and 

keep it as inventory to satisfy future demands. However, no backorders are allowed as we assume 

that demand in each period must be satisfied on time. 
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➢ Inventory control 

After the manufacturing process, finished products are either stored temporarily at the storage area 

of the factory (referred to as factory warehouse) or transported directly to a central warehouse. 

Each of the storage facilities is characterized by a capacity level (in units) and an inventory holding 

cost. In this study, the inventory holding cost refers to the variable cost of holding one unit of 

product in inventory per time period. It consists of the physical handling cost, opportunity cost, 

utility and maintenance costs, insurance, and cost of obsolescence, etc. Other fixed costs such as 

facility acquisition or rental fee, labor cost, are considered sunk costs and will not be included in 

the scope of this study. 

 

➢ Transportation 

There are two types of vehicles being used in this study: medium-duty trucks and heavy-duty 

trucks, each with an associated load capacity and fixed cost. We assume that the firm has its own 

fleet and either type of the vehicles or a combination of both can be used to transport goods from 

the factory to its central warehouse. The load capacity of a truck type is determined based on 

several factors, i.e., the gross vehicle weight rating (GVWR) (the maximum allowable total weight 

of the vehicle including its empty mass, fuel, and any load carried), curb weight (the empty weight 

or the total vehicle mass with all the necessary equipment and fuel except for passengers and cargo), 

the unit weight of the product. This load capacity is measured as a maximum number of units of 

product carried. The fixed cost per truck, which comprises depreciation costs, driver’s expenses, 

maintenance fee, fuel and toll costs per trip, is always applied regardless of whether the truck is 

fully loaded or not. In other words, our model applies full truck-load rate in calculating costs for 

transportation. 

  

➢ Carbon cap-and-trade system 

Different from the traditional lot-sizing problem, this study considers a firm subjected to the carbon 

cap-and-trade system where the total emission level of the firm is constrained by a carbon cap. In 

practice, this carbon cap can be obtained from the free allocation of the government and/or by 

obtaining emission rights through auctions in the emission trading market. To facilitate our 

emission trading model, we assume that our firm belongs to the industry sector where initial 

emission rights need to be bought through the auctioning process, at a market-determined price, to 

cover all of its emission activities. At the end of the planning horizon, the firm can make further 

decisions on buying or selling additional/excessive allowances in the market to ensure that its 

carbon footprint complies with the carbon cap restriction. At the end of the planning horizon, the 

firm needs to keep a non-negative balance in its allowance account to avoid penalties. Unlike most 

studies in the literature where one single carbon trading price is considered, we assume three 

different trading prices: 1) a buying price in the first stage (corresponding to buying the permits 

upfront in a long-term market), 2) a buying price in the second stage (corresponding to buying 

additional permits at the end of the horizon in a spot market) and 3) a selling price in the second 

stage (corresponding to selling excessive permits at the end of the horizon in the spot market). We 
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also assume that these prices are known in advance and not subject to any uncertainty. Furthermore, 

to guarantee the feasibility in implementing the cap-and-trade system, it is necessary to assume 

that there is no limit on the amount of emission allowances that the firm can buy or sell, and there 

is always sufficient supply and demand of emission allowances in the market. 

 

➢ Emission measurement 

Regarding the measurement of emissions, aside from the two common factors considered in the 

literature - the ending stock level in inventory control and the vehicle dispatching decisions in 

transportation, our research, similar to Qiu et al. (2017), also considers the emissions generated 

from machine setups and production processes. However, due to the wide range of potential factors 

that can influence these emission patterns, it is often complex for firms to provide accurate 

measurements on their actual emission levels. A key principle in calculating a firm’s carbon 

footprint is thus to limit its emissions to the most relevant sources that are closely related to the 

decisions it takes (Harris et al., 2011; Turkensteen & van den Heuvel, 2019). Therefore, in our 

model, the function of total emissions (TE) only comprises the fixed and variable emissions from 

production and transportation, and the variable emissions from holding inventory at both storage 

facilities. The fixed emissions are calculated based on the number of machine setups in production 

as well as the number of vehicles used in transportation. Meanwhile, the variable emission levels 

are respectively modelled as a function of the quantity of items produced, the number of finished 

goods being delivered, and the inventory level being stored at warehouses.  

More precisely, in production, we limit the emissions to those directly generated from the machine 

setups and the production processes, which are generally powered by the “purchased electricity” 

from an electricity supplier. This corresponds to scope 2 of the GHG Protocol. Similarly, in stock 

keeping, we only consider the emissions generated from the use of electricity in operating the 

warehouse and storing products, excluding the emissions due to warehouse construction and the 

commuting of the personnel operating it. At the same time, for the base case, we assume that the 

product being considered does not need specific storing conditions (cooling, freezing or heating) 

which, otherwise, would create a major increase in the emission level due to the significant extra 

amount of energy required. In transportation, we consider the direct emissions from the 

combustion of purchased fuel and ignore the emissions related to extraction and production of fuel. 

In our study, the transportation fleet is owned by the company, thus these transportation related 

emissions will be reported as scope 1 emissions of the company (i.e., the direct emissions from 

sources owned or controlled by a company according to the GHG Protocol) and are counted as 

part of the emission Cap. In the case that the transportation activity is outsourced to a third-party 

logistics provider (3PL), the company will report these emissions in scope 3 (indirect emissions) 

and they will not be included in its emission quota. This scenario will not be included in the scope 

of this study. 

To enable the model’s feasibility and for simplification purposes, there are some further 

assumptions being made: 
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• The demands in different time periods are independent and identically distributed random 

variables, meaning that the realization of demand in a period does not depend on the 

realization of the previous period. 

• Within a planning period, first the production is done. The demand is satisfied at the end 

of the period and the inventory is calculated as the ending inventory after production and 

demand satisfaction.  

• The buying and selling prices for the emission permits are different and deterministic. 

Similar to the work of Hua et al. (2011), Chen et al. (2013) and He et al. (2015), uncertainty 

in selling and buying prices is not considered. 

• The buying price for the emission permits in the spot market (stage 2) is more expensive 

than the buying price in the long-term (or future) market (stage 1). Otherwise, it would be 

optimal to buy no permits in stage 1 and buy all the additional permits in stage 2. 

Furthermore, the selling price for the emission permits in the spot market (stage 2) is lower 

than the buying price in the long-term market (stage 1). Otherwise, it would be optimal to 

buy as many permits as possible in the first stage. 

• There is a sufficient number of vehicles available to be used whenever a dispatching 

decision is made. 

• All the cost and emissions parameters are known and remain constant over time and in 

different demand scenarios. 

• Some factors related to transportation emissions such as driver behavior, road conditions, 

traffic, etc. are ignored. 

• Lead times due to production, inventory handling and transportation are not considered. 

• The initial inventory levels at both warehouses are assumed to be 0. 

 

 

3.2 Mathematical notation 

The mathematical notation for the deterministic model is presented in Table 3.2-1. These 

parameters are fixed and known in the deterministic model. In the stochastic model, the demand 

is stochastic and will depend on the scenario. 
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Table 3.2-1: Notation for the deterministic model 

Notation Description 

Sets  

T Set of time periods {1, 2, 3, …., m}  

K Set of vehicles {medium-duty = 0, heavy-duty = 1} 

I Set of facilities {0 = factory, 1 = warehouse} 

Parameters  

dt Demand at time period t 

Pcap Production capacity at factory in each period (units) 

Icapi Inventory storage capacity at facility i (units) 

Vcapk Capacity of vehicle type k (units) 

r Buying price of emission allowances 

pfc Production fixed cost (machine setup) 

pvc Production variable cost per unit produced 

hci Cost of holding one unit of product at facility i for one period 

vfck Fixed cost per trip of using one vehicle of type k 

vvck Variable cost per unit carried by vehicles of type k 

pfe Production fixed emissions (from machine setup) 

pve Production variable emissions per unit produced 

hei Emissions from holding one unit of product at facility i for one period 

vfek Fixed emissions of using one vehicle of type k 

vvek Variable emissions per unit carried by vehicles of type k 

TE Total emissions from production, inventory holding and transportation 

TC Total cost from production, inventory holding and transportation 

Decision variables 

R’ Emission allowances to buy at the beginning of the planning horizon 

xt Production quantity at time period t 

vkt Quantity transported by vehicle(s) of type k from the factory to the warehouse at 

period time t 

invit Inventory kept at facility i at the end of time period t 

zkt Number of vehicles of type k to use at time period t 

yt 

 

Production setup decision at time period t (equals to 1 if there is production in 

period t, 0 otherwise)  
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3.3 Deterministic model 

We first model the above-mentioned problem as a Mixed-Integer Linear Program with 

deterministic demands, with the objective to minimize the total operational cost while complying 

with the predetermined emissions quota. The deterministic demand data are assumed to be the 

results of forecasting. In the objective function (1), the first term is the cost of buying emission 

allowances at the beginning of the planning horizon. In the deterministic model, since demand is 

known with certainty, the firm simply purchases the exact amount of emission permits needed 

upfront. Therefore, we do not model the possibility of the firm buying or selling allowances at the 

end of the planning horizon. The second and the third term in the objective function is the fixed 

and unit variable production cost, respectively. The fourth term represents the total cost of holding 

products in inventory. The last two terms are the transportation fixed and variable cost, 

respectively. 

M𝑖𝑛𝑖𝑚𝑖𝑧𝑒:  𝑇𝐶 = 𝑟𝑅′ + ∑[ 𝑝𝑓𝑐

𝑡∈𝑇

 𝑦𝑡 +  𝑝𝑣𝑐 𝑥𝑡 + ∑ ℎ𝑐𝑖

𝑖∈𝐼

𝑖𝑛𝑣𝑖𝑡 + ∑(𝑣𝑓𝑐𝑘

𝑘∈𝐾

𝑧𝑘𝑡 + 𝑣𝑣𝑐𝑘 𝑣𝑘𝑡) ](1) 

In production, a machine setup is required for the manufacturing process to be activated, 

represented by the binary variable 𝑦𝑡. Furthermore, the production quantity per period is limited 

by the capacity of the production line, denoted by Pcap, as well as the total remaining demand 

over the rest of the planning horizon, as integrated in constraint (2). With this constraint, if a setup 

decision is made (𝑦𝑡 = 1), the number of products produced in period t should not exceed either 

the production capacity or the remaining demand accumulated from that period to the end of the 

planning horizon, whichever is the smaller value. Otherwise, if no setup is conducted in period t 

(𝑦𝑡 = 0), there will be no production at all. 

𝑥𝑡 ≤ 𝑚𝑖𝑛 (𝑃𝑐𝑎𝑝, ∑ 𝑑𝑙

𝑚

𝑙=𝑡
) 𝑦𝑡                  ∀𝑡 ∈ 𝑇                                                 (2) 

Constraint (3) and (4) represent the product flow conservation (or inventory balance) constraint at 

the factory warehouse and the central warehouse, respectively. At the factory warehouse, the total 

production quantity in period t plus the inventory amount from the preceding period is equal to the 

quantity shipped to the main warehouse plus the inventory level kept at the end of that period. 

Similarly, at the central warehouse, the incoming number of products transported from the factory 

plus the ending inventory in the previous period is equal to the customer demand plus the ending 

inventory at that time period. These constraints are to ensure that within one storage facility, its 

inflow and outflow are balanced, and demand is satisfied.   

𝑖𝑛𝑣0,𝑡−1 + 𝑥𝑡 = ∑ 𝑣𝑘𝑡

𝑘∈𝐾

+  𝑖𝑛𝑣0𝑡                    ∀𝑡 ∈ 𝑇                                                  (3) 

𝑖𝑛𝑣1,𝑡−1 + ∑ 𝑣𝑘𝑡

𝑘∈𝐾

 = 𝑑𝑡 + 𝑖𝑛𝑣1𝑡                    ∀𝑡 ∈ 𝑇                                                  (4) 

Constraints (5) and (6) impose the limitations on the storage capacity of the warehouses. For any 

given period t, the sum of the ending inventory from the preceding time period and the input 
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quantity of that period, i.e., the production lot-size in the case of factory storage or the total amount 

being delivered from the factory in the case of central warehouse, can never exceed the upper limit 

of that storing facility, denoted by Icap0 and Icap1, respectively. 

𝑖𝑛𝑣0,𝑡−1 + 𝑥𝑡 ≤  𝐼𝑐𝑎𝑝0                                   ∀𝑡 ∈ 𝑇                                                    (5) 

𝑖𝑛𝑣1,𝑡−1 + ∑ 𝑣𝑘𝑡

𝑘∈𝐾

 ≤  𝐼𝑐𝑎𝑝1                         ∀𝑡 ∈ 𝑇                                                    (6) 

Similarly, in transportation, the total number of units being transported by a certain vehicle of type 

k is restricted by its total available capacity, which is the multiplication of the load capacity of that 

vehicle type Vcapk and the actual number of vehicles utilized in that period 𝑧𝑘𝑡 , as shown in 

constraint (7).  

𝑣𝑘𝑡 ≤  𝑉𝑐𝑎𝑝𝑘 𝑧𝑘𝑡                                      ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇                                             (7) 

Constraint (8) sets a limit on the total amount of carbon being emitted from all of its production, 

inventory and transportation activities. This upper limit is also known as the carbon cap in the cap-

and-trade system and corresponds in this case to the total amount of permits purchased. On the 

left-hand side of the inequality (the TE), the first two terms represent emissions from the 

production process, including the total fixed emissions generated from machine setups and the 

variable emissions from producing each unit of item. The third term corresponds the total 

emissions resulting from keeping products in inventory at the two facilities. The summation of 

emissions from transportation activities is displayed through the last two terms, which respectively 

represent the total fixed emissions in truck-dispatching and the incremental emissions based on 

the actual vehicle load. The total number of emission permits purchased R’ (carbon cap) is on the 

right-hand side of the constraint.  

𝑇𝐸 = ∑[ 𝑝𝑓𝑒

𝑡∈𝑇

𝑦𝑡 + 𝑝𝑣𝑒 𝑥𝑡 + ∑ ℎ𝑒𝑖 𝑖𝑛𝑣𝑖𝑡

𝑖∈𝐼

+  ∑(𝑣𝑓𝑒𝑘

𝑘∈𝐾

𝑧𝑘𝑡 + 𝑣𝑣𝑒𝑘𝑣𝑘𝑡) ]  ≤ 𝑅′                       (8) 

The remaining constraints impose the domain of those decision variables mentioned above. 

Constraint (9) states that the production quantity, the number of items being transported, and the 

emission allowances purchased are real numbers with positive values. Constraint (10) ensures that 

the numbers of vehicles utilized are positive integers. Finally, constraint (11) imposes the binary 

characteristic of the production setup decision. 

𝑥𝑡 , 𝑣𝑘𝑡  , 𝑖𝑛𝑣𝑖𝑡 , 𝑅′ ∈ 𝑅 𝑎𝑛𝑑 ≥ 0                 ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼                             (9) 

𝑧𝑘𝑡  ∈ 𝑍 𝑎𝑛𝑑 ≥ 0                                          ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇                                        (10) 

𝑦𝑡  𝑏𝑖𝑛𝑎𝑟𝑦                                                       ∀𝑡 ∈ 𝑇                                                        (11) 
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3.4 Two-stage stochastic model 

Next, we transform the deterministic model in Section 3.4 into a two-stage stochastic MILP model, 

where demand in each period is unknown and varies throughout the m periods. The first-stage 

decision R1 relates to the number of emission allowances that the firm needs to buy (through 

auctioning) in the long-term market at the beginning of the planning horizon in order to cover its 

emitting activities. The first stage buying price is denoted as s1b. 

In this two-stage model, we assume that the demands for all m periods are revealed simultaneously, 

which is in line with other studies on stochastic lot-sizing (Adulyasak et al., 2015; Sereshti et al., 

2020; Gruson et al., 2020). At the second stage after uncertain demands are realized, the firm 

decides on the production and transportation plan, depending on the realized demands. At this 

stage, there are also recourse decisions on the trading of emission allowances that the firm needs 

to make in order not to violate its emission right. More specifically, the company determines 

whether it needs to buy or sell extra allowances on the spot market and how many to trade. 

Depending on the realized demands and the firm’s lot-sizing and distribution schedule, there are 

three possible scenarios in the allowances trading: (1) The firm has initially bought the exact 

quantity of permits needed for its operational activities, thus no trading occurs in the second stage; 

(2) the firm did not purchase a sufficient number of permits at stage 1 to cover its carbon footprint, 

hence it needs to purchase the missing permits at stage 2 at a higher market price; (3) the firm 

bought more than the level of permits needed, so it sells the excessive units at the end of the 

planning horizon, albeit accepting a partial loss due to the lower selling price. Therefore, in the 

stochastic model, the total cost function will include the cost (or the revenue) from buying (or 

selling) the extra emission permits in the second stage. 

To model the uncertainty in demand, we use a set of scenarios S = {1, 2, …, n}. Each scenario is 

associated to a different set of random demands, the values of which are assumed to follow a 

uniform distribution. In each scenario, a total of m demand realizations is generated, corresponding 

to the demands for m time periods. With this stochastic element, all the decision variables in the 

deterministic model (except for stage 1 allowances 𝑅1) need to be modified with an additional 

scenario index s. We also add two new variables 𝑅2+
𝑠 , 𝑅2−

𝑠  which represent the emission 

allowances to buy and the number of allowances to sell at the second stage for each scenario s. 

These two new variables are associated with the market buying price s2b and the selling price s2s, 

respectively.  

The two-stage stochastic programming model is then formulated as follows: 

Minimize : 

𝑇𝐶 = 𝑠1𝑏 𝑅1 +
1

𝑛
 ∑ ∑[

𝑡∈𝑇

 𝑝𝑓𝑐

𝑠∈𝑆

𝑦𝑡
𝑠 +  𝑝𝑣𝑐 𝑥𝑡

𝑠 + ∑ ℎ𝑐𝑖

𝑖∈𝐼

𝑖𝑛𝑣𝑖𝑡
𝑠 + ∑(𝑣𝑓𝑐𝑘

𝑘∈𝐾

𝑧𝑘𝑡
𝑠  

+𝑣𝑣𝑐𝑘𝑣𝑘𝑡
𝑠 )  + 𝑠2𝑏 𝑅2+

𝑠 −  𝑠2𝑠 𝑅2−
𝑠  ]                                        (11) 
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𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:          𝑥𝑡
𝑠 ≤ 𝑚𝑖𝑛 (𝑃𝑐𝑎𝑝, ∑ 𝑑𝑙

𝑠
𝑚

𝑙=𝑡
) × 𝑦𝑡

𝑠            ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆                                  (12) 

     𝑖𝑛𝑣0,𝑡−1
𝑠 + 𝑥𝑡

𝑠 = ∑ 𝑣𝑘𝑡
𝑠

𝑘∈𝐾

+  𝑖𝑛𝑣0𝑡
𝑠                ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆                                  (13) 

𝑖𝑛𝑣1,𝑡−1
𝑠 + ∑ 𝑣𝑘𝑡

𝑠

𝑘∈𝐾

 = 𝑑𝑡
𝑠 + 𝑖𝑛𝑣1𝑡

𝑠               ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆                                  (14) 

𝑖𝑛𝑣0,𝑡−1
𝑠 + 𝑥𝑡

𝑠 ≤  𝐼𝑐𝑎𝑝0                                 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆                                  (15) 

𝑖𝑛𝑣1,𝑡−1
𝑠 + ∑ 𝑣𝑘𝑡

𝑠

𝑘∈𝐾

 ≤  𝐼𝑐𝑎𝑝1                       ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆                                  (16) 

𝑣𝑘𝑡
𝑠 ≤  𝑉𝑐𝑎𝑝𝑘 𝑧𝑘𝑡

𝑠                                  ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆                             (17)  

 𝑇𝐸𝑠 = ∑[ 𝑝𝑓𝑒 

𝑡∈𝑇

𝑦𝑡
𝑠 + 𝑝𝑣𝑒 𝑥𝑡

𝑠 + ∑ ℎ𝑒𝑖  𝑖𝑛𝑣𝑖𝑡
𝑠

𝑖∈𝐼

+ ∑(𝑣𝑓𝑒𝑘

𝑘∈𝐾

𝑧𝑘𝑡
𝑠 + 𝑣𝑣𝑒𝑘𝑣𝑘𝑡

𝑠 ) ]       

 ≤ 𝑅1 + 𝑅2+
𝑠 − 𝑅2−

𝑠                ∀𝑠 ∈ 𝑆                                                    (18)                        

 𝑥𝑡
𝑠 , 𝑣𝑘𝑡

𝑠  , 𝑖𝑛𝑣𝑖𝑡
𝑠  , 𝑅1 , 𝑅2+

𝑠 , 𝑅2−
𝑠  ∈ 𝑅 𝑎𝑛𝑑 ≥ 0             ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼, ∀𝑠 ∈ 𝑆        (19) 

𝑧𝑘𝑡
𝑠 ∈ 𝑍 𝑎𝑛𝑑 ≥ 0                                          ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆                     (20) 

𝑦𝑡
𝑠 𝑏𝑖𝑛𝑎𝑟𝑦                                                      ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆                                     (21) 

The objective function of the stochastic model (11) includes the cost of buying the emission 

allowances in the first stage and the expected value of the total second-stage operational cost over 

n scenarios. Similar to the deterministic model, the second-stage operational costs also comprise 

production setup and variable costs, inventory holding costs, and transportation fixed and variable 

costs. Yet it also includes the cost (or revenue) from emission permits trading in the second stage, 

denoted by 𝑠2𝑏 𝑅2+
𝑠 −  𝑠2𝑠 𝑅2−

𝑠 . Constraints (12) to (21) are built based on those of the 

deterministic model, with an additional scenario index s embedded. Specifically, constraint (18) 

imposes that the firm’s total carbon emissions resulted from its operating activities in each scenario 

cannot exceed the total emission right it possesses, that is, the sum of allowances it purchased at 

stage 1 and 2 minus those sold at the end of stage 2 (if any).   
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Chapter 4. Numerical experiments  

Based on the deterministic and the two-stage stochastic lot-sizing models incorporating carbon 

emissions that are proposed in the previous section, a number of computational experiments have 

been conducted. We first generate different scenarios of random demand data and determine an 

initial set of parameters (the base case) to serve as the inputs for our computational tests. The 

optimal solution of the base case is examined. We then compare the effectiveness of the 

deterministic and the stochastic models by analyzing the Value of Stochastic Solution and 

Expected Value of Perfect Information measures. Next, we conduct a sensitivity analysis to 

investigate the impact of different factors on the performance of our model by varying key 

parameters related to costs, emissions, and capacity. In addition, we analyze how the variations in 

allowance trading prices affect the firm’s performance. 

All the computational experiments have been modeled in Python 3 script and solved with the IBM 

ILOG CPLEX Optimization Studio 12.10.0.0. These computations are run on a 64-bit operating 

system with an Intel® Core™ i5-3337U CPU of 1.80GHz and an installed RAM of 4GB. In 

running these optimization problems, we set the maximum solving time to one hour per instance. 

We set the relative MIP gap tolerance to 0.0 instead of the CPLEX’s default value at 1e-04 and 

keep the other parameters at their default levels.  

 

4.1 Scenario generation 

To accommodate the uncertainty in market demand, we first generate demand for each period with 

values assumed to randomly fall within the range of [0, 5000] units. This also means that demand 

per period is independent and uniformly distributed, with a minimum of zero units and a maximum 

of 5000 units. A set of random demands for m periods (m is equal to 12 in this study) is considered 

as one demand scenario. We solve our stochastic model using 50 different demand scenarios (n = 

50), which we consider as one instance. We then repeatedly conduct the computations for 10 

different demand instances. Readers can refer to Appendix 1 for an example of the periodical 

random demand over 50 scenarios of instance 1, in which the highest total demand is in scenario 

10 with 40697 units while the lowest total demand is in scenario 12 with 22613 units. Table 4.1-1 

presents the minimum, maximum, as well as the average value of the total demand over 50 

scenarios for each instance, in which the scenario with lowest demand (16359 units) is instance 6 

whereas the one with highest demand is instance 2 (with 43578 units), the average total demand 

over 12 periods per scenario is variated around 30000 units. For the detailed total demand data per 

scenario, readers can refer to Appendix 2.  

Table 4.1-1: Total demand data for different instances 

Instance I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 

Min 22613.00 16705.00 20354.00 18658.00 19845.00 16359.00 17666.00 19264.00 17002.00 18339.00 

Max 40697.00 43578.00 41561.00 40399.00 42368.00 40040.00 42189.00 43431.00 43442.00 42279.00 

Average 30970.08 31169.32 29846.8 29453.44 30476.30 30251.90 30150.48 30457.42 29690.80 31295.94 
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4.2 The base case 

To conduct numerical experiments, we first determine a set of parameters which serves as the base 

case for our analysis. We initially planned to incorporate real data with an aim to provide a better 

picture for decision makers in real situations. However, as far as we know, in the literature, there 

is no complete real parameter set that encompasses the three main operations (production, 

transportation, inventory control) being considered in this study, we thus design a mixed parameter 

set with some figures extracted from published studies and others determined by preliminary tests. 

In this study, one planning period corresponds to a month and there are total of 12 periods 

considered in our planning horizon, thus this model is over a span of one year. 

 

4.2.1 Data description  

This section will present the assignment of values for each parameter of the mathematical model 

in the base case setting. 

  

➢ Production 

In production, firms need to make a setup to facilitate their manufacturing processes, which is 

generally associated with a fixed level of cost (Malik & Kim, 2020). In this study, fixed cost in 

production refers to the expense incurred in setting up machines if a production decision is made 

at that period. The production fixed cost pfc in the base case is set to $200 per setup. We assume 

that once the production line is turned on, it can operate for the whole period with a maximum 

capacity of Pcap = 5000 units. This is reasonable as the maximum demand per period is assumed 

to be 5000 units. However, another setup is required if the firm wishes to produce in the next 

period. It is noticed that other operating costs within the factory such as facility and equipment 

acquiring or renting cost, electricity and lighting, staff personnel are all considered sunk costs and 

not included in our model.  

Variable production cost refers to the resources needed to produce an additional unit of item. As 

we assume that no backlog is allowed, the total variable production cost will be determined by the 

total demand level and therefore is not contingent upon different operational decisions. The total 

amount produced will always be equal to the total demand since no backlogging or lost sales are 

allowed, and there is no incentive (in the current model) to have inventory left over at the end of 

the horizon. Therefore, the total variable production cost is a fixed demand (per demand scenario) 

and will be hence omitted by assuming pvc = 0. 

Along with cost, every machine setup will emit a certain amount of GHGs resulting from the use 

of machine-running electricity, named as the production fixed emissions pfe. In the base case, the 

fixed emissions per production setup pfe is set to 0.25 kilograms (kg) CO2e. Similarly, every single 

unit of product also accounts for a certain extra amount of emissions during its production process, 



40 
 

known as the variable unit emissions pve, which is set to 0.02 kg per unit of item produced. These 

values are determined based on preliminary tests. 

 

➢ Inventory control 

In inventory management, operating costs and carbon intensity of a storage facility depend 

principally on its size, location and equipment, therefore, determining its capacity is essential 

(Mallidis et al., 2014). In this study, capacity of the central warehouse and the factory warehouse 

is initially set to Icap1 = 8000 and Icap0 = 5000 units, respectively.  

Generally, operating costs of a storage depot (warehouse or distribution center) include rental or 

depreciation costs, salary and handling costs, as well as other expenses such as electricity, taxes 

and insurance, etc. These operating costs, together with the opportunity cost, are incorporated in a 

commonly used measure – inventory carrying (or holding) cost, the annual value of which is 

normally set at about 10 to 30% of the inventory value. In this study, we set the unit sales price of 

the product to $20 and the annual holding costs at both the factory and the central warehouses are 

20% of the item value, meaning that the costs of holding one unit for one period are hc0 = hc1 = 

20% × 20 /12 = $0.033. For simplification purpose, we assume holding costs at both storage 

facilities are equal, ignoring their prospective differences in rental, utilities, operating and labor 

cost, etc.  

In terms of holding emissions, we use the figure employed in Turkensteen and van den Heuvel 

(2019), which is 33 kg emissions per m2 per year. We assume that the number of units per m2 is 

50 items, this gives an emission rate of 33/50 = 0.66 kg CO2e per unit per year. The resulting 

emissions level of storing one unit of product for a month is hereby he0 = he1 = 0.66/12 = 0.055 

kg. As the emissions per item held in inventory is considered mainly due to its electricity usage, 

equalizing the unit holding emissions at both warehouses appears to be rational. 

 

➢ Transportation 

Another primary source of costs and emissions in our lot-sizing and distribution model is 

transportation. There are two types of vehicles considered in this study: medium trucks with a 

GVWR of 15 ton (corresponding to a 9-ton payload capacity) and a 40-ton GVWR heavy-duty 

trucks (with a payload capacity of 25 ton). For the base case, product weight is set at 10 kg per 

item, meaning that a medium truck can carry a maximum of Vcap0 = 900 units of product and a 

heavy truck has a capacity of up to Vcap1 = 2500 units. Travel distance between factory and the 

central warehouse is assumed to be 100 km.  

Unlike most of the existing studies in the literature that consider LTL shipments, which are usually 

applied when a firm outsources its transportation activities to external carriers, we use FTL 

shipments as the firm in our study is assumed to own vehicle fleets with sufficient capacity to serve 

its transportation needs. In FTL shipments, costs of transport are often based on the distance 

travelled and the weight carried, thus they generally do not consider the amount delivered. This 

also means that a fixed cost is incurred whenever a truck is scheduled for dispatch regardless of 

whether its payload is fully utilized or not. Therefore, in this case, the per unit transportation costs 
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of both truck types are ignored vvc0 = vvc1 = 0. We set vfc0 and vfc1 to take the value of $122 and 

$203, respectively.  

Regarding emissions in truck transportation, there is a common assumption among researchers in 

published studies, that is, a fixed amount of carbon emissions is generated by each empty truck, 

and this emission level increases with the load that the truck carries. Therefore, to determine the 

emissions per unit transported by a particular vehicle type, we set the fixed emissions per truck 

equal to its empty-load emissions level, then the unit variable emissions is derived from the 

difference between the vehicle’s full-load emissions and empty-load emissions over its capacity.  

As opposed to using the theoretical values for emission parameters as in most of the previous 

studies, we apply the empirical emissions data provided by Turkensteen and van den Heuvel (2019) 

with an aim to reflect the real-life situation more accurately. In particular, we employ their carbon 

emission rates for heavy-duty trucks and medium-duty trucks under two road types, as presented 

in Table 4.2-1. We assume that the 100 km distance between the factory and the central warehouse 

comprises 5.5% urban road (an equivalent distance of 5.5 km) and 94.5% highway driving 

condition (an equivalent distance of 94.5 km). The fixed emission rate of our medium truck vfe0 is 

thus around 0.396 kg CO2/km and the full truckload emission rate is around 0.5 kg CO2/km. The 

variable emissions per unit transported by the medium truck will have a value of vve0 = 1.16 × 10-

4 kg CO2/km. Correspondingly, the fixed emission level of a heavy-duty truck is vfe1 = 0.687 kg 

CO2/km and the emissions of transporting one unit of product by the heavy truck is vve1 = 1.11 × 

10-4 kg CO2/km.  

Table 4.2-1: Carbon emissions in grams per km for urban and highway road segments of the 

selected trucks 

Truck (GVWR) Road type Empty load Full load 

Heavy-duty (40t) Urban 1034.8 1518.4 

 Highway 668.2 907.4 

Medium-duty (15t) Urban 408.2 605.8 

 Highway 395.2 483.6 

               Source: Turkensteen and van den Heuvel (2019) 

 

➢ Prices for emissions rights 

There are three independent emission related costs (also known as allowance trading prices) being 

considered in this study: first-stage allowance buying price, second-stage allowance buying price, 

and second-stage allowance selling price. According to the empirical data from the EU Allowance 

Primary Market Auction Report 2020 provided by European Energy Exchange Group (EEX), the 

average carbon allowances auctioning price has an approximate value of $24 per permit (which 

allows to emit one ton of CO2), equivalent to $0.024 per kg of CO2e emitted. However, if we apply 

this empirical price level into our problem, the resulting total emission cost will take up an 

insignificant portion in our objective function (only less than 1% of the total cost based on our 

preliminary tests). For the case when emission costs are very low, there is hardly any trade-off 
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between the emission costs and the operational costs, and hence just minimizing the operational 

cost will give a near-optimal solution. Therefore, to observe a more noticeable impact of the carbon 

trading activity, we decided to set the emission credit buying price at the first stage as s1b = $0.24 

per kg of GHGs emissions, which is 10 times higher than the actual rate. Regarding the second 

stage emission credit buying price, we realize that the actual price in the spot market provided by 

the EEX is similar to that of the primary market. However, with an aim to differentiate the benefits 

(losses) resulted from trading these allowances at different stages, we assume that the second stage 

allowance buying price from the spot market is 50% higher than the first stage level, this means 

s2b = $0.36 per kg CO2e emitted. The selling price of emission allowances at this stage is 

accordingly set to only s2s = $0.12 per kg CO2e emitted.  

A summary of the assigned parameters is given in Table 4.2-2. 

Table 4.2-2: Summary of the base case setting parameters 

Capacity  

(units) 
Pcap Icap0 Icap1 Vcap0 Vcap1       

 5000 5000 8000 900 2500       

Costs  

($) 
pfc pvc hc0 hc1 vfc0 vfc1 vvc0 vvc1 s1b s2b s2s 

 200 0 0.33 0.33 122 203 0 0 0.24 0.36 0.12 

Emissions  

(kg CO2e) 
pfe pve he0 he1 vfe0 vfe1 vve0 vve1  

 0.25 0.02 0.055 0.055 0.396 0.687 0.116 × 10-3 0.111 × 10-3  

 

 

4.2.2 Result for the base case 

Solving the two-stage stochastic model under the baseline parameter set mentioned in Section 

4.2.1 with 10 different demand instances, each of which comprises 50 demand scenarios, we obtain 

the average optimal results as presented in Tables 4.2-4 to 4.2-6. The notation used in our tables 

of solutions is described in Table 4.2-3. 

Under the base case, our model is solved to optimality for all 10 instances, this is illustrated by the 

equality in the value of the objective function (upper bound) and the lower bound at the end of the 

computation, the relative MIP gap is thus equal to 0. It is noticeable that the model is solved to 

optimality within a very short period of time, only 33.51 seconds on average. The optimal result 

(total expected cost) is quite stable over different instances, with an average of around $5948, of 

which the two main components are the costs from transportation and production activities, 

respectively accounting for over 50% and 35% of the total cost. Inventory holding takes up only 

about 5% of the total cost, while the firm’s trading of emission allowances to cover its carbon 

footprint costs about 8.6%.   
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Table 4.2-3: The notation used in the solution tables 

Notation Description 

MIP time The solving time of the MIP model, measured in seconds 

Upper bound The valid upper bound on the optimal solution of the MIP model at the end of 

the computation (also known as the Objective function value) 

Lower bound The valid lower bound of all the nodes in the computation (denoted as Best 

bound in CPLEX solver) 

Optimality Optimal status of the computation (= 1 if solved to optimality within the time 

limit, = 0 otherwise) 

MIP gap The relative MIP gap: the difference between the Upper bound and the Lower 

bound, = 0 if solved to optimality 

Prod_c Average total production cost 

Trans_c Average total transportation cost 

Inv_c Average total inventory holding cost 

Emis_c Average total emission allowance cost 

Total_e Average total emissions 

Prod_e Average total emissions of production 

Trans_e Average total emissions of transportation 

Inv_e Average total emissions of inventory holding 

% with s2 buy The percentage of scenarios that involve allowances buying at the second stage 

% with s2 sell The percentage of scenarios that involve allowances selling at the second stage 

s1 buy Quantity of emission allowance bought at the first stage 

s2 buy Average quantity of emission allowance bought at the second stage 

s2 sell Average quantity of emission allowance sold at the second stage 

Setup Average total number of setups  

Prod quant Average total production quantity 

Vehi light Average total number of light vehicles used over the planning horizon 

Vehi heavy Average total number of heavy vehicles used over the planning horizon 

Inv fact Average total amount of inventory stored at the factory warehouse 

Inv ware Average total amount of inventory stored at the central warehouse 

 

The solution also reveals that the firm only produces the exact quantity to meet market demand. 

This is not surprising, since the objective is to minimize cost, so there is no incentive to produce 

more than the quantity needed. The average machine setup frequency is between 10 and 11 times 

within the planning horizon, this means that production takes place in almost every period. With 

respect to vehicle utilization, heavy-duty vehicles are preferable over medium vehicles as there are 

five times as many more 25t trucks being used. Regarding inventory control, most of the finished 

products are shipped directly to the central warehouse as opposed to being stored in the factory 

affiliated warehouse. Over the entire planning horizon, there are approximately 900 units of item 

kept in the central warehouse while the other is hardly used. This is understandable as we consider 

holding costs at both storing facilities are equal, with a storage capacity of 8000 units, the central 

warehouse is apparently sufficient to keep products in inventory.   
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In terms of emissions, on average, the total amount of carbon emissions generated is around 2017 

kilograms per planning horizon. Transportation is the main factor as it is responsible for up to 67.2% 

of the firm’s carbon footprint, while production process takes up around 30%. Inventory holding 

is the least polluting activity since it creates only an approximate amount of 50 kg CO2e (around 

2.4% of the total emissions). The firm purchases most of its emission rights at the first stage of the 

planning horizon. At the second stage, on average, the firm needs to buy extra emission rights in 

49.2% of the 50 scenarios while in 48.8% of the scenarios, it has excessive rights that are sold in 

the carbon market. This phenomenon can be explained when we relate this allowance trading setup 

to the newsvendor problem in which the decision maker needs to face an overage or an underage 

cost, and an order quantity at the critical ratio is purchased to maximize profit. With our symmetric 

allowances cost structure (the firm pays $0.12 more when buying or loses an additional $0.12 

when selling at the second stage), the critical ratio will be 50%. Therefore, it is reasonable for the 

firm to buy (sell) in around half of all scenarios. 

Table 4.2-4: Computational results of the 10 instances under the base case setting (C0) 

Instance 
Computational status 

MIP time Upper bound Lower bound MIP gap % Optimality 

1 24.91 5984.59 5984.59 0% 100% 

2 29.09 6045.72 6045.72 0% 100% 

3 35.94 5887.28 5887.28 0% 100% 

4 26.44 5829.31 5829.31 0% 100% 

5 51.38 5954.39 5954.39 0% 100% 

6 27.05 5920.75 5920.75 0% 100% 

7 26.83 5934.08 5934.08 0% 100% 

8 32.69 5990.56 5990.56 0% 100% 

9 32.61 5863.65 5863.65 0% 100% 

10 48.17 6076.40 6076.40 0% 100% 

Average 33.51 5948.67 5948.67 0% 100% 

 

Table 4.2-5: Average total cost and total emissions under the base case setting (C0) 

Instance 
Costs Emissions 

Prod_c Trans_c Inv_c Emis_c Total_e Prod_e Trans_e Inv_e 

1 2140.00 3061.00 267.62 515.97 2042.52 622.08 1375.84 44.60 

2 2132.00 3101.64 279.87 532.21 2064.23 626.05 1391.53 46.64 

3 2088.00 2974.94 319.13 505.21 1986.96 599.55 1334.22 53.19 

4 2092.00 2929.40 314.29 493.62 1958.91 591.68 1314.84 52.38 

5 2088.00 3032.56 318.36 515.46 2026.09 612.14 1360.89 53.06 

6 2104.00 3013.10 294.63 509.02 2008.40 607.67 1351.63 49.11 

7 2132.00 3020.44 272.54 509.10 2003.89 605.67 1352.79 45.42 

8 2124.00 3031.00 321.64 513.92 2025.15 611.80 1359.74 53.61 

9 2068.00 2958.70 330.09 506.86 1978.34 596.40 1326.93 55.01 

10 2108.00 3135.70 306.79 525.91 2084.46 628.55 1404.77 51.13 

Average 2107.60 3025.85 302.50 512.73 2017.89 610.16 1357.32 50.42 
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Table 4.2-6: Average optimal decisions under the base case setting (C0) 

 

 

4.3 Deterministic model versus Stochastic model analysis 

This section will examine the optimal results provided by the deterministic and the stochastic 

models to verify the potential impact (if any) of uncertainty on a firm’s operational performance.  

As stochastic problems are often computationally difficult to solve, it is a common practice for 

decision makers to solve simpler problems first. There are several ways to simplify a complex 

stochastic problem: a firm could replace the unknown elements in its system with the expected 

value (or average value) of those random variables and then solve the resulted deterministic model, 

or it could solve all the deterministic sub-models (each corresponds to one realization scenario of 

the uncertain factor) and then compute the expectation value of these solutions. However, the 

solutions provided by these alternatives cannot always effectively represent the stochastic problem, 

they can be nearly optimal, totally inaccurate or even infeasible in some cases (Moraza, 2016).  

In order to determine whether the simplified model is good enough to represent the approximation 

of the stochastic model, assessment indicators such as the Expected Value of Perfect Information, 

the Value of Stochastic Solution, as well as the concepts of Wait-and-See solution, Expected Value, 

and the Expected result of using the Expected Value solution are commonly applied, as mentioned 

in Escudero et al. (2007). These measures are mainly used to quantify how valuable the Stochastic 

Problem is, with respect to the other models. These concepts are explained as follows:  

• Expected Value (EV) model refers to the simplified deterministic problem obtained by 

replacing the random variables in the original stochastic model with their expected values. 

It is also known as the mean value problem. 

 

Instance 

% of scenarios Decision variables 

with s2 

buy 

with s2 

sell 
s1 buy s2 buy s2 sell Setup Prod 

Vehi 

medium 

Vehi 

heavy 

Inv 

fact 

Inv 

ware 

1 48% 50% 2070.94 93.15 121.57 10.70 30970.08 2.86 13.36 0.00 810.98 

2 50% 48% 2015.08 177.90 128.76 10.66 31169.32 3.06 13.44 0.00 848.08 

3 50% 48% 1976.31 123.43 112.78 10.44 29846.80 2.92 12.90 0.00 967.06 

4 50% 48% 1971.79 91.39 104.28 10.46 29453.44 2.58 12.88 1.30 951.10 

5 50% 48% 1989.10 140.16 103.17 10.44 30476.30 2.76 13.28 0.00 964.74 

6 48% 50% 2027.31 103.08 121.98 10.52 30251.90 2.90 13.10 0.52 892.30 

7 48% 50% 1963.80 137.39 97.31 10.66 30150.48 3.06 13.04 0.00 825.88 

8 50% 48% 2015.27 121.14 111.26 10.62 30457.42 3.08 13.08 0.00 974.66 

9 48% 50% 1977.70 133.91 133.27 10.34 29690.80 2.92 12.82 0.00 1000.26 

10 50% 48% 2062.76 117.67 95.97 10.54 31295.94 2.84 13.74 0.00 929.68 

Average 49.2% 48.8% 2007.01 123.92 113.04 10.54 30376.25 2.90 13.16 0.18 916.47 
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• Expected result of using the Expected Value solution (EEV) refers to the result of 

applying the solution provided by the EV problem. In two-stage stochastic model, this 

means solving the model with a fixed first-stage decision derived from the deterministic 

EV model.  

 

• Wait-and-see (WS) solution value is the expected value obtained from using the optimal 

solution for each scenario of uncertainty. This approximation is based on the perfect 

information (information known with certainty) along the planning horizon. In our case, 

wait-and-see solution is derived by taking the average value of the optimal results from 

solving 50 separate scenarios, each with known and certain demands. 

 

• Stochastic Problem (SP) value, also known as the here-and-now solution, denotes the 

optimal solution of the stochastic model.  

 

• Value of Stochastic Solution (VSS) is defined as the difference between the Expected 

result of the EV problem and the result of the stochastic problem. In minimization problems, 

this value is equal to VSS = EEV – SP. It represents the cost of ignoring uncertainty in 

decision-making or the expected loss of using a deterministic solution. A small VSS means 

that the approximation of the stochastic problem by the model with expected values of the 

random variables is a good one, while in other cases when VSS is equal to 0 (the values of 

EEV and SP are the same), solving the hard stochastic problem becomes unnecessary. 

 

• Expected Value of Perfect Information (EVPI) is defined as the difference between the 

solutions of wait-and-see and the stochastic problem. It represents the highest level of 

investment that a decision-maker would be willing to make (the highest cost he wants to 

pay) in order to obtain the perfect information about the future. In minimization problems, 

EVPI is derived from SP – WS. The higher the EVPI, the more important role the uncertain 

element has in the model. 

 

In minimization problems, the relation among them is WS ≤ SP ≤ EEV. 

Particularly, in our case, the EV problem is the deterministic model with known demands 

calculated as the average values of the 50 different demand scenarios. Solving the EV problem, 

we obtain the first-stage decision R1 of how many emission allowances to buy at first. We then 

solve the two-stage stochastic model with this fixed R1 decision, the optimal result derived is the 

EEV value. On the other hand, the WS value is obtained by first solving the deterministic model 

individually (model with predetermined demands) for each of the 50 demand scenarios, then 

compute the expected value over these 50 solutions. Finally, we can obtain the SP value by simply 

solving our original two-stage stochastic model with uncertain demands.  
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4.3.1 Different sets of parameters 

When comparing the optimal solutions provided by the Stochastic problem and the Expected 

results of using the Expected Value (the SP problem with fixed first-stage decision) under the base 

case, we found that in all of the 10 instances, the majority of differences in the decision variables 

between the solutions of the SP model and the EEV model are the decisions related to the trading 

of emission allowances, i.e., the quantity to buy at the first-stage and the quantity to buy or sell at 

the second stage. Therefore, we vary some principle cost- or emission-related parameters of the 

model to verify whether a different share of emission cost in the total cost value has any impact on 

the VSS value. Seven parameter sets have been generated, as shown in Table 4.3-1.  

In Case 1 (C1), increasing the machine setup cost of the production line (production fixed cost) 

can vary the setup frequency and the quantity of items kept in inventory. Cases 2 and 3 refer to the 

situations when less energy-efficient vehicles are used and when the production line is carbon 

intensive, respectively. Case 4 to 7 vary the proportion of emission allowance cost (from low to 

high) in the total cost value.  

Table 4.3-1: Cases considered in the experiments 

Case Change(s) description Corresponding parameter(s) 

C1 Production fixed cost increases 50% pfc = 300 

C2 Emissions from transportation double vfe0 = 0.792, vve1 = 0.000232 

vfe1 = 1.374, vve1 = 0.000222 

C3 Emissions from production 10 times higher pfe = 2.5, pve = 0.2 

C4 Emission prices are 10 times lower s1b = 0.024, s2b = 0.036, s2s = 0.12 

C5 Emission prices halve s1b = 0.12, s2b = 0.18, s2s = 0.06 

C6 Emission prices double s1b = 0.48, s2b = 0.72, s2s = 0.24 

C7 Emission prices are 5 times higher s1b = 1.2, s2b = 1.8, s2s = 0.6 

 

The variation of these parameters would ultimately result in different percentages of the cost 

indicators, including production cost, transportation cost, inventory cost and emission cost in the 

total cost structure, as illustrated in Table 4.3-2. The results presented in Table 4.3-2 are calculated 

as the average over 10 instances. Our model is solved to optimality easily under these different 

cases, with a computing time of less than 1 minute. Compared to the base case, an increase in total 

cost is seen in most of the cases, mainly due to the rise in either cost or emission factors. It is also 

observed that with these parameter variations, the cost of emissions can take up as low as 0.94% 

(in case 4) or as high as 32% (in case 7) of the total cost.  
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Table 4.3-2: Distribution of different cases operational costs (%) in different cases 

Case 
MIP time 

(s) 

MIP gap 

(%) 
Total cost 

Cost (%) 

Prod_c Trans_c Inv_c Emis_c 

C0 33.51 0% 5948.67 35.43 50.87 5.09 8.62 

C1 58.27 0% 6975.81 43.03 42.83 6.74 7.40 

C2 32.55 0% 6293.73 33.40 47.90 5.09 13.62 

C3 35.06 0% 7356.03 28.65 41.13 4.12 26.10 

C4 35.27 0% 5487.08 38.35 55.23 5.48 0.94 

C5 37.67 0% 5692.28 37.03 53.20 5.27 4.50 

C6 38.82 0% 6461.27 32.69 46.80 4.65 15.86 

C7 39.75 0% 7997.55 26.50 37.71 3.80 32.00 

 

We then solve the stochastic, wait-and-see, and the expected value problems under these parameter 

settings. Their average optimal total costs over 10 instances are presented in Table 4.3-3. The 

average VSS and the average EVPI under different cases are also included. Interested readers can 

refer to Appendix 3 for the detailed results of each instance. 

Table 4.3-3: Average value of the WS, SP, and EEV solutions under different cases 

Case WS SP EEV EVPI % of SP VSS % of SP 

C0 5920.20 5948.67 5950.67 28.47 0.4786 2.00 0.0336 

C1 6947.65 6975.81 6978.31 28.16 0.4037 2.50 0.0358 

C2 6245.55 6293.73 6297.86 48.19 0.7656 4.12 0.0655 

C3 7238.15 7356.03 7356.81 117.88 1.6025 0.78 0.0106 

C4 5484.23 5487.08 5487.27 2.85 0.0520 0.19 0.0035 

C5 5678.03 5692.28 5693.27 14.25 0.2503 0.99 0.0175 

C6 6404.33 6461.27 6465.26 56.94 0.8813 3.99 0.0618 

C7 7855.49 7997.55 8007.50 142.06 1.7763 9.94 0.1243 

 

 

4.3.2 The Value of Stochastic Solution under different cases 

In this section, we will present a more detailed comparison among the VSS values of various 

parameter cases that are mentioned in Section 4.3-1. As the total cost levels incurred in different 

cases are different, for comparison purpose, we convert these VSS values into a relative form, i.e., 

the percentage of VSS compared to the optimal total cost of the Stochastic problem. We first 

compare the relative VSS values among cases C0 to C4, as presented in Table 4.3-4. These cases 

appear in the ascending order of percentage of emission cost in the total cost (spanning from 0.94% 

to 26.1% of the total cost), resulting from varying the parameter of production fixed cost, 

production emissions, transportation emissions, etc.  
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Table 4.3-4: Relative VSS values (in percentage of the SP's solution) among case C0 to C4 

Case I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 

C4 0.0026 0.0000 0.0047 0.0084 0.0032 0.0056 0.0009 0.0050 0.0032 0.0017 

C1 0.0340 0.0006 0.0420 0.0731 0.0286 0.0494 0.0252 0.0467 0.0343 0.0258 

C0 0.0327 0.0000 0.0335 0.0770 0.0291 0.0513 0.0189 0.0456 0.0338 0.0154 

C2 0.0577 0.0010 0.0556 0.1380 0.0375 0.1019 0.0522 0.0736 0.1109 0.0311 

C3 0.0281 0.0055 0.0022 0.0162 0.0018 0.0215 0.0059 0.0113 0.0055 0.0076 

 

Through Table 4.3-4, we can see that the variations of those parameters entail changes in the VSS 

values. However, from C4 to C3, over the 10 instances, no unified impact or directed tendency is 

seen, an increase in emission cost can either trigger a rise or a decline in the relative VSS value.  

In the next step, we conduct a similar comparison for the results among cases C0 and C4 to C7. 

These cases appear in the ascending order of the emission cost/total cost ratio in Table 4.3-5. 

However, these increases of emission cost are derived from varying the allowances trading prices 

only, as already specified in Table 4.3-1. Looking at the relative VSS among these cases (as shown 

in Table 4.3-5) over the 10 instances, there is a positive correlation between the share of emission 

cost in the total cost and the VSS value: the larger proportion of carbon emissions cost, the higher 

the VSS value. It is noticeable that in instance 2, the difference between the solution of our SP 

problem and EEV problem is insignificant in most of the cases that are considered, between 

[0.0001~ 0.4168]. This explains why its relative value to the SP’s solution is almost 0.0 (between 

[3.41E-09, 1.16E-07]). 

Table 4.3-5: Relative VSS values (%) among case C0 and case C4 to C7 

Case I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 

C4 0.0026 0.0000 0.0047 0.0084 0.0032 0.0056 0.0009 0.0050 0.0032 0.0017 

C5 0.0171 0.0000 0.0184 0.0404 0.0156 0.0268 0.0099 0.0239 0.0154 0.0081 

C0 0.0327 0.0000 0.0335 0.0770 0.0291 0.0513 0.0189 0.0456 0.0338 0.0154 

C6 0.0582 0.0000 0.0584 0.1406 0.0512 0.0915 0.0349 0.0826 0.0768 0.0274 

C7 0.1130 0.0000 0.1175 0.2781 0.0986 0.1792 0.0983 0.1620 0.1540 0.0512 

 

Through these comparisons, it can be concluded that the carbon trading prices have substantial 

impact on the approximation of the stochastic problem by using the expected value solution models. 

The higher the carbon allowance prices, the less accurate the Expected Value solution is in 

estimating the uncertain elements. It is also worth to mention that, in most of the cases, the Value 

of Stochastic Solution is relatively small. We can again refer to the concept of critical ratio in the 

newsvendor problem for a possible rationale for this behavior. As explained in the previous section, 

the symmetric structure in our emission prices has led to a critical ratio of 0.5, meaning that the 

firm can make operational decisions with demand values at the 50 percentiles of the distribution 

of total demand.  
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Generally, this experiment has implied that the approximation of the stochastic problem by the 

expected value of the mean value model is a good one for the current parameter setting. Under the 

circumstances when the stochastic problem is hard to solve, decision-makers can simplify their 

problems by employing the average value of the uncertain demand in finding the optimal solution.  

 

4.3.3 Expected Value of Perfect Information under different cases 

In this section, a similar experimental setting as in Section 4.3.2 is conducted. With the Expected 

value of perfect information being analyzed, we aim to verify if different cost structure in the total 

cost function have an influence on the EVPI value. The relative EVPI values (i.e., the EVPI 

expressed as a percentage of the Stochastic problem’s solution) for different cases are presented 

in Table 4.3-6 and 4.3-7.  

Table 4.3-6: Relative EVPI values (%) among case C0 to C4 

Case I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 

C4 0.0469 0.0662 0.0522 0.0438 0.0533 0.0496 0.0517 0.0506 0.0595 0.0458 

C1 0.3626 0.5101 0.4084 0.3497 0.4128 0.3878 0.3998 0.3943 0.4608 0.3506 

C0 0.4308 0.6095 0.4821 0.4030 0.4911 0.4561 0.4748 0.4668 0.5482 0.4222 

C2 0.6855 0.9728 0.7824 0.6458 0.7862 0.7424 0.7422 0.7457 0.8750 0.6759 

C3 1.4413 2.0524 1.6129 1.3446 1.6133 1.6041 1.5843 1.5668 1.8011 1.3971 

 

Table 4.3-7: Relative EVPI values (%) among case C0 and case C4 to C7 

Case I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 

C4 0.0469 0.0662 0.0522 0.0438 0.0533 0.0496 0.0517 0.0506 0.0595 0.0458 

C5 0.2253 0.3192 0.2515 0.2109 0.2567 0.2383 0.2489 0.2433 0.2867 0.2212 

C0 0.4308 0.6095 0.4821 0.4030 0.4911 0.4561 0.4748 0.4668 0.5482 0.4222 

C6 0.7928 1.1188 0.8903 0.7460 0.9052 0.8445 0.8736 0.8593 1.0035 0.7764 

C7 1.5980 2.2465 1.8019 1.5035 1.8266 1.7135 1.7543 1.7325 2.0159 1.5628 

 

Under both settings, in all the 10 instances, it is observed that there exists a positive correlation 

between the proportion of emission cost in the total cost and the EVPI value: the bigger proportion 

the emission cost, the higher the EVPI value. This finding implies that decision-makers are willing 

to pay more to obtain the perfect information when emissions play a more important role in their 

total budget.  
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4.4 Parameter sensitivity analysis 

Sensitivity analysis (also known as post-optimality investigation of the solution) is used as an 

attempt to study the robustness of the solution to a linear programing model. To measure the impact 

of different factors on the performance of our two-stage stochastic model, we separately change 

several key parameters, including production fixed cost, vehicle fixed transportation cost, 

inventory holding cost, production emissions rates, inventory holding emissions rates, capacity of 

vehicle, and the number of periods in our planning horizon. We resolve our model under each of 

the variated set of parameters over 10 demand instances, each of which also comprises 50 demand 

scenarios as in the base case. The results of these parameter settings are then compared to those of 

the base case.  

 

4.4.1 Production fixed cost 

We first investigate the impact of production fixed cost (pfc) on the optimal solution and the 

model’s performance by reducing the machine setup cost by 50% or increasing it to two times 

higher, pfc ϵ {100, 400}. Their respective results are then compared to the base case where pfc has 

a value of 200. The average optimal results over 10 instances and the computational status are 

presented in Table 4.4-1.  

Table 4.4-1: Average results under variations of the production fixed cost 

Case 

Computational status Costs Emissions 

MIP 

time 

Upper 

bound 

Lower 

bound 

MIP 

gap 

% 

Optimality 
Prod_c Trans_c Inv_c Emis_c Total_e Prod_e Trans_e Inv_e 

100 22.14 4866.77 4866.77 0% 100% 1108.00 3073.24 174.03 511.50 2011.80 610.29 1372.50 29.01 

200 33.51 5948.67 5948.67 0% 100% 2107.60 3025.85 302.50 512.73 2017.89 610.16 1357.32 50.42 

400 175.62 7954.33 7954.33 0% 100% 3837.60 2955.31 641.59 519.83 2051.20 609.92 1334.34 106.93 

Case 

Percentage of scenarios Decision variables 

with s2 buy with s2 sell s1 buy s2 buy s2 sell Setup Prod 
Vehi 

light 

Vehi 

heavy 

Inv 

fact 

Inv 

ware 

100 49.0% 49.0% 1999.08 125.83 113.10 11.08 30376.25 3.55 13.01 0.00 527.36 

200 49.2% 48.8% 2007.01 123.92 113.04 10.54 30376.25 2.90 13.16 0.18 916.47 

400 49.2% 48.8% 2036.06 122.35 107.21 9.59 30376.25 2.20 13.24 75.15 1869.06 

 

Under these variations, all of the instances are solved to optimality, but there is a fivefold increase 

in the computational time when production fixed cost is doubled compared to the base case. This 

longer solving time may be explained by the consideration between setup frequency and inventory 

level and it seems harder to find the optimal trade-off between these two decisions. Indeed, with 

low setup costs, it is optimal to setup in almost every time period, whereas with a much higher 

setup cost, it is optimal to conduct a setup less frequently. In this latter case, the exact timing of 

the setup periods becomes critical and the search for these optimal setup periods might explain the 
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increased CPU times. There is also an effect on the inventory levels. Since it costs two times more 

to conduct a production setup, the firm may consider producing in bigger batches and store finished 

products in inventory to reduce its setup frequency. This is reflected in the considerably higher 

quantity of products being stored in inventory, i.e., an average of 1944 units compared to 916 units 

of the base case (which is more than double), and the less frequent setup (9.59 times compared to 

10.54 times). Figure 4.4-1 presents a negative correlation between production fixed cost and setup 

decision. Fewer setups correspond to more items being produced in advance and held in inventory. 

On the contrary, when pfc is halved, the firm has an incentive to conduct more setups as it becomes 

a more cost-effective option.  

Figure 4.4-2 indicates the value of objective function (total expected cost) and the overall 

emissions level varies according to the decrease or increase in the production fixed cost. As the 

firm must satisfy all demands, it needs to conduct machine setups for the production process 

regardless of how expensive it is. Total cost rises when production fixed cost increases because 

the small reduction in setup frequency cannot offset the higher rate of increase in setup cost itself. 

Moreover, the significantly higher total inventory cost also contributes to the rise in total cost. 

Compared to the base case, total cost increases by 33.7% when pfc is 400, whereas it reduces by 

18% when pfc is 100. 

In terms of emissions, there is a slight increase in the total emission level when production fixed 

cost increases. This is mainly due to the additional emissions from holding more products in 

inventory.  

 

Figure 4.4-1: Effect of production fixed cost on setup frequency and inventory level 
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Figure 4.4-2: Effect of production fixed cost on total cost and total emissions 

 

4.4.2 Vehicle fixed cost 

In freight transportation, the vehicle shipping rate of each vehicle type is a major factor in 

determining its own utilization rate as well as the relative rate of usage among different types of 

vehicles. To observe the effect of variations in vehicle costs on the relative utilization rate of our 

medium- and heavy-trucks, we vary the fixed delivery cost of the medium-duty truck while 

keeping that of the heavy truck unchanged. We consider the scenarios when it costs 20% less to 

use a medium truck and when it is 20% more expensive compared to the base case. Table 4.4-2 

presents the average results under 3 different shipping rates of medium trucks, vfc0 ϵ {98, 122, 

147}.  

Table 4.4-2: Average results under variations of the medium-vehicle fixed cost 

Case 

Computational status Costs Emissions 

MIP 

time 

Upper 

bound 

Lower 

bound 

MIP 

gap 

% 

Optimality 
Prod_c Trans_c Inv_c Emis_c Total_e Prod_e Trans_e Inv_e 

98 1250.53 5859.70 5859.52 0.003% 80% 2152.00 2940.35 246.10 521.25 2051.59 610.21 1400.36 41.02 

122 33.51 5948.67 5948.67 0% 100% 2107.60 3025.85 302.50 512.73 2017.89 610.16 1357.32 50.42 

147 25.26 6013.96 6013.96 0% 100% 2080.00 3077.76 342.43 513.78 2022.98 610.12 1355.79 57.07 

Case 

Percentage of scenarios Decision variables 

with s2 buy with s2 sell s1 buy s2 buy s2 sell Setup Prod 
Vehi 

light 

Vehi 

heavy 

Inv 

fact 

Inv 

ware 

98 49.2% 48.8% 2043.22 124.46 116.09 10.76 30376.25 10.01 9.65 16.76 729.00 

122 49.2% 48.8% 2007.01 123.92 113.04 10.54 30376.25 2.90 13.16 0.18 916.47 

147 49.0% 49.0% 2009.19 124.66 110.86 10.40 30376.25 2.34 13.46 1.80 1035.85 

 

At first, it is observed that the model’s computational time has been tremendously increased to 

1250 seconds (more than 37 times longer) when the fixed cost of our 15t trucks is reduced by 20%. 
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This reduction also generates an average MIP gap of 0.003% between the value of the objective 

function and the lower bound, as only 80% of instances are solved to optimality, meaning that the 

model cannot find an optimal solution within the time limit in 2 out of 10 instances. A possible 

explanation for this phenomenon is the consideration between the use of two different truck types. 

When pfc0 is reduced to 98, there are several circumstances in which dispatching two medium 

trucks (a cost of $196 for a cumulative capacity of 1800 units) is cheaper than using one heavy 

truck that costs $203 for a capacity of 2500 units, e.g., when the delivery quantity is more than 900 

units but fewer than 1800 units, using two medium trucks is obviously a more cost-effective option. 

This is reflected in the significantly higher utilization rate of 15t trucks. Almost 3.5 times more 

medium trucks are used while the usage of heavy trucks declines by 27%, resulting in a higher 

overall number of vehicles used for the shipping activities, as shown in Figure 4.4-3. 

 

 

Figure 4.4-3: Effect of medium-vehicle fixed cost on total vehicle usage and total cost 

Figure 4.4-4 illustrates a positive correlation between the medium-duty vehicle cost and total cost. 

When fixed cost of medium trucks rises to 147, a 1.7% increase is seen in the transportation cost 

which leads to an increase of 1.1% in the total cost. As fewer delivery trips are made due to the 

higher transporting rate, production setups take place less frequently (dropped from an average of 

10.54 to 10.4 times), leading to moderately more products are kept in inventory. This also explains 

the slightly higher total emissions level under the higher medium-vehicle transporting rate. On the 

contrary, the lower transportation fixed cost has triggered more frequent machine setups with 

smaller production lot-sizes. It can reduce total cost by around 1.5%, but it raises the total 

emissions level to 1.16 times higher. This is mostly due to the rise in emissions from transportation 

as more vehicles are used. As a result, more allowances (an increase of 1.6%) are purchased by 

the firm to cover its higher carbon footprint. 
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Figure 4.4-4: Effect of medium-vehicle fixed cost on total cost and total emissions 

 

4.4.3 Inventory holding cost 

Next, we vary the inventory holding cost at one of our storage spaces, i.e., the affiliated warehouse 

in the factory, as the cost of holding goods in inventory at different storage facilities also influences 

their relative utilization rates. This time, we impose a 30% decrease and a 30% increase in the 

holding cost of the factory warehouse, hc0 ϵ {0.23, 0.33, 0.43} where 0.33 is the holding cost of 

the base case. The average results are presented in Table 4.4-3.   

Table 4.4-3: Average results under variations of the inventory holding cost 

Case 

Computational status Costs Emissions 

MIP 

time 

Upper 

bound 

Lower 

bound 

MIP 

gap 

% 

Optimality 
Prod_c Trans_c Inv_c Emis_c Total_e Prod_e Trans_e Inv_e 

0.23 47.97 5943.10 5943.10 0% 100% 2078.00 3032.55 318.37 514.18 2025.79 610.12 1359.30 56.37 

0.33 33.51 5948.67 5948.67 0% 100% 2107.60 3025.85 302.50 512.73 2017.89 610.16 1357.32 50.42 

0.43 31.89 5948.67 5948.67 0% 100% 2107.60 3025.85 302.50 512.73 2017.89 610.16 1357.32 50.42 

Case 

Percentage of scenarios Decision variables 

with s2 buy with s2 sell s1 buy s2 buy s2 sell Setup Prod 
Vehi 

light 

Vehi 

heavy 

Inv 

fact 

Inv 

ware 

0.23 48.6% 49.4% 2010.34 124.36 108.91 10.39 30376.25 3.11 13.07 198.25 826.60 

0.33 49.2% 48.8% 2007.01 123.92 113.04 10.54 30376.25 2.90 13.16 0.18 916.47 

0.43 48.6% 49.4% 2008.72 123.07 113.89 10.54 30376.25 2.90 13.16 0.00 916.66 

 

Under different holding costs, all instances are again solved to optimality within a short period of 

time (on average less than 50 seconds). These variations in inventory holding cost did not create 

considerable changes in the MIP solving time. In the base case (when holding costs at both 

warehouses are 0.33), the storeroom of the factory is hardly used to store products – only an 
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average of less than 1 unit of product is held. Therefore, a 30% addition to its holding cost only 

further discourages its utilization (inventory level at factory becomes 0). This also explains why 

the results of the case with higher factory holding cost are almost identical to those of the base 

case. Most of their performance indicators (related to cost and emissions) as well as decision 

variables are remained unchanged. Only subtle differences are seen in the allowances trading and 

inventory decisions. This is possibly because for each solving cycle, various nodes are explored 

by the model, there exists alternative solutions which lead to the same outcome. In other words, 

the model has multiple optimal solutions, especially for the case where the holding cost at both 

warehouses are identical, such equivalent optimal solutions might exist. 

On the other hand, when this cost drops to 0.23, the total inventory per planning horizon at the 

factory warehouse has jumped to almost 200 units on average, resulting in the firm’s higher overall 

inventory level, with an increase of around 12% compared to the other cases, as shown in Figure 

4.4-5. The impact of variations in the holding cost the factory affiliated warehouse is illustrated in 

Figure 4.4-6. When the inventory holding cost at this storage facility decreases by 30%, total cost 

declines slightly despite the higher inventory level. This can be explained by the lower production 

cost as fewer machine setups are made. However, total emissions increase marginally as there is 

more carbon emitted from inventory holding, requiring a slightly higher number of emission 

allowances to be purchased. 

 

 

Figure 4.4-5: Effect of inventory holding cost on total inventory 
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Figure 4.4-6: Effect of inventory holding cost on total cost and total emissions 

 

4.4.4 Production emissions 

After examining the impact of production fixed cost in section 4.4.1, we now vary both the fixed 

and variable emission factors in the production process under two settings: emission rates are 10 

times lower and 10 times higher. The corresponding values of our variated production fixed 

emissions pfe and variable emissions pve are [0.025, 0.002] and [2.5, 0.2] respectively, while [0.25, 

0.02] are their base case values. The computation results under different carbon intensity of the 

production line are presented in Table 4.4-4. 

Table 4.4-4: Average results under variations of the production emissions 

Case 

Computational status Costs Emissions 

MIP 

time 

Upper 

bound 

Lower 

bound 

MIP 

gap 

% 

Optimality 
Prod_c Trans_c Inv_c Emis_c Total_e Prod_e Trans_e Inv_e 

[0.025, 0.002] 34.57 5808.01 5808.01 0% 100% 2108.00 3026.09 301.86 372.06 1468.72 61.02 1357.40 50.31 

[0.25, 0.02] 33.51 5948.67 5948.67 0% 100% 2107.60 3025.85 302.50 512.73 2017.89 610.16 1357.32 50.42 

[2.5, 0.2] 26.50 7356.03 7356.03 0% 100% 2107.20 3025.77 302.97 1920.10 7509.38 6101.59 1357.29 50.49 

Case 

Percentage of scenarios Decision variables 

with s2 buy with s2 sell s1 buy s2 buy s2 sell Setup Prod 
Vehi 

light 

Vehi 

heavy 

Inv 

fact 

Inv 

ware 

[0.025, 0.002] 48.2% 49.8% 1463.56 84.11 78.94 10.54 30376.25 2.90 13.16 2.55 912.17 

[0.25, 0.02] 49.2% 48.8% 2007.01 123.92 113.04 10.54 30376.25 2.90 13.16 0.18 916.47 

[2.5, 0.2] 49.8% 48.2% 7446.76 522.35 459.73 10.54 30376.25 2.89 13.17 1.80 916.28 

 

Table 4.4-4 shows that alternating emission factors in production does not create remarkable 

changes in the model’s solving time as well as the relative MIP gap since all instances are solved 

to optimality. When the emissions rate in production is 10 times lower, the average total cost is 

reduced by around 2.3%. This reduction is mostly due to the lower carbon related cost, as the firm 
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does not need as many emission rights as in the base case (a drop of 27.3% is seen in its total 

quantity of allowances purchased). Correspondingly, a sharp decline (by 10 times) in the 

production emissions has majorly contributed to the firm’s lower overall carbon footprint. 

Figure 4.4-7 has shown a positive relation between the emission rates in production and the firm’s 

total operational cost as well as the total emission rights needed. Particularly, when the production 

line is 10 times more carbon intensive, there is an increase of 26% in the total cost compared to 

the base case level, and as many as 3.7 times more permits have been purchased. This also indicates 

a surge in the total amount of GHGs being emitted into the environment. It is worth to mention 

that under such variations of emission factors in the production process, not many changes are 

seen in the firm’s pivotal operational decisions except for those related to the buying and selling 

of emission rights. This is totally understandable as the firm needs to produce to satisfy market 

demand no matter how carbon intensive its production line is, and it is apparent that when the 

production generates more emissions, the firm needs to purchase more allowances. 

 

 

Figure 4.4-7: Effect of production emissions on total cost and total emissions 

These variations have taken into account different levels of carbon intensity in a firm’s production 

line. When a firm is subject to at least one emission regulation, or in other words, when a firm has 

to pay for the emissions it has generated, if its manufacturing process (or any other operational 

activities in general) is carbon intensive, emission cost can take up a large proportion in its overall 

operating cost. Therefore, it is essential for carbon-intensive firms to enhance their production 

lines or invest in green technology to reduce their carbon levels in the long term.  

 

4.4.5 Holding emissions 

In this section, we want to test if alternating another emission indicator, i.e., inventory holding 

emissions, would bring about similar impacts as in the previous experiment. We vary the inventory 

holding emissions by considering two alternative product sizes: half or double of the size that is 

applied in the base case. In the benchmark case, we assumed that a square meter of both 

0

2000

4000

6000

8000

0

2000

4000

6000

8000

[0.025, 0.002] [0.25, 0.02] [2.5, 0.2]
To

ta
l c

o
st

To
ta

l a
llo

w
an

ce
s 

p
u

rc
h

as
ed

Production fixed and variable emissions

Total emissions Total cost



59 
 

warehouses could contain a maximum of 50 product units. By employing the emission feature of 

33 kg CO2e per m2 per year provided by the literature, we come up with a holding emission rate 

of 0.055 kg CO2e per unit item per month (or per planning period). If the product size is halved or 

doubled, it means that there is a maximum of 100 or 25 units of product that can be stored per m2, 

resulting in a unit holding emissions of 0.0275 or 0.11 kg, respectively. Our experimental setting 

thus becomes he0 = he1 and he0, he1 ϵ {0.0275, 0.055, 0.11}. The average optimal results are 

presented in Table 4.4-5.  

Table 4.4-5: Average results under variations of the inventory holding emissions 

Case 

Computational status Costs Emissions 

MIP 

time 

Upper 

bound 

Lower 

bound 

MIP 

gap 

% 

Optimality 
Prod_c Trans_c Inv_c Emis_c Total_e Prod_e Trans_e Inv_e 

0.0275 29.10 5943.16 5943.16 0% 100% 2102.40 3021.54 312.09 507.13 1992.06 610.15 1355.90 26.01 

0.055 33.51 5948.67 5948.67 0% 100% 2107.60 3025.85 302.50 512.73 2017.89 610.16 1357.32 50.42 

0.11 26.20 5959.24 5959.24 0% 100% 2117.20 3034.55 284.66 522.83 2065.22 610.17 1360.16 94.89 

Case 

Percentage of scenarios Decision variables 

with s2 buy with s2 sell s1 buy s2 buy s2 sell Setup Prod 
Vehi 

light 

Vehi 

heavy 

Inv 

fact 

Inv 

ware 

0.0275 48.4% 49.6% 1979.48 127.29 114.70 10.51 30376.25 2.87 13.16 1.67 944.06 

0.055 49.2% 48.8% 2007.01 123.92 113.04 10.54 30376.25 2.90 13.16 0.18 916.47 

0.11 49.2% 48.8% 2055.16 118.26 108.20 10.59 30376.25 2.97 13.17 1.67 860.93 

 

With these alterations in holding emissions, the model is still capable of finding an optimal solution 

in a short period of time. Again, the emissions index in inventory holding and the model’s 

performance indicators (total cost and total emissions) are positively correlated, as illustrated in 

Figure 4.4-8. At a lower holding emission rate, the overall emissions level is obviously lower and 

the total cost is also slightly reduced despite the rise in inventory cost. This can be explained by 

the fact that under such circumstances, the firm has an incentive to keep more products in inventory, 

leading to a lower production setup and transporting frequency since fewer delivery trips are 

needed to transport finished goods to the warehouse. Therefore, the costs due to production, 

transportation, and allowances trading activities decrease, inducing an overall reduction in the 

value of the objective function. The same logic can be applied when holding emissions are two 

times higher. 
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Figure 4.4-8: Effect of inventory holding emissions on total cost and total emissions 

 

4.4.6 Vehicle capacity 

To examine the influence of transportation capacity on decision making, we alter the capacity of 

our transporting vehicles by considering a product that weighs two times less or two times more 

compared to the initial case where the item weight is assumed to be 10 kg. As our medium- and 

heavy-duty trucks have a load capacity of 9 tons and 25 tons respectively, their vehicle capacity 

Vcap0 and Vcap1 will correspond to 1800 and 5000 units respectively when a unit of product 

weighs 5 kg. Similarly, the maximum number of units that those trucks can carry will have the 

values of 450 and 1250 respectively when the product weight is 20 kg per item. Table 4.4-6 

presents the average results under different conditions of vehicle capacity. 

Table 4.4-6: Average results under variations of the vehicle capacity 

Case 

Computational status Costs Emissions 

MIP 

time 

Upper 

bound 

Lower 

bound 

MIP 

gap 

% 

Optimality 
Prod_c Trans_c Inv_c Emis_c Total_e Prod_e Trans_e Inv_e 

1800-5000 2.49 4637.59 4637.59 0% 100% 2087.60 1868.14 272.30 409.55 1621.77 610.13 966.25 45.38 

900-2500 33.51 5948.67 5948.67 0% 100% 2107.60 3025.85 302.50 512.73 2017.89 610.16 1357.32 50.42 

450-1250 3297.35 8542.18 8537.76 0.05% 10% 2119.60 5367.74 336.66 718.18 2815.64 610.17 2149.36 56.11 

Case 

Percentage of scenarios Decision variables 

with s2 buy with s2 sell s1 buy s2 buy s2 sell Setup Prod 
Vehi 

light 

Vehi 

heavy 

Inv 

fact 

Inv 

ware 

1800-5000 49.2% 48.8% 1623.21 83.99 85.43 10.44 30376.25 3.10 7.34 0.00 825.14 

900-2500 49.2% 48.8% 2007.01 123.92 113.04 10.54 30376.25 2.90 13.16 0.18 916.47 

450-1250 49.2% 48.8% 2810.18 179.49 174.03 10.60 30376.25 2.93 24.68 42.37 977.82 

 

Given a stationary total demand level, it is apparent that fewer delivery trips are needed when more 

items can be loaded per trip, and in the opposite case, it will require more vehicle shipments. This 
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is reflected in the 35% lower vehicle usage when both truck types can carry a doubled quantity of 

items, or in the 70% increase in the total number of shipments conducted when these vehicle 

capacities are halved. It is noted that heavy trucks account for most of the incremental delivery, as 

demonstrated in Figure 4.4-9. A rationale for this behavior lies in the fixed-cost structure of our 

vehicles: dispatching a 1250-unit capacity large truck which costs $203 is more cost-effective than 

dispatching multiple 450-unit trucks that costs $122. Therefore, heavy trucks are preferable in this 

circumstance. 

 

 

Figure 4.4-9: Effect of vehicle capacity on its utilization 

From these vehicle capacity ranges, whenever the vehicle capacity is halved, more vehicles are 

used to transport products, leading to a tremendous increase in both the total emissions and the 

total cost. They are increased by 24% and 28% respectively when vehicle capacity diminishes 

from [1800, 5000] to [900, 2500] units, or increased by 39% and 43% when capacity shrinks to 

only [450, 1250] units, as shown in Figure 4.4-10. The increase in emissions means significant 

more carbon permits are bought by the company at both stages of its planning horizon to cover its 

surging carbon footprint. The reason why variations in vehicle capacity have such a strong impact 

on the firm’s decisions is the critical role of the transportation activity in the firm’s cost structure 

and carbon footprint – in the base case, transportation accounts for more than 50% of the firm’s 

total cost and up to 67% of its total carbon footprint.  
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Figure 4.4-10: Effect of vehicle capacity on total cost and total emissions 

Another downside of the lower fleet capacity is the vast increase in the MIP computing time. In 

this experiment, only in one out of the ten instances we are able to find an optimal solution within 

the time limit, creating a 0.05% gap between the average value of the upper bound and lower 

bound of the objective function. One possible explanation why the problem has become so hard to 

solve to optimality is the trade-offs it has to consider between transportation scheduling and the 

other operational decisions in order to satisfy the objective of minimizing total cost. As more 

frequent delivery corresponds to higher cost and emissions, the model thus needs to explore more 

possibilities to find out a solution that finds the best trade-off between these performance indicators.   

 

4.4.7 Length of the planning horizon 

In the base case, we set the number of periods m to 12 periods. In this section, we decrease the 

length of our planning horizon to comprise only 6 periods or extend it to 24 periods, with an aim 

to test if there is any impact of the horizon length on the model’s performance. The results of these 

alternative settings along with those of the base case are presented in Table 4.4-7. 

Table 4.4-7: Average results under variations of the length of the planning horizon 

Case 

Computational status Costs Emissions 

MIP 

time 

Upper 

bound 

Lower 

bound 

MIP 

gap 

% 

Optimality 
Prod_c Trans_c Inv_c Emis_c Total_e Prod_e Trans_e Inv_e 

6 9.30 2990.91 2990.91 0% 100% 1064.80 1524.52 138.03 263.56 1010.73 305.22 682.50 23.01 

12 33.51 5948.67 5948.67 0% 100% 2107.60 3025.85 302.50 512.73 2017.89 610.16 1357.32 50.42 

24 902.27 11848.42 11848.42 0% 100% 4184.40 6019.50 639.18 1005.34 4031.72 1220.86 2704.34 106.53 

Case 

Percentage of scenarios Decision variables 

with s2 buy with s2 sell s1 buy s2 buy s2 sell Setup Prod 
Vehi 

light 

Vehi 

heavy 

Inv 

fact 

Inv 

ware 

6 49.2% 48.8% 1009.16 88.23 86.66 5.32 15194.64 1.55 6.58 1.16 417.12 

12 49.2% 48.8% 2007.01 123.92 113.04 10.54 30376.25 2.90 13.16 0.18 916.47 

24 49.6% 48.4% 4017.99 164.04 150.31 20.92 60781.34 5.61 26.28 6.77 1930.13 
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As the total demand level is positively correlated to the length of the planning horizon, our total 

cost value follows an increasing trend when there are more periods being included. All instances 

are again solved to optimality even though the computational time has been tremendously extended 

to 27 times longer when the number of periods doubled (m is equal to 24). This is intuitively 

reasonable as the problem size gets larger, the model takes longer time to explore more potential 

solutions before reaching the optimal one.  

We also observe that whenever the number of periods is doubled, either from 6 periods to 12 

periods or from 12 periods to 24 periods, the longer planning horizon experiences an approximate 

2 times increase in all of its cost and emissions indicators as well as in its optimal decisions.  

 

 

4.5 Analyzing the effect of allowance prices 

Our study considers a firm that is subject to the carbon cap-and-trade system, carbon trading prices 

thus play a crucial role in its decision making. In section 4.3, we have presented the influence of 

emissions prices on the effectiveness of approximating the stochastic model using the deterministic 

mean model. In this section, we will provide a more comprehensive analysis into the interaction 

between these allowance prices and the firm’s decision making. 

  

4.5.1 Allowance prices vary simultaneously 

As in section 4.3, we first examine the model when all of its allowance trading prices (first-stage 

buying price, second-stage buying price, and second-stage selling price) are altered collectively, 

keeping other parameters unchanged. In detail, case C4, C5, C6 and C7 are considered as discussed 

in Section 4.3, in which permit prices are respectively 10 times lower, halved, doubled, or 5 times 

higher than those of the base case C0. The results of these alternative settings are then compared 

with those of the C0 which are set to 1.0000, their relative values are presented in Table 4.5-1.  

Table 4.5-1: Summary of the relative performance of different cases compared to C0 

Case 

Cost Emissions Decisions 

Total_

c 
Prod_c 

Trans_

c 
Inv_c 

Emis_

c 

Total_

e 
Prod_e 

Trans_

e 
Inv_e Setup 

Total 

allowances 

Total 

vehicles 

Total 

inventory 

C4 0.9224 0.9985 1.0016 0.9944 0.1001 1.0007 1.0000 1.0012 0.9944 0.9985 1.0007 1.0010 0.9944 

C5 0.9569 1.0000 1.0008 0.9919 0.5001 1.0002 1.0000 1.0006 0.9919 1.0000 1.0002 1.0006 0.9919 

C0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

C6 1.0862 1.0021 0.9994 0.9926 1.9990 0.9995 1.0000 0.9995 0.9926 1.0021 0.9995 1.0000 0.9926 

C7 1.3444 1.0055 0.9967 1.0037 4.9910 0.9984 1.0000 0.9974 1.0037 1.0055 0.9984 0.9989 1.0037 

 

It is observed that the firm tries to lower its carbon footprints when emission permits become more 

expensive by diminishing its number of vehicles used in transporting the finished products, as 
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transportation accounts for the largest part of its emissions inventory (more than 67% of the total 

emissions). This is an effective practice as the total emissions level has actually decreased under 

higher allowance prices, despite resulting in a marginal increase in the inventory level and setup 

frequency. Table 4.5-1 also shows that total cost can increase by almost 35% when emission prices 

are five times higher (in case 7), but it can only decrease by around 8% when these prices are 10 

times lower (in case 4). This can be explained as we look at the structure of the total cost function, 

in the latter case, emission cost makes up less than 1% of the total cost whereas it constitutes up 

to 32% in the former case. Therefore, it can be concluded that increasing allowance trading prices 

could only impact the amount of carbon emitted to a small extent but exacerbate the overall cost 

level, and the extent this cost-expanding effect will have depends on the proportion of the emission 

cost in the total cost function. 

It is also worth to mention that there are no recognizable changes in the total emissions level among 

these different cases. This is intuitively logical as we enforce that demand needs to be satisfied, 

therefore, the firm needs to implement its operational practices to meet all the demand no matter 

how expensive the emissions allowances become. We observe indeed that the total emissions vary 

by less than 1% when increasing or decreasing the allowance prices within the indicated ranges. 

Therefore, it seems that operational decisions only have a minor impact on the overall emissions 

level for this case. 

 

4.5.2 Allowance prices vary separately (with a fixed first stage buying price) 

In this section, we further investigate the impact of allowance trading prices on the firm’s trading 

decisions as well as its performance in terms of total cost and total emissions, by varying the 

second-stage buying and selling prices, with the first-stage buying price being fixed (s1b is always 

equal to 0.24). We first determine four cases of the second-stage selling price that will be 

considered, s2s ϵ {0.096, 0.12, 0.18, 0.24}, these values correspond to the cases when s2s is 20% 

lower, equals to the base case, 50% higher, or the case when it equals to s1b. We do not consider 

the case when s2s is larger than s1b, as the firm will earn profit from merely trading emission 

allowances. Under each case of s2s, four cases of second-stage buying price are examined, s2b ϵ 

{0.24, 0.36, 0.468, 0.72}, conforming to the circumstances when it equals to s1b, equals to the 

base case, 30% higher, or two times higher. The experimental setting for the variations in 

allowances trading prices is briefly presented in Table 4.5-2. 

Table 4.5-2: Variations in the second stage selling price and buying price 

Variation 20% lower Base case 50% higher Equal to s1b 

s2s value 0.096 0.12 0.18 0.24 

     

Variation Equal to s1b Base case 30% higher 200% higher 

s2b value 0.24 0.36 0.468 0.72 
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With each pair of the second-stage selling and buying prices, we solve the model for 10 different 

demand instances and their average results are presented in Table 4.5-3. First of all, we notice that 

unlike the sensitivity analysis conducted in Section 4.4 where the firm generally needs to purchase 

extra allowances in around 50% of the scenarios and it also has excessive allowances to sell in 

roughly the other half of all scenarios, these relative variations in emission prices have entirely 

changed the firm’s emission rights trading strategy.  

Table 4.5-3: Experimental average results under variations of the second-stage trading prices 

with the fixed first-stage buying price 

s2 sell 

price 

s2 buy 

price 

s1 buy 

allowances 

s2 buy 

allowances 

s2 sell 

allowances 

% with 

s2 buy 

% with 

s2 sell 

Total 

emissions 

Total 

cost 
VSS 

% of SP 

solution 

0.096 

0.240 1347.790 669.888 0 98% 0% 2017.677 5920.204 0 0% 

0.360 1968.414 144.075 94.625 54% 44% 2017.865 5951.158 1.210 0.0203% 

0.468 2096.357 83.898 162.313 38% 60% 2017.942 5962.765 9.181 0.1540% 

0.720 2238.833 40.116 260.709 22% 76% 2018.240 5977.100 40.431 0.6764% 

0.120 

0.240 1347.790 669.888 0 98% 0% 2017.677 5920.204 0 0% 

0.360 2007.146 123.853 113.105 49.2% 48.8% 2017.893 5948.674 1.969 0.0331% 

0.468 2136.109 69.242 187.351 34% 64% 2018.000 5958.532 11.688 0.1962% 

0.720 2277.455 31.770 291.028 18.8% 79.2% 2018.197 5970.444 45.363 0.7598% 

0.180 

0.240 1347.790 669.888 0 98% 0% 2017.677 5920.204 0 0%. 

0.360 2150.506 64.445 197.117 32% 66% 2017.833 5939.785 6.541 0.1101% 

0.468 2271.932 32.910 286.941 20% 78% 2017.901 5944.953 20.950 0.3524% 

0.720 2400.242 13.840 396.145 10% 88% 2017.938 5950.641 60.848 1.0225% 

0.240 

0.240 0 2017.677 0 100% 0% 2017.677 5920.204 0 0% 

0.360 2680.804 0 663.127 0% 98% 2017.677 5920.204 21.792 0.3681% 

0.468 2680.804 0 663.127 0% 98% 2017.677 5920.204 41.369 0.6988% 

0.720 2680.804 0 663.127 0% 98% 2017.677 5920.204 86.956 1.4688% 

 

For a given value of s2s, both the number of carbon permits to buy at the first stage and the total 

cost increase in s2b, with fewer permits to be bought yet more are sold at the second stage. When 

buying emission allowances become more expensive in the second stage, the firm would rather 

purchase more upfront to avoid the additional cost incurred when it needs to buy later in the spot 

market, even facing the potential loss of selling unused permits in the end. When s2b is equal to 

s1b (s2b = s1b = 0.24), buying at the first or the second stage will not entail any differences, and 

there exist alternative optimal solutions. 

When s2s is equal to s1b, depending on the correlation between the second-stage buying and 

selling prices, there are two possible scenarios: (1) if s2b is equal to s2s, meaning that s1b = s2b = 

s2s = 0.24, there is only one transaction conducted at the second stage, i.e., the firm buys an exact 

amount of the allowances needed; (2) if s2b is higher than s2s, the firm only buys allowances at 

the first stage and those excessive allowances will be sold in the second stage. Apparently, there 

is no incentive for the firm to buy at the second stage when it can buy as much as possible at the 

first stage without facing the loss in reselling in the future.  
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Likewise, for a given s2b, the number of permits being bought at the first stage and being sold at 

the second stage increase in s2s, while the quantity to be bought at the second stage decreases in 

s2s. In this case, a decline in total cost can be observed as the firm can get more revenue by selling 

its excessive allowances when the selling price goes up.   

In terms of total emissions, again, no noticeable difference can be seen. This can be explained as 

no backlog is allowed. The firm needs to satisfy demand regardless of the emission prices, 

therefore, emission levels from those operation activities remain relatively constant. This indicates 

again that in this case the operational decisions have only a minor impact on the total emission 

level. 

In Table 4.5-3, we also include the Value of the Stochastic Solution for each case of the second 

stage selling price and buying price. When s2b = s1b, buying emission rights at the first or the 

second stage will not generate any impacts on the total cost value between the EEV and the SP 

model as long as the total allowances being purchased remains constant. Therefore, the VSS is 

zero. When s2b > s1b, the VSS increases in s2b, indicating that the mean value problem is a less 

accurate approximation of the stochastic model when the second-stage allowance buying price is 

higher. Particularly, a 33-time increase in the VSS is seen when s2b is 200% higher (from 0.36 to 

0.72) under a second-stage selling price of 0.096. However, its value is increased by only 4 times 

when s2s = 0.24. Therefore, it is observed that, for a given s2b, the VSS also has the tendency to 

increase in s2s. This implies that the mean value problem becomes less accurate not only when the 

buying price is higher but also when the selling price grows.  

The results of this experiment imply that the firm’s emission rights trading policy is versatile and 

contingent on the market trading prices. Any variations in these prices could considerably 

influence the firm’s decisions as well as its total cost. Therefore, we suggest that decision makers 

in the reality should collect sufficient data on the carbon allowances trading market, including 

fluctuations in prices, developing trends, historical trading quantities, etc. in order to make well-

informed decisions.    
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Chapter 5. Analysis of different demand patterns 

In this chapter, we conduct a further experiment which involves several different patterns of 

demand, with an aim to cover several different business settings as different product types exhibit 

different demand patterns. The various demand patterns that are studied include stationary (STAT), 

random (RAND), sinusoidal (SIN1 and SIN2), life cycle (LCY1 and LCY2) patterns. These 

patterns were also used in Purohit et al. (2016) for a stochastic lot-sizing problem. 

 

5.1 Demand generation for different demand patterns 

The patterns that are considered will determine the average demand in each period over the 

planning horizon. In our study, these patterns are defined as follows: 

• STAT pattern means that the average demand per period remains constant throughout the 

planning horizon. In this experiment, we assume a theoretical average demand of 2500 

units for all 12 periods. 

 

• RAND pattern represents the average demand values of all periods in the planning horizon 

which do not follow a particular pattern but take random values within a specific interval. 

We generate 12 theoretical random demand values for the 12 periods of the planning 

horizon, each of which has a value within [0, 5000] using a uniform distribution. 

 

• Sinusoidal pattern comprises demand values that follow the sine equation: y = a sin b(x - 

c) + d, where a is the amplitude of the sine function (the reflection over the x-axis), b 

determines the period of the function (with period = 
2𝜋

𝑏
), c is the horizontal displacement, 

and d is the vertical displacement of the equation. In our experiment, we consider two 

sinusoidal patterns, SIN1 and SIN2, which are differentiated by the lower and higher levels 

of the amplitude of the sine function. For the numerical study, SIN1 and SIN2 functions 

are set to y = 2000 sin (
𝜋

6
𝑥) + 2500 and y = 1000 sin (

𝜋

6
𝑥) + 2500, respectively. For each 

function, we generate 12 demand values with x ϵ {1, 2, …, 12} for each of the 12 periods.  

 

• Life cycle pattern resembles the curve of the product life cycle concept which goes through 

the introduction, growth, maturity, and decline stages. For simplification purposes, we 

linearize our life cycle pattern that only includes three stages – developing, maturity, and 

decline. Similarly, we also consider two life cycle patterns LCY1 and LCY2 which are also 

differentiated in their levels of demand variability (lower and higher) over the x-axis. In 

our experiment, for LCY1, we assume demand follows the equation y = 
2500

3
𝑥 + 278 from 

period 1 to period 4 of the developing phase, x ϵ {1, 2, 3, 4}. Starting from period 4, demand 

remains constant until the end of the maturity phase, x ϵ {5, 6, 7, 8}, and it follows the 

equation y = −
2500

3
𝑥 + 10278 during the decline phase, x ϵ {9, 10, 11, 12}. Similarly, for 
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LCY2, the demand function is y = 
2500

8
𝑥 + 1667 in the developing phase and it is y = -

 
2500

8
𝑥 + 5417 in the decline phase. 

 

The resulting theoretical mean demand for each of the demand patterns are then presented in Table 

5.1-1. It is noticeable that in our experiment, demand patterns are designed so that each of them 

has a similar level of average total demand, i.e., the theoretical total mean demand over a span of 

12 periods is set to be 30000 for each demand pattern, with an aim to avoid any effect incurred 

due to the variation in total demand. Figure 5.1-1 shows all the demand patterns, where each point 

represents the theoretical mean demand of a period, for which the actual demand may have a 

different value.  

Table 5.1-1: Theoretical mean demands for different patterns 

Pattern/ 

Period 
1 2 3 4 5 6 7 8 9 10 11 12 Sum 

STAT 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 30000 

RAND 2031 4726 2564 866 2976 1048 4026 1364 1191 1271 3568 4369 30000 

SIN1 3500 4232 4500 4232 3500 2500 1500 768 500 768 1500 2500 30000 

SIN2 3000 3366 3500 3366 3000 2500 2000 1634 1500 1634 2000 2500 30000 

LCY1 1111 1945 2778 3611 3611 3611 3611 3611 2778 1945 1111 277 30000 

LCY2 1979 2292 2605 2917 2917 2917 2917 2917 2605 2292 1979 1663 30000 

 

 

Figure 5.1-1: Demand patterns 
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Each pattern hence consists of a mean demand 𝜇𝑡 for every period t. From these theoretical mean 

demands, for each pattern, we generate 50 random demand scenarios by assuming that demands 

in each period are normally distributed with mean 𝜇𝑡 and standard deviation σ, under a coefficient 

of variation CV = 0.1. The coefficient of variation is defined as the ratio of the standard deviation 

to the average demand per period, 𝐶𝑉 =
σ

μ
 (Purohit et al., 2016). Table 5.1-2 shows the theoretical 

mean demand and the standard deviation by period of the SIN1 pattern based on which the 50 

demand scenarios for SIN1 are generated. 

Table 5.1-2: Demand data for the SIN1 pattern (with CV = 0.1) 

Period 1 2 3 4 5 6 7 8 9 10 11 12 

μ 3500 4232 4500 4232 3500 2500 1500 768 500 768 1500 2500 

σ (CV=0.1) 350 423.2 450 423.2 350 250 150 76.8 50 76.8 150 250 

 

We then replicate this scenario demand generation method to create 10 different demand instances 

for each pattern, and each of these instances comprises 50 demand scenarios. The average demand 

per period over 10 instances for each pattern type is shown in Table 5.1-3. We can observe that in 

each period, the average of its normally distributed demands is close to the theoretical mean 

demand as mentioned in Table 5.1-1, leading to the equivalent average total demands among these 

demand patterns, with a value of around 29965 units.  

More information on the demand generation can be found in Appendix 4. 

Table 5.1-3: Average demand per period over the 10 instances of different demand patterns 

Pattern/ 

Period 
1 2 3 4 5 6 7 8 9 10 11 12 Sum 

STAT 2497.14 2497.14 2497.14 2497.14 2497.14 2497.14 2497.14 2497.14 2497.14 2497.14 2497.14 2497.14 29965.73 

RAND 2028.63 4720.55 2561.04 865.01 2972.53 1046.80 4021.36 1362.41 1189.65 1269.54 3563.89 4363.94 29965.36 

SIN1 3495.98 4227.11 4494.83 4227.11 3495.98 2497.14 1498.27 767.12 499.44 767.12 1498.27 2497.14 29965.51 

SIN2 2996.55 3362.13 3495.98 3362.13 2996.55 2497.14 1997.69 1632.11 1498.27 1632.11 1997.69 2497.14 29965.51 

LCY1 1109.70 1942.75 2774.80 3606.84 3606.84 3606.84 3606.84 3606.84 2774.80 1942.75 1109.70 276.68 29965.38 

LCY2 1976.71 2289.38 2602.00 2913.66 2913.66 2913.66 2913.66 2913.66 2602.00 2289.38 1976.71 1661.09 29965.56 

 

 

5.2 Computational results 

With more fluctuations in the demand values, random demand can take a value as high as 5684 

units as in period 3 of instance 6 of the SIN1 pattern, or in another case, there are three consecutive 

periods with a demand value over 5000 units. To avoid infeasibility in the computation process, 

we enhance both the periodical production capacity Pcap and the storage capacity of the factory 

warehouse Icap0 to 6000 units.      
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We then solve the two-stage stochastic model with these demand patterns, each with 10 different 

demand instances. The results are presented in Table 5.2-1.  

Table 5.2-1: Average results over 10 instances of different demand patterns 

Pattern 

Computational status Costs Emissions 

MIP 

time 

Upper 

bound 

Lower 

bound 

MIP 

gap 

% 

Optimality 
Prod_c Trans_c Inv_c Emis_c Total_e Prod_e Trans_e Inv_e 

STAT 3347.13 5804.51 5797.92 0.11% 10% 2400.00 2773.70 151.37 479.44 1894.76 602.31 1267.22 25.23 

RAND 175.57 6157.51 6157.51 0% 100% 2298.00 3094.49 264.40 500.63 2021.11 602.18 1374.86 44.07 

SIN1 3642.81 6009.76 6005.13 0.08% 0% 2151.20 3045.57 314.91 498.09 2014.59 602.00 1360.11 52.48 

SIN2 92.87 6075.20 6075.20 0% 100% 2393.20 3103.18 84.15 494.67 1993.90 602.30 1377.57 14.03 

LCY1 3645.08 6053.13 6035.94 0.28% 0% 2196.80 3140.23 210.80 505.30 2028.87 602.05 1391.69 35.13 

LCY2 93.31 5961.98 5961.98 0% 100% 2399.60 2948.05 128.92 485.41 1948.41 602.31 1324.61 21.49 

Pattern 

Percentage of scenarios Decision variables 

with s2 buy with s2 sell s1 buy s2 buy s2 sell Setup Prod 
Vehi 

light 

Vehi 

heavy 

Inv 

fact 

Inv 

ware 

STAT 48.8% 48.8% 1796.15 152.23 53.62 12.00 29965.73 2.77 12.00 0.00 458.69 

RAND 49.2% 48.8% 1999.05 75.89 53.83 11.49 29965.36 3.83 12.94 0.00 801.20 

SIN1 49.2% 48.8% 2001.12 67.51 54.04 10.76 29965.51 2.42 13.55 0.00 954.26 

SIN2 49.2% 48.8% 1964.03 82.15 52.28 11.97 29965.51 3.86 12.97 0.00 255.00 

LCY1 48.8% 49.2% 2042.87 69.54 83.53 10.98 29965.38 2.77 13.80 0.00 638.78 

LCY2 48.0% 50.0% 1953.92 71.37 76.89 12.00 29965.56 4.06 12.08 0.00 390.66 

 

It is observed that demand pattern has a strong impact on the computational time. Of the six 

different patterns that are considered, the model can be solved to optimality in less than 3 minutes 

on average when demands follow the SIN2, LCY2, or RAND pattern, while with the STAT pattern, 

only 1 out of 10 instances is solved to optimality within a one-hour (or 3600 seconds) time limit, 

leading to an average MIP time of around 3347 seconds and a relative gap of 0.11%. A possible 

explanation for the difficulty in solving the STAT patterned model is that, in lot-sizing, if a 

parameter is stationary over time (i.e., demand is exactly the same over periods in our case), it is 

often more challenging for the model to find the optimal result as there might be several potential 

near optimal solutions. However, the same logic cannot be applied to explain why the model has 

become so hard to solve when demand follow the SIN1 and or the LCY1 pattern, which in fact 

have a greater degree of demand fluctuations. For these two patterns, no optimal solution has been 

found within one hour of computation for all the instances, resulting in a respective MIP gap of 

0.08% and 0.28%, whereas the flatter SIN2 and LCY2 patterns are much easier to solve. To the 

best of our knowledge, there is no explanation in the literature and we are not able to provide an 

appropriate explanation for this phenomenon. 

We hereby conduct performance comparisons among these patterns based on the solutions 

obtained within the time limitation. Figure 5.2-1 and Figure 5.2-2 present the total costs and total 

emissions of the model solved under different demand patterns. The stationary pattern has resulted 

in the lowest value for both cost ($5804.51) and emissions (1894.76 kg CO2e) while randomly 
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fluctuated demand induces the highest level of cost ($6157.51) and a relatively high emissions 

level (2021.11 kg CO2e). This is intuitively reasonable as when demand is constant throughout the 

planning horizon, there are fewer variations in the operational decisions, generating lower 

transportation and inventory costs. Emissions cost in this case is also the lowest as the firm can 

estimate the number of allowances to trade based on the preceding periods. On the other hand, 

when demand does not follow any specific trend, it is more challenging for the firm to conduct 

operational planning, which can lead to higher operational costs. A relative high level of carbon 

footprint is also captured as more vehicles are used and more products are stored in inventory to 

anticipate the unpredictability in demand. 

When looking at one type of pattern separately, either the sinusoidal or the life cycle pattern, the 

degree of variability in the average demand also has certain effects on the firm’s performance. As 

discussed before, SIN2 (LCY2) shows less variation in the average demand levels compared to 

SIN1 (LCY1). Compared to the less variable SIN2 pattern, SIN1 has lower total cost but it leads 

to more emissions. This can be explained by looking at the average value of those operational 

decision variables. Under SIN1, fewer production setups and deliveries are conducted (10% less). 

As the firm experiences considerably high and low demands, it can always produce in bigger 

batches to cover those extremely low demand periods, thus fewer setups and delivery trips are 

needed. This brings about significantly lower costs in production and transportation. Under this 

circumstance, although the surge in inventory leads to an increase of 3.7 times in inventory cost, 

it has been offset by the significantly lower production and transportation costs. Meanwhile, within 

the life cycle patterns, LCY1 generates higher total cost and also a higher carbon footprint. 

Although there are also fewer production setups as in SIN1, more vehicles (particularly more 

heavy-duty vehicles) are necessary to transport goods in those consecutive high-demand periods 

in the maturity phase of the life cycle. Therefore, the cumulative increase in inventory, emissions, 

and transportation costs has led to an overall higher total cost. The increase in total emissions level 

can also be justified with the same logic. 

 

 

Figure 5.2-1: Total cost of different demand patterns 
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Figure 5.2-2: Total emissions of different demand patterns 

 

We also include the Value of Stochastic Solution for the different demand patterns in Table 5.2-2, 

in which negative values are possible for those cases that cannot reach optimality within the 

computing time limit. Of those cases where an optimal solution is obtained (RAND, SIN2, and 

LCY2), the VSS is pretty small, equivalent to only 0.0009% to 0.0013% of the optimal value of 

the objective function. This implies that using the deterministic mean model to approximate the 

stochastic problem is a suitable and effective approach in the setting of this problem. This finding 

also aligns with what we have seen in the previous experiments.  

Table 5.2-2: Value of Stochastic Solution of different patterns 

Pattern/ 

Instance  
1 2 3 4 5 6 7 8 9 10 Average 

% of SP 

solution 

STAT 0.110 -0.114 0.028 -0.451 -0.181 -0.014 -0.087 -0.280 -1.092 -0.833 -0.291 - 

RAND 0.190 0.010 0.037 0.011 0.150 0.019 0.000 0.000 0.132 0.004 0.055 0.0009% 

SIN1 -0.135 -0.093 -0.073 0.014 -0.014 -0.005 -0.190 -0.088 0.074 -0.050 -0.056 - 

SIN2 0.158 0.008 0.027 0.016 0.399 0.026 0.000 0.000 0.305 0.005 0.094 0.0015% 

LCY1 -0.500 -5.909 -2.508 -0.894 -5.217 -2.045 -3.167 -2.440 -3.928 -1.609 -2.822 - 

LCY2 0.449 0.010 0.044 0.011 0.138 0.018 0.000 0.000 0.122 0.003 0.080 0.0013% 
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Chapter 6. Conclusion, limitations, and future research 

6.1 Conclusion 

With the rising concern over the impact of greenhouse gas emissions from industrial activities on 

the environment, research on supply chain activities with emissions factors are expected to 

continue growing for the foreseeable future. This thesis contributes to the current body of the 

literature firstly by integrating the element of carbon emissions into a two-stage stochastic planning 

model. A two-stage MILP model has been built to assist a manufacturing firm facing stochastic 

market demand in making operational decisions under the carbon cap-and-trade regulation. The 

first stage decision includes the initial quantity of emission rights to purchase to cover its overall 

emissions level, while the second stage comprises recourse decisions on emissions rights trading 

as well as operational planning decisions after uncertain demands are realized. Secondly, this 

model has involved both the cost and emission features of the firm’s most essential operational 

activities – production, inventory control, and transportation planning. Thirdly, heterogeneous 

truck types, i.e., medium-duty and heavy-duty trucks, each with an associated carbon emission 

standard and a full truckload cost rate, have been considered in the study.  

To model the uncertainty in market demand, we have generated different demand instances, each 

comprises multiple scenarios of randomly distributed demands. A set of base case parameters is 

generated with some values taken from the literature while others are based on preliminary tests.  

In the numerical analysis, we have applied the concepts of Value of Stochastic Solution and the 

Expected Value of Perfect Information to evaluate the effectiveness of using the approximating 

method when the stochastic model is too hard to solve. In our experiments, both the VSS and EVPI 

are relatively small under all of the parameter cases that have been studied. This implies that with 

the problem being considered, using the deterministic model to approximate the performance of 

the stochastic model is an effective approach. This effectiveness level will depend heavily on the 

emissions trading prices as well as the importance of emissions cost in the firm’s total cost.   

In order to observe the impact of the model parameters on the firm’s performance, we have 

conducted a sensitivity analysis by separately varying some key parameters, including the cost and 

emission factors in production, transportation, and inventory management, the results of which are 

compared to those of the base case. We found that these major operational decisions are closely 

correlated to one another and that there is an apparent negative correlation between the machine 

setup frequency and the inventory level. The relative utilization rate between different vehicle 

types or warehouses is highly contingent on their cost indicators as well as their capacity (in the 

case of vehicle utilization rate). Additionally, when an emission factor is varied, either in the 

production, transportation, or the inventory holding activity, not only the total emissions but also 

the total cost will be accordingly influenced. In a later part of the numerical analysis, we also vary 

the emission permit buying and selling prices to take into consideration the potential impact of 

fluctuations in emission allowances prices on the firm’s carbon trading scheme. The experimental 

results have shown that increasing the emission prices only induces a slight reduction in the total 

carbon being emitted as the firm needs to operate to satisfy demand anyway, while it can trigger a 
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significant increase in the total cost index. The decisions between buying or selling are also proved 

to experience considerable fluctuations when these market prices change.     

Further in the experiment, we have extended the stochastic demand problem by considering 

various types of possible demand pattern, i.e., stationary, random, sinusoidal, and life cycle 

patterns, in order to model different product types. Solving the MILP model under these demand 

patterns provides us a closer look into how the distribution of the uncertain demand can influence 

its overall performance. The model seems very hard to solve to optimality when demand follows 

the stationary, highly variated sinusoidal or the highly variated life cycle pattern.  

In general, the numerical experiments presented in this thesis have provided managerial insights 

for decision makers in planning operational activities, as well as the main trade-offs that it needs 

to make between the total cost and the total emissions, under the presence of stochastic market 

demand along with the restriction on carbon emissions.  

 

6.2 Limitations 

Although we have tried to provide an effective decision-making model that could better reflect the 

real-life problem by involving the stochasticity in market demand and the variations in cost and 

emissions factors, there are still limitations as we have made several assumptions to narrow the 

scope of the study.  

First of all, regarding the general setting of the problem, we only consider one single product while 

a manufacturing company in reality often produces more than one product type. Each type is 

associated with specific characteristics and may require different levels of resources resulting in a 

more complex production planning schedule. With regard to transportation, it is not practical for 

the firm to own an unlimited transporting fleet as there are apparent issues on costs and utilization 

rate. In reality, the firm may own a fleet of limited size and if its transport capacity is insufficient, 

it usually needs to contract external carriers on the spot market with a higher shipping rate. It is 

also a common practice for firms to outsource their transportation sector to third-party service 

providers if transportation is not their core activity, under which case the cost and emissions factors 

would be quantified in a different way. In terms of inventory control, the holding costs at different 

storage facilities can be different as these costs are determined by multiple factors, e.g., geographic, 

labor cost, electricity rate, capital investment, etc. Lead times related to the machine setup, 

production process, and transportation are also ignored. 

This thesis is also limited by the lack of a full set of real data on costs as well as on emissions. As 

it is hard to obtain the actual features for all the parameters, we have applied a mix of real data 

from the literature and the data from preliminary tests when assigning values to the parameters for 

our model. In measuring the emissions from transportation, we have also ignored the speed of 

transportation which can change according to the traffic flow and the road condition. 

While expanding our problem to involve different demand patterns in the experiment of Chapter 

5, we have not successfully implemented a totally random sampling technique. The demand 



75 
 

generation method we employed has synchronously created a temporal dependence among 

different time periods within a planning horizon as well as a positive correlation among different 

demand patterns. In practice, an identical standardized normal variable is often used to generate 

random demand for all patterns. 

Regarding the carbon cap-and-trade system, unlike what we have assumed, there is a limitation on 

the number of emissions permits that firms can trade in the real-life carbon market. As the primary 

objective of the cap-and-trade regulation is to technically reduce emissions, the carbon cap is 

designed to be tightened over time. This also implies that there could be a case where no permits 

are available for firms to purchase to cover their extra emissions. Under this case, firms might 

either turn to other carbon offset projects or invest in green technology.  

 

6.3 Future research 

It would be interesting to consider the case where the firm’s transportation activity is outsourced 

to third-party logistics provider. When outsourcing to a 3PL, the shipper no longer has control over 

the actual shipping situation, and this corresponds to the situation where less-than-truckload 

shipments are employed. Under this case, unit transportation cost and unit emissions rate will be 

applied as opposed to the fixed cost and fixed emissions rates per shipment employed in this study, 

which means that the total transportation cost and total emissions will depend on the total shipping 

weight and/or volume. It is also noticeable that when the firm no longer owns transportation fleet, 

the emissions resulted from their transporting activities may be considered as indirect emissions, 

which is reported as scope 3 emissions (according to the GHG Protocol) and will not be counted 

in its emission quota. Another possibility is that instead of considering a constant fixed 

transportation cost, the firm can apply flexible freight rates, i.e., freight rates decrease as shipping 

weights and/or volumes increase. 

The problem can also be developed further by considering a company that manufactures multiple 

products with a common finite production capacity, or products that require specific storing 

conditions (e.g., temperature-controlled storage units). In addition, with the current setting, the 

firm could possibly include one or more green production technologies in dealing with emissions 

related problems since it is acknowledged that green technology combined with emissions trading 

system could work effectively in the effort of emissions abatement. 
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Appendix 

Appendix 1: Random demands over 50 scenarios of instance 1 

Scenario/ 

Period 
1 2 3 4 5 6 7 8 9 10 11 12 Sum 

S1 1200 4762 616 2189 1065 4158 3782 3968 3209 1819 868 4096 31732 

S2 332 3293 3645 117 3748 2281 1974 4942 937 2700 350 282 24601 

S3 308 4535 175 3222 1874 3557 337 4422 1916 3687 4161 4629 32823 

S4 2009 2931 1991 1892 3865 2473 276 3509 4658 919 1622 2528 28673 

S5 1090 2825 4202 3557 4259 1655 2585 2427 4913 4190 4239 3322 39264 

S6 4925 382 4034 2088 3411 3494 1517 3107 4595 3169 808 3695 35225 

S7 4265 984 1441 4367 3321 3135 4111 342 3944 456 2627 4959 33952 

S8 4836 3324 1495 1481 4214 1959 200 1734 4520 4591 2001 3413 33768 

S9 4308 2916 4833 2994 3861 2305 4589 146 3243 4298 1158 4349 39000 

S10 4698 1783 3590 559 4041 3087 4769 4641 1737 4234 3486 4072 40697 

S11 3022 3494 2935 112 4511 4524 2812 3853 329 1980 1551 4611 33734 

S12 4887 1580 850 4614 2191 365 677 781 236 3810 219 2403 22613 

S13 2144 2300 996 1612 2921 2478 669 1471 1407 2190 4420 1477 24085 

S14 2335 2512 3824 2737 4167 3981 1035 293 2655 3266 2912 3548 33265 

S15 1640 2216 990 2176 4278 1812 3636 270 1946 246 3354 1299 23863 

S16 389 1412 3750 4247 3595 4562 1907 4331 3793 1928 4391 351 34656 

S17 3335 4817 2731 3592 581 2546 1129 1837 488 2609 679 726 25070 

S18 2642 2540 1396 3509 4727 2167 1168 169 4693 410 4938 1882 30241 

S19 4771 3875 1505 4268 406 3196 1741 2942 911 1785 4797 3646 33843 

S20 4944 1690 4133 955 3295 2525 4229 4194 240 2765 3395 2404 34769 

S21 248 1385 1745 2784 4714 1207 2877 3616 1845 2283 889 3206 26799 

S22 4586 2916 4477 4069 4462 2022 635 430 793 1189 1490 1464 28533 

S23 4509 1844 2295 2821 4244 2191 3115 2875 2887 1033 2485 2026 32325 

S24 4104 1208 4851 4615 954 2727 420 3430 699 3214 1306 1124 28652 

S25 2892 1039 4912 3196 727 4775 4607 1932 4736 769 2285 3089 34959 

S26 2521 4723 4476 1036 3850 2370 982 474 2522 201 219 851 24225 

S27 3487 1042 427 1639 2063 4907 3548 1427 1046 3793 1471 2077 26927 

S28 1402 942 3664 3198 4547 2508 4607 2175 4007 2676 920 1800 32446 

S29 2700 424 323 186 2521 4987 2723 3785 3305 2666 3364 615 27599 

S30 625 2699 3834 1012 2148 1862 4547 3941 3014 2222 1600 4536 32040 

S31 1802 2617 1731 2118 3052 766 2400 832 3769 841 4805 2876 27609 

S32 1963 3298 2613 436 2780 1630 2694 4843 2580 2113 2838 926 28714 

S33 4558 4843 4982 854 2107 1903 266 2096 3391 692 2295 4615 32602 

S34 680 715 276 181 2482 3042 4140 3940 1363 926 4207 2787 24739 

S35 731 4271 1519 1571 1325 1259 2719 2603 975 4313 2504 1134 24924 

S36 1793 1260 4568 360 2689 4629 1782 1559 2548 3644 4503 1393 30728 

S37 497 2125 2169 627 3759 3623 4599 2149 4534 3699 4507 3813 36101 

S38 189 3341 2874 1505 2213 4079 299 3513 4774 254 610 3007 26658 

S39 4851 1232 4962 1125 1234 2222 2368 3358 4720 3385 1510 831 31798 

S40 2013 4081 161 1554 4431 2698 4203 3690 1949 2052 2663 4155 33650 

S41 4022 1943 3477 2860 4690 2354 1897 494 686 4291 3120 1406 31240 

S42 4291 1769 2654 2547 2554 4624 3144 1453 3907 4970 796 1109 33818 

S43 4310 4779 3190 1544 1376 2152 3595 1882 4765 527 4155 3324 35599 

S44 2950 3245 4319 1450 4558 433 4394 840 2190 927 2291 785 28382 

S45 1239 771 3745 2074 3232 3646 3354 1449 2766 3689 1134 4097 31196 

S46 1836 1076 3632 4474 3444 1067 2520 2374 2133 3203 4682 132 30573 

S47 1655 4428 3694 4843 272 352 2084 2233 1792 1516 2432 1315 26616 

S48 4542 1742 2338 2648 4898 2155 3756 1476 4567 3024 4120 3540 38806 

S49 1097 1811 4773 3239 1777 2426 985 297 1067 4763 208 4566 27009 

S50 2528 1218 715 4199 3161 4790 2649 3681 4220 3023 4428 2751 37363 
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Appendix 2: Total demand per scenario over 10 different demand instances 
 

Scenario/

Instance 

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 

S1 31732 23650 39429 26500 23857 28679 28627 25130 31573 31835 

S2 24601 35966 31573 25900 22952 35673 26595 36356 24363 32220 

S3 32823 29030 27054 28609 40401 26153 31701 28751 27754 30125 

S4 28673 43099 29564 32527 35556 37968 36305 28840 22548 33235 

S5 39264 39960 26223 26904 36929 30505 35157 38540 24078 29725 

S6 35225 41473 25717 34572 28388 28016 36822 30719 34187 28386 

S7 33952 41880 20640 30958 32626 34775 32088 33188 25268 32361 

S8 33768 26142 34109 25656 35516 35242 37632 26955 33532 29656 

S9 39000 24760 26785 26872 30234 29184 28526 25334 30874 29234 

S10 40697 16705 24730 27124 27861 35886 28443 30202 28394 38938 

S11 33734 23338 30735 27412 31654 39966 35871 27121 32577 42279 

S12 22613 27593 28396 28701 37019 32669 26449 30818 27807 20402 

S13 24085 29605 26323 33555 34222 27254 31714 24641 20300 39975 

S14 33265 32853 35737 27914 24347 29682 33075 33476 28305 32077 

S15 23863 20644 20354 31739 35232 22357 23630 29323 38028 30536 

S16 34656 31879 33615 33152 23539 28180 24578 31172 18524 31692 

S17 25070 20024 26783 30389 36826 32500 32025 30441 43442 36989 

S18 30241 29410 24658 30207 23164 31154 29293 32399 40018 24721 

S19 33843 38574 32871 23487 30182 23748 35736 41101 30204 39367 

S20 34769 26868 27755 35825 31788 28501 29869 32847 31546 41116 

S21 26799 27557 29005 23803 19845 33558 28505 31424 19545 32755 

S22 28533 23716 31815 29975 29187 32913 29009 34732 27916 29464 

S23 32325 28890 33577 34918 28046 37202 25687 21505 33317 37115 

S24 28652 28441 23792 25762 36478 16359 30312 25715 17002 33712 

S25 34959 38972 33677 35043 30871 33588 30842 25211 26543 28305 

S26 24225 36604 30713 33688 29913 20611 38672 27782 24530 35893 

S27 26927 23655 22225 29836 26817 31776 25427 23875 23479 32192 

S28 32446 34006 27303 30375 28648 32182 36814 29233 36388 28489 

S29 27599 34255 36067 25844 30891 22525 27724 32140 32981 30655 

S30 32040 35438 32015 30752 27345 30334 42189 38398 27876 30412 

S31 27609 33991 28345 40399 42368 35214 32136 43332 34648 29969 

S32 28714 30630 28468 35542 31732 28623 22055 25309 20797 32349 

S33 32602 35205 37510 29463 33172 37933 34759 33851 37073 36756 

S34 24739 33950 41561 29260 30349 26629 32640 30645 30047 23340 

S35 24924 29435 38841 18658 20880 30715 21112 27502 33712 30835 

S36 30728 28496 31955 28837 28619 30971 35420 34811 27793 18339 

S37 36101 38015 34897 30826 28406 24839 17666 35211 32397 31862 

S38 26658 30879 28699 28458 29507 29778 27507 43431 34982 27181 

S39 31798 34735 21321 24662 20721 21592 29425 25960 33785 24226 

S40 33650 26829 37831 34577 35426 26717 24912 19264 29488 27724 

S41 31240 34536 35980 32713 23602 26852 37233 20579 29519 26017 

S42 33818 24522 20606 31382 26094 34915 22101 33069 33682 30482 

S43 35599 43578 29854 26394 33675 40040 25446 28119 32497 36092 

S44 28382 30734 26554 21059 31642 22171 29369 27440 29003 32745 

S45 31196 24908 30437 35145 37666 29824 27409 33318 23832 24969 

S46 30573 36942 30967 30583 27984 33366 24705 31748 26042 28984 

S47 26616 24260 29006 27332 35021 34791 32185 35208 27608 39395 

S48 38806 24410 29589 23774 31885 33820 35027 28991 40665 29293 

S49 27009 34293 33543 32063 36732 22445 28735 31223 32838 29898 

S50 37363 43131 23136 23546 28000 32220 28365 26491 31233 30480 

Average 30970.08 31169.32 29846.8 29453.44 30476.3 30251.9 30150.48 30457.42 29690.8 31295.94 
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Appendix 3: Results of Wait-and-see, Stochastic, Expected value of Expected 

problem over 10 instances 

 

Case 
Instance 1   Instance 2 

WS SP EEV EVPI VSS  WS SP EEV EVPI VSS 

C0 5958.81 5984.59 5986.55 25.78 1.96  6008.87 6045.72 6045.72 36.85 0.0002 

C1 7005.16 7030.65 7033.05 25.49 2.39  7046.90 7083.02 7083.07 36.13 0.0442 

C4 6288.64 6332.04 6335.70 43.41 3.65  6342.75 6405.06 6405.12 62.31 0.0655 

C3 7302.50 7409.29 7411.38 106.79 2.09  7361.16 7515.41 7515.82 154.25 0.4168 

C0b3 5517.56 5520.15 5520.29 2.59 0.14  5562.89 5566.57 5566.57 3.68 0.0000 

C0b4 5713.68 5726.58 5727.56 12.90 0.98  5761.16 5779.61 5779.61 18.45 0.0001 

C0b5 6449.03 6500.56 6504.35 51.53 3.78  6504.13 6577.72 6577.72 73.59 0.0004 

C0b6 7918.71 8047.31 8056.40 128.6 9.10  7989.16 8172.76 8172.76 183.60 0.0010 

       
 

      

Case 
Instance 3  Instance 4 

WS SP EEV EVPI VSS  WS SP EEV EVPI VSS 

C0 5858.90 5887.28 5889.26 28.39 1.97  5805.82 5829.31 5833.80 23.49 4.49 

C1 6877.56 6905.76 6908.66 28.20 2.90  6823.91 6847.86 6852.86 23.95 5.01 

C4 6178.38 6227.11 6230.57 48.72 3.46  6121.15 6160.94 6169.44 39.79 8.50 

C3 7153.92 7271.20 7271.36 117.28 0.16  7083.86 7180.41 7181.57 96.54 1.16 

C0b3 5429.76 5432.59 5432.85 2.83 0.25  5382.47 5384.82 5385.28 2.36 0.45 

C0b4 5620.50 5634.68 5635.72 14.17 1.04  5570.71 5582.48 5584.74 11.77 2.26 

C0b5 6335.52 6392.43 6396.16 56.91 3.74  6275.75 6322.92 6331.81 47.17 8.89 

C0b6 7763.98 7906.45 7915.73 142.46 9.29  7684.84 7802.14 7823.83 117.30 21.69 

              

Case 
Instance 5  Instance 6 

WS SP EEV EVPI VSS  WS SP EEV EVPI VSS 

C0 5925.14 5954.39 5956.12 29.24 1.73  5893.75 5920.75 5923.79 27.01 3.04 

C1 6947.27 6976.07 6978.07 28.80 2.00  6916.21 6943.13 6946.57 26.93 3.43 

C4 6251.28 6300.82 6303.18 49.54 2.36  6218.10 6264.61 6270.99 46.51 6.38 

C3 7247.36 7366.20 7366.33 118.84 0.13  7206.31 7323.79 7325.36 117.48 1.57 

C0b3 5487.40 5490.33 5490.51 2.93 0.18  5459.88 5462.59 5462.90 2.71 0.30 

C0b4 5681.96 5696.59 5697.48 14.63 0.89  5652.74 5666.24 5667.76 13.50 1.52 

C0b5 6411.22 6469.78 6473.09 58.56 3.31  6375.48 6429.78 6435.66 54.30 5.88 

C0b6 7868.33 8014.73 8022.64 146.40 7.91  7819.57 7955.89 7970.15 136.32 14.26 

              

Case 
Instance 7  Instance 8 

WS SP EEV EVPI VSS  WS SP EEV EVPI VSS 

C0 5905.90 5934.08 5935.20 28.18 1.12  5962.60 5990.56 5993.29 27.96 2.73 

C1 6935.47 6963.31 6965.07 27.84 1.75  6995.49 7023.18 7026.45 27.69 3.28 

C4 6230.08 6276.67 6279.95 46.59 3.28  6288.51 6335.75 6340.41 47.25 4.66 

C3 7214.16 7330.29 7330.72 116.13 0.43  7284.12 7400.06 7400.90 115.94 0.84 

C0b3 5472.87 5475.70 5475.75 2.83 0.05  5525.11 5527.90 5528.18 2.80 0.27 

C0b4 5665.35 5679.49 5680.06 14.14 0.56  5719.63 5733.58 5734.95 13.95 1.37 
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C0b5 6386.85 6443.13 6445.38 56.29 2.25  6448.24 6504.14 6509.51 55.89 5.37 

C0b6 7829.17 7968.96 7976.79 139.80 7.83  7904.06 8043.41 8056.44 139.35 13.03 

              

Case 
Instance 9  Instance 10 

WS SP EEV EVPI VSS  WS SP EEV EVPI VSS 

C0 5831.50 5863.65 5865.63 32.14 1.98  6050.74 6076.40 6077.34 25.66 0.94 

C1 6844.13 6875.81 6878.17 31.69 2.36  7084.37 7109.29 7111.13 24.92 1.83 

C4 6149.52 6203.80 6210.68 54.28 6.88  6387.06 6430.53 6432.53 43.47 2.00 

C3 7119.72 7250.30 7250.70 130.58 0.40  7408.43 7513.40 7513.97 104.97 0.57 

C0b3 5404.02 5407.24 5407.41 3.22 0.17  5600.36 5602.93 5603.02 2.57 0.09 

C0b4 5594.03 5610.11 5610.98 16.09 0.86  5800.58 5813.43 5813.90 12.86 0.47 

C0b5 6306.22 6370.14 6375.04 63.93 4.89  6550.85 6602.11 6603.92 51.26 1.81 

C0b6 7728.50 7887.50 7899.65 159.00 12.15   8048.61 8176.40 8180.59 127.78 4.19 
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Appendix 4: Demand generation for Chapter 5 
 

In generating demands that follow a certain pattern, we have concurrently created the temporal 

dependency of demands among periods of a given scenario. This means, within one scenario, once 

the demand value of the first period is determined, demands of the other periods are respectively 

determined. More specifically, for a specific scenario, we generate a random variable from a 

standard normal distribution (i.e., with mean zero and a standard deviation of 1), and we determine 

the actual demand for each period by multiplying the same standard normal variable with the mean 

demand of that period. We further used the same set of 10 standard normal variables to generate 

the 10 instances for each pattern type. Hence, a positive correlation is seen in the average total 

demand by scenario over the 10 instances among different patterns, as presented in the table below, 

in which the lowest demand level is 27710.4 units while the highest has a value of 31930.8 units. 

We can observe that, for each scenario, the average total demands among patterns are 

approximately equal. This can be explained as we have applied the same seed numbers (from 1 to 

10) to generate the different instances for these patterns, therefore, demands are always generated 

starting from the same point in the distribution.      

 

Scenario/Pattern STAT RAND SIN1 SIN2 LCY1 LCY2 

S1 31887.6 31886.4 31887.4 31886.8 31886.9 31886.7 

S2 30516.0 30515.6 30515.7 30515.4 30515.6 30516.2 

S3 28352.4 28353.2 28353.1 28352.7 28352.9 28352.3 

S4 29173.2 29173.8 29173.3 29173.2 29172.7 29173.4 

S5 27945.6 27947.0 27946.6 27946.8 27946.3 27946.7 

S6 29588.4 29587.2 29586.8 29587.7 29587.1 29587.6 

S7 30663.6 30663.5 30663.3 30662.6 30663.4 30663.6 

S8 28777.2 28778.0 28778.0 28779.1 28777.8 28778.1 

S9 30886.8 30886.0 30886.6 30886.4 30885.1 30885.4 

S10 29164.8 29163.5 29164.0 29163.8 29164.0 29163.8 

S11 30607.2 30605.9 30605.5 30605.6 30604.7 30605.3 

S12 31833.6 31834.0 31833.4 31834.6 31833.1 31833.9 

S13 29710.8 29713.1 29713.8 29712.1 29712.7 29713.3 

S14 30957.6 30957.3 30957.1 30957.4 30957.1 30957.4 

S15 30133.2 30132.8 30132.9 30133.0 30132.8 30133.0 

S16 28893.6 28892.8 28893.3 28893.5 28893.8 28893.0 

S17 30512.4 30511.1 30511.5 30511.4 30510.8 30511.0 

S18 30338.4 30338.2 30338.0 30338.3 30339.1 30338.4 

S19 30506.4 30504.6 30503.9 30504.3 30502.7 30503.7 

S20 29842.8 29842.7 29843.4 29842.9 29842.6 29842.8 

S21 29078.4 29076.3 29077.2 29076.5 29077.1 29076.7 

S22 29889.6 29887.9 29888.2 29888.6 29890.2 29887.7 

S23 30360.0 30359.4 30360.2 30359.6 30359.9 30360.7 

S24 30861.6 30861.8 30862.3 30861.6 30861.7 30862.7 
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S25 31059.6 31059.1 31059.8 31059.1 31059.7 31060.2 

S26 29304.0 29304.0 29303.8 29303.7 29304.1 29304.4 

S27 31086.0 31085.2 31086.3 31086.0 31085.8 31085.9 

S28 29266.8 29267.2 29267.6 29267.5 29267.1 29267.1 

S29 29832.0 29831.8 29832.2 29832.7 29832.6 29832.9 

S30 28995.6 28993.4 28994.1 28994.4 28994.2 28994.9 

S31 29905.2 29907.5 29906.8 29907.6 29906.8 29906.8 

S32 31501.2 31499.2 31499.3 31499.1 31500.2 31498.2 

S33 27710.4 27711.9 27711.6 27712.3 27712.3 27712.8 

S34 28935.6 28935.4 28935.6 28935.9 28936.1 28935.9 

S35 29042.4 29041.6 29041.3 29042.0 29042.0 29043.1 

S36 29775.6 29776.0 29775.3 29776.7 29775.4 29776.6 

S37 29826.0 29826.3 29826.2 29826.4 29825.5 29826.3 

S38 30236.4 30235.1 30235.1 30234.8 30234.4 30235.0 

S39 31735.2 31734.2 31734.4 31734.5 31734.4 31734.3 

S40 31099.2 31098.4 31099.6 31098.8 31098.6 31097.9 

S41 29314.8 29315.5 29315.2 29314.7 29315.7 29315.1 

S42 29862.0 29862.1 29861.7 29861.9 29861.3 29863.2 

S43 28281.6 28282.8 28282.4 28282.0 28280.7 28281.1 

S44 30676.8 30675.4 30675.7 30675.4 30675.1 30675.8 

S45 29366.4 29366.5 29366.6 29367.3 29366.6 29366.8 

S46 29034.0 29032.8 29033.7 29032.3 29033.5 29033.1 

S47 31695.6 31694.0 31694.6 31694.0 31694.3 31693.3 

S48 31930.8 31929.8 31928.9 31929.4 31929.5 31929.8 

S49 27902.4 27902.4 27902.3 27903.2 27902.7 27903.6 

S50 30429.6 30428.4 30429.7 30429.8 30430.1 30430.3 

Average 29965.73 29965.36 29965.51 29965.51 29965.38 29965.56 
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Appendix 5: Generation of the theoretical random mean demands for the RAND 

pattern in Chapter 5 

 

def constrained_sum(n, total): 

    value = [random.randint(0, 5000)] 

    values = value + random.sample(range(1, total), n-3) 

    values.sort() 

    for i in range(1, n-2): 

        while values[i] - values[i-1] > 5000: 

            values.remove(values[i]) 

            values.append(random.randint(0,total)) 

            values.sort()        

    values.append(random.randint(25000,total)) 

    values.sort() 

    while values[n-2] - values[n-3] > 5000: 

        values.remove(values[n-2]) 

        values.append(random.randint(25000,total)) 

        values.sort()      

    return [a-b for a,b in zip(values + [total], [0] + values)] 

 

demand = constrained_sum(nb_periods,30000) 

print(demand) 

 

 

 

 

 

 

 

 

 


