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Résumé 

Dans cette étude, nous examinons la dynamique des moments conditionnels du noyau de prix 

obtenus à l'aide des bornes dérivées par Orłowski, Sali et Trojani (2018). Nous calculons les bornes 

sur les différents moments du noyau de prix en utilisant les données impliquées par les prix des 

options et la variance conditionnelle du rendement du marché. Nous analysons la dynamique des 

bornes obtenues et tirons des conclusions sur les propriétés des processus de noyau de prix 

admissibles. Nous illustrons l'utilité de nos bornes en diagnostiquant le modèle de risque à long 

terme (LRR) proposé par Bansal et Yaron (2004). Nous examinons le modèle LRR et simulons 

l'espérance conditionnelle de PK d'ordre supérieur en nous basant sur les paramétrisations 

impliquées par les calibrations dans Bansal, Kiku, et Yaron (2012). 
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Abstract 

In this study, we examine the dynamics of conditional moments of the pricing kernel obtained with 

the use of bounds derived by Orłowski, Sali, and Trojani (2018). We compute the bounds on the 

different PK moments using the data implied by options prices and the conditional variance of the 

market return. We illustrate the usefulness of our bounds by diagnosing the long-run risk (LRR) 

model proposed by Bansal and Yaron (2004). We examine the LRR model and simulate 

conditional expectation of the second, third, and fourth moment of the PK based on the 

parameterizations implied by the calibrations in Bansal, Kiku, and Yaron (2012).  

Keywords: Pricing Kernel, Long-run risk, Asset pricing, Cumulant generating function. 
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Chapter 1: Introduction 

One of the fundamental problems in finance is determining how future payoffs are discounted to 

yield the value of an asset. In the absence of arbitrage opportunities, there exists a Stochastic 

Discount Factor (SDF) or Pricing Kernel (PK) which can be used to value an asset’s future payoffs 

(Hansen and Richard 1987). The PK is not directly observable. Indirect inferences about the 

properties of the PK are possible due to the relationships between the properties of the PK and 

observed asset returns. This can be seen in the relationship between the price of a security at time 

𝑡 , 𝑝𝑡 , and the payoff of that security at time 𝑡 + 𝑟 , 𝑥𝑡+𝑟 , which can be represented by 

𝐸[𝑚𝑡+𝑟𝑥𝑡+𝑟|𝑡] = 𝑝𝑡 where the variable 𝑚𝑡+𝑟, represents the scaler random discount factor. 𝑡 

denotes the information set available at time t and 𝐸[•|𝑡] denotes the conditional expectation. 

Empirical implications of all asset-pricing models can be characterized through their PKs 

(Cochrane 2001). The PK determines the risk-return trade-off in financial markets. It contains 

information about investors’ risk preferences and beliefs (Linn et al. 2017; Hansen and Renault 

2009). 

The validity of a PK is determined by its ability to match the observed asset returns. Many “tests” 

based solely on necessary conditions have been proposed for asset-pricing models (Hansen and 

Singleton 1982; Chabi-Yo et al. 2005; Otrok and Ravikumar 2020). For instance, Hansen and 

Jagannathan (1991) examine what data on asset payoffs tell us about PK volatility. They derive a 

minimum variance PK bound that characterizes the admissible set of PKs for frictionless asset-

pricing models that is consistent with the observed asset returns. The Hansen and Jagannathan 

volatility bound constitutes a necessary condition that an asset-pricing model must satisfy. An 

asset-pricing model is found to be consistent with the observed asset returns if the volatility of the 

PK proposed by the model is greater than the volatility implied by the Hansen and Jagannathan 

volatility bound. The Hansen and Jagannathan bound also expressible in a Sharpe-ratio version 

imply that the ratio of the standard deviation of a PK to its mean exceeds the Sharpe ratio attained 

by any portfolio (Cochrane 2001, Ljungqvist and Sargent 2018). Despite being very useful, such 

PKs obtained by linear projections may not be explanatory enough to diagnose asset pricing 

models. This becomes particularly accurate for models whose PK dispersion is generated by non-
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Gaussianity in returns or nonlinearities in the kernel. In such instances, higher moments of the PK 

play a crucial role (Almeida and Garcia 2017; Chabi-Yo et al. 2005).  

Against this background, we attempt to explore the relation between moments of returns and 

dynamics of conditional moments of the PK. Our bounds implied by options prices and the 

conditional variance of the market return serve as a dynamic test of the consistency of asset-pricing 

models. The expected outcome of the thesis will serve the interest of the finance profession given 

the interest in finance in the use of (unconditional) Hansen and Jagannathan bounds which serves 

as a static test for diagnosing asset-pricing models. The new evidence we provide on what 

conditional bounds on PK dynamics look like can help guide the design of better asset-pricing 

models. The thesis will incorporate time variation in conditional means and variances of asset 

returns in these bounds. 

Research on the dynamics of conditional moments of the PK collectively is very limited. However, 

recent developments in the theory of PK bounds allow for the development of conditional bounds 

on PK dynamics of different order. These bounds are instrumental because these bounds yield 

information on expected returns and serve as a diagnostic tool to evaluate the performance of 

dynamic asset pricing models. These bounds can also be used in developing performance measures 

for portfolio managers. The thesis analyses the dynamics of conditional moments of the PK 

obtained with the use of bounds derived by Orłowski, Sali, and Trojani (2018), who develop a 

theory of arbitrage-free dispersion (AFD) defining the testable restrictions of asset pricing models. 

They derive a broad class of multivariate arbitrage-free inequalities between unobservable and 

observable regions of the joint distribution of PKs and asset returns, resultant of the convexity of 

joint cumulant generating function (CGF) of PKs and asset returns. They demonstrate the 

arbitrage-free inequalities to be interpretable as arbitrage-free constraints on the multivariate 

dispersion of PKs and returns and incorporate arbitrage-free dispersion constraints into lower and 

upper bounds on the CGF of PKs and returns. 

Our contributions are threefold. First, we present the bounds on the Sharpe ratio of the market 

portfolio (as a consequence of bounding the PK’s variance) and on different PK moments using 

the bounds derived by Orłowski, Sali, and Trojani (2018). These bounds will be formed by 

combining a model for the conditional variance of the market return with data about the risk-



12 

 

neutral moments of the market return, compiled from option data. Second, we analyze the 

dynamics of the obtained bounds and draw inferences about the properties of admissible PK 

processes. Third, we illustrate the usefulness of our bounds by diagnosing the long-run risk (LRR) 

model proposed by Bansal and Yaron (2004). Based on a representative agent with standard 

Epstein and Zin (1989) preferences in an environment with complete markets, the LRR model of 

Bansal and Yaron (2004) demonstrates consumption and dividend growth rates as encompassing 

a long-run predictable component and fluctuating economic uncertainty. We examine the LRR 

model and simulate conditional expectation of the second, third, and fourth moment of the PK 

based on the parameterizations implied by the calibrations in Bansal, Kiku, and Yaron (2012). We 

compare the properties of the PK processes drawn from obtained bounds with those proposed by 

the LRR model. 

The structure of the thesis is as follows. In the next chapter, an overview of the literature is 

presented. Chapter 3 presents the data sources and description. Chapter 4 describes and discusses 

the models employed. Chapter 5 presents and interprets the results. Finally, chapter 6 contains 

concluding remarks. 
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Chapter 2: Literature Review 

This study involves two research streams, namely, PK estimation and bounds on the moments of 

the PK. 

2.1 Estimation approaches for the pricing kernel 

In this section, we provide a review of the approaches and techniques proposed in the literature to 

estimate the PK. The PK is a vital concept in financial economics, and its properties affect the 

pricing of all financial assets. It describes how investors demand compensation for risk. Campbell 

et al. (1998) and Cochrane (2001) provide an extensive description of the role of PK in asset 

pricing. Other related papers include Ross (1978), Harrison and Kreps (1979), Hansen and Richard 

(1987), and Hansen and Jagannathan (1991).  

Seminal papers in PK estimation literature include Aıt -Sahalia and Lo (1998), Aıt-Sahalia and Lo 

(2000), Jackwerth (2000), Rosenberg and Engle (2002), and Barone-Adesi et al. (2008). Aıt -

Sahalia and Lo (1998) derive the option price function by non-parametric kernel regression. Aıt-

Sahalia and Lo (2000) non-parametrically estimate the PK projected onto equity return states using 

options data and historical returns data. Jackwerth (2000) non-parametrically estimates the “risk-

aversion function" using options data and historical returns data. Rosenberg and Engle (2002) 

estimate the PK each month from 1991 to 1995 using current asset prices and a predicted asset 

payoff density. Barone-Adesi et al. (2008) propose a non-parametric estimation model for the PK 

wherein they relax the normality assumption in Rosenberg and Engle (2002). Yang (2009) and 

Grith et al. (2011) demonstrate some modified versions of PK estimation that were initially 

introduced by Rosenberg and Engle (2002). The above-mentioned studies have attempted to 

estimate the PK and investigate its properties by estimating the risk-neutral measure using options 

market data and the physical measure using historical returns on the underlying asset. Conversely, 

few studies have attempted to estimate the PK using aggregate consumption data. For instance, 

Hansen and Singleton 1982 and Hansen and Singleton 1983 use maximum-likelihood estimation 

(MLE) and the generalized method of moments (GMM) to estimate the PK. They assume that the 

PK is a power function of aggregate USA consumption. Chapman (1997) assumes functions of 
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consumption and its lags as PK state variables and suggests the PK function as an orthogonal 

polynomial expansion. 

Over the past twenty years, several other PK estimation methodologies have been proposed by 

Bekaert and Liu (2004), Grith et al. (2009), Bakshi et al. (2010), Christoffersen et al. (2012), 

Barone-Adesi and Dallo (2010), Fengler and Hin (2011), Barone-Adesi et. Al (2020) and Kim 

(2021). 

2.2 Bounds on the moments of the pricing kernel 

In this section, we provide an overview of the widely recognized methods proposed in the literature 

for generating the bounds on the moments of the PK. These bounds provide insights into where 

current asset-pricing models work and where they do not. This information can then be used 

accordingly to develop new models that provide a better explanation of the data. 

Under the fundamental no-arbitrage condition, Hansen and Jagannathan (1991) derive non-

parametric bounds for the mean and standard deviation of the consumption-based PK in terms of 

the mean and standard deviation of the market portfolio excess returns. Snow (1991) extends their 

work by developing theoretical bounds on the moments of the PK. The bounds are derived as a 

function of the moments of observed asset returns. Stutzer (1995) derives an information bound 

that minimizes the Kullback-Leibler information criterion when evaluated using the risk-neutral 

measure. Bansal and Lehmann (1997) and Alvarez and Jermann (2005) derive restrictions on 

entropy, an alternative measure of PK dispersion, based on the equity risk premium. Bansal and 

Lehmann (1997) propose a non-parametric lower bound on the mean of the logarithm of the 

reciprocal of the set of strictly positive PKs implicit in asset-pricing models. Alvarez and Jermann 

(2005) develop a lower bound for the volatility of the permanent component of PKs based on the 

return properties of long-term zero-coupon bonds, risk-free bonds, and other risky securities. 

In the last fifteen years, bounds on the moments of the PK have been studied in various contexts 

and several other methodologies have been proposed by Martin (2008, 2009 and 2011), Backus, 

Chernov and Zin (2011), Bakshi and Chabi-Yo (2012), Almeida and Garcia (2012), 

Ghosh et al. (2017), Orłowski, Sali and Trojani (2018), and Liu (2021). Backus, Chernov and Zin 
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(2011) propose metrics that summarize the properties of asset pricing models based on the PK’s 

dispersion and dynamics. They apply these metrics to representative agent models with recursive 

preferences, habits and jumps. Bakshi and Chabi-Yo (2012) provide lower bounds on the variance 

of the permanent component, the transitory component, and the ratio of the permanent to the 

transitory component of the PK. Almeida and Garcia (2012) propose non-parametric PK bounds 

that naturally generalize variance, entropy, and higher-moment bounds. 

Ghosh et al. (2017) decomposes the PK into an observable component and an unobservable 

component and establish entropy bounds that limit the admissible regions for the PK and its 

unobservable component. Bakshi and Chabi-Yo (2019) develop a bound on the entropy of the 

square of the PK and consider models that pass the lower bound on PK, but fail the lower bound 

on the square of the PK. Liu (2021) develop a new spectrum of bounds on the PK moments based 

on the solution of an optimization problem that is complimentary to the approach proposed by 

Hansen and Jagannathan (1991). Their unifying theory of non-parametric bounds is based on the 

discrepancy between what an economic agent could achieve if all the assets priced by the PK were 

tradeable and what she can achieve in the real-world market. 

The closest to our research are the bounds developed by Orłowski, Sali, and Trojani (2018), who 

develop a theory of AFD defining the testable restrictions of asset pricing models. They derive a 

broad class of multivariate arbitrage-free inequalities between unobservable and observable 

regions of the joint distribution of PKs and asset returns, resultant of the convexity of joint CGF 

of PKs and asset returns. They demonstrate the arbitrage-free inequalities to be interpretable as 

arbitrage-free constraints on the multivariate dispersion of PKs and returns and incorporate 

arbitrage-free dispersion constraints into lower and upper bounds on the CGF of PKs and returns. 

This thesis contributes to the literature by analyzing the dynamics of conditional moments of the 

PK obtained with the use of bounds derived by Orłowski, Sali, and Trojani (2018). Our bounds 

implied by options prices and the conditional variance of the market return are a generalization to 

the interpretation of CGF of PK and asset returns.  
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Chapter 3: Data  

This chapter presents the data sources and descriptions. The two main data sources for this study 

are CRSP and OptionMetrics unless otherwise indicated. 

We use data on S&P 500 index options obtained via OptionMetrics to determine the conditional 

risk-neutral moments of the market return. These options are European. The data span the period 

from January 1996 to December 2021. The dataset contains strike prices, expiration date, highest 

closing bid across all exchanges, lowest closing ask across all exchanges, and open interest for all 

the put and call options on the S&P 500 index, as well as the daily forward price of the underlying 

S&P 500 index. We compute the price of the options as the average of the option’s highest closing 

bid across all exchanges and lowest closing ask across all exchanges. Further, the data were filtered 

to exclude options whose open interest was 0, the ratio of ask price to bid price exceeded 5, and 

the bid price was 0. We extracted from this dataset a sample pertaining to options having one 

month to maturity. Further, we retain only those options that expire on the third Friday (or 

Thursday if Friday is an NYSE holiday) of every month from 1996-2021. This process eventually 

reduced the sample to observations for 305 days. The distribution of the sample days considered 

in the study per year is presented in Table 1.  

Table 1: Data on the distribution of sample days per year 

N Year Number of days 

1 1996 11 
2 1997 12 
3 1998 12 
4 1999 12 
5 2000 11 
6 2001 12 
7 2002 12 
8 2003 11 
9 2004 12 
10 2005 12 
11 2006 12 
12 2007 12 
13 2008 11 
14 2009 12 
15 2010 12 
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16 2011 12 
17 2012 12 
18 2013 12 
19 2014 11 
20 2015 10 
21 2016 12 
22 2017 12 
23 2018 12 
24 2019 12 
25 2020 12 
26 2021 11 
27 2022 1  

Total 305 

To compute the conditional risk-neutral moments of the return, we also source from WRDS CRSP 

the data on monthly annualized yield calculated from the nominal price of Treasury bills. We use 

the monthly annualized yield with 30-day maturity, depicted in Figure 1, to convert the option 

contribution from current to forward prices. 

Figure 1: Monthly annualized yield calculated from the nominal price of Treasury bills with 30-day 

maturity from 1996-2022 
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To formulate a model for the computation of the conditional second power of the monthly market 

return, we collect data on daily S&P 500 returns from WRDS CRSP. The data span the period 

from January 1996 to December 2021. We base our analyses on the daily value-weighted returns 

which include dividends. The second moment of the market return is computed at time 𝑡 + 1 =

30 days conditional on the information available at time 𝑡. The time horizon of the returns is 

matched to those of options that expire on the third Friday (or Thursday if Friday is an NYSE 

holiday) of every month from 1996-2021. 
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Chapter 4: Methodology 

This chapter describes the model structures and presents basic assumptions. Section 4.1 presents 

our main model to find the conditional bounds on the moments of the PK based on the bounds 

derived by Orłowski, Sali, and Trojani (2018). Our bounds are computed using the data implied 

by the options prices and the conditional variance of the market return. We employ the model 

presented in section 4.2 and the mathematical identity presented in section 4.3 to find the inputs 

of our main model. Section 4.4 describes the Long-Run Risk (LRR) model proposed by Bansal 

and Yaron (2004) that we examine to illustrate the usefulness of our obtained bounds. Bansal and 

Yaron (2004) constitute one of the few studies to look at the conditional moments of the PK of 

higher order in a semi-parametric matter i.e., in a model-free setting.  

4.1 Lower bounds on the conditional moments of the pricing kernel 

We first summarize the information provided by a well-defined subset of values on the joint CGF 

of PK and asset return which uniquely characterizes the joint distribution of PK components and 

returns. In a simplified setting of a single PK, 𝑚, and a traded asset return, 𝑅, the joint CGF is 

expressed as 

𝜅𝑀𝑅(𝑚, 𝑟) = log 𝐸[𝑀𝑚𝑅𝑟] ; (𝑚, 𝑟) ∈  ℝ2 (1) 

The set of empirically observable information on 𝜅𝑀𝑅 can be summarized by the values of the 

CGF on the observable set 𝒪𝜅𝑀𝑅
= {(𝑚, 𝑟) ∈ 𝑑𝑜𝑚(𝜅𝑀𝑅): 𝑚 = 0 or (𝑚, 𝑟) = (1,1)}.  𝜅𝑀𝑅(1,1) 

represents the fundamental arbitrage-free asset pricing constraint log 𝐸[𝑀, 𝑅] = log 1 ⟺ 0 . 

𝜅𝑀𝑅(0, 𝑟) = log 𝐸[𝑅𝑟]  is directly observed from the statistical observation of the marginal 

distribution of moments of returns. 

A broad class of multivariate arbitrage-free inequalities can be derived between the unobservable 

and observable regions of the joint CGF of PK and asset returns, attributable to the convexity of 

the CGFs. We derive the inequalities for the lower bound of the second, third, and fourth moment 

of the PK by finding the coordinates of convex combinations of the observable regions of the CGF 

(the derivation is provided in Appendix A). The lower bound derived for the second, third, and 

fourth moment of the PK is expressed below in eq. (2), eq. (3) and eq. (4) respectively, 
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log 𝐸𝑡[𝑀𝑡+1
2 ] ≥ − log 𝐸𝑡[𝑅𝑡+1

2 ] (2) 

where 𝐸𝑡[𝑀𝑡+1
2 ] denotes the conditional expectation of the second power of the PK and 𝐸𝑡[𝑅𝑡+1

2 ] 

is the conditional expectation of the second power of the market return. 

log 𝐸𝑡[𝑀𝑡+1
3 ] ≥ 3log 𝐸𝑡

𝑄[𝑅𝑡+1
4 3⁄

] − 2 log 𝐸𝑡[𝑅𝑡+1
2 ] (3) 

where 𝐸𝑡[𝑀𝑡+1
3 ] denotes the conditional expectation of the third power of the PK and 𝐸𝑡

𝑄[𝑅𝑡+1
4 3⁄

] is 

the conditional risk-neutral expectation of the 4/3rd power of the market return. 

log 𝐸𝑡[𝑀𝑡+1
4 ] ≥ 4log 𝐸𝑡

𝑄[𝑅𝑡+1
3 2⁄

] − 3 log 𝐸𝑡[𝑅𝑡+1
2 ] (4) 

where 𝐸𝑡[𝑀𝑡+1
4 ] denotes the conditional expectation of the fourth power of the PK and  𝐸𝑡

𝑄[𝑅𝑡+1
3 2⁄

] 

is the conditional risk-neutral expectation of the 3/2nd power of the market return. 

Figure 2: Bounds on the unobservable moments of the pricing kernel 
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Figure 2 depicts the relationship between moments of the PK, risk-neutral moments of the market 

return, and the second moment of the market return on the CGF of PK and asset return which form 

the basis of our inequalities. “Moments of the Pricing Kernel” depicted in the figure constitutes 

the unobservable region of the CGF of PK and asset return. “Risk-neutral moments of the market 

return” and “Second moment of the market return” depicted in the figure constitutes the observable 

regions of the CGF of PK and asset return. Whenever we can assume statistical observability of 

the return distribution, moments of the market return, expressed as 𝜅𝑀𝑅(0, 𝑟), can be computed. 

We compute the conditional expectation of the second power of the market return, 𝐸𝑡[𝑅𝑡+1
2 ], from 

a Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model on daily value-

weighted returns (including dividends) with the errors assumed to follow a normal distribution 

(discussed in section 4.2). We compute the conditional risk-neutral moments of the PK, 𝐸𝑡
𝑄[𝑅𝑡+1

4 3⁄
] 

and 𝐸𝑡
𝑄[𝑅𝑡+1

3 2⁄
], using a replication strategy based on the approximation of the Carr and Madan 

(2001) replication identity for a non-linear payoff (discussed in section 4.3). The value of 

𝐸𝑡
𝑄[𝑅𝑡+1

1 ] = 1 is obtained from the fundamental arbitrage-free asset pricing constraint. 

4.2 Model for finding the conditional expectation of the second power of the monthly 

market return 

We estimate the conditional second moment of the market return by using a GARCH model which 

is one of the most widely used methods for modeling and forecasting time-varying volatility.  A 

GARCH model is expressed as 

𝑟𝑡 ∼ 𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞)  

𝑟𝑡 = 𝜇 + 𝜎𝑡𝜖𝑡 (5) 

where 𝜇 is the expected value of 𝑟𝑡, 𝜎𝑡 is the standard deviation of 𝑟𝑡 in time 𝑡, 𝜖𝑡 is an error term 

for time 𝑡 and 𝑟𝑡 ∼ 𝑁(0, 𝜎𝑡
2). 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑘 ∙ 𝜀𝑡−𝑘

2

𝑝

𝑘=1

+ ∑ 𝛽𝑘 ∙ 𝜎𝑡−𝑘
2

𝑞

𝑘=1

 (6) 
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We calculate the second moment of market return at time 𝑡 + 1 = 30 days conditional on the 

information available at time 𝑡 by estimating a GARCH (1,1) model on the logarithm of daily 

value-weighted returns (including dividends) from 1996 to 2021. The errors have been assumed 

to follow a normal distribution. We matched the time horizon of monthly returns, 𝑅𝑡+1, to those 

of options that expire on the third Friday (or Thursday if Friday is an NYSE holiday) of every 

month from 1996-2021. We accordingly compute 𝐸𝑡[𝑅𝑡+1
2 ] by simulating data from the GARCH 

(1,1) model based on the model parameters for the exact number of business days between the start 

and expiry of the options. The number of business days between the start and expiry of the options 

thereby serves as the number of data points to simulate. We source initial values used when 

initializing the simulation from the conditional volatility computed from the GARCH (1,1) model. 

4.3 Calculation of the conditional risk-neutral moments of the market return 

We calculate risk-neutral moments of the market return using a replication strategy based on the 

approximation of the Carr and Madan (2001) replication identity for a non-linear payoff. We 

consider a market for forwards and options on a stock index. Investors can trade at times 

𝑡 {0,1, … . . 𝜏, … . 𝑇} in forward contracts with fixed maturity 𝑇 and options with strike prices 𝐾 ≥

0 having the same maturity as the forwards. The forward price of the stock index on trading date 

𝑡 is represented by 𝐹𝑡 and accordingly the log return by 𝑟𝑡 = log(𝐹𝑡 𝐹𝑡−1)⁄ . The market return is 

expressed as the sum of a single non-linear payoff and a weighted sum of forward price increments. 

The replication strategy is formulated using a finite set of options with a discrete set of available 

strike prices. We compute 𝐸𝑡
𝑄[𝑅3/2] and 𝐸𝑡

𝑄[𝑅4/3] from an approximation to the price of the 

options replicating portfolio for non-linear payoff Φ(𝐹𝑇 𝐹0⁄ ) = − ln(𝐹𝑇 𝐹0⁄ ), based on the Carr 

and Madan (2001) portfolio weights Φ"(𝑘) for OTM put and call options with moneyness 𝑘 =

𝐾 𝐹0⁄ . The approximation of the Carr and Madan (2001) replication identity for a non-linear payoff 

as expressed below, 

Φ(𝐹𝑇) − Φ(𝐹𝑡) − Φ′(𝐹𝑡)(𝐹𝑇 − 𝐹𝑡) = ∫ Φ"(𝑘)Ο𝑡(𝐹𝑇 , 𝐾𝑗; 𝐹𝑡)dk
∞

0

 (7) 
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                                                    ≈ ∑ 𝑤𝑗Ο(𝐹𝑇 , 𝐾𝑗; 𝐹𝑡)

𝑗

 (8) 

where the quantity on the left-hand side (LHS) is the observed price of the options expressed as a 

non-linear payoff initiated at time 𝑡 for maturity 𝑇. 𝑤𝑗 are the weights determined by minimizing 

the squared integrated replication error and Ο𝑡(𝐹𝑇 , 𝐾𝑗; 𝐹𝑡) is the payoff of an option subject to the 

option being OTM at time 𝑡. The computation can be expressed as 

𝑤𝑗 ≈ Φ"(𝑘)dk (9) 

Ο𝑡(𝐹𝑇 , 𝐾𝑗; 𝐹𝑡) = {
max(𝐹𝑇 − 𝐾𝑗 , 0) 𝑖𝑓 𝐾𝑗 > 𝐹𝑡

max(𝐾𝑗 − 𝐹𝑇 , 0)  𝑖𝑓 𝐾𝑗 ≤ 𝐹𝑡

 (10) 

We use the quantity on the right-hand side (RHS) of eq. (8) to calculate the options contribution 

for all OTM options that expire on the third Friday (or Thursday if Friday is an NYSE holiday) of 

every month from 1996 to 2021. We sum up the contributions of all options having different strikes 

but the same start and expiry dates to compute 𝐸𝑡
𝑄[𝑅

3

2 − 1] and 𝐸𝑡
𝑄[𝑅

4

3 − 1]. We convert the 

options contribution from current to forward prices by multiplying 𝐸𝑡
𝑄

[𝑅
3

2] and 𝐸𝑡
𝑄

[𝑅
4

3] with 𝑒𝑟𝑡 

where 𝑡  is the time period between the start and expiry date of an option and 𝑟  is the yield 

calculated from the nominal price of T-bills with 30-day maturity. 

4.4 Long-Run Risk (LRR) Model 

This section presents the long-run risks (LRR) model developed by Bansal and Yaron (2004). The 

model features an underlying environment with complete markets and a representative agent with 

the Epstein and Zin (1989) recursive preferences, which allow for a separation between the 

elasticity of intertemporal substitution (IES) and risk aversion. Given such preferences, the gross 

return, 𝑅𝑖,𝑡+1, satisfies the asset pricing restrictions which is defined as, 

𝐸𝑡[𝛿𝜃𝐺𝑡+1

−
𝜃

𝜓 𝑅𝑎,𝑡+1
−(1−𝜃)

𝑅𝑖,𝑡+1] = 1,  (11) 
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where 0 < 𝛿 < 1  reflects the agent’s time preferences, 𝐺𝑡+1  is the aggregate growth rate of 

consumption, 𝜓 ≥ 0 is the IES parameter and 𝑅𝑎,𝑡+1 is the gross return on the asset that delivers 

aggregate consumption as its dividends every period. The parameter 𝜃 =
1−𝛾

1−
1

𝜓

 is determined by the 

magnitude of the elasticity of substitution and the risk aversion, with  𝛾 ≥ 0 being the coefficient 

of risk aversion. 

The log of the intertemporal marginal rate of substitution (IMRS) is expressed as, 

𝑚𝑡+1 = 𝜃 log 𝛿 −
𝜃

𝜓
𝑔𝑡+1 + (𝜃 − 1)𝑟𝑎,𝑡+1, (12) 

where 𝑔𝑡+1 = log( 𝐺 𝑡+1)  is the consumption growth rate and 𝑟𝑎,𝑡+1 =  log( 𝑅𝑎,𝑡+1)  is the 

continuous return on the consumption asset determining the PK and resultantly the risk premium 

on the market portfolio. The innovation in 𝑚𝑡+1  is influenced by the innovations in 𝑔𝑡+1  and 

𝑟𝑎,𝑡+1. 𝑔𝑡+1 is modeled as containing a small persistent predictable component capturing long-run 

risks in consumption growth, 𝑥𝑡, which determines the conditional expectation of consumption 

growth and time-varying volatility of consumption growth, 𝜎𝑡+1 , which reflects fluctuating 

economic uncertainty. Consumption growth and return dynamics can be summarised as, 

𝑔𝑡+1 = 𝜇 + 𝑥𝑡 + 𝜎𝑡𝜂𝑡+1 (13) 

𝑥𝑡+1 = 𝜌𝑥𝑡 + 𝜑𝑒𝜎𝑡𝑒𝑡+1 (14) 

𝜎𝑡+1
2 = 𝜎2 + 𝜈1(𝜎𝑡

2 − 𝜎2) + 𝜎𝑤𝑤𝑡+1  (15) 

𝜂𝑡+1, 𝑒𝑡+1, 𝑤𝑡+1 ∼ 𝑁. 𝑖. 𝑖. 𝑑. (0,1), 

where parameter 𝜌  dictates the persistence of the expected growth rate process, 𝜎2  is the 

unconditional mean of time-varying economic uncertainty incorporated in the consumption growth 

rate and 𝜈1 governs the persistence of the volatility process. The shocks are assumed to be i.i.d. 

normal and uncorrelated.  

The model is solved using the standard approximations utilized by Campbell and Shiller (1988), 
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𝑟𝑎,𝑡+1 = 𝜅0 + 𝜅1𝑧𝑡+1 − 𝑧𝑡 + 𝑔𝑡+1,  (16) 

where 𝑧𝑡 is the log of the price-consumption ratio. 𝜅0 and 𝜅1 are approximating constants that 

depend upon the average level of 𝑧 (the details can be found in Appendix B).  

The approximate solution for the equilibrium price-consumption ratio is determined as, 

𝑧𝑡 = 𝐴0 + 𝐴1𝑥𝑡 + 𝐴2𝜎𝑡
2  (17) 

where 𝐴1 is the coefficient for the effects of the expected growth rate 𝑥𝑡 on 𝑧𝑡 and 𝐴2 measures 

the sensitivity of price-consumption ratios to volatility fluctuations. The solution coefficients for  

𝐴0, 𝐴1 and 𝐴2 are mentioned in Appendix B. 

By calculating the unconditional expectation of the exponential of Eq. (3) raised to a power 𝑝, we 

obtain the unconditional expectation of higher power of the PK given by the LRR model (the 

derivation is provided in Appendix B): 

𝐸(𝑚𝑡+1
𝑝 ) = 𝐸(𝑒

𝑝(𝜃 𝑙𝑜𝑔 𝛿−
𝜃

𝜓
𝑔𝑡+1+(𝜃−1)𝑟𝑎,𝑡+1)

)  

                   = 𝑒
(𝑝(𝜃 𝑙𝑜𝑔 𝛿−

𝜃
𝜓

𝜇+(𝜃−1)(𝜅0+(𝜅1−1)(𝐴0+𝐴2𝜎2))+𝜇)).
 

                   𝑒
1

2
𝑝2(

𝜃2

𝜓2(𝜎2)+(𝜃−1)2(𝜅1
2𝐴1

2𝜑𝑒
2𝜎𝑡

2+𝜅1
2𝐴2

2𝜎𝑤
2 +𝜎2)−2

𝜃

𝜓
(𝜃−1)𝜎2)

 (18) 

On similar lines, we obtain the conditional expectation of higher power of the PK given by the 

LRR model by calculating the conditional expectation of the exponential of Eq. (3) raised to a 

power 𝑝 (the derivation is provided in Appendix B): 

𝐸𝑡(𝑚𝑡+1
𝑝 ) = 𝐸𝑡(𝑒

𝑝(𝜃 𝑙𝑜𝑔 𝛿−
𝜃

𝜓
𝑔𝑡+1+(𝜃−1)𝑟𝑎,𝑡+1)

)  

                   = 𝑒
(𝑝(𝜃 log 𝛿−

𝜃
𝜓

(𝜇+𝑥𝑡)+((𝜃−1)(𝜅0+𝜅1(𝐴0+𝐴1𝜌𝑥𝑡+ 𝐴2𝜎2)−𝑧𝑡)+𝜇+𝑥𝑡))).
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                   𝑒
1

2
𝑝2((

𝜃2

ψ2(𝜎𝑡
2)+(𝜃−1)2(𝜅1

2𝐴1
2𝜑𝑒

2𝜎𝑡
2+𝜅1

2𝐴2
2𝜎𝑤

2 +𝜎𝑡
2)−2

𝜃

𝜓
(𝜃−1)𝜎2))

 
(19) 

We use Eq. (18) and (19) to simulate unconditional and conditional expectations of the PK of 

higher order respectively at the monthly frequency. The simulations are based on the monthly 

parameterizations implied by the calibrations in Bansal, Kiku, and Yaron (2012) listed in Table 2. 

We set the values of the model variables at time 𝑡 = 0 at their unconditional expectation (the 

details can be found in Appendix B). Such simulations based on the LRR model help us to illustrate 

the usefulness of our bounds. We compare the properties of the PK processes drawn from obtained 

bounds with those proposed by the LRR model. 

 Table 2 Parameterizations implied by the calibrations in Bansal, Kiku, and Yaron (2012) 

Risk-aversion parameter 𝛾 = 8.12  

IES parameter 𝜓 = 2.45  

Time discount factor 𝛿 = 0.9990  

Volatility process persistence parameter 𝜐𝑖 = 0.9981  

Unconditional mean of time-varying economic uncertainty 

incorporated in the consumption growth rate 

𝜎2 = 0.00004096  

Persistence of expected growth rate process 𝜌 = 0.97530   

Unconditional expectation of consumption growth rate 𝜇 = 0.0016  

Approximating constants that depend upon the average level of 𝑧 𝜅0 = 0.0057, 𝜅1 = 0.9993 

Note: For the fundamentals, 𝜎𝑤 = 0.0000035  and 𝜑𝑒 = 0.0340. The values of 𝜅1 and 𝜅0 are 

determined endogenously through Eq. (16). The parameter 𝜃 is determined by the magnitude of 

the IES and the risk aversion. 
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Chapter 5: Empirical Results 

This chapter presents our findings. Section 5.1 presents the derivation of our lower bounds on the 

conditional expectation of the second, third, and fourth moment of the PK computed using the data 

implied by options prices and the conditional variance of the market return. As discussed in 

Chapter 4, we obtain our bounds by employing the GARCH model on the daily value-weighted 

returns including dividends (presented in section 4.2) and mathematical identity based on Carr and 

Madan (2001) replication identity for a non-linear payoff (presented in section 4.3). Section 5.2 

presents the computation of conditional and unconditional expectations of the PK of higher order 

based on the LRR model proposed by Bansal and Yaron (2004). Given the absence of a model PK 

time series corresponding directly to our sample period, the conditional expectation of PK of 

higher order computed from the LRR model serves as an ideal mechanism to illustrate the 

usefulness of our obtained bounds. 

5.1 Deriving the Bounds 

We compute the second moment of the market return at time 𝑡 + 1 = 30 days conditional on the 

information available at time 𝑡, 𝐸𝑡[𝑅𝑡+1
2 ], by performing 1000 simulations based on the model 

parameters (presented in Table 3) of the GARCH (1,1) model on the logarithm of daily value-

weighted returns (including dividends) from 1996 to 2021. Figure 3 depicts the conditional 

volatilities estimated from the model that serves as the initial values for initializing the simulation. 

We use the time period (in days) between the start and expiry of the option as the number of data 

points to simulate. The time horizon of monthly returns, 𝑅𝑡+1, have been matched to those of 

options that expire on the third Friday (or Thursday if Friday is an NYSE holiday) of every month 

from 1996-2021. Figure 4 plots 𝐸𝑡[𝑅𝑡+1
2 ] that form the basis of our inequalities to compute our 

lower bounds.  

Table 3: Parameters of the GARCH (1,1) model on the daily value-

weighted returns (including dividends) from 1996 to 2021 

 Coefficient 

𝜇 0.000711 

𝜔 0.000003 

𝛼1 0.100000 
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𝛽1 0.880000 

 

 

Figure 3: Conditional volatilities estimated from the GARCH (1,1) model on the daily value-

weighted returns (including dividends) from 1996 to 2021 

  

Figure 4: Conditional expectation of the second power of the monthly market return 
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Figure 5 plots the conditional risk-neutral moments (i.e. 𝐸𝑡
𝑄 [𝑅

3

2] . 𝑒𝑟𝑡 and 𝐸𝑡
𝑄 [𝑅

4

3] . 𝑒𝑟𝑡 ) 

of the PK computed using the replication strategy based on the approximation of the Carr and 

Madan (2001) replication identity for a non-linear payoff. The computations are based on the data 

pertaining to OTM options that expire on the third Friday (or Thursday if Friday is an NYSE 

holiday) of every month from 1996-2021. Table 4 reports the summary statistics for these 

conditional risk-neutral moments of the PK. 

Figure 5: Conditional risk-neutral moments of the pricing kernel 

 

 

Table 4: Summary statistics for the conditional risk-neutral moments of the 

pricing kernel 

 
𝐸𝑡

𝑄 [𝑅
3
2] . 𝑒𝑟𝑡 𝐸𝑡

𝑄 [𝑅
4
3] . 𝑒𝑟𝑡 

Average 1.002593 1.002047 

Standard Deviation 0.001967 0.001520 

Skewness 2.417258 1.081918 

Kurtosis 11.956496 2.063625 

First quintile 1.000900 1.000582 
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Second quintile 1.001594 1.001235 

Third quintile 1.002841 1.002095 

Fourth quintile 1.004130 1.003575 

Fifth quintile 1.015479 1.009294 

Autocorrelation at lag 1 0.757162 0.855751 

Autocorrelation at lag 2 0.617296 0.772328 

Autocorrelation at lag 3 0.580142 0.747088 

Autocorrelation at lag 4 0.523793 0.709741 

Autocorrelation at lag 5 0.476716 0.675503 

Autocorrelation at lag 6 0.447872 0.651334 

Autocorrelation at lag 7 0.436843 0.636946 

Autocorrelation at lag 8 0.415839 0.617898 

Autocorrelation at lag 9 0.404902 0.605474 

Autocorrelation at lag 10 0.406194 0.601256 

Autocorrelation at lag 11 0.396983 0.590344 

Autocorrelation at lag 12 0.383860 0.575527 
 

Figure 6 depicts the lower bounds on the conditional second, third, and fourth moment of the PK 

over the period extending from 1996 to 2021. The computation of these bounds is based on the 

inequalities mentioned in eq. (2), (3), and (4). Table 5 reports the summary statistics for these 

lower bounds on the conditional moments of the PK.  
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Figure 6: Lower bounds on the conditional expectation of the second, third, and fourth moment of the 

pricing kernel  

 

Table 5: Summary statistics for the lower bounds on the moments of the pricing kernel 

 log 𝐸𝑡[𝑀𝑡+1
2 ] log 𝐸𝑡[𝑀𝑡+1

3 ] log 𝐸𝑡[𝑀𝑡+1
4 ] 

Average -0.039044 -0.071957 -0.106781 

Standard Deviation 0.003892 0.008568 0.013276 

Skewness 0.094735 0.105487 0.273303 

Kurtosis -0.148131 -0.154462 0.264053 

First quintile -0.042357 -0.079314 -0.118511 

Second quintile -0.040097 -0.074337 -0.110050 

Third quintile -0.038038 -0.070266 -0.104557 

Fourth quintile -0.035993 -0.064818 -0.096084 

Fifth quintile -0.027655 -0.045034 -0.064007 

Autocorrelation at lag 1 -0.017897 0.134294 0.149847 

Autocorrelation at lag 2 0.107225 0.274864 0.282681 

Autocorrelation at lag 3 0.000510 0.151393 0.146167 

Autocorrelation at lag 4 -0.024273 0.109862 0.088360 

Autocorrelation at lag 5 0.007451 0.125622 0.095126 

Autocorrelation at lag 6 0.118282 0.230070 0.198152 

Autocorrelation at lag 7 0.017225 0.112484 0.074882 

Autocorrelation at lag 8 0.060764 0.172829 0.142867 
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Autocorrelation at lag 9 -0.015585 0.124585 0.104024 

Autocorrelation at lag 10 0.026266 0.149474 0.127786 

Autocorrelation at lag 11 -0.040364 0.099276 0.083214 

Autocorrelation at lag 12 0.094465 0.204700 0.176817 
 

We obtained several noteworthy findings. Firstly, we observe that the lower bounds on the second, 

third, and fourth moments of the PK are negative throughout the entire time which can have 

important implications for risk management and financial decision-making. Moreover, we find 

that the lower bounds on the second moment of the PK exceed those of the third moment, which 

in turn exceed those of the fourth moment. This trend persists throughout the duration of our study.  

Furthermore, we notice that in periods of economic turbulence (for instance in 2008 and 2020), 

the third and fourth moments of the PK come very close. We investigate this further by analyzing 

the relationship between the time series of the lower bounds on the second, third, and fourth 

moments of the PK. We derive our inferences by testing for causation using Granger’s causality 

test and formulating a Vector Autoregressive (VAR) model.  

Granger’s causality test helps us to determine the direction of causality of the relationship between 

two variables. The test findings (p-values) are presented in Table 6 wherein we test the null 

hypothesis that the coefficients of past values in the regression equation are zero. In the table, the 

row is the response variable and the column is the predictor series. We infer from the results of the 

test (at a 10% level of significance) that the lower bound on the second moment of the PK 

causes the lower bound on the third and the fourth moment of the PK. We also infer that the lower 

bound on the third moment of the PK causes the lower bound on the second and fourth moment of 

the PK. Lastly, we infer that the lower bound on the fourth moment of the PK causes the lower 

bound on the third moment of the PK.  

Table 6: P-values of the Granger Causality Test 

 

Lower bound on 

the second 

moment of the PK 

Lower bound on 

the third 

moment of the PK 

Lower bound on 

the fourth 

moment of the PK 

Lower bound on 

the second 

moment of the PK 

1.0 0.0804 0.1202 



33 

 

Lower bound on 

the third 

moment of the PK 

0.0 1.0 0.0460 

Lower bound on 

the fourth 

moment of the PK 

0.0 0.0136 1.0 

 

Further, the VAR model enables us to model each variable as a linear combination of past values 

of itself and the past values of other variables in the system. We formulate the VAR model of order 

1 that gives the least AIC. We present the findings of the VAR (1) model in Table 6. 

Table 7: Summary of the regression results derived from the VAR model 

Results for the equation of lower bounds on the second moment of the PK 

 Coefficient Standard error 

Constant -0.039990 0.002320 

First lag on the lower bound 

of the second moment 
0.080127 0.116770 

First lag on the lower bound 

of the third moment 
-0.045769 0.178508 

First lag on the lower bound 

of the fourth moment 
-0.006329 0.103189 

Results for the equation of lower bounds on the third moment of the PK 

 Coefficient Standard error 

Constant -0.080119 0.004714 

First lag on the lower bound 

of the second moment 
-1.712284 0.237258 

First lag on the lower bound 

of the third moment 
1.479898 0.362700 

First lag on the lower bound 

of the fourth moment 
-0.445496 0.209662 

Results for the equation of lower bounds on the fourth moment of the PK 

 Coefficient Standard error 

Constant -0.120314 0.007336 

First lag on the lower bound 

of the second moment 
-2.499099 0.369237 

First lag on the lower bound 

of the third moment 
1.130831 0.564459 
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First lag on the lower bound 

of the fourth moment 
0.028067 0.326292 

 

5.2 Diagnosing the Bounds 

In this section, we examine the LRR model proposed by Bansal and Yaron (2004). The 

computation is based on the parameterizations implied by the calibrations in Bansal, Kiku, and 

Yaron (2012). Table 8 provides a comparison of the properties of the PK processes drawn from 

the conditional second, third, and fourth moment of the PK based on the LRR model with our data-

implied lower bounds. Our results show that the conditional and unconditional expectation of the 

PK of higher power based on the LRR model satisfies our lower bounds. Given that the LRR model 

is a reliable method for estimating the second, third, and fourth moment of the PK, it illustrates the 

usefulness of our bounds. Furthermore, we investigate the correlation between the series of the 

second, third, and fourth moment of our obtained bounds and those of the second, third, and fourth 

moment of the PK computed from the LRR model (depicted in Table 9). Our findings reveal a 

strong correlation between these series of moments. 
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Table 8: Comparison of the properties of PK processes drawn from obtained bounds with those proposed by the LRR model 

 LRR Model Our obtained lower bounds LRR Model 

 log 𝐸[𝑀𝑡+1
2 ] log 𝐸[𝑀𝑡+1

3 ] log 𝐸[𝑀𝑡+1
4 ] log 𝐸𝑡[𝑀𝑡+1

2 ] log 𝐸𝑡[𝑀𝑡+1
3 ] log 𝐸𝑡[𝑀𝑡+1

4 ] log 𝐸𝑡[𝑀𝑡+1
2 ] log 𝐸𝑡[𝑀𝑡+1

3 ] log 𝐸𝑡[𝑀𝑡+1
4 ] 

Average 0.009219 0.035635 0.076589 -0.039044 -0.071957 -0.106781 0.003263 0.023911 0.057237 

Standard Deviation 0.008163 0.018366 0.032650 0.003892 0.008568 0.013276 0.001382 0.005043 0.010831 

Skewness -0.177176 -0.177176 -0.177176 0.094735 0.105487 0.273303 -1.357057 -1.452567 -1.396497 

Kurtosis -0.559164 -0.559164 -0.559164 -0.148131 -0.154462 0.264053 1.947250 2.480872 2.403378 

First quintile 0.002999 0.021641 0.051711 -0.042357 -0.079314 -0.118511 0.002473 0.020858 0.051025 

Second quintile 0.007708 0.032235 0.070545 -0.040097 -0.074337 -0.110050 0.003335 0.024149 0.057065 

Third quintile 0.010412 0.038320 0.081363 -0.038038 -0.070266 -0.104557 0.003795 0.025640 0.061121 

Fourth quintile 0.018132 0.055690 0.112242 -0.035993 -0.064818 -0.096084 0.004319 0.027563 0.064666 

Fifth quintile 0.025159 0.071500 0.140349 -0.027655 -0.045034 -0.064007 0.005697 0.032762 0.076584 

Autocorrelation at lag 1 0.994189 0.994189 0.994189 -0.017897 0.134294 0.149847 0.928406 0.943721 0.947714 

Autocorrelation at lag 2 0.988652 0.988652 0.988652 0.107225 0.274864 0.282681 0.858181 0.888046 0.895841 

Autocorrelation at lag 3 0.983852 0.983852 0.983852 0.000510 0.151393 0.146167 0.799180 0.840247 0.851001 

Autocorrelation at lag 4 0.978956 0.978956 0.978956 -0.024273 0.109862 0.088360 0.740149 0.794619 0.808517 

Autocorrelation at lag 5 0.974059 0.974059 0.974059 0.007451 0.125622 0.095126 0.683041 0.750267 0.767096 

Autocorrelation at lag 6 0.969430 0.969430 0.969430 0.118282 0.230070 0.198152 0.629663 0.708309 0.727769 

Autocorrelation at lag 7 0.965240 0.965240 0.965240 0.017225 0.112484 0.074882 0.585147 0.670916 0.692098 

Autocorrelation at lag 8 0.960677 0.960677 0.960677 0.060764 0.172829 0.142867 0.546038 0.634921 0.656995 

Autocorrelation at lag 9 0.955891 0.955891 0.955891 -0.015585 0.124585 0.104024 0.502243 0.596743 0.620252 

Autocorrelation at lag 10 0.951617 0.951617 0.951617 0.026266 0.149474 0.127786 0.463831 0.562067 0.586707 

Autocorrelation at lag 11 0.947685 0.947685 0.947685 -0.040364 0.099276 0.083214 0.430175 0.527089 0.552081 

Autocorrelation at lag 12 0.943777 0.943777 0.943777 0.094465 0.204700 0.176817 0.387081 0.486718 0.513035 
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Table 9: Correlation between the series of PK moments 

 Obtained lower 

bounds 

LRR model 

(Conditional) 

Correlation between 

SDF series of power 

2 and 3 

0.849676 0.990806 

Correlation between 

SDF series of power 

3 and 4 

 

0.985529 0.999223 

Correlation between 

SDF series of power 

2 and 4 

 

0.810518 0.984704 
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Chapter 6: Conclusion 

The PK is a critical concept in financial economics, and its properties affect the pricing of all 

financial assets. The PK determines the risk-return trade-off in financial markets and contains 

information about investors’ risk preferences and beliefs. We examine the dynamics of conditional 

moments of the PK obtained with the use of bounds derived by Orłowski, Sali, and Trojani (2018). 

We compute the bounds on the different PK moments using the data implied by options prices and 

the conditional variance of the market return. These bounds are instrumental because these bounds 

yield information on expected returns and serve as a diagnostic tool to evaluate the performance 

of dynamic asset pricing models. These bounds can also be used in developing performance 

measures for portfolio managers. We analyze the dynamics of the obtained bounds and draw 

inferences about the properties of admissible PK processes. We illustrate the usefulness of our 

bounds by diagnosing the LRR model proposed by Bansal and Yaron (2004). We examine the 

LRR model and simulate the conditional expectation of PK of higher order based on the 

parameterizations implied by the calibrations in Bansal, Kiku, and Yaron (2012).  

We demonstrate the following findings that shed light on the properties of the moments of the PK. 

Firstly, we observed that the lower bounds on the second, third, and fourth moments of the PK are 

negative throughout the entire period of our study which have important implications for risk 

management and financial decision-making. Secondly, we found that the lower bounds on the 

second moment of the PK exceed those of the third moment, which in turn exceed those of the 

fourth moment. This trend persisted throughout the duration of our study. Thirdly, we found that 

in periods of economic turbulence, the third and fourth moments of the PK come very close. 

Fourthly, we infer (at a 10% level of significance) that the lower bound on the second moment of 

the PK causes the lower bound on the third and the fourth moment of the PK, the lower bound on 

the third moment of the PK causes the lower bound on the second and fourth moment of the PK 

and the lower bound on the fourth moment of the PK causes the lower bound on the third moment 

of the PK. Fifthly, we conclude that the conditional and unconditional expectation of the second, 

third, and fourth moment of the PK calculated from the LRR model satisfies our lower bounds. 

Lastly, we conclude that the correlation within the series of lower bounds of our varied PK 

moments and those of the moments of the PK computed from the LRR model is very high.  
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In conclusion, our study contributes to the existing literature on the bounds of the moments of the 

PK and provides valuable insights into its behavior over a significant period. Our findings can aid 

in the development of more methods for estimating the bounds of the moments of the PK and can 

have important implications for portfolio management, risk assessment, and financial modeling.  
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Appendices 

Appendix A  Inequalities for lower bounds of the moments of the PK 

We derive the inequalities for the lower bound of the second, third, and fourth moment of the PK 

by solving for the coordinates of convex combinations of the observable regions of the CGF of the 

PK and asset returns. The CGF of the PK and asset returns represented as 𝜅𝑀𝑅(𝑚, 𝑟) =

log 𝐸[𝑀𝑚𝑅𝑟] is depicted in Figure 7. 

Figure 7: CGF of pricing kernel and asset returns 

 

A.1 Lower bound for the second moment of the PK 

Point A depicted in Figure 7 is a convex combination of point P and Point Q having coordinates 

(0,2) and (2,0) respectively. Assuming the coordinates of point A as (1, 𝑎), we solve for a below: 

𝛼 [
0
2

] + (1−∝) [
2
0

] = [
1
𝑎

] (A.1) 

∝=
1

2
 , 1−∝=

1

2
 and 𝑎 = 1  
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Plugging in the values represented by points P, Q, and A in Eq (A.1), we get: 

1

2
log 𝐸𝑡(𝑅𝑡+1

2 ) +
1

2
log 𝐸𝑡(𝑀𝑡+1

2 ) ≥ log 𝐸𝑡(𝑀𝑡+1𝑅𝑡+1
1 ) 

1

2
log 𝐸𝑡(𝑅𝑡+1

2 ) +
1

2
log 𝐸𝑡(𝑀𝑡+1

2 ) ≥ 0 

 

log Et[Mt+1
2 ] ≥ − log Et[Rt+1

2 ] (A.2) 

A.2 Lower bound for the third moment of the PK 

Point B depicted in Figure 7 is a convex combination of point P and Point R having coordinates 

(0,2) and (3,0) respectively. Assuming the coordinates of point B as (1, 𝑏), we solve for b below: 

𝛼 [
0
2

] + (1−∝) [
3
0

] = [
1
𝑏

] (A.3) 

∝=
2

3
 , 1−∝=

1

3
 and 𝑏 =

4

3
  

Plugging in the values represented by points P, R, and B in Eq (A.3), we get: 

2

3
log 𝐸𝑡(𝑅𝑡+1

2 ) +
1

3
log 𝐸𝑡(𝑚𝑡+1

3 ) ≥ log 𝐸𝑡(𝑚𝑡+1𝑅𝑡+1

4
3⁄

) 

2

3
log 𝐸𝑡(𝑅𝑡+1

2 ) +
1

3
log 𝐸𝑡(𝑚𝑡+1

3 ) ≥ log 𝐸𝑡
𝑄[𝑅𝑡+1

4 3⁄
] 

 

log 𝐸𝑡[𝑀𝑡+1
3 ] ≥ 3log 𝐸𝑡

𝑄[𝑅𝑡+1
4 3⁄

] − 2 log 𝐸𝑡[𝑅𝑡+1
2 ] (A.4) 

A.3 Lower bound for the fourth moment of the PK 

Point C depicted in Figure 7 is a convex combination of point P and Point S having coordinates 

(0,2) and (4,0) respectively. Assuming the coordinates of point C as (1, 𝑐), we solve for c below: 

𝛼 [
0
2

] + (1−∝) [
4
0

] = [
1
𝑐

] (A.5) 

∝=
3

4
 , 1−∝=

1

4
 and 𝑐 =

3

2
  

Plugging in the values represented by points P, S, and C in Eq (A.5), we get: 
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3

4
log 𝐸𝑡(𝑅𝑡+1

2 ) +
1

4
log 𝐸𝑡(𝑚𝑡+1

4 ) ≥ log 𝐸𝑡(𝑚𝑡+1𝑅𝑡+1

3
2⁄

) 

3

4
log 𝐸𝑡(𝑅𝑡+1

2 ) +
1

4
log 𝐸𝑡(𝑚𝑡+1

4 ) ≥ log 𝐸𝑡
𝑄[𝑅𝑡+1

3 2⁄
] 

 

log 𝐸𝑡[𝑀𝑡+1
4 ] ≥ 4log 𝐸𝑡

𝑄[𝑅𝑡+1
3 2⁄

] − 3 log 𝐸𝑡[𝑅𝑡+1
2 ] (A.6) 
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Appendix B  Long-run risk model 

B.1 Derivation of the conditional expectation of higher power of the PK based on the 

LRR model 

The conditional expectation of higher power of the PK can be solved from the log of IMRS 

expressed in Eq. (3): 

log 𝑚𝑡+1 = 𝜃 log 𝛿 −
𝜃

𝜓
𝑔𝑡+1 + (𝜃 − 1) 𝑟𝑎,𝑡+1  

Taking exponential and raising both sides to a power 𝑝, we get: 

𝑚𝑡+1
𝑝 = 𝑒

𝑝(𝜃 log 𝛿−
𝜃

𝜓
𝑔𝑡+1+(𝜃−1)𝑟𝑎,𝑡+1)

  

Taking conditional expectation at time 𝑡 on both sides, we get: 

𝐸𝑡(𝑚𝑡+1
𝑝 ) = 𝐸𝑡(𝑒

𝑝(𝜃 log 𝛿−
𝜃

𝜓
𝑔𝑡+1+(𝜃−1)𝑟𝑎,𝑡+1)

)  

                   =  𝑒
𝐸𝑡(𝑝(𝜃 log 𝛿−

𝜃

𝜓
𝑔𝑡+1+(𝜃−1)𝑟𝑎,𝑡+1))+

1

2
𝑉𝑎𝑟𝑡(𝑝(𝜃 log 𝛿−

𝜃

𝜓
𝑔𝑡+1+(𝜃−1)𝑟𝑎,𝑡+1)) 

  

                   = 𝑒
(𝑝(𝜃 log 𝛿−

𝜃
𝜓

𝐸𝑡(𝑔𝑡+1)+(𝜃−1)𝐸𝑡(𝑟𝑎,𝑡+1)))+
1
2

𝑝2𝑉𝑎𝑟𝑡((𝜃 log 𝛿−
𝜃
𝜓

𝑔𝑡+1+(𝜃−1)𝑟𝑎,𝑡+1)) 
 

                   = 𝑒
(𝑝(𝜃 log 𝛿−

𝜃
𝜓

𝐸𝑡(𝑔𝑡+1)+(𝜃−1)𝐸𝑡(𝑟𝑎,𝑡+1))).

 

                   𝑒
(

1

2
𝑝2((𝑉𝑎𝑟𝑡(−

𝜃

𝜓
𝑔𝑡+1)+𝑉𝑎𝑟𝑡((𝜃−1)𝑟𝑎,𝑡+1)+2𝑐𝑜𝑣(𝑔𝑡+1,𝑟𝑎,𝑡+1))))

 
(B.1) 

We calculate the conditional expected value of model parameters below, 

𝐸𝑡(𝑔𝑡+1) =  𝜇 + 𝑥𝑡 (B.2) 

𝐸𝑡(𝑥𝑡+1) =  𝜌𝑥𝑡 (B.3) 
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𝐸𝑡(𝜎𝑡+1
2 ) =  𝜎2 + 𝜈1(𝜎𝑡

2 − 𝜎2) (B.4) 

𝐸𝑡(𝑧𝑡) = 𝐴0 + 𝐴1𝑥𝑡+ 𝐴2𝜎𝑡
2  (B.5) 

𝑧𝑡+1 = 𝐴0 + 𝐴1𝑥𝑡+1+ 𝐴2𝜎𝑡+1
2  (B.6) 

𝐸𝑡(𝑧𝑡+1) = 𝐴0 + 𝐴1𝐸𝑡(𝑥𝑡+1)+ 𝐴2𝐸𝑡(𝜎𝑡+1
2 ) (B.7) 

Substituting Eq. (B.3) for 𝐸𝑡(𝑥𝑡+1) and Eq. (B.4) for 𝐸𝑡(𝜎𝑡+1
2 ) in Eq. (B.7), we obtain  

𝐸𝑡(𝑧𝑡+1) = 𝐴0 + 𝐴1𝜌𝑥𝑡+ 𝐴2(𝜎2 + 𝜈1(𝜎𝑡
2 − 𝜎2)) (B.8) 

𝐸𝑡(𝑟𝑎,𝑡+1) =  𝜅0 + 𝜅1 𝐸𝑡(𝑧𝑡+1) − 𝑧𝑡+ 𝐸𝑡(𝑔𝑡+1) (B.9) 

Substituting Eq. (B.8) for 𝐸𝑡(𝑧𝑡+1) and Eq. (B.2) for  𝐸𝑡(𝑔𝑡+1) in Eq. (B.9), we obtain  

𝐸𝑡(𝑟𝑎,𝑡+1) =  𝜅0 + 𝜅1(𝐴0 + 𝐴1𝜌𝑥𝑡+ 𝐴2(𝜎2 + 𝜈1(𝜎𝑡
2 − 𝜎2))) − 𝑧𝑡 + 𝜇 + 𝑥𝑡   (B.10) 

Using 𝑉𝑎𝑟𝑡(𝑋) =  𝐸𝑡[(𝑋 − 𝐸𝑡(𝑋))2], we calculate the conditional variance of model 

parameters below 
 

𝑉𝑎𝑟𝑡(𝑔𝑡+1) =  𝜎𝑡
2 (B.11) 

𝑉𝑎𝑟𝑡(𝑥𝑡+1) =  (𝜑𝑒𝜎𝑡)2 (B.12) 

𝑉𝑎𝑟𝑡(𝜎𝑡+1
2 ) =  (𝜎𝑤)2 (B.13) 

𝑉𝑎𝑟𝑡(𝑧𝑡) =  0 (B.14) 

𝑉𝑎𝑟𝑡(𝑟𝑎,𝑡+1) =  𝐸𝑡[((𝑟𝑎,𝑡+1) − 𝐸𝑡(𝑟𝑎,𝑡+1))2]   

𝑉𝑎𝑟𝑡(𝑟𝑎,𝑡+1) =  𝐸𝑡[((𝜅0 + 𝜅1𝑧𝑡+1 − 𝑧𝑡+ 𝑔𝑡+1)

− (𝜅0 + 𝜅1(𝐴0 + 𝐴1𝜌𝑥𝑡+ 𝐴2(𝜎2 + 𝜈1(𝜎𝑡
2 − 𝜎2))) − 𝑧𝑡 + 𝜇 + 𝑥𝑡))2] 

(B.15) 

Substituting Eq. (B.6) for 𝑧𝑡+1 in Eq. (B.15), we obtain  
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𝑉𝑎𝑟𝑡(𝑟𝑎,𝑡+1) =  𝐸𝑡[(𝜅1𝐴1𝑥𝑡+1+ 𝜅1𝐴2𝜎𝑡+1
2 + 𝑔𝑡+1 −

𝜅1𝐴1𝜌𝑥𝑡− 𝜅1𝐴2. 𝜎2− 𝜅1𝐴2𝜈1(𝜎𝑡
2 − 𝜎2) − 𝜇 − 𝑥𝑡)2]  

(B.16) 

Substituting value of 𝑥𝑡+1 from Eq. (14), 𝑔𝑡+1 from Eq. (13) and the value of 𝜎𝑡+1
2  from Eq. (15),  

we get: 

 

𝑉𝑎𝑟𝑡(𝑟𝑎,𝑡+1) =   𝜅1
2𝐴1

2𝜑𝑒
2𝜎𝑡

2 + 𝜅1
2𝐴2

2𝜎𝑤
2 + 𝜎𝑡

2  (B.17) 

Given 𝐶𝑜𝑣(𝑔𝑡+1, 𝑟𝑎,𝑡+1) =  −
𝜃

𝜓
(𝜃 − 1)𝜎2, by plugging Eq. (B.2), Eq. (B.10), Eq. (B.11) and  

Eq. (B.17) into Eq. (B.1), we obtain 

 

𝐸𝑡(𝑚𝑡+1
𝑝 ) = 𝑒

(𝑝(𝜃 log 𝛿−
𝜃
𝜓

(𝜇+𝑥𝑡)+((𝜃−1)(𝜅0+𝜅1(𝐴0+𝐴1𝜌𝑥𝑡+ 𝐴2𝜎2)−𝑧𝑡)+𝜇+𝑥𝑡))).
 

                   𝑒
1

2
𝑝2((

𝜃2

ψ2(𝜎𝑡
2)+(𝜃−1)2(𝜅1

2𝐴1
2𝜑𝑒

2𝜎𝑡
2+𝜅1

2𝐴2
2𝜎𝑤

2 +𝜎𝑡
2)−2

𝜃

𝜓
(𝜃−1)𝜎2))

 
 

 

 

 

B.2 Unconditional expectation of LRR model variables 

We write below the expressions for the unconditional expectation of the LRR model variables. 

The values of the model variables at time 𝑡 = 0  have been set equal to their unconditional 

expectation in the simulation exercise to compute 𝐸𝑡[𝑅𝑡+1
2 ]. 

𝐸(𝑔𝑡+1) =  𝜇 (B.18) 

0𝐸(𝑥𝑡) =  0  (B.19) 

𝐸(𝜎𝑡+1
2 ) =  𝜎2 (B.20) 

𝐸(𝑧𝑡) =  𝐴0 + 𝐴2𝜎2 (B.21) 

𝐸(𝑟𝑎,𝑡+1) = 𝜅0 + (𝜅1 − 1)(𝐴0+𝐴2𝜎2) + 𝜇 (B.22) 
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B.3 Derivation of the unconditional expectation of higher power of the PK based on the 

LRR model 

The unconditional expectation of higher power of the PK can be solved from the log of IMRS 

expressed in Eq. (3). By taking the exponential of log 𝑚𝑡+1 and raising both sides to a power 𝑝, 

we get: 

𝑚𝑡+1
𝑝 = 𝑒

𝑝(𝜃 log 𝛿−
𝜃

𝜓
𝑔𝑡+1+(𝜃−1)𝑟𝑎,𝑡+1)

  

Taking unconditional expectation at time 𝑡 on both sides, we get: 

𝐸(𝑚𝑡+1
𝑝 ) = 𝐸(𝑒

𝑝(𝜃 log 𝛿−
𝜃

𝜓
𝑔𝑡+1+(𝜃−1)𝑟𝑎,𝑡+1)

)  

                   =  𝑒
𝐸(𝑝(𝜃 log 𝛿−

𝜃

𝜓
𝑔𝑡+1+(𝜃−1)𝑟𝑎,𝑡+1))+

1

2
𝑉𝑎𝑟(𝑝(𝜃 log 𝛿−

𝜃

𝜓
𝑔𝑡+1+(𝜃−1)𝑟𝑎,𝑡+1)) 

  

  = 𝑒
(𝑝(𝜃 𝑙𝑜𝑔 𝛿−

𝜃

𝜓
𝐸(𝑔𝑡+1)+(𝜃−1)𝐸(𝑟𝑎,𝑡+1)))+

1

2
𝑝2𝑉𝑎𝑟((𝜃 𝑙𝑜𝑔 𝛿−

𝜃

𝜓
𝑔𝑡+1+(𝜃−1)𝑟𝑎,𝑡+1)) 

 
(B.23) 

Substituting Eq. (B.18) for 𝐸(𝑔𝑡+1) and Eq. (B.22) for 𝐸(𝑟𝑎,𝑡+1) in Eq. (B.23), we 

obtain 

                  = 𝑒
(𝑝(𝜃 𝑙𝑜𝑔 𝛿−

𝜃
𝜓

𝜇+(𝜃−1)(𝜅0+(𝜅1−1)(𝐴0+𝐴2𝜎2))+𝜇)).
 

 

                      𝑒
1
2

𝑝2𝑉𝑎𝑟((𝜃 𝑙𝑜𝑔 𝛿−
𝜃
𝜓

𝑔𝑡+1+(𝜃−1)𝑟𝑎,𝑡+1))
 (B.24) 

Using 𝑉𝑎𝑟(𝑋) =  𝐸[(𝑋 − 𝐸(𝑋))2] , we calculate the unconditional variance of 

model parameters below 
 

𝑉𝑎𝑟(𝑔𝑡+1) =  𝜎2 (B.25) 

𝑉𝑎𝑟(𝑥𝑡+1) =  (𝜑𝑒𝜎𝑡)2 (B.26) 

𝑉𝑎𝑟(𝜎𝑡+1
2 ) =  (𝜎𝑤)2 (B.27) 
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𝑉𝑎𝑟(𝑧𝑡) =  0 (B.28) 

𝑉𝑎𝑟(𝑟𝑎,𝑡+1) =  𝐸[((𝑟𝑎,𝑡+1) − 𝐸𝑡(𝑟𝑎,𝑡+1))2]   

𝑉𝑎𝑟(𝑟𝑎,𝑡+1) =  𝐸[((𝜅0 + 𝜅1𝑧𝑡+1 − 𝑧𝑡+ 𝑔𝑡+1)

− (𝜅0 + 𝜅1(𝐴0 + 𝐴2𝜎2) − (𝐴0 + 𝐴2𝜎2) + 𝜇))2] 
(B.29) 

Substituting Eq. (B.6) for 𝑧𝑡+1 in Eq. (B.29), we obtain  

𝑉𝑎𝑟(𝑟𝑎,𝑡+1) =   𝐸[(𝜅1𝐴1𝑥𝑡+1+ 𝜅1𝐴2𝜎𝑡+1
2 − 𝑧𝑡+ 𝑔𝑡+1− 𝜅1𝐴2. 𝜎2 + 𝐴0 + 𝐴2𝜎2

− 𝜇)2] 

(B.30) 

Substituting value of 𝑥𝑡+1 from Eq. (14), 𝑔𝑡+1 from Eq. (13) and the value of 𝜎𝑡+1
2  from Eq. (15), we get:  

𝑉𝑎𝑟(𝑟𝑎,𝑡+1) =   𝜅1
2𝐴1

2𝜑𝑒
2𝜎2 + 𝜅1

2𝐴2
2𝜎𝑤

2 + 𝜎2  (B.31) 

Given 𝐶𝑜𝑣(𝑔𝑡+1, 𝑟𝑎,𝑡+1) =  −
𝜃

𝜓
(𝜃 − 1)𝜎2, by plugging Eq. (B.25) and Eq. (B.30) into Eq. (B.24),  

we obtain 

 

𝐸(𝑚𝑡+1
𝑝 ) = 𝑒

(𝑝(𝜃 𝑙𝑜𝑔 𝛿−
𝜃
𝜓

𝜇+(𝜃−1)(𝜅0+(𝜅1−1)(𝐴0+𝐴2𝜎2))+𝜇)).
 

                   𝑒
1

2
𝑝2(

𝜃2

𝜓2(𝜎2)+(𝜃−1)2(𝜅1
2𝐴1

2𝜑𝑒
2𝜎𝑡

2+𝜅1
2𝐴2

2𝜎𝑤
2 +𝜎2)−2

𝜃

𝜓
(𝜃−1)𝜎2)

   

 

 

B.4 Expressions for the components of the conditional and unconditional expectations of 

higher power of the PK 

We write below the expressions for the components of the conditional and unconditional 

expectations of higher power of the PK in terms of the parameters of the LRR model. 

𝐴0 =
1

1 − 𝜅1
[log 𝛿 + 𝜅0 + (1 −

1

𝜓
) 𝜇 + 𝜅1𝐴2(1 − 𝜈1)𝜎2 +

𝜃

2
(𝜅1𝐴2𝜎𝑤)2] (B.32) 
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𝐴1 =
1 −

1
𝜓

1 − 𝜅1𝜌
 

(B.33) 

𝐴2 =
0.5 [(𝜃 −

𝜃
𝜓)2 + (𝜃𝐴1𝜅1𝜑𝑒)2]

𝜃(1 − 𝜅1𝜈1)
 

(B.34) 

𝜅0 = log(1 + exp ( 𝑧̅)) − (𝜅1𝑧̅) (B.35) 

𝜅1 =
𝑒𝑥𝑝 (𝑧̅)

1 + 𝑒𝑥𝑝 (𝑧̅)
 (B.36) 
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Appendix C   

All the computations have been coded in Python scripts in Jupyter Notebook. Developed by 

Fernando Pérez and Brian Granger, Jupyter served us as an ideal open-source interactive 

development environment to solve and analyze our bounds. We performed our computations by 

using Python libraries namely Pandas, NumPy, Scipy, Matplotlib, Seaborn, Statsmodels, 

PyTables, NLTK, Scikit-learn, Beautiful Soup, and Linearmodels. We ran the computations on a 

64-bit operating system with an Intel® Core™ i5-1135G7 CPU of 2.40GHz and an installed RAM 

of 16.0 GB.  

 


