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Résumé 

Les ports maritimes jouent un rôle essentiel dans le commerce maritime mondial. Pourtant, en 

raison de leur situation dans des zones côtières et fluviales de faible altitude, les ports maritimes 

sont très vulnérables aux événements induits par les changements climatiques, notamment 

l'élévation du niveau de la mer, les tempêtes tropicales violentes, les inondations intérieures, les 

sécheresses et les épisodes de chaleur extrême. Les enjeux sont potentiellement importants : 

environ 80 % du commerce mondial en volume se fait par voie maritime et le commerce maritime 

total devrait augmenter de 2,4 % par an au cours de la période 2022-2026. Ces vulnérabilités 

obligent les ports maritimes à investir dans l'adaptation aux événements induits par les 

changements climatiques afin d'assurer la continuité des chaînes d'approvisionnement et de 

devenir plus réactifs, résilients et agiles. Outre l'adaptation aux changements climatiques, les ports 

maritimes investissent dans leur capacité afin de répondre aux besoins futurs du transport 

maritime, de réduire les retards dus à la congestion et de rester compétitifs. Sous l'impulsion de la 

mondialisation, de la libéralisation des échanges et des progrès technologiques, la concurrence 

portuaire s'est intensifiée au cours de la dernière décennie, ce qui a incité les ports à mieux répondre 

aux besoins des chargeurs et des autres parties prenantes. Ainsi, les décisions d'investissement et 

de tarification prises par les ports maritimes peuvent être largement influencées par la concurrence 

interportuaire. Dans ce contexte, nous développons un modèle de théorie des jeux pour déterminer 

les décisions stratégiques d'un port maritime sur les investissements de capacité et d'adaptation, 

ainsi que sur les frais de service, en tenant compte de la concurrence avec d'autres ports maritimes 

et de l'incertitude quant aux événements induits par les changements climatiques. Le modèle 

comporte deux ports maritimes et un continuum d'expéditeurs. Nous considérons trois cas de 

concurrence basés sur les structures de propriété portuaire : les ports qui maximisent les profits, 

les ports qui maximisent le bien-être et le résultat de premier choix où un gouvernement central 

prend des décisions au nom des deux ports avec l'objectif de maximiser le bien-être global. Nous 

constatons que lorsqu'un port est confronté à un risque climatique plus élevé, ce port investira 

moins dans la capacité afin d'exposer moins d'actifs à risque, mais n'augmentera pas toujours son 

investissement dans la protection, car une capacité moindre peut justifier un investissement 

moindre dans la protection. Son port concurrent, en revanche, augmenterait à la fois la capacité et 

les investissements de protection. Les ports qui maximisent le bien-être et ceux qui sont les 
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meilleurs investissent davantage dans la protection et la capacité mais facturent moins de frais de 

service que les ports qui maximisent les profits. Lorsque le risque climatique d'un port est faible, 

le gouvernement central donne la priorité aux investissements d'un port par rapport à l'autre, ce qui 

se traduit par un niveau d'investissement nettement plus élevé dans le port à faible risque et un 

niveau d'investissement plus faible dans le port à haut risque, par rapport au cas de maximisation 

du bien-être. Dans les cas de maximisation du bien-être et de premier choix, il peut y avoir des 

solutions de coin où les frais portuaires sont fixés à zéro, ce qui indique que les ports maritimes 

essaient de satisfaire toute la demande du marché au détriment de leurs profits. 
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Abstract 

Seaports play a vital role in global maritime commerce. Yet, due to their location in low-lying 

coastal and riverine areas, seaports are highly vulnerable to climate-change induced events 

including sea level rise, severe tropical storms, inland flooding, droughts, and extreme heat events. 

Much is potentially at stake – approximately 80 percent of all global trade by volume occurs by 

maritime transport and total maritime trade is forecasted to grow 2.4 percent annually over the 

2022–2026 period. Such vulnerabilities necessitate seaports to undertake investment in adaptation 

against climate-change induced events to ensure continuity in supply chains and to become more 

responsive, resilient, and agile. In addition to adaptation to climate change, seaports undertake 

investment in capacity to accommodate the future needs of the maritime transport, to minimize 

delays due to congestion and to stay competitive. Driven by globalization, trade liberalization, and 

technological advancement, port competition has intensified in the past decade inducing ports to 

become more responsive to the needs of shippers and other stakeholders. Thus, the investment and 

pricing decisions undertaken by seaports can be largely influenced by inter-port competition. 

Against this background, we develop a game theoretic model to determine a seaport’s strategic 

decisions on capacity and adaptation investments, as well as service charge, considering 

competition with other seaports and uncertainty about climate-change induced events. The model 

features two seaports and a continuum of shippers. We consider three cases of competition based 

on port ownership structures: profit-maximizing ports, welfare-maximizing ports, and first-best 

outcome where a central government makes decisions on behalf of the two ports with the objective 

of maximizing overall welfare. We find that when a port faces higher climate risk, this port would 

invest less in capacity to expose fewer assets at risk, but would not always increase its protection 

investment, as less capacity may warrant less protection investment. Its competing port, however, 

would increase both capacity and protection investments. Welfare-maximizing and first-best ports 

invest more in both protection and capacity but charge less service fees than profit-maximizing 

ports. When the climate risk at one port is low, the central government would prioritize investments 

of one port over the other, resulting in significantly higher investment level at the low-risk port 

and lower investment level at the high-risk port, compared to the welfare-maximizing case. Under 

both welfare-maximizing and first-best cases, corner solutions can happen where port charges are 

set to zero, indicating the seaports try to satisfy all market demand at the expense of their profits. 
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Chapter 1: Introduction 

Seaports (henceforth ports) are integral hubs of global maritime supply chains and have served as 

critical gateways of international trade (Jiang et al. 2020; Hossain et al. 2021). Global maritime 

trade has grown enormously in the last 25 years, and now accounts for over 80 per cent of the total 

annual volume of global trade (UNCTAD 2021). However, ports worldwide have been plagued 

with persistent challenges of climate change and capacity constraint, making it extremely crucial 

for them to develop and implement effective capacity enhancement and climate-change adaptation 

strategies (Nursey-Bray et al. 2013). Due to their location in low-lying coastal and riverine areas, 

ports are highly vulnerable to risks induced by climate change in terms of both their facilities and 

operations (Becker 2012). The past decade has witnessed substantial costs to global economy and 

welfare due to occurrence of natural disasters and climate-change related disruptions. These losses 

are expected to intensify in coming years with worsening climate situation (Izaguirre 2021; Ng et 

al. 2018). Despite rising climate-change related threats, global maritime trade has been rapidly 

increasing worldwide and is projected to grow 2.4 per cent annually over the next five years 

(UNCTAD 2021). The demand has been robust even during the Covid-19 pandemic, with 

approximately 75 per cent of ports witnessing the number of vessel calls to be similar or even 

higher in 2020 as compared to the same period in 2019 (Notteboom 2021; ILO 2021). As the 

maritime trade continues to grow, the infrastructure can no longer accommodate the increasing 

vessel traffic and port operations (Peters et al. 2001, OECD/ITF 2016). The problem further 

aggravates in times of global emergencies such as natural disaster, financial crisis and epidemics 

(De 2011; Notteboom 2014). 

Climate change has pushed to the forefront the importance of climate change adaptation vis-à-vis 

port management, due to the catastrophic consequences that can potentially propagate through 

supply chains (Burkett & Davidson 2013; UNCTAD 2017). The past decade has witnessed 

increased frequency and intensity of climate-change induced events (Becker 2018). For instance, 

damage to port infrastructure from previous hurricanes to ports in USA ranged from USD 2.2 

billion for Hurricane Katrina in 2005 to USD 46 million for Hurricane Florence in 2018 (Houtven 

2022). Economic losses from storm-related disruptions to port operations range from USD 65 

million at Port of Dalian, caused by a 5-day disruption due to Typhoon Lekima in 2019 to USD 
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10 million at the Port of Shanghai, caused by a 2-day disruption due to Typhoon Haikui in 2012 

(Lin 2020; Patel 2021). An evaluation of 141 incidences of storm-related disruptions across 74 

ports in 12 countries and 27 disasters found median disruption duration of 6 days (Verschuur 

2020). Verschuur (2020) also found that an increment of a 1-meter storm surge or 10 meters per 

second in wind speed is associated with a 2-day average increase in disruption duration. Volatile 

inland precipitation patterns further make ports prone to inland flooding and droughts. Flooding 

in Mississippi River in 2019 disrupted shipment of agricultural goods in USA, causing losses 

valued at almost USD 1 billion. In the same year, severe drought in the Panama Canal region 

caused global shipping industry between USD 230 million and USD 370 million. Higher global 

temperature and more extreme heat events induced by climate change cause substantial damage to 

shipping vessels and port infrastructure, in addition to disruption in port operations. Heatwaves in 

Australia in 2009 shut down sections of the Port of Melbourne for three days, causing work 

stoppages and resultant losses to productivity. These climate-related impacts are expected to 

intensify in coming years and are expected to cost the shipping industry USD 25 billion every year 

by 2100, attributable to annual damages to port infrastructure and operational disruptions (Houtven 

et al. 2022). Port adaptation investment to climate change (henceforth “protection investment”) is 

thereby necessary to enhance port resilience against such climate risks. Ports have increasingly 

been undertaking investments in surge barriers, revetments, infrastructure elevation, bulkheads, 

seawalls, dikes, etc. to enhance resilience (Randrianarisoa et al. 2020; Zheng et al. 2021). For 

instance, the Port of Long Beach is planning to reconstruct revetment and more than 400 feet of 

its dilapidated seawall next year. With an estimated cost of USD 2.6 million, this protection project 

will be funded by the Federal Emergency Management Agency and Rockport Public Works 

(Cronin 2021). The Port of Baltimore has been undertaking numerous adaptation measures to 

enhance its resilience to sea-level rise and flooding. Using the proceeds of a Transportation 

Investment Generating Economic Recovery (TIGER) grant received by the US government, the 

port set up a wet basin stormwater management system in its Fairfield Marine Terminal and 

enabled elevation of some of its important assets. The port also constructed stormwater vault at 

the Dundalk Marine Terminal (EESI 2020). However, choosing the right scale of protection 

investment is challenging due to uncertainty about frequency and intensity of disasters, rate of 
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climate change, and irreversibility of investment in physical infrastructure (Wang et al. 2022; Xia 

and Lindsey 2021). 

Despite rising intensity and frequency of climate-change induced events, global seaborne trade has 

been increasing rapidly. OECD & ITF (2019) projects maritime freight demand to witness annual 

growth of 3.6 percent through 2050 which is expected to triple maritime trade volume over the 

period. Over this period, containers moved are forecasted to increase by 73 percent globally to at 

least 2.2 billion per year by 2050 (OECD 2017; Housni et al., 2022). Based on such demand and 

trade estimates, port capacity is inadequate to meet demand as early as 2030 and capacity 

investment is pertinent to handle larger vessels and increased volume of cargo traffic (OECD 2012; 

UNCTAD 2021; Luo et al. 2012; OECD & ITF 2016; UNCTAD 2021). Ports with reliable and 

sufficient capacity will benefit by eliminating cargo handling delays due to port congestion and 

high traffic densities (Zhen et al. 2019; Cong et al. 2020). We see an increasing number of ports 

investing in capacity enhancements. For instance, Port of Montreal is planning construction of a 

new container terminal in Contrecœur with an estimated investment outlay of $850 million. With 

the capacity to handle 1.15 million TEUs per year, this container terminal is expected to be fully 

operational by 2026 (Port of Montreal 2022). In 2011, Port of Long Beach planned “Middle Harbor 

Terminal Redevelopment Project” costing USD 1.49 billion to combine its two aging shipping 

terminals into a mega-terminal. The terminal completed in August 2021 has an annual capacity of 

3.3 million TEUs, which is more than double the capacity of the two terminals it is replacing (Port 

of Long Beach 2021). In 2017, Royal Vopak and AltaGas started constructing Canada’s first 

propane export facility, Ridley Island Propane Export Terminal, on a property leased from the 

Prince Rupert Port Authority. With an investment outlay of over USD 450 million, the terminal 

has the capacity to move approximately 40,000 barrels of propane per day (AltaGas 2016). 

Driven by globalization, trade liberalization, technological advancement and changes in inter-port 

relations and port-hinterland relationships, port competition has intensified in the past decade 

inducing ports to become more responsive to the needs of shippers and other stakeholders. The 

scale of protection and capacity investment undertaken by the port is largely influenced by inter-

port competition. For instance, Port of Gulfport, Mississippi suffered severe damage because of 

hurricane Katrina in 2005. Soon afterwards, USD 570 million was allocated from the Federal 
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Community Development and Block Grant to rebuild and restore the damage to Gulfport’s 

facilities. As part of the restoration, the port announced that it would raise its West Pier by 25 feet 

to ensure better protection from storm surge. Ironically, the port nixed its proposed plan one day 

after hurricane Sandy hit the Port of New York and New Jersey. The reason stated behind the 

decision of reducing pier elevation was mainly based on business and competition considerations 

of attracting new port tenants and better serving existing ones. (Xiao et al. 2015; Thomas 2012). 

Against this background, we determine a port’s strategic decisions on capacity and protection 

investments, as well as port charges, considering competition with other ports and uncertainty 

about climate-change induced events. We develop a game theoretic model featuring two ports and 

a continuum of shippers. We analyze three cases of competition based on port ownership structure: 

profit-maximizing ports, welfare-maximizing ports, and first-best outcome where a central 

government makes decisions on behalf of the ports with the objective of maximizing overall 

welfare. We solve the model numerically and consider two scenarios: symmetric scenario and 

asymmetric scenario. In symmetric scenario, parameter values for both ports are assumed to be 

identical, corresponding to the situation where two ports are subject to the same climate-change 

risk. Conversely, in asymmetric scenario, parameter values for both ports are assumed to be 

different, addressing the situation where two ports are subject to the different climate-change risk 

and preference from shippers.  

Our contributions are threefold. First, we develop a one-period game theoretical model to 

determine optimal capacity and protection investment of competing ports when the ports and 

shippers suffer substantial losses due to occurrence of climate-change induced events. To the best 

of our knowledge, this is the first work that tries to link port competition, capacity, and adaptation. 

Second, we conduct numerical experiments under symmetric scenario and asymmetric scenario 

(including comparative statics addressing the trade-offs between model variables). Third, based 

on analytical and numerical results, we discuss managerial insights with respect to the implications 

of capacity and protection investment decisions of competing ports under competition. 

We demonstrate the following findings. First, when a port faces higher climate risk, this port would 

invest less in capacity to expose fewer assets at risk, but would not always increase its protection 

investment, as less capacity may warrant less protection investment. Its competing port, however, 
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would increase capacity to take up the demand shifting from its competitor that entails higher 

climate risk. Consequently, protection investment at the competing port also increases to ensure 

the increased capacity infrastructure is protected. Second, welfare-maximizing and first-best ports 

invest more in both protection and capacity but charge less service fees than profit-maximizing 

ports. Welfare-maximizing ports are more inclined to increase port charge than profit-maximizing 

ports when congestion occurs. When the climate risk at one port is low, the central government 

would prioritize investments of one port over the other, resulting in significantly higher investment 

level at the low-risk port and lower investment level at the high-risk port, compared to the welfare-

maximizing case. Third, under both welfare-maximizing and first-best cases, corner solutions can 

happen where port charges are set to zero, indicating the seaports try to satisfy all market demand 

at the expense of their profits. Corner solutions are more likely to happen when the climate risk is 

low, when utility of using the port is high, when congestion cost to shippers is low, when unit 

operating or investment cost is low, or when the randomness in shippers’ behavior is small. Fourth, 

the effect of shippers’ congestion cost on port capacity and protection investments is non-

monotone. Last, the pricing behavior of ports under the three ownership structures is different 

depending on the focus of the ports, which could be exercising market power, limiting congestion, 

attracting shippers, or satisfying market demand. 

The structure of the thesis is as follows. In the next chapter, an overview of the literature on port 

protection investment to climate change and port capacity investment is presented. Chapter 3 

describes the model that incorporates varied port objectives based on three types of port ownership 

structure. Chapter 4 presents numerical studies under two scenarios (including the discussion of 

results and comparative statics addressing the trade-offs between model variables). Chapter 5 

concludes the thesis and points out limitations for future study. 
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Chapter 2: Literature review 

This study involves two research streams, namely, port congestion and capacity investment and 

port adaptation investment to climate-change. 

2.1 Port congestion and capacity investment 

There have been studies on port optimal capacity investment decisions for a single port. For 

instance, Jansson and Shneerson (1982) and Noritake and Kimura (1983) use queuing theory to 

determine the optimal number and capacity of berths in a port reflecting the variation of cargo 

demands; Devanney and Tan (1975) propose dynamic programming to analyze optimal timing of 

capacity expansion for a port facing a volatile, price-dependent cargo demand, and Allahviranloo 

and Afandizadeh (2008)  develop an integer-programming model to examine the optimum port 

investment in a country.  

Capacity investment decisions undertaken by competing ports have been studied in various 

contexts. Most studies address capacity investment decisions by competing ports under certainty, 

albeit under different settings including regional development, hinterland accessibility, and port 

specialization. De Borger and Dender (2006) examine pricing and capacity investment decisions 

of congestible ports in a duopoly with each port having a congestible transport network to a 

common hinterland. Anderson et al. (2008) propose a game-theoretic best response framework to 

examine two competing ports’ capacity investments and conclude that the investments depend on 

their costs. They apply their model to investment and competition prevailing between Ports of 

Busan and Shanghai. De Borger et al. (2008) investigate optimal pricing of two duopolistic ports 

that have the same overseas customers, downstream congested transport networks to a common 

hinterland and optimal investments of corresponding governments in ports’ facilities. Their 

analysis, based on numerical illustrations, reveals that the ports internalize the hinterland 

congestion costs and charge their customers accordingly. They also conclude ports’ capacity levels 

to be negatively correlated with the charges. Following De Borger et al. (2008), Zhang 

(2008) examine how hinterland access conditions influence uncongested ports’ competition in 

both quantity and price. Xiao et al. (2012) study the impact of port ownership structure and 

governance mechanism on pricing and capacity investment decisions of ports. They also model 
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the implications of changes in port ownership and governance on social welfare and port service 

level. Luo et al. (2011) analyze pricing and capacity expansion of ports using a two-stage duopoly 

game and derive the conditions for ports to profit from a rising capacity level.  

Literature on capacity investment decisions undertaken by firms in an uncertain and competitive 

setting is well developed. Grenadier (2002) formulates a tractable real options framework to derive 

the equilibrium investment strategies in an uncertain dynamic and assesses the impact of 

competition on investment strategies using a continuous-time Cournot-Nash framework. 

Huisman and Kort (2015) derive a strategic real options model to determine the timing and 

quantum of capacity investments in a duopolistic framework given uncertainty and competition 

between firms. Nishimura and Ozaki (2007) and Niu et al. (2019) examine the effect of Knightian 

uncertainty on investment decisions. Nishimura and Ozaki (2007) investigate the impact of 

Knightian uncertainty on the value of irreversible investment opportunity undertaken by a risk-

neutral and uncertainty averse firm. Niu et al. (2019) proposes a model that incorporates Knightian 

uncertainty into the standard model of capacity choice and examines its effect on the firm’s 

expansion decision. There is a growing literature on capacity investment decisions undertaken by 

congestible ports under uncertainty. Ishii et al. (2013) propose a multi-period non-cooperative 

theoretical model to examine inter-port competition under demand uncertainty where each port 

selects port charges strategically in the timing of port capacity investment. They apply the model 

to the case of port competition between Port of Busan and Port of Kobe. Chen et al. (2017) develop 

a three-period game to examine optimal capacity investment of risk-averse governments and 

optimal pricing of risk-neutral ports under demand uncertainty and service 

differentiation. Chen and Liu (2016) develop a similar model encompassing two stages by 

considering simultaneous investments of risk-averse ports under uncertain market demand and 

congestion. They examine the impact of operation costs, facility levels, and uncertain demand on 

ports’ equilibrium prices. They analyze such impact by considering the behaviors of risk-averse 

ports vis-à-vis risk-neutral ports, and ports’ behaviors under uncertainty and no-uncertainty. 

Balliauw et al. (2019) propose a real options model based on a geometric Brownian motion to 

determine optimal timing and scale of capacity investments in a service port given congestion and 

uncertainty. Balliauw et al. (2019a) extend this study to examine the impact of congestion and 

uncertainty in a landlord port with two actors where public ownership is 
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possible. Balliauw et al. (2019b) propose a continuous-time real options model to examine the 

timing and scale of capacity investment undertaken by ports under quantity competition and 

uncertain demand. They analyze the influence of competition, congestion costs, expected growth, 

public money involvement, uncertainty, and cost advantage of one port on the capacity investment 

decision of ports. Studies have also been extended to other transportation settings such as airports 

and railways.  For instance, Xiao et al. (2013) model the effects of demand uncertainty on airport 

capacity choice where uncertain demand follows a continuous probability distribution. They 

benchmark the behavior of a welfare-maximizing versus that of profit-maximizing airport. 

Gao and Driouchi (2013) propose a real options framework for investment in rail transit 

infrastructure under Knightian uncertainty. They focus on a rail transit project’s congestion relief 

value under uncertain urban population growth. Smit (2003) proposes a discrete-time options-

game model to investigate optimal infrastructure investment. The model focuses on the analysis 

of European airport expansion given uncertain airport growth opportunities and future cash-flows. 

2.2 Port adaptation to climate change 

Most of the existing studies in this area are descriptive and based on empirical analysis (Esteban 

et al., 2009, Nicholls et al., 2010, Becker et al., 2012, Becker et al., 2013, Ng et al., 2013, Ng et 

al., 2015, Becker et al., 2018, Yang et al., 2018). Few studies have examined port adaptation 

investment under uncertainty using theoretical economic models (e.g., Xiao et al., 2015, Wang and 

Zhang, 2018, Asadabadi and Miller-Hooks, 2018, Randrianarisoa et al., 2019, Wang et al., 2020). 

Xiao et al. (2015) pioneered the research on the adaptation investment undertaken by ports to 

climate change-related disasters, given information accumulation and the uncertainties of 

investment return and risk. They develop an integrated model for examining the optimal timing of 

adaptation investment over a two-period horizon at a cost-minimizing landlord port. They assume 

that ports can only invest in protection in either period 1 or period 2, not both. Their model 

incorporates the uncertainty of disasters and assumes uniform distribution for such disaster 

occurrence probability. Their model also considers the investment benefit spillovers between the 

port authority and the terminal operator, and information accumulation over time. They find that 

port has an incentive to postpone its adaptation investment when the disaster uncertainty is 

significant. 
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Wang and Zhang (2018) and Wang et al. (2020) extend Xiao et al. (2015) to consider inter and 

intra-port competition and cooperation in port adaptation investments. Wang and Zhang (2018) 

extend Xiao et al. (2015)’s analytical framework to study competition between ports and examine 

a broader family of probability distributions for disaster occurrence probability (Knightian 

uncertainty). Wang et al. (2018) examine the impact of port competition on adaptation investment 

undertaken by two-landlord ports in a duopoly setting in a single time-period. They assume disaster 

occurrence probability to be affected by Knightian uncertainty and examine the impacts of such 

uncertainty, intra-port and inter-port competition and cooperation on the ports’ adaptation 

investment. They conclude that ports exhibit “competition effect” due to inter-port competition by 

increasingly undertaking adaptation investment. This competition effect also exists for public port 

authorities maximizing social welfare. They also conclude that a higher expectation of the disaster 

occurrence probability increases the scale of adaptation investment, and larger variance reduces 

such level of investment. Wang et al. (2020) examine the impact of the downstream terminal 

operator market structure on the inter-port competition/coordination on port adaptation. They 

conclude that co-opetition within and between seaports would reduce the impact of risk uncertainty 

on adaptive investment. 

Randrianarisoa and Zhang (2019) extend Wang and Zhang (2018) to a two time-period model with 

two landlord ports and analyze optimal size and timing of adaptation investment undertaken by a 

port under uncertainty in a competitive market. Unlike previous studies that only consider 

uncertainty of the disaster occurrence probability, they also consider other sources of uncertainty 

associated with the efficiency of adaptation investment including climate risk projections in 

scientific models, effective combination of short-term and long-term planning, conflicting 

viewpoints on the potential climate change impact, cost sharing arrangements, identification of the 

stakeholders and most appropriate adaptation measures and formulation of new forms of 

collaboration between a wide set of private and public entities at the early stage of adaptation. 

Like Xiao et al. (2015) and Wang and Zhang (2018), they assume that ports can only invest in 

protection in either period 1 or period 2, not both. They assess if such investment should be 

undertaken immediately or in the next period, when the environment is competitive, when 

information accumulation between periods matters, and when efficiency of investment is 

uncertain. They conclude that the optimal timing of adaptation investment is influenced by the 
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level of competition, disaster occurrence probability and potential information gain over time. 

They also conclude that it is optimal for private ports to undertake early investment in adaptation 

when port competition intensifies. 

Adaptation investment to climate change for ports have been widely studied in various contexts, 

such as maritime networks, climate change mitigation, and regulatory policies. Asadabadi and 

Miller-Hooks (2018) investigate port adaptation investment in a co-opetitive maritime network 

that serves a common liner shipping market. They conceptualize liner-shipping network response 

and multi-port investments as a multi-leader, common-follower game, wherein each individual 

port undertakes adaptation investment while anticipating the impact of the common market-

clearing shipping assignment on the impacted network. Modelled as an Equilibrium Problem with 

Equilibrium Constraints (EPEC), the assignment considers market interactions, cooperation, 

competition, and disaster/investment impacts. Jiang et al. (2020) establish an economic model to 

incorporate mitigation and adaptation investment decisions of two ports in a game-setting 

framework and compare their relative impact on the market outcomes. Few studies have attempted 

to examine the effects of regulatory policies on port adaptation investments. For example, Zheng 

et al. (2021a) examine the effects of regulatory policies, namely subsidy and minimum 

requirement, on port adaptation investment considering the uncertainty pertaining to disaster 

occurrence, adaptation’s spill-over externality and decision-maker’s attitude and preference 

towards risk. They demonstrate the varied impacts of these two policies on port adaptation 

investment and on other market outcomes and suggest the superiority of either policy under 

different conditions. 

All above mentioned studies assume that ports have symmetric disaster occurrence probability or 

that they suffer the same level of disaster damage. However, due to heterogeneous landscapes and 

infrastructure facilities and varied resilience mechanism amongst ports to recover from similar 

disaster-induced interruptions, some ports are better protected from natural disasters than others. 

Zheng et al. (2021b) incorporate such asymmetric disaster damages and levels of adaptation 

resources to model inter-port competition in adaptation investments. They develop an economic 

model to examine the implications of adaptation sharing mechanisms. Wang et al. (2022) propose 

a two-period game model to investigate the scale and timing of prevention and adaptation 
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investments by port and dry port authorities with asymmetric risk probability ambiguity, risk-

sensitive behavior of decision makers, and information accumulation in a competitive 

environment. 

The above studies consider only one type of investment- either port adaptation investment or port 

capacity investment. We, however, consider both adaptation and capacity investments. Very few 

studies explore port capacity and adaptation investment simultaneously. Gong et al. (2020) 

pioneered the research on simultaneous port investment in capacity and adaptation under 

uncertainty and common budget constraint using a one-period model. They investigate resource 

allocation of a service or private port between capacity investment and adaptation investment when 

it faces uncertainties on both demand and disaster occurrence. Another study is Xia and Lindsey 

(2021) who investigate how a port decides optimal timing and scale of port adaptation and capacity 

investments, as well as port charges, given uncertainty about climate change and demand. They 

begin with a one-period model to explore the interdependence between optimal capacity and 

adaptation decisions, and how the two investment decisions affect the port charge. They then 

extend the model to two periods and consider the effect of information accumulation about future 

climate risks and demand to examine the optimal timing of investments and the effects of gaining 

better information over time.  However, both Gong et al. (2020) and Xia and Lindsey (2021) only 

consider the decisions of a single port, abstracting away inter-port competition. In contrast, our 

study considers inter-port competition, as well as the ports’ simultaneous decision in both capacity 

and adaptation. To the best of our knowledge, this is the first work that tries to link port 

competition, capacity, and adaptation. But unlike Xia and Lindsey (2021), our study is limited to 

one period, thus abstracting away investment timing.  

In summary, our study incorporates the effect of competition among ports to examine the 

equilibrium strategy of a port’s capacity and adaptation investments. We contribute to the literature 

by considering the investment decisions of competing ports in a one-period model when the ports 

and shippers suffer substantial losses due to occurrence of climate-change induced events. 
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Chapter 3: The model 

This section describes the model structure and presents basic assumptions. Section 3.1 

characterizes shippers’ demand for port services and explains the losses they can incur from 

congestion and extreme weather events at the port. Section 3.2 describes the ports’ objective 

functions based on the ownership structures and their competition behaviors. 

3.1 Demand for port service 

The model features two ports that compete for the same overseas customers.1 We refer to the two 

ports as port 𝑖 and port 𝑗. A continuum of shippers (or cargo owners) chooses between the two 

ports to ship goods based on their indirect or random utility, which is expressed as 

𝑈𝑛 = 𝑉𝑛 + 𝜀𝑛, (1) 

where 𝑛 ∈ {𝑖, 𝑗, 𝑜} represents shippers’ choice, which could be port 𝑖, port 𝑗, or an outside option 

𝑜, 𝑉𝑛 is the deterministic part of the utility, and 𝜀𝑛 is the random or disturbance component of the 

utility, which represents the unobserved preferences of shippers for choice 𝑛. We assume the 𝜀𝑛 

terms are independently and identically distributed (i.i.d.) and follow Gumbel distribution 𝜀𝑛~ 

Gumbel (𝜃, 𝜎), with cumulative distribution function 

𝐹(𝜀; 𝜃, 𝜎) = 𝑒−𝑒−(𝜀−𝜃)/𝜎
, (2) 

where 𝜃 is the location parameter and 𝜎 the scale parameter. 

For 𝑛 = 𝑜, 𝑉𝑜 is a constant representing the deterministic utility of a generic outside option, whose 

characteristics may not be observable. For example, shippers may choose other transportation 

modes such as air or rail, or they may simply decide not to ship their cargo at all. For 𝑛 ∈ {𝑖, 𝑗}, 

the deterministic utility of choosing port 𝑛 to ship one unit of cargo is given by 

 

1 We consider two competing ports, but our model can be generalized to a network of ports to consider multiple 

competing ports, which could be more realistic.  
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∀𝑛 ∈ {𝑖, 𝑗}, 𝑉𝑛 = 𝜇𝑛 − 𝛽𝜏𝑛 − 𝛿 ∙ 𝑔𝑛(𝑞𝑛, 𝐾𝑛) − 𝑚𝑛 ∙ ℎ𝑛(𝐾𝑛, 𝐺𝑛, 𝑥𝑛), (3) 

where 𝜇𝑛 is the mean utility from using port 𝑛. We do not explicitly model certain port attributes 

that influence shippers’ preference, such as port’s hinterland connection to the final destination, 

proximity to the final destination and use of automation, digitization, and data-driven techniques 

within a port for cargo tractability and operational efficiency, but such attributes can be captured 

by the constant 𝜇𝑛 in the utility function if they do not change during the planning horizon. The 

negative terms in Eq. (3) represent the generalized cost incurred by shippers of using the port, 

which includes (1) the service fee charged explicitly by the port 𝛽𝜏𝑛; (2) the cost due to congestion 

at the port 𝛿 ∙ 𝑔𝑛(𝑞𝑛, 𝐾𝑛); and (3) potential cost of damage to the cargo if a coastal natural disaster 

hits the port 𝑚 ∙ ℎ𝑛(𝐾𝑛, 𝐺𝑛, 𝑥𝑛). Specifically, 𝜏𝑛 is the service fee per unit cargo charged by port 

𝑛, 𝑞𝑛 is the traffic volume or cargo throughput at port 𝑛, 𝐾𝑛 is the capacity investment made by 

port 𝑛 , 𝐺𝑛  is the adaptation to climate change investment made by port 𝑛 , 𝑥𝑛  measures the 

expected frequency of coastal natural disasters over a certain time span at port 𝑛, and 𝛽, 𝑚𝑛, 𝛿 are 

coefficients. The function 𝑔𝑛(∙) captures the congestion level at port 𝑛, while the function ℎ𝑛(∙) 

captures the risk of coastal natural disasters faced by shippers at port 𝑛.  

The congestion level at a port depends positively on port demand 𝑞𝑛  and negatively on port 

capacity 𝐾𝑛. We assume 𝑔𝑛(∙) takes the functional form in Eq. (4), which is homogeneous of 

degree zero in volume and capacity: a standard assumption in the literature on congestible facilities 

(e.g., Small and Verhoef 2007, Chap. 3).   

𝑔𝑛(𝑞𝑛, 𝐾𝑛) =
𝑞𝑛

𝐾𝑛
. (4) 

The same functional form has been used in, for example, De Borger and Van Dender (2006) and 

De Borger et al. (2007).  

Following Xia and Lindsey (2021), we assume ℎ𝑛(∙), the risk of coastal natural disasters faced by 

shippers at the port, takes the following functional form 
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ℎ𝑛(𝐾𝑛, 𝐺𝑛, 𝑥𝑛) = 𝑥𝑛 (
𝐺𝑛

𝐾𝑛
)

−1

. (5) 

We assume that the investment decisions were made by the ports at the beginning of a planning 

horizon. We thus did not consider the timing of the investments and leave it as a future study. Once 

a port has invested in capacity and adaptation, it stays with this level of capacity and adaptation 

for a certain period which can encompass many years until the next time it makes another 

investment decisions. During the period, multiple natural disasters are possible. We thus denote 

𝑥𝑛 as the expected disaster frequency during a certain period, rather than the probability of disaster. 

Hence, 𝑥𝑛 could exceed unity. The assessment of 𝑥𝑛 is based on scientific research, as well as 

historical data on sea level rise, weather, and extreme events, and 𝑥𝑛 is exogenous to the port. The 

ratio 𝐺𝑛/𝐾𝑛 measures the port’s adaptation cost per unit port capacity. This ratio can be a proxy 

for port protection level, because compared with a smaller port, a larger port would need 

proportionally more protection to reach the same protection level. This is consistent with Becker 

et al. (2017), which, by using a generic model, shows that to elevate a port against sea level rise, 

protection cost is proportional to port capacity. Thus, the ratio 𝐺𝑛/𝐾𝑛  is a more reasonable 

representation of how well a port is protected rather than only 𝐺𝑛. A well-protected port limits 

operational disruptions and infrastructure damage, thus limiting the possible delays and loss of 

cargo value incurred by shippers. We simply take a reciprocal form of the port’s protection level 

to capture the port’s vulnerability. However, using other decreasing functions would not change 

the qualitative insights of the study. 

Our formulation of the disaster risk faced by shippers is consistent with the risk definition by 

United Nations Office for Disaster Relief (UNDRR). UNDRR defines risk 𝑅 as a function of the 

combined effects of hazards 𝐻, exposure 𝐸 (e.g., elements at risk such as population, properties, 

infrastructure, or other assets), and vulnerability 𝑉 of those exposed elements (see Lam and Lassa 

(2017) for a discussion): 

𝑅 = 𝐻 ∙ 𝐸 ∙ 𝑉. (6) 

𝐻 is represented by 𝑥𝑛, 𝐸 is represented by one unit of cargo, and 𝑉 is represented by (𝐺𝑛/𝐾𝑛)−1. 
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Our modeling of shippers’ generalized cost is consistent with the existing literature. For example, 

Becker et al. (2018) show that some ports find that resilience (i.e., port protection level) provides 

a competitive advantage, since port users are more comfortable investing in a “climate-ready port”. 

Tongzon (2009) uses a survey method to identify important factors affecting port users’ port 

choice. The key factors found include port charge, adequate infrastructure that limits port 

congestion, and port’s reputation for cargo damage, consistent with the three terms considered in 

Eq. (3). 

Shippers choose the alternative corresponding to the largest random utility across all available 

options. Specifically, shippers will choose alternative 𝑙 ∈ {𝑖, 𝑗, 𝑜} if 

𝑉𝑙 + 𝜀𝑙 ≥ 𝑉𝑛 + 𝜀𝑛 , ∀ 𝑛 ≠ 𝑙. (7) 

We apply the following normalization. First, we let 𝑉𝑜 = 0 since the inequality in Eq. (7) holds if 

we subtract a constant to both sides of the inequality. Second, we let the location parameter of the 

Gumbel distribution 𝜃 = 0 since shifting the error terms by a fixed distance does not change the 

inequality in Eq. (7). Last, since the inequality holds if we multiply the utility with any positive 

real number, we let the price coefficient 𝛽 = 1 so that the utility is measured in monetary terms, 

which is more straightforward in terms of interpretation. This is in contrary to the multinomial 

logit model in which the scale parameter of the Gumbel distribution is normalized (i.e., 𝜎 = 1). 

However, the results of the thesis remain the same. Thus, 𝛿 and 𝑚𝑛 in Eq. (3) are parameters that 

convert the cost of congestion and the cost of climate risk into monetary values. We assume that 

𝑚𝑛  is port-dependent to capture intensity of damage to shippers at port 𝑛, since the expected 

monetary cost of a natural disaster depends not only on the frequency but also on the intensity. On 

the contrary, we assume 𝛿 is port-independent since shippers incur the same monetary cost from 

delaying at either port.  

The probability that 𝑙 is chosen over other alternatives 𝑆𝑙 is (the derivation is shown in Appendix 

B): 
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𝑆𝑙 =
exp (

𝑉𝑙

𝜎 )

∑ exp (
𝑉𝑛

𝜎 )𝑛

=
exp (

𝑉𝑙

𝜎 )

1 + exp (
𝑉𝑖

𝜎 ) + exp (
𝑉𝑗

𝜎
)

. (8) 

𝑆𝑙 also represents the market share of alternative 𝑙. Suppose the potential shipping demand from 

the overseas market is 𝑄 units of cargo. The demand system for port 𝑖 and port 𝑗 can be written as 

𝑞𝑖 = 𝑄
exp (

𝑉𝑖

𝜎 )

1 + exp (
𝑉𝑖

𝜎
) + exp (

𝑉𝑗

𝜎
)

, (9.1) 

𝑞𝑗 = 𝑄
exp (

𝑉𝑗

𝜎
)

1 + exp (
𝑉𝑖

𝜎 ) + exp (
𝑉𝑗

𝜎
)

. (9.2) 

Figure 1 illustrates the model structure.  

 

Figure 1 Model structure of the two-port system 
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Next, we derive the properties of the demand. We first look at how the port charge affects the port 

demand at the port itself and at the competing port. Let 𝑍𝑛 = 𝑉𝑛/𝜎. Since 𝑞𝑖 appears on both sides 

of Eq. (9.1), we differentiate both sides of Eq. (9.1) with respect to (w.r.t.) 𝜏𝑖 and obtain 

𝜕𝑞𝑖

𝜕𝜏𝑖
=

𝑄exp(𝑍𝑖)

(∑ exp(𝑍𝑛)𝑛 )2
(

𝜕𝑍𝑖

𝜕𝜏𝑖
(1 + exp(𝑍𝑗)) − exp(𝑍𝑗)

𝜕𝑍𝑗

𝜕𝜏𝑖
), (10) 

where 
𝜕𝑍𝑖

𝜕𝜏𝑖
 and 

𝜕𝑍𝑗

𝜕𝜏𝑖
 are expressed as 

𝜕𝑍𝑖

𝜕𝜏𝑖
= −

1

𝜎
(1 +

𝛿

𝐾𝑖

𝜕𝑞𝑖

𝜕𝜏𝑖
), (11.1) 

𝜕𝑍𝑗

𝜕𝜏𝑖
= −

1

𝜎

𝛿

𝐾𝑗

𝜕𝑞𝑗

𝜕𝜏𝑖
. (11.2) 

By plugging Eq. (11.1) and Eq. (11.2) into Eq. (10), we obtain one equation that contains two 

unknowns 
𝜕𝑞𝑖

𝜕𝜏𝑖
 and 

𝜕𝑞𝑗

𝜕𝜏𝑖
. Next, we differentiate both sides of Eq. (9.1) w.r.t. 𝜏𝑗 and obtain 

𝜕𝑞𝑖

𝜕𝜏𝑗
=

𝑄exp(𝑍𝑖)

(∑ exp(𝑍𝑛)𝑛 )2
(

𝜕𝑍𝑖

𝜕𝜏𝑗
(1 + exp(𝑍𝑗)) − exp(𝑍𝑗)

𝜕𝑍𝑗

𝜕𝜏𝑗
), (12) 

where 
𝜕𝑍𝑖

𝜕𝜏𝑗
 and 

𝜕𝑍𝑗

𝜕𝜏𝑗
 are expressed as 

𝜕𝑍𝑖

𝜕𝜏𝑗
= −

1

𝜎

𝛿

𝐾𝑖

𝜕𝑞𝑖

𝜕𝜏𝑗
, (13.1) 

𝜕𝑍𝑗

𝜕𝜏𝑗
= −

1

𝜎
(1 +

𝛿

𝐾𝑗

𝜕𝑞𝑗

𝜕𝜏𝑗
). (13.2) 

We thus obtain another equation that contains another two unknowns 
𝜕𝑞𝑖

𝜕𝜏𝑗
 and 

𝜕𝑞𝑗

𝜕𝜏𝑗
. Performing the 

same analysis on Eq. (9.2), we can thus obtain a system of four equations that contains four 

unknowns. The explicit expressions of the system of equations is provided in Appendix A. Solving 

this system of equations, we obtain the partial derivatives of demand w.r.t port pricing: 
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𝜕𝑞𝑖

𝜕𝜏𝑖
= −

𝑄exp(𝑍𝑖)

Γ
(𝜎 (1 + exp(𝑍𝑗)) + 𝛿

𝑞𝑗

𝐾𝑗
) < 0, (14.1) 

𝜕𝑞𝑗

𝜕𝜏𝑗
= −

𝑄exp(𝑍𝑗)

Γ
(𝜎(1 + exp(𝑍𝑖)) + 𝛿

𝑞𝑖

𝐾𝑖
) < 0, (14.2) 

𝜕𝑞𝑖

𝜕𝜏𝑗
=

1

Γ
𝜎𝑄exp(𝑍𝑖)exp(𝑍𝑗) > 0, (14.3) 

𝜕𝑞𝑗

𝜕𝜏𝑖
=

1

Γ
𝜎𝑄exp(𝑍𝑖)exp(𝑍𝑗) > 0, (14.4) 

where the denominator Γ is 

Γ = 𝜎 (𝜎 (∑ exp(𝑍𝑛)
𝑛

)
2

+ 𝑄exp(𝑍𝑖)
𝛿

𝐾𝑖
(1 + exp(𝑍𝑗)) + 𝑄exp(𝑍𝑗)

𝛿

𝐾𝑗
(1 + exp(𝑍𝑖)))

+ 𝛿2
𝑞𝑖𝑞𝑗

𝐾𝑖𝐾𝑗
(∑ exp(𝑍𝑛)

𝑛
) > 0. 

We can easily sign Eq. (14.1) – Eq. (14.4): 
𝜕𝑞𝑖

𝜕𝜏𝑖
< 0, 

𝜕𝑞𝑗

𝜕𝜏𝑗
< 0, 

𝜕𝑞𝑖

𝜕𝜏𝑗
> 0, and 

𝜕𝑞𝑗

𝜕𝜏𝑖
> 0. Therefore, 

higher port charge reduces demand at own port but raises demand at its competing port. In addition, 

𝜕𝑞𝑖

𝜕𝜏𝑗
=

𝜕𝑞𝑗

𝜕𝜏𝑖
, indicating that the pricing effect on the demand of competing port is the same for both 

ports.  

To see how the port capacity and adaptation investments affect the port demand at the port itself 

and at the competing port, we perform the same analysis and obtain the following (the details can 

be found in Appendix A): 

𝜕𝑞𝑖

𝜕𝐾𝑖
= −

𝑄exp(𝑍𝑖)

Γ
(𝜎 (1 + exp(𝑍𝑗)) + 𝛿

𝑞𝑗

𝐾𝑗
) (𝑚𝑖

𝑥𝑖

𝐺𝑖
− 𝛿

𝑞𝑖

𝐾𝑖
2), (15.1) 

𝜕𝑞𝑗

𝜕𝐾𝑗
= −

𝑄exp(𝑍𝑗)

Γ
(𝜎(1 + exp(𝑍𝑖)) + 𝛿

𝑞𝑖

𝐾𝑖
) (𝑚𝑗

𝑥𝑗

𝐺𝑗
− 𝛿

𝑞𝑗

𝐾𝑗
2), (15.2) 
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𝜕𝑞𝑖

𝜕𝐾𝑗
=

𝜎𝑄exp(𝑍𝑖)exp(𝑍𝑗)

Γ
(𝑚𝑗

𝑥𝑗

𝐺𝑗
− 𝛿

𝑞𝑗

𝐾𝑗
2), (15.3) 

𝜕𝑞𝑗

𝜕𝐾𝑖
=

𝜎𝑄exp(𝑍𝑖)exp(𝑍𝑗)

Γ
(𝑚𝑖

𝑥𝑖

𝐺𝑖
− 𝛿

𝑞𝑖

𝐾𝑖
2), (15.4) 

𝜕𝑞𝑖

𝜕𝐺𝑖
=

𝑄exp(𝑍𝑖)

Γ
(𝜎 (1 + exp(𝑍𝑗)) + 𝛿

𝑞𝑗

𝐾𝑗
)

𝑚𝑖𝑥𝑖𝐾𝑖

𝐺𝑖
2 > 0, (16.1) 

𝜕𝑞𝑗

𝜕𝐺𝑗
=

𝑄exp(𝑍𝑗)

Γ
(𝜎(1 + exp(𝑍𝑖)) + 𝛿

𝑞𝑖

𝐾𝑖
)

𝑚𝑗𝑥𝑗𝐾𝑗

𝐺𝑗
2 > 0, (16.2) 

𝜕𝑞𝑖

𝜕𝐺𝑗
= −

𝜎𝑄exp(𝑍𝑖)exp(𝑍𝑗)

Γ
𝑚𝑗

𝑥𝑗𝐾𝑗

𝐺𝑗
2 < 0, (16.3) 

𝜕𝑞𝑗

𝜕𝐺𝑖
= −

𝜎𝑄exp(𝑍𝑖)exp(𝑍𝑗)

Γ
𝑚𝑖

𝑥𝑖𝐾𝑖

𝐺𝑖
2 < 0. (16.4) 

Apparently, 
𝜕𝑞𝑖

𝜕𝐺𝑖
> 0, 

𝜕𝑞𝑗

𝜕𝐺𝑗
> 0, 

𝜕𝑞𝑖

𝜕𝐺𝑗
< 0, and 

𝜕𝑞𝑗

𝜕𝐺𝑖
< 0.Thus, more protection investment enhances a 

port’s competitiveness, as more shippers will be attracted to the port. In terms of how capacity 

affects demand, note that 
𝜕𝑞𝑖

𝜕𝐾𝑖
 exhibits the same sign as 

𝜕(𝛿∙𝑔𝑖(𝑞𝑖,𝐾𝑖))

𝜕𝐾𝑖
−

𝜕(𝑚𝑖∙ℎ𝑖(𝐾𝑖,𝐺𝑖,𝑥𝑖))

𝜕𝐾𝑖
and 

𝜕𝑞𝑗

𝜕𝐾𝑖
 

exhibits the same sign as 
𝜕(𝑚𝑖∙ℎ𝑖(𝐾𝑖,𝐺𝑖,𝑥𝑖))

𝜕𝐾𝑖
−

𝜕(𝛿∙𝑔𝑖(𝑞𝑖,𝐾𝑖))

𝜕𝐾𝑖
. Thus, increasing the port’s own capacity 

has two effects. Shippers experience lower congestion cost with a larger port capacity, but given 

the same adaptation investment, more capacity renders a port more vulnerable due to a greater 

exposure of assets to natural disasters, thus causing potentially more loss to shippers. If marginal 

congestion cost (
𝜕(𝛿∙𝑔𝑖(𝑞𝑖,𝐾𝑖))

𝜕𝐾𝑖
) outweighs marginal climate cost (

𝜕(𝑚𝑖∙ℎ𝑖(𝐾𝑖,𝐺𝑖,𝑥𝑖))

𝜕𝐾𝑖
), increasing own 

capacity attracts more demand at own port and reduces demand at competing port. However, if 

marginal climate cost (
𝜕(𝑚𝑖∙ℎ𝑖(𝐾𝑖,𝐺𝑖,𝑥𝑖))

𝜕𝐾𝑖
) outweighs marginal congestion cost (

𝜕(𝛿∙𝑔𝑖(𝑞𝑖,𝐾𝑖))

𝜕𝐾𝑖
), 

increasing own capacity can reduce demand at own port and enhances demand at competing port. 

The results can be summarized in the following lemma. 
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Lemma 1: (1). Higher port charge reduces demand at own port but raises demand at the competing 

port. For both ports, increasing or decreasing port charge exhibits the same effect on the demand 

of competing port. (2). More protection investment increases demand at own port but reduces 

demand at the competing port. (3). If marginal congestion cost outweighs marginal climate cost, 

more capacity investment increases demand at own port but reduces demand at the competing port; 

if marginal climate cost outweighs marginal congestion cost, more capacity investment reduces 

demand at own port but increases demand at the competing port. 

3.2 Port competition 

Ports may have diverse ownership structures with different levels of private and public sector 

involvement, and thus different objectives in making decisions. According to World Bank (2022), 

there are four types of port ownership structures: service ports, tool ports, landlord ports, and fully 

privatized ports. Service port and tool ports mainly focus on the realization of public interests, 

landlord ports have a mixed character and aim to strike a balance between public and private 

interests, and fully privatized ports focus only on private interests. In this section, we consider two 

extremes: we analyze two competing ports that maximize their profit in subsection 3.2.1, and two 

competing ports that maximize their respective social welfare in subsection 3.2.2. In subsection 

3.2.3, we analyze the first-best outcome in which a centralized government makes decisions on 

behalf of the two ports with the objective of maximizing overall social welfare. We thus can 

compare how the equilibrium strategies of profit-maximizing competing ports and welfare-

maximizing competing ports divert from the first-best outcome.  

3.2.1 Profit-maximizing ports 

In this subsection, we consider the competition behavior of profit-maximizing ports. Port 𝑖 

maximizes its own profit 𝜋𝑖 by deciding its pricing 𝜏𝑖, capacity investment level 𝐾𝑖, and protection 

investment level 𝐺𝑖 , taking pricing 𝜏𝑗 ,  capacity 𝐾𝑗 , and protection 𝐺𝑗  at port 𝑗 as exogenously 

given: 

max
{𝜏𝑖,𝐾𝑖,𝐺𝑖}

𝜋𝑖 = (𝜏𝑖 − 𝑐𝑖)𝑞𝑖 − 𝑀𝑖 ∙ 𝐻𝑖(𝐾𝑖 , 𝐺𝑖, 𝑥𝑖) − 𝐾𝑖𝑐𝐾𝑖
− 𝐺𝑖 , (17) 
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where 𝜋𝑖 is port 𝑖’s profit, 𝑐𝑖 is port 𝑖’s unit operating cost, the function 𝐻𝑖(𝐾𝑖, 𝐺𝑖, 𝑥𝑖) captures the 

risk of coastal natural disasters faced by port 𝑖 , parameter 𝑀𝑖  converts the risk into a cost in 

monetary values, and 𝑐𝐾𝑖
 is the unit capacity investment cost. We take a linear form of risk and its 

monetary cost, but the functional form can be non-linear. Following Xia and Lindsey (2021), 

protection 𝐺𝑖 is expressed as monetary expenditure on protection measures overall (which may 

include seawalls, dikes, surge barriers, infrastructure elevations, etc.). 

We assume the port has the same prior for the expected storm frequency 𝑥𝑖 during the period as 

the shippers. In accordance with our modeling of the climate risk faced by shippers ℎ(⋅), we 

formulate 𝐻(⋅) as 

𝐻(𝐾𝑖, 𝐺𝑖, 𝑥𝑖) = 𝑥𝑖 ∙ 𝐾𝑖 ∙ (
𝐺𝑛

𝐾𝑛
)

−1

, (18) 

where 𝑥𝑖  corresponds to hazard, 𝐾𝑖  corresponds to exposure, and (
𝐺𝑛

𝐾𝑛
)

−1

 corresponds to 

vulnerability in Eq. (6). 

The first-order conditions (FOCs) w.r.t. 𝜏𝑖, 𝐾𝑖, 𝐺𝑖 are given by: 

𝜕𝜋𝑖

𝜕𝜏𝑖
= 𝑞𝑖 + (𝜏𝑖 − 𝑐𝑖)

𝜕𝑞𝑖

𝜕𝜏𝑖
= 0, (19.1) 

𝜕𝜋𝑖

𝜕𝐾𝑖
= (𝜏𝑖 − 𝑐𝑖)

𝜕𝑞𝑖

𝜕𝐾𝑖
− 𝑀𝑖

2𝑥𝑖𝐾𝑖

𝐺𝑖
− 𝑐𝐾𝑖

= 0, (19.2) 

𝜕𝜋𝑖

𝜕𝐺𝑖
= (𝜏𝑖 − 𝑐𝑖)

𝜕𝑞𝑖

𝜕𝐺𝑖
+ 𝑀𝑖

𝑥𝑖𝐾𝑖
2

𝐺𝑖
2 − 𝑐𝐺𝑖

= 0, (19.3) 

where 
𝜕𝑞𝑖

𝜕𝜏𝑖
, 

𝜕𝑞𝑖

𝜕𝐾𝑖
, and 

𝜕𝑞𝑖

𝜕𝐺𝑖
 are expressed in Eq. (14.1), Eq. (15.1), and Eq. (16.1), respectively.  

The FOCs of port 𝑗 can be written symmetrically. Solving a system of eight equations that consist 

of the six FOCs and the two demand equations in Eq. (9.1) and Eq. (9,2), we can obtain the 
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equilibrium port charge, capacity, protection, and the resulting equilibrium traffic volume at the 

two ports. 

Another way to solve the equilibrium outcome is to formulate the competition game as a 

complementarity problem, which captures the case where the equilibrium outcome is a corner 

solution and thus cannot be solved by a system of equations. A corner solution is a special solution 

of an optimization problem wherein the value of one of the arguments in the optimized function 

is zero.  

min
{𝜏𝑖,𝐾𝑖,𝐺𝑖,𝜏𝑗,𝐾𝑗,𝐺𝑗}

− (𝜏𝑖

𝜕𝜋𝑖

𝜕𝜏𝑖
+ 𝐾𝑖

𝜕𝜋𝑖

𝜕𝐾𝑖
+ 𝐺𝑖

𝜕𝜋𝑖

𝜕𝐺𝑖
+ 𝜏𝑗

𝜕𝜋𝑗

𝜕𝜏𝑗
+ 𝐾𝑗

𝜕𝜋𝑗

𝜕𝐾𝑗
+ 𝐺𝑗

𝜕𝜋𝑗

𝜕𝐺𝑗
) , 

𝑠. 𝑡.
𝜕𝜋𝑖

𝜕𝜏𝑖
≤ 0,

𝜕𝜋𝑖

𝜕𝐾𝑖
≤ 0,

𝜕𝜋𝑖

𝜕𝐺𝑖
≤ 0,

𝜕𝜋𝑗

𝜕𝜏𝑗
≤ 0,

𝜕𝜋𝑗

𝜕𝐾𝑗
≤ 0,

𝜕𝜋𝑗

𝜕𝐺𝑗
≤ 0, 𝐸𝑞. (9.1), 𝐸𝑞. (9.2).  

3.2.2 Welfare-maximizing ports 

In this subsection, we consider the competition behavior of welfare-maximizing ports. A 

welfare-maximizing port chooses port pricing, capacity, and adaptation to maximize not only its 

own profit, but also the consumer surplus 𝐶𝑆𝑖: 

max
{𝜏𝑖,𝐾𝑖,𝐺𝑖}

𝑊𝑖 = 𝜋𝑖 + 𝐶𝑆𝑖. (20) 

where 𝑊𝑖 denotes the social welfare of port 𝑖, which equals the profit of port 𝑖  and the consumer 

surplus of shippers using the port 𝑖 . Consumers’ surplus is a measure of aggregate consumer 

welfare. Here, 𝐶𝑆𝑖 represents the difference between shippers’ willingness to pay for port i’s 

services and the price that they pay for it. 

The consumer surplus of one shipper is 𝐸 (max
𝑛

𝑈𝑛). Since shippers are assumed to be 

homogenous, the consumer surplus of the shippers using the port is calculated as follows (the 

derivation is provided in Appendix B): 

https://en.wikipedia.org/wiki/Maximization_(economics)
https://en.wikipedia.org/wiki/0_(number)
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𝐶𝑆𝑖 = 𝑞𝑖 ⋅ 𝐸 (max
𝑛

𝑈𝑛) = 𝑞𝑖 ⋅ ln (∑ exp(𝑍𝑛)
𝑛

), (21) 

where 𝑍𝑛 =
𝑉𝑛

𝜎
. The FOCs are given by:  

𝜕𝑊𝑖

𝜕𝜏𝑖
= 𝑞𝑖 + (𝜏𝑖 − 𝑐𝑖)

𝜕𝑞𝑖

𝜕𝜏𝑖
+

𝜕𝑞𝑖

𝜕𝜏𝑖
ln (∑ exp(𝑍𝑛)

𝑛
)

−
𝑞𝑖

𝜎 ∑ exp(𝑍𝑛)𝑛
(exp(𝑍𝑖)

𝛿

𝐾𝑖

𝜕𝑞𝑖

𝜕𝜏𝑖
+ exp(𝑍𝑗)

𝛿

𝐾𝑗

𝜕𝑞𝑗

𝜕𝜏𝑖
+ exp(𝑍𝑖)) = 0, 

(22.1) 

𝜕𝑊𝑖

𝜕𝐾𝑖
= (𝜏𝑖 − 𝑐𝑖)

𝜕𝑞𝑖

𝜕𝐾𝑖
− 𝑀𝑖

2𝑥𝑖𝐾𝑖

𝐺𝑖
− 𝑐𝐾𝑖

+
𝜕𝑞𝑖

𝜕𝐾𝑖
ln (∑ exp(𝑍𝑛)

𝑛
)

−
𝑞𝑖

𝜎 ∑ exp(𝑍𝑛)𝑛
(exp(𝑍𝑖)

𝛿

𝐾𝑖

𝜕𝑞𝑖

𝜕𝐾𝑖
+ exp(𝑍𝑗)

𝛿

𝐾𝑗

𝜕𝑞𝑗

𝜕𝐾𝑖
+ exp(𝑍𝑖)(𝑚𝑖

𝑥𝑖

𝐺𝑖

− 𝛿
𝑞𝑖

𝐾𝑖
2)) = 0, 

(22.2) 

𝜕𝑊𝑖

𝜕𝐺𝑖
= (𝜏𝑖 − 𝑐𝑖)

𝜕𝑞𝑖

𝜕𝐺𝑖
+ 𝑀𝑖

𝑥𝑖𝐾𝑖
2

𝐺𝑖
2 − 1 +

𝜕𝑞𝑖

𝜕𝐺𝑖
ln (∑ exp(𝑍𝑛)

𝑛
)

−
𝑞𝑖

𝜎 ∑ exp(𝑍𝑛)𝑛
(exp(𝑍𝑖)

𝛿

𝐾𝑖

𝜕𝑞𝑖

𝜕𝐺𝑖
+ exp(𝑍𝑗)

𝛿

𝐾𝑗

𝜕𝑞𝑗

𝜕𝐺𝑖
− exp(𝑍𝑖)𝑚𝑖

𝑥𝑖𝐾𝑖

𝐺𝑖
2 )

= 0, 

(22.3) 

where 
𝜕𝑞𝑖

𝜕𝜏𝑖
, 

𝜕𝑞𝑗

𝜕𝜏𝑖
, 

𝜕𝑞𝑖

𝜕𝐾𝑖
, 

𝜕𝑞𝑗

𝜕𝐾𝑖
, 

𝜕𝑞𝑖

𝜕𝐺𝑖
, 

𝜕𝑞𝑗

𝜕𝐺𝑖
 are provided in Eq. (14.1), Eq. (14.4), Eq. (15.1), Eq. (15.4), Eq. 

(16.1), and Eq. (16.4), respectively. As in Subsection 3.2.1, solving a system of equations could 

give the equilibrium outcome that is an interior solution. Similarly, we can solve the equilibrium 

outcome by formulating it as a complementarity problem 

min
{𝜏𝑖,𝐾𝑖,𝐺𝑖,𝜏𝑗,𝐾𝑗,𝐺𝑗}

− (𝜏𝑖

𝜕𝑊𝑖

𝜕𝜏𝑖
+ 𝐾𝑖

𝜕𝑊𝑖

𝜕𝐾𝑖
+ 𝐺𝑖

𝜕𝑊𝑖

𝜕𝐺𝑖
+ 𝜏𝑗

𝜕𝑊𝑗

𝜕𝜏𝑗
+ 𝐾𝑗

𝜕𝑊𝑗

𝜕𝐾𝑗
+ 𝐺𝑗

𝜕𝑊𝑗

𝜕𝐺𝑗
) , 

𝑠. 𝑡.
𝜕𝑊𝑖

𝜕𝜏𝑖
≤ 0,

𝜕𝑊𝑖

𝜕𝐾𝑖
≤ 0,

𝜕𝑊𝑖

𝜕𝐺𝑖
≤ 0,

𝜕𝑊𝑗

𝜕𝜏𝑗
≤ 0,

𝜕𝑊𝑗

𝜕𝐾𝑗
≤ 0,

𝜕𝑊𝑗

𝜕𝐺𝑗
≤ 0, 𝐸𝑞. (9.1), 𝐸𝑞. (9.2).  
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3.2.3 The first-best outcome 

In this subsection, we consider the first-best outcome where a central government makes decisions 

on behalf of the two ports with the objective of maximizing overall social welfare, which equals 

the total profits of the two ports and the total consumer surplus of shippers using the two ports: 

max
{𝜏𝑖,𝐾𝑖,𝐺𝑖,𝜏𝑗,𝐾𝑗,𝐺𝑗}

𝑊 = 𝜋𝑖 + 𝜋𝑗 + 𝐶𝑆𝑖 + 𝐶𝑆𝑗 , (23) 

where 𝑊 denotes the overall welfare of all players, 𝜋𝑖 is provided in Eq. (17), 𝐶𝑆𝑖 is provided in 

Eq. (21), and 𝜋𝑗 and 𝐶𝑆𝑗 can be formulated symmetrically. 

The FOCs are given by:  

𝜕𝑊

𝜕𝜏𝑖
=

𝜕𝑊𝑖

𝜕𝜏𝑖
+ (𝜏𝑗 − 𝑐𝑗)

𝜕𝑞𝑗

𝜕𝜏𝑖
+

𝜕𝑞𝑗

𝜕𝜏𝑖
ln (∑ exp(𝑍𝑛)

𝑛
)

−
𝑞𝑗

𝜎 ∑ exp(𝑍𝑛)𝑛
(exp(𝑍𝑖)

𝛿

𝐾𝑖

𝜕𝑞𝑖

𝜕𝜏𝑖
+ exp(𝑍𝑗)

𝛿

𝐾𝑗

𝜕𝑞𝑗

𝜕𝜏𝑖
+ exp(𝑍𝑖)) = 0, 

(24.1) 

where 
𝜕𝑊𝑖

𝜕𝜏𝑖
 is expressed in Eq. (22.1). 

𝜕𝑊

𝜕𝐾𝑖
=

𝜕𝑊𝑖

𝜕𝐾𝑖
+ (𝜏𝑗 − 𝑐𝑗)

𝜕𝑞𝑗

𝜕𝐾𝑖
+

𝜕𝑞𝑗

𝜕𝐾𝑖
ln (∑ exp(𝑍𝑛)

𝑛
)

−
𝑞𝑗

𝜎 ∑ exp(𝑍𝑛)𝑛
(exp(𝑍𝑖)

𝛿

𝐾𝑖

𝜕𝑞𝑖

𝜕𝐾𝑖
+ exp(𝑍𝑗)

𝛿

𝐾𝑗

𝜕𝑞𝑗

𝜕𝐾𝑖
+ exp(𝑍𝑖)(𝑚𝑖

𝑥𝑖

𝐺𝑖

− 𝛿
𝑞𝑖

𝐾𝑖
2)) = 0, 

(24.2) 

where 
𝜕𝑊𝑖

𝜕𝐾𝑖
 is expressed in Eq. (22.2). 
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𝜕𝑊

𝜕𝐺𝑖
=

𝜕𝑊𝑖

𝜕𝐺𝑖
+ (𝜏𝑗 − 𝑐𝑗)

𝜕𝑞𝑗

𝜕𝐺𝑖
+

𝜕𝑞𝑗

𝜕𝐺𝑖
ln (∑ exp(𝑍𝑛)

𝑛
)

−
𝑞𝑗

𝜎 ∑ exp(𝑍𝑛)𝑛
(exp(𝑍𝑖)

𝛿

𝐾𝑖

𝜕𝑞𝑖

𝜕𝐺𝑖
+ exp(𝑍𝑗)

𝛿

𝐾𝑗

𝜕𝑞𝑗

𝜕𝐺𝑖
− exp(𝑍𝑖)𝑚𝑖

𝑥𝑖𝐾𝑖

𝐺𝑖
2 )

= 0, 

(24.3) 

where 
𝜕𝑊𝑖

𝜕𝐺𝑖
 is expressed in Eq. (22.3). 

The FOCs w.r.t. port 𝑗 can be expressed symmetrically. As in Subsection 3.2.1, solving a system 

of equations could give the equilibrium outcome that is an interior solution. Similarly, we can 

solve the equilibrium outcome by formulating it as a complementarity problem: 

min
{𝜏𝑖,𝐾𝑖,𝐺𝑖,𝜏𝑗,𝐾𝑗,𝐺𝑗}

− (𝜏𝑖

𝜕𝑊

𝜕𝜏𝑖
+ 𝐾𝑖

𝜕𝑊

𝜕𝐾𝑖
+ 𝐺𝑖

𝜕𝑊

𝜕𝐺𝑖
+ 𝜏𝑗

𝜕𝑊

𝜕𝜏𝑗
+ 𝐾𝑗

𝜕𝑊

𝜕𝐾𝑗
+ 𝐺𝑗

𝜕𝑊

𝜕𝐺𝑗
) , 

𝑠. 𝑡.
𝜕𝑊

𝜕𝜏𝑖
≤ 0,

𝜕𝑊

𝜕𝐾𝑖
≤ 0,

𝜕𝑊

𝜕𝐺𝑖
≤ 0,

𝜕𝑊

𝜕𝜏𝑗
≤ 0,

𝜕𝑊

𝜕𝐾𝑗
≤ 0,

𝜕𝑊

𝜕𝐺𝑗
≤ 0, 𝐸𝑞. (9.1), 𝐸𝑞. (9.2).  
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Chapter 4: Numerical analysis 

Since the model proposed in the previous chapter does not give closed-form solutions, we conduct 

numerical experiments to see how the changes of certain parameters affect the equilibrium 

outcome of the three cases by ownership structures.  

All the computations have been coded in MATLAB scripts. Developed by MathWorks, MATLAB 

served us as an ideal numeric computing platform to create and solve our model both as an 

optimization problem and as a system of equations. We solved our model as an optimization 

problem by using the Optimization Toolbox and as a system of equations using Symbolic Math 

Toolbox. We ran the computations on a 64-bit operating system with an Intel® Core™ i5-1135G7 

CPU of 2.40GHz and an installed RAM of 16.0 GB. 

4.1 Symmetric scenario analysis 

In this section, we consider a symmetric scenario, where the parameter values pertaining to both 

ports, namely port 𝑖 and port 𝑗, are identical. This scenario corresponds to the real-world situation 

where two competing ports are subject to similar climate-change risks and operational 

characteristics. For example, Port of Vancouver and Port of Prince Rupert are both located on 

coastal areas and are subject to the same risk of sea-level rise of the Pacific Ocean. The two ports 

are also similar in terms of the cargo handling scale. Port of Vancouver is the Canada’s largest 

port by tonnage of cargo handled, enabling annual trade of more than CAD 275 billion in goods 

with more than 170 trading economies (Port of Vancouver, 2022). Port of Prince Rupert is 

Canada’s third busiest seaport by cargo tonnage and container volume. Serving as alternative to 

Port of Vancouver in Canada’s west coast, Port of Prince Rupert and Port of Vancouver can be 

competitors. 

Table 1 lists the baseline parameter values for symmetric scenario. More specifically, we assume 

the baseline value of constant utility of shippers choosing both ports as 10 to ensure that the outside 

option also captures a certain market share in the baseline as well as in the sensitivity analysis 

when the parameter is varied. Constant utility of shippers choosing a port captures the preference 

of shippers based on factors not explicitly considered in the utility function. A value much higher 

than 10 (such as 20) would lead to the two ports exactly splitting the market and shippers not 
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choosing outside options available to transport their goods, which is not realistic. Since the 

planning horizon of an infrastructure investment can encompass many years, to determine the 

expected coastal natural disaster frequency during a certain period, we assume the annual 

frequency does not change within the period. Thus, the expected number of coastal disasters during 

the planning horizon can be calculated as ∑ ℎ 𝑥𝑎
ℎ(1 − 𝑥𝑎)𝑁−ℎ 𝑁!

ℎ!(𝑁−ℎ)!

𝑁
ℎ=0 , where 𝑥𝑎 is the annual 

disaster probability and 𝑁 is the planning horizon. By assuming the annual probability of a coastal 

disaster is 0.1 and the planning horizon of the port encompasses 20 years, we calculate that the 

expected disaster frequency is 2 (thus in the baseline 𝑥𝑖 = 𝑥𝑗 = 2).  

Table 1 Baseline parameter values for symmetric scenario 

Constant utility for shippers 𝜇𝑖 = 𝜇𝑗 = 10 

Expected coastal disaster frequency during a port’s planning horizon 𝑥𝑖 = 𝑥𝑗 = 2 

Intensity of damage to shippers 𝑚𝑖 = 𝑚𝑗 = 0.5 

Intensity of damage to the port 𝑀𝑖 = 𝑀𝑗 = 1  

Unit operating cost of the port 𝑐𝑖 = 𝑐𝑗 = 1   

Unit capacity investment cost of the port 𝑐𝐾𝑖 = 𝑐𝐾𝑗 = 1.5   

Potential market demand 𝑄 = 100   

Parameter measuring port congestion cost to shippers 𝛿 = 4  

 

(a). Profit-maximizing ports 
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(b). Welfare-maximizing ports 

(c). First-best outcome 

Figure 2 Varying expected disaster frequency 𝒙𝒊 

We now conduct sensitivity analyses for the parameter values. We start by analyzing two ports 

that are identical. However, as we vary certain parameters, the two ports are not symmetric 

anymore. Figure 2 displays the effects of varying expected disaster frequency 𝑥𝑖 at port 𝑖 under 

the three port ownership structures. In all figures, the symbol ~ in the legend denotes the 

equilibrium outcome for profit-maximizing ports; the symbol ^ in the legend denotes the 

equilibrium outcome for welfare-maximizing ports; and the symbol * in the legend denotes first-

best outcome. As 𝑥𝑖  varies from 0.2 to 4, the effect on the equilibrium outcome of capacity 

investment, protection investment and traffic volume are similar for profit-maximizing and 

welfare-maximizing ports. As 𝑥𝑖 increases, port 𝑖 would invest less in capacity because it is more 

likely to suffer from losses in infrastructure damage due to higher frequency and less capacity 

means fewer assets are at risk. On the other hand, port 𝑗 would increase its capacity investment to 

accommodate the traffic diverting from port 𝑖 to port  𝑗. The protection investment of port 𝑖 is non-

monotone. The protection investment first increases, then decreases with the climate risk at port 𝑖. 

This shows that a port will not necessarily always increase its protection investment when its 

climate risk intensifies. The reason is that when the climate risk is high (i.e., 𝑥𝑖 ≥ 0.6 under profit-

maximizing ports and 𝑥𝑖 ≥ 1  under welfare-maximizing ports), the port would reduce its capacity 
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investment to such an extent that the port does not need much protection investment to protect its 

infrastructure. But the protection investment at port 𝑗  always increases since the increasing 

capacity investment at port 𝑗 would need protection. Traffic volume at port 𝑖 decreases as shippers 

do not find a high-climate-risk port attractive, while traffic volume at port 𝑗 increases as traffic is 

diverted from port 𝑖 to port 𝑗. Nevertheless, the reduction in port 𝑖’s traffic volume outweighs the 

increase in port 𝑗’s traffic volume, indicating less overall maritime traffic in the market. 

The pricing behavior is slightly different between profit-maximizing and welfare-maximizing 

ports. Under profit-maximizing ports, as shippers could be discouraged by the increasing climate 

risk at port 𝑖, port 𝑖 first decreases its fees to attract traffic and compensate for increased risk for 

shippers. But since the capacity at port 𝑖 decreases further with 𝑥𝑖 , which causes congestion to 

shippers, port 𝑖 is thus inclined to increase the port charge to curb congestion and regain some 

attractiveness to shippers. Since traffic is diverted to port 𝑗, there could be congestion at port 𝑗, but 

port 𝑗 only increases its charge slightly as a profit-maximizing port does not care about the welfare 

loss of shippers due to congestion. On the contrary, under welfare-maximizing ports, the port 

charge at both port 𝑖 and port 𝑗 increases with 𝑥𝑖 . Since port 𝑖 considers the welfare of shippers 

who could be worse off due to the increasing climate risk at port 𝑖 and the possible congestion 

because of decreasing port capacity, port 𝑖 increases port charge. Due to the diverted traffic, port 

𝑗  increases the charge to reduce the congestions costs incurred by shippers. Under profit-

maximizing ports, port charge varies between 6.3 and 6.8 for port 𝑖 and between 6.4 and 6.5 for 

port 𝑗 , while under welfare-maximizing ports, port charge varies between 4.5 and 6 for port 𝑖 and 

between 4 and 5.5 for port 𝑗. Apparently, the port charge increases to a greater extent under 

welfare-maximizing ports, because these ports take into consideration the shippers’ welfare, which 

includes the congestion cost. Welfare-maximizing ports invest more in capacity and protection and 

charge cheaper port fees than profit-maximizing ports. As a result, both the individual-port traffic 

volume and the overall traffic volume are higher under welfare-maximizing ports than under 

profit-maximizing ports. 

Figure 2(c) depicts the first-best outcome of varying 𝑥𝑖. When 𝑥𝑖 ≤ 2.6 the port charge of both 

ports will be set to zero, representing the corner solution. In this range ( 0.2 ≤ 𝑥𝑖 ≤ 2.6) , 

𝐾𝑖
∗ decreases with 𝑥𝑖  while 𝐾𝑗

∗ increases with 𝑥𝑖 , 𝐺𝑖
∗ first increases then decreases with 𝑥𝑖  while 
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𝐺𝑗
∗increases with 𝑥𝑖 , and 𝑞𝑖

∗ decreases with 𝑥𝑖 , and 𝑞𝑗
∗ increases with 𝑥𝑖 . These insights are the 

same for profit and welfare-maximizing ports. Within this range, the total traffic volume under 

first-best outcome (𝑞𝑖
∗ + 𝑞𝑗

∗) hardly changes (i.e., 𝑞𝑖
∗ + 𝑞𝑗

∗ varies only between 99.89 and 99.70) 

and is close to the potential market size (𝑄 = 100). This occurs because the central government 

tries to satisfy the total potential market demand at the expense of port profits. When climate risk 

at port 𝑖 is sufficiently large (i.e., 𝑥𝑖 ≥ 2.8), it is no longer optimal to satisfy all demand at the 

expense of port profits, and thus the equilibrium is no longer a corner solution. During this range 

(2.8 ≤ 𝑥𝑖 ≤ 4), as the focus shifts from shippers’ welfare to ports’ profits, 𝜏𝑖
∗ and 𝜏𝑗

∗ both increase 

with 𝑥𝑖 ; 𝐾𝑖
∗  and 𝐾𝑗

∗ both decrease with 𝑥𝑖 ; 𝐺𝑖
∗ and 𝐺𝑗

∗  both decrease with 𝑥𝑖 ; 𝑞𝑖
∗ and 𝑞𝑗

∗  both 

decrease with 𝑥𝑖. This is contrary to the competition cases where the decision variables of the two 

ports can move in opposite directions with 𝑥𝑖. When the climate risk at port 𝑖 is small (e.g., 𝑥𝑖 =

0.2), the central government invests a lot in port 𝑖 's capacity (e.g., 𝐾𝑖
∗ = 119.5, which is greater 

than 𝐾̃𝑖 = 65.96 and 𝐾̂𝑖 = 99.94) and invests a lot less in port 𝑗’s capacity (e.g., 𝐾𝑗
∗ = 6.84, which 

is lesser than 𝐾̃𝑗 = 10.92 and 𝐾̂𝑗 = 26.42) to encourage shippers to go to port 𝑖. When the climate 

risk at port 𝑖 is big (e.g., 𝑥𝑖 = 4), the capacity investment at both port 𝑖 and port 𝑗 is greater than 

under profit/welfare-maximizing cases (e.g., 𝐾𝑖
∗ = 9.74, which is greater than 𝐾̃𝑖 = 5.79 and 𝐾̂𝑖 =

8.66, and 𝐾𝑗
∗ = 39.91, which is greater than 𝐾̃𝑗 = 35.86 and 𝐾̂𝑗 = 19.96). The port charge is not 

only a transfer between the port and shippers, but also a measure to control congestion. A higher 

port charge limits the traffic volume, thereby reducing congestion for the existing shippers. 

However, under the first-best outcome, the central government will build enough port capacity for 

shippers such that the port charge is set to zero because port congestion is no longer an issue. 

(a). Profit-maximizing ports 
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(b). Welfare-maximizing ports 

(c). First-best outcome 

Figure 3 Varying constant utility for shippers 𝝁𝒊 

Figure 3 shows the effects of varying constant utility of shippers choosing port 𝑖, 𝜇𝑖. 𝜇𝑖 and 𝜇𝑗 

capture the preference of shippers based on factors not considered in the utility function. Here, 

𝜇𝑖 > 𝜇𝑗 implies that shippers prefer port 𝑖 to port 𝑗 if all else is equal. An increase in 𝜇𝑖 attracts 

more shippers at port 𝑖, thereby leading to an increase in port 𝑖’s capacity, protection, and traffic 

volume. When 𝜇𝑖 varies from 5 to 10, the attractiveness of port 𝑖 is increasing but is still less than 

that of port 𝑗. Thus, the capacity, protection, and traffic volume at port 𝑗 decreases only slightly, 

because port 𝑗 is still competent in the competition against port 𝑖. However, when 𝜇𝑖 varies from 

10 to 15, port 𝑗 is losing attractiveness, and thus we see a more obvious decrease in port 𝑗 's 

capacity, protection, and traffic volume. When 𝜇𝑖 is small (i.e., 𝜇𝑖 ≤ 7), the capacity, protection, 

and traffic at port 𝑖 are close to 0. The above observations hold for both profit-maximizing and 

welfare-maximizing cases. However, under the welfare-maximizing case, the capacity, protection, 

and traffic at port 𝑖 increase or decrease more when 𝜇𝑖 varies around the benchmark case where 

𝜇𝑖 = 𝜇𝑗 = 10, while this observation does not hold in the profit-maximizing case. The pricing 

behavior is different under the profit-maximizing and welfare-maximizing ports. Under profit-

maximizing ports,  𝜏̃𝑖 increases with 𝜇𝑖 and the increasing trend is more obvious when 𝜇𝑖 ≥ 10, 

but 𝜏̃𝑗  barely changes with 𝜇𝑖 . The increasing 𝜇𝑖  gives port 𝑖 market power, which allows it to 
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increase price, while port 𝑗 competes with port 𝑖 by adjusting capacity and protection rather than 

port charge. Under welfare-maximizing ports, 𝜏̂𝑖 and 𝜏̂𝑗 are roughly the same in the range of 5 ≤

𝜇𝑖 ≤ 10, indicating that port 𝑖 and port 𝑗 compete in capacity and protection rather than price. In 

the range of 10 ≤ 𝜇𝑖 ≤ 15, 𝜏̂𝑗 decreases sharply with 𝜇𝑖 due to the loss of competitive advantage, 

whereas 𝜏𝑖
^ first increases with 𝜇𝑖 due to the increasing market power and then decreases with 𝜇𝑖 

due to the sharp decrease of 𝜏̂𝑗 (which tends to drag down 𝜏̂𝑖) and slower increase in 𝐾̂𝑖and 𝐺̂𝑖 

(which gives port 𝑖 less edge to increase price). As expected, welfare-maximizing ports charge 

lower fee, invest more in capacity and protection, and handle more traffic volume as compared to 

profit-maximizing ports. 

Under the first-best outcome depicted in Figure 3(c), when 9.5 ≤ 𝜇𝑖 ≤ 15 , the equilibrium 

outcome is a corner solution where the pricing of both ports is 0. Within this range, 𝐾𝑖
∗, 𝐺𝑖

∗and 𝑞𝑖
∗ 

increases with 𝜇𝑖, while 𝐾𝑗
∗, 𝐺𝑗

∗and 𝑞𝑗
∗ decreases with 𝜇𝑖. The central government tries to satisfy 

all market demand which is evident from 𝑞𝑖
∗ + 𝑞𝑗

∗ being close to 100. The increase in capacity 

investment, protection investment and traffic volume at port 𝑖 and decrease of those at port 𝑗 are 

symmetric since the decisions of the two ports are centralized, as opposed to welfare/profit-

maximizing cases where the increase at port 𝑖 exceeds the decrease at port 𝑗. When 5 ≤ 𝜇𝑖 ≤ 9, 

the equilibrium outcome becomes an interior solution. Within this range, 𝐾𝑖
∗, 𝐺𝑖

∗and 𝑞𝑖
∗ increases 

with 𝜇𝑖. 𝐾𝑗
∗, 𝐺𝑗

∗and 𝑞𝑗
∗ also increases with 𝜇𝑖 (although only slightly), which is in contrast from the 

welfare/profit-maximizing cases where those variables of port 𝑗 decrease (slightly) with 𝜇𝑖. This 

happens because under the first-best case, port 𝑖 and port 𝑗 are not competing, instead they both 

try to satisfy more market demand. As a result, 𝜏𝑖
∗and 𝜏𝑗

∗ both decrease with 𝜇𝑖 to attract traffic. 

Since 𝜇𝑖 < 𝜇𝑗, we have 𝜏𝑗
∗ > 𝜏𝑖

∗ as port 𝑗 is more attractive and has the edge to charge higher fees. 
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(a). Profit-maximizing ports 

(b). Welfare-maximizing ports 

(c). First-best outcome 

Figure 4 Varying parameter for port congestion cost δ  

Figure 4 varies parameter δ, the congestion cost to shippers to capture the effect of shipment delays 

at the port. Since the ports are symmetric, varying δ results in the same outcome for port 𝑖 and port 

𝑗. Under profit-maximizing ports, as δ increases, ports initially increase their capacity investment 

to reduce the congestion costs for shippers. As δ  increases further, the high congestion cost 

discourages the market to choose ports as an alternative, resulting in reduced demand for port 

services overall. As a result, ports would invest less in capacity. Protection investment changes 

with δ in the same way as port capacity. Port charge always increases with δ, because higher port 

charge reduces congestion by limiting the traffic at the ports. Traffic volume always decreases 

with δ as maritime transport becomes less attractive. The above results under welfare-maximizing 
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ports are similar to profit-maximizing ports, except that when 1 ≤ δ ≤ 2, port charge of both ports 

is 0, indicating the equilibrium outcome is a corner solution. Within this range, each port captures 

half of the market. 

Under the first-best case, the equilibrium outcome is a corner solution in the range of 1 ≤ δ ≤ 4. 

Within this range, port charge is 0 and the two ports split the market equally. As δ increases, 

capacity investment undertaken by both ports increases which enables them to satisfy overall 

market demand. When δ > 4, the equilbrium outcome is no longer a corner solution because 

satisfying overall market demand is not optimal. Within this range, similar to the profit-

maximizing and welfare-maximizing cases, port capacity investment, protection investment and 

traffic volume decrease with δ, while the port charge increases with δ. Under both welfare-

maximizing and the first-best cases, the ports charge lower fees, invest more in capacity and 

protection investment, and handle more traffic volume than profit-maximizing ports. Last, we 

compare the equilibrium under welfare-maximizing case and first-best case. When 1 ≤ δ ≤ 2, the 

equilibrium is a corner solution under both cases. Thus, the port charge is 0 and the two ports split 

the market. When 2 < δ ≤ 8, the ports under welfare-maximizing case charge higher fees and 

handle less traffic than the ports under first-best.  When δ ≤ 3, the ports under welfare-maximizing 

case invest more in capacity and protection than the ports under first-best case. This is because 

when the congestion cost to shippers is small (δ ≤ 3), it is not necessary for the ports to engage in 

congestion pricing and the equilibrium outcome is more likely to be a corner solution where the 

port charge becomes 0. Since congestion is not an issue, the ports try to satisfy all market demand. 

As the ports under welfare-maximizing case compete, they overinvest in capacity and protection, 

compared with ports who coordinate under first-best case, to attract shippers. When 3 < δ ≤ 8, 

the congestion becomes an issue as the cost to shippers is high. The ports under first-best case are 

more willing to address the congestion issue and thus invest more in capacity and protection than 

the ports under welfare-maximizing case. When 8 < δ ≤ 10, the congestion cost to shippers is 

extremely high, which renders maritime transport unattractive. Within this range, the difference 

between first-best case and welfare-maximizing case is negligible as both invest little in capacity 

and protection due to the shrink in demand. 
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(a). Profit-maximizing ports 

(b). Welfare-maximizing ports 

(c). First-best outcome 

Figure 5 Varying intensity of damage to shippers 𝒎𝒊 

Figure 5 shows the effects of varying the intensity of damage to shippers choosing port 𝑖 𝑚𝑖, which 

quantifies the expected damage suffered by shippers in monetary value. Under both profit-

maximizing and welfare-maximizing ports, a higher 𝑚𝑖  reduces the capacity investment, 

protection investment, and traffic volume at port 𝑖 . On the other hand, capacity investment, 

protection investment, and traffic volume increases in port 𝑗 since it appeals more to shippers and 

demand builds up. The reduction in these variables at port 𝑖 outweighs the increase in those at port 

𝑗 in terms of absolute magnitude. 
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The pricing behavior is different under profit-maximizing and welfare-maximizing cases. Under 

profit-maximizing ports, 𝜏̃𝑖 initially decreases as the port tries to attract traffic by reducing price. 

Subsequently, as 𝑚𝑖 increases and the port invests less in capacity, the port increases 𝜏̃𝑖 to control 

congestion. 𝜏̃𝑗  slightly increases with 𝑚𝑖 since port 𝑗 attracts increasingly more shippers. Under 

welfare-maximizing port, port charge at both ports increases with 𝑚𝑖 to control congestion since 

capacity at port 𝑖 reduced a lot and capacity at port 𝑗 does not increase as much. The four variables 

(pricing, capacity, protection, and traffic) also vary in a wider range under welfare-maximizing 

case than under profit-maximizing case. 

Under the first-best case, when 𝑚𝑖 ≤ 0.9, the equilibrium outcome is a corner solution where the 

port charge is 0. Within this range, the two ports try to satisfy the overall market demand as the 

total traffic volume is close to 100. Intuitively, as 𝑚𝑖 increases, capacity investment, protection 

investment and traffic volume decrease at port 𝑖  and increase at port 𝑗 . When 𝑚𝑖 ≥ 1 , the 

equilibrium outcome is an interior solution. Within this range, consistent with the observation for 

welfare-maximizing and profit-maximizing ports, capacity investment, protection investment and 

traffic volume at port 𝑖 decrease further with 𝑚𝑖. However, we first see a slight increase of capacity 

investment, protection investment and traffic volume at port 𝑗 because port 𝑗 still wants to take the 

traffic lost by port 𝑖. But as 𝑚𝑖 further increases, an attempt to satisfy the market demand is not 

optimal since the increase in consumer welfare cannot outweigh the loss in profit. As a result, 

capacity investment, protection investment and traffic volume at port 𝑗 then decrease with 𝑚𝑖. This 

is contrary to the welfare and profit maximizing cases where capacity, protection and traffic 

volume at port 𝑗 always increase with 𝑚𝑖 due to competition. Similar to the welfare-maximizing 

case, port charge of the two ports increases with 𝑚𝑖. 

(a). Profit-maximizing ports
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(b). Welfare-maximizing ports 

(c). First-best outcome 

Figure 6 Varying intensity of damage to port 𝑴𝒊 

Figure 6 depicts the effects of varying the intensity of damage to port 𝑖 𝑀𝑖, which quantifies the 

expected damage suffered by the port in monetary value. Under both profit-maximizing and 

welfare-maximizing ports, as 𝑀𝑖  increases, capacity investment, protection investment, and traffic 

volume decrease at port 𝑖  and increase at port 𝑗  . The reduction in these variables at port 𝑖 

outweighs the increase in those at port 𝑗  in terms of absolute magnitude. Port charge of both ports 

under both cases increases with 𝑀𝑖, although 𝜏𝑗 increases very slightly. The four variables vary in 

a wider range under the welfare-maximizing case than under the profit-maximizing case. 

Under the first-best case, when 𝑀𝑖 ≤ 1.5, the equilibrium outcome is a corner solution where port 

charge is 0. Within this range, the two ports try to satisfy the overall market demand as the total 

traffic volume is close to 100. As 𝑀𝑖 increases, port 𝑗  appeals more to shippers than port  𝑖. As a 

result, 𝐾𝑖
∗, 𝐺𝑖

∗ and 𝑞𝑖
∗ decreases with 𝑀𝑖, while 𝐾𝑗

∗, 𝐺𝑗
∗ and 𝑞𝑗

∗ increases with 𝑀𝑖 . When 𝑀𝑖 ≥ 1.6, 

the equilibrium outcome is an interior solution. Within this range, consistent with the observation 

for welfare and profit-maximizing ports, capacity investment, protection investment and traffic 

volume at port 𝑖  decreases further with 𝑀𝑖. Initially, capacity investment, protection investment 

and traffic volume at port 𝑗  increases as the port attempts to take up the traffic lost by port 𝑖. But 
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as 𝑀𝑖 further increases, trying to satisfy the market demand is not optimal, since the increase in 

consumer welfare cannot outweigh the lost in profit. As a result, capacity investment, protection 

investment and traffic volume at both ports decline with 𝑀𝑖. Similar to the welfare-maximizing 

case, port charge of the two ports increases with 𝑀𝑖. 

(a). Profit-maximizing ports 

 

(b). Welfare-maximizing ports 

(c). First-best outcome 

Figure 7 Varying potential market demand Q 

Figure 7 reveals the effects of varying potential market demand, 𝑄. Under all three cases, as 𝑄 

increases, both ports’ capacity and protection investment increase strongly, as does traffic volume 

on account of new shippers entering the market. The ports compete fiercely to attract shippers by 

offering enhanced capacity and ensuring better protection against climate change induced events 

and disasters. Port charge under all cases is invariant to Q. This implies that both ports finance 
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their investments without increasing the port charge as it would entail losing the competitive edge 

to the competitor. The port charge is always set to 0 under first-best outcome. 

(a). Profit-maximizing ports

(b). Welfare-maximizing ports 

(c). First-best outcome 

Figure 8 Varying unit operating cost 𝒄𝒊 

Figure 8 varies the unit operating cost of port 𝑖, 𝑐𝑖. As 𝑐𝑖 increases, port 𝑖 increases its port charge 

as it becomes more expensive to operate the port, thereby causing shippers to prefer port 𝑗 over 

port 𝑖 . Given irreversibility of investments, port 𝑖  will reduce capacity investment as demand 

shrinks. The port also holds back on protection to avoid overinvesting because the amount of 

capacity requiring protection declines with 𝑐𝑖. Conversely, increased demand of port 𝑗 amongst 

shippers leads to a slight increase in its port charge under welfare-maximizing case, whereas the 

charge of port 𝑗 remain mostly invariant under profit-maximizing case as they do not care about 
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the congestion cost incurred by shippers. With marginal increase in charge of port 𝑗  being 

considerably lower than that of port  𝑖, port 𝑗 retains its competitive edge over port 𝑖 as 𝑐𝑖 varies. 

Port 𝑗 slightly increases capacity and protection investment to accommodate the increased demand 

and defend larger capacity. These insights hold under both welfare-maximizing and profit 

maximizing ports. But the variables vary in a wider range under welfare-maximizing ports. 

Under the first-best case, when 𝑐𝑖 ≤ 1.4, the equilibrium outcome is a corner solution where the 

ports try to satisfy the overall market demand. Within this range, port charge is 0 and total traffic 

volume is close to 100. When 𝑐𝑖 ≥ 1.6, the equilibrium outcome is an interior solution. Within this 

range, contrary to the welfare and profit maximizing cases, the capacity investment, protection 

investment and traffic volume of both ports decrease with 𝑐𝑖  as the ports under first-best case 

coordinate. However, charges levied by both ports increases with 𝑐𝑖, consistent with welfare and 

profit maximizing cases. 

(a). Profit-maximizing ports

(b). Welfare-maximizing ports 
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(c). First-best outcome 

Figure 9 Varying unit capacity investment cost 𝒄𝒌𝒊 

The effects of varying unit capacity investment cost of port 𝑖 , 𝑐𝑘𝑖, are shown in Figure 9. As 𝑐𝑘𝑖 

rises, intuitively port 𝑖 decreases its capacity investment, which leads to the decrease in port 𝑖 ’s 

protection as well. Consequently, shippers start to prefer port 𝑗 over port  𝑖. Port 𝑗 thus embarks on 

capacity enhancement projects to compete with port 𝑖 . Port 𝑗 ’s adaptation investment also 

increases as capacity requiring protection increases with 𝑐𝑘𝑖. Nevertheless, the reduction in port 

𝑖’s capacity outweighs the increase in port 𝑗’s capacity, indicating less overall capacity in the 

market. Reduced traffic volume compels the port 𝑖  to increase its port charge to maintain its 

profitability margin. Port 𝑗’s charge slightly increases as excess demand for the port builds up. 

These observations are the same under both welfare-maximizing and profit maximizing ports, 

despite that the charge of port 𝑗 under welfare-maximizing case increases to a greater extent than 

under profit-maximizing case due to the consideration of shippers’ welfare. 

Under the first-best case, when 𝑐𝑘𝑖 ≤ 1.8, the equilibrium outcome is a corner solution where port 

charge is 0 and total traffic volume is close to 100. When 𝑐𝑘𝑖 ≥ 2.1, the equilibrium outcome is an 

interior solution. Within this range, contrary to the welfare and profit maximizing cases, the 

capacity investment, protection investment and traffic volume of both ports decrease with 𝑐𝑘𝑖 due 

to coordination. The charges levied by both ports increases with 𝑐𝑘𝑖, consistent with welfare and 

profit maximizing cases. 
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(a). Profit-maximizing ports 

(b). Welfare-maximizing ports 

(c). First-best outcome 

Figure 10 Varying σ 

Figure 10 shows the effect of varying σ, which measures the heterogeneity in the error term of the 

random utility function and provides insights on how well the behavior of shippers can be 

predicted. We assume σ = 1 in the baseline. Larger σ indicates higher heterogeneity in the error 

term implying increased difficulty in behavior prediction. With a bigger σ, capacity investment 

undertaken by both ports decrease because of the effect of unknown factors on shippers’ choice. 

Protection investment also decreases as the amount of capacity requiring protection declines with 

σ. Traffic volume in general decreases with σ, except when σ is small and the two ports try to 

satisfy overall market demand. The above observations are similar under the three cases. Under 

welfare-maximizing case, when σ ≤ 0.6 , the ports find it easier to predict shippers’ choice 

behavior and thus try to satisfy overall market demand, demonstrated by  
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𝑞̂𝑖 and 𝑞̂𝑗 are both close to 50. At σ = 0.2 and σ = 0.4, capacity and protection further increase 

compared to the scale at σ = 0.6 , which warrants the ports to raise their port charge as the 

enhanced capacity and protection increase shippers’ willingness to pay. When σ > 0.6, port charge 

increases with σ as congestions poses concerns due to reduced capacity. This observation also 

applies for profit-maximizing ports. Note that the port charges under profit-maximizing cases 

always increase with σ , as profit-maximizing ports never consider satisfying overall market 

demand. Under first-best case, when σ ≤ 1, the equilibrium outcome is a corner solution. The 

ports under first-best keep their port charge at 0 despite trying to satisfy overall market demand, 

contrary to the ports under welfare-maximizing case. When σ > 1, the equilibrium outcome is an 

interior solution with insights similar to the welfare-maximizing case. 

(a). Profit-maximizing ports

(b). Welfare-maximizing ports
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(c). First-best outcome 

Figure 11 Varying expected disaster frequency of both ports, 𝒙𝒊 and 𝒙𝒋 

We now vary port-specific parameters relating to expected disaster frequency, constant utility 

attained by shippers, and the disaster intensity to shippers to the ports simultaneously. We vary 

expected disaster frequency of both ports, 𝑥𝑖  and 𝑥𝑗 , simultaneously indicating a global 

deterioration of the climate in Figure 11. With the increase in both 𝑥𝑖 and 𝑥𝑗, the ports reduce their 

investment in capacity because they are more likely to suffer from losses in infrastructure damage 

and less capacity means fewer assets are at risk. The protection investment of both ports is non-

monotone. The ports first increase their protection investment as higher climate risk warrants more 

protection. But after the climate risk exceeds a certain range, their protection investment reduces, 

because they invest in substantially less capacity that requires protection. Port charge of both ports 

increases with climate risk to ensure congestion is at an acceptable level given the decline in 

capacity. Consequently, traffic volume decreases with 𝑥𝑖 and 𝑥𝑗. The above insights apply for both 

profit and welfare maximizing cases. However, at 𝑥𝑖 = 𝑥𝑗 = 0.2, the equilibrium outcome under 

welfare-maximizing case is a corner solution where port charge is 0 and the two ports split the 

market. Additionally, port charge, capacity investment, protection investment and traffic volume 

vary within a wider range under welfare-maximizing case than under profit-maximizing case. 

Under the first-best case, when 0.2 ≤ 𝑥𝑖 = 𝑥𝑗 ≤ 2, the equilibrium outcome is a corner solution. 

Within this range, port capacity decreases slightly with climate risk, whereas port protection 

increases substantially to ensure protection of the ports and the shippers. The traffic volume 𝑞𝑖
∗ 

and 𝑞𝑗
∗ both stay at 50 to split the total market. When 𝑥𝑖 = 𝑥𝑗 > 2, it is no longer optimal for the 

ports to satisfy overall market demand. The insights within this range are similar to the profit and 

welfare maximizing cases. 
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(a). Profit-maximizing ports 

(b). Welfare-maximizing ports 

(c). First-best outcome 

Figure 12 Varying constant utility for shippers choosing both ports, 𝝁𝒊 and 𝝁𝒋 

Figure 12 varies constant utility attained by shippers choosing both ports, 𝜇𝑖 and 𝜇𝑗 . As 𝜇𝑖 and 𝜇𝑗 

increase, the ports become more attractive than other alternatives for shippers. The ports thus 

increase capacity and protection investment to accommodate the increased demand, leading to an 

increase in traffic volume. The above insights are the same under profit and welfare maximizing 

ports, but pricing behavior is different. Under profit-maximizing case, since ports enjoy more 

market power, port charge increases in order to obtain more profit margin, whereas under welfare-

maximizing case, port charge decreases in order to satisfy more market demand. In particular, 

when 13 ≤ 𝜇𝑖 = 𝜇𝑗 ≤ 15 , the equilibrium outcome becomes a corner solution, and thus port 

charge is set to 0 and traffic volume of each port is close to 50.  
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Under first-best case, when 𝜇𝑖 = 𝜇𝑗 ≥ 10, the equilibrium outcome is a corner solution where port 

charge is 0. Within this range, capacity and protection investments remain constant, implying 

sufficient port capacity and protection to satisfy the overall market. When 𝜇𝑖 = 𝜇𝑗 < 10, the 

insights resemble the welfare-maximizing case. 

(a). Profit-maximizing ports

(b). Welfare-maximizing ports

(c). First-best outcome 

Figure 13 Varying intensity of damage to shippers choosing both ports, 𝒎𝒊 and 𝒎𝒋 

We examine the effect of the overall increase in the intensity of damage to shippers choosing both 

ports, 𝑚𝑖 and 𝑚𝑗 in Figure 13. As 𝑚𝑖 and 𝑚𝑗 increase, capacity, protection, and traffic volume at 

both ports decrease under profit and welfare maximizing cases. However, pricing behavior is 

different. Under profit-maximizing case, as 𝑚𝑖 and 𝑚𝑗 increase, ports initially reduce their charge 

to attract traffic and subsequently increase it as an attempt to control congestion as capacity is 
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further reduced. On the contrary, ports under welfare-maximizing case always increase their 

charge with 𝑚𝑖  and 𝑚𝑗  to control congestion since capacity is substantially reduced. The four 

variables vary in a wider range under welfare-maximizing case than under profit-maximizing case. 

Under first-best case, when 𝑚𝑖 = 𝑚𝑗 ≤ 0.6, the equilibrium outcome is a corner solution. Within 

this range, port charge is kept at 0 and traffic volume of each port is kept at 50. Capacity investment 

remains almost invariant because when the capacity invested is adequate to meet overall market 

demand, the ports do not have incentive to further increase capacity as 𝑚 only affects shippers. 

But to protect shippers, ports increase protection investment. When 𝑚𝑖 = 𝑚𝑗 > 0.7 , the 

equilibrium outcome is an interior solution wherein the ports no longer try to satisfy overall market 

demand. Consequently, capacity and protection investments undertaken by both ports decline with 

𝑚𝑖 and 𝑚𝑗. Moreover, consistent with the welfare-maximizing case, port charge increases with 𝑚𝑖 

and 𝑚𝑗 within this range. As a result, 𝑞𝑖
∗ and 𝑞𝑗

∗ reduce as well.  

(a). Profit-maximizing ports

(b). Welfare-maximizing ports 
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(c). First-best outcome 

Figure 14 Varying intensity of damage to both ports, 𝑴𝒊 and 𝑴𝒋 

We examine the effect of the overall increase in intensity of damage to both ports, 𝑀𝑖 and 𝑀𝑗 in 

Figure 14. The insights from varying 𝑀𝑖 and 𝑀𝑗 in all cases resemble those from varying 𝑚𝑖 and 

𝑚𝑗, with three exceptions First, for profit-maximizing ports, the port charge increases with 𝑀𝑖 and 

𝑀𝑗 while port charge is non-monotone with 𝑚𝑖 and 𝑚𝑗. This can be attributed to 𝑀 being a port-

wise parameter while 𝑚 being a user-wise parameter. In such a situation, reducing port charge is 

effective in attracting traffic since it counters the effect of an increasing 𝑚, but is not effective 

when the parameter in change is 𝑀 . Second, for welfare-maximizing ports, the protection 

investment is non-monotone with 𝑀𝑖  and 𝑀𝑗  while protection investment decrease with 𝑚𝑖 and 

𝑚𝑗. As 𝑀𝑖 and 𝑀𝑗 increases, 𝐺̂𝑖and 𝐺̂𝑗 initially increases slightly with 𝑀 till 𝑀𝑖 = 𝑀𝑗 = 0.3, and 

subsequently declines. This happens because the ports first increase their protection investment to 

counter higher intensity of damage. But after such vulnerability exceeds a certain range, their 

protection investment reduces, because they invest in substantially less capacity that requires 

protection. Last, port capacity investment always decreases with 𝑀𝑖 and 𝑀𝑗, but remains almost 

invariant with 𝑚𝑖 and 𝑚𝑗 in the range of corner solutions. The first-best equilibrium outcome is a 

corner solution when 𝑀𝑖 = 𝑀𝑗 ≤ 1.1. 

4.2 Asymmetric scenario analysis 

We now consider the asymmetric scenario, where the assumed values of a few parameters 

pertaining to both ports are different. This scenario corresponds to a real-world situation where 

competing ports could be subject to different climate risks. For instance, Port of Rotterdam and 

Port of Antwerp are competitors. Overseen by the Port of Rotterdam Authority, Port of Rotterdam 

is the largest port in Europe with throughput of 468.7 million tonnes in 2021. The Port of Antwerp-
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Bruges is Europe’s second-largest seaport and handles around 290 million tonnes of international 

maritime cargo every year. However, since Port of Rotterdam is located on the North Sea, while 

Port of Antwerp-Bruges is situated on the estuary of the river Scheldt, Port of Rotterdam is subject 

to higher climate risk due to sea level rise and flooding than Port of Antwerp. On the contrary, Port 

of Rotterdam might have a better strategic location due to its adjacence to deep water. The 

asymmetric numerical analysis thus tries to capture such a scenario and serves as a robustness 

check to show that the insight from symmetric analysis also holds in the asymmetric scenario. 

Table 2 lists the parameter values for asymmetric equilibrium. In our baseline parameters, we 

assume 𝜇𝑖 = 10 < 𝜇𝑗 = 16 to indicate that shippers attain higher constant utility from choosing 

port  𝑗, thereby implying shippers’ preference for port  𝑗 over port 𝑖 if all else being equal. We also 

assume 𝑥𝑖 = 2 < 𝑥𝑗 = 6, suggesting port 𝑗 and its users to be subjected to higher climate risk. We 

also choose a higher 𝑚𝑗 and 𝑀𝑗 further implying higher climate risk at port 𝑗. The other parameters 

are kept the same as in the symmetric case. 

Table 2 Baseline parameter values for asymmetric scenario 

Constant utility for shippers 𝜇𝑖 = 10; 𝜇𝑗 = 16  

Expected coastal disaster frequency during a port’s planning horizon 𝑥𝑖 = 2;  𝑥𝑗 = 6  

Intensity of damage to shippers 𝑚𝑖 = 0.5; 𝑚𝑗 = 1  

Intensity of damage to the port 𝑀𝑖 = 1; 𝑀𝑗 = 3  

Unit operating cost of the port 𝑐𝑖 = 𝑐𝑗 = 1   

Unit capacity investment cost of the port 𝑐𝐾𝑖 = 𝑐𝐾𝑗 = 1.5  

Potential market demand 𝑄 = 100  

Parameter measuring port congestion cost to shippers 𝛿 = 4  

We now conduct computational numerical experiments to investigate the impact of varying key 

parameters on port charge, level of capacity investment, level of adaptation investment and traffic 

volume in asymmetric case setting. 
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(a). Profit-maximizing ports

(b). Welfare-maximizing ports 

(c). First-best outcome 

Figure 15 Varying expected disaster frequency 𝒙𝒊 

Figure 15 varies expected disaster frequency at port  𝑖, 𝑥𝑖. The insights are largely the same as 

Figure 2 in the symmetric scenario. Specifically, at port  𝑖, capacity investment decreases with 𝑥𝑖, 

protection is non-monotone, while traffic volume decreases; at port 𝑗, capacity, protection, and 

traffic all increase with 𝑥𝑖. But a few points are worth noting. First, the effect of 𝑥𝑖 on 𝜏̂𝑗 is not 

monotone: 𝜏̂𝑗 first increases then declines with 𝑥𝑖. As 𝑥𝑖 increases from 0.2 to 1.6, the decrease in 

𝐾̂𝑖 is substantial but increase in 𝐾̂𝑗 is minimal. This happens because the competitive advantage of 

port 𝑗  is still not strong enough to warrant substantial increase in 𝐾̂𝑗 . Consequently, port 𝑗  

increases 𝜏̂𝑗 to resolve the congestion issues that arise due to shift in traffic from port 𝑖 to port 𝑗  

and inadequate 𝐾̂𝑗. However, when 𝑥𝑖 increases from 1.6 to 4, 𝐾̂𝑖 decreases at a slower rate but 𝐾̂𝑗 
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increases further, making capacity constraint at port 𝑗 less of an issue which warrants the reduction 

in 𝜏̂𝑗. Second, the equilibrium outcome under first-best case is mostly corner solution. When 𝑥𝑖 ≤

0.4, the charge at port 𝑗 becomes positive to further encourage shippers to use port 𝑖. Third,𝐾̂𝑗 is 

more than twice the scale of 𝐾̃𝑗, and consequently, 𝐺̂𝑗 is also more than twice the scale of 𝐺̃𝑗. This 

is because 𝜇𝑗 > 𝜇𝑖, so letting more users use port 𝑗 would give more consumer surplus, which is 

consistent with the objective function of maximizing welfare. Last, in the range where 𝑥𝑖 ≤ 1, 𝐾𝑗
∗, 

𝐺𝑗
∗ and 𝐾𝑖

∗ vary at a faster rate than in the range 𝑥𝑖 > 1. This is because when 𝑥𝑖 is small (i.e., 𝑥𝑖 ≤

1), the central government encourages the use of port 𝑖 by increasing the capacity investment at 

port 𝑖 and simultaneously reducing the capacity and protection investment at port 𝑗 .  

(a). Profit-maximizing ports

(b). Welfare-maximizing ports

(c). First-best outcome 

Figure 16 Varying expected disaster frequency 𝒙𝒋 
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Figure 16 displays the effect of varying expected disaster frequency at port 𝑗, 𝑥𝑗. The results are 

quite intuitive. For all three cases, the increase in 𝑥𝑗 results in the reduction of capacity and traffic 

at port 𝑗 and the increase of capacity, protection, and traffic at port 𝑖. The protection of port 𝑗  

decreases in general, although some slight non-monotonicity can be observed for the welfare-

maximizing and first-best case. In terms of pricing, the port charges under profit-maximizing case 

remain largely invariant, indicating the ports compete more in capacity and protection than price. 

The ports charges under welfare-maximizing case increases with 𝑥𝑗, which reflects that the ports 

practice congestion pricing to control congestion. Under first-best case, the outcome is always a 

corner solution with price set at 0.  

 

(a). Profit-maximizing ports 

(b). Welfare-maximizing ports 

(c). First-best outcome 

Figure 17 Varying constant utility for shippers 𝝁𝒊 
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Figure 17 varies constant utility attained by shippers choosing port 𝑖, 𝜇𝑖. For all three cases, with 

the increase in 𝜇𝑖, port 𝑖 becomes more attractive for shippers leading to the increase in capacity, 

protection, and traffic volume at port 𝑖, while these variables at port 𝑗  decrease. Under both profit 

and welfare maximizing cases, increased demand for port 𝑖 leads to an increase in port 𝑖’s service 

charge, which increases the port’s profit margin and limit ports given the increase in traffic. 

However, under welfare-maximizing case, the effect of 𝜇𝑖 on 𝜏̂𝑗is not monotone. Initially, when 

5 ≤ 𝜇𝑖 ≤ 10.5, port 𝑗  increases 𝜏̂𝑗 to reduce the congestion as capacity decreases. Subsequently, 

when 11 ≤ 𝜇𝑖 ≤ 15, the port decreases 𝜏̂𝑗 to attract traffic although traffic volume still falls. Under 

profit-maximizing case, port 𝑗 just slightly reduces 𝜏̃𝑗 to attract traffic. Under the first-best case, 

the central government builds enough port capacity for shippers such that the port charge is set to 

zero as congestion is no longer an issue. Under profit-maximizing case, the reduction in 𝑞̃𝑗  is 

outweighed by the increase in 𝑞̃𝑖 implying overall increase in the traffic volume in the market, 

whereas under welfare-maximizing and first-best cases, the changes in traffic volume for the two 

ports are more symmetric.  

(a). Profit-maximizing ports

(b). Welfare-maximizing ports 
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(c). First-best outcome 

Figure 18 Varying constant utility for shippers 𝛍𝐣 

Figure 18 shows the effect of varying constant utility attained by shippers choosing port 𝑗, 𝜇𝑗. An 

increase in 𝜇𝑗 results in the increase in capacity, protection, and traffic volume at port 𝑗, whereas 

these three variables decrease at port 𝑖 . This observation applies for both profit and welfare 

maximizing cases and the first-best case when the equilibrium outcome is a corner solution. Under 

profit-maximizing case, 𝜏̃𝑗  increases with 𝜇𝑗  to exploit the market power port 𝑗  has, while 𝜏̃𝑖 

hardly changes. Under welfare-maximizing case, 𝜏̂𝑖 always decreases with 𝜇𝑗 due to the loss of 

attractiveness of port 𝑖 to shippers. However, port 𝑗 initially decreases 𝜏̂𝑗 to attract demand as the 

capacity invested increases substantially when 𝜇𝑗 ≤ 16.5. When 16.5 ≤ 𝜇𝑗 ≤ 19.5, the invested 

capacity slows down, which results in the increase in 𝜏̂𝑗 to deal with congestion. But when 𝜇𝑗 ≥

19.5, the invested capacity again catches up, combined with the sharp price cut at port 𝑗, resulting 

in the reduction in 𝜏̂𝑗. Under the first-best case, the equilibrium outcome is an interior solution 

when 𝜇𝑗 < 15. Within this range, capacity investment, protection investment and traffic volume 

of both ports increase with 𝜇𝑗, while port charge decreases with 𝜇𝑗 as the ports coordinate to attract 

more shippers overall. 

(a). Profit-maximizing ports
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(b). Welfare-maximizing ports 

(c). First-best outcome 

Figure 19 Varying parameter for port congestion cost 𝛅 

Figure 19 varies congestion cost to shippers, δ. Since the ports are asymmetric, varying delta 

results in different magnitude of such variations in port 𝑖 and port 𝑗. The changes in these variables 

are more drastic for port 𝑗 as compared to port 𝑖. Under profit-maximizing ports, as δ increases, 

both port 𝑖 and port 𝑗 witness reduced realized traffic volume as shippers start to explore other 

external alternatives available to them. Capacity investment of both ports is non-monotone. If δ is 

small, undertaking capacity investment is optimal when δ increases since it reduces congestion 

costs for shippers. If δ is large, benefits of reducing congestion are muted as traffic volume is 

modest. As amount of capacity requiring protection varies with δ , adaptation investment 

undertaken by both ports to defend its larger facilities varies with δ in a similar manner. The 

pricing behaviour of the two ports largely varies. As δ increases, port 𝑖 increases respective port 

charge since higher port charge reduces congestion. Port 𝑗, on the other hand, initially reduces 𝜏𝑗
~ 

to stimulate demand when 1 ≤ 𝛿 ≤ 3.5 . Afterwards, 𝜏𝑗
~  increases as 𝛿  increases to curb 

congestion. 

The results under welfare-maximizing ports are similar to profit-maximizing ports, except that 

when 1 ≤ δ ≤ 2.5, port charge of both ports is 0 and port 𝑗 ’s traffic volume is closer to 100, 

indicating that the equilibrium outcome is a corner solution. As δ > 2.5, the insights for capacity 
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investment, protection investment and traffic volume resemble profit-maximizing case. Within this 

range, unlike profit-maximizing case, port charge of both ports under welfare-maximizing case 

increases with δ, because higher port charge reduces congestion by limiting the traffic at the ports. 

Under the first-best case, the equilibrium outcome is a corner solution in the range of 1 ≤ δ ≤ 4.5, 

where port charge is 0. Within this range, as δ increases, capacity and protection investment 

undertaken by both ports increases to accommodate the traffic. When δ > 4.5, the equilbrium 

outcome is no longer a corner solution because satisfying overall market demand is not optimal. 

Within this range, capacity investment, protection investment and traffic volume decrease with δ, 

while port charge increases with δ. 

 

(a). Profit-maximizing ports

(b). Welfare-maximizing ports
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(c). First-best outcome 

Figure 20 Varying intensity of damage to shippers 𝒎𝒊  

Figure 20 shows the effects of varying the intensity of damage to shippers choosing port 𝑖, 𝑚𝑖. For 

all three cases, capacity, protection, and traffic at port 𝑖  decreases with 𝑚𝑖, but these variables 

increase with 𝑚𝑖  at port 𝑗. The port charge under the profit-maximizing case remains largely 

invariant, but under the welfare-maximizing case it decreases with 𝑚𝑖 to compensate for the higher 

intensity of damage to shippers. The equilibrium outcome always remains to be a corner solution 

under first-best case, which leads to zero port charge.  

(a). Profit-maximizing ports

(b). Welfare-maximizing ports 
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(c). First-best outcome 

Figure 21 Varying intensity of damage to shippers 𝒎𝒋 

Figure 21 displays the effects of varying intensity of damages to shippers choosing port 𝑗, 𝑚𝑗. The 

insights are largely the same as Figure 20 of varying 𝑚𝑖, but a few points worth noting. First, some 

slight nonmonotonicity (inverted U-shape) can be observed for protection investment under 

welfare-maximizing and first-best cases. Second, 𝜏̃𝑗  decreases with 𝑚𝑗 , while 𝜏̃𝑖  does not vary 

much with 𝑚𝑖 in Figure 20. Since port 𝑗  faces higher climate risk than port  𝑖 (i.e., 𝑥𝑗 > 𝑥𝑖 in the 

baseline), the marginal increase in 𝑚𝑗 disadvantages port 𝑗  to a greater extent than the marginal 

increase in 𝑚𝑖  on port 𝑖 . Thus, with increasing 𝑚𝑗  in Figure 21, apart from the reduction in 

capacity and protection, port 𝑗  also reduces service charge to compete with port 𝑖 . Last, 𝜏̂𝑖 

increases with 𝑚𝑗 to handle the congestion due to the demand shifted from port 𝑗, while 𝜏̂𝑗 exhibits 

a slight U-shape as port 𝑗 first tries to recapture traffic and later has to deal with congestion due to 

the substantial cut in capacity. 

(a). Profit-maximizing ports 
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b). Welfare-maximizing ports 

(c). First-best outcome 

Figure 22 Varying intensity of damage to port 𝑴𝒊 

Figure 22 varies the intensity of damage to port 𝑖, 𝑀𝑖. The insights are the same as Figure 6 in the 

symmetric case, and thus are not repeated here.  

(a). Profit-maximizing ports

(b). Welfare-maximizing ports
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(c). First-best outcome 

Figure 23 Varying intensity of damage to port 𝑴𝒋 

Figure 23 displays the effects of varying intensity of damage to port 𝑗, 𝑀𝑗. The insights are mostly 

the same as Figure 21, with two points worth noting. First, 𝜏̃𝑗 increases with 𝑀𝑗, but 𝜏̃𝑗 decreases 

with 𝑚𝑗. Since changes in 𝑀𝑗 does not affect shippers’ demand for port 𝑗, port 𝑗 can increase 𝜏̃𝑗 to 

maintain its profit margin. Second, 𝜏̂𝑗 increases with 𝑀𝑗, but 𝜏̂𝑗 exhibits a slight U-shape with 𝑚𝑗. 

Again, since changes in 𝑀𝑗 does not affect shippers’ demand, port 𝑗 does not reduce port charge 

to compensate for or attract shippers.  
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Chapter 5: Conclusion 

Seaports play a vital role in global maritime commerce. Yet, due to their location in low-lying 

coastal and riverine areas, seaports are highly vulnerable to climate-change induced events 

including sea level rise, severe tropical storms, inland flooding, droughts, and extreme heat events. 

The past decade has witnessed substantial costs to global economy and welfare due to the 

occurrence of natural disasters and climate-change related disruptions. These losses are expected 

to intensify in coming years with the worsening climate situation. Such vulnerabilities necessitate 

seaports to undertake investment in adaptation against climate-change induced events to ensure 

continuity in supply chains and to become more responsive, resilient, and agile. Despite rising 

intensity and frequency of climate-change induced events, global seaborne trade has been 

increasing rapidly. In addition to adaptation to climate change, seaports undertake investment in 

capacity to accommodate the future needs of the maritime transport, to minimize delays due to 

congestion and to stay competitive. Driven by globalization, trade liberalization, and technological 

advancement, port competition has intensified in the past decade inducing ports to become more 

responsive to the needs of shippers and other stakeholders. Thus, the investment and pricing 

decisions undertaken by seaports can be largely influenced by inter-port competition. 

Against this background, we develop a game theoretic model to investigate a seaport’s strategic 

decisions on capacity and adaptation investments, as well as service charge, considering 

competition with other seaports and uncertainty about climate-change induced events. The model 

features two seaports and a continuum of shippers. We consider three cases of competition based 

on port ownership structures: profit-maximizing ports, welfare-maximizing ports, and first-best 

outcome where a central government makes decisions on behalf of the two ports with the objective 

of maximizing overall welfare. We demonstrate the following findings. 

First, when a port faces higher climate risk either due to higher disaster frequency or higher 

intensity of damage, this port would invest less in capacity to expose fewer assets at risk. However, 

this port will not necessarily always increase its protection investment, because when the climate 

risk is sufficiently high, the port would substantially cut capacity investment, which warrants less 

protection investment. Its competing port, however, would increase investment in capacity to 
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capture the shift in demand from the port that entails higher climate risk. The protection investment 

at the competing port also increases to ensure the increased capacity infrastructure is protected.  

Second, welfare-maximizing and first-best ports invest more in both protection and capacity but 

charge less service fees than profit-maximizing ports. Welfare-maximizing ports are more inclined 

to increase port charge than profit-maximizing ports when congestion occurs, because welfare-

maximizing ports consider the welfare of shippers which is negatively affected by congestion. The 

comparison of equilibrium strategies between welfare-maximizing ports and first-best ports is not 

always clear. When the climate risk at one port is very small, the central government would 

prioritize the investments at this port, while discouraging shippers from using the other port. As a 

result, the capacity and protection investments at the low-risk port would be larger but the two 

investments at the other port would be smaller under the first-best case than under welfare-

maximizing case. But if climate risk at both ports is high, the capacity and protection investments 

under first-best case would surpass those under welfare-maximizing case. 

Third, corner solutions where port charges are set to zero occur most often in the first-best case, 

occur sometimes in the welfare-maximizing case, and rarely occur in the profit-maximizing case. 

When corner solutions happen, the ports try to satisfy all market demand at the expense of ports’ 

profit. Corner solutions are more likely to happen when (1) the climate risk is low, (2) constant 

utility of using the port is high, (3) congestion cost to shippers is low, (4) unit operating cost or 

unit capacity investment cost is low, and (5) the randomness associated with shippers’ behavior is 

small.  

Fourth, the effect of shippers’ congestion cost on port capacity and protection investments is non-

monotone. Shippers incur higher congestion cost when the delay at the port causes shippers more 

late delivery penalties or more losses to their cargo value due to depreciation or obsolescence. 

When shippers’ congestion cost is relatively high, ports would invest more in capacity to deal with 

capacity constraint. Protection investment would also increase to protect the capacity infrastructure 

from climate risk. However, when the congestion cost is sufficiently high, shippers would switch 

to other transportation modes and demand for port services would decline. Consequently, ports 

reduce investments in capacity and protection.  
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Last, the market size of cargo transportation positively affects port capacity and protection 

investment, as well as maritime traffic volume, but does not affect port service charge. If the 

randomness in shippers’ behavior increases, ports reduce capacity and protection investment. If 

the constant utility of shippers using one port increases, the port will invest more in capacity and 

protection, while capacity and protection investments at its competing port will decrease. If the 

unit operating or capacity investment cost increases, the port reduces capacity and protection 

investments, but the competing port will increase the investments. In general, the pricing behavior 

of ports under the three ownership structures is different depending on the focus of the ports, which 

could be exercising market power, limiting congestion, attracting shippers, or satisfying market 

demand. 

However, there are several limitations to this study. First, the model does not incorporate 

investment timing. Since investing too early or too late can both bring catastrophic consequences, 

the model could be extended in this direction. In addition, as scientific research about climate 

change evolves over time, ports can accumulate more information about their climate risk and 

modify their investment decisions. This aspect also has not been considered in the model. Second, 

the model does not incorporate the vertical relationship between port authority and terminal 

operators within a port. The objective of a port considered in this study is either profit-maximizing 

(thus a privatized port) or welfare-maximizing (thus a public port). In practice, most ports operate 

under the landlord port model where the port authority decides investment levels with public 

interests in mind and leases the port facilities to private terminal operators who are profit oriented. 

There can also be intra-port competition among the terminal operators. Thus, the model could be 

generalized in this direction. Last, the model considers only two competing ports and could be 

extended to consider a network of maritime ports with possible co-opetition. In our two-port 

model, each port has three decision variables (port charge, capacity investment, and protection 

investment). The best response function of each decision variable is a function of the other two 

decision variables of the port itself and the three decision variables of the competing ports. 

Extending the model to multiple ports would make the computation more complicated but should 

still be numerically feasible.  
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Appendices 

Appendix A  Derivations of port demand properties  

The partial derivatives of port demand to port price can be solved by the system of equations: 

𝜕𝑞𝑖

𝜕𝜏𝑖
((∑ exp(𝑍𝑛)

𝑛
)

2

𝜎 + 𝑄exp(𝑍𝑖)
𝛿

𝐾𝑖
(1 + exp(𝑍𝑗))) − 𝑄exp(𝑍𝑖)exp(𝑍𝑗)

𝛿

𝐾𝑗

𝜕𝑞𝑗

𝜕𝜏𝑖

+ 𝑄exp(𝑍𝑖) (1 + exp(𝑍𝑗)) = 0, 

𝜕𝑞𝑗

𝜕𝜏𝑗
((∑ exp(𝑍𝑛)

𝑛
)

2

𝜎 + 𝑄exp(𝑍𝑗)
𝛿

𝐾𝑗
(1 + exp(𝑍𝑖))) − 𝑄exp(𝑍𝑖)exp(𝑍𝑗)

𝛿

𝐾𝑖

𝜕𝑞𝑖

𝜕𝜏𝑗

+ 𝑄exp(𝑍𝑗)(1 + exp(𝑍𝑖)) = 0, 

𝜕𝑞𝑖

𝜕𝜏𝑗
((∑ exp(𝑍𝑛)

𝑛
)

2

𝜎 + 𝑄exp(𝑍𝑖)
𝛿

𝐾𝑖
(1 + exp(𝑍𝑗))) − 𝑄exp(𝑍𝑖)exp(𝑍𝑗)

𝛿

𝐾𝑗

𝜕𝑞𝑗

𝜕𝜏𝑗

− 𝑄exp(𝑍𝑖)exp(𝑍𝑗) = 0, 

𝜕𝑞𝑗

𝜕𝜏𝑖
((∑ exp(𝑍𝑛)

𝑛
)

2

𝜎 + 𝑄exp(𝑍𝑗)
𝛿

𝐾𝑗
(1 + exp(𝑍𝑖))) − 𝑄exp(𝑍𝑖)exp(𝑍𝑗)

𝛿

𝐾𝑖

𝜕𝑞𝑖

𝜕𝜏𝑖

− 𝑄exp(𝑍𝑗)exp(𝑍𝑖) = 0. 

 

To solve the partial derivatives of port demand to port capacity, differentiate both sides of Eq. (9.1) 

w.r.t. 𝐾𝑖, we obtain 

𝜕𝑞𝑖

𝜕𝐾𝑖
=

𝑄exp(𝑍𝑖)

(∑ exp(𝑍𝑛)𝑛 )2
(

𝜕𝑍𝑖

𝜕𝐾𝑖
(1 + exp(𝑍𝑗)) − exp(𝑍𝑗)

𝜕𝑍𝑗

𝜕𝐾𝑖
), (A.1) 

where 
𝜕𝑍𝑖

𝜕𝜏𝑖
 and 

𝜕𝑍𝑗

𝜕𝜏𝑖
 are expressed by 

𝜕𝑍𝑖

𝜕𝐾𝑖
= −

1

𝜎
(𝑚

𝑥𝑖

𝐺𝑖
− 𝛿

𝑞𝑖

𝐾𝑖
2 +

𝛿

𝐾𝑖

𝜕𝑞𝑖

𝜕𝐾𝑖
). (A.2) 

𝜕𝑍𝑗

𝜕𝐾𝑖
= −

1

𝜎

𝛿

𝐾𝑗

𝜕𝑞𝑗

𝜕𝐾𝑖
. (A.3) 
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By plugging in Eq. (A.2) and Eq. (A.3) into Eq. (A.1), we could obtain one equation that contains 

two unknowns 
𝜕𝑞𝑖

𝜕𝐾𝑖
 and 

𝜕𝑞𝑖

𝜕𝐾𝑗
. Next, differentiate both sides of Eq. (9.1) w.r.t. 𝐾𝑗, we obtain 

𝜕𝑞𝑖

𝜕𝐾𝑗
=

𝑄exp(𝑍𝑖)

(∑ exp(𝑍𝑛)𝑛 )2
(

𝜕𝑍𝑖

𝜕𝐾𝑗
(1 + exp(𝑍𝑗)) − exp(𝑍𝑗)

𝜕𝑍𝑗

𝜕𝐾𝑗
), (A.4) 

where 
𝜕𝑍𝑖

𝜕𝜏𝑗
 and 

𝜕𝑍𝑗

𝜕𝜏𝑗
 are expressed by 

𝜕𝑍𝑖

𝜕𝐾𝑗
= −

1

𝜎

𝛿

𝐾𝑖

𝜕𝑞𝑖

𝜕𝐾𝑗
, (A.5) 

𝜕𝑍𝑗

𝜕𝐾𝑗
= −

1

𝜎
(𝑚

𝑥𝑗

𝐺𝑗
− 𝛿

𝑞𝑗

𝐾𝑗
2 +

𝛿

𝐾𝑗

𝜕𝑞𝑗

𝜕𝐾𝑗
). (A.6) 

 

The following system of equations can be solved to obtain the partial derivatives of port demand 

to port capacity: 

𝜕𝑞𝑖

𝜕𝐾𝑖
((∑ exp(𝑍𝑛)

𝑛
)

2

𝜎 + 𝑄exp(𝑍𝑖)
𝛿

𝐾𝑖
(1 + exp(𝑍𝑗))) − 𝑄exp(𝑍𝑖)exp(𝑍𝑗)

𝛿

𝐾𝑗

𝜕𝑞𝑗

𝜕𝐾𝑖

+ 𝑄exp(𝑍𝑖) (1 + exp(𝑍𝑗)) (𝑚
𝑥𝑖

𝐺𝑖
− 𝛿

𝑞𝑖

𝐾𝑖
2) = 0, 

𝜕𝑞𝑗

𝜕𝐾𝑗
((∑ exp(𝑍𝑛)

𝑛
)

2

𝜎 + 𝑄exp(𝑍𝑗)
𝛿

𝐾𝑗
(1 + exp(𝑍𝑖))) − 𝑄exp(𝑍𝑖)exp(𝑍𝑗)

𝛿

𝐾𝑖

𝜕𝑞𝑖

𝜕𝐾𝑗

+ 𝑄exp(𝑍𝑗)(1 + exp(𝑍𝑖))(𝑚
𝑥𝑗

𝐺𝑗
− 𝛿

𝑞𝑗

𝐾𝑗
2) = 0, 

𝜕𝑞𝑖

𝜕𝐾𝑗
((∑ exp(𝑍𝑛)

𝑛
)

2

𝜎 + 𝑄exp(𝑍𝑖)
𝛿

𝐾𝑖
(1 + exp(𝑍𝑗))) − 𝑄exp(𝑍𝑖)exp(𝑍𝑗)

𝛿

𝐾𝑗

𝜕𝑞𝑗

𝜕𝐾𝑗

− 𝑄exp(𝑍𝑖)exp(𝑍𝑗)(𝑚
𝑥𝑗

𝐺𝑗
− 𝛿

𝑞𝑗

𝐾𝑗
2) = 0, 

𝜕𝑞𝑗

𝜕𝐾𝑖
((∑ exp(𝑍𝑛)

𝑛
)

2

𝜎 + 𝑄exp(𝑍𝑗)
𝛿

𝐾𝑗
(1 + exp(𝑍𝑖))) − 𝑄exp(𝑍𝑖)exp(𝑍𝑗)

𝛿

𝐾𝑖

𝜕𝑞𝑖

𝜕𝐾𝑖

− 𝑄exp(𝑍𝑗)exp(𝑍𝑖)(𝑚
𝑥𝑖

𝐺𝑖
− 𝛿

𝑞𝑖

𝐾𝑖
2) = 0. 
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To solve the partial derivatives of port demand to port adaptation investment, differentiate both 

sides of Eq. (9.1) w.r.t. 𝐺𝑖, we obtain 

𝜕𝑞𝑖

𝜕𝐺𝑖
=

𝑄exp(𝑍𝑖)

(∑ exp(𝑍𝑛)𝑛 )2
(

𝜕𝑍𝑖

𝜕𝐺𝑖
(1 + exp(𝑍𝑗)) − exp(𝑍𝑗)

𝜕𝑍𝑗

𝜕𝐺𝑖
), (A.7) 

where 
𝜕𝑍𝑖

𝜕𝜏𝑖
 and 

𝜕𝑍𝑗

𝜕𝜏𝑖
 are expressed by 

𝜕𝑍𝑖

𝜕𝐺𝑖
=

1

𝜎
(𝑚

𝑥𝑖𝐾𝑖

𝐺𝑖
2 −

𝛿

𝐾𝑖

𝜕𝑞𝑖

𝜕𝐺𝑖
), (A.8) 

𝜕𝑍𝑗

𝜕𝐺𝑖
= −

1

𝜎

𝛿

𝐾𝑗

𝜕𝑞𝑗

𝜕𝐺𝑖
. (A.9) 

 

Differentiate both sides of Eq. (9.1) with respect to (w.r.t.) 𝐺𝑗, we obtain 

𝜕𝑞𝑖

𝜕𝐺𝑗
=

𝑄exp(𝑍𝑖)

(∑ exp(𝑍𝑛)𝑛 )2
(

𝜕𝑍𝑖

𝜕𝐺𝑗
(1 + exp(𝑍𝑗)) − exp(𝑍𝑗)

𝜕𝑍𝑗

𝜕𝐺𝑗
), (A.10) 

where 
𝜕𝑍𝑖

𝜕𝜏𝑗
 and 

𝜕𝑍𝑗

𝜕𝜏𝑗
 are expressed by 

𝜕𝑍𝑖

𝜕𝐺𝑗
= −

1

𝜎

𝛿

𝐾𝑖

𝜕𝑞𝑖

𝜕𝐺𝑗
, (A.11) 

𝜕𝑍𝑗

𝜕𝐺𝑗
=

1

𝜎
(𝑚

𝑥𝑗𝐾𝑗

𝐺𝑗
2 −

𝛿

𝐾𝑗

𝜕𝑞𝑗

𝜕𝐺𝑗
). (A.12) 

 

The following system of equations can be solved to obtain the partial derivatives of port demand 

to port adaptation investment: 

𝜕𝑞𝑖

𝜕𝐺𝑖
((∑ exp(𝑍𝑛)

𝑛
)

2

𝜎 + 𝑄exp(𝑍𝑖)
𝛿

𝐾𝑖
(1 + exp(𝑍𝑗))) − 𝑄exp(𝑍𝑖)exp(𝑍𝑗)

𝛿

𝐾𝑗

𝜕𝑞𝑗

𝜕𝐺𝑖

− 𝑄exp(𝑍𝑖) (1 + exp(𝑍𝑗)) 𝑚
𝑥𝑖𝐾𝑖

𝐺𝑖
2 = 0, 

𝜕𝑞𝑗

𝜕𝐺𝑗
((∑ exp(𝑍𝑛)

𝑛
)

2

𝜎 + 𝑄exp(𝑍𝑗)
𝛿

𝐾𝑗
(1 + exp(𝑍𝑖))) − 𝑄exp(𝑍𝑖)exp(𝑍𝑗)

𝛿

𝐾𝑖

𝜕𝑞𝑖

𝜕𝐺𝑗

− 𝑄exp(𝑍𝑗)(1 + exp(𝑍𝑖))𝑚
𝑥𝑗𝐾𝑗

𝐺𝑗
2 = 0, 
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𝜕𝑞𝑖

𝜕𝐺𝑗
((∑ exp(𝑍𝑛)

𝑛
)

2

𝜎 + 𝑄exp(𝑍𝑖)
𝛿

𝐾𝑖
(1 + exp(𝑍𝑗))) − 𝑄exp(𝑍𝑖)exp(𝑍𝑗)

𝛿

𝐾𝑗

𝜕𝑞𝑗

𝜕𝐺𝑗

+ 𝑄exp(𝑍𝑖)exp(𝑍𝑗)𝑚
𝑥𝑗𝐾𝑗

𝐺𝑗
2 = 0, 

𝜕𝑞𝑗

𝜕𝐺𝑖
((∑ exp(𝑍𝑛)

𝑛
)

2

𝜎 + 𝑄exp(𝑍𝑗)
𝛿

𝐾𝑗
(1 + exp(𝑍𝑖))) − 𝑄exp(𝑍𝑖)exp(𝑍𝑗)

𝛿

𝐾𝑖

𝜕𝑞𝑖

𝜕𝐺𝑖

+ 𝑄exp(𝑍𝑗)exp(𝑍𝑖)𝑚
𝑥𝑖𝐾𝑖

𝐺𝑖
2 = 0. 
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Appendix B  Derivations of choice probability and consumer surplus 

B.1 Derivation of choice probability 

The probability that alternative 𝑙 is chosen is 

𝑃𝑙 = 𝑃(𝑉𝑙 + 𝜀𝑙 ≥ 𝑉𝑛 + 𝜀𝑛 , ∀ 𝑛 ≠ 𝑙) = 𝑃(𝜀𝑛 ≤ 𝑉𝑙 + 𝜀𝑙 − 𝑉𝑛, ∀ 𝑛 ≠ 𝑙). 

Since 𝜀𝑛 is i.i.d., and 𝜀𝑛 ∼ Gumbel (0, 𝜎), conditional on the value of 𝜀𝑙, the probability that 𝑙 is 

chosen is 

𝑃𝑙|𝜀𝑙 = ∏ 𝐹(𝑉𝑙 + 𝜀𝑙 − 𝑉𝑛)

𝑛≠𝑙

. 

The unconditional probability is 

𝑃𝑙 = ∫ ∏ 𝐹(𝑉𝑙 + 𝜀𝑙 − 𝑉𝑛)

𝑛≠𝑙

𝑓(𝜀𝑙)
+∞

−∞

𝑑𝜀𝑙 = ∫ ∏ 𝑒−𝑒
−

𝑉𝑙+𝜀𝑙−𝑉𝑛
𝜎

𝑛≠𝑙

+

−

⋅
1

𝜎
𝑒

−(
𝜀𝑙
𝜎

+𝑒
−

𝜀𝑙
𝜎 )

𝑑𝜀𝑙. 

Let 𝑒−
𝜀𝑙
𝜎 = 𝑎𝑙 ∈ (0, +∞), the probability can be written as 

𝑃𝑙 = − ∫ ∏ 𝑒−𝑎𝑙⋅𝑒
−

𝑉𝑙−𝑉𝑛
𝜎

𝑛≠𝑙

+

−

⋅ 𝑒−𝑎𝑙 𝑑𝑎𝑙. 

Let 𝑒−𝑎𝑙 = 𝑏𝑙 ∈ (0,1), the probability can be written as 

𝑃𝑙 = ∫ ∏ 𝑏𝑙
⋅𝑒

−
𝑉𝑙−𝑉𝑛

𝜎

𝑛≠𝑙

1

0

𝑑𝑏𝑙 = ∫ 𝑏𝑙
∑ 𝑒

−
𝑉𝑙−𝑉𝑛

𝜎𝑛≠𝑙

1

0

𝑑𝑏𝑙 =
𝑏𝑙

∑ 𝑒
−

𝑉𝑙−𝑉𝑛
𝜎𝑛≠𝑙 +1

∑ 𝑒−
𝑉𝑙−𝑉𝑛

𝜎𝑛≠𝑙 + 1
|

0

1

=
1

∑ 𝑒−
𝑉𝑙−𝑉𝑛

𝜎𝑛≠𝑙 + 1

=
𝑒

𝑉𝑙
𝜎

∑ 𝑒
𝑉𝑛
𝜎𝑛≠𝑙 + 𝑒

𝑉𝑙
𝜎

=
𝑒

𝑉𝑙
𝜎

∑ 𝑒
𝑉𝑛
𝜎𝑛

. 

 

B.2 Derivation of consumer surplus 

To derive the consumer surplus of a single port user 𝐸 (max
𝑛

𝑈𝑛), we first derive the CDF of 

max
𝑛

𝑈𝑛. 

𝑃 (max
𝑛

𝑈𝑛 < 𝑐) = 𝑃(𝑈𝑛 < 𝑐, ∀ 𝑛) = 𝑃(𝜀𝑙 < 𝑐 − 𝑉𝑛, ∀ 𝑛) = ∏ 𝐹(𝑐 − 𝑉𝑛)

𝑛

= 𝑒− ∑ 𝑒
−

𝑐−𝑉𝑛
𝜎𝑛 , 

where the function 𝐹(⋅) is the CDF of Gumbel (0, 𝜎). We denote the CDF of max
𝑛

𝑈𝑛 as 
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𝐹(𝑐) = 𝑒− ∑ 𝑒
−

𝑐−𝑉𝑛
𝜎𝑛 . 

We next derive the PDF of max
𝑛

𝑈𝑛 

𝑓(𝑐) = 𝐹′(𝑐) =
1

𝜎
𝑒− ∑ 𝑒

−
𝑐−𝑉𝑛

𝜎𝑛 ⋅ ∑ 𝑒−
𝑐−𝑉𝑛

𝜎

𝑛

. 

Thus, 

𝐸 (max
𝑛

𝑈𝑛) = ∫ 𝑐𝑓(𝑐)
+∞

−∞

𝑑𝑐 = ∫
1

𝜎
⋅ 𝑐 ⋅ 𝑒− ∑ 𝑒

−
𝑐−𝑉𝑛

𝜎𝑛 ⋅ ∑ 𝑒−
𝑐−𝑉𝑛

𝜎

𝑛

+∞

−∞

𝑑𝑐

= ∫
1

𝜎
⋅ 𝑐 ⋅ 𝑒− ∑ 𝑒

𝑉𝑛
𝜎𝑛 ⋅𝑒

−
𝑐
𝜎 ⋅ ∑ 𝑒

𝑉𝑛
𝜎

𝑛

⋅ 𝑒−
𝑐
𝜎

+∞

−∞

𝑑𝑐. 

Let ∑ 𝑒
𝑉𝑛
𝜎𝑛 = 𝑒ln (∑ 𝑒

𝑉𝑛
𝜎𝑛 ), 𝐸 (max

𝑛
𝑈𝑛) can be written as 

𝐸 (max
𝑛

𝑈𝑛) = ∫
𝑐

𝜎
⋅ 𝑒

−((
𝑐
𝜎

−ln (∑ 𝑒
𝑉𝑛
𝜎𝑛 ))+𝑒

−(
𝑐
𝜎

−ln (∑ 𝑒

𝑉𝑛
𝜎𝑛 ))

)+∞

−∞

𝑑𝑐. 

Let 
𝑐

𝜎
− ln (∑ 𝑒

𝑉𝑛
𝜎𝑛 ) = 𝑥, 

 

𝐸 (max
𝑛

𝑈𝑛) = ln (∑ 𝑒
𝑉𝑛
𝜎

𝑛

) + 𝜎 ∫ 𝑥 ⋅ 𝑒−(𝑥+𝑒−𝑥))
+∞

−∞

𝑑𝑥 = ln (∑ 𝑒
𝑉𝑛
𝜎

𝑛

) + 𝜎𝛾, 

where the equality follows because ∫ 𝑥 ⋅ 𝑒−(𝑥+𝑒−𝑥))+∞

−∞
𝑑𝑥  is the mean of standard Gumbel 

distribution, which is 𝛾 , the Euler constant. Since 𝜎𝛾  is a constant and does not affect the 

competition outcome, we remove it from the consumer surplus. 


