

HEC MONTRÉAL

On a Wavelet-based strategy to estimate a distribution function on a distributed
system

par

Akankhya Mohapatra

Jean-François Plante
HEC Montréal

Directeur de recherche

Sciences de la gestion
(Spécialisation M.Sc.)

Mémoire présenté en vue de l’obtention
du grade de maîtrise ès sciences

(M. Sc.)

May 2022
© Akankhya Mohapatra, 2022

Résumé

Les systèmes distribués tels que Hadoop ont révolutioné la gestion des flux de don-

nées en offrant un cadre pour conserver et utiliser les données. Généralement, le goulot

d’étranglement de tels système est la quantité d’information transmise d’un noeud à

l’autre. Rassembler les données sur un seul noeud est géneralement impossible, ou trop

coûteux. Cette thèse porte donc sur une stratégie de compression de l’information qui

utilise les ondelettes.

Notre principal objectif consiste à estimer la fonction de répartition d’un échantillon

univarié dispersé sur plusieurs noeuds. L’estimateur par ondelette que nous proposons

est compraré à un estimateur classique basé sur un sous-échantillonnage aléatoire des

données. À l’aide d’une étude de Monte Carlo, nous présentons une analyse quantitative

substantielle pour évaluer le potentiel de cette approche en variant différents paramètres.

Les statistiques de Kolmogorov-Smirnoff (KS) et de Cramer-Von Mises (CVM) sont

utilisées pour évaluer la performance.

Cette étude valide la pertinence des ondelette afin d’optimiser la communication entre

les noeuds d’un système distribué. Les résultats de l’étude de Monte Carlo montrent des

résultats prometteurs en ce sens.

Mots clés

Systèmes distribués, Hadoop, communication entre les noeuds, compression de données,

ondelettes, fonction de répartition empirique, échantillonnage aléatoire, simulation de

Monte Carlo

i

Abstract

Distributed systems such as Hadoop have revolutionized the management of incoming

information streams, enabling a framework to store and process data. Generally, the bot-

tleneck in such systems is the limitation in communication between the nodes. Querying

all data at a single location is computationally expensive. Therefore, in this thesis, we

adopt a wavelet-based strategy to compress the amount of information sent by nodes.

Our primary goal is to estimate the distribution function of a univariate sample stored

across multiple nodes. The wavelet-based estimate that we propose is compared against a

random sub-sampling benchmark. Using Monte Carlo simulation, we conduct an exten-

sive quantitative analysis to study the effect of various parameters on the EDF estimate

using wavelets. Kolmogorov-Smirnoff (KS) and Cramer Von Mises (CVM) statistics are

used for evaluation measures.

This study establishes the relevance of wavelets in optimizing information commu-

nication between nodes in distributed systems. Based on Monte Carlo simulations, our

study shows promising results in that respect.

Keywords

Distributed systems, Hadoop, communication between nodes, data compression, wavelets,

Empirical Distribution Function, Random Sampling, Monte Carlo simulation

iii

Contents

Abstract i

Abstract iii

List of Tables vii

List of Figures xi

Acknowledgements xv

Introduction 1

1 Literature Review 5

1.1 Big Data technologies . 5

1.2 Statistical Inference in a distributed infrastructure 7

1.3 Wavelets . 10

2 Methodology 13

2.1 Data and Notation . 13

2.2 Mapping data to grid . 14

2.3 Estimates of the CDF . 16

2.3.1 EDF based on our method of compression 17

2.3.2 EDF based on SRS . 18

2.3.3 EDF based on true distribution 19

iv

2.4 Wavelets . 19

2.5 Compression strategy . 21

2.5.1 Wavelet Transform . 21

2.5.2 Inverse Wavelet transform . 23

3 Simulation Results 25

3.1 Evaluation Measures . 25

3.2 Monte Carlo Simulation . 26

3.3 Distributions . 27

3.4 Simulation of data . 28

3.5 Simulation flow . 29

3.6 Default Scenario . 30

3.7 Normal Distribution . 34

3.7.1 Scenario 1 - effect of varying SRS value with Random hashing . . 34

3.7.2 Scenario 2 - effect of varying thresholding type and wavelet de-

composition level with random hashing 35

3.7.3 Scenario 3 - effect of varying G using random hashing 36

3.7.4 Scenario 4 - effect of varying G and c using random hashing . . . 37

3.7.5 Scenario 5 - effect of varying G using ordered hashing 38

3.7.6 Scenario 6 - effect of varying G and c using ordered hashing . . . 40

3.7.7 Scenario 7 - effect of varying N using random hashing 42

3.7.8 Scenario 8 - effect of varying N and ni using random hashing . . . 43

3.7.9 Scenario 9 - effect of varying N using ordered hashing 44

3.7.10 Scenario 10 - effect of varying N with ni using ordered hashing . . 45

3.8 Cauchy Distribution . 47

3.8.1 Scenario 11 - effect of varying G using random hashing 47

3.8.2 Scenario 12 - effect of varying G and c using random hashing . . . 48

3.8.3 Scenario 13 - effect of varying G using ordered hashing 50

3.8.4 Scenario 14 - effect of varying G and c using ordered hashing . . . 51

v

3.8.5 Scenario 15 - effect of varying N using random hashing 53

3.8.6 Scenario 16 - effect of varying N and ni using random hashing . . 53

3.8.7 Scenario 17 - effect of varying N using ordered hashing 55

3.8.8 Scenario 18 - effect of varying N with ni using ordered hashing . . 56

3.9 Gamma Distribution . 58

3.9.1 Scenario 19 - effect of varying G and c using random hashing . . . 59

3.9.2 Scenario 20 - effect of varying G and c using ordered hashing . . . 59

3.9.3 Scenario 21 - effect of varying N and ni using random hashing . . 61

3.9.4 Scenario 22 - effect of varying N and ni using ordered hashing . . 63

3.10 Mixture of Normals Distribution . 64

3.10.1 Scenario 23 - effect of varying G and c using random hashing . . . 65

3.10.2 Scenario 24 - effect of varying G and c using ordered hashing . . . 66

3.10.3 Scenario 25 - effect of varying N and ni using random hashing . . 67

3.10.4 Scenario 26 - effect of varying N and ni using ordered hashing . . 69

3.11 Discussion of Results . 72

Conclusion 75

Bibliography 77

vi

List of Tables

3.1 Different Parameters of all distributions considered for our study 27

3.2 Illustration of CDF estimates using random hashing with Normal distribution

having c = 4, G = 8, N = 20, ni = 500, k = 32 in default scenario 32

3.3 An overview of all parameters considered for variation in our experiments . . 33

3.4 KS and CVM ratios for varying SRS using random hashing with normal dis-

tribution having G = 8, c = 4, N = 20 and ni = 500 in Scenario 1 35

3.5 KS ratio for varying threshold and decomposition level using random hashing

with normal distribution having G = 8, c = 4, N = 20, ni = 500, k = 32 in

Scenario 2 . 35

3.6 CVM ratio for varying threshold and decomposition level using random hash-

ing with normal distribution having G = 8, c = 4, N = 20, ni = 500 and k = 32

in Scenario 2 . 35

3.7 KS and CVM ratios for varying G using random hashing with normal distri-

bution having c = 4, N = 20, ni = 500, k = 32 in Scenario 3 36

3.8 KS ratio for varying G and c using random hashing with Normal distribution

having N = 20, ni = 500, k = 32 in Scenario 4 37

3.9 CVM ratio for varying G and c using random hashing with Normal distribu-

tion having N = 20, ni = 500, k = 32 in Scenario 4 38

3.10 KS and CVM ratios for varying G using ordered hashing with normal distri-

bution having c = 4, N = 20, ni = 500, k = 32 in Scenario 5 39

vii

3.11 KS ratio for varying G and c using ordered hashing with normal distribution

having N = 20, ni = 500, k = 32 in Scenario 6 40

3.12 CVM ratio for varying G and c using ordered hashing with normal distribution

having N = 20, ni = 500, k = 32 in Scenario 6 40

3.13 KS and CVM ratios for varying N using random hashing with normal distri-

bution having ni = 500, G = 8, c = 4, k = 32 in Scenario 7 42

3.14 KS ratio for varying N and ni using random hashing with normal distribution

having G = 8, c = 4, k = 32 in Scenario 8 . 43

3.15 CVM ratio for varying N and ni using random hashing with normal distribu-

tion having G = 8, c = 4, k = 32 in Scenario 8 43

3.16 KS and CVM ratios for varying N using ordered hashing with normal distri-

bution having ni = 500, G = 8, c = 4, k = 32 in Scenario 9 45

3.17 KS ratio for varying N and ni using ordered hashing with normal distribution

having G = 8, c = 4, k = 32 in Scenario 10 46

3.18 CVM ratio for varying N and ni using ordered hashing with normal distribu-

tion having G = 8, c = 4, k = 32 in Scenario 10 46

3.19 KS and CVM ratios for varying G using random hashing with Cauchy distri-

bution having c = 4, N = 20, ni = 500, k = 32 in Scenario 11 48

3.20 KS ratio for varying G and c using random hashing with Cauchy distribution

having N = 20, ni = 500, k = 32 in Scenario 12 49

3.21 CVM ratio for varying G and c using random hashing with Cauchy distribu-

tion having N = 20, ni = 500, k = 32 in Scenario 12 49

3.22 KS and CVM ratios for varying G using ordered hashing with Cauchy distri-

bution having c = 4, N = 20, ni = 500, k = 32 in Scenario 13 50

3.23 KS ratio for varying G and c using ordered hashing with Cauchy distribution

having N = 20, ni = 500, k = 32 in Scenario 14 51

3.24 CVM ratio for varying G and c using ordered hashing with Cauchy distribu-

tion having N = 20, ni = 500, k = 32 in Scenario 14 52

viii

3.25 KS and CVM ratios for varying N using random hashing with Cauchy distri-

bution having ni = 500, c = 4, G = 8, ni = 500, k = 32 in Scenario 15 53

3.26 KS ratio for varying N and ni using random hashing with Cauchy distribution

having c = 4, G = 8, k = 32 in Scenario 16 54

3.27 CVM ratio for varying N and ni using random hashing with Cauchy distribu-

tion having c = 4, G = 8, k = 32 in Scenario 16 54

3.28 KS and CVM ratios for varying N using ordered hashing with Cauchy distri-

bution having ni = 500, c = 4, G = 8, k = 32 in Scenario 17 56

3.29 KS ratio for varying N and ni using ordered hashing with Cauchy distribution

having c = 4, G = 8, k = 32 in Scenario 18 57

3.30 CVM ratio for varying N and ni using ordered hashing with Cauchy distribu-

tion having c = 4, G = 8, k = 32 in Scenario 18 57

3.31 KS ratio for varying G and c using random hashing with Gamma distribution

having N = 20, ni = 500, k = 32 in Scenario 19 59

3.32 CVM ratio for varying G and c using random hashing with Gamma distribu-

tion having N = 20, ni = 500, k = 32 in Scenario 19 59

3.33 KS ratio for varying G and c using ordered hashing with Gamma distribution

having N = 20, ni = 500, k = 32 in Scenario 20 60

3.34 CVM ratio for varying G and c using ordered hashing with Gamma distribu-

tion having N = 20, ni = 500, k = 32 in Scenario 20 60

3.35 KS ratio for varying N and ni using random hashing with Gamma distribution

having G = 8, c = 4, k = 32 in Scenario 21 62

3.36 CVM ratio for varying N and ni using random hashing with Gamma distribu-

tion having G = 8, c = 4, k = 32 in Scenario 21 62

3.37 KS ratio for varying N and ni using ordered hashing with Gamma distribution

having G = 8, c = 4, k = 32 in Scenario 22 63

3.38 CVM ratio for varying N and ni using ordered hashing with Gamma distribu-

tion having G = 8, c = 4, k = 32 in Scenario 22 63

ix

3.39 KS ratio for varying G and c using random hashing with Mixture of Normals

having N = 8, ni = 500, k = 32 in Scenario 23 65

3.40 CVM ratio for varying G and c using random hashing with Mixture of Nor-

mals having N = 8, ni = 500, k = 32 in Scenario 23 65

3.41 KS ratio for varying G and c using ordered hashing with Mixture of Normals

having N = 8, ni = 500, k = 32 in Scenario 24 66

3.42 CVM ratio for varying G and c using ordered hashing with Mixture of Nor-

mals having N = 8, ni = 500, k = 32 in Scenario 24 66

3.43 KS ratio for varying N and ni using random hashing with Mixture of Normals

having G = 8, c = 4, k = 32 in Scenario 25 68

3.44 CVM ratio for varying N and ni using random hashing with Mixture of Nor-

mals having G = 8, c = 4, k = 32 in Scenario 25 68

3.45 KS ratio for varying N and ni using ordered hashing with Mixture of Normals

having G = 8, c = 4, k = 32 in Scenario 26 69

3.46 CVM ratio for varying N and ni using ordered hashing with Mixture of Nor-

mals having G = 8, c = 4, k = 32 in Scenario 26 69

3.47 Outcomes of KS and CVM ratios across all distributions 70

x

List of Figures

3.1 Illustration of CDF estimates and their differences in default scenario 31

3.2 Illustration of the effect of varying G on the KS and CVM ratios using random

hashing with Normal distribution having c = 4, N = 20, ni = 500 and k = 32

in scenario 3 . 37

3.3 Illustration of the effect of varying G and c on the KS and CVM ratios using

random hashing with Normal distribution having N = 20, ni = 500 and k = 32

in scenario 4 . 38

3.4 Illustration of the effect of varying G on the KS and CVM ratios using random

hashing with Normal distribution having c = 4, N = 20, ni = 500 and k = 32

in scenario 5 . 39

3.5 Illustration of the effect of varying G and c using ordered hashing with Nor-

mal distribution having N = 20, ni = 500 and k = 32 in scenario 6 41

3.6 Illustration of the effect of varying N using random hashing with Normal

distribution having ni = 500, G = 8, c = 4 and k = 32 in scenario 7 42

3.7 Illustration of the effect of varying N and ni using random hashing with Nor-

mal distribution having G = 8, c = 4 and k = 32 in scenario 8 44

3.8 Illustration of the effect of varying N using ordered hashing with Normal

distribution having ni = 500, G = 8, c = 4 and k = 32 in scenario 9 45

3.9 Illustration of the effect of varying N and ni using ordered hashing with Nor-

mal distribution having G = 8, c = 4 and k = 32 in scenario 10 46

xi

3.10 Illustration of the effect of varying G using random hashing with Cauchy

distribution having c = 4, N = 20, ni = 500 and k = 32 in scenario 11 48

3.11 Illustration of the effect of varying G and c using random hashing with cauchy

distribution having N = 20, ni = 500 and k = 32 in scenario 12 49

3.12 Illustration of the effect of varying G using ordered hashing with Cauchy

distribution having c = 4, N = 20, ni = 500 and k = 32 in scenario 13 51

3.13 Illustration of the effect of varying G and c using ordered hashing with Cauchy

distribution having N = 20, ni = 500 and k = 32 in scenario 14 52

3.14 Illustration of the effect of varying N using random hashing with Cauchy

distribution having ni = 500, c = 4, G = 8, ni = 500 and k = 32 in scenario 15 . 54

3.15 Illustration of the effect of varying N and ni using random hashing with

Cauchy distribution having c = 4, G = 8 and k = 32 in scenario 16 55

3.16 Illustration of the effect of varying N using ordered hashing with Cauchy

distribution having ni = 500, c = 4, G = 8 and k = 32 in scenario 17 56

3.17 Illustration of the effect of varying N and ni using ordered hashing with

Cauchy distribution having c = 4, G = 8 and k = 32 in scenario 18 57

3.18 Illustration of the effect of varying G and c using random hashing with Gamma

distribution having N = 20, ni = 500 and k = 32 in scenario 19 60

3.19 Illustration of the effect of varying G and c using ordered hashing with Gamma

distribution having N = 20, ni = 500 and k = 32 in scenario 20 61

3.20 Illustration of the effect of varying N and ni using ordered hashing with

Gamma distribution having G = 8, c = 4 and k = 32 in scenario 21 62

3.21 Illustration of the effect of varying N and ni using ordered hashing with

Gamma distribution having G = 8, c = 4 and k = 32 in scenario 22 64

3.22 Illustration of the effect of varying G and c using random hashing with Mix-

ture of Normals having N = 20, ni = 500 and k = 32 in scenario 23 66

3.23 Illustration of the effect of varying G and c using ordered hashing with Mix-

ture of Normals having N = 20, ni = 500 and k = 32 in scenario 24 67

xii

3.24 Illustration of the effect of varying N and ni using random hashing with Mix-

ture of Normals having G = 8, c = 4 and k = 32 in scenario 25 68

3.25 Illustration of the effect of varying N and ni using ordered hashing with Mix-

ture of Normals having G = 8, c = 4 and k = 32 in scenario 26 70

xiii

Acknowledgements

For a topic to be considered original on its own, a researcher must dare to choose a road

less travelled by others. To demonstrate its potential, a researcher conducts extensive

groundwork on the chosen topic and develops a unique methodology to accomplish the

set goals. Being a novice in conducting research at such intensity, I set out on this journey

quite excited and hopeful about learning it.

This work was written as part of my mandates for obtaining my master’s degree at

HEC Montreal, and it was undoubtedly one of the most magical - yet demanding - assign-

ments I have undertaken so far. Throughout the work, I hope you will see my passion for

portraying my learned skill and making this thesis a reality.

The people who have contributed to my thesis journey have left an indelible impres-

sion and cannot go unmentioned. First and foremost, I am very grateful to my thesis

supervisor, professor Jean-François Plante, for accepting me under his guidance. This

thesis would not have been possible without his mentorship and constant support. His

continued motivation inspired me to excel in all aspects of my student life, which was

necessary for the completion of my thesis. Special thanks to the people who supported

me with funding for my studies at HEC Montreal and IVADO. It ensured my steady focus

and commitment to my work.

Many thanks to the friends who kept me in high spirits during the pandemic and are

like my family here. I would also like to thank my husband for his unwavering love and

support and finally, my family back in India, who made this dream of mine of coming

abroad to study attainable and supported me throughout.

xv

Introduction

Despite the waning of the “Big Data” hype, the tools and challenges that once accom-

panied it have become mainstream. We live in an age when data rendering is of utmost

significance. IoT sensors, social media, and healthcare applications increasingly gener-

ate massive amounts of data every day. Sending valuable insights learned and piloting

business decisions from this data has never been more critical.

Data ubiquity presents challenges in storing large amounts of data. In recent years,

data storage and processing systems for big data have become sufficiently stable to handle

a large volume of rapidly changing data. The tools provided by distributed systems enable

storage on multiple interconnected nodes. However, the rate at which data is communi-

cated between the nodes is typically slow and must be minimized.

The idea of distributed systems has been around for more than two decades in com-

puter science (e.g., Honavar et al., 1998, Mikler et al., 1998). The exploitation of dis-

tributed data through map-reduce, a framework designed specifically around distributed

computing, contributed to the success of Google (Dean & Ghemawat, 2008). To that ex-

tent, Microsoft, Facebook, and Amazon web services now rely on hyper-scale computing

of big data systems for storage and processing. Structured and unstructured data in big

data systems with multiple cluster nodes depend more and more on distributed computa-

tion (Nataliya Shakhovska et al., 2019). The choice of processing in distributed systems

is managed based on how much data is being input versus how urgent it is to process and

consume data (Salma et al., 2017).

Several systems and algorithms have been developed for distributed data over the

years (see Bhaduri et al., 2011 for a long list of contributions). In a survey of parallel

approaches, Upadhyaya (2013) considers that the techniques for dealing with large size

of data are mature. In this regard, however, there is a lack of algorithms for statistical in-

ference suited to a distributed paradigm, and much work needs to be done (Jordan, 2013;

Kleiner et al., 2014; Ma et al., 2015).

Caragea et al. (2004) consider models whose sufficient statistics can be represented

as a sum. As long as each node maps the partial sum for sufficient statistics, the exact

solution for the whole data set can be found by summing those partial sums together.

Chu et al. (2007) take a closer look at the broader “Statistics Query Model,” which con-

sists of a group of models that can be computed using sum statistics. Despite their size,

these families represent only a small fraction of the statistical models that may be needed

on distributed data.

In their survey of statistical methods for distributed data, Wang et al. (2015) describe

two strategies for distributed data: (1) sampling and (2) divide and conquer. Essentially,

the sampling strategy indicates that only a subset of the data is used for inference. We

will use this strategy as the baseline to exceed in our study. Divide and conquer is the

second approach that has allowed linear models to advance significantly. A study by

Lin & Xi (2011) use a first-order Taylor expansion to approximate estimating equations,

while Chen & Xie (2014) study penalized regression.

In this paper, we focus on obtaining a good estimate of the distribution function of a

single variable. A previous study of univariate distribution in a distributed context was

conducted by Hu et al. (2007). The authors propose a gossip-based approach to estimate

the kernel density by communicating regularly between pairs of nodes. By comparison,

our method can be used in a map-reduce framework and does not require such heavy and

frequent exchanges. We, however, assume that all nodes share a common sub-sample that

they can leverage to encode their information.

Due to the limitation in bandwidth capacity in a distributed system, we assess a strat-

egy to compress information sent across nodes. By using wavelets, data can be com-

pressed by approximating the original function using a reduced number of coefficients.

2

Wavelet decomposition is comparable to Fourier series, the latter represented as an

infinite sum of sinusoidal functions. Broadly speaking, both transforms can provide an

informative mathematical and statistical understanding of various objects of interest such

as functions, signals or images. Such representations can be obtained quickly through

fast algorithms using an approximate number of coefficients (Ly Tran, 2006). Several

surveys of wavelets and their applications indicate their significance in statistical infer-

ence (Anestis Antoniadis, 1997; Abramovich et al., 2000). However, with the inade-

quacy of the Fourier transform to deal with complexities in a function, wavelets received

more attention (Amara Graps, 1995; Ly Tran, 2006), mainly because of their ability to

capture local jumps in data. Wavelets use scalable modulated windows to capture details

at different resolutions.

To determine the distribution of all data, an excellent place to start could be to examine

the data that can be accessed from a single node within the same paradigm. However,

accessing all of the data in such a distribution is not feasible. The use of inference methods

based on statistical transforms is not new and has been considered by several authors

before (Baringhaus et al., 1992). A large number of statistical methods for univariate

data can be seen as a functionnal of the Empirical Distribution Function (EDF), notably

goodness-of-fit tests, some non-parametric tests, as well as bootstrap. Therefore, we aim

at estimating the EDF in our study, which can be used as a building block to develop such

methods in other studies. As per Plante (2008), a good estimate of the EDF can even

lead to an approximate likelihood method following the interpretation of the weighted

likelihood.

We leverage a common sample shared with every node to determine the EDF of our

univariate data. Our method uses a mapping based on the common sample, meaning

every node can compute it with negligible communication costs. The EDF is represented

in Haar wavelets decomposition (Haar, 1910), the simplest types of wavelets with a step-

like representation. For retaining maximum information during compression of wavelet

coefficients, Donoho and Johnstone (1994,1995) suggested the extraction of significant

wavelet coefficients by thresholding. We consider hard and soft thresholding for our

3

method. Wavelet transformation and thresholding of the univariate sample result in a

reduced number of coefficients which is used for reconstructing the original function.

Referring to our earlier discussion on sampling strategy, a random hashing of our

primary data, known as Simple random hashing (SRS), is considered as the baseline to

the wavelet-based estimate. Kolmogorov-Smirnoff (KS) and Cramer-Von Mises (CVM)

statistics are used as evaluation measures.

Overall, this study estimates a wavelet-based distribution function that exceeds the

SRS benchmark. The compression technique using wavelets identifies coefficients with

the maximum amount of information and consequently forces some coefficient values

to zero. The communication of information between nodes with the reduced number of

coefficients will result in occupying less space in node memory before transfer to another

node for reconstructing the original function.

In chapter 1, we will present a more extensive literature review. Chapter 2 outlines the

details of the methodology in our research. We include an extensive study of Monte Carlo

simulations and a discussion of evaluation measures in Chapter 3. Finally, we conclude

with prospective future directions.

4

Chapter 1

Literature Review

1.1 Big Data technologies

The drive towards digitization has evidently resulted in an increase in the rate of data

generation embraced by different industries such as health care. Countless number of

activities on different social media platforms and search engines also generate massive

amounts of data every day. It is certain that data has become one of the most crucial

commodities of recent times.

Such huge amounts of data produced needs to be processed and handled. Applications

that rely more and more on real-time services demand a faster communication rate for

data handling. In recent years, data storage and processing systems for big data have been

sufficiently stable to handle a large volume of rapidly changing data. The tools provided

by such distributed systems enable storage on multiple interconnected nodes.

Regardless, data-intensive applications are continuously growing the challenging con-

cerns of the current distributed paradigm, especially for communicating information across

the nodes (Choudhary et al., 2003). The work by Choudhary, et al. (2004) primarily fo-

cused on storage problems that many large distributed systems present on a regular basis.

Their solution is to optimize principal I/O in a distributed environment by designing a

distributed data archival system and accessing them locally. The architecture of their dis-

tributed file systems for accessing data makes an efficient use of a database for keeping

the metadata of such file systems. It relies on using a database in a centralized network

and accessing every file in a more local setting, with every file not available in the same

network. It requires the usage of multiple storage resources heterogeneously distributed

over networks.

Such instances resulted in much-needed exploitations of distributed data, eventu-

ally leading to the popularization of a framework explicitly designed around distributed

computing, known as MapReduce (Dean & Ghemawat, 2004). The implementation of

MapReduce revolved around the various approaches by which Google collected informa-

tion by conducting a search analysis on website data for its search engine optimization.

The primary motivation behind designing such a framework was understanding how to

distribute data for storage and computation. MapReduce framework uses a map func-

tion, and a reduce function to associate a key/value pair for distinguishing each task

while handling a large volume of data. Currently, Hadoop and Spark technologies ac-

tively use the MapReduce paradigm for distributed processing of massive amounts of data

(Nataliya Shakhovska et al., 2019). These technologies are highly scalable and can sort

through many clusters of nodes containing data in a comparably shorter period of time.

To that extent, Microsoft, Facebook, and Amazon web services now rely on hyper-scale

computing of Big Data tools for data warehousing and mining.

Collection of massive amounts of structured and unstructured data now depends more

on the distributed paradigm for storage and processing (Nataliya Shakhovska et al., 2019).

In a more practical application, a media streaming platform service such as Netflix streams

videos using streaming data (unstructured) while at the same time, it may collect informa-

tion on its platform usage by users in a structured manner. A domain-specific insfrastruc-

ture can be used for designing Big data technologies (Cigdem Avci Salma et al., 2017).

Various features such as storage capacity and information extraction must be weighed

based on the functional requirements of the domain of interest. Upadhyaya (2013) consid-

ers the Big Data tools dealing with large data considerably mature. The author discusses

the use of MapReduce to deliver machine learning algorithms on GPUs.

6

Despite its usage in making domain-specific decisions, the buzz around solving sta-

tistical inferential problems using distributed paradigm is limited. It is essential to realize

that statistical thinking could be a significant asset in driving such decisions forward. We,

therefore, suggest discussing the inferential perspective in the “Big Data” context next.

1.2 Statistical Inference in a distributed infrastructure

Kleiner et al. (2014) proposed estimating statistics on a sample of data using a modified

bootstrap approach, “Bag of Little bootstraps”. An accurate assessment of estimators on

a small subset of data could benefit scaling to large datasets. Although the original boot-

strapping approach assessed estimators in different settings, the resampling step causes

data points to appear more than once, more so in a large dataset. Instead of applying an

estimator (such as confidence interval) to assess the quality of estimate (such as popu-

lation mean) to each small subset, their approach applies bootstrap to each small subset

without having to rescale to the entire dataset.

Jordan et al. (2013) recommend that computational cost could be saved by uncovering

solutions to statistical inferential problems in distributed infrastructures. They empha-

sized implementing the “divide-and-conquer” paradigm rather than depending on “com-

putationally intensive” procedures to reach to the same solution. Additionally, they ac-

knowledged Kleiner et al. (2012) recommendation to use small subsets of data because

computing samples at independent processors (nodes) incurs a high computation cost.

While “Bag of Little bootstraps” combines the good aspects of bootstrapping and sub-

sampling, they highlight that there are instances where the method could be inconsistent

in its performance. Their remark underlined the advantage of obtaining a good sample

of data from the Empirical distribution function (EDF) as an approximation of the larger

population, making the bootstrap method a functionnal of the EDF.

Jordan et al. (2013) also discuss a case of matrix factorization, where they use dis-

tributed computation in order to solve computationally cumbersome calculations of ma-

trix dimensions. The discussion also reflects the importance of case-to-case model as-

7

sumptions for obtaining a statistically meaningful approximation, which hinders develop-

ments in this area.

Another instance in support of using smaller subsets of data, works on a linear re-

gression model with a fixed number of predictors to evaluate the statistical properties

of algorithmic leveraging in a distributed paradigm while dealing with large datasets

(Ma et al., 2015). Irrespective of standard sub-sampling approach, algorithmic lever-

aging utilizes sampling based on empirical leverage scores for making discoveries in the

full data while using the smaller data portion as a “surrogate”. They demonstrate the im-

portance of statistical leverage in terms of bias and variance properties of the estimates in

a parameter space much smaller than the sample size.

A paper by Caragea et al. (2004) considers an algorithm based on a learning strategy

in distributed data. They based their method on “knowledge acquisition” systems from

which learning can be possible, at one location with access to data before sending the

learning to another required location or learnt from distributed nodes in cases with no

access to data. Based on this general idea, it uses a minimal set of data to summarize

parameter characteristics and generate a decision tree algorithm, which constitutes its

sufficient statistics. A sufficient statistic is such that the exact likelihood of a model

can be calculated from that statistic. It may be a single value or a vector of statistics

depending on the model, but will often be of smaller dimension than the sample size.

When sufficient statistics are expressed as a sum, every node may provide partial sums,

that are recombined together to get an exact solution.

The study by Chu et al. (2007) examines the broader “Statistics Query Model,” a

set of models that can be computed using sum statistics in a distributed setting. Their

study adopts a method for speeding up one algorithm at a time by utilizing additional

cores in the computer system rather than focusing on algorithm optimization. Similar

to the divide and conquer approach, the programming in this method relies on limited

communication between the cores while using only a small fraction of the data points

required for sufficient statistics calculation. It is only natural to calculate sum of data

points in batches to exactly obtain the sufficient sums. Hence, all of the data is merged in

8

a “summation” form, allowing speeding up processing in a distributed paradigm.

In their survey of statistical methods for distributed data, Wang et al. (2015) classified

data processing essentially as sub-sampling (to draw subsets of data on which analysis

can be made) and divide-and-conquer (parallel processing of each block before aggre-

gation). Several other authors also considered the divide and conquer approach, such

as Lin & Xi (2011), for estimating approximate equations using a first-order Taylor ex-

pansion. Chen & Xie (2014) used penalized regression on large sample size as a sub-

sampling step for variable selection in a divide-and-conquer context. The divide-and-

conquer approach resulted in a considerable speed-up determined empirically via asymp-

totic equivalence to an estimator based on a model using all data.

Statistical transforms have been used before for developing inference-based methods

and are not new. Baringhaus et al. (1992) proposed goodness of fit test to estimate an

unknown distribution’s parameter characteristics based on a generating function. Using

bootstrapping to estimate samples by Monte Carlo, they compared against alternative

distributions for evaluating their proposed method.

A study of univariate distribution in a distributed context by Hu et al. (2007) proposed

a “gossip-based” Kernel density estimation allowing frequent exchange between local

nodes and estimating non-parametric statistics of unknown distribution from the same

data. For an efficient estimation of distribution using nodes, the paper assumes an existing

communication mechanism to “gossip” and exchange messages, making the local kernels

available at every node to collect as much information on the distribution. The method

depends on the communication between nodes to be adept at adequately estimating the

distribution. By comparison, our method can be used in a map-reduce framework and

does not require such heavy and frequent exchanges. We, however, assume that all nodes

share a common sub-sample that they can leverage to encode their information.

The Empirical Distribution Function (EDF) can be essential in developing many sta-

tistical methods for univariate data, notably goodness-of-fit tests, non-parametric tests,

and bootstrapping. Therefore, we are interested in estimating EDF in our study, which

can be used to develop EDF-based approaches in other studies. The EDF is considered by

9

Plante (2008) as a good estimate to follow up on the interpretation of weighted likelihood

to arrive at an approximate likelihood estimate.

One of the highlights from our above discussions is that communication between

nodes supplements computation cost. Therefore, we aim to reduce the burden on ev-

ery node by data compression in our strategy. We present the discussions surrounding the

notion of data compression using wavelets below.

1.3 Wavelets

Various inferential applications of distributed systems still require much work to be done

to reduce communication between nodes. Gathering all the data in a centralized location

is generally neither desirable nor feasible for massive datasets because of bandwidth and

storage constraints. In such systems, there is a need to assess a strategy for reducing the

amount of information being exchanged between the nodes.

In our work, we use wavelets for compressing data by using a wavelet expansion, then

approximating the original function with a reduced number of values. Such a transfor-

mation could also be obtained by an infinite sum of sinusoidal functions in an expansion

of the Fourier series. Ly Tran (2006) describes a detailed study between these two types

of transforms for approximating a function. The areas in which the Fourier series lacked

became synonymous with growing applications of wavelets. During the decomposition

and transformation of an object of interest (such as signals, functions, or images), the fast

Fourier algorithm represents the object in a combination of sines and cosines. However,

while dealing with complex data with sudden jumps, fast fourier algorithm does not im-

plement well in the fixed window width which it uses for localization. Wavelets use the

concept of modulating windows which are scalable in nature, making them more flexible

in adapting to changes containing sharp jumps for function approximation.

Amara Graps (1995) describes the utility of fast algorithms to approximate a function

using linear operations of Fourier transforms, and wavelet transforms. The flexibility of

wavelets in dealing with local features in both time and frequency representations makes

10

it more attractive for its usage in data compression, among its many other applications.

Depending on the type of problem, a wavelet system is chosen to extract information as a

“filtration” process, bringing out the “detail” information with smooth patterns.

Moreover, Wavelets have also been studied for their properties to help advance our

understanding of multi-scale problems. Jawerth et al. (1992) provide a mathematical

framework for constructing wavelet bases to apply multiresolution analysis. The general-

ization of one-dimensional wavelet transformation to a multi-dimensional case was made

possible by Mallat (1989). The degrees of localization were based on the time-scale rep-

resentation allowing the larger scale to capture extensive details and the smaller scale to

capture minor details according to the requirement of an analytical problem.

Abramovich et al. (2000) considered wavelets-based methods for statistical problems

such as in density estimation and nonparametric regression. Taking advantage of wavelet

series expansion as a good basis, they applied a generalized Fourier series using a wavelet

series to estimate fourier coefficients of a non-parametric function from a noisy data. For

application of wavelets in density estimation, they discussed changes to the estimator

form keeping the basic notion similar to that of a non-parametric regression. Wavelets

allow functions in statistical problems to be approximated with fewer expansion terms

based on the function and are therefore natural to use.

In statistical inferences, wavelets-based applications use orthonormal basis such as

Haar (Haar, 1910) to compress objects of interest because of their compact support and

step-like representation. Such studies lead to building statistical analysis algorithms in

a closed form (Donoho and Johnstone, 1994). An excellent instance of the usage of

wavelets in compressing data is by thresholding for recovering functions from noisy data.

The portion of data containing noise was assumed to be “compressed” during recovery

(Donoho and Johnstone, 1995).

An analytical study of communication between nodes in distributed systems is often

complex, making it impossible to study their dynamics (Mikler et al., 1998). Therefore,

there is a need to design a simulation specific to this area of research with the intention

of increasing the efficiency of various statistical applications depending on the rate of

11

communication between the nodes. In the next chapter, we detail our proposed method to

estimate an EDF based on a compression strategy using wavelets.

12

Chapter 2

Methodology

The previous section discussed other studies about the different methods used to analyze

communication in distributed systems. In this section, we present our proposed methods

and expected results. We aim to study the distribution function of a finite univariate

sample stored in a distributed system. We assume a small common sample on every

node and use it to create a computationally inexpensive mapping structure. Wavelets are

used to render a compressed estimate function. In the following chapter, we evaluate

the resultant estimate using Kolmogorov Smirnoff and Cramer Von Mises statistics. We

also use Monte Carlo simulation to evaluate their ability at reconstructing the original

distribution function for various models.

2.1 Data and Notation

Distributed systems allow the information to be accessed from their nodes. Combined,

nodes are repositories of vast amounts of data. As communication of information between

these nodes is limited, the burden on the system to transfer data is enormous. It makes it

difficult to send large amounts of data across nodes at a time. Therefore there is a need to

minimize the amount of data communicated between nodes.

We consider a univariate sample of which we aim to determine the CDF for our study.

The sample is a finite number of random observations and stored on different nodes in

a distributed system. Our assumption includes a common sample that is replicated on

every node in the system. That sample is leveraged for encoding the information before

transferring data between nodes.

Keeping track of the minimum and maximum values in a distributed system is com-

putationally inexpensive. So naturally, we keep these extrema from the common sample.

For a chosen c, the common sample is comprised of 2c− 1 randomly selected data plus

the minimum and maximum of the complete sample.

All nodes are given a common scale by creating a one-dimensional grid, consisting

of non-overlapping grid cells whose count is related to a power of two. We leverage

common sample points to obtain an equal number of grid cells. All the points of the

common sample are part of the grid, which is further divided in intervals of equal length

between any two values in the common sample.

To compress information, we depend on wavelet transformation of the mapped values

based on the grid.

2.2 Mapping data to grid

Let us consider a distributed system having N interconnected nodes. Each node could be

an individual commodity computer, for instance. The communication among the nodes

in such systems is generally managed by Hadoop or Spark framework.

Let i = 1, ..,N be the index representing the N nodes in a distributed system. Let Xi j
iid∼

F denote the jth observation of ni univariate data of interest in that node with distribution

function F where Xi j is a set of independent observations. We have a common sample

duplicated on every node, which is not comprised in our univariate sample. The common

sample follows the same distribution F as the sample of interest, but also contains the min

and the max in the complete sample. As a convention for mapping the data points, we

express the common sample points in order statistics as X0 j with j = 0, . . . ,2c. A power of

two is useful for our study given the mathematical decompositions that will be considered

later. More explicitly,

14

X(00) ≤ X(01) ≤ ·· · ≤ X(02c)

This indicates that X00 is the minimum of the whole dataset, and X02c is its maximum.

Note since the data in the common sample does not appear in the exclusive samples Xi j

for i≥ 1, the whole dataset has a total of n = 2c+1+∑
N
i=1 ni data. This is inclusive of all

data: the common sample containing the min and the max as well as the exclusive data

from the N nodes.

Generally, the best way to study a sample following a particular distribution would

be to consider the whole sample as if not distributed. Even if it were possible to find the

true distribution by querying all data at one location, it would be highly cumbersome and

computationally expensive.

The EDF estimates the law underlying the univariate data of interest. Using EDF, one

can estimate the CDF for the points in a sample. Several classical methods, including

goodness-of-fit tests, bootstrap, and some non-parametric methods, may be expressed as

functionnals of the EDF. Our strategy provides alternative estimates for the CDF based

on distributed data. A distributed system has limited bandwidth, so we aim to provide

excellent performance while sharing limited information between the nodes.

The multiresolution property of the wavelet transform and its flexibility to deal with

local features simultaneously in time and frequency provides suitable circumstance for

expressing a function in a sparse representation. Multi Resolution Analysis (MRA) of

functions carry information about the underlying distribution results in a series of approx-

imations of functions analyzed at different resolutions. Fast transformations then encode

the difference between these approximations using wavelets. Therefore, MRA and Fast

wavelet transforms (FWT) allow representing our function of interest in the frequency

domain, a space in which coefficients may be sparse. The sparse representation is not

sensitive to local perturbations and therefore, we obtain a good approximation of the

function.

MRA and FWT are defined on a bounded grid of values that are equally spaced.

15

Hence, we now define a mapping of the real axis to the [0,1] interval using the ordered

common sample that we previously defined. Each partition of the grid has common sam-

ple points separated by 2c intervals. We also choose a maximum resolution of the mapping

grid G > c to define a finer grid of 2G intervals by further dividing [0,1] in intervals of

equal lengths. A linear interpolation between the values of the common sample is used to

map [0,1] back to the original scale. Linear interpolation constructs new data points by

using the location of two known points and rounding off the distance on the unit interval

to be covered. So, we map X0 j to the value j/2c, hence the minimum value of that sample

is mapped to 0 and its maximum is mapped to 1 on the unit interval. In general, if y ∈

[0,1] , it will fall between mapped values of elements a = by2cc and b = dy2ce of the

common sample.

On the original scale, the value y will correspond to

x0a +
(

y− a
2c

)
(x0b− x0a) .

To reiterate, the mapping depends on the common sample, so every node can compute

it with negligible communication costs.

2.3 Estimates of the CDF

For the jth of ni univariate data of interest stored in node i, EDF may be defined as equal

to the proportion of observations from the sample that are less than or equal up to that

point. Assuming the data were in an ideal system equipped with unlimited computing

resources, we could estimate F from the EDF of the entire dataset, namely,

F̂(x) =
1
n ∑
(i, j)

1(−∞,Xi j](x).

where, 1(−∞,Xi j](x) is an indicator function equal to 1 when x is in (Xi j,∞).

With limited resources, the estimation of F could be obtained using a random sample

of data, say k of the n points and compute F̂(k), the EDF on that smaller sample. Our

16

strategy estimates the CDF from limited information in a distributed system. We set an

information budget k to limit the number of resources allocated. Therefore, we consider

the corresponding F̂(k) as a benchmark that we aim to outperform using our method of

estimation. The sampling approach includes having a subset of smaller number of obser-

vations from the original sample with each Xi j having an equal chance of getting selected

at random.

2.3.1 EDF based on our method of compression

Let F̂i denote the EDF of the exclusive data of node i on its original scale. The exclusive

data does not include the common sample copy stored at every node. However, in order

to determine the EDF of the exclusive dataset on the unit scale [0,1], it must leverage the

copy of the common sample stored on all nodes.

Using our previous knowledge of the mapped values of elements on the unit scale, the

exclusive EDF becomes,

Ĥi(y) = F̂i(x0a)+
(

y− a
2c

){
F̂i(x0b)− F̂i(x0a)

}
where, a = by2cc and b = dy2ce. The EDF of the common sample results in a right

continuous step function which is the same at every node. The EDF of the common

sample is,

S(y) = min{max(0,by2cc/2c) ,1} .

In order to determine the specificities of the EDF of node i, we compute the empirical

error between the exclusive data EDF estimate Ĥi and the EDF based on the common

sample S at a node i. Our strategy comprises of making nodes share their difference with

respect to the common sample through the functions Êi = Ĥi − S.

The difference between the two EDF carries information about the law underlying

the distribution function of the sample of data at node i. We aim to compress that EDF

difference using wavelets. We may note here that Êi(0) may vary when it takes the value

17

of the first step while Êi(1) = 0 because both Ĥi(1) = 1 and S(1) = 1. As we discuss

the details of wavelets in the next section, we define Ẽi as the compressed version of Êi

in the sense that it is obtained using a reduced number of non zero values indicative that

our method adapts a subdivision scheme giving a way for reconstruction of the global

estimate of F .

We reconstruct a global estimate for F on the basis of the compressed EDF Ẽi by

allowing the collection of information shared by the N nodes as well as the common

sample. This proportion of information at node i and across all N nodes is used to rebuild

the function Ẽi and we then obtain,

H̃∗(y) = S(y)+
N

∑
i=1

ni

n
Ẽi(y),

where, H̃∗(y) is the wavelet approximated CDF of the whole sample on the unit scale.

By waiting until the end to divide by n and add S(y), this combination is suitable for a

reduce step in a map-reduce context.

The reconstructed distribution function may lose its monotonicity because of the com-

pression. Hence we make an effort at fixing it to yield a linear piecewise step function

defining the reconstructed H̃∗(y) as a representation of the original function after com-

pression. To preserve the order of the function similar to that of our original function,

we apply isotonic regression (see e.g. Barlow et al., 1972) to H̃∗ which yields an in-

creasing estimate H̃ similar to the original function Ĥ. Reverting to the original scale,

the corresponding approximate CDF F̃(x) may be obtained through the usual mapping

we discussed earlier. Although Isotonic regression is computationally demanding, it is

applied only on the last node and hence does not affect the communication between the

nodes which is the real bottleneck in our situation.

2.3.2 EDF based on SRS

As a benchmark, we consider an EDF based on a sample of k points selected from the

union of all the available data. That EDF is noted F̂(k) and is evaluated on the same grid

18

points as the other functions it is compared to. To compute F̂(k), k data points need to

be transferred to a central node. It is therefore a fair comparison point for a wavelet-

based estimate with k non-zero coefficients. In a way, k is our information budget, and we

compare newly proposed methods to an EDF made from a commensurate subsample.

2.3.3 EDF based on true distribution

In order to set a common scale for evaluation, we are in need of a reference distribution

function for fair comparison and analysis. Since both the wavelet based EDF and the SRS

based EDF are based on grid mappings, we consider the true EDF of complete dataset

based on the developed grid as well and denote it as the true distribution function F(x)

for our study.

2.4 Wavelets

Wavelets are families of functions that may be used as a basis for decomposing func-

tions on a bounded interval. The multiresolution property of wavelets treats local features

yielding a sparser representation of the local variations in Ẽi with few significant values

representing its underlying distribution. Our function of interest, Êi is defined on [0,1],

a bounded interval (“wavelet probing” by Anderson et al., 1994). In addition, it is a step

function defined on 2G intervals of equal length spanning the unit scale.

Haar Wavelets, the simplest of all commonly used wavelets, yield precisely that type

of step function, dividing the total span with two step functions into ranges of 0 to 1
2 and

1
2 to 1. The Haar bases have two mutually orthonormal parent functions i.e. the mother

wavelet ψ(y) = 1[0,1/2)(y)−1[1/2,1)(y) and the scaling function φ(y) = 1[0,1)(y) referred

to as the father wavelet.

The size of each coefficient associated with the wavelet function can vary considerably

between different levels of resolution depending on the information detail to be retrieved.

Hence, in a Multi-resolution analysis (MRA), Haar bases will provide coarser to finer

19

details by linear combinations of scaling and translating these two functions, namely,

φs,`(y) = 2s/2
φ(2sy− `)

ψs,`(y) = 2s/2
ψ(2sy− `)

where s and ` are scale and position parameters respectively which are used to vary

the resolution level. We need the MRA to compress a function on the bounded interval

[0,1]. There is no need to consider resolutions below s = 0.

For the function Êi defined on 2G steps, the maximum resolution will be s=G. Hence,

s = 0, · · · ,G and `= 0, · · · ,2s−1 for our purpose. Intuitively, from the above equations,

a unit increase in s will have an effect on ψs,` into half the width doubling its estimate

in frequency terms, i.e. as s would increase, the functions may become narrower. A unit

increase in ` will shift the location of both φs,` and ψs,` by an amount proportional to their

width 2−s (Abramovich et al ., 2000).

Let Ê(y) represent a generic Êi for a single node i. At resolution G, we can express

E(y) as

Ê(y) =
2G−1

∑
`=0

eG,`φG,`(y)

where, eG,` = 2−G/2Ê{(`−1)/2G} . Using the recursive properties that

φs,` = 2−1/2φs+1,2`+ 2−1/2φs+1,2`+1 and ψs,` = 2−1/2φs+1,2`− 2−1/2φs+1,2`+1, the func-

tion Ê(y) may also be represented in frequency space as

Ê(y) = e0,0φ0,0(y)+
G

∑
s=0

2s−1

∑
`=0

ds,`ψs,`(y)

where the coefficients e0,0 and ds,` can be found in linear time using a FWT. The

equation above represents an expansion series of Ê(y) as a wavelet series of successive

approximations on the interval [0,1]. In this new frequency space, those coefficients may

be sparse. The first approximation term is achieved by the scaling terms e0,0φ0,0. It is

possible to approximate local features that cannot be adequately captured by the scaling

20

terms in frequency space and correspondingly fine detail by sequences of wavelet terms

ds,`ψs,`.

Compression may hence be achieved by nullifying some coefficients associated with

the wavelet function to zero with the remainder wavelet coefficients containing significant

bits of information. The communication of information between the nodes with the re-

duced number of coefficients may result in occupying less space in node memory before

getting transferred to another node for the reconstruction of the original function as F̃(x).

2.5 Compression strategy

The approximation of Êi at a resolution 2s+1 comprises all information to compute the

same function at a smaller resolution 2s given that the function at 2s is at a coarser scale

than at 2s+1. This indicates that the function at 2s+1 can be represented as a sum of the

function at 2s scale (Sheng Y., 2000). However, our method is used to filter out only the

significant bits of information to reconstruct the function as Ẽi using compression strategy

with wavelets.

To develop an efficient method, information about the functions Êi has to be com-

pressed before it is sent to other nodes. Throughout this section, let Ê(y) represent a

generic Êi. It is defined over 2G values, and can hence be represented as the vector of dis-

crete values (e1, · · · ,e2G)T . The fast wavelet transform moves these values to a different

space, the frequency space. Initially, the wavelet transform counts as many parameters,

but it is likely to be sparse, with multiple values that are close to zero.

2.5.1 Wavelet Transform

For the compression strategy, we consider a Discrete Wavelet transform (DWT) to consist

of 1) the functions φs,` and, 2) a method to determine the coefficients es,` to be cho-

sen from the wavelet transform. Using the generic expression of Ê(y) described in the

Wavelets section, we will define the wavelet decomposition of function Ê(y) such that our

21

proposed method calculates the compressed coefficients ẽs,` and the compressed function

will take the form

Ẽ(y) =
2s−1

∑
`=0

ẽs,`φs,`(y)

We obtain detailed coefficients directly from the higher frequencies and approxima-

tion coefficients from the lower frequencies which are subsequent down-sampled versions

of the original function Ê as a result of the wavelet transform. The level of information

the decomposed coefficients will contain are a clear consequence of this step in DWT.

Followed by wavelet decomposition, compression occurs during wavelet thresholding

process. Compressed coefficients are used for reconstruction of the original function as

F̃ . The process of reconstruction has been explained in the Estimates of the CDF section

earlier.

For determining ẽs,` with m non-zero values, we choose the m largest values from the

2G coefficients in es,`φs,`. We set a bound of choosing m << 2G distinct values in the

frequency space which allows us to select coefficients of ẽs,` with a smaller number of

significant bits.

We use both hard and soft thresholding types and possible dependency on decomposi-

tion level during the wavelet thresholding to extract m coefficients. Considering a thresh-

old λ and a generic representation of wavelet coefficients from thresholding as ethresh

, hard thresholding follows a rule for keeping absolute values of wavelet coefficients as

ethresh1(|ethresh|> λ) while soft thresholding follows the rule of shrinking the wavelet co-

efficients it keeps as sgn(ethresh)max(0, |ethresh|−λ) (Donoho and Johnstone , 1994,1995).

We use k to limit the number of compressed coefficients that can be chosen during the pro-

cess.

We also consider “wavelet level dependency” during wavelet transform and thresh-

olding. Implicitly ψs,` is scaled by a power of square root of two. In combination with the

wavelet thresholding, the threshold λ is now multiplied by a factor of 2−s/2 to account

for this. This results in a wavelet “level dependent” thresholding or adaptive thresholding,

22

adjusting the scale to further accommodate for a more precise selection of m number of

wavelet coefficients.

The value of m coefficients during wavelet thresholding ultimately forces some ties to

zero, which may lead to reduced space in the node memory. This means that the transfer

of information between nodes involves m coefficients as well their position in the wavelet

decomposition, an information that may be efficiently coded with a few bits and whose

cost will be considered negligible.

2.5.2 Inverse Wavelet transform

Using the same convention as before in the function E(y) emplying the recursive prop-

erties of φs,` and ψs,` (in the Wavelets section), we perform the 1-D inverse DWT of

{ẽs,`, d̃s,`} for reconstructing the function of Ẽ using the compressed coefficients, yield-

ing,

Ẽ(y) = ẽ0,0φ0,0(y)+
G

∑
s=0

2s−1

∑
`=0

d̃s,`ψs,`(y)

where ẽs,` and d̃s,` are compressed coefficients of φs,` and ψs,`.

Intuitively, every level 2s+1 recursively generates the vector at the previous coarser

level 2s until finally Ẽ is obtained. We may refer back to the Estimates of the CDF section

for the reconstruction of the wavelet approximated CDF of the whole sample H̃∗ on the

unit scale and finally obtain the global estimate F̃ .

23

Chapter 3

Simulation Results

In this chapter, we want to assess the effectiveness of the proposed method. We use Kol-

mogorov Smirnoff (KS) and Cramer Von Mises (CVM) statistics to measure the quality of

the EDF estimate based on wavelets. We describe Monte Carlo simulation for performing

our experiments. We also discuss the results of the simulations conducted.

3.1 Evaluation Measures

In order to estimate the distribution function, the wavelet based compression depends on

simulating the samples using a random generator function. In an ideal system, Êi and

compressed estimate Ẽi would be considered the same and the error between them would

be zero. However, by achieving higher compression levels, we observe differences in the

compressed estimate Ẽi from Êi.

We evaluate the effectiveness of the EDF estimate based on our method by comparing

F̃(x) against a random sample of data, k of n data points, as our benchmark F̂(k)(x) for

a given information budget k. We use KS and CVM statistics to evaluate the difference

between the two measures in terms of distance. We earlier discussed the estimation of

true distribution of the univariate sample of interest using the Grid map. The distance

between the two measures is quantified by the true EDF estimate F in terms of ratio.

The evaluation procedure entails calculating the distance between F̂(k)(x) and F(x)

in the first iteration. In the second iteration, we calculate the distance between F̃(x)

and F(x). We then determine the ratio between the two iterations using KS and CVM

statistics, namely

KS statistics uses the largest absolute difference between the EDF measures defined

as

dKS =
supx |F̂(k)(x)−F(x)|
supx |F̃(x)−F(x)|

CVM statistics uses the mean difference between the EDFs in comparison with respect

to their iterated differences, defined as

dCV M =

∫
x[
(

F̂(k)(x)−F(x)
)
]2dF(x)∫

x[
(
F̃(x)−F(x)

)
]2dF(x)

Both dKS and dCV M are determined numerically. In the case of dCV M, a numerical

integration is performed using the grid that we defined earlier in Chapter 3.

3.2 Monte Carlo Simulation

We want to evaluate the performance of our method using wavelets to estimate EDF real-

istically by running several simulations. By using Monte Carlo (MC) simulation methods,

we repeatedly draw samples through several runs of simulation and evaluate the EDF un-

der each Model. Every run will produce an EDF based on the random set of samples in

that Model which is evaluated using KS and CVM statistics. The samples are generated

using random hashing and random hashing with ordered hashing, i.e., where the smallest

values are attributed to a node, the next smallest to another node and so on.

While constructing the simulation, we also generate the univariate samples based on

various distributions. Our method will compress information sent across nodes using

wavelets which depends on some parameters we vary during simulations to observe its

effect in estimating EDF. Parameter variation is performed according to various distribu-

tions we want to study.

26

We use a total of 100 repetitions to produce and evaluate the wavelet-determined EDF

estimate. We set the seed of the generator to ensure reproducibility. The simulation is run

on my computer server memory which may take up to few hours to run. The simulation

results are saved to an Rdata file and every subsequent run loads the data from the file for

generating tables and plots.

3.3 Distributions

For our study, we use the following four cases of distributions for evaluating the effec-

tiveness of our proposed method:

Table 3.1: Different Parameters of all

distributions considered for our study

Normal Cauchy Gamma Mixture of Normals

Mean Location Rate = 1
Scale Means

Standard Deviation Scale Shape Standard Deviations

Mixture Proportions

Depending on the requirement for our study, we use Normal distribution as a standard

go-to model, Cauchy distribution for studying robustness of model with extreme values,

Gamma distribution for positive values and Mixture of Normals for introducing variability

with multimodal distributions in our study. We now specify the parameters of each dis-

tribution type. We consider standard values with mean = 0 and standard deviation = 1

for normal distribution.

For Cauchy distribution, we have two parameters: Location and Scale. Both parame-

ters have been considered standard values with 0 and 1 respectively.

For Gamma distribution, the two parameters are: shape parameter and rate or scale

parameter, where rate = 1
scale and shape ≥ 1. In our study, we consider rate = 1 and

shape = 2.

27

Mixture of Normals have 4 equiprobable components with each component having

(0,2,4 and 8) means and 0 standard deviations.

3.4 Simulation of data

The simulation is done using R with the Rstudio 3.6.1 interface. For our simulation, we

adapt two strategies of distributing our data across nodes. The recipe to send a given data

to a given node is called hashing. We consider:

i. random hashing yielding an exclusive sample with n1 = n2 = · · ·= ni at every node

i , where i = 1,2, · · · ,N

ii. random hashing with ordered hashing yielding an exclusive sample where the val-

ues of node i1 are less than those of node i2 if i1 < i2, where i1, i2 ∈ i and i = 1,2, · · · ,N.

Random hashing ensures the best way to generate observation Xi j ∼ F for node i with

each selection of observation generated randomly. This type of simulation preserves the

order in which they are generated. In the second type of data simulation, we use ordered

hashing to place the observations Xi j generated in every node i in an increasing manner.

In the main simulation study, we only consider balanced nodes i.e. every node will

have the same sample size. The wavelet transform is performed on a discrete grid of size

related to a power of two having 2G grid cells.

For each grid cell, there are attribute independent parameters (calculations for which

are independent of the grid cell) and attribute dependent parameters (calculations of which

depend on the grid cell).

i. Attribute independent parameter: min, max

ii. Attribute dependent parameters: estimates of EDF

min – minimum point of the Grid; max – maximum point of the Grid

Value of Min and Max are calculated based on the simulated univariate sample and

the common sample according to different distributions considered.

All estimates of EDF based on compression strategy using wavelets, SRS and true

distribution are based on the Grid.

28

3.5 Simulation flow

We aim to study the distribution of information exchanged between nodes using EDF.

We use wavelet transformation and thresholding to compare against an SRS benchmark.

However, the compression method using wavelets will generate different compressed

functions Ẽi(y) depending on some parameters which we allow to vary.

Using MC simulation, we study the effect of varying the four sets of parameters below:

i) the grid size G,

ii) the grid size G in combination with the chosen constant c for the assumed common

sample,

iii) the total number of nodes N, and

iv) the total number of nodes N in combination with the sample size at each node ni,

where i = 1, ..,N

on the estimation of wavelet-based EDF F̃(x). These variations are performed on both

individual level and in combination to assess the functionality of our proposed method.

We will compare each Model on the basis of their evaluation measure using KS and CVM

statistics.

Wavelet thresholding is initially varied between hard and soft thresholding types along

with dependency on decomposition level before proceeding with other simulations. The

benchmark SRS is varied related to the power of two according to the grid size 2G. We

try different combinations of each parameter values and vary it until it meets the available

memory space of the computer on which the experiments are run.

The study is also conducted under the effect of two types of data simulation and four

cases of distributions described above. We begin with Normal distribution and Cauchy

distributions varying all sets of parameters and observing the outcomes of each simula-

tion. MC simulation is carried out through out all experiments to have a common scale

of observation of function characteristics. Consider the case where similar results are

observed for a set of parameter variations in two distributions; then, we extend the in-

terpretations of the obtained results to the other two distributions (Gamma & Mixture of

29

Normals) without rerunning.

We place a stronger importance on the reconstruction of the EDF based on Wavelets

and their evaluation by using the same structure of constructing the simulation Models

for our study. All Models share the same number of fixed and variable parameters. The

range of values for variation for every parameter is fixed for the first two sets of simulation

studies comprising of Normal distribution and Cauchy distribution type. It is amended ac-

cordingly for the other two distributions based on the outcomes of the earlier simulations.

We now present our scenarios below.

3.6 Default Scenario

Our proposed method depends on multiple parameters. We define a default scenario con-

sisting of fixed parameter values. Our hope from experimenting with a default scenario is

to understand the efficiency of our method in reconstructing the compressed coefficients

approximating the original function. Such an experiment will not weigh heavy on com-

putation and results from the implementation would be quick and useful for planning our

simulations using MC method. This scenario will also serve the purpose of a reference

while working with complex scenarios for fair comparison in terms of performance.

The univariate sample of interest distribution is generated by assuming a normal

distribution such that it yields Xi j independent random variables ∼N (0,1), where for

i = 1, ..,N number of interconnected nodes, the node having ni univariate data that we are

interested in is represented by the jth variable. The complete data excluding the common

sample contains the data of one node forcing equal sample sizes of Xi j with jth denoting

ni = 500 data points on every node i of the N = 20 nodes in total.

The common sample consists of the 15 sample points shared by every node i, for a

constant value of c chosen to be 4. We choose the grid map size G = 8 which yields a grid

resolution of size 2G = 256 including the minimum point X00 and maximum point X02c

for the whole dataset. Further, linear interpolation yields 16 partitions in each grid cell.

For the number of coefficients to be transferred between the nodes, we set k = 32

30

Figure 3.1: Illustration of CDF estimates and their differences in default scenario

generating 640 data points. From the N = 20 nodes, the total sample becomes 10,000

points. Along with the minimum and maximum points and the common sample of 15

data points, we will have a total of 10017 data points. The SRS yields different number of

data points at every node, that is, they are not all accumulated at at a single node, rather

randomly spread across all nodes in different numbers.

Using hard thresholding without level dependency during wavelet transformation, the

resulting coefficients are compressed and are used to reconstuct the EDF F̂ approximating

the original distribution function F . Monotonicity of the estimated EDF F̂(x) is taken care

of using the isoreg() function in R.

We present two plots of different estimates of CDF based on wavelets F̃ , on SRS F̂k

and the complete data Fundistributed with respect to the true distribution CDF F in fig 3.1.

The left panel in fig 3.1 shows the step function of various CDF estimates. The plot

in red shows the true CDF F . It is only natural to find that as the original function is

monotonically increasing in nature, the EDF based on wavelet F̃ and SRS F̂k will also be

monotonically increasing. The points that are different from the simulated data points are

represented as “steps” towards the edge of the curve on both ends in the CDF estimates

based on SRS F̂k (in green) and wavelets F̃ (in gold) .

31

Table 3.2: Illustration of CDF estimates using random hashing with Normal distribution
having c = 4, G = 8, N = 20, ni = 500, k = 32 in default scenario

KS CVM

SRS 0.0369685 0.0000016
Wavelet 0.0235495 0.0000004
Wavelet Ratio 1.5698187 4.0636106

The right panel of fig 3.1 shows the CDF estimates based on the wavelets F̃ and SRS

F̂k and of their difference in comparison to the true CDF F . The wavelet based CDF es-

timate F̃ (in gold) and SRS based CDF estimate F̂k (in green) are more visibly distorted

than the CDF of the undistributed complete data Fundistributed in blue. The plot of wavelet

EDF F̃ is more concentrated in the middle than in the edges which could be indicative

of the function approximation using reduced number of coefficients during wavelet trans-

form and thresholding. We also observe the CDF estimate based on SRS having the peaks

much higher from the line of reference F̂k (in red), indicating the approximation of the

piece-wise function based on random selection of coefficients in SRS.

To evaluate our study, KS and CVM statistics are used to measure the distance be-

tween the CDF estimates based on wavelets and on SRS obtained with the same com-

munication budget. Naturally, if the ratio between them is greater than one, the wavelet

based estimate is closer to the true CDF. As the values in KS and CVM ratios suggest in

table 3.2, the model without the MC simulation yields a good estimate of CDF based on

the compression method using wavelets.

The parameter values in this scenario are used as a reference for the range of values to

be varied in the subsequent scenarios for simulation. All further experiments are based on

variations from the parameters in this scenario with the intention of improving upon this

result of evaluation based on KS and CVM ratio statistics. This will qualify to witness the

extent to which our proposed method remains effective.

Before moving on to performing experiments using MC method, we display a list of

parameters that we consider to vary below.

32

Table 3.3: An overview of all parameters considered

for variation in our experiments

Exp. Dist.

Data

sim.

** k Thresh

Lev

dep. G c N ni

1 Normal RH ×

2 Normal RH × ×

3 Normal RH ×

4 Normal RH × ×

5 Normal OH ×

6 Normal OH × ×

7 Normal RH ×

8 Normal RH × ×

9 Normal OH ×

10 Normal OH × ×

11 Cauchy RH ×

12 Cauchy RH × ×

13 Cauchy OH ×

14 Cauchy OH × ×

15 Cauchy RH ×

16 Cauchy RH × ×

17 Cauchy OH ×

18 Cauchy OH × ×

19 Gamma RH × ×

20 Gamma OH × ×

21 Gamma RH × ×

22 Gamma OH × ×

23 Mixture RH × ×

33

Exp. Dist.

Data

sim.

** k Thresh

Lev

dep. G c N ni

24 Mixture OH × ×

25 Mixture RH × ×

26 Mixture OH × ×

** RH = Random hashing, OH = Ordered hashing

where, Exp = Experiments or Scenarios, Dist = Distributions, Data sim = method of

univariate sample simulation, k = information budget, thresh = thresholding type, lev dep

= wavelet decomposition level dependency, G = Grid resolution, c = common sample size,

N = Number of nodes, ni = sample size in each node

We now perform experiments for each scenario and interpret the results in the next

section.

3.7 Normal Distribution

3.7.1 Scenario 1 - effect of varying SRS value with Random hashing

For scenario 1, we consider varying SRS budget k with normal distribution using ran-

dom hashing for generating a univariate data of interest. We focus on sending as much

information as possible with minimal burden on the system.

We accordingly set the value of common sample size c, the grid resolution G, the

number of nodes N and their sample sizes ni to the values used in the default scenario. We

use hard thresholding without dependency on the wavelet decomposition level lev dep.

For k ∈ {32,64,128}, the table 3.4 shows the effect of varying SRS on the KS and

CVM ratios:

We observe that the KS and CVM performance ratios seem to decrease as k increases.

However, as all the ratios are greater than one, we can say that the scenario 1 is yielding

34

Table 3.4: KS and CVM ratios for varying SRS using random hashing with normal dis-
tribution having G = 8, c = 4, N = 20 and ni = 500 in Scenario 1

k KS performance ratio CVM performance ratio

32 1.888 4.988
64 2.139 4.833
128 1.499 2.031

Table 3.5: KS ratio for varying threshold and decomposition level using random hashing
with normal distribution having G = 8, c = 4, N = 20, ni = 500, k = 32 in Scenario 2

lev dep thresh = hard thresh = soft

TRUE 1.572 0.614
FALSE 1.888 0.951

Table 3.6: CVM ratio for varying threshold and decomposition level using random hash-
ing with normal distribution having G = 8, c = 4, N = 20, ni = 500 and k = 32 in Scenario
2

lev dep thresh = hard thresh = soft

TRUE 5.179 0.718
FALSE 4.988 2.330

better results with a smaller budget k. We set k = 32 for all subsequent simulations.

For our next simulation, we consider varying the thresholding type and wavelet de-

composition level dependency.

3.7.2 Scenario 2 - effect of varying thresholding type and wavelet

decomposition level with random hashing

In this scenario, we want to observe the effect of replacing hard thresholding by soft

thresholding and the dependency on the wavelet decomposition level on the KS and CVM

ratios. Considering k = 32, we keep all the other parameter values the same as G = 8,

c = 4, N = 20 and ni = 500. We use random hashing for generating a univariate sample.

In tables 3.5 and 3.6, we can observe the effect of replacing the thresholding type

thresh = hard to so f t and wavelet decomposition level dependency levdep = f alse to

true.

35

Table 3.7: KS and CVM ratios for varying G using random hashing with normal distribu-
tion having c = 4, N = 20, ni = 500, k = 32 in Scenario 3

G KS performance ratio CVM performance ratio

8 1.572 5.179
10 1.510 4.413
12 1.389 4.071
14 1.388 3.917
16 1.382 3.894

18 1.381 3.884

All the parameter variations yielded KS and CVM ratios close to one except for soft

thresholding with level dependency. The simulation run on only hard thresholding with

dependency on the wavelet decomposition level yielded KS and CVM performance ratios

comparable to the results of hard thresholding without the level dependency. As the per-

formance of hard thresholding is better than soft thresholding both with and without level

dependency, henceforth for further scenario simulations, we will be considering hard

thresholding with dependency on the wavelet decomposition level lev dep = true only.

3.7.3 Scenario 3 - effect of varying G using random hashing

In scenario 3, we consider to observe the effect of varying a single parameter, the grid size

G on the KS and CVM ratios using random hashing for generating a univariate data of

interest. The effect of varying Grid resolution G on the resulting performance ratio would

indicate whether G has any effect on the outcome ratios.

We consider hard thresholding type and wavelet decomposition level dependency

lev dep as true, and vary G between the values {8,10,12,14,16,18}. All other parameter

values are kept the same with c = 4, N = 20, ni = 500 and k = 32.

We may refer to the table 3.7 for studying the results of the variation on the KS and

CVM ratios.

Looking at the results, we observe all the KS and CVM performance ratios are greater

than one, indicating the effectiveness of our method in this scenario. However, the ratios

decrease as G increases.

36

Figure 3.2: Illustration of the effect of varying G on the KS and CVM ratios using random
hashing with Normal distribution having c = 4, N = 20, ni = 500 and k = 32 in scenario 3

Table 3.8: KS ratio for varying G and c using random hashing with Normal distribution
having N = 20, ni = 500, k = 32 in Scenario 4

c G = 8 G = 10 G = 12 G = 14 G = 16 G = 18

4 1.572 1.510 1.389 1.388 1.382 1.381
5 2.064 1.983 1.888 1.855 1.852 1.851
6 2.105 1.806 1.780 1.767 1.764 1.763

3.7.4 Scenario 4 - effect of varying G and c using random hashing

In Scenario 4, we will continue to vary parameter G along with another parameter, the

common sample size c. In our proposed method, we assume every node has common

sample data points which we use to define Grid. Therefore, we vary both G and c to

observe their combined effect on the performance ratios.

We consider G ∈ {8,10,12,14,16,18} and c ∈ {4,5,6} while keeping other pa-

rameter values the same as N = 20, ni = 500 and k = 32. We use random hashing for

generating a univariate sample for our study. We also use hard thresholding type and

wavelet decomposition level dependency lev dep as true.

We may refer to the tables 3.8 and 3.9 for studying the results of the variation of G

and c on the KS and CVM ratios.

37

Table 3.9: CVM ratio for varying G and c using random hashing with Normal distribution
having N = 20, ni = 500, k = 32 in Scenario 4

c G = 8 G = 10 G = 12 G = 14 G = 16 G = 18

4 5.179 4.413 4.071 3.917 3.894 3.884
5 9.454 8.363 8.351 8.305 8.236 8.233
6 6.995 6.640 6.648 6.622 6.624 6.623

Figure 3.3: Illustration of the effect of varying G and c on the KS and CVM ratios using
random hashing with Normal distribution having N = 20, ni = 500 and k = 32 in scenario
4

We observe that all the KS and CVM ratios are greater than one stipulating the effec-

tiveness of our method in this scenario. The performance ratios, however, decrease with

increase in G for a fixed c. The KS and CVM ratio statistics, however, seem to increase

as c increases for a fixed G.

From the fig 3.3, we also note that the observed trend is similar for all the values of G

except for G = 8.

3.7.5 Scenario 5 - effect of varying G using ordered hashing

In Scenario 5, we will vary parameter G between the values {8,10,12,14,16,18} to ob-

serve the effect of variation on the KS and CVM ratios outcome while using ordered

hashing for a univariate sample generation. Here, we also expect to observe whether vari-

38

Table 3.10: KS and CVM ratios for varying G using ordered hashing with normal distri-
bution having c = 4, N = 20, ni = 500, k = 32 in Scenario 5

G KS performance ratio CVM performance ratio

8 1.132 1.380
10 0.792 1.250
12 1.282 1.232
14 1.294 1.228
16 1.288 1.226

18 1.286 1.226

Figure 3.4: Illustration of the effect of varying G on the KS and CVM ratios using random
hashing with Normal distribution having c = 4, N = 20, ni = 500 and k = 32 in scenario 5

ation of parameter G affects the outcome in the same manner as varying G with random

hashing did.

We consider the parameter values c = 4, N = 20, ni = 500 and k = 32 along with

ordered hashing, hard thresholding and wavelet decomposition level dependency as true.

The table 3.10 shows the results of the variation of G on the KS and CVM ratios with

ordered hashing.

As a result of our experiment with scenario 5, we have an indication that the KS and

CVM ratios are all greater than one. However, the ratios remains more or less consistent

with increase in the value of G. The results do not resemble our findings from scenario 3

where we observed the KS and CVM ratios decreased with increase in values of G.

39

Table 3.11: KS ratio for varying G and c using ordered hashing with normal distribution
having N = 20, ni = 500, k = 32 in Scenario 6

c G = 8 G = 10 G = 12 G = 14 G = 16 G = 18

4 1.132 0.792 1.282 1.294 1.288 1.286
5 0.676 0.694 0.681 0.705 0.682 0.682
6 0.695 0.591 0.616 0.634 0.634 0.634

Table 3.12: CVM ratio for varying G and c using ordered hashing with normal distribution
having N = 20, ni = 500, k = 32 in Scenario 6

c G = 8 G = 10 G = 12 G = 14 G = 16 G = 18

4 1.380 1.250 1.232 1.228 1.226 1.226
5 0.683 0.395 0.378 0.373 0.372 0.372
6 0.809 0.603 0.593 0.594 0.593 0.593

Also, we observed that with random hashing in scenario 3, KS and CVM ratios yielded

higher values above one than with ordered hashing. This indicates that ordered hashing

may have a stronger effect on the performance ratio than random hashing.

We also observe that there is a sudden drop in the KS performance ratio at G=10

against all other Grid sizes. The scope of our study limits further speculation about the

underlying reasons behind such behaviour.

3.7.6 Scenario 6 - effect of varying G and c using ordered hashing

Scenario 6 uses the same approach for data simulation as scenario 5. However, we now

vary two parameters at a time to see the combined effect of parameters variation on the

KS and CVM ratios.

We consider G ∈ {8,10,12,14,16,18} and c ∈ {4,5,6} and keep other parame-

ter values N = 20, ni = 500 and k = 32 with ordered hashing for generating univariate

sample of interest. We also use hard thresholding type with wavelet decomposition level

dependency lev dep as true.

The tables 3.11 and 3.12 show the results of the variation of G and c on the KS and

CVM ratios.

From the results, we find that the values of KS and CVM ratios are greater than one

40

Figure 3.5: Illustration of the effect of varying G and c using ordered hashing with Normal
distribution having N = 20, ni = 500 and k = 32 in scenario 6

for all values of G with c = 4 while it declines below one for other values of G for a

specific c.

We find for increasing G, the KS and CVM ratios seem to decrease by a small margin

while keeping the value of c fixed, similar to scenario 4 where we observed a decline in

the performance ratios with random hashing. With increase in c, we observe that the KS

and CVM ratios seem to decrease for a fixed G. This trend is unlike scenario 4 where the

ratios declined as c increased.

We also observe that values obtained with random hashing were slightly higher than

with ordered hashing, indicating a stronger effect of ordered hashing on the KS and CVM

performance ratios than random hashing.

Another important observation could be made here about the behavior of G. When

G is greater than or equal to 12, the ratios are nearly the same, than the performance of

values when G < 12. The fig 3.5 shows that the lines are almost converging for values

of G greater than 12. This is interesting because a similar trend was also observed with

random hashing in scenario 4 while varying G.

We will be now moving on to another set of parameter variation with Normal distri-

bution.

41

Table 3.13: KS and CVM ratios for varying N using random hashing with normal distri-
bution having ni = 500, G = 8, c = 4, k = 32 in Scenario 7

N KS performance ratio CVM performance ratio

20 1.572 5.179
50 1.302 4.915
100 0.816 1.544
250 0.513 0.801

Figure 3.6: Illustration of the effect of varying N using random hashing with Normal
distribution having ni = 500, G = 8, c = 4 and k = 32 in scenario 7

3.7.7 Scenario 7 - effect of varying N using random hashing

We tried a number of combinations with parameter variation of G and c in the previous

scenarios. We now consider observing the effect of the number of nodes N on the outcome

of evaluation measure using KS and CVM ratio statistics.

For scenario 7, we consider varying N between the values of {20,50,100,250} with

a fixed sample at each node ni = 500. We consider hard thresholding type and wavelet

decomposition level dependency lev dep as true. All other parameter values are kept the

same with c = 4, G = 8 and k = 32 along with random hashing for generating a univariate

sample of interest.

The table 3.13 shows the output of KS and CVM ratio statistics while varying N using

random hashing.

42

Table 3.14: KS ratio for varying N and ni using random hashing with normal distribution
having G = 8, c = 4, k = 32 in Scenario 8

N ni = 500 ni = 2000 ni = 5000 ni = 8000 ni = 10000

20 1.572 1.773 1.856 1.650 1.533
50 1.302 0.916 1.034 1.243 0.886
100 0.816 0.811 0.630 0.727 0.812
250 0.513 0.505 0.380 0.487 0.390

Table 3.15: CVM ratio for varying N and ni using random hashing with normal distribu-
tion having G = 8, c = 4, k = 32 in Scenario 8

N ni = 500 ni = 2000 ni = 5000 ni = 8000 ni = 10000

20 5.179 9.494 8.607 8.171 5.575
50 4.915 2.558 3.603 3.561 1.607
100 1.544 1.404 1.017 1.316 1.693
250 0.801 0.610 0.428 0.541 0.440

From the results, we observe that the lower values of N yield performance ratios

greater than one or closer to one indicating the effectiveness of our proposed method

in this scenario when value of N is low. Hence, the KS and CVM ratios decline with

increase in N and eventually fall below one.

3.7.8 Scenario 8 - effect of varying N and ni using random hashing

Scenario 7 indicated an effect of varying N on the performance ratios. Therefore, in

scenario 8, we now consider varying the number of nodes, N and the size of the samples

there in, ni. We vary N between the values {20,50,100,250} and ni between the values

{500,2000,5000,8000,10000}.

We keep other parameter values the same as G = 8, c = 4 and k = 32 with random

hashing for generating a univariate sample. We also use hard thresholding type with the

wavelet decomposition level dependency lev dep as true.

We may refer to the tables 3.14 and 3.15 for the result of varying N and ni on the KS

and CVM ratios using random hashing.

From the results, we observe that there are some values which are much greater than

one and also values which are lower than one. For a fixed value of ni, we find that

43

Figure 3.7: Illustration of the effect of varying N and ni using random hashing with Nor-
mal distribution having G = 8, c = 4 and k = 32 in scenario 8

the KS and CVM performance ratios decrease with increase in N. This aligns with our

observation from the previous scenario 7. For a fixed value of N, we also find that KS and

CVM ratios seem to decrease as ni increases.

3.7.9 Scenario 9 - effect of varying N using ordered hashing

In Scenario 9, we consider varying N between the values of {20,50,100,250} using or-

dered hashing.

We keep the other parameter values same as previous scenarious with c = 4, N =

20, ni = 500 and k = 32. We use hard thresholding with wavelet decomposition level

dependency lev dep as true.

The table 3.16 shows the result of the variation of N on the KS and CVM performance

ratios with ordered hashing.

We observe that all the values of KS and CVM performance ratios are above one. We

also observe performance ratios remain stable without much change in the values as N

increases.

44

Table 3.16: KS and CVM ratios for varying N using ordered hashing with normal distri-
bution having ni = 500, G = 8, c = 4, k = 32 in Scenario 9

N KS performance ratio CVM performance ratio

20 1.132 1.380
50 1.208 1.022
100 1.205 1.163
250 1.058 1.119

Figure 3.8: Illustration of the effect of varying N using ordered hashing with Normal
distribution having ni = 500, G = 8, c = 4 and k = 32 in scenario 9

3.7.10 Scenario 10 - effect of varying N with ni using ordered

hashing

Scenario 10 uses the same approach for data simulation as scenario 9. However, we now

consider varying two parameters at a time to observe their combined effect on the KS and

CVM ratios.

We consider N ∈ {20,50,100,250} and ni ∈ {500,2000,5000,8000,10000} and

keep all other parameter values G = 8, c = 4 and k = 32. We use ordered hashing for gen-

erating a univariate sample of interest. We also use hard thresholding with dependency

on the wavelet decomposition level lev dep as true.

The tables 3.17 and 3.18 show the results of the variation of N and ni on the KS and

45

Table 3.17: KS ratio for varying N and ni using ordered hashing with normal distribution
having G = 8, c = 4, k = 32 in Scenario 10

N ni = 500 ni = 2000 ni = 5000 ni = 8000 ni = 10000

20 1.132 1.658 1.606 1.430 1.501
50 1.208 1.364 1.102 1.206 1.165
100 1.205 1.431 1.616 1.706 1.732
250 1.058 0.614 0.495 1.391 2.277

Table 3.18: CVM ratio for varying N and ni using ordered hashing with normal distribu-
tion having G = 8, c = 4, k = 32 in Scenario 10

N ni = 500 ni = 2000 ni = 5000 ni = 8000 ni = 10000

20 1.380 2.696 1.692 2.800 3.836
50 1.022 2.073 1.266 1.455 0.911
100 1.163 0.880 1.839 1.609 1.860
250 1.119 0.602 1.014 1.573 2.159

Figure 3.9: Illustration of the effect of varying N and ni using ordered hashing with Nor-
mal distribution having G = 8, c = 4 and k = 32 in scenario 10

CVM ratios.

The outcome of KS and CVM performance ratios declines as N increases for a fixed

ni. This resembles with our observations in scenario 8 where we observed a decreasing

trend in KS and CVM ratios for increasing N for a fixed ni. The ratios, however, seem to

increase as ni increases for a fixed N, unlike results from scenario 8.

46

We also observe that the values of KS and CVM ratios are greater than one or close to

one.

The KS and CVM performance ratios obtained in scenario 10 with ordered hashing

are all greater than one or close to one, indicating the effectiveness of our method in this

scenario. However, the ratios in scenario 8 with random hashing are comparably on the

higher side from scenario 10.

3.8 Cauchy Distribution

3.8.1 Scenario 11 - effect of varying G using random hashing

Similar to experiments in Normal distribution section, we will conduct the same exper-

iments keeping the same parameters and parameter values. In scenario 11, we want to

observe the effect of varying a single parameter, the grid resolution G on the KS and

CVM ratios using random hashing for generating a univariate data of interest. The effect

of varying Grid resolution G on the resulting performance ratio would indicate whether

G has any effect on the outcome. We also hope to find if the results in scenario 11 are

similar to its corresponding experiment in scenario 3 with Normal distribution.

We vary G between the values {8,10,12,14,16,18} and keep all other parameter val-

ues the same as previous scenarios with c = 4, N = 20, ni = 500 and k = 32 along with

random hashing. We consider hard thresholding with dependency on the wavelet decom-

position level lev dep = true.

We may refer to the table 3.19 for studying the results of the variation on the KS and

CVM ratios.

From the results, we observe that all the ratios are greater than one indicating the

effectiveness of our method in this scenario. For a fixed value of c , the KS and CVM

ratios decline for higher values of Grid resolution G. The trend resembles our observation

from scenario 3 with Normal distribution.

We also observed that with Cauchy distribution, we attained higher values of KS and

47

Table 3.19: KS and CVM ratios for varying G using random hashing with Cauchy distri-
bution having c = 4, N = 20, ni = 500, k = 32 in Scenario 11

G KS performance ratio CVM performance ratio

8 1.722 8.338
10 1.239 6.081
12 1.203 4.808
14 1.104 3.893
16 1.075 4.008

18 0.978 3.266

Figure 3.10: Illustration of the effect of varying G using random hashing with Cauchy
distribution having c = 4, N = 20, ni = 500 and k = 32 in scenario 11

CVM ratios than with Normal distribution while varying G.

3.8.2 Scenario 12 - effect of varying G and c using random hashing

In Scenario 12, we consider varying parameter G along with the common sample size c

to observe their combined effect on the performance ratios and compare with the results

of scenario 4 with Normal distribution.

We consider G ∈ {8,10,12,14,16,18} and c ∈ {4,5,6} while keeping other param-

eter values N = 20, ni = 500 and k = 32 with random hashing for data simulation. We

also use hard thresholding with wavelet decomposition level dependency.

48

Table 3.20: KS ratio for varying G and c using random hashing with Cauchy distribution
having N = 20, ni = 500, k = 32 in Scenario 12

c G = 8 G = 10 G = 12 G = 14 G = 16 G = 18

4 1.722 1.239 1.203 1.104 1.075 0.978
5 1.894 1.625 1.517 1.432 1.274 1.180
6 2.110 2.142 2.072 1.956 1.928 1.631

Table 3.21: CVM ratio for varying G and c using random hashing with Cauchy distribu-
tion having N = 20, ni = 500, k = 32 in Scenario 12

c G = 8 G = 10 G = 12 G = 14 G = 16 G = 18

4 8.338 6.081 4.808 3.893 4.008 3.266
5 7.414 6.020 5.610 5.004 3.756 4.387
6 10.780 9.629 9.635 9.577 9.950 9.429

Figure 3.11: Illustration of the effect of varying G and c using random hashing with
cauchy distribution having N = 20, ni = 500 and k = 32 in scenario 12

We may refer to the tables 3.20 and 3.21 for studying the results of the variation of G

and c on the KS and CVM ratios.

We observe that all KS and CVM ratios are greater than one. Our findings resemble

with the findings from scenario 4 in terms of the effect of G and c variations on the

performance ratios. We observe that the ratios decrease with increase in G for a fixed

c, similar to our findings in scenario 4 with Normal distribution. However, the effect of

varying c for a fixed G on the KS and CVM ratio statistics is not conclusive based on the

49

Table 3.22: KS and CVM ratios for varying G using ordered hashing with Cauchy distri-
bution having c = 4, N = 20, ni = 500, k = 32 in Scenario 13

G KS performance ratio CVM performance ratio

8 1.429 1.346
10 0.834 1.334
12 0.775 1.261
14 0.744 1.140
16 0.751 1.047

18 0.765 1.265

results.

3.8.3 Scenario 13 - effect of varying G using ordered hashing

In scenario 13, we will vary parameter G to observe the effect of variation on the KS

and CVM ratios outcome while using ordered hashing for generating a univariate data of

interest. We also expect to observe whether variation of parameter G affects the outcome

in the same manner as random hashing in scenario 5.

We consider the parameter values c = 4, N = 20, ni = 500 and k = 32, similar to pre-

vious scenarios. We use hard thresholding and dependency on the wavelet decomposition

level lev dep as true.

For G ∈ {8,10,12,14,16,18} , we observe the results from table 3.22.

As a result of our experiment with scenario 13, there is an indication that the KS and

CVM ratios decreases and falls below one as G increases. Moreover, our findings do not

resemble the results from scenario 5 with Normal distribution where we observed the KS

and CVM ratios remained stable with increase in G.

We also observed that the trend of performance ratios is similar to the trend observed

in scenario 11 with random hashing, where the ratios declined with increase in G. Also,

the results are much higher in Cauchy distribution with random hashing in scenario 11

than in scenario 13 with ordered hashing. This indicates that ordered hashing may have a

stronger effect on the performance ratio measure than random hashing.

50

Figure 3.12: Illustration of the effect of varying G using ordered hashing with Cauchy
distribution having c = 4, N = 20, ni = 500 and k = 32 in scenario 13

Table 3.23: KS ratio for varying G and c using ordered hashing with Cauchy distribution
having N = 20, ni = 500, k = 32 in Scenario 14

c G = 8 G = 10 G = 12 G = 14 G = 16 G = 18

4 1.429 0.834 0.775 0.744 0.751 0.765
5 0.795 0.747 0.665 0.657 0.681 0.658
6 0.766 0.731 0.700 0.681 0.665 0.658

3.8.4 Scenario 14 - effect of varying G and c using ordered hashing

The approach for data simulation in scenario 14 is the same as scenario 13. However, we

now consider varying two parameters at a time to see the combined effect of parameters

variation on the KS and CVM ratios.

We vary G ∈ {8,10,12,14,16,18} and c ∈ {4,5,6} and keep other parameter

values as N = 20, ni = 500 and k = 32 with ordered hashing for generating a univariate

sample of interest. We also use hard thresholding along with dependency on the wavelet

decomposition level lev dep as true.

The tables 3.24 and 3.23 show the results of the variation of G and c on the KS and

CVM ratios.

From the results, we find that only a few number of values have KS and CVM ratios

51

Table 3.24: CVM ratio for varying G and c using ordered hashing with Cauchy distribu-
tion having N = 20, ni = 500, k = 32 in Scenario 14

c G = 8 G = 10 G = 12 G = 14 G = 16 G = 18

4 1.346 1.334 1.261 1.140 1.047 1.265
5 0.497 0.389 0.375 0.374 0.368 0.365
6 0.622 0.412 0.402 0.391 0.377 0.347

Figure 3.13: Illustration of the effect of varying G and c using ordered hashing with
Cauchy distribution having N = 20, ni = 500 and k = 32 in scenario 14

greater than one while other ratios are below one.

We observe the effect of G on KS and CVM ratios as decreasing while keeping the

value of c fixed. This is similar to scenario 12 where we observed a decline in the perfor-

mance ratios with random hashing. For increase in values of c, we observe that the KS

and CVM ratios seem to decrease for a fixed G.

We also observe that values obtained with random hashing were higher than ordered

hashing, indicating a stronger effect of ordered hashing on the KS and CVM performance

ratios.

Another important observation could be made here from the fig 3.13 that the ratios

yield similar values to each other for G ≥ 12, than the performance of parameter values

when G < 12. The fig 3.13 shows that the lines are almost converging for values of G

greater than 12. This is interesting because a similar trend was also observed with the

52

Table 3.25: KS and CVM ratios for varying N using random hashing with Cauchy distri-
bution having ni = 500, c = 4, G = 8, ni = 500, k = 32 in Scenario 15

G KS performance ratio CVM performance ratio

20 1.722 8.338
50 1.168 2.518
100 0.751 0.989
250 0.584 0.700

random hashing in scenario 12 while varying G.

We will be now moving on to another set of parameter variation with Cauchy distri-

bution.

3.8.5 Scenario 15 - effect of varying N using random hashing

We now consider observing the effect of number of nodes N on the outcome of evaluation

measure using KS and CVM ratio statistics.

For N ∈ {20,50,100,250} with a fixed sample at each node ni = 500, we consider

hard thresholding with the option of wavelet decomposition level for scenario 15. All

other parameter values are kept the same with c = 4, G = 8 and k = 32 along with random

hashing for generating a univariate sample of interest.

We now observe the individual effect of parameter N on the outcome.

From the results in table 3.25, we find that for lower values of N, the performance

ratios are greater than one or closer to one indicating the effectiveness of our proposed

method in this scenario except when N = 250. This implies that the KS and CVM ratios

decrease as N increases and eventually fall below one. This resembles with our observa-

tion in scenario 7.

3.8.6 Scenario 16 - effect of varying N and ni using random hashing

The results from scenario 15 indicated an effect of varying N on the KS and CVM per-

formance ratios. Therefore, in scenario 16, we now consider varying the number of

nodes, N and the size of the samples there in, ni. For N ∈ {20,50,100,250} and ni ∈

53

Figure 3.14: Illustration of the effect of varying N using random hashing with Cauchy
distribution having ni = 500, c = 4, G = 8, ni = 500 and k = 32 in scenario 15

Table 3.26: KS ratio for varying N and ni using random hashing with Cauchy distribution
having c = 4, G = 8, k = 32 in Scenario 16

N ni = 500 ni = 2000 ni = 5000 ni = 8000 ni = 10000

20 1.722 1.276 1.488 1.478 1.867
50 1.168 1.267 1.115 0.899 0.943
100 0.751 0.589 0.604 0.609 0.739
250 0.584 0.395 0.492 0.408 0.550

Table 3.27: CVM ratio for varying N and ni using random hashing with Cauchy distribu-
tion having c = 4, G = 8, k = 32 in Scenario 16

N ni = 500 ni = 2000 ni = 5000 ni = 8000 ni = 10000

20 8.338 5.031 5.659 6.112 4.285
50 2.518 3.292 3.028 4.022 1.449
100 0.989 1.065 0.583 1.446 1.454
250 0.700 0.488 0.456 0.593 0.528

{500,2000,5000,8000,10000}, we consider keeping other parameter values G = 8, c = 4

and k = 32 with random hashing for generating a univariate data of interest. We also use

hard thresholding with dependency on the wavelet decomposition level.

We may refer to the tables 3.26 and 3.27 for the result of varying N and ni on the KS

and CVM ratios using random hashing.

54

Figure 3.15: Illustration of the effect of varying N and ni using random hashing with
Cauchy distribution having c = 4, G = 8 and k = 32 in scenario 16

From the results, we find that not all performance ratios are greater than one. The

ratios are below one for higher values of N for a particular ni. We also observe that for a

fixed ni, the performance ratios decrease with increase in N. Also, the performance ratios

seem to decline as ni increases for a fixed N.

3.8.7 Scenario 17 - effect of varying N using ordered hashing

In Scenario 17, we consider varying N between the values of {20,50,100,250} using

ordered hashing.

We keep the other parameter values c = 4, N = 20, ni = 500 and k = 32 fixed. We

also use hard thresholding with the dependency on the wavelet decomposition level.

The table 3.28 shows the results of the variation of N on the KS and CVM performance

ratios with ordered hashing in Cauchy distribution.

From the results, we observe the KS and CVM performance ratios are greater than

one or almost close to one. We also observe that similar to scenario 15, the performance

ratios decrease with increase in N.

55

Table 3.28: KS and CVM ratios for varying N using ordered hashing with Cauchy distri-
bution having ni = 500, c = 4, G = 8, k = 32 in Scenario 17

N KS performance ratio CVM performance ratio

20 1.429 1.346
50 1.064 1.179
100 1.126 0.893
250 0.978 0.986

Figure 3.16: Illustration of the effect of varying N using ordered hashing with Cauchy
distribution having ni = 500, c = 4, G = 8 and k = 32 in scenario 17

3.8.8 Scenario 18 - effect of varying N with ni using ordered hashing

Scenario 18 uses the same approach for generating a univariate data of interest as sce-

nario 17. However, we now consider varying two parameters at a time to observe their

combined effect on the KS and CVM ratios.

We consider N ∈ {20,50,100,250} and ni ∈ {500,2000,5000,8000,10000} and

keep all other parameter values the same as G = 8, c = 4 and k = 32 with ordered hashing

for generating a univariate sample. We also use hard thresholding with dependency on

the wavelet decomposition level lev dep as true.

The tables 3.29 and 3.30 show the results of the variation of N and ni on the KS and

CVM ratios.

We observe that the values of KS and CVM ratios are greater than one or closer to one

56

Table 3.29: KS ratio for varying N and ni using ordered hashing with Cauchy distribution
having c = 4, G = 8, k = 32 in Scenario 18

N ni = 500 ni = 2000 ni = 5000 ni = 8000 ni = 10000

20 1.429 1.382 1.063 1.386 1.200
50 1.064 1.235 1.083 1.091 1.441
100 1.126 1.093 1.152 0.813 1.128
250 0.978 0.939 1.278 0.663 0.501

Table 3.30: CVM ratio for varying N and ni using ordered hashing with Cauchy distribu-
tion having c = 4, G = 8, k = 32 in Scenario 18

N ni = 500 ni = 2000 ni = 5000 ni = 8000 ni = 10000

20 1.346 2.188 1.949 2.342 1.757
50 1.179 1.599 1.313 2.296 1.201
100 0.893 1.148 1.462 0.676 1.282
250 0.986 0.935 1.460 0.373 0.259

Figure 3.17: Illustration of the effect of varying N and ni using ordered hashing with
Cauchy distribution having c = 4, G = 8 and k = 32 in scenario 18

57

for some values indicating the effectiveness of our method in this scenario.

There seems to be a decreasing trend as N increases for a fixed ni. This is similar to

scenario 16 where KS and CVM ratios decreased as N increased for a fixed ni. We also

observe that the KS and CVM performance ratios seem to increase as ni increases for a

fixed N.

3.9 Gamma Distribution

In this section, we will conduct experiments based on what we have learned from previous

two distribution sections (Normal and Cauchy). We will explore fewer combinations of

parameters and parameter values in this section.

So far, we have observed that KS and CVM ratios display a decreasing trend while

varying parameter G and N. Both parameter variations have the same effect irrespective

of using random hashing or ordered hashing for generating a univariate data of interest

for our study.

For the next set of simulations, we make a subjective decision based on our obser-

vations to not consider single parameter variations. However, we are still interested in

observing the effect of varying two parameters at a time on the KS and CVM perfor-

mance ratios.

Also, because of close performance in KS and CVM ratios for values of G above 12

in previous two distributions, we will consider varying G between the values {8,10,12}

for both random hashing and ordered hashing method of simulating our univariate data of

interest.

We now begin varying parameters G and c in scenario 19 to observe their combined

effects.

58

Table 3.31: KS ratio for varying G and c using random hashing with Gamma distribution
having N = 20, ni = 500, k = 32 in Scenario 19

c G= 8 G= 10 G= 12

4 1.674 1.530 1.462
5 1.950 1.820 1.692
6 2.438 2.235 2.209

Table 3.32: CVM ratio for varying G and c using random hashing with Gamma distribu-
tion having N = 20, ni = 500, k = 32 in Scenario 19

c G= 8 G= 10 G= 12

4 4.663 4.711 4.648
5 6.863 6.535 6.070
6 8.317 7.499 7.318

3.9.1 Scenario 19 - effect of varying G and c using random hashing

In Scenario 19, we consider varying parameter G along with the common sample size c

to observe their combined effect on the performance ratios and compare with the results

of scenarios 4 and 12 in Normal and Cauchy distributions respectively.

We consider G ∈ {8,10,12} and c ∈ {4,5,6} while keeping other parameter values

as N = 20, ni = 500 and k = 32. We use random hashing for generating univariate data of

interest. We also use hard thresholding with wavelet decomposition level dependency.

We may refer to the tables 3.31 and 3.32 for studying the results of the variation of G

and c on the KS and CVM performance ratio.

We observe that all KS and CVM ratios are greater than one indicating the effective-

ness of our method. Our findings resemble with the results obtained in scenario 4 and

12. We observe that the performance ratios decrease as G increases for a fixed c. As c

increases, the KS and CVM ratios seem to increase as well.

3.9.2 Scenario 20 - effect of varying G and c using ordered hashing

The approach for data simulation in scenario 20 is the same as scenario 19. However,

we now consider varying two parameters using ordered hashing for generating univariate

59

Figure 3.18: Illustration of the effect of varying G and c using random hashing with
Gamma distribution having N = 20, ni = 500 and k = 32 in scenario 19

Table 3.33: KS ratio for varying G and c using ordered hashing with Gamma distribution
having N = 20, ni = 500, k = 32 in Scenario 20

c G = 8 G = 10 G = 12

4 1.358 1.065 1.312
5 0.971 0.771 0.754
6 0.655 0.602 0.584

Table 3.34: CVM ratio for varying G and c using ordered hashing with Gamma distribu-
tion having N = 20, ni = 500, k = 32 in Scenario 20

c G = 8 G = 10 G = 12

4 1.298 1.426 1.321
5 0.593 0.432 0.432
6 0.672 0.459 0.448

data of interest.

We consider G ∈ {8,10,12} and c ∈ {4,5,6} and keep other parameter values

the same as N = 20, ni = 500 and k = 32. We also use hard thresholding along with

dependency on the wavelet decomposition level.

The tables 3.33 and 3.34 show the results of the varying G and c on the KS and CVM

ratios.

From the results, we find only a few KS and CVM ratios greater than one while most

60

Figure 3.19: Illustration of the effect of varying G and c using ordered hashing with
Gamma distribution having N = 20, ni = 500 and k = 32 in scenario 20

ratios are obsrved below one.

We observe that the KS and CVM ratios seem to be decreasing as G increases. How-

ever, unlike scenario 19, as c increases, the performance ratios based on KS and CVM

statistics also decrease.

We also observe that the ratios obtained with random hashing were higher than ordered

hashing, indicating a stronger effect of ordered hashing on the KS and CVM performance

ratios.

We will be now moving on to another set of parameter variation with Cauchy distri-

bution.

3.9.3 Scenario 21 - effect of varying N and ni using random hashing

In scenario 21, we now consider varying the number of nodes, N and the size of the

samples there in, ni. We vary N between the values {20,50,100,250} and ni between the

values {500,2000,5000,8000,10000}.

We consider keeping other parameter values as G = 8, c = 4 and k = 32. We use

random hashing for generating univariate data of interest. We also use hard thresholding

61

Table 3.35: KS ratio for varying N and ni using random hashing with Gamma distribution
having G = 8, c = 4, k = 32 in Scenario 21

N ni = 500 ni= 2000 ni= 5000 ni= 8000 ni= 10000

20 1.674 1.934 1.494 1.749 1.581
50 1.303 1.066 0.964 1.138 0.878
100 1.134 0.828 0.637 0.731 0.733
250 0.620 0.563 0.479 0.476 0.432

Table 3.36: CVM ratio for varying N and ni using random hashing with Gamma distribu-
tion having G = 8, c = 4, k = 32 in Scenario 21

N ni = 500 ni = 2000 ni = 5000 ni = 8000 ni = 10000

20 4.663 6.573 5.963 7.457 9.305
50 5.616 2.462 2.071 3.232 1.834
100 3.298 1.351 1.225 1.370 0.988
250 1.080 0.801 0.463 0.413 0.549

Figure 3.20: Illustration of the effect of varying N and ni using ordered hashing with
Gamma distribution having G = 8, c = 4 and k = 32 in scenario 21

with the wavelet decomposition level dependency.

We may refer to the tables 3.35 and 3.36 for the observing the effect of varying N and

ni on the KS and CVM ratios using random hashing.

From the results, we find that performance ratios based on KS and CVM statistics are

greater than one or closer to one for lower values of N.

62

Table 3.37: KS ratio for varying N and ni using ordered hashing with Gamma distribution
having G = 8, c = 4, k = 32 in Scenario 22

N ni = 500 ni = 2000 ni = 5000 ni = 8000 ni = 10000

20 1.358 1.889 1.739 1.781 1.846
50 1.137 1.850 2.570 2.459 2.559
100 1.002 1.483 2.063 2.520 2.042
250 1.041 1.295 1.563 1.682 1.811

Table 3.38: CVM ratio for varying N and ni using ordered hashing with Gamma distribu-
tion having G = 8, c = 4, k = 32 in Scenario 22

N ni = 500 ni = 2000 ni = 5000 ni = 8000 ni = 10000

20 1.298 1.694 3.096 7.495 5.086
50 1.316 1.768 2.419 3.542 5.352
100 1.078 1.407 1.947 2.258 2.126
250 1.147 1.251 1.608 1.522 2.026

We also observe that for a fixed ni, the performance ratios decrease with increase in N.

However, the performance ratios seem to decrease while increasing ni for a fixed N. This

resembles with our findings from scenario 16 in Cauchy distribution and from scenario 8

in Normal distribution.

3.9.4 Scenario 22 - effect of varying N and ni using ordered hashing

For scenario 22, we now consider varying two parameters at a time to observe their com-

bined effect on the KS and CVM ratios.

We consider N ∈ {20,50,100,250} and ni ∈ {500,2000,5000,8000,10000} and

keep all other parameter values the same as G = 8, c = 4 and k = 32. We use ordered

hashing for generating univariate sample of interest. We also use hard thresholding with

dependency on the wavelet decomposition level.

The tables 3.37 and 3.38 show the results of the variation of N and ni on the KS and

CVM ratios.

In table 3.37 and 3.38, we observe that all KS and CVM performance ratios are greater

than one, suggesting the remarkable effectiveness of our proposed method in this scenario.

This is unlike our observation in scenario 21 where not all ratios were above one.

63

Figure 3.21: Illustration of the effect of varying N and ni using ordered hashing with
Gamma distribution having G = 8, c = 4 and k = 32 in scenario 22

For a fixed ni, the performance ratios seems to decline as N increases. This is similar

to our observation in scenario 21 with random hashing. However, the KS and CVM ratios

increase as ni increases for a fixed N. This observation is unlike our findings in scenario

21, where the ratios seemed to be decreasing as ni increased for a fixed N.

Unlike our previous observation in Cauchy distribution in scenario 18 but similar to

our observation in Normal distribution in scenario 10, we find that the ratios obtained

with ordered hashing in scenario 22 are comparably higher than the ratios with random

hashing in scenario 21.

3.10 Mixture of Normals Distribution

In this section, we conduct the same experiments as in Gamma distribution section. We

are still interested in observing the effect of varying two parameters at a time on the KS

and CVM performance ratios. We consider the same parameters and parameter values.

We now begin varying parameters G and c in scenario 23 to observe their combined

effects on the performance ratios.

64

Table 3.39: KS ratio for varying G and c using random hashing with Mixture of Normals
having N = 8, ni = 500, k = 32 in Scenario 23

c G = 8 G = 10 G = 12

4 1.032 1.030 1.033
5 1.004 1.002 0.996
6 1.018 1.016 1.022

Table 3.40: CVM ratio for varying G and c using random hashing with Mixture of Nor-
mals having N = 8, ni = 500, k = 32 in Scenario 23

c G = 8 G = 10 G = 12

4 1.083 1.078 1.079
5 1.046 1.051 1.051
6 1.053 1.072 1.079

3.10.1 Scenario 23 - effect of varying G and c using random hashing

In scenario 23, we consider varying G and c and observe their combined effect on the

performance ratios. For G ∈ {8,10,12} and c ∈ {4,5,6}, we keep the other parameter

values as N = 20, ni = 500 and k = 32. We use random hashing for generating univariate

data of interest. We also use hard thresholding with wavelet decomposition level depen-

dency.

The tables 3.39 and 3.40 show the results of the variation.

We observe that all the ratios are greater than one, indicative of the effectiveness of

our method in this scenario. However, unlike our previous observations with Normal,

Cauchy and Gamma distributions, the results from this experiment showed consistent KS

and CVM ratios without much variation as G increases. The same consistency is observed

in the performance ratios as c increases.

Similar to Models with other distributions, we observe a rise in measurement of KS

and CVM statistics with increase in c. However, it seems with increase in G value, the

KS and CVM measure also increases or remains the same throughout.

65

Figure 3.22: Illustration of the effect of varying G and c using random hashing with
Mixture of Normals having N = 20, ni = 500 and k = 32 in scenario 23

Table 3.41: KS ratio for varying G and c using ordered hashing with Mixture of Normals
having N = 8, ni = 500, k = 32 in Scenario 24

c G = 8 G = 10 G = 12

4 1.009 1.006 1.006
5 0.992 0.990 0.989
6 0.990 0.985 0.982

Table 3.42: CVM ratio for varying G and c using ordered hashing with Mixture of Nor-
mals having N = 8, ni = 500, k = 32 in Scenario 24

c G = 8 G = 10 G = 12

4 1.001 0.998 0.998
5 0.986 1.001 1.004
6 0.999 1.003 1.008

3.10.2 Scenario 24 - effect of varying G and c using ordered hashing

Similar to scenario 23, we consider varying G and c together,but with ordered hashing

this time. We keep the same parameters and parameter values for our experiment. We can

see the results in tables $3.41 and 3.42.

In this scenario, we observe all values are greater than one or almost close to one, sim-

ilar to scenario 23. The performance ratios seem to be more or less stable as G increases

66

Figure 3.23: Illustration of the effect of varying G and c using ordered hashing with
Mixture of Normals having N = 20, ni = 500 and k = 32 in scenario 24

for a fixed c. We also find similar behavior of consistency on the performance ratios upon

increasing c for a fixed G. This resembles with our findings from scenario 23 with random

hashing.

3.10.3 Scenario 25 - effect of varying N and ni using random hashing

In scenario 25, we consider varying the number of nodes, N and the size of the samples

there in, ni. We vary N between the values {20,50,100,250} and ni between the values

{500,2000,5000,8000,10000}.

We consider keeping other parameter values as G = 8, c = 4 and k = 32. We use

random hashing for generating univariate data of interest. We also use hard thresholding

with the wavelet decomposition level dependency.

We may refer to the tables 3.43 and 3.44 for results.

We observe all the ratios are greater than one. The ratios are stable as N increases for

a fixed G. Also, the ratios remain stable as ni inceases for a fixed N.

67

Table 3.43: KS ratio for varying N and ni using random hashing with Mixture of Normals
having G = 8, c = 4, k = 32 in Scenario 25

N ni = 500 ni = 2000 ni = 5000 ni = 8000 ni = 10000

20 1.032 1.017 1.029 1.037 1.013
50 1.011 1.005 1.002 1.009 1.010
100 1.003 1.006 1.004 0.997 1.005
250 0.998 0.991 0.998 0.995 0.990

Table 3.44: CVM ratio for varying N and ni using random hashing with Mixture of Nor-
mals having G = 8, c = 4, k = 32 in Scenario 25

N ni = 500 ni = 2000 ni = 5000 ni = 8000 ni = 10000

20 1.083 1.023 1.063 1.036 1.049
50 1.000 1.018 0.991 1.019 1.002
100 1.011 1.010 1.017 1.008 1.018
250 1.019 1.002 1.004 1.012 1.003

Figure 3.24: Illustration of the effect of varying N and ni using random hashing with
Mixture of Normals having G = 8, c = 4 and k = 32 in scenario 25

68

Table 3.45: KS ratio for varying N and ni using ordered hashing with Mixture of Normals
having G = 8, c = 4, k = 32 in Scenario 26

N ni = 500 ni = 2000 ni = 5000 ni = 8000 ni = 10000

20 1.009 1.011 1.009 1.012 1.007
50 1.004 1.005 1.004 1.004 1.004
100 1.001 1.002 1.002 1.003 1.003
250 1.001 1.000 1.000 1.001 1.001

Table 3.46: CVM ratio for varying N and ni using ordered hashing with Mixture of Nor-
mals having G = 8, c = 4, k = 32 in Scenario 26

N ni = 500 ni = 2000 ni = 5000 ni = 8000 ni = 10000

20 1.001 1.014 0.998 0.990 0.989
50 0.998 1.001 0.996 0.998 0.997
100 1.001 1.000 0.999 0.999 0.998
250 1.000 0.999 1.000 0.999 1.000

3.10.4 Scenario 26 - effect of varying N and ni using ordered hashing

For scenario 26, we consider varying the same two parameters, N and ni, similar to sce-

nario 25, with ordered hashing to observe their combined effect on the KS and CVM

ratios.

For N ∈ {20,50,100,250} and ni ∈ {500,2000,5000,8000,10000}, we keep all

other parameter values the same as G = 8, c = 4 and k = 32. We use ordered hashing for

generating univariate sample of interest. We also use hard thresholding with dependency

on the wavelet decomposition level.

The tables 3.45 and 3.46 show the results of the variation of N and ni on the KS and

CVM ratios.

Once again, we observe the KS and CVM statistics yield performance ratios almost

close to one. The ratios indicate that our proposed method to estimate a wavelet-based

EDF by compression strategy is effective in this scenario.

For a fixed ni, the ratios seem to remain stable as N increases. Also, the ratios are

consistent when ni increases for a fixed N.

We can make another observation here that, unlike other distributions, the ratios are

not much higher for random hashing from ordered hashing in Mixture of Normals.

69

Figure 3.25: Illustration of the effect of varying N and ni using ordered hashing with
Mixture of Normals having G = 8, c = 4 and k = 32 in scenario 26

Now that we have completed our list of simulations, we may refer to the table 3.47

displaying if the KS and CVM performance ratios are above one or below one across all

distributions.

Table 3.47: Outcomes of KS and CVM ratios across all dis-

tributions

Scenarios Distributions Favorable Unfavorable Mixed

1 Normal ×

2 Normal ×∗

3 Normal ×

4 Normal ×

5 Normal ×∗

6 Normal ×

7 Normal ×

8 Normal ×

9 Normal ×

10 Normal ×

70

Scenarios Distributions Favorable Unfavorable Mixed

11 Cauchy ×

12 Cauchy ×

13 Cauchy ×

14 Cauchy ×

15 Cauchy ×

16 Cauchy ×

17 Cauchy ×∗

18 Cauchy ×∗

19 Gamma ×

20 Gamma ×

21 Gamma ×

22 Gamma ×

23 Mixture ×

24 Mixture ×

25 Mixture ×

26 Mixture ×

×∗ = the ratios are mostly above one, with a few below one.

We may note from the experiments that some of the scenarios may yield KS and CVM

ratios much above one and some may not. The table 3.47 displays favorable result if

hundred% of performance ratios are above one, unfavorable if hundred% of performance

ratios are below one and mixed if the ratios are both above one and below one. For

some scenarios, we may find that ratios are very close to one, and hence, considered as a

favorable result.

We will discuss our interpretations from the performed experiments in the next sec-

tion.

71

3.11 Discussion of Results

Through out our experiments, we maintained similar conditions of experimentation vary-

ing only a few parameters at a time. We conducted independent and combined simulations

while keeping the conditions of thresholding (threshold type and wavelet decomposition

level dependency) and SRS constant throughout.

Monte Carlo simulation allowed us to check for effectiveness of our method while

varying a few parameters. Many scenarios resulted in favorable results where the KS and

CVM performance ratios were greater than one. We also identified a trend of the effect of

parameters variation using KS and CVM ratio statistics for the parameters that we varied.

We studied the observations and interpreted the results as below.

1. Hard thresholding yields better results than soft thresholding. Hard and soft thresh-

olding are often used for denoising signals. For the purpose of compression, the

performance of soft thresholding was much lower than hard thresholding. There-

fore, we were quickly able to interpret the potential of hard thresholding in the

context of compression. Soft thresholding introduces bias during thresolding and

shrinks the performance ratio below one, yielding smoother estimates of CDF. In

our study, we do not want smoother estimates, rather absolute estimates, resulting

in better compression by hard thresholding.

2. Ordered hashing has a stronger effect than random hashing. The KS and CVM ra-

tio statistics was found to be higher with random hashing than with ordered hashing

across all distributions. More notably, scenarios varying N and ni for any distribu-

tion type with random hashing yielded in ratios much higher than with ordered

hashing. However, we also found that the ratios were more or less stable with

comparatively less difference between each observation for scenarios with ordered

hashing than with random hashing, indicating a controlled effect of ordered hashing

on the outcome.

3. Mixture of Normals yielded different results. Experiments using Mixture of Nor-

72

mals resulted differently from the trend observed with all other distributions. The

scenarios in Mixture of Normals yielded stable ratios greater than one or much

closer to one. Also, unlike our observation with other distributions, scenarios with

random hashing did not yield much higher performance ratios than with ordered

hashing.

4. Through out the experiments, a few parameters behaved similarly across all dis-

tributions and sample simulations. An increase in G and N resulted in a decrease

in KS and CVM performance ratios. We observed a mixed trend in the ratios for

variations in ni and c parameter values.

In summary, we have conducted experiments using simulation in different scenarios

to evaluate the potential of our wavelet based compression method. The results of scenar-

ios that yielded in KS and CVM performance ratios greater than one indicated that our

method was effective in estimating CDF based on compressed coefficients using wavelets.

There were a few scenarios which yielded performance ratios below one.

It is important to realize that the behavior of the estimated EDF can be different at

jumps. The jumps which are smooth and homogeneous are well localized. However,

there may be occurrence of non-homogeneous portions of the estimated function, where

the localization of jumps may not be as clean. The error entailed by the estimation of the

EDF based on compressed coefficients during recovery may be, hence, reflected as a re-

sult of the evaluation measure of the reconstructed EDF using KS and CVM performance

ratios. However, based on the results from our experiments, we can claim that the method

was effective in successfully reconstructing the CDF estimate using few compressed co-

efficients. This was evident from the results in the default scenario with fixed parameter

values and the MC simulation with few parameter variations.

73

Conclusion

In this study, we determined the EDF of a non-parametric estimate of a univariate sample

based on a limited budget of allocated resources for communication. The strategy uses a

grid based mapping of common sample data points available at every node in a distributed

paradigm. We use the wavelet based compression strategy for determining the CDF esti-

mate, which outperformed the benchmark EDF while respecting the same communication

budget. Our study emphasizes on compressing the number of coefficients produced dur-

ing wavelet transform by careful preserving of only a few selected coefficients.

As the experiments showed, our method was successfully able to produce a good esti-

mate of CDF encouraging a strategy based on compression using wavelets that ultimately

depends on a few parameters for CDF estimation within a set communication budget.

The evaluation measure of the reconstructed EDF was based on KS and CVM perfor-

mance ratios which indicated the relative improvement in performance when using our

wavelet based approach. It would be interesting to explore methods which are able to

perform equally good, further improving upon our results.

In this thesis, we conducted a comprehensive Monte Carlo simulation by varying

parameters to observe the effect on the outcome statistics to check effectiveness of our

method in respect to the variation in parameter values. Our work showed promising re-

sults confirming the usefulness of the wavelet based compression method in CDF esti-

mation. There is a range of parameter values which showed our method worked better.

The scenarios which yielded marginal improvement could be explored with other meth-

ods which may yield better results. With a better compression strategy, one could also

hope to identify the scope of values for which the parameters work best. Another study

could also check to find if sensibility to the common sample could have any effect on the

results and observations in the study.

We hope that future studies use our proposed method as a building block for devel-

oping algorithms for statistical inferences using goodness-of-fit tests and bootstrapping.

With growing needs for faster computation in Big Data technologies and remarkable ap-

plicability of wavelets for compression purposes, there is a broad scope of exploration

and development of wavelet based methods for statistical inference.

76

Bibliography

[1] F. Abramovich, T. C. Bailey, and T. Sapatinas. Wavelet analysis and its statistical

applications. Journal of the Royal Statistical Society: Series D (The Statistician),

49(1):1–29, 2000.

[2] L. Andersson, N. Hall, B. Jawerth, and G. Peters. Wavelets on closed subsets of the

real line. Recent advances in wavelet analysis, 3:1–61, 1993.

[3] A. Antoniadis. Wavelets in statistics: a review. Journal of the Italian Statistical

Society, 6(2):97–130, 1997.

[4] L. Baringhaus and N. Henze. A goodness of fit test for the poisson distribution based

on the empirical generating function. Statistics & Probability Letters, 13(4):269–

274, 1992.

[5] R. E. Barlow and H. D. Brunk. The isotonic regression problem and its dual. Journal

of the American Statistical Association, 67(337):140–147, 1972.

[6] D. Caragea, A. Silvescu, and V. Honavar. A framework for learning from distributed

data using sufficient statistics and its application to learning decision trees. Interna-

tional Journal of Hybrid Intelligent Systems, 1(1-2):80–89, 2004.

[7] X. Chen and M.-g. Xie. A split-and-conquer approach for analysis of extraordinarily

large data. Statistica Sinica, pages 1655–1684, 2014.

77

[8] C.-T. Chu, S. Kim, Y.-A. Lin, Y. Yu, G. Bradski, K. Olukotun, and A. Ng. Map-

reduce for machine learning on multicore. Advances in neural information process-

ing systems, 19, 2007.

[9] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.

Commun. ACM, 51(1):107–113, jan 2008.

[10] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.

Communications of the ACM, 51(1):107–113, 2008.

[11] R. A. DeVore, B. D. Jawerth, and B. J. Lucier. Data compression using wavelets:

Errors, smoothness, and quantization. In Data compression conference, pages 186–

195, 1991.

[12] D. L. Donoho and I. M. Johnstone. Adapting to unknown smoothness via wavelet

shrinkage. Journal of the american statistical association, 90(432):1200–1224,

1995.

[13] D. L. Donoho and J. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage.

biometrika, 81(3):425–455, 1994.

[14] A. Graps. An introduction to wavelets. IEEE computational science and engineer-

ing, 2(2):50–61, 1995.

[15] A. HAAR. De cultuur in de in 1906 in zeeland ondergelopen polders. Versl. en Med.

Dir, 500:86–117, 1910.

[16] V. Honavar, L. Miller, and J. Wong. Distributed knowledge networks. In Information

Technology Conference, IEEE, 10 1998.

[17] V. Honavar, S. Wong, and A. Mikler. An object oriented approach to simulating

large communication networks. Journal of Systems and Software, 40(2):151–164,

1998.

78

[18] Y. Hu, H. Chen, J.-g. Lou, and J. Li. Distributed density estimation using non-

parametric statistics. In 27th International Conference on Distributed Computing

Systems (ICDCS’07), pages 28–28. IEEE, 2007.

[19] M. I. Jordan. On statistics, computation and scalability. Bernoulli, 19(4):1378–1390,

2013.

[20] A. Kleiner, A. Talwalkar, P. Sarkar, and M. I. Jordan. A scalable bootstrap for

massive data. Journal of the Royal Statistical Society: Series B (Statistical Method-

ology), 76(4):795–816, 2014.

[21] N. Lin and R. Xi. Aggregated estimating equation estimation. Statistics and its

Interface, 4(1):73–83, 2011.

[22] P. Ma, M. Mahoney, and B. Yu. A statistical perspective on algorithmic leveraging.

In International Conference on Machine Learning, pages 91–99. PMLR, 2015.

[23] S. G. Mallat. A theory for multiresolution signal decomposition: the wavelet

representation. IEEE transactions on pattern analysis and machine intelligence,

11(7):674–693, 1989.

[24] P. Müller and B. Vidakovic. Bayesian inference in wavelet-based models, volume

141. Springer Science & Business Media, 2012.

[25] J.-F. Plante. Nonparametric adaptive likelihood weights. Canadian Journal of Statis-

tics, 36(3):443–461, 2008.

[26] C. A. Salma, B. Tekinerdogan, and I. N. Athanasiadis. Domain-driven design of

big data systems based on a reference architecture. In Software Architecture for Big

Data and the Cloud, pages 49–68. Elsevier, 2017.

[27] N. Shakhovska, N. Boyko, Y. Zasoba, and E. Benova. Big data processing technolo-

gies in distributed information systems. Procedia Computer Science, 160:561–566,

2019.

79

[28] X. Shen and A. Choudhary. A high-performance distributed parallel file system

for data-intensive computations. Journal of Parallel and Distributed Computing,

64(10):1157–1167, 2004.

[29] X. Shen, A. Choudhary, C. Matarazzo, and P. Sinha. A distributed multi-storage re-

source architecture and i/o performance prediction for scientific computing. Cluster

Computing, 6(3):189–200, 2003.

[30] Y. Sheng. Wavelet transform, chapter 10. CRC and IEEE Press, Boca Raton, 1995.

[31] L. Tran. From fourier transforms to wavelet analysis: Mathematical concepts and

examples. 2006.

[32] S. R. Upadhyaya. Parallel approaches to machine learning—a comprehensive sur-

vey. Journal of Parallel and Distributed Computing, 73(3):284–292, 2013.

[33] C. Wang, M.-H. Chen, E. Schifano, J. Wu, and J. Yan. A survey of statistical meth-

ods and computing for big data. arXiv preprint arXiv:1502.07989, 2015.

80

	Abstract
	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	Introduction
	Literature Review
	Big Data technologies
	Statistical Inference in a distributed infrastructure
	Wavelets

	Methodology
	Data and Notation
	Mapping data to grid
	Estimates of the CDF
	EDF based on our method of compression
	EDF based on SRS
	EDF based on true distribution

	Wavelets
	Compression strategy
	Wavelet Transform
	Inverse Wavelet transform

	Simulation Results
	Evaluation Measures
	Monte Carlo Simulation
	Distributions
	Simulation of data
	Simulation flow
	Default Scenario
	Normal Distribution
	Scenario 1 - effect of varying SRS value with Random hashing
	Scenario 2 - effect of varying thresholding type and wavelet decomposition level with random hashing
	Scenario 3 - effect of varying G using random hashing
	Scenario 4 - effect of varying G and c using random hashing
	Scenario 5 - effect of varying G using ordered hashing
	Scenario 6 - effect of varying G and c using ordered hashing
	Scenario 7 - effect of varying N using random hashing
	Scenario 8 - effect of varying N and n_i using random hashing
	Scenario 9 - effect of varying N using ordered hashing
	Scenario 10 - effect of varying N with n_i using ordered hashing

	Cauchy Distribution
	Scenario 11 - effect of varying G using random hashing
	Scenario 12 - effect of varying G and c using random hashing
	Scenario 13 - effect of varying G using ordered hashing
	Scenario 14 - effect of varying G and c using ordered hashing
	Scenario 15 - effect of varying N using random hashing
	Scenario 16 - effect of varying N and n_i using random hashing
	Scenario 17 - effect of varying N using ordered hashing
	Scenario 18 - effect of varying N with n_i using ordered hashing

	Gamma Distribution
	Scenario 19 - effect of varying G and c using random hashing
	Scenario 20 - effect of varying G and c using ordered hashing
	Scenario 21 - effect of varying N and n_i using random hashing
	Scenario 22 - effect of varying N and n_i using ordered hashing

	Mixture of Normals Distribution
	Scenario 23 - effect of varying G and c using random hashing
	Scenario 24 - effect of varying G and c using ordered hashing
	Scenario 25 - effect of varying N and n_i using random hashing
	Scenario 26 - effect of varying N and n_i using ordered hashing

	Discussion of Results

	Conclusion
	Bibliography

