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Résumé

En s’appuyant sur les conclusions de Paye (2012), cette thése examine si I’intégration de
variables macroéconomiques dans les modeles d’apprentissage automatique (ML) permet de
produire des prévisions plus précises de la volatilit¢ des rendements boursiers,
comparativement a un modele autorégressif (AR) de référence. Nous estimons la volatilité
réalisée sur la période allant de 1927 a 2023, aux fréquences mensuelle et trimestrielle, a I’aide
de la régression linéaire ordinaire (OLS), de la régression ridge, du lasso, de I’elastic net, de
la forét aléatoire, des arbres de régression a gradient boosting (GBRT) et d’un réseau de
neurones a mémoire longue a court terme (LSTM). Les prévisions sont élaborées selon des
fenétres glissantes et récursives, couvrant huit périodes d’échantillonnage incluant des
contextes de marché stables et de crise. Nous constatons des améliorations modestes de la
précision prédictive hors échantillon pour les modeles linéaires (OLS et régressions
régularisées) ainsi que pour le LSTM, lorsque les données sont mensuelles et le schéma de
fenétre récursive appliqué. Toutefois, ces gains ne sont pas statistiquement significatifs et, par
conséquent, les modeles les plus performants tendent a égaler le modele AR en termes de
performance prédictive. En comparant 1I’ensemble des échantillons de prévision, nous
observons que la qualité des prévisions s’améliore lorsque la fenétre d’estimation s’élargit et
lorsque 1’on passe des données trimestrielles aux données mensuelles. Les tests par
permutation réalisés sur les modeles LSTM et elastic net indiquent que la volatilité passée
représente environ deux tiers du pouvoir prédictif, suivie par les variables d’écart de crédit,

tandis que les mesures de 1’activité économique réelle contribuent peu.

Mots clés: Prévision de la Volatilité, Ridge, Lasso, Elastic Net, Gradient Boosting, Mémoire
Longue a Court Terme, Causalit¢ de Granger, Mod¢ele Autorégressif, Fenétre Glissante,

Fenétre Récursive



Summary

Building on the findings of Paye (2012), this thesis investigates whether machine learning
models augmented with macroeconomic variables yield more accurate forecasts of stock
return volatility compared to the autoregressive (AR) benchmark model. We estimate ordinary
least squares (OLS), ridge, lasso, elastic net, random forest, gradient boosted regression trees
(GBRT), and a long short-term memory (LSTM) network on realized volatility spanning from
1927 to 2023 at both monthly and quarterly frequencies. Forecasts are generated under rolling
and recursive windows across eight sample periods, which include tranquil and crisis market
conditions. We find modest improvements in out-of-sample prediction accuracy in linear
models (OLS and regularized regressions) and LSTM in monthly data and recursive window
scheme. However, these gains are not statistically significant and therefore, the best
performing models tend to match the AR benchmark in terms of predictive performance.
Comparing all forecasting samples, we find that forecast quality improves when the estimation
window expands and when data move from quarterly to monthly. Permutation tests on the
LSTM and elastic net models show that past volatility accounts for roughly two-thirds of
predictive power, followed by credit spread variables, while measures of real economic

activity contribute little.

Keywords: Volatility Forecasting, Ridge, Lasso, Elastic Net, Gradient Boosting, Long Short-
Term Memory, Granger Causality, Autoregressive Model, Rolling Window, Recursive

Window

i



Contents

RESUIME ...ttt ettt st e et e b e sane e b e e 1
SUMMATY ...ttt et e st e ettt e s ta e e s taeesnseeesssaeensseeennseeennseesnseesnseens i
LSt OF TaADIES......eeeieeeeee ettt ettt \%
| A0 T 1 (LTS vi
LSt OFf ADDIEVIALIONS ......viiuiiiiiiieiieiie ettt ettt et et e st e e esaeeeneeas vii
Chapter 1. INTrOAUCTION .......oouiiiiiiiiiiicee ettt 1
Chapter 2. Literature REVIEW ........cccuiiiiiiiiiiiiieeiieie ettt ettt ettt et 5
2.1 TEOAUCTION ...ttt ettt ettt et sae et e sbe e 5
2.2 Evolution of volatility MOAEINgG........cccueeriiiiiiiiiiiiieiecieeeeee et 6
2.2.1 ARCH and GARCH frameworks. ........c.cceoeeviirieniieiieiieniieieeeesieee e 6
222 AR MOAEL ... 8
223 HAR MO ...t e 9
2.2.4 Machine learning mMoOdelS.........c.ceecvuieeiiiieiiieeiiee e 10
2.2.4.1 Applications of multiple ML models ...........cceeeviiieiiiiiiiicieecee e 11

2.2.4.2 Applications of a single ML model...........cccoceviiiiniiniininiicceees 15

2.3 Macroeconomic predictors in volatility forecasting...........cccocceeveievieriiienieenienieeen. 17
2.4 Identified gaps and research MotiVation ...........ceevueeriieriieriienie et eeiee e 19
Chapter 3. Methodology and Research Design..........cceevvieriieiiieniienieeieesie e 21
3.1 Replication of the reference Study ..........ccoeceeeriiieiiiiiiiiieeeeeeeee e 21
3.2 Data dESCIIPTION ...eeeueiieeeieeeiieeeiieeeteeeeieeestee et e eseteeetaeeessaeeesaeeensseesssseensseeensseeensseens 22
3.2.1 Target variable: stock return volatility ..........cccoeeveiiieiiiiieiiieeeece e, 22
3.2.2 Macroeconomic and financial variables ............cccceeviiieiiiieiiiicieece e, 25
3.2.3 Summary statistics and correlation analysis .........cccceveriereeiieniinennenieneeienens 29

3.3 FOrecasting MOAEIS ........cocuieiuiiiiieiie ettt ettt siee et e e ebeenaneens 32
3.3.1 Autoregressive benchmark model..............oooiriiiiiiiiniiiiii e 32
3.3.2 Ordinary least squares (OLS) regreSSion ........cecveevierieeieenieeiienieeieenveeveenieeens 32
3.3.3 Regularized MOdEIS ........cceeevuiiiiiiiiiie e 33
3.3.4 Ensemble MOdElS ........oouiiiiiiiiiiiiieee e 36
3.3.5 Deep leaning model .........c.oooeuiiiiiiiiiiieece e 38

3.4 Evaluation criteria and statiStical teStS........ccueevvueeiiiieeiiiecieeeeee e 40
3.4.1 Mean squared prediction error (MSPE)......cc.ccciiiniiiiiiiiiincececeeene 41
3.4.2 R-SQUATEA (R2) .o 41



3.4.3 Clark and West (CW) LSt ....ccueiiiiiiiiiieeeiee ettt et e ere e e e aeeeeavee e 42

3.4.4 Giacomini and White (GW) teSt ........c.eeeeiuiiiiiiieiiie et 42
3.5 FOTECASTING SETLINES ...eeervvieeiiieeiieeiiieeiiieeeteeeeteeeseteeestaeeeeaeeeeaeessseesssaeensseeensseeensseens 43
3.5.1 SAMPIE PEIIOAS. ..eeuvrieeiieeeiieeeiie et ee ettt e et e e et eeseaeeetaeesntaeesseeensseeennseeenns 43
3.5.2 Estimation WINdOW STratE@IES ......c.eeerueeeruieeiiieeiieeeiieeeieeeeieeesseeesseeesseeessseeenns 45
3.5.3 Hyperparameter tUNINE ........cccueeeeuieeriieeeeieeeeteeesteeeseeeeseaeessaeessneesseeesseeessseeenns 46
3.5.4 Variable importance analysis .......cccccecveeriuieeriieeiiieeiieeesieeeeieeeeieeesreeeeseeesereeenns 48
Chapter 4. Empirical Results, Analysis, and DiSCUSSION ........cceeveruienierieneinieeiinieneeienene 50
4.1 Quarterly out-of-sample forecasting performance (main analysis and robustness
o] 11511 1 TR 50
4.1.1 Rolling WindOW TESUILS ........eeiriiiiiiieeiiie ettt e e s 51
4.1.2 Recursive WINAOW TESULILS .....cocueiiiiiiiiiiieieeie s 53

........................................................................................................................................... 55
4.2.1 Rolling WIndOW TESULLS .......c.eevuiieiieiieeiieiie ettt ettt e eesees 55
4.2.2 Recursive WINAOW TESULLS ......cc.eeiuirieriieiiiienieeieeetcete e 57

4.3 Overall Model COMPATISON .......eervieiriieeiiieeieeerteeerieeereeetreesareeebeeeeaeeessseeessseeennes 59
4.4 Results of variable importance analysis........c.cceevveeeriieeiiiesiieeeiieeeiee e eereeeevee e 61
4.4.1 Variable importance analysis results of quarterly sampling ............cccccveeevveennnenn. 61
4.4.2 Variable importance analysis results of monthly sampling ..........c..ccccceeeeveeennnenn. 64

4.5 DISCUSSION ..c.ueitienieiiieitteteeit et st ettt ettt st e e bt et e sb e e bt et esbe e bt et e s bt e bt entesatenbeenbeeaees 67
4.6 Implications Of fINAINGS ......eeoiieiiiiiiieiieie et 70
4.7 Limitations and recommendations for future studies ...........cccceeeveevieriiienieeniienieenen. 71
Chapter 5. CONCIUSION ......cccuiiiiiiiieiie et eite et eete et e see et e e teebeesbeesbeessbeeseessseesseassseenssesnsens 73
BibliOgraphy . ... 75
Appendix A. Paye (2012) Replication ReSults .........ccccccvieeiiieeiiieciiecieeeee e 82
Appendix B. Data SOUICES........ceiiiiiiiiieeiieeeeee ettt ste e e e sree e sreeesevaeessseeesaseeensees 87

v



List of Tables

Table 3.1 List of financial and macroeconomic variables............ccoceevervieriineiiiinienenieneens 29
Table 3.2 Descriptive statistics of macroeconomic variables, 1952-2019 ............cccceeenee 30
Table 3.3 List of forecasting sample periods..........cceeeveeeiieeeiiieeiieeeeeeere e 44
Table 3.4 Hyperparameter search spaces for forecasting models. .........cccccveevcveenciieenneeenen. 47
Table 4.1 Out-of-sample forecasting results, quarterly data and rolling estimation.. ........... 51
Table 4.2 Out-of-sample forecasting results, quarterly data and recursive estimation ......... 53
Table 4.3 Out-of-sample forecasting results, monthly data and rolling estimation .............. 56
Table 4.4 Out-of-sample forecasting results, monthly data and recursive estimation .......... 57



List of Figures

Figure 3.1 Quarterly volatility of the S&P 500 index, 1927-2023 .......cccoovveviiiinieninienene 23
Figure 3.2 Relationship between market volatility and the business cycle, 1947-2023. ...... 24

Figure 3.3 Correlation heatmap of all variables, 1952-2019. ........ccccoeiiiiiiniiiiieeeeee, 31
Figure 3.4 A long short-term memory (LSTM) unit. ........cccceeeiiieniiieiieecee e 39
Figure 3.5 Coverage of major economic events across forecasting periods.............ccceenneee. 45
Figure 3.6 Economic events timeline (1970-2023)........ccccovveririenienieienieseeeeee e 45
Figure 3.7 Illustration of estimation Strate@Ies ..........ccoceevueriereriienierieeiienienieeee e 46

Figure 4.1 Average AR? by forecasting model, data frequency, and estimation window ..... 59

Figure 4.2 Average permutation importance across all rolling windows, quarterly data,

elastic net model, 1972Q3-2019Q4 .......oooioriieeee et 62

Figure 4.3 Average permutation importance across all recursive windows, quarterly data,

elastic net model, 1972Q3-2019Q4 ... e 62

Figure 4.4 Average permutation importance across all rolling windows, quarterly data,

LSTM model, 1972Q3-20T9Q4........oorieieeieteeee ettt sttt 63

Figure 4.5 Average permutation importance across all recursive windows, quarterly data,

LSTM model, 1972Q3-2019Q4.....cc.coieiiieieiiieieeeeteeet ettt 64

Figure 4.6 Average permutation importance across all rolling windows, monthly data,

elastic net model, 1972.3-2010.12. ..ottt e e e s 65

Figure 4.7 Average permutation importance across all recursive windows, monthly data,

elastic net model, 1972.3-2019.12 ....ccuiiiiiiiiiiiieeee ettt 65

Figure 4.8 Average permutation importance across all rolling windows, monthly data,

LSTM model, 1972.3-2019.12 ...oouiiiiiiieeeeeeeeee ettt 66

Figure 4.9 Average permutation importance across all recursive windows, monthly data,

LSTM model, 1972.3-2019.12 ....cciiiiiiiiiiiieieteeeeneeeet ettt sttt 67

Vi



List of Abbreviations

Abbreviation
ALE
ANNs
AR
ARCH
ARMA
BAA
CART
CHF

CPI

CRSP
COVID-19
Cw
EGARCH
EN

FRED

FX
GARCH
GARCH-NN
GBRT
GDP

GW

HAC
HAR
HARQ
KNN
LASSO
LSTM
ML
NASDAQ
NBER
NN

OLS

Full phrase

Accumulated Local Effects

Artificial Neural Networks

Autoregressive

Autoregressive Conditional Heteroscedastic
Autoregressive Moving Average

Moody’s BAA-rated corporate bonds

Classification and Regression Tree

Swiss Franc

Consumer Price Index

Center for Research in Security Prices

Coronavirus Disease 2019

Clark and West test

Exponential Generalized Autoregressive Conditional Heteroscedastic
Elastic Net

Federal Reserve Economic Data

Foreign Exchange

Generalized Autoregressive Conditional Heteroscedastic
Generalized Autoregressive Conditional Heteroscedastic-Neural Network
Gradient Boosted Regression Trees

Gross Domestic Product

Giacomini-White Test

Heteroskedasticity and Autocorrelation Consistent
Heterogeneous Autoregressive

Heterogeneous Autoregressive with Realized Quarticity
K-Nearest Neighbors

Least Absolute Shrinkage & Selection Operator

Long Short-Term Memory

Machine Learning

National Association of Securities Dealers Automated Quotations
National Bureau of Economic Research

Neural Network

Ordinary Least Squares

vii



Abbreviation Full phrase

PPI Producer Price Index

RF Random Forest

RR Ridge Regression

RV Realized Volatility

SHAP SHapley Additive exPlanations
SHAR Scaled Heterogeneous Autoregressive
SVR Support Vector Regression

UK United Kingdom

US United States

USD United States Dollar

VIX CBOE Volatility Index

Abbreviations of forecasting variables

Abbreviation Full name

blev Changes in bank leverage

cp Commercial paper-to-Treasury spread
cay Consumption-wealth ratio

gdp Current GDP growth

dfr Default return spread

dfy Default spread

egdp Expected GDP growth

exret Expected return

ip Growth in industrial production

ik Investment-capital ratio

npy Net payout yield

tms Term spread

ipvol Volatility of growth in industrial production
ppivol Volatility of inflation growth

viil



Acknowledgement

I would like to sincerely thank my research supervisor, Prof. Tolga Cenesizoglu for his
guidance, patience, and generosity throughout this process. His thoughtful feedback and great
perspective have been invaluable in helping me grow as a researcher and in bringing this thesis
to completion. I am also grateful to my love, Reza, for his constant understanding and
encouragement. His presence has given me the strength to keep going through the most
challenging moments. This work is the result of not only my efforts but also the love, support,

and kindness I have received from him.

X



Chapter 1. Introduction

Forecasting is crucial for making informed decisions in many different fields of study,
including finance, economics, supply chain management, meteorology, and even public health
and epidemiology. Accurate forecasts equip individuals and organizations to plan, mitigate
risk, and allocate resources efficiently. Specifically, in the finance industry, the ability to
forecast volatility in asset prices plays a significant role in risk management, portfolio
allocation, pricing of derivatives, and broader policy making (Engle, 1982; Bollerslev, 1986;
Ding et al., 1993; Christensen et al., 2023). As a result, volatility forecasting has attracted

extensive attention from academic finance researchers and practitioners.

However, despite the ample attention volatility modeling has received, reliable volatility
forecasting is challenging due to many factors, such as the complex behaviour of financial
markets, incomplete and inconsistent understanding of volatility drivers, and frequent
structural changes in market dynamics, especially during market downturns (Schwert, 1989;

Glosten et al., 1993; Engle and Rangel, 2008).

Initial efforts at volatility modeling relied predominantly on linear econometric approaches,
including the ARCH and GARCH models, proposed by Engle (1982) and Bollerslev (1986),
respectively. Applied in different financial time series, these models successfully captured key
features of volatility such as persistence and clustering behaviour, mean reversion, leverage
effects, and heavy-tailed return distributions (Engle and Patton, 2001; Filipovic and
Khalilzadeh, 2021).

Despite their effectiveness, ARCH and GARCH models struggle to incorporate a wide range
of information, such as macroeconomic variables and firm- and market-specific features,

limiting their predictive power.

Later studies proposed alternative volatility modeling techniques, such as AR and HAR
models, that use realised volatility (RV) computed from high-frequency return data (Taylor,
1986; French et al., 1987; Schwert, 1989; Paye, 2012). Because RV is observable, it could be
directly employed in linear forecasting models, producing more transparent predictions and

avoiding the potential misspecification risks encountered with ARCH and GARCH models.



However, because these linear models can handle a large set of predictors, they are prone to
biased and inconsistent parameter estimates, resulting in inferior out-of-sample forecasting

performance (Paye, 2012; Filipovic and Khalilzadeh, 2021).

More recently, machine learning (ML) models have gained great attention in volatility
forecasting due to their ability to handle complex and non-linear relationships and handle a
broad set of predictive variables better than simpler models (Zhu et al., 2023). ML methods
such as regularized regressions, tree-based (or ensemble) models, and neural networks,
applied to volatility forecasting, have demonstrated superior out-of-sample predictive
accuracy in most cases (Mittnik et al., 2015; Luong and Dokuchaev, 2018; Carr et al., 2019;
Moon and Kim, 2019; Nybo, 2020; Filipovic and Khalilzadeh, 2021; Nou et al., 2021;
Petrozziello et al., 2022; Christensen et al., 2023; Zhu et al., 2023; Zhang et al., 2024; Niu et
al., 2024; Rahimikia and Poon, 2024). Furthermore, several hybrid approaches, which
combine linear econometric models, such as ARCH/GARCH, with ML algorithms, have also
shown improved forecast accuracy (Donaldson and Kamstra, 1997; Nou et al., 2021). A few
studies, however, documented the underperformance of ML models compared to simpler

benchmarks (Branco et al., 2022; Audrino and Chassot, 2022).

Despite broad evidence supporting the superior performance of ML models, there is
considerable variation in findings due to differences in model specifications, data frequency,
predictor sets, and estimation windows. For example, some studies have used highly granular
market data such as bid-ask spreads and intraday volatility measures, which enhanced
predictive accuracy through market microstructure information (Filipovic and Khalilzadeh,
2021; Zhang et al., 2024; Rahimikia and Poon, 2024). Some others have incorporated
macroeconomic data alongside the market-based predictors and have reported that the
predictive power of ML models relies predominantly on market-related variables (Filipovic
and Khalilzadeh, 2021; Christensen et al., 2023), questioning the incremental value of

macroeconomic variables in such forecasting frameworks.

These observations suggest that despite advancements in modeling techniques, financial
market volatility forecasting remains challenging and inconclusive. Furthermore, although
some studies have indicated the impact of economic events (notably market crashes) on

volatility forecasting (Paye, 2012; Nybo, 2020; Rahimikia and Poon, 2024), to our knowledge,



there is limited research focusing solely on the predictive power of macroeconomic variables
as a feature set in advanced machine learning techniques. Addressing these problems, this
thesis investigates whether the application of machine learning techniques and the integration
of exclusively financial and macroeconomic variables can significantly improve volatility
forecasts, closing the existing gap in the literature. Specifically, our main research objectives

arc:

1. To test whether machine learning techniques, ranging from simpler regularized
regression models to advanced ensemble and deep learning methods, significantly
outperform the autoregressive benchmark in forecasting stock return volatility.

2. To assess the incremental predictive power of macroeconomic variables in forecasting

volatility.

Our research has theoretical and practical pertinence. Theoretically, it contributes to the
existing literature by assessing the predictive accuracy of advanced ML forecasting methods
that employ macroeconomic predictors. Practically, our findings provide valuable insights for
financial analysts, risk managers, and portfolio managers, helping them make optimal
investment decisions. The originality of our work stems from its explicit focus on
macroeconomic variables employed in machine learning models, which addresses a gap

identified in existing volatility forecasting literature.

To conduct the analysis and answer the research questions, this thesis employs a diverse range
of forecasting models, including regularized regressions (ridge, lasso, and elastic net),
ensemble methods (random forest and gradient boosted regression trees (GBRT)), and a deep
learning technique (long short-term memory (LSTM)). These models are tested using
historical monthly and quarterly data on realized volatility and macroeconomic variables

through rolling and recursive window approaches.

The set of macroeconomic variables used in our study is selected from Paye (2012). Paye
(2012) investigated whether it was possible to enhance volatility forecasts on a monthly and
quarterly basis by conditioning on macroeconomic variables. The author compared the
forecasts generated from augmented ordinary least squares (OLS) with those generated from

a simple autoregressive (AR) model. Similarly, the benchmark used in this thesis is the same



AR model from Paye (2012). Our study starts with replicating the findings of Paye (2012) and
then extending his study by employing more advanced forecasting techniques beyond the

traditional regression (OLS) model.

The remainder of this thesis is structured as follows: Chapter 2 reviews the relevant literature
on volatility forecasting and outlines specific gaps motivating this research. Chapter 3 details
the research design and methodology, including data collection and variable construction,
forecasting models, evaluation methods, and specific details on forecast settings. Chapter 4
presents empirical results on the predictive accuracy of ML models against the AR benchmark.
Moreover, this chapter discusses key findings in the context of existing literature, highlights
practical implications, and suggests directions for future research. Finally, Chapter 5 presents

the conclusion.



Chapter 2. Literature Review

2.1 Introduction

In finance, forecasting is fundamental for investors, portfolio managers, risk managers,
policymakers, and other market participants in their decision-making process. Reliable and
accurate forecasts can significantly enhance investment strategies and risk management
practices, as well as support more informed fiscal and monetary policy decisions.
Consequently, forecasting financial variables such as asset prices, returns, volatility, interest
rates, exchange rates, and economic indicators has gained considerable interest from both

academics and practitioners over recent decades.

Among financial variables, volatility is critical in risk management, portfolio allocation,
derivatives pricing, and market regulation. However, volatility is challenging to predict for
several reasons. First, there is an incomplete understanding of the true drivers of volatility,
despite numerous studies attempting to identify these factors (Campbell, 1987; Schwert, 1989;
Breen et al., 1989; Shanken, 1990; Glosten et al., 1993; Whitelaw, 1994; Graham and Harvey,
2001; Marquering and Verbeek, 2004; Ludvigson and Ng, 2007; Engle and Rangel, 2008;
Engle et al., 2008; Campbell and Diebold, 2009; Lettau and Ludvigson, 2010; Paye, 2012).

Second, financial markets exhibit complex, nonlinear behavior and sudden structural shifts,
making volatility hard to predict. Still, Engle (1982), Bollerslev (1986), Ding et al. (1993),
and more recently Christensen et al. (2023) all reported that volatility is persistent. In other
words, large fluctuations in prices tend to be followed by large fluctuations, a pattern known
as volatility clustering. This slow decay in the autocorrelation of absolute returns suggests

there is some predictability in market volatility.

Third, existing literature on volatility forecasting indicates inconsistent and various
conclusions, due to differences in modeling techniques, volatility variable measurement,
predictors, data frequencies, and forecasting horizons. This diversity makes it difficult to reach

a consensus on whether volatility can be forecasted with high precision in financial markets.

In this chapter, we review prior studies, looking at their forecasting approaches, specific
models used, data choices, and results. We then discuss how these findings align with our

research objectives.



2.2 Evolution of volatility modeling

Methodologies in volatility modeling have evolved considerably over time. Initially, studies
relied predominantly on linear econometric models, such as ARCH, GARCH, AR, and HAR
models. However, more recently, an increasing number of studies employ nonlinear and
advanced modeling techniques, including machine learning algorithms. In this section, we
review the evolution of volatility forecasting models from traditional linear to advanced

methods, discussing their effectiveness and limitations.
2.2.1 ARCH and GARCH frameworks

After decades of assuming constant variance for time series in econometric models, Engle
(1982) introduced the autoregressive conditional heteroscedastic (ARCH) model, the first
stochastic process to let volatility change over time. More specifically, Engle showed that
while the unconditional variance (the long-run average volatility) remains fixed, the
conditional variance evolves each period as a function of past squared forecast errors, so that

volatility today reflects recent shocks (Engle, 1982).

To test his new model, Engle employed it to estimate the mean and variance in UK inflation,
based on quarterly inflation data from 1958Q2 to 1977Q2. His analysis revealed that the
ARCH effect played a significant role in modeling the volatility of UK inflation. In particular,
there was a cluster of large variances in the mid-1970s, during which the UK inflation became
hard to predict. However, the ARCH model captured this increased volatility more accurately

than a homoscedastic model, which assumes that variance remains constant over time.

Overall, Engle (1982) demonstrated that variance is itself time-varying and should be

explicitly modeled rather than treated as a constant noise level.

Later, Engle (1983) applied the ARCH technique to model the conditional variance of US
inflation. His study provided support for the ARCH model by showing that volatility is time-
varying rather than constant. His tests rejected homoskedasticity and demonstrated that
modeling today’s variance as a function of past squared errors allowed the ARCH model to
track rises and falls in volatility. Building on this, Engle and Kraft (1983) extended the ARCH

framework beyond one-period-ahead forecasts to multiperiod forecasting of US inflation



volatility, showing that iterating the model preserves volatility’s persistence over multiple

horizons.

Engle et al. (1987) thereafter extended the ARCH model to estimate time-varying risk premia
in the term structure. To this end, the authors employed a new version of the ARCH, known
as the ARCH-M model, which incorporated conditional variance directly into the mean
equation. This model specification reflected the economic idea that risk-averse economic
agents require higher returns for holding riskier assets. The authors applied the ARCH-M
model to three fixed income products: 2-month Treasury bills, 6-month Treasury bills, and 20-
year Aaa corporate bonds to determine whether time-varying risk premia exist for these assets.
The empirical evidence demonstrated that risk premia are not constant over time; instead, they
change with the degree of market uncertainty. In periods when investors perceived greater risk

(higher conditional volatility), they demanded higher returns.

After several successful applications of the ARCH model, Bollerslev (1986) introduced the
generalized ARCH (GARCH) model. This model included lagged values of conditional
variance in addition to lagged squared errors from the original ARCH technique (Bollerslev,
1986). Bollerslev (1986) proved that incorporating past values of conditional variance into the
traditional ARCH model accounts for the long memory of volatility and provides a more
flexible lag structure. In the GARCH model, estimating more parameters can reduce the
number of lags required for both squared errors and conditional variance, which leads to a

more parsimonious model than the original ARCH model.

Baillie and Bollerslev (1989) put the GARCH model into practice by fitting it to daily
exchange rate data and examining its pattern. Their study revealed that although daily
exchange rate returns followed a random walk in the mean, their volatility was not constant
over time. The authors implemented a GARCH(1,1) model, which uses one lag each of the
conditional variance and past squared errors. The results indicated persistent, time-varying
volatility and heavy-tailed behavior in the data. By successfully modeling the time-varying
volatility of exchange rates using this framework, this study helped explain the risk dynamics

of daily exchange rate movements.



Further studies introduced other extensions of ARCH and GARCH models, notably the
exponential GARCH (EGARCH), which was developed by Nelson (1991). This new model
used the log of the conditional variance as a function of past shocks. Nelson applied EGARCH
to CRSP daily return series, and the results showed that the model not only captured volatility
clustering but also exhibited the leverage effect, meaning that past negative shocks increased

future volatility relative to positive shocks of the same magnitude (Nelson, 1991).

The ARCH and GARCH family models have become standard and useful tools for forecasting
volatility, widely adopted by academics and risk managers. They also serve as the benchmark

against which other modeling techniques are compared, in terms of prediction accuracy.
2.2.2 AR model

In the ARCH/GARCH models discussed above, volatility is inferred indirectly from return
equations. In contrast, the autoregressive (AR) approach is based on observed volatility series
directly. The mostly used variable in AR models in volatility forecasting studies, is realized
volatility (RV), an ex-post measure of return variability over a fixed interval. It is constructed
by summing squared high-frequency returns. For example, daily realized volatility is
computed by summing the squared intraday returns for a given trading day (Andersen and
Bollerslev, 2001; 2003). In this study, we adopted RV as the target variable at monthly and
quarterly frequencies; accordingly, realized volatility was calculated as the sum of the squared
daily returns within each month or quarter. Details of our volatility measurement are presented
in the next chapter (methodology and research design). Some of the earliest studies employing
realized volatility included Taylor (1986), French et al. (1987), Schwert (1989), and our
reference study, Paye (2012).

The AR approach assumes that today’s realized volatility is a linear function of its own past
values (or lags). In one of the earliest applications of AR on realized volatility, Andersen and
Bollerslev (1998) showed that an AR(1) model, using one lag of daily RV computed from
five-minute returns, explained most of the predictable variation in the US equity market.
Taylor and Xu (1997) similarly fitted an AR model to the realized volatility of UK equities,

finding significant persistence in volatility up to ten trading days.



Subsequent studies have adopted AR models as benchmarks for more sophisticated methods.
Andersen et al. (2001), using daily realized volatility constructed from high-frequency foreign
exchange (FX) returns, found that a simple AR model performed competitively with more
complex approaches in terms of forecasting accuracy. Ghysels et al. (2006) pushed this further
by using an AR(5) on daily realized volatility of the S&P 500 index and showed that it often
outperformed a GARCH(1,1) in one-day-ahead forecasts. Hansen and Lunde (2005) also
demonstrated that straightforward AR fits on realized volatility were hard to beat in out-of-

sample tests across a wide range of equity and FX series.

Overall, whereas ARCH/GARCH models predict today’s volatility from yesterday’s return
shock, the AR approach forecasts today’s volatility directly from past realized volatility. By
using an observed volatility series, AR models generate more transparent forecasts, capture
the strong persistence seen in the volatility of financial time series, and avoid potential
misspecification in the return equation used in ARCH/GARCH. Since AR on realized
volatility has proven to be a strong framework, and following our reference study (Paye,
2012), we also used AR(2) and AR(6) models in our study for quarterly and monthly data,
respectively, as the benchmarks comparing their one-step-ahead forecasts to those generated

from augmented and more advanced models.
2.2.3 HAR model

Building on the traditional autoregressive (AR) model for realized volatility, Corsi (2009)
proposed the heterogeneous autoregressive HAR model. HAR employs multiple realized
volatility components over different horizons as its inputs and accordingly, captures the long-
term nature of market volatility in a parsimonious way, without using complex long-memory
models. Specifically, the HAR model incorporates different realized volatility measures,
including daily, weekly, and monthly, reflecting different time horizons of the market

participants (Corsi, 2009).

Using the HAR model, Corsi (2009) generated out-of-sample forecasts for the realized
volatility of three series: the USD/CHF exchange rate, the S&P 500 index, and US Treasury
bonds, and showed that, at one-day, one-week, and two-week horizons, HAR reduced forecast

errors significantly compared to short-memory benchmarks like simple AR or GARCH



models. Although it did not consistently beat more complex long-memory models, its

performance was mostly similar to them, despite HAR’s simpler structure.

Nevertheless, due to its simplicity and possible inefficiency at managing more complex data,
later studies proposed extended versions of the standard HAR model. For example, Corsi and
Reno (2012) added macroeconomic variables to account for the business cycle impacts on
volatility, while Patton and Sheppard (2015) developed a jump-robust version of HAR to
handle sudden price moves. Bollerslev et al. (2016) incorporated leverage effects and option
implied volatility, Luong and Dokuchaev (2018) adjusted for high-frequency noise and
microstructure bias, and Niu et al. (2024) combined HAR with machine learning techniques

to learn nonlinear patterns flexibly.

Accordingly, the easy structure of HAR and its capability to add additional predictors (other
than volatility lags), made it a popular forecasting tool or benchmark in the most recent
studies. Notably, Christensen et al. (2023) enhanced HAR with macroeconomic and survey
variables and reported gains in out-of-sample accuracy, Niu et al. (2023) mixed HAR inputs
into a neural network and reported better short-term forecasts, and Rahimikia and Poon (2024)
integrated jumps and liquidity measures into HAR to capture extreme moves and trading

frictions. These studies will be discussed further in the following section.

In summary, the HAR model is a simple but powerful technique to forecast realized volatility
by combining daily, weekly, and monthly measures. Its straightforward setup makes it easy to

add new predictors, while still delivering strong accuracy.
2.2.4 Machine learning models

In addition to the time series frameworks such as ARCH/GARCH, AR, and HAR, a wide
range of research has shifted toward implementing machine learning (ML) techniques for
forecasting tasks. This shift is justified by the inherent complexity and nonlinearity of
financial market data. While linear models capture persistent patterns using lagged volatility
inputs, as discussed earlier, they might not be able to discover nonlinear dependencies in large
and noisy datasets. Machine learning methods provide a data-driven approach that can find
complex patterns without depending on any prior assumptions about the dataset being

analyzed.
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In simple words, machine learning techniques are a class of algorithms that can identify
patterns in data and optimize prediction accuracy through experience. These algorithms
minimize human intervention in detecting the patterns and relationships from the data.
However, as noted by Filipovic and Khalilzadeh (2021), this minimal human intervention
requires significant computational resources. Nevertheless, with the increasing use of high-
frequency data, cloud computing, and efficient algorithms, ML approaches have become more

feasible and practical for forecasting different variables in finance.

Specifically, prior studies have implemented ML models to predict volatility in various
financial data including equity returns, comparing their forecasting performance to benchmark
models such as ARCH/GARCH, AR, and HAR. However, the diversity of methodologies,
predictors, volatility definitions (such as realized volatility, implied volatility, conditional
variance), evaluation criteria, and time horizons has made it difficult to come up with
consistent and unified conclusions across the literature. In this section, we review some of the
most influential and interesting studies that have applied machine learning techniques, ranging

from simplest ones like regularized linear models to neural networks for volatility forecasting.
2.2.4.1 Applications of multiple ML models

A vast majority of existing literature has applied multiple ML techniques (rather than a single
model) to be able to compare their prediction performance. For instance, Christensen et al.
(2023) applied a variety of ML models, including ridge regression, lasso, elastic net, random
forest, gradient boosting, and neural networks, to forecast realized volatility for constituents
of the Dow Jones Industrial Average. Not only did the authors employ several ML techniques,
but their benchmark was also a set of extended versions of the HAR model, namely LevHAR,

HAR-X, HARQ, SHAR, and LogHAR (Christensen et al., 2023).

The forecasting variables used in this study included lagged values of realized volatility in
different time horizons, incorporated in benchmarks and ML models, and a range of market-
related and a few macro variables, specifically used in ML models. The findings revealed that
even with minimal hyperparameter tuning by the researchers, ML models outperformed
benchmark HAR models in out-of-sample forecasting, especially at longer horizons. Notably,

ML models incorporating only lagged realized volatility still outperformed HAR, suggesting
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that ML’s ability to capture long-term dynamics provides a practical advantage over the HAR-
family models. Moreover, using the accumulated local effects (ALE) technique to assess
variable importance, the authors found consistent, still model-specific rankings, indicating

that different ML models extract distinct insights from the same dataset.

Similarly, Filipovic and Khalilzadeh (2021) evaluated a range of ML algorithms, including
elastic net, gradient boosted regression trees (GBRT), feedforward neural networks, and long
short-term memory (LSTM), for forecasting future stock volatility. They used 46 market- and
firm-specific characteristics like accounting variables and past returns, and eight
macroeconomic predictors, such as interest rates, GDP growth rate, etc. Interestingly, the
LSTM outperformed other models, particularly in market conditions with high volatility.
Furthermore, the LSTM model with only volatility and return as predictors up to one year into
the past, performed as good as an LSTM model with the full set of predictors and the same
number of lags. The authors found that a small set of predictors, including current realized
volatility, idiosyncratic volatility, bid-ask spread, and return, accounted for most of the models'

predictive power.

In general, both Christensen et al. (2023) and Filipovic and Khalilzadeh (2021) found that
parsimonious ML models, mainly using past volatility and market-based lagged predictors,
perform as well as, or even better than, more complex models that incorporate a broad range

of macroeconomic variables.

Consistent with this finding, Nou et al. (2021) directly compared ML models to the
econometric linear models, using only lagged prices as input features, for forecasting both
returns and volatility. The authors evaluated random forest, support vector regression (SVR),
and k-nearest neighbors (KNN) against ARMA (an AR model that incorporates moving
averages of past volatilities) and GARCH on the NASDAQ Baltic Index. They also tested a
hybrid GARCH-neural network (GARCH-NN) model to see whether combining models
improves prediction performance. For return forecasting, SVR consistently outperformed
ARMA. Regarding volatility forecasting, although GARCH models performed well in many
cases, the hybrid GARCH-NN was able to outperform them in some settings, showing that

combining traditional models with machine learning can improve predictions.
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Hybrid models were originally introduced by Donaldson and Kamstra (1997) for forecasting
daily volatility of the Canadian equity market. They proposed a GARCH-NN hybrid model
where they first estimated volatility using a GARCH(1,1) model, and then applied a neural
network to the residuals. The goal was to capture nonlinear dynamics that GARCH models
could miss. Their study found that the hybrid model performed superior in terms of out-of-

sample forecasting accuracy than a standard GARCH model.

Some studies employing multiple forecasting approaches have provided insights beyond the
performance comparison of ML models and benchmarks. Specifically, Zhang et al. (2024)
suggested that forecast horizon and data granularity significantly influence model
performance in volatility forecasting. The authors studied the forecasting of intraday and daily
volatility for the top 100 most liquid S&P 500 stocks. They tested various models, including
ordinary least squares (OLS) regression, lasso, HAR, gradient boosting, multilayer
perceptrons (MLP), and LSTM. Other than the lagged realized volatility measures, the
predictors included market-wide volatility measures and microstructure features such as quote
imbalances and stock-specific data. The results indicated that neural networks performed best
for intraday volatility, especially when pooling data across stocks and incorporating market-

wide volatility. However, for daily-basis data, simpler models such as OLS performed better.

Further research explored various aspects and analytical approaches in addition to testing
several forecasting models. For example, Carr et al. (2019) attempted to forecast realized
volatility using derivatives market data. Zhu et al. (2023) developed a panel data framework
rather than relying solely on a time-series structure for their analysis. Finally, Niu et al. (2024)
examined whether industry-specific realized volatility can predict aggregate future market

volatility.

To be precise, Carr et al. (2019) extended the volatility forecasting literature by applying ML
models to predict realized variance using option price data, specifically from out-of-the-
money S&P 500 calls and puts. Instead of using past returns or volatility, their method looked
at patterns in current option prices to understand what the market expects about future
volatility. This reflects a forward-looking aspect that is not typically seen in econometric
models. The study tested various models and found that ridge regression and shallow neural

networks consistently outperformed both the VIX benchmark and simple linear models. This
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suggests that ML techniques can effectively capture pricing signals embedded in option

markets, under certain conditions.

Considering the role of cross-sectional information, Zhu et al. (2023) introduced a panel data-
based machine learning framework for forecasting daily volatility across S&P 500 stocks.
Instead of fitting separate models for each asset, they stacked features such as realized
volatility, semi-variance, and jump components into a panel structure. ML models, including
lasso, elastic net, random forest, and gradient boosting, outperformed traditional time series
models like HAR, delivering better forecast stability and adaptability to different market

conditions.

Niu et al. (2024) extended the gradual information diffusion hypothesis to volatility by
assessing whether industry-specific realized volatility can predict aggregate market volatility.
The idea behind this hypothesis, which was originally introduced by Hong et al. (1999), is
that the information doesn't affect all parts of the market at once; it shows up in certain sectors
first and then spreads more broadly. To test this in the context of volatility, Niu and colleagues
used eight machine learning models, including support vector regression (SVR), neural
networks, LightGBM, and AdaBoost, and found that LightGBM consistently had the best
performance. Using SHAP, which is a variable importance analysis, the study identified health
care, technology, and consumer services as early indicators at different forecast horizons. The
results also revealed that adding sector-level information not only led to more accurate
forecasts but also improved portfolio performance metrics such as Sharpe ratios and certainty

equivalent returns.

While many of the studies discussed above have shown that ML models at least matched or
achieved higher prediction accuracy than linear benchmark models, some literature indicated
that various benchmarks consistently (or most of the time) delivered better forecasts. For
instance, Branco et al. (2022) investigated whether ML models can outperform traditional
linear models, specifically the HAR model, in forecasting one-day-ahead realized volatility of
10 major global stock indices. Using data from 2000 to 2021, the authors incorporated not
only past RV values but also a broad set of predictors, including lagged returns and
macroeconomic indicators. They evaluate both linear (OLS, lasso) and nonlinear (random

forests, neural networks) models. Interestingly, their findings revealed that nonlinear ML
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models did not statistically outperform the HAR or the linear ML models when enhanced with
the same predictors. This suggests that linear models could be robust and competitive with

complex ML models in realized volatility forecasting.

More interestingly, Audrino and Chassot (2022) evaluated the performance of the HAR model
relative to ML techniques in forecasting realized volatility across a massive panel of 1,445
individual stocks. The ML models included lasso, random forest, gradient boosted tree, and
feedforward neural networks. Even with extensive hyperparameter optimization, ML models
consistently underperformed the HAR model with a rolling window estimation approach.
Results showed that HAR, despite its simplicity and low computational expense, outperforms
advanced ML models when both models use only realized volatility and VIX as predictors.
The study underscores the importance of rolling window size and re-estimation frequency on

model performance.
2.2.4.2 Applications of a single ML model

Among existing literature in volatility forecasting, numerous studies have evaluated the
prediction accuracy of only one ML technique, such as a tree-based model or one of the neural
networks. In an interesting setting, Luong and Dokuchaev (2018) proposed a two-stage ML
approach using random forest. In the first stage, they predicted the direction of volatility using
technical indicators and a purified implied volatility series. In the second, a random forest
regression combined these predictions with traditional HAR inputs to forecast the magnitude
of volatility. The results showed that their approach successfully predicted both the direction
and magnitude of volatility, outperforming HAR models in predictive accuracy using high-

frequency data.

Given the effectiveness of tree-based methods, Mittnik et al. (2015) demonstrated the impact
of the boosting technique in stock market volatility forecasting. They developed a flexible
approach by combining traditional ARCH models with the learning power of component-wise
gradient boosting. Instead of estimating the model with fixed assumptions like in standard
GARCH or exponential GARCH (EGARCH) models, they let the boosting algorithm learn
how and to what extent different variables influence volatility, capturing non-linear

relationships and important thresholds. Their model used a broad set of predictors, including
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lagged returns, macroeconomic indicators (like interest rates), external variables such as oil
prices, volatility indices, and exchange rates, as well as month/year effects and past volatility
estimates. Compared to benchmark models like GARCH(1,1) and EGARCH, their approach
produced more accurate out-of-sample forecasts and indicated how different economic and

financial variables impact market volatility.

Further studies evaluated the performance of deep learning models (neural networks) in
forecasting volatility. Among them, Nybo (2021) compared the effectiveness of GARCH
models and artificial neural networks (ANNs) in forecasting stock market volatility across
different sector categories with low, medium, and high volatility profiles. The results indicated
that the volatility profile impacted the performance of forecasting models. In specific, ANNs
outperformed GARCH models when applied to low-volatility sectors with smaller
fluctuations, while GARCH models delivered stronger forecasts in medium and high-

volatility sectors, probably due to their ability to capture persistent volatility clusters.

In another study, Petrozziello et al. (2022) used LSTM to forecast one-day-ahead realized
volatility for US equities using only past returns and volatility. Compared with benchmarks
such as GARCH(1,1), the LSTM model demonstrated superior accuracy, especially during the
2007-2008 financial crisis. However, the linear benchmarks performed comparably during
calm market periods. This finding suggests that neural networks, in particular LSTM, can

dynamically adjust to changing volatility dynamics.

More recently, Rahimikia and Poon (2024) advanced the research on neural networks by
incorporating HAR variables, limit order book data, and news sentiment into LSTM models
to 23 Nasdaq stocks over 15 years. With over 3.6 million model variations, the authors
reported that LSTM outperformed standard HAR in most of out-of-sample forecasts, except
during periods of extreme market stress, where HAR remained competitive. Moreover, SHAP
analysis showed that mid-price, bid/ask levels, and pre-2018 sentiment indicators were the

key drivers of forecast accuracy.

Findings of Nybo (2021), Petrozziello et al. (2022), and Rahimikia and Poon (2024) indicated
that neural networks responded differently to various levels of market volatility. Petrozziello

et al. (2022) showed strong LSTM performance during the 2007-2008 crisis, while Nybo
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(2021) found that ANNs underperformed in high-volatility sectors. Similarly, Rahimikia and
Poon (2024) reported that LSTM models were less effective than benchmarks during periods

of extreme market stress.

Finally, Moon and Kim (2019) introduced “hybrid momentum™ as a type of target variable for
forecasting, using LSTM models. This hybrid measure combines both price momentum and
volatility momentum, designed to reflect market behavior better. The authors tested various
input feature sets, including moving averages, technical indicators, and market signals, to see
how different data combinations affect model performance. Their results showed that using
hybrid momentum as a forecasting target improved predictions for both index levels and
market volatility. Moreover, adding more features helped improve price forecasts but had little
impact on volatility predictions, suggesting that volatility is mostly driven by its recent
patterns rather than additional variables. This highlights that although greater feature sets help
in return forecasting, volatility may need a modeling approach with its own related and past

values.

The next section reviews how macroeconomic variables have been integrated into the
volatility forecasting literature. To conclude, we summarize the important empirical evidence

discussed in this chapter to motivate our research objectives.
2.3 Macroeconomic predictors in volatility forecasting

Macroeconomic variables have been broadly used in return modeling literature, but their
integration into the volatility forecasting has only gained interest more recently. As we
discussed in the previous sections, traditionally, volatility models, namely ARCH/GARCH,
AR, and HAR, have mainly relied on the past values of return or volatility. However,
macroeconomic indicators provide forward-looking information and signals about the broader

economy, possibly improving forecast accuracy.

One of the earliest and most impactful studies employing macroeconomic variables in
volatility forecasting is by Paye (2012), which serves as the basis for our study. The author
assessed whether aggregate US stock market volatility can be forecasted more accurately by
using macroeconomic and financial variables, rather than relying solely on an autoregressive

(AR) benchmark. Using monthly and quarterly realized volatility of the S&P 500, Paye first
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documented the countercyclical and highly persistent behavior of volatility. He then
assembled a wide set of macroeconomic predictors, which are all listed and discussed in detail

in the next chapter of this thesis.

In-sample analysis indicated that several variables, notably the commercial paper-Treasury
spread, default return spreads, and an investment-to-capital ratio, Granger-caused volatility.
The author, then, tested out-of-sample forecasts using ordinary least squares (OLS) regression
for multiple time horizons in three different settings: incorporating each macroeconomic
variable separately, kitchen sink (which included all variables in OLS), and combining all
forecasts from individual variables with mean, median, trimmed mean, or MSPE weighted
schemes. He then compared all forecasts to those generated from AR benchmark models
(Paye, 2012). The results of out-of-sample tests demonstrated that OLS models rarely beat
parsimonious AR models. However, some small yet statistically significant gains emerged
from combined forecasts, especially around the onset of NBER recessions. Paye concluded
that macroeconomic variables indeed contain incremental information about future market
risk (according to the Granger causality tests), however, their economic contribution to

forecasting accuracy is limited.

Several studies, all discussed in more detail in the previous sections, have also incorporated
macro variables as input features of their forecasting models. Corsi and Reno (2012) used
macroeconomic indicators in an extended HAR framework to capture business cycle impacts
on volatility. Filipovic and Khalilzadeh (2021) included macro variables among their 54
predictors when evaluating LSTM. Mittnik et al. (2015) incorporated multiple macro variables
into their ensemble model. Similarly, Branco et al. (2022) added macro predictors to both
linear and nonlinear models. And more recently, Christensen et al. (2023) included several

macroeconomic variables as part of their extended feature set.

Although these studies have not consistently and explicitly indicated a clear advantage for
macroeconomic variables over market-related or lagged variables in volatility forecasting,
some others (Paye, 2012; Nybo, 2021; Petrozziello et al., 2022; and Rahimikia and Poon,
2024) have documented that macroeconomic events such as recessions and financial crises
significantly impacted volatility forecast results. This suggests that macroeconomic variables

may hold undiscovered predictive power.
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2.4 Identified gaps and research motivation

Despite extensive research in financial volatility forecasting, discussed mainly in previous
sections, there are significant gaps regarding application of machine learning techniques,
particularly in the context of macroeconomic and financial predictors. In earlier studies,
volatility modeling was predominantly based on linear econometric frameworks, including
ARCH, GARCH, AR, and HAR models, which successfully captured the persistence and
clustering nature of volatility (Engle, 1982; Bollerslev, 1986; Andersen and Bollerslev, 1998;
Corsi, 2009). However, these models faced limitations in reflecting complex and nonlinear
patterns frequently observed in financial markets (Mittnik et al., 2015; Luong and Dokuchaev,

2018).

Recent literature has increasingly demonstrated the potential of ML models to overcome these
shortcomings. Studies employing multiple ML techniques, ranging from penalized regressions
to ensemble and deep learning models, have found encouraging yet inconclusive results
regarding their superior performance over linear traditional benchmarks (Filipovic and
Khalilzadeh, 2021; Christensen et al., 2023; Zhang et al., 2024). Notably, some findings
suggest that ML models consistently outperformed classical linear models, especially in high
volatility market conditions (Filipovic and Khalilzadeh, 2021; Petrozziello et al., 2022), while
others report comparable or even inferior performance relative to simpler benchmarks like the

HAR model (Branco et al., 2022; Audrino and Chassot, 2022).

Moreover, although some previous studies showed that macroeconomic variables provided
predictive value especially during economically turbulent periods (Paye, 2012; Nybo, 2021;
Rahimikia and Poon, 2024), there is no consensus in the literature about their advantage
relative to lagged return and volatility and market-based variables. Nevertheless, the finding
that macroeconomic variables hold predictive power during recessions and financial crises

underscores an unexplored potential of these variables in volatility forecasting.

Consequently, two clear gaps emerge from this synthesis: first, due to inconsistent evidence,
there is still area for research in volatility forecasting and a need for a thorough comparison
between ML models (ranging from simpler penalized regressions to advanced tree-based and

deep learning methods) and strong benchmarks like AR model, second, the literature lacks an

19



explicit and detailed exploration of how macroeconomic variables exclusively, perform in
volatility forecasting models (previous studies have used macro variables alongside many
other variables such as lagged returns and market-based data e.g. bid-ask spread). Our research
specifically addresses these two gaps by evaluating whether different ML techniques, which
incorporate a set of macroeconomic variables, can significantly improve predictive accuracy
compared to the standard AR model, extending the core findings of the seminal study of Paye
(2012).

In the next chapter, we describe our research design and methodology thoroughly. We walk
through how the data is prepared, describe each forecasting model, and explain the rolling and

recursive steps and all relevant forecast settings in detail.
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Chapter 3. Methodology and Research Design

In this chapter, we describe the methodology adopted to address our research question. In
particular, this thesis investigates whether machine learning methods, ranging from simpler to
more advanced models, using macroeconomic and financial predictors, can outperform the

benchmark autoregressive (AR) model in forecasting US stock return volatility.

A variety of methods, widely applied in previous forecasting studies, are employed in our
study to assess volatility prediction performance. Simple linear regression is included due to
its simplicity and widespread use in previous studies, particularly in our reference study (Paye,
2012). Regularized regression models such as ridge, lasso, and elastic net were chosen because
of their effectiveness in selecting relevant predictors through the introduction of penalties to
regression coefficients. Ensemble methods, including random forest (RF) and gradient
boosted regression trees (GBRT), were selected due to their capability to capture complex,
nonlinear relationships among predictors and the target variable. Lastly, the long short-term
memory (LSTM) model was adopted to explicitly account for long-term dependencies and

volatility persistence inherent in financial time series data.

The chapter begins with a brief discussion of the replication process of the reference study
(Paye, 2012). Then, a detailed description of all variables used in the analysis is provided.
This is followed by a clear outline of the forecasting models and the evaluation criteria adopted
to assess their predictive accuracy. The chapter concludes by explaining the forecasting setup,
hyperparameter choices, and the variable importance analysis approach employed in this

study.
3.1 Replication of the reference study

The initial step in our research was to replicate, as closely as possible, the findings of Paye
(2012), which provided the foundation for our study. In his study, Paye examines whether the
inclusion of macroeconomic and financial variables can enhance the forecasting of stock
return volatility. Both in-sample and out-of-sample analyses were conducted using monthly
and quarterly data. The main methodology relied on simple linear regression, applying lagged

predictors within both rolling and recursive estimation windows.
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For the replication process, we attempted to use the same datasets or, when unavailable, to
reconstruct variables according to the definitions and procedures described by the author. The
replicated tables and figures from Paye (2012) are provided in Appendix A for the purpose of

consistency and comparison.

In the sections that follow, the full research design of this thesis is described in detail.
Specifically, the data description, the OLS regression model, the evaluation metrics and
statistical tests applied, main forecasting sample periods, and the estimation window
procedures (rolling and recursive) are all closely aligned with Paye (2012). In contrast, the
use of additional forecasting models, their corresponding hyperparameter tuning processes,
the variable importance analysis, and the incorporation of extended sample periods represent

extensions beyond the original study of Paye (2012).
3.2 Data description

This section describes the construction of the dependent variable; stock return volatility, and
the macroeconomic and financial predictors employed in our forecasting models. Detailed
information on data sources and the time horizon for which each variable is available is

provided in Appendix B.
3.2.1 Target variable: stock return volatility

Construction of stock return volatility follows the same process as the reference study (Paye,
2012) and is explained step by step below. Specifically, this variable is measured as the natural
logarithm of annualized realized volatility. First, realized volatility is calculated as the sum of
the daily squared excess returns of the S&P 500 over the risk-free rate, at both monthly and
quarterly frequencies. The formula used to compute realized volatility, adapted from Paye

(2012), 1s:

RV(t) = Y RA, [1]

where RV (t) denotes the realized volatility in month or quarter t, N, indicates the number of
trading days in in the corresponding period, R;, denotes the excess return of S&P 500 over

risk-free rate on trading day i of month or quarter ¢t.
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Paye (2012) notes that, following prior evidence from Andersen et al. (2001), taking the
natural logarithm of realized volatility results in a distribution closer to Gaussian (Paye, 2012;
Anderson et al., 2001), which improves estimation robustness. Consequently, the same

transformation is applied as:

LVOL(t) = Ln(JmRV (b)), 2]

where LVOL(t) denotes the log volatility in month or quarter t, and m is the annualization

factor, set to four for quarterly data and twelve for monthly data.

The volatility variable is constructed from January 1927 to December 2023 at the monthly
frequency (denoted as MLVOL), and from 1927Q1 to 2023Q4 at the quarterly frequency
(denoted as QLVOL). Our study covers multiple forecasting periods, which are defined in the
subsequent sections of this chapter. The quarterly stock return volatility series is presented in

Figure 3.1, which is similar to Figure 1, Panel A of Paye (2012), but spans an extended period.

Quarterly log volatility for the S&P 500 index (1927Q1-2023Q4)
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Figure 3.1 Quarterly volatility of the S&P 500 index, 1927-2023. This figure illustrates the time series plot
of quarterly log realized volatility for the S&P 500 index from the first quarter of 1927 to the last quarter
of 2023. The figure is inspired by and is an extended version of Paye (2012), Figure 1, Panel A.

As shown in Figure 3.1, sharp spikes in market volatility generally occur during periods of

market stress and economic downturn, including the years 1929-1933, 1987, 2000-2002,
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2008, and 2020.! This pattern suggests a close relationship between market volatility and the
business cycle. To provide visual evidence of this, Figure 3.2, adapted from Paye (2012),

illustrates the covariance between market volatility and the business cycle from 1947 to 2023.2

Panel A: Volatility and economic conditions: raw series (1947Q1-2023Q4)
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Panel B: Volatility and economic conditions: smoothed series (1947Q1-2023Q4)
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Figure 3.2 Relationship between market volatility and the business cycle, 1947-2023. This figureshows the
covariation between quarterly volatility of the S&P 500 index and the US business cycle. The blue lines in
both panels represent the opposite of the standardized values of quarterly log volatility, and the orange
dashed lines represent the standardized values of US real gross domestic product (rGDP) from the first
quarter of 1947 to the fourth quarter of 2023. Specifically, Panel A presents the raw data, and Panel B
presents smoothed data computed as six-quarter moving averages.

! These critical economic events are discussed further in the following sections.

2 The figure extends Figure 1: Panel B and Panel C of Paye (2012), covering a longer historical period.

24



The business cycle in Figure 3.2 is measured as the standardized growth rate of US real gross
domestic product (GDP). In the figure, the time series data for log realized volatility are
inverted by multiplying the standardized series by —1. Panel A displays the raw series and

Panel B shows the smoothed series, computed using a six-quarter moving average.

As more evident in Panel B, the covariation is strong from the mid 1960s through the early
1980s; however, it weakens in certain periods, such as after 1987, throughout the 1990s, and
during the mid to late 2010s. This implies a time varying relationship between volatility and
the business cycle. These observations support the inclusion of macroeconomic and financial
variables in our study, as they may capture additional information not already captured in past
volatility. In the next section, we describe all financial and macroeconomic variables used as
predictors in our models. As our study extends the work of Paye (2012), we employ the same

set of forecasting variables used in his analysis.
3.2.2 Macroeconomic and financial variables

This section outlines all forecasting variables and their definitions. The frequency of each

variable (monthly or quarterly) is consistent with Paye (2012).
Changes in bank leverage (blev)

This variable is computed as the percentage change in the leverage ratio; defined as total assets
divided by total equity for security brokers and dealers, following the approach of Adrian and
Shin (2010). blev is constructed on a quarterly basis.

Commercial paper-to-Treasury spread (cp)

This variable is calculated as the difference between the three-month commercial paper rate
and the three-month Treasury bill rate. cp is constructed at both monthly and quarterly

frequencies.
Consumption-wealth ratio (cay)

cay, originally introduced by Lettau and Ludvigson (2001), is defined as the residual from a
cointegrating relationship between aggregate consumption, wealth, and labor income (Lettau

and Ludvigson, 2001; Paye, 2012). This variable is constructed on a quarterly basis.
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Current GDP growth (gdp)

gdp is the annualized growth rate of real, seasonally adjusted US gross domestic product

(GDP). This variable is on a quarterly basis.
Default return spread (dfr)

This variable is calculated as the return difference between the long-term corporate bond and

the long-term government bond. dfr is constructed at both monthly and quarterly frequencies.
Default spread (dfy)

Default spread is calculated as the difference between the yields on BAA-rated corporate
bonds and long-term US government bonds. dfy is constructed at both monthly and quarterly

frequencies.
Expected GDP growth (egdp)

Construction of egdp follows Campbell and Diebold (2009) and is based on the Livingston
survey from the Federal Reserve Bank of Philadelphia. The survey collects macroeconomic
forecasts from economists on a biannual basis (June and December). According to Paye
(2012), egdp is computed as the log difference between the median 12-month and 6-month
nominal GDP forecasts, then adjusted by subtracting the corresponding log-differenced
consumer price index (CPI) forecast to obtain real GDP growth. Since the Livingston Survey
is only available in June and December each year, the egdp series remain constant in the first

and third quarters (Paye, 2012). This variable is constructed at quarterly frequency.
Expected return (exret)

This variable is an in-sample estimate of expected excess returns on the S&P 500 index over
the risk-free rate, using a simple regression model. These fitted values are not meant for actual
forecasting but are used as an ex-post proxy for the unobserved, time-varying expected stock
returns (Paye, 2012). Because of this, overfitting is less of a concern compared to out-of-

sample forecasting.

The independent variables are selected from the same macroeconomic and financial predictors

used in our main forecasting models, with their first lag employed as regressors. However,
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some variables are not available over the entire sample period, so the set of predictors varies

across sub-periods.

To avoid information leakage across time, the regressions are estimated separately for each of
the eight sub-samples for both monthly and quarterly data. Following Paye (2012) and
Campbell and Thompson (2008), any negative fitted values are replaced with zero (Paye,
2012; Campbell and Thompson, 2008). exret is estimated on both monthly and quarterly basis.

Growth in industrial production (ip)

ip represents the percentage change (growth rate) in industrial production. This variable is
primarily constructed to derive the variable ipvol, however, it is also used on its own as a

predictor in our monthly samples.
Investment-capital ratio (ik)

Originally proposed by Cochrane (1991), this variable is calculated as the ratio of aggregate

investment to aggregate capital in the US economy. ik is available at a quarterly frequency.
Net payout (npy)

The variable npy is constructed following the approach of Paye (2012), using data on
aggregate market capitalization, dividends, and net equity issuance from Boudoukh et al.

(2007). The net payout for month t (npy;), adapted from Paye (2012), is calculated as:
npy; = In (0.1 + dy, — ney,), [3]

where dy; is the dividend yield at month t and ney, is the net equity issuance yield at month

t. The components are computed as follows:

aggregate dividends over months t through month t —11

dy, = 4
Ve market capitalization at month t > [ ]
__ aggregate net equity issues over months t through month t —11
ney, = ——— , [5]
market capitalization at month t
net equity issuance at month t is calculated as:
ik . rice +price
net equity issue = (Ashares outstanding) X (p start 7P end), [6]
2
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npy is constructed at both monthly and quarterly frequencies. Quarterly values are obtained

by taking the arithmetic average of the three corresponding monthly observations.
Term spread (zms)

This variable is calculated as the difference between the yield on long-term government bonds
and the short-term Treasury bill rate. It is constructed at both monthly and quarterly

frequencies.
Volatility of growth in industrial production (ipvol)

Following Paye (2012), the variable ipvol is used as a proxy for the conditional volatility of
US industrial production growth. It is constructed based on the method of Engle et al. (2008),
originally adapted from Schwert (1989).

To build this variable, we first calculate the percentage growth in industrial production (ip),
which is explained above, and then, estimate the following autoregressive (AR) model

(Schwert, 1989; Engle et al., 2008):
X = Z;’czl a;D; + Z?:l BiXi—i + & [7]

In this model, X; represents the growth rate in industrial production (the ip variable), D;;
denotes dummy variable for seasonality, and X;_; refers to the lagged values of ip. The
parameter k depends on the data frequency: k = 4 for quarterly data, and k = 12 for monthly
data. The squared residuals (£2) from this model are used as the volatility measure (ipvol).

This variable is constructed on both monthly and quarterly basis.
Volatility of inflation growth (ppivol)

This variable is used as a proxy for conditional volatility of inflation growth (Paye, 2012). It
is constructed using the percentage changes in the Producer Price Index (PPI) data, applying
the same autoregressive method used for constructing ipvol. In this context, X; in Equation
[7] represents the growth rate in the PPI series. ppivol is built at monthly and quarterly

frequencies.

The following table summarizes all the forecasting variables, and their abbreviations used in

this study.
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Abbreviation

Description

blev Percentage changes in the bank leverage ratio

cp 3-month commercial paper rate minus 3-month T-bill rate

cay Cointegration residual from aggregate consumption, wealth, and labor income
gdp Growth rate of real US GDP

dfr Return difference between long-term corporate bonds and government bonds
dfy Difference between BAA-rated corporate and long-term US government bond yields
egdp Forecasted GDP growth from the Livingston survey

exret Expected excess returns on the S&P 500 index

ip Percentage changes in industrial production

ik Ratio of aggregate investment to aggregate capital in the US economy

npy Net payout

tms Long-term government bond yield minus short-term T-bill rate

ipvol Volatility of US industrial production growth

ppivol Volatility of inflation growth

Table 3.1 List of financial and macroeconomic variables of our study. These variables are used as predictors
(or input features) in our forecasting models. All variables and their construction methods are directly
adapted from Paye (2012).

3.2.3 Summary statistics and correlation analysis

Table 3.2 presents the descriptive statistics for the forecasting variables (predictors), using the
same metrics as in Paye (2012). Panel A reports statistics for quarterly data from 1952Q2 to
2019Q4, and Panel B shows statistics for monthly data from February 1952 to December
2019. The sample period (1952-2019) is selected to ensure full data coverage for all variables.

For each variable, the table reports the mean, standard deviation, skewness, kurtosis, first and
second order autocorrelations (p; and p,) and results from the Phillips Perron unit root test
(Phillips and Perron, 1998). Specifically, the final two columns display the test statistic (Z;)

and the corresponding MacKinnon p-value (MacKinnon, 1994).

The statistics show that the variables differ in their average values and variability. To improve
comparability and reduce the effect of outliers or extreme values, variables are standardized

in some forecasting models of our study when appropriate.
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Philips-Perron test

Symbol Name Mean Satndard Deviation Skewness Kurtosis D1 Do Z, p -value

Panel A: Quarterly sampling frequency

blev Changes in bank leverage -0.0025 0.0887 -0.23 1.37 -0.28 0.21 -4.44 0.00
cp CP-to-Treasury spread 0.5476 0.4428 2.11 8.27 0.77 0.59 -4.31 0.00
cay Consumption—wealth ratio 0.0044 0.0258 -0.52 -0.84 0.97 0.95 -1.67 0.45
gdp GDP growth 3.1203 3.6103 -0.14 1.55 0.34 0.20 -8.51 0.00
dfr Default return 0.0003 0.0078 0.30 11.37 -0.10 0.05 -8.57 0.00
dfy Default yield 0.0097 0.0043 1.78 4.45 0.90 0.77 -4.65 0.00
egdp Expected GDP growth 2.5164 1.3333 -0.65 3.23 0.86 0.72 -3.99 0.00
exret Expected return 0.0190 0.0144 0.65 1.14 0.80 0.73 -3.94 0.00
ik Investment-capital ratio 0.0361 0.0031 0.36 -0.23 0.97 0.90 -4.17 0.00
npy Net payout yield -2.1903 0.1940 -1.80 4.91 0.96 0.90 -2.00 0.29
tms Term spread 0.0169 0.0137 -0.01 -0.58 0.91 0.78 -4.15 0.00
ipvol Industrial production volatilit 0.0002 0.0005 4.13 19.82 0.15 0.24 -3.80 0.00
ppivol Inflation volatility 0.0002 0.0010 13.12 193.87 0.05 0.14 -9.75 0.00
Panel B: Monthly sampling frequency

cp CP-to-Treasury spread 0.5498 0.4659 2.35 10.21 0.88 0.77 -4.16 0.00
dfr Default return 0.0003 0.0141 -0.37 6.64 -0.08 -0.09 -8.25 0.00
dfy Default yield 0.0097 0.0043 1.84 4.89 0.97 0.92 -3.57 0.01
exret Expected return 0.0041 0.0032 0.56 -0.13 0.81 0.77 -3.63 0.01
ip Growth in industrial producti 0.0022 0.0091 0.27 7.31 0.38 0.23 -8.81 0.00
npy Net payout yield -2.1898 0.1957 -1.75 4.88 0.98 0.97 -2.32 0.16
tms Term spread 0.0169 0.0140 -0.12 -0.14 0.96 0.91 -4.45 0.00
ipvol Industrial production volatilit 0.0001 0.0002 12.19 192.66 0.13 0.05 -14.46 0.00
ppivol Inflation volatility 0.0001 0.0002 10.34 131.63 0.34 0.24 -5.72 0.00

Table 3.2 Descriptive statistics of macroeconomic variables, 1952-2019. The table, which is an extended
version of Table 1 in Paye (2012), summarizes descriptive statistics for the forecasting variables analyzed
in this study. We report the mean, standard deviation, skewness, and kurtosis, along with the first and second
order autocorrelation coefficients (p; and p,). The table also displays the Z, test statistic from the Phillips
Perron unit root test and the corresponding MacKinnon p-value (Phillips and Perron, 1998; MacKinnon,
1994). Panel A is for quarterly data from 1952Q2 to 2019Q4, and Panel B is for monthly data from February
1952 to December 2019.

Looking at the p; and p, statistics, most of the forecasting variables show high first and second
order autocorrelations, often exceeding 0.80. This indicates that the variables are highly
persistent over time, a common feature of non-stationary time series data. As discussed in
Stambaugh (1999) and Paye (2012), such persistence can lead to biased coefficient estimates
in forecasting models, especially when predictor variables are also correlated with model
residuals. To verify whether this persistence reflects non-stationarity, we follow Paye (2012)
and apply the Phillips Perron (PP) test, which tests for the presence of a unit root. A rejection
of the null hypothesis indicates that the variable is stationary and suitable for regression
analysis. As shown in the final column of Table 3.2, the PP test rejects the unit root hypothesis

for most variables based on low p-values (except for npy and cay, which show weak evidence
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of stationarity). Overall, this suggests that our forecasting variables are appropriate for
forecasting models, with no strong need to use special methods for highly persistent and non-

stationary data. Figure 3.3 presents the correlation heatmap for all variables.

Panel A: Quarterly correlation heatmap (1952Q2-2019Q4)
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Panel B: Monthly correlation heatmap (Feb1952-Dec2019)
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Figure 3.3 Correlation heatmap of all variables (log realized volatility and forecasting variables), 1952-
2019. Panel A presents the correlation measures for quarterly data from 1952Q2 to 2019Q4, and Panel B
shows the correlation values for monthly data from February 1952 to December 2019.

31



As seen in both heatmaps, most variables have low to moderate correlations with each other,
suggesting that multicollinearity is not a major issue in our forecasting models. In particular,
the quarterly heatmap in Panel A shows that most correlation values are below 0.60, which
implies that the predictors contain a good variety of information without too much overlap.
This supports their use in models that include multiple variables, as each one seems to reflect

a different part of the economic and financial environment.

Similarly, the monthly heatmap in Panel B shows a similar pattern. Most variables are only
moderately correlated, and while a few correlations are a bit stronger or weaker than those in
the quarterly case, most stay under 0.60 as well. Taken together, the results from both panels

suggest that the predictors are well-balanced and suitable for use in regression analysis.
3.3 Forecasting models

3.3.1 Autoregressive benchmark model

Following Paye (2012), we adapt a univariate autoregressive (AR) model as a benchmark to
evaluate the out-of-sample predictive performance of our models. In particular, we compare
the forecasts generated by forecasting models to those produced by this benchmark. The
AR(P) model used in our study is defined as follows:

LVOL, = a + ¥, p;LVOL,_; + €, [8]

where LVOL, indicates the log realized volatility (our target variable) for quarter or month ¢,
and P represents the number of lags used in the model, set to two for quarterly data and six

for monthly data.
3.3.2 Ordinary least squares (OLS) regression

Traditional ordinary least squares (OLS) regression was applied for our forecasting purpose,
in line with Paye (2012). The purpose of our study is to see how more advanced forecasting
models perform compared to the benchmark and to the traditional multiple regression model
in forecasting the log realized volatility of stock returns. This model, in part, was for our
replication purpose for the common time periods with the reference paper. The OLS regression

model used in the quarterly sampling, adapted from Paye (2012), is as follows:
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LVOL, = a + p,LVOL,_; + p,LVOL,_, + BX,_1 + €, [9]

where LVOL,_; and LVOL,_, represent the first and second lags of the log volatility,
respectively, and X;_; denotes a vector containing the first lag of the variables used in our
forecasting models. The OLS regression model for our monthly sampling, adapted from Paye
(2012), is the same as the model used for the quarterly sampling, except that it includes six

lags of log realized volatility:
LVOL, = a + Y%, piLVOL,_; + BX,_1 + €. [10]
3.3.3 Regularized models

In a multivariate OLS regression model, adding more predictors lowers the model’s bias in
the fitting sample but raises its variance on new data. This phenomenon, called overfitting,
can reduce the signal-to-noise ratio because the model fits random noise instead of genuine
information and patterns (Christensen et al., 2023). A common way to limit the overfitting
problem, is to introduce a penalty term to the loss function (Hoerl and Kennard 1970;
Tibshirani 1996; Zou and Hastie 2005) to minimize the residual sum of squares between the

predicted values and the actual values (Maglaras et al., 2024). The penalized loss function is:

L(a,B,6) = L(a,B) + $(B; 0), [11]

where a indicates the intercept,  represents the vector of regression coefficients, ¢(f; 0) is
the penalty term, and 8 is the vector of hyperparameters, which determines how strongly the
penalty is applied (Christensen et al., 2023). There are two main types of regularization terms,

L, and L4, which are explained in the following models.
Ridge regression (RR)

Ridge regression was originally introduced by Hoerl and Kennard (1970) as a method to
enhance the generalisation of linear models. This is achieved by including an L, regularization
(or penalty) term in the loss function, which shrinks less important parameters towards zero,

but never exactly reaching zero. The penalty term is expressed as follows:

PB N =2TI_BE A=0 [12]
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where A is the single hyperparameter, which controls the strength of shrinkage and can take
any value from zero to infinity. A larger value of A results in a stronger penalty and, therefore,
produces a smaller coefficient (Maglaras et al., 2024). The hyperparameter optimization
process in our study is based on a training set and a validation set for all models, which is

explained in detail in the subsequent sections.

Ridge regression can be used with time series data by including lagged values of predictors as
features (Maglaras et al., 2024). In our study, we applied ridge regression using the same
structure as the OLS regression (Equation [9]). Specifically, for quarterly sampling, we created
two lagged values of log realized volatility and one lagged value of each macroeconomic
predictor. For monthly sampling, we used six lagged values of log realized volatility and one
lagged value of each predictor. All these lagged variables are treated as features (input

variables) in our forecasting models.

Ridge regression has been widely used in forecasting studies, including Christensen et al.
(2023), Rahimikia and Poon (2024), Carr et al. (2019), Bianchi et al. (2020), and Gu et al.
(2019). We employed this model in our study because it effectively reduces overfitting by
shrinking coefficient estimates, especially when working with a moderate number of
predictors. Although the predictors in our dataset are not highly correlated, ridge still helps
stabilize the model and can improve out-of-sample forecasting performance by controlling the

impact of less informative variables.
Least absolute shrinkage and selection operator (lasso)

Lasso was originally proposed by Tibshirani (1996) and is designed to select only the most
relevant predictors by shrinking less important coefficients towards zero. It uses an L,
regularization term, which, unlike ridge regression, can force some coefficients to become
exactly zero (Zhu et al., 2023). This gives lasso the advantage of performing automatic
variable selection by removing predictors that contribute little to the model (Niu et al., 2023).

The penalty term for lasso is defined as:

dB; ) =AXI_,IBl, 120 [13]

where A is the tuning hyperparameter and controls the intensity of shrinkage. Larger values of

A lead to stronger shrinkage and more coefficients being reduced to zero. In addition to
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variable selection, lasso helps reduce overfitting by simplifying the model structure, especially

when working with many predictors.

We include both ridge regression and lasso in our study because prior research shows no
consistent evidence that one method always outperforms the other (Tibshirani, 1996, Fu,
1998). Like ridge regression, the lasso model in our study, uses lagged variables as features
and applies the same regression structure described in Equation [9]. Hyperparameter tuning is
based on a training set and a validation set. The lasso technique has been applied in forecasting
and financial studies including Gu et al. (2019), Bianchi et al. (2020), Niu et al. (2023), Zhang
et al. (2024), Zhu et al. (2023), Christensen et al. (2023), and Wu et al. (2021).

Elastic net (EN)

Elastic net was introduced by Zou and Hastie (2005) as a regularization method that combines
the strengths of both ridge regression and lasso. It applies a mixed penalty: the L,
regularization from ridge (which shrinks coefficients) and the L, regularization from lasso
(which induces sparsity by setting some coefficients to zero) (Maglaras et al., 2024). The

elastic net penalty function is defined as:

pBNha) =AaXl_ B2+A—-a)T B, A=0 [14]

where a € [0, 1] is the second hyperparameter (in addition to A), which determines the balance
between the ridge and lasso components. When a = 1, the model reduces to ridge regression,
and when a = 0, it becomes equivalent to lasso. Like ridge and lasso, both hyperparameters
(1 and @) are tuned based on a training and a validation data split. Elastic net has been applied
in previous forecasting studies such as Christensen et al. (2023), Niu et al. (2024), Zhu et al.
(2023), Filipovic and Khalilzadeh (2021), Niu et al. (2023), Bianchi et al. (2020), and Gu et
al. (2019). We apply elastic net in our study because it gives a flexible balance between ridge
and lasso. EN can improve the forecasting accuracy of volatility in our study by shrinking less

important variables and removing the least useful ones, depending on the data.
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3.3.4 Ensemble models

Ensemble models combine the predictions of multiple individual models to produce one
stronger forecast. The idea is that by aggregating several weak or moderately accurate models,

the final prediction is more reliable and robust than any single model (Zhou, 2012).

Ensemble methods can reduce overfitting (by averaging or sequential corrections) and capture
complex non-linear relationships in the data that simple linear models might miss. In this
study, we focus on two widely used ensemble methods: random forest (RF) and gradient

boosted regression trees (GBRT), which are described in the following sections.
Random forest (RF)

Random forest (RF), introduced by Breiman (2001), is an ensemble learning method that
builds multiple decision trees and combines their outputs to produce more accurate forecasts.
Each tree in the forest is trained on a random sample of the training data, and a random subset
of features is selected at each split. This approach reduces the correlation between trees and
increases overall model stability. Compared to standard decision trees such as classification
and regression tree (CART), random forest lowers generalization error by averaging across
many trees, which helps reduce overfitting and variance (Breiman, 2001). This makes RF
models particularly effective for forecasting non-linear patterns with moderate numbers of

predictors.

In our implementation, bootstrapping with replacement is used to generate resampled training
sets (Breiman, 2001) during hyperparameter tuning. The final forecast is obtained by
averaging the predictions from all trees. Consistent with all models in this study, we use the
same lagged variables (quarterly and monthly) as input features for the RF model.
Additionally, instead of relying on the out-of-bag (OOB) error approach, we tune the model’s
hyperparameters using a separate validation set. The prediction function of the random forest

regression model, following Breiman (2001), is given by:

fre(®) = =281 T(x; 0, , D), [15]
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where x indicates the input feature vector for which the forecast is made, B is the total number
of trees in the forest, O, represents the randomness used when building tree b, D,, is a bootstrap

sample drawn from the training set, and T (x; 0, D;,) is the prediction made by tree b.

Random forest technique for forecasting has been applied in several studies
including Christensen et al. (2023), Luong and Dokuchaev (2018), Niu et al. (2024), Zhu et
al. (2023), Carr et al. (2019), Niu et al. (2023), Krauss et al. (2017), Nou et al. (2021), Bianchi
et al. (2020), Gu et al. (2019) and Wu et al. (2021).

Gradient boosted regression trees (GBRT)

GBRT is a tree-based ensemble method proposed by Friedman (2001). Unlike bagging
methods such as random forest, GBRT builds trees sequentially, with each new tree trained to
correct the errors made by the ensemble so far (Friedman, 2001). This approach makes GBRT
especially effective at refining predictions over time and often leads to better predictive

accuracy than random forest technique (Caruana and Niculescu-Mizil, 2006).

The boosting process in GBRT constructs a series of shallow trees, each trained on the
residuals left by the previous model. These residuals represent the negative gradients of the
chosen loss function. At each stage, a new tree is added to reduce the remaining error. A
learning rate parameter v (also called the shrinkage factor) controls how much each tree
contributes to the final model, helping to prevent overfitting while improving accuracy

(Filipovic and Khalilzadeh, 2021).
The final prediction of the GBRT model after M boosting stages, following Friedman (2001),
is:

Fop(x) = Fy(x) = Fo(x) + XM _ v ¥y, (), [16]
where x indicates the input feature vector, F,(x) is the initial guess (typically the mean of the
target variables) before any trees are added, M is the total number of boosting stages (or
number of trees), v (0 < v < 1) is the learning rate controlling the contribution of each tree,

¥m 1s the weight for tree m, chosen to minimize the loss at that stage, h,,, (x) is the m-th weak

learner (a shallow regression tree) fitted to the pseudo-residuals at stage m.
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We apply GBRT in our study due to its strong performance in capturing non-linear
relationships and reducing bias through iterative learning. The model uses the same lagged
variables as features, consistent with previous models, and its hyperparameters are tuned using

a training and validation set.

GBRT has been applied in a range of forecasting studies, including Christensen et al.
(2023), Rossi (2018), Alessandretti et al. (2018), Niu et al. (2024), Wu et al. (2021), Zhu et al.
(2023), Filipovic and Khalilzadeh (2021), Zhang et al. (2024), Krauss et al. (2017), Bianchi
et al. (2020), and Gu et al. (2019).

3.3.5 Deep leaning model

Deep learning is a type of machine learning that uses neural networks with multiple layers to
learn patterns in data. These models are useful for working with complex and time dependent
data, such as financial time series (LeCun et al., 2015). Deep learning has become popular in
both academic research and industry-level forecasting tasks because of its flexibility and
strong performance. In this study, we employ one of the most widely used deep learning

models for time series data: the long short-term memory (LSTM) network.
Long short-term memory (LSTM)

The models discussed so far use only a small number of lags: two lags for log realized
volatility in quarterly data and six in monthly data, along with one-period lag for each
predictor (consistent with Paye, 2012). This setup may miss important long-term patterns in
the data. Since stock return volatility is known to be persistent, it is worth testing whether

including more lags can improve forecasts of future volatility.

However, testing all our models with many lag combinations for each time period would
require excessive time and computing power. Recurrent neural networks (RNNs) are
specifically designed to model such time dependencies by retaining information from previous
time steps through internal states. But regular RNNs usually cannot remember information
from earlier time steps because their memory fades over time (known as vanishing gradient
problem) (Filipovic and Khalilzadeh, 2021). LSTM, which is a specialized version of RNNs
and was first introduced by Hochreiter and Schmidhuber (1997), solves this problem by using
special gates that help decide what information to keep, forget, or pass on. Like RNNs, LSTMs
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work by passing information through repeating network units, but their structure is more

advanced and better at capturing long term relationships.

A unit in LSTM model includes a memory cell and three gates: the input gate, forget gate, and
output gate (Rahimikia and Poon, 2024). Figure 3.4 in the following, which we created but is
inspired by Filipovic and Khalilzadeh (2021), shows a schematic diagram of an LSTM unit.

Yt
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Figure 3.4 A long short-term memory (LSTM) unit. The figure illustrates the input, forget, and output gates,
along with memory cell state and hidden state updates.

In this unit, the memory cell (represented by the horizontal line from c!~! to ct) stores
information across time steps. The three gates control how information flows in and out of
this memory cell (Rahimikia and Poon, 2024). The candidate value for the memory cell,
follwoing Hochreiter and Schmidhuber (1997) and Rahimikia and Poon (2024)3, is computed

as:

¢t = tanh(w.[at"1, Xt + b,), [17]

3 All equations (17, 18, 19, 20, 21, 22) related to LSTM model are directly adapted from Rahimikia and Poon
(2024).
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where w, and b, are the weight and bias values in a memory cell, [at~1, X!] is the combination
of the previous hidden state and current input, where a‘~! is the hidden state at t — 1 and Xt is

the input vector at t, and tanh is the hyperbolic tangent activation function.

Following Rahimikia and Poon (2024), the gates are defined as:

G, = o(w,[at" 1, Xt + b)), [18]
Gr = o(wla"™% X" + by), [19]
G, = o(w,[a""1, X*] + b,), [20]

where o is the sigmoid activation function. G, Gy, and G, are the input, forget, and output

gates respectively. Following Rahimikia and Poon (2024), the updated memory cell is

computed as:
¢t =G, X+ Gpx 7, [21]

! indicates the previous memory state and ¢¢ is the new candidate value from

where ¢t~
Equation [17]. Finally, the hidden state output a, following Rahimikia and Poon (2024), is

calculated as:
a® = G, X tanh(c?), [22]

which represents the part of the memory passed on to the next time step. All weights and
biases are learned during the training process. LSTM helps avoid the vanishing gradient
problem by using gates to control what information is remembered or forgotten. This allows

the model to capture long term relationships in time series data (Rahimikia and Poon, 2024).

LSTM has been used in various studies aiming to improve forecasting accuracy through deep
learning methods, including Moon and Kim (2019), McNally et al. (2018), Alessandretti et al.
(2018), Filipovic and Khalilzadeh (2021), Rahimikia and Poon (2024), Zhang et al. (2024),
Petrozziello et al. (2022), Bansal et al. (2022), and Nou et al. (2021).

3.4 Evaluation criteria and statistical tests

This section describes the evaluation tools used to assess and compare the forecasting
performance of our models. The main metric in this study is the mean squared prediction error

(MSPE), which is used to tune hyperparameters during model training, to evaluate our
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variable importance analysis, to calculate statistical tests, and to compute changes in out-of-
sample R2. The following subsections explain MSPE, R?, and the statistical tests used in more

detail.
3.4.1 Mean squared prediction error (MSPE)

Following Paye (2012), the mean squared prediction error (MSPE) is used to evaluate the

accuracy of each model's one-step-ahead forecasts. It is defined as:
67 =P E(LVOLyyy — LVOL;414)?, [23]

where P is the total number of out-of-sample forecasts within each sample period, LVOL; 44
is the forecast of volatility from model i, and LVOL,,, is the actual observed value at time

t+1.
3.4.2 R-squared (R?)

To evaluate the economic relevance of each model’s forecasts, we compute the change in out-
of-sample R? of each forecasting model relative to the benchmark (univariate AR model).
Following Campbell and Thompson (2008), Goyal and Welch (2008), Zhou et al. (2010), and
Paye (2012), the out-of-sample R? for each model is calculated as:

~2

Rios =1—25, [24]

0

where 67 is the MSPE of model i and 8¢ represents the MSPE of the simple historical average
model. The change in out-of-sample R? between the forecasting model and the benchmark is
calculated by:
6'2 &2 6'2—6'2
MRZ,s = (1-2) - (1-5) =% [25]
where 67 is the MSPE of the forecasting model, and 67 refers to the MSPE of the benchmark
(the autoregressive model). This ARZ,, is expressed as a percentage. A positive value indicates

that the forecasting model performs better than the benchmark in terms of prediction accuracy.
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3.4.3 Clark and West (CW) test

We apply the Clark and West (2007) test, following the approach used in Paye (2012), which
is designed to compare a simple benchmark model (in our case, the univariate AR model) with
a more complex, augmented model. Under the null, the augmented model’s MSPE is no lower
than the benchmark’s, implying that the additional predictors do not improve out-of-sample
forecasts (or as noted by Paye (2012), do not ‘Granger-cause’ volatility). While more complex
models may include additional useful information, they can also produce more error in out-
of-sample forecasts because they estimate more parameters. This extra error can make their
forecast performance appear worse, even when they are more informative. The CW test
adjusts for this issue by adding a correction term to the simple MSPE comparison. The test

statistic, following Paye (2012), is calculated as:
CW = 6% — 62+ P 1Y (LVOLy 141 — LVOLy 1 41)?, [26]

where 67 and 67 are the MSPEs of the benchmark and forecasting models, respectively. The
last term is the adjustment, which is the average of the squared differences between the two

models’ forecasts.

According to Paye (2012), if the CW statistic is significantly greater than zero, we can reject
the null of no Granger-causality of the forecasting variables in volatility. This is a one-sided
test, where the alternative hypothesis is that the forecasting model has a lower MSPE than the

benchmark: 6% < 67.
3.4.4 Giacomini and White (GW) test

In addition to the CW test, we also apply the Giacomini and White (2006) test to evaluate the
forecasting performance of our models, following the approach in Paye (2012). While the CW
test compares different forecasting models, the GW test is more general and compares the
performance of different forecasting methods. These methods may include differences in
model estimation, forecast construction (e.g., rolling vs recursive windows), or data handling
techniques. For example, in our study, we generate two forecasts using the same model; one
based on a rolling window and another using a recursive window. Although the model is the

same, the forecasting methods differ.
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The GW test allows researchers to test forecasting performance using either unconditional
comparisons (without extra information) or conditional ones (based on information available
at time t) (Paye, 2012). The null hypothesis of the GW test is that, given the available

information G;, the expected MSPE difference between the two models is zero:
Ho: E(6} — 631G) = 0, [27]

where 67 and 67 are the MSPEs of the benchmark and forecasting models, respectively. The

test statistic, following Paye (2012), is computed by:

~2_ =2
cw = 2% [28]

where Gp is a heteroskedasticity and autocorrelation consistent (HAC) estimator of the
asymptotic variance of the MSPE difference and P is the number of out-of-sample forecasts.
Unlike the CW test, which is one-sided, the GW test is two-sided, meaning it checks whether

either model is significantly better, not just whether one outperforms the other.
3.5 Forecasting settings

This section explains how the forecasting process is designed and implemented in this study.
It describes the sample periods used for training and testing our models, the procedures for
generating forecasts using different types of estimation windows (rolling and recursive), and

the approach followed to tune model hyperparameters.
3.5.1 Sample periods

Our analysis uses several out-of-sample periods to test how well different models forecast
volatility across various time periods. The main time periods include the original ones used in
Paye (2012): 1947-2010, 1972-2010, 1982-2010, and 1972-2000. We expand these sample
periods to include the most recent data, creating four new periods and serving as robustness
check tests for our study: 1947-2023, 1947-2019, 1972-2023, and 1972-2019. Each period
reflects a different economic environment, which can influence how macroeconomic variables

affect the stock market and how well the models perform.

The longest period used in Paye (2012), 1947-2010, provides a broad historical view for

testing volatility models. However, some forecasting variables are not available in the earlier
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years of this period. To address this, Paye (2012) also examined the 1972-2010 period, which
provides more complete data and includes additional variables. Two more periods, 1972-2000
and 1982-2010, are included in our analysis (consistent with Paye, 2012) to examine how the
presence or absence of the volatile 1970s affects forecasting performance. This is important
because, according to Goyal and Welch (2008), the oil shocks of 1973-1975 strongly impacted
how well some economic variables predicted market behavior. Although both periods have
the same number of observations, only the 1972-2000 timeframe includes the economic
disruptions of the 1970s, such as stagflation, the collapse of the Bretton Woods system, and
major changes in global oil markets (Paye, 2012).

To capture more recent events and long-term trends in financial markets, we include four
extended forecasting periods in our analysis, to be used in our robustness check: 1947-2023,
1947-2019, 1972-2023, and 1972-2019. These timelines allow us to assess the impact of both
pre and post pandemic environments on volatility forecasting. Table 3.3 lists all out-of-sample
forecasting periods in our study, and Figure 3.5 indicates the major economic events that
occurred within each sample period. To get a broader picture, Figure 3.6 presents the timeline

of the most important economic shocks between 1970 and 2023.

Main sample periods Sample periods for robustness check
1947-2010 1947-2023
1972-2010 1947-2019
1982-2010 1972-2023
1972-2000 1972-2019

Table 3.3 List of forecasting sample periods. Periods listed in the first column are directly adapted from Paye
(2012) and represent our main sample periods. Those listed in the second column represent extended
periods used for our robustness check.
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Early 1980s recession

Dot-com bubble
Global financial crisis
COVID-19 pandemic

Post-pandemic inflation

Figure 3.5 Coverage of major economic events across forecasting periods. The figure includes critical
economic events such as the oil shocks of the 1970s, the recession of the 1980s, the crash of 1987, the dot-
com bubble, the market crash of 2007-2008, the COVID-19 pandemic, and the inflationary period of the
post-pandemic era. (red-shaded cells indicate which events are included in each out-of-sample window).

Post-pandemic inflation ]
COVID-19 pandemic [ ]
Global financial crisis |

Dot-com bubble | ]
1987 crash -
Early 1980s recession [ ]
Oil shocks & stagflation |

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

Figure 3.6 Economic events timeline (1970-2023). This figure presents the timeline of each critical
economic event from 1970 to 2023. The events included in this figure are the same as those noted in Figure
3.5.

3.5.2 Estimation window strategies

Similar to Paye (2012), two common approaches are used in our study for model estimation
over time: the rolling window and the recursive window. These methods allow the models to

update their parameters dynamically as new data becomes available.

In the rolling window approach, we use a fixed-length sample of the most recent 20 years
(equivalent to 80 quarters or 240 months) before each forecast date. This means the model is
re-estimated using a moving window of the latest 20 years, which helps it adapt to possible

structural changes or shifts in economic conditions. By contrast, the recursive window begins
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with the initial 20-year sample and expands over time. As each new observation becomes
available, it is added to the training data, allowing the model to learn from an increasingly
larger dataset. For both methods, the models generate a one-step-ahead forecast for the log
realized volatility, either the next quarter or next month, depending on the frequency of the
data. Figure 3.7 represents a simplified schematic of the structure of the rolling window and

the recursive window approaches.

Figure 3.7 Illustration of estimation strategies. The estimation scheme on the left (in blue) indicates the
rolling window approach, where the sample window moves forward by dropping the oldest observation
and adding the newest. The scheme on the right (in red) represents the recursive window strategy, where
the initial sample expands over time by adding new observations without dropping past data. The gray data
points indicate the out-of-sample, one-period-ahead forecasts generated after each estimation window.

3.5.3 Hyperparameter tuning

Hyperparameters control a model’s complexity, helping it generalize effectively by balancing
bias and variance. However, selecting optimal hyperparameters is challenging, as existing
guidance in literature is limited (Christensen et al., 2023). This section explains the

hyperparameter tuning approach adopted in this research.

We optimize hyperparameters by splitting each estimation window into training and validation
sets. Specifically, for each window (whether rolling or recursive, as described previously),
80% of data is used for training, and 20% for validation. To preserve the time order of our
data, the validation set always come after the training set chronologically. Thus, standard k-
fold cross-validation, which randomly splits data, is not appropriate for our time series

analysis.

We first train the models on the training data with various hyperparameter combinations. Next,

we calculate the mean squared prediction error (MSPE) on forecasts made for the validation
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set, choosing hyperparameters with the lowest MSPE. Using these optimal hyperparameters,
we generate one-step-ahead out-of-sample forecasts. The hyperparameter tuning process is
repeated for each forecast in our study. We use the same training-validation split for all models
to ensure consistency and fair comparison. Details about specific hyperparameters for each

forecasting model are presented in Table 3.4.

Forecasting model Hyperparameters Optimization search space
Ridge and lasso Lambda (1) A €[107%4,103%]
Lambda (1) A €[107%,103]
Elastic net (EN)

Alpha (a) a € [1074,1]
Max depth (dngy) d0x € 13,6,9,12,15}
Min samples split (Smin—spiit) Smin—spiit € 12,5, 10,20, 50}
Random forest (RF) Min samples leaf (Spin—iear) Smin-teas € {1,3,5,10, 20}
Number of trees (nestimators) Nestimators € {10: 50, 100}
Max features (m) m € {"sqrt", "log2",0.5}
Learning rate (1) n € {0.01,0.05,0.1,0.2,0.3}
Number of estimators (Nestimators) Nestimators € 150, 100,200}

GBRT
Max depth (d0x) dmax € {3,5,7,9}
Min child weight (W,,;,,) Wpin € {1, 3,5}
LSTM units (u) u € {32,64}
LSTM layers (L) Le{1,2}
Batch size (b) b € {16,32}

LSTM

Learning rate (17)
Dropout rate (&)

Epochs (E)

n € {103,102}
8§ €{0.0,0.2}

E € {50,100}

Table 3.4 Hyperparameter search spaces for our forecasting models, showing the specific hyperparameters
tuned for each model (ridge and lasso, elastic net, random forest, gradient boosted regression tree (GBRT),
and long short-term memory (LSTM)), along with the ranges or sets of values explored during the
optimization process.
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In ridge, lasso, elastic net, and for consistency, random forest and GBRT, all features (or all
lagged variables) are standardized so penalties or splits aren’t biased by variables with big
numbers. To be consistent with Paye (2012), the features are not standardized in OLS. We also
skip the standardization process for LSTM to avoid extra computational costs, as its internal
normalisation already learns the right scale. During hyperparameter tuning, we standardize
the training set itself by calculating its mean and standard deviation for each feature. These
training-set parameters are then applied to standardize the validation set to avoid data leakage.
For generating out-of-sample forecasts, we standardize the entire estimation window (rolling
or recursive) and use its parameters to standardize the data for forecasting. The general

formula for standardizing a feature X is:

X_
Xpq = L8 [29]

g

where u is the mean of X, computed from the training set for tuning, or the entire estimation
window for forecasting, and o is the standard deviation of X, with any zero values replaced

by one to avoid division by zero.
3.5.4 Variable importance analysis

One of the main objectives of our study is to assess whether financial and macroeconomic
variables have incremental predictive power in forecasting stock return volatility.
Accordingly, we perform a variable importance analysis to measure the relative contribution

of each predictor in forecasting volatility.

Previous studies have adopted different approaches to measure variable importance, including
SHAP analysis (Rahimikia and Poon, 2024; Niu et al., 2024). In our study, we employ the
permutation feature importance method initially introduced by Breiman (2001), which is
model-agnostic and can be used with any predictive model*. According to Strobl et al. (2007),

permutation importance can be distorted when predictors are highly correlated. Our

4 scikit-learn developers, “Permutation importance,” in Scikit-learn: Machine learning in Python (User Guide,

version 1.3.0), accessed August 1, 2025, https://scikit-learn.org/stable/modules/permutation_importance.html.
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correlation analysis (Figure 3.3), however, shows that no pair of forecasting variables in our

study has an absolute correlation coefficient greater than 0.70.

This method measures the importance of each predictor by randomly permuting its values and
therefore disrupting its relationship with the target variable, realized volatility. The rationale
is that a significant increase in forecast error following permutation indicates high variable

importance.

Specifically, we assess the feature importance using the mean squared prediction error
(MSPE), which is the same evaluation metric used in hyperparameter tuning and statistical
tests in our study. For each estimation window, the model is first fitted on the first 80% of the
data (training set) with all features included. Permutation importance is then computed on the
next 20% (validation set) by randomly permuting each feature and breaking its association
with the target and measuring the changes in MSPE. For each feature, the increase in
validation MSPE is averaged across multiple random permutations to get AMSPE. The
variables are then ranked by their AMSPE as a measure of their contribution to forecasting

volatility.

The variable importance analysis in our study will be applied only to the machine learning
models with better predictive performance among others, to avoid unnecessary computational
costs. Further details regarding the specific models selected and additional settings for the

variable importance analysis will be provided in the results chapter.

Next chapter presents the empirical results of our study in detail and then discusses our
observations in the context of the existing literature, highlighting where our findings confirm,

extend, or challenge earlier work.
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Chapter 4. Empirical Results, Analysis, and Discussion

In this thesis, we apply several machine learning methods augmented with macroeconomic
variables used in Paye (2012) to forecast stock return volatility. Specifically, we test the
predictive accuracy of our forecasting models in comparison to an autoregressive benchmark.
This chapter presents the empirical findings of our study, highlighting the results of the
statistical tests and evaluation metrics described in the previous chapter. Following the
numerical results and their interpretation, we discuss our key findings in the context of existing
literature and empirical evidence. Finally, the chapter concludes with the implications of our

research, its limitations, and recommendations for future studies.

4.1 Quarterly out-of-sample forecasting performance (main analysis and robustness

check)

The results of the one-period-ahead forecasts for quarterly sampling are presented in this
section. Tables 4.1 and 4.2 show the results for two estimation methods: rolling window and
recursive window, respectively. Each table has two parts: Panel A and Panel B. Panel A
presents the forecasting results across four main time horizons (those covered in Paye, 2012),
and Panel B demonstrates the results for extended time periods, serving as our robustness
checks. For every forecasting model, the tables present the Clark and West (CW) test, which
measures the adjusted difference in the mean squared prediction error (MSPE) of the
forecasting model and the benchmark AR(2) model. The significance levels alongside the CW
test values, shown as *, ** and ***, reflect the rejection of the null hypothesis of no Granger
causality from the macroeconomic variables in the model at the conventional 0.90, 0.95, and

0.99 confidence levels, respectively.

The tables also report the changes in out-of-sample R? values of the forecasting models
compared to the benchmark AR(2), presented as AR?. This metric directly measures how well
each model forecasts relative to the benchmark. Positive values for AR? indicate the
forecasting model predicts volatility more accurately than the benchmark, while negative
values indicate the benchmark performs better. GW test results are reported alongside AR?

values as asterisks. This test assesses whether to reject the null hypothesis of equal predictive
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accuracy between the forecasting model and the benchmark, regardless of direction, at the

0.90, 0.95, and 0.99 confidence levels.

4.1.1 Rolling window results

Panel A: Results of main time periods

1947Q3-2010Q4 1972Q3-2010Q4 1982Q3-2010Q4 1972Q3-2000Q4
N=254 N=154 N=114 N=114

Forecasting Model cw AR’ cw AR’ cw AR’ cw AR’
OLS Regression 8.18 -23.05% 16.96 -21.96 -3.51 -25.87* 38.30%**% 491
Ridge Regression (RR) 0.20 -14.35% 2.25 -16.10% -0.67 21.12% 481 7,67
Lasso 4.63 -6.77%% 0.83 -12.19% 2783 -15.59%* 10.46%* 376
Elastic Net (EN) 4.07 7.47%% 032 -11.67* 896  -16.19%* 10.62%* 338
Random Forest (RF) 5.17 -9.19%% 7.69% -4.72 0.93  -11.06%** 0.78  -10.65%%*
Gradient Boosted (GBRT) 17.72%%  -8.46* 21.78%*%  _10.99%*  24.42%%% 475 27.27%% 933
Long Short-Term Memory (LSTM) ~ 8.48%* -1.30 21.75%%  -3.68 7.72 -4.67 31.70%%*  -0.57

Panel B: Results of extended time periods (as robustness check)

1947Q3-2023Q4 1947Q3-2019Q4 1972Q3-2023Q4 1972Q3-2019Q4
N=306 N=290 N=206 N=190

Forecasting Model cw AR? cw AR? cw AR? cw AR’
OLS Regression 2.95 -26.76* 9.96 -20.08* 2.5 -37.41%* 18.60* -17.06*
Ridge Regression (RR) -4.08 -17.07* 3.89 -11.54* -9.04 -29.10% 4.20 -15.68%*
Lasso -4.62 -14.37%* 4.71 -6.73%* -7.64 -20.42* 0.75 -10.92%*
Elastic Net (EN) -4.24 -15.89% 5.75 -5.90%* -7.88 -21.17* -0.21 -10.45%*
Random Forest (RF) 4.37 -7.30%** 3.53 -0.27%** 6.14 -10.37%** 6.08 -9.53%*
Gradient Boosted (GBRT) 9.77* -10.88*** 22.13%%** -6.63 26.03%** -8.66% 24.80%** -7.71
Long Short-Term Memory (LSTM) 9.83** -1.66 8.94%** -0.82 18.16** -3.33 22.12%%*%* -2.32

Table 4.1 Out-of-sample forecasting results, quarterly data and rolling estimation. The table reports CW
test statistics (Clark and West, 2007), calculated as adjusted differences in MSPE multiplied by 1,000,
which are used to assess equal predictive accuracy relative to the AR(2) benchmark and, in this context, to
test for Granger causality. Symbols ***, ** and * indicate rejection of the null hypothesis at the 1%, 5%,
and 10% significance levels, respectively. The table also presents AR?, measuring the improvement in out-
of-sample R? over the AR(2) benchmark, with significance determined by the Giacomini-White (2006) test
using the same notation. Forecasts are generated using a rolling estimation window of 80 quarters (or 20
years). Panel A reports results for the main sample periods, and Panel B shows the robustness check results
for extended time periods.
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As shown in Table 4.1, across all eight time periods, the CW test is positive and statistically
significant predominantly for the gradient boosted regression tree (GBRT) and long short-
term memory (LSTM) models, rejecting the null hypothesis of no Granger causality. This
suggests that these two models can capture the informational content of the macroeconomic
variables for volatility series. However, for the rest of the models across all time periods, the

CW test results are mainly a mixture of negative or insignificant positive values.

Looking at the values of AR?, the results are strongly negative for all linear models (OLS,
ridge, lasso, and elastic net (EN)) across all time horizons, and also for the ensemble models
(random forest (RF) and gradient boosted (GBRT)) in some time periods, which means that
the AR(2) benchmark provides more accurate predictions. The LSTM has the lowest negative
values of AR?, all statistically insignificant, suggesting that for the quarterly sampling and
rolling window, this model has performed better than other models in forecasting volatility,

although still underperforming the benchmark.

The contradiction between CW values (positive) and the AR? values (negative), e.g., the
results of GBRT for 1947Q3-2010Q4, implies that the predictive performance of the
forecasting model is worse than the benchmark but not to the extent that we can conclude the
predictors lack useful information, or, in the terms of Paye (2012), that they do not Granger

cause volatility.

Comparing the results for different time periods employed, among the first four sample
periods adapted originally from Paye (2012): 1947Q3-2010Q4, 1972Q3-2010Q4, 1982Q3-
2010Q4, and 1972Q3-2000Q4, the worst results generally belong to 1982Q3-2010Q4, with
more negative CW test values and stronger negative AR? values. This time period, unlike the
others, excludes the turbulent environment of 1970s (oil shock). This suggests that economic
shocks and market turbulence help models learn from significant volatility fluctuations. When
the 1970s oil shock is excluded, there is less variation for the models to detect, leading to
inferior forecasts relative to the AR(2) benchmark. This highlights the importance of including

periods of economic turbulence when evaluating and comparing volatility forecasting models.

Analyzing the extended time periods covered only in our study and considered as robustness

check: 1947Q3-2023Q4, 1947Q3-2019Q4, 1972Q3-2023Q4, and 1972Q3-2019Q4, which
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include pre- and post-pandemic data, the results predominantly indicate negative or weaker
positive CW test and stronger negative AR? values for the two periods including post-2019
data. This may suggest that the COVID-19 pandemic changed volatility patterns in ways that
our forecasting variables could not capture effectively. In summary, in our analysis using
quarterly data and rolling estimation approach, none of the forecasting models was able to
forecast volatility better than the AR(2) benchmark across all time horizons. The LSTM model
came closest to consistently matching the benchmark; however, it did not clearly outperform
it.

4.1.2 Recursive window results

Panel A: Results of main time periods

1947Q3-2010Q4 1972Q3-2010Q4 1982Q3-2010Q4 1972Q3-2000Q4
N=254 N=154 N=114 N=114
Forecasting Model cw AR? cw AR’ cw AR? cw AR’
OLS Regression 11.70%*%  -0.74 30.12%%*% 824 12,07+ -12.1 31.21%%%  -0.74
Ridge Regression (RR) 12.53%%% (.33 13.05%**% 9,03 10.23%%  -11.34 7.68% -1.72
Lasso 10.61%%% 041 13.80%*  -9.69 13.41%% 1129 9.70% -1.74
Elastic Net (EN) 11.43%%% 017 10.08**  -10.08 12.09%*  -11.52 2.57 -4.13
Random Forest (RF) 3.81 -5.79%* 046  -7.42%* 3.81 -7.86%%* 090  -10.11**
Gradient Boosted (GBRT) 6.64  -11.12%%* 17.55%%  -9.39%* 812  -13.18** 16.17%  -12.92%
Long Short-Term Memory (LSTM) 312 -3.82%% 19.66%*  -1.10 6.25 -4.36 24.86%*  -0.69

Panel B: Results of extended time periods (as robustness check)

1947Q3-2023Q4 1947Q3-2019Q4 1972Q3-2023Q4 1972Q3-2019Q4
N=306 N=290 N=206 N=190

Forecasting Model cw AR’ cw AR’ cw AR’ cw AR?
OLS Regression 8.93%** 047 12.83*** 029 26.47%%%  _6.83 27.65%%*  -6.06
Ridge Regression (RR) 9.74%¥% (.58 13.68%%* 122 14.16%%  -7.87%* 14.25%%%  .548
Lasso 8,84k * 0.07 11.27%%% 102 6.59 -4.33%% 12.78%* -7.49
Elastic Net (EN) 9.83**% 0,08 12.24%%% 0,90 8.94% -6.02% 10.25%*% 6,64
Random Forest (RF) 8.32% -4.30% 8.16* -3.47 -0.74  -9.84%xx 212,68 -14.94%%%
Gradient Boosted (GBRT) 8.99  -10.46%** 327 -13.82%%* 8.17  -12.34%%x  2].85%kx g 63*
Long Short-Term Memory (LSTM) ~ 5.41* -2.48 5.75% 2.42 10.68 -3.65 20.20%**  -0.10

Table 4.2 Out-of-sample forecasting results, quarterly data and recursive estimation. The table reports CW
test statistics (Clark and West, 2007), calculated as adjusted differences in MSPE multiplied by 1,000,
which are used to assess equal predictive accuracy relative to the AR(2) benchmark and, in this context, to
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test for Granger causality. Symbols ***, ** and * indicate rejection of the null hypothesis at the 1%, 5%,
and 10% significance levels, respectively. The table also presents AR?, measuring the improvement in out-
of-sample R? over the AR(2) benchmark, with significance determined by the Giacomini-White (2006) test
using the same notation. Forecasts are generated using a recursive estimation approach, with an initial
window length of 80 quarters (20 years). Panel A reports results for the main sample periods, and Panel B
shows the robustness check results for extended time periods.

Looking at the results from quarterly sampling and the recursive window approach presented
in Table 4.2, the results of the CW test are mainly positive and statistically significant for the
linear models (OLS, ridge regression, lasso, and elastic net) across all time periods. This
contrasts with the CW test results for the linear models using rolling window estimation shown
in Table 4.1. For more complex models, including the tree-based models (random forest and
gradient boosted regression tree) and the LSTM, CW test results indicate a mixture of strongly
positive and weak values, with random forest performing the worst. Overall, it seems that,
unlike the linear models, the GBRT and LSTM models deliver better CW test results under
the rolling window approach. Random Forest results, however, indicate no major changes

under the rolling and recursive estimation approaches.

Comparing the results across the first four time periods, following Paye (2012), the AR? values
are closest to zero for 1947Q3-2010Q4 and 1972Q3-2000Q4 for the linear models. For the
extended periods of our robustness check, which include data from before and after the
COVID-19 pandemic, AR? results for the linear models are slightly better for 1947Q3-
2023Q4 and 1947Q3-2019Q4 than for the two other periods starting from 1972Q3 and ending
in 2023Q4 and 2019Q4, respectively.

In short, based on the results from quarterly sampling and the recursive window, all linear
models (OLS and penalized linear models) and the long short-term memory (LSTM)
performed better than the ensemble models (random forest and gradient boosted) across all
time periods. While the LSTM performed roughly the same under both estimation windows
in terms of prediction accuracy, the linear models clearly improved from the rolling to the
recursive window. Despite these findings, none of the models across all time periods

outperformed the benchmark AR(2) model.
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4.2 Monthly out-of-sample forecasting performance (main analysis and robustness

check)

Tables 4.3 and 4.4 in this section present the results of one-period-ahead forecasts for monthly
data using two estimation methods: rolling window (Table 4.3) and recursive window (Table
4.4). Each table has two parts: Panel A and Panel B. Panel A presents the forecasting results
across four main time horizons (those covered in Paye, 2012), and Panel B demonstrates the
results for extended time periods, serving as our robustness checks. The tables report the same
evaluation metrics as those used for the quarterly data in the previous section. AR? values
indicate the out-of-sample prediction accuracy of the forecasting models relative to the

benchmark AR(6) model.

4.2.1 Rolling window results

A general look at Table 4.3 below shows that, under the rolling window approach, the out-of-
sample monthly forecasts perform better than the quarterly forecasts (as shown in Table 4.1),
in terms of CW test statistics and AR? values. Specifically, the CW test results from Table 4.3
are predominantly positive and statistically significant in nearly every sample, implying strong
Granger causality from financial and macroeconomic variables at higher frequency. In
contrast, for the quarterly data using the same windowing approach, only the GBRT and
LSTM models produced significantly positive CW test results.

Panel A: Results of main time periods

1947.3-2010.12 1972.3-2010.12 1982.3-2010.12 1972.3-2000.12
N=759/766* N=459/466 N=339/346 N=346

Forecasting Model cw AR? cw AR? cw AR? cw AR’
OLS Regression 7.13%* -1.57 14.05%** 0.18 11.43%* 0.12 9.85%** -0.26
Ridge Regression (RR) 6.97%** -1.29 12.98%** 0.70 12.48%* 1.27 9.29%* -0.14
Lasso 4.67%* -1.12 8.56%** -0.33 8.19%* -0.21 5.23* -1.78
Elastic Net (EN) 6.08%** -0.76 9.64%** 0.33 9.47** 0.54 6.88** -0.78
Random Forest (RF) 3.04 -5.74%** 7.11%* -3.39%* 10.35%%* -2.28 8.71%* -3.11*
Gradient Boosted (GBRT) 5.44%  -10.41%** 6.57%  -9.58%** 12.13%*  -7.09%** 10.96%*  -7.28%*
Long Short-Term Memory (LSTM) ~ 8.84%*** -2.01 15.24%** 0.55 14.48%** 1.06 15.16%** 0.43
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*759/766 indicates that, due to NaN values (i.e., some missing data), our models produced fewer forecasts than expected.

This applies to other time periods as well, as indicated in their respective columns.

Panel B: Results of extended time periods (as robustness check)

1947.3-2023.12 1947.3-2019.12 1972.3-2023.12 1972.3-2019.12
N=911/922 N=867/874 N=611/622 N=567/574

Forecasting Model cw AR? cw AR? cw AR? cw AR’
OLS Regression 7.32%%% -1.80 8.83%** -0.72 11.72%** -1.31 15.28%%* 1.11
Ridge Regression (RR) 9.21%** -0.99 8.73%** -0.63 13.99%** 0.23 13.91%** 0.96
Lasso 4.16%*%  -2.04%* 6.42%%* -0.47 7.49% %% -1.71 10.49%** 0.54
Elastic Net (EN) 4.89%* -2.21%* 7.60%*** -0.38 9.00%** -1.49 11.52%%* 0.86
Random Forest (RF) 3.10 -8.30%** 1.07 -7.50%** 5.86* -6.03% % 8.94%* -3.92%%
Gradient Boosted (GBRT) 9.64%¥* 7 Qg*** 4.27 -12.12%** 14.74%**  520%* 9.40** -7.61%**
Long Short-Term Memory (LSTM) ~ 8.48***  .2.86%* 8.09*** D 35%* 11.31%%* -1.75 12.84%%* -0.60

Table 4.3 Out-of-sample forecasting results, monthly data and rolling estimation. The table reports CW test
statistics (Clark and West, 2007), calculated as adjusted differences in MSPE multiplied by 1,000, which
are used to assess equal predictive accuracy relative to the AR(6) benchmark and, in this context, to test for
Granger causality. Symbols ***, ** and * indicate rejection of the null hypothesis at the 1%, 5%, and 10%
significance levels, respectively. The table also presents AR?, measuring the improvement in out-of-sample
R? over the AR(6) benchmark, with significance determined by the Giacomini-White (2006) test using the
same notation. Forecasts are generated using a rolling estimation window of 240 months (or 20 years).
Panel A reports results for the main sample periods, and Panel B shows the robustness check results for
extended time periods.

The results from the AR? metric suggest that the linear models (OLS and all penalized
regressions) and the LSTM have performed better than the ensemble models (random forest
and GBRT). Across all time periods, we even observe some positive but statistically
insignificant AR? values for these best-performing models. Notably, the AR? values presented
in this table show considerable improvements from their equivalent metrics under the rolling

window for quarterly data (Table 4.1).

Among the original time periods adopted from Paye (2012), the results for the periods
1972Q3-2010Q4 and 1982Q3-2010Q4 are slightly better than those for 1947Q3-2010Q4 and
1972Q3-2000Q4, in terms of prediction accuracy (AR?). Regarding the extended time periods
and our robustness check, although the results are very close, the longest one (1947Q3-

2023Q4) shows slightly worse performance than the rest. Moreover, the results for the two
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periods that do not include pandemic data (ending at 2019Q4) are slightly better than those
that include post-pandemic data (extending through 2023Q4).

In summary, at the monthly frequency and under the rolling window estimation approach, all
models demonstrate strong CW test results. The AR? values for the linear models and LSTM
are close to zero, positive or negative, but statistically insignificant. Overall, both metrics (CW
test and AR?) indicate that our models perform better on monthly data than on quarterly data

using the same estimation methods.

4.2.2 Recursive window results

Panel A: Results of main time periods

1947.3-2010.12 1972.3-2010.12 1982.3-2010.12 1972.3-2000.12
N=759/766 N=459/466 N=339/346 N=346
Forecasting Model cw AR’ cw AR’ cw AR’ cw AR’
OLS Regression 5.69%%* (.19 8.90%** 096 6.67%* 0.68 9.10%** 0.71
Ridge Regression (RR) 6.81%%*% (.43 8.96% 112 8.55% 1.05 9.33%% 112
Lasso 421%%% 018 7.86%** 1.04 4.99%%* 0.09 7.15%%% 0.46
Elastic Net (EN) 5.39%%% (.12 8.29% 1.02 7.03%* 0.58 7.64%%% 0.34
Random Forest (RF) 0.56  -5.01%%* 153 -4.32%%* 8.86%* -1.87 538%F  333%*
Gradient Boosted (GBRT) 0.90  -4.95%** 6.71%%  435%%x 11.70%%*  -3.16% 10.58%%* 2,02
Long Short-Term Memory (LSTM) ~ 5.64%*  -2.98%%* 11.83%** (.07 6.45%*% 086 16.17%% 219

Panel B: Results of extended time periods (as robustness check)

1947.3-2023.12 1947.3-2019.12 1972.3-2023.12 1972.3-2019.12
N=911/922 N=867/874 N=611/622 N=567/574
Forecasting Model cw AR’ cw AR’ cw AR? cw AR’
OLS Regression 5.01%%% 040 6.02%*% (.46 6.72%%% 0.01 8.62% %% 1.19
Ridge Regression (RR) 6.33*%* (.48 7.01%%% 068 6.03%** 006 8.35%%% 1.14
Lasso 4.60%%*  0.29 4.72%%% (.44 5.00%%% 0.12 7.04%%% 0.95
Elastic Net (EN) 539%%% (.15 5.79%%% 040 5.34% %% 0.01 7.23% % 0.87
Random Forest (RF) 346  -3.83%¢x 218 -4.76%** 262 -427%%x 1.01  -4.59%%x
Gradient Boosted (GBRT) 135  -5.62%%* 1.93  -5.32%%x 6.64%%  -437%kx 7.92%k% 3 77k
Long Short-Term Memory (LSTM) ~ 9.07%**  -1.60 8.A7F**  _].88% 12.51%%% 133 11.67%¥%  0.42

Table 4.4 Out-of-sample forecasting results, monthly data and recursive estimation. The table reports CW
test statistics (Clark and West, 2007), calculated as adjusted differences in MSPE multiplied by 1,000,
which are used to assess equal predictive accuracy relative to the AR(6) benchmark and, in this context, to
test for Granger causality. Symbols ***, ** and * indicate rejection of the null hypothesis at the 1%, 5%,
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and 10% significance levels, respectively. The table also presents AR?, measuring the improvement in out-
of-sample R? over the AR(6) benchmark, with significance determined by the Giacomini-White (2006) test
using the same notation. Forecasts are generated using a recursive estimation approach, with an initial
window length of 240 months (20 years). Panel A reports results for the main sample periods, and Panel B
shows the robustness check results for extended time periods.

The results from Table 4.4 clearly show that all models perform best under the recursive
window with monthly data. The CW test statistic is predominantly and strongly positive across
all time periods, indicating Granger causality and confirming the informativeness of the

predictors for forecasting volatility.

In addition, the AR? values for almost all linear models are positive across all time periods but
remain statistically insignificant. This supports our earlier finding from the quarterly results
that moving from a rolling to a recursive window improves the predictive performance of
linear models. The LSTM model performs similarly to its results under the monthly rolling
window, with AR? values close to zero, either slightly positive or negative. However, the two
ensemble models (random forest and GBRT) achieve their best results here compared to all
previous setup results. Their AR? values mostly range from -3% to -5%, which is slightly
better than in the monthly rolling window setting. This supports the idea that ensemble
models, like linear models, also benefit from more data, both in terms of frequency and
estimation window length. Comparing different time periods, we observe little variation in the

results.

To summarize, although the linear models (OLS, ridge, lasso, and r net) and the LSTM model
show the highest number of positive AR? values, none of them outperform the benchmark
AR(6) model in a statistically significant way. This suggests that these models mostly match
the benchmark AR models in terms of prediction accuracy. The fact that even these positive
gains lack statistical significance highlights the difficulty of consistently outperforming a
univariate autoregressive benchmark, even with monthly data. Random Forest and GBRT
perform better in prediction and manage to narrow the gap in out-of-sample R? compared to

the benchmark.
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4.3 Overall model comparison

In the previous sections, we presented and interpreted the evaluation metrics and statistical
test results of our forecasting models in detail. To provide a broader view of whether the
complex and augmented forecasting models used in this study outperformed the univariate
autoregressive benchmarks (AR(2) for quarterly and AR(6) for monthly data), we summarize

their predictive performance (AR?) in Figure 4.1.

Figure 4.1 illustrates the average AR? values for each model, calculated across all time
horizons (the main four periods and the four extended periods for robustness check) within
four estimation windowing: quarterly rolling, quarterly recursive, monthly rolling, and
monthly recursive. As noted earlier, a positive AR? indicates superior forecast accuracy

relative to the benchmark, while a negative AR? reflects underperformance.

5 Quarterly Rolling Quarterly Recursive Monthly Rolling Monthly Recursive
1
0 - 1|
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-18 mOLS H Ridge Regression
-19 Lasso Elastic Net
-20 Random Forest ® Gradient Boosted Regression Tree
g ; m Long Short-Term Memory
-23
-24

Figure 4.1 Average AR? by forecasting model, data frequency, and estimation window. The y-axis shows
AR? values in percentage points. For each model, the average AR? was computed across all sample periods,
separately for each data frequency and estimation window type.
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The figure does not display statistical significance; it is intended solely to show the average

change in AR? over time. The key takeaways from the figure are as follows:

Quarterly rolling: all models show negative mean AR? values, with LSTM performing
closest to zero (-2.29%) and tree-based models averaging around -9%. Linear models
(OLS and penalized regressions) perform the worst, showing the strongest negative

mean AR? values.

Quarterly recursive: all regression models show substantial improvement over the
rolling window results, while ensemble methods remain similar to the rolling window
results (around -8% to -11%). LSTM again shows the smallest average gap (-2.33%),

with no notable change from its rolling window performance.

Monthly rolling: mean AR? values are clustered near zero for the linear models and
LSTM, indicating notable improvement, particularly for the linear models, when
shifting from quarterly to monthly data. The ensemble models show larger negative
gaps compared to the others, although random forest shows some improvement over

its quarterly performance.

Monthly recursive: all linear models exhibit positive mean AR? values, though never
statistically significant. LSTM shows a slightly negative mean AR?, close to zero,
while both ensemble models remain negative but improve compared to their rolling

window results.

These averages reflect the detailed period-by-period results in Tables 4.1 to 4.4 and confirm

three key findings. First, our forecasting models rarely outperform the AR benchmark.

Second, expanding the estimation window (using recursive instead of rolling) improves the

performance of linear models and, to a smaller extent, the other models, especially at the

quarterly frequency. Third, increasing data frequency from quarterly to monthly significantly

enhances predictive accuracy. Taken together, these results show that the best overall

performance, though still not surpassing the benchmark, is achieved using monthly data with

the recursive estimation window.
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4.4 Results of variable importance analysis

Our results presented in the previous section highlight that the linear models and the LSTM
overall performed better than the ensemble methods. These models nearly matched the
benchmark AR model, specifically for monthly data. Consequently, in the last phase of our
study, we conducted a variable importance analysis, namely permutation feature importance,

to identify which variables contributed the most to the performance of these models.

To avoid unnecessary and extensive computational costs associated with worst performing
models, including random forest and GBRT, we applied the permutation feature analysis only
on the LSTM and the elastic net, the latter representing the linear models as it combines ridge

and lasso.

Regarding the sample period for the variable importance analysis, we selected the 1972-2019
forecasting period because among eight time periods in our study, it is the only one that
contains all available variables. This analysis was carried out on both monthly and quarterly
data under rolling and recursive estimation windows. The results of permutation feature

importance for quarterly and monthly data are presented below.

4.4.1 Variable importance analysis results of quarterly sampling

Figures 4.2 and 4.3 in the following indicate the average of the permutation importance
measure of all lagged variables across all windows generated from the elastic net, under the
rolling and recursive windows, respectively. These two figures illustrate the strong persistence
of volatility, as the first two lags of volatility (QLVOL L1 and QLVOL L2) account for
roughly two-thirds of the elastic net model’s predictive power. After controlling for this
persistence, the most important predictors, under both rolling and recursive windows, are the
credit risk measures, the default spread (dfy) and the commercial paper-to-Treasury spread
(cp), followed by economic uncertainty captured in producer price index volatility (ppivol).
The net payout yield (npy) gives the model additional information about future volatility by
signalling whether firms are net issuers of equity or returning cash through dividends and
share buybacks. The investment-capital ratio (ik) indicates that shifts in corporate investment

activity also contribute to the model’s predictive accuracy.
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Average permutation importance across all windows (Elastic Net)
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Figure 4.2 Average permutation importance across all rolling windows, quarterly data, elastic net model,
1972Q3-2019Q4. The y-axis values represent the mean increase in MSPE when each variable is randomly

permuted, averaged over all windows. Higher values indicate greater importance of the variable in the
forecasting task.
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Figure 4.3 Average permutation importance across all recursive windows, quarterly data, elastic net model,
1972Q3-2019Q4. The y-axis values represent the mean increase in MSPE when each variable is randomly

permuted, averaged over all windows. Higher values indicate greater importance of the variable in the
forecasting task.
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Figures 4.4 and 4.5 in the following demonstrate the average of the permutation importance
measure across all windows generated from the LSTM, under the rolling and recursive
windows, respectively. Both figures confirm that volatility is mainly self-driven, similar to the
elastic net results, the first two lags of volatility together account for about two-thirds of the
model’s predictive power under either estimation window. Beyond these lags, the model relies
on credit market indicators, largely the commercial paper-to-Treasury spread (cp) and, to a
lesser extent, the default return spread (dfr). The GDP growth (gdp) also shows noticeable
importance in both figures, indicating that recent economic activity changes help the LSTM
in volatility forecasting. The survey-based expected GDP growth (egdp) adds a smaller but

still positive contribution, suggesting that growth expectations provide an additional signal

about future volatility.

Average permutation importance across all windows (LSTM)
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Figure 4.4 Average permutation importance across all rolling windows, quarterly data, LSTM model,
1972Q3-2019Q4. The y-axis values represent the mean increase in MSPE when each variable is randomly

permuted, averaged over all windows. Higher values indicate greater importance of the variable in the
forecasting task.
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Average permutation importance across all windows (LSTM)
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Figure 4.5 Average permutation importance across all recursive windows, quarterly data, LSTM model,
1972Q3-2019Q4. The y-axis values represent the mean increase in MSPE when each variable is randomly

permuted, averaged over all windows. Higher values indicate greater importance of the variable in the
forecasting task.

In summary, for quarterly data, both models (elastic net and LSTM) indicate that volatility is
largely driven by its own past values. After this persistence, credit market variables (cp, dfy,
and dfr) are the key macro drivers in both elastic net and LSTM results. The elastic net also
uses two balance sheet measures, net payout (npy) and the investment-capital ratio (ik),
whereas the LSTM receives additional signals from economic growth measures, specifically

current GDP growth (gdp) and, to a lesser extent, expected GDP growth (egdp).

4.4.2 Variable importance analysis results of monthly sampling

Figures 4.6 and 4.7 indicate the average of the permutation importance measure across all

windows generated from the elastic net, under the rolling and recursive windows, respectively.
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Average permutation importance across all windows (Elastic Net)
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Figure 4.6 Average permutation importance across all rolling windows, monthly data, elastic net model,
1972.3-2019.12. The y-axis values represent the mean increase in MSPE when each variable is randomly

permuted, averaged over all windows. Higher values indicate greater importance of the variable in the
forecasting task.
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Figure 4.7 Average permutation importance across all recursive windows, monthly data, elastic net model,
1972.3-2019.12. The y-axis values represent the mean increase in MSPE when each variable is randomly

permuted, averaged over all windows. Higher values indicate greater importance of the variable in the
forecasting task.
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As can be seen from Figures 4.6 and 4.7, with monthly data, the elastic net again shows that
volatility is largely driven by its own past. In both rolling and recursive settings, the first lag
of volatility dominates the permutation order, and the second lag adds a smaller increment.
The credit spread variables provide most of the external signals: default return spread (dfr)
and default spread (dfy) in the rolling window, and commercial paper-to-Treasury spread (cp)
in both windows. Additional volatility lags and all other macro variables contribute

progressively less and have permutation scores near zero.

Figures 4.8 and 4.9 indicate the average of the permutation importance measure across all

windows generated from the LSTM, under the rolling and recursive windows, respectively.

Average permutation importance across all windows (LSTM)
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Figure 4.8 Average permutation importance across all rolling windows, monthly data, LSTM model,
1972.3-2019.12. The y-axis values represent the mean increase in MSPE when each variable is randomly
permuted, averaged over all windows. Higher values indicate greater importance of the variable in the
forecasting task, with the ranking reflecting relative predictive contribution.
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Average permutation importance across all windows (LSTM)
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Figure 4.9 Average permutation importance across all recursive windows, monthly data, LSTM model,
1972.3-2019.12. The y-axis values represent the mean increase in MSPE when each variable is randomly
permuted, averaged over all windows. Higher values indicate greater importance of the variable in the
forecasting task, with the ranking reflecting relative predictive contribution.

Figure 4.8 confirms the dominance of the first and second lag of volatility in the predictive
power of LSTM for monthly data under the rolling window estimation approach. The
commercial paper-to-Treasury spread (cp) and the default return spread (dfr) represent the
next important variables in this sample. Additional lags of volatility follow cp and dfr in
importance and have a smaller contribution in this setting. In the recursive setting as shown
in Figure 4.9, the LSTM depends mainly on last month’s volatility. The most important
external feature is the commercial paper-to-Treasury spread (cp), with the second and fifth
volatility lags (LVOLM_L2 and LVOLM_LY5) ranking behind it. The net payout yield (npy)

and the default return spread (dfr) provide only small incremental gains.

4.5 Discussion

After presenting our empirical results, this section places the findings in the context of the
volatility forecasting literature. Our results provide evidence on how different modeling

choices, data frequency, estimation window, time horizon, and the use of macroeconomic
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predictors impact forecast performance relative to a univariate autoregressive (AR)

benchmark.

Our main observation is that every forecasting model we tested (OLS, ridge, lasso, random
forest, GBRT, and LSTM) either equalled or fell short of the AR benchmark in out-of-sample
accuracy. “Equal” here means small, statistically insignificant changes in out-of-sample R?,
whether positive or negative. This reinforces earlier evidence that simple AR models are hard
to beat in volatility forecasting (Paye,2012; Andersenetal.,2001; Ghysels etal., 2006;
Hansen and Lunde, 2005).

This persistence of the AR model’s strength suggests that information embedded in past
volatility alone captures much of the predictable variation, so added model complexity does
not always lead to better forecasts. This outcome mirrors the conclusions of Branco et al.
(2022) and Audrino and Chassot (2022), who found little benefit from advanced machine

learning (ML) methods over simpler linear benchmarks.

Turning to economic shocks, our quarterly results show mixed effects. Including the 1970s oil
shock, in the sample period of 1972Q3-2010Q4, improved performance of our forecasting
models, compared with a subsample that begins in 1982Q3, which excludes this event. As a
result, higher volatility periods may provide richer signals that complex models can exploit,
consistent with findings of Paye (2012) and with the superior LSTM forecasts reported by
Petrozziello et al. (2022) during the 2007-2008 crisis. Nevertheless, when we extend the
sample periods to cover the COVID-19 event, forecast accuracy weakens slightly: models
perform a bit better when the pandemic years are excluded (ending in 2019). This echoes
Rahimikia and Poon (2024), who also found that neural networks underperformed during

extreme market stress.

Looking at monthly data, all models improve. CW statistics are mostly positive, and
statistically significant and AR? values move closer to zero, confirming that higher-frequency
data contain richer short-term signals, as also documented by Christensen et al. (2023).
Several studies that reported ML gains also relied on high-frequency data (daily or intraday),
such as Donaldson and Kamstra (1997); Zhu et al. (2023); and Zhang et al. (2024).
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In the monthly setting, linear models (OLS and penalized regressions) and the LSTM
consistently outperform ensemble trees (random forest and GBRT), especially under recursive
estimation. This finding highlights neural networks’ ability to capture nonlinear dynamics in

volatility (Petrozziello et al. 2022; Rahimikia and Poon 2024).

The switch from rolling to recursive windows further improves forecasting accuracy, mostly
pronounced in linear models. This indicates that expanding the estimation window helps the
models adapt to changing economic conditions, a conclusion also noted by

Audrino and Chassot (2022) in their study of window length impact on model performance.

Concerning macroeconomic predictors, CW tests show that these variables, most of the time,
have informational value and Granger-cause the realized volatility, supporting Paye (2012).
However, the prediction accuracy test results, measured by changes in out-of-sample R* and
GW test statistics, imply limited incremental value of these variables in forecasting volatility.
This evidence is supported by findings of previous studies, such as Christensen et al. (2023);
Filipovic and Khalilzadeh (2021); Nou et al. (2021); Petrozziello et al. (2022); and
Moon and Kim (2019), where ML models using only past price or volatility data performed as
well as, or better than, versions that added an extended set of macro and other external

predictors.

Permutation feature importance results are consistent with Paye (2012). Across all eight
samples on which we conducted this analysis (quarterly vs monthly, rolling vs recursive, and
elastic net vs LSTM), the first one to two lags of realized volatility accounted for near two-
thirds of the model performance, regardless of frequency, estimation windowing, or algorithm.
After this persistence, the variables related to credit risk, including commercial paper-to-
Treasury spread (cp), default return spread (dfr), and default spread (dfy), frequently
dominated other macroeconomic predictors. Elastic net and LSTM both rely on these spreads,
with only minor to modest extra help from PPI volatility (ppivol), net payout yield (npy), the
investment-capital ratio (ik), and at the quarterly horizon, real current and expected GDP
growth (gdp and egdp). In short, credit conditions provide the most important external signal
for future volatility, confirming Paye’s original insight with advanced machine learning

evidence.
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In summary, we find only modest gains from complex ML techniques with macroeconomic
predictors over autoregressive benchmarks. However, some conditions, such as higher-
frequency data, turbulent periods, and recursive estimation windowing, enhance forecast

quality and allow advanced ML models to add value.
4.6 Implications of findings

Our findings have several practical and academic implications for volatility forecasting. First,
the persistent strength of the autoregressive (AR) benchmark shows that simple, parsimonious
models still hold a significant predictive power. Therefore, investment professionals, risk
managers, and policymakers should think more carefully before adopting ML frameworks to
avoid, as much as possible, the unnecessary computational costs and extra time needed for

complex settings of these models.

Second, the small incremental value of macroeconomic variables in predictive accuracy of
ML models, despite their statistical relevance under the Clark and West (CW) test, suggests
that volatility forecasts mostly benefit from market-based information and the recent history
of volatility itself (as also confirmed in our variable importance analysis results). Therefore,
focusing on direct market signals may be more efficient in practice because such data respond
faster to changing conditions, whereas macro indicators and variables are much slower to

update.

Third, the improved results observed from higher-frequency data (monthly vs quarterly) and
during some of the turbulent periods indicate that the forecasting model effectiveness depends
largely on data granularity and the market condition. As a result, practitioners should consider
higher frequency data and use estimation approaches, such as recursive window, that can adapt

as information accumulates and economic regimes shift.

Finally, because our variable importance analysis shows that credit spread variables dominate
all other macro predictors and that higher-frequency (monthly) data perform better,
practitioners should monitor real time movements in credit conditions as these predictors offer

the greatest incremental value when forecasting stock return volatility.
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4.7 Limitations and recommendations for future studies

Although our study compares eight forecasting models (including the benchmark AR) across
two data frequencies (quarterly and monthly), two estimation schemes (rolling and recursive),
and eight sample periods (four main periods and four extended periods for robustness check),

several limitations remain that open avenues for further research.

Our first constraint is data frequency. We use realized volatility aggregated at a monthly and
quarterly basis. However, high-frequency sampling, such as weekly, daily, or even intraday,
contains many more observations and therefore, richer short-term signals. Moreover, some
previous studies showed that realized variance measures converge to the underlying quadratic
variation as the sampling interval gets smaller (Andersenetal.2003; Barndorff
Nielsen and Shephard 2002). Future studies can examine whether our models improve when

trained on higher-frequency data.

The next limitation of our study is predictor choice. To stay consistent with Paye (2012), we
use the same set of macroeconomic variables. Choosing different sets of features that have
been previously proven useful in forecasting realized volatility, such as option implied
metrics, order book measures, or news and social media sentiment, may reveal whether other
types of input features help ML methods outperform a strong linear benchmark such as an AR

model.

Model architecture is another constraint of this study. Although we include lagged volatility
(up to two lags for quarterly and six lags for monthly sampling) in addition to the macro
predictors in our forecasting models, to account for temporal dependency of time series data,
our ensemble methods assume observations are independent and identically distributed, which
possibly ignores volatility clustering. Block bootstrap resampling or other bagging approaches
could preserve time dependency more effectively. While Christensen et al. (2023) noted that
they have not observed a difference in results from standard bootstrap and block bootstrap,

additional tests in future research would be valuable.

Model validation during hyperparameter tuning is also a constraint, as we rely on a fixed split

between training and validation sets. Although in our study, the validation period follows the
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training period to respect time order, a rolling or time series cross-validation approach in

future studies may produce more robust hyperparameter choices.

Finally, due to the computational cost, we evaluate only one deep learning model, the LSTM,
which adds another limitation to this study. Future research could explore other neural
networks such as gated recurrent units, temporal convolutional networks, transformers, or

attention-based hybrids to see whether they can capture volatility dynamics more effectively.
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Chapter 5. Conclusion

The main objective of this thesis was to investigate the effectiveness of machine learning (ML)
models, augmented with macroeconomic variables, in forecasting US stock return volatility.
Specifically, the central questions addressed were: 1) whether machine learning algorithms
can consistently improve one-step-ahead forecasts relative to the autoregressive (AR)
benchmark model, and 2) whether the financial and macroeconomic variables introduced by
Paye (2012) provide incremental information over the volatility’s past values. These questions
were motivated by the mixed evidence in existing literature and by the theoretical discussion

of macroeconomic variables as forward-looking signals of financial risk.

To answer them, our analysis began by replicating Paye (2012), which provided a baseline for
all subsequent extensions we added in our study. Building on that foundation, six machine
learning models, including ridge, lasso, elastic net, random forest, gradient boosted regression
trees (or GBRT), and long short-term memory (LSTM) networks, were estimated alongside
ordinary least squares (OLS) and the AR model. Each model was employed on eight different
sample periods to assess the impact of calm and turbulent market environments, and the data
were on both a quarterly and a monthly basis. Forecasts were produced under rolling and
recursive (or expanding) windows. The predictive accuracy was gauged by changes in out-of-

sample R?, Giacomini-White (GW) test, and Clark and West (CW) test statistics.

At the last step, a variable importance analysis was performed to assess the contribution of
each predictor in forecasting performance of our models. Following Breiman (2001), each
predictor was randomly permuted and the resulting increase in mean squared prediction error
(MSPE) was recorded. This analysis only focused on two best performing algorithms, elastic

net and LSTM.

This study provided several important conclusions. First, none of our machine learning
predictive models delivered statistically significant gains over an AR(2) at the quarterly
horizon and AR(6) at the monthly frequency. However, the results from linear models (OLS
and penalized regressions) and the LSTM suggested that these models nearly matched the AR
model’s predictive accuracy in most cases, as indicated by slightly positive or negative

changes in R?. The tree-based models consistently indicated the worst predictive performance.
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Second, data frequency and estimation window length influenced our models’ performance.
In particular, moving from quarterly to monthly data and from rolling to recursive estimation
window improved the out-of-sample R? values. Third, the models performed differently
across various volatility regimes. Including the 1970s oil-shock interval enhanced the
forecasting performance of our models, whereas the inclusion of COVID-19 data slightly
decreased their prediction accuracy, suggesting that high-volatility periods can both improve
and distort predictive relationships. Fourth, Clark and West (CW) test statistics revealed that
the macroeconomic predictors in our models mostly Granger-caused the realized volatility,
however, their incremental economic value (as measured by AR?) was not significant. Fifth,
the permutation analysis revealed that after accounting for the persistence of volatility, credit
market spread variables (commercial paper-to-Treasury spread, default spread, and default

return spread) were the most relevant macroeconomic variables among all.

Accordingly, this thesis offers several empirical findings to the literature. First, extending
Paye’s study through 2019 and 2023 and employing more complex machine learning
algorithms reveals that simple AR models remain difficult to outperform in forecasting
volatility. Second, when incorporating macroeconomic variables into machine learning
models, we find no statistically significant out-of-sample improvement beyond lagged
volatility across our samples and horizons. Finally, permutation tests show that credit spreads
are the most informative macro variables; however, their incremental predictive power is not

statistically significant.
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Appendix A. Paye (2012) Replication Results

The tables in this appendix present the results of the replication process from Paye (2012).

Philips and Perron test

Symbol Name Mean  Satndard Deviation Skewness Kurtosis Pl P Z, p-value

Panel A: Quarterly sampling frequency

biow Chnges in bank loverago 0.0072 0.1344 -0.68 4.88 -0.19 0.13 -18.95 0.00
-0.0017 0.0948 -0.24 0.83 -0.29 021 -3.95 0.00
cay Consumption-wealth ratio 0.0001 0.0193 0.09 252 0.92 0.86 275 0.07
0.0026 0.0186 -0.63 -0.06 0.91 0.88 .46 0.12
o CP-to-Troasury sproad 0.6461 0.4920 225 10.55 0.60 0.45 -8.04 0.00
0.6133 0.4396 217 8.60 0.73 0.52 4,54 0.00
. ~0.0002 0.0995 0.03 1580  -0.02 0.06 1699 0.00
af Default return 0.0002 0.0076 0.51 3.95 -0.07 0.07 -8.36 0.00
. 0.0158 0.0072 1.41 7.02 0.85 0.73 423 0.00
af Default yield 0.0097 0.0045 1.72 3.82 0.91 0.78 417 0.00
2.5364 1.4331 20.66 537 0.86 0.72 3.87 0.00
egdp Expected GDP growth 2.5466 1.4231 -0.67 252 0.87 0.73 3.41 0.01
wrret Expected refun 0.0199 0.0201 0.90 378 0.78 0.67 540 0.00
0.0199 0.0197 0.97 1.19 0.46 0.45 -4.84 0.00
3.0439 3.8156 2038 434 037 0.19 9.99 0.00
gdp GDP growth 3.2289 3.8165 -0.20 1.16 0.35 0.20 -7.89 0.00
i Investment-capital ratio 0.0358 0.0036 027 243 0.96 0.89 2.57 0.10
0.0362 0.0032 0.24 -0.53 0.97 0.90 -3.88 0.00
. 4 4 T 0.0045 0.0046 225 8.86 0.26 0.11 1271 0.00
ipvol Industrial production volatility ) 5 0.0001 4.05 17.37 0.19 0.10 -7.05 0.00
upy Net payout yield 2.1916 0.2064 -1.63 7.23 0.94 0.87 2.59 0.10
2.1947 0.2073 -1.63 3.76 0.97 0.90 -1.86 035
. . . 0.0036 0.0046 4.36 33.26 0.42 0.28 1039 0.00
ppivol Inflation volatility 0.0000 0.0001 12.01 162.93 0.20 0.14 -8.67 0.00
s Term spread 0.0160 0.0143 0.1 3.00 0.83 0.69 461 0.00
0.0162 0.0139 0.07 -0.60 0.90 0.77 -3.90 0.00

Panel B: Monthly sampling frequency
0.6147 0.4646 242 13.61 0.86 0.74 -7.40 0.00
P CP-to-Treasury spread 0.6160 0.4658 2.41 10.56 0.86 0.74 433 0.00
» Default retur 20.0091 0.2236 1.64 37.78 20.12 2003 -30.61 0.00
0.0002 0.0135 -0.27 7.70 -0.07 -0.06 -9.05 0.00
: . 0.0157 0.0072 130 6.10 0.93 0.87 4.92 0.00
ah Default yield 0.0097 0.0046 1.79 430 0.97 0.93 -3.20 0.02
0.0052 0.0040 1.19 5.87 0.89 0.82 6.52 0.00
exret Expected return 0.0028 0.0036 231 9.31 0.52 0.48 -4.96 0.00
. . . T 0.0024 0.0095 027 9.43 0.39 0.24 -18.35 0.00
P Growth in industrial production ) 1, 0.0095 021 6.58 039 0.24 -8.30 0.00
ipvol Industrial production volatily  "°%2 0.0064 331 23.01 0.24 0.14 2320 0.00
0.0001 0.0003 1131 16457  0.12 0.05 -13.48 0.00
. 2.1905 0.2069 167 7.34 0.98 0.96 275 0.07
Py Net payout yield 2.1941 0.2090 -1.59 3.82 0.98 0.97 2.08 0.25
4 4 y 0.0044 0.0056 3.79 24.67 037 0.39 2417 0.00
ppivol Inflation volatility 0.0001 0.0002 9.63 112.08 035 0.25 -5.30 0.00
0.0162 0.0142 -0.05 2.85 0.95 0.90 419 0.00

fms Term spread 0.0162 0.0143 -0.05 -0.16 0.96 0.90 424 0.00

Table A.1 Descriptive statistics. This table replicates Table 1 in Paye (2012). Values in black are those
reported in Paye (2012), and values in green are the replication results.
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1927Q2-2010Q4 1952Q2-2010Q4 1927Q2-1951Q4 1952Q2-1985Q4 1986Q1-2010Q4

Symbol ~ Name B AR? B AR’ B AR’ B AR’ B AR’
. - - 0.03 0.09 - - J0.14%% 198 0.08 0.60

blev Changes in bank leverage : : -0.05 0.29 . : -0.11 1.16 0.05 0.18
7 Consumtion-wealth rafi - - 0.0 0.26 - - 20.09 0.75 20.09 0.77
ooy onsumphion-wealil ratio : - 0.07 0.43 : - 0.01 0.01 0.04 0.13
' Pt J 136 0.11%+ 111 023% 277 031%** 778 0.07 0.45
g “tp-Treasury sprea 1.30 0.10%* 0.99 <284 700 0.08 0.55
0.58 0.3%% 154 0.20 145 J0.14%% 1.5

afr Default return 0.28 1.89 1.99 1.95 -0.15* 1.83
_ _ 0.17%% 122 0.07 0.26 033%** 346 0.11 0.79 0.04 0.08
ah Default yield 0.14%%* 100 0.04 0.12 0.23%* 1.83 0.10 0.73 0.03 0.05
- - -0.02 0.06 - - 0.00 0.00 -0.03 0.10

egdp Expected GDP growth : - -0.06 0.38 : : -0.04 0.19 0.07 0.47
» Exvected refurn 0.00 0.00 20.08%%  0.56 0.00 0.00 20.08 0.57 0.13%* 165
exre pected re 0.00 0.00 -0.03 0.11 0.04 0.15 -0.03 0.06 -0.06 0.37
- - 0.00 0.00 - N 0.00 0.00 20.02 0.04

gdp GDP growth : - -0.01 0.02 : - -0.01 0.02 -0.05 0.19
" Investment-canital rafi - - 0.200 142 - - 0.12% 1.48 0.15%% 227
! nivestment-capttal ratio - - 0.11%* 1.24 : . 0.07 0.49 0.16%* 2.46
ol Indusirial production volatil 0.01 0.01 20.02 0.05 20.03 0.08 20.04 0.14 0.09 0.76
Pro ustrial production volatility 0.03 0.02 0.05 -0.01 0.01 -0.08 0.59 0.18%* 277
Net pavout 0.03 0.12 011 108 -0.06 034 0.00 0.00 -0.08 0.68

kot payou -0.04 0.12 -0.09* 0.75 -0.08 0.58 0.03 0.07 0.07 0.4
vol Inflation volatil 0.04 0.12 0.09 0.64 0.03 0.09 0.18%*% 287 0.02 0.03
rp ty 0.01 0.02 0.06 034 -0.07 0.45 0.10 1.03 0.03 0.10
s Term soread 20.03 0.08 0.0 0.02 20.05 021 20.06 031 J0.08%%%  0.56
s P 0.02 0.06 0.02 0.04 0.03 0.10 -0.07 0.52 -0.07 0.49
F AR? F AR? F AR’ F AR’ F AR’

- Kitchen sink 332 421%*% 676 234% 535 8.16%** 1156 7.63%%%  7.00
s fiehen sin 3.16 17.21%%% 748 £ 796 591 12.11 8.85%** 988

Table A.2 In-sample regressions for quarterly data. This table replicates Table 2 in Paye (2012). Values in
black are those reported in Paye (2012), and values in green are the replication results.
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1927.2-2010.12 1952.2-2010.12 1927.2-1951.12 1952.1-1985.12 1986.1-2010.12

Symbol  Name B 4R? B 4R’ B 4R’ B AR’ B AR’
o CP-tp-Troasury spread 0.074% 047 0.06% 029 0.17%*% 140 0.16*** 201 0.03 0.05
0.08%%* 054 0.06%%* 039 1.63 0.16 2.14 0.04 0.11

o Defaul return 20,0557 0.20 20.06%* 035 0.06 20.01 0.00 01 122
- 20,076 0.44 20,090 078 0.10 -0.06* 031 1.58
X . 0.10%** 040 0.04 0.07 127 0.03 0.05 0.09 032
4 Default yield 0.08%%% (.32 0.02 0.03 1.14 0.04 0.10 0.05 0.11
et Expected retum 20.01 0.01 0.04% 0.17 0.01 20.06* 029 20.02 0.04
-0.03* 0.10 -0.04 0.14 032 -0.04 0.18 -0.01 0.01

» Growth in industrial production 0! 0.02 -0.01 0.01 0.10 0.01 0.01 -0.08 0.53
-0.03* 0.11 -0.02 0.05 035 -0.01 0.02 -0.06* 0.34

) . . i, 0.00 0.00 0.00 0.00 0.04 £0.03 0.07 0.10 0.96
ipvol Industrial production volatility ), 0.01 0.01 0.01 0.09 -0.01 0.01 0.11%%% 105
0.02 0.03 2006 029 0.09 0.00 0.00 0.0 0.22

Py Net payout 0.02 0.04 -0.04* 0.18 0.16 0.00 0.00 -0.03 0.12
) . . 0.03 0.11 0.05% 0.26 0.02 0.07*% 047 0.04 0.15
ppivol Inflation volatility 0.00 0.00 0.05%* 0.26 0.08 0.02 0.03 0.08%* 0.56
s N 0.02 0.02 0.0 0.01 0.01 20.02 0.05 -0.05 027
0.02 0.04 0.02 0.05 0.01 -0.04 0.19 -0.05 0.23

F AR’ F AR’? F AR’ F AR’ F AR’

ik Kitehen sink 406%** 1.2 6.20%%% 161 207F%% 226 41208 267 2084  3.07
144.03%%%  1.52 84.71 1.84 38.7 3.95 34.60%%% 245 37.36%%* .64

Table A.3 In-sample regressions for monthly data. This table replicates Table 3 in Paye (2012). Values in
black are those reported in Paye (2012), and values in green are the replication results.

84



1947Q3-2010Q4, 1972Q3-2010Q4, 1982Q3-2010Q4, 1972Q3-2000Q4,

N=254 N=154 N=114 N=114
Symbol  Name cw AR’ cw AR’ cw AR’ cw AR’
‘ - - 2.43% 0.13 139 -1.s2¢ 2.55 20.01
blev Changes in bank leverage - - 0.42 -0.46 185 127 1.66 0.13
cay Consuumption-woalth ratio - - 3.09 -0.70 -0.95 122 4.72%% 1.96
- - 320 27 204 -126%% 350 270k
o CP-tp-Treasuty spread 777%% 071 1529%% 1.9 1.99 245 21.86%%% 437
10.16¥%%  0.60 17.05%%% 255 5.53% -0.44 22855 446
2.93%% 037 3.98* 0.32 3.97 0.05 2.63 0.14
afr Default return 2.91% 0.17 4.88% 0.52 3.89 -0.46 3.08% 0.43
A 0.26 121 20.95 _1.54 0.25 ~0.24 027 20.45
af Default yield 0.77 -1.94 -1.06 2.47 -1.93 -3.05 0.17 0.73
- - 1.68 130 1.03 0.36 134 129
egdp Expected GDP growth - - -0.46 1.22 -0.16 -0.54 -0.30 -1.57
033 122 3.32% 0.15 1.78 023 227 0.62
exrel Expected return -0.50 -1.14 -0.66 -1.14 -0.37 -1.10 289 2.76%*
- - 0,51 ~0.64 -0.86 0.73 0.34 0.26
gdp GDP growth - - 0.68 -0.23 0.08 -0.41 1.38 -0.01
ik Investment-capital ratio . . 6.07+ 1.30 569 0.74 6.22%* 2.02
- - 6.03%% 1.01 7.45%% 1.04 4.93% 1.35
ipvol Industrial production volatility -1.25 -0.83 -2.04 -1.41 -1.43 -0.90 -0.59 -051
0.51 -0.21 1.00 -0.25 0.67 -0.44 0.13 -0.25
159 154 191 212 0.15 0.79 182 212
Py Net payout 232 210%* 261 -208% 238 221 323 -3.08%*
A . y 4.65%% 0.16 6.83* -0.06 279 2.97*%*  10.32%% (.88
ppivol  Inflation volatility -1.77 -4.96 -2.80 822 -5.54 -9.91 231 -0.57
s Term spread 2.64 20.66 1.43 122 177 -1.46 3.05 20.46
2.49 -0.61 1.72 -0.92 0.16 -1.18 2.58 -0.40
. - - 571 -7.89%% 558  -15.79%* 234 -6.90%* 19.69%*  7.94
sink Kitchen sink 6.62  -17.00%* 21.70%  -21.79%* 292 2097* 35.90%% 1148
Combined forecasts
Mean 1.82%% 0.62 272%x% 125% 0.41 0.10 3.84%%% 2165
1.29% 0.34 1.63% 0.65 0.27 -0.06 204%%  103%
Median 0.77 0.26 0.98%* 0.48 0.04 20.03 130%%%  0.75%%
0.82% 0.36 021 0.07 -0.49 -0.30 0.40 0.19
Trimomean 117+ 0.41 1.75%* 081 0.12 -0.02 2467 1307
0.76 0.23 0.92 0.38 0.03 -0.08 L11* 0.58
MSPE 2.05%* 0.73 3.66%%% 1.6 0.91 0.34 5.08%%%  2.84%%
0.88 -0.19 2.26%* 0.72 0.38 0.59 3.10%% 1.38

Table A.4 Out-of-sample forecasting results for quarterly data and rolling estimation. This table replicates
Table 4 in Paye (2012). Values in black are those reported in Paye (2012), and values in green are the
replication results.
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1947Q3-2010Q4,

1972Q3-2010Q4,

1982Q3-2010Q4,

1972Q3-2000Q4,

N=254 N=154 N=114 N=114
Symbol ~ Name cw AR’ cw AR’ cw AR’ cw 4R?
‘ - - 1.03 20.66 262 -1.90%* 2.58 20,30
blev Changes in bank leverage - - 0.67 -0.14 168 -1.03%* 0.79 -0.24
. . - - 0.66 -0.06 -0.69 -0.60 038 2032
cay Consumption-wealth ratio ) ) 051 053 0.53 012 115 113
o CP-tp-Treasuty spread 5.90%*  0.13 11.35%%  0.60 -0.01 239 16.87%%  2.56
5.86% 0.11 10.41%% 075 2056 -427%* 15.97%% 318
1.92% 0.48 6.77% 121 6.81% 0.76 3.08% 038
af Default return -0.37 0.77 8.60%* 170 9.89* 1.00 3,34 0.72
A 0.46 0.60 0.04 0.71 0.04 0.29 -0.10
af Default yield 0.84 0.20 0.22 0.32 -0.38 0.28 -0.29
- - 20.26 20.14 0.15 0.06 2032 20.20
egdp Expected GDP growth - - 0.49 0.13 2.70% 0.89 037 0.05
0.17 20.20 200%% 049 1.69 0.26 122 0.36
exrel Expected return -0.19 -0.29 -0.69 -0.45 2123 -1.04% SIS -0.84%
- - 20.55 20.30 027 0.12 ~0.56 0.39
gdp GDP growth - - 20.53  -0.20%% 0.46 -0.02 070 -0.47%%
ik Investment-capital ratio . . 582 1.56 S.13m 0.95 7507 S
- - 4.19%% 1.30 456* 0.27 3.99% 175+
iovol Industrial production volatly %7 021" -0.49 0.32 -0.70 -0.40 0.62 027
-0.02 -0.01 0.92 -0.97 173 -0.89 .68 0.41
. Net paout 20.04 20.16 3.19 0.22 5.45% 0.94 2.56 0.30
-0.03 -0.19 1.60 0.06 1.81 0.06 0.00 -0.69
A . y 0.42 -0.01 739%% 050 0.10  2.15* 8.84* 20.05
ppivol  Inflation volatility 042 -0.05%* 5.14% 72 2.60 -9.02 236 -0.29
s Term spread 070 -041% 0.43 071 233 -120° 126 -0.75
071 -041* 0.10 -0.59 -1.94 143 0.81 -0.49
ik Kitchen sink .91 077 2108%** 125 12.59%%% 0.59 23.06**  0.90
* 114 30.20%%%  .6.58 1535%%  _6.73 211 3016
Combined forecasts
Mean L6I***  0.50%% 292%%%  1.20% 1.03%% 036 34peer 172
LI2F%  0.43% 2218 ().95%kx 1.21% 0.41 204855 ]2k
Median 0.03 20.03 0.66* 027 0.10 0.01 0.947F  0.48*
0.03 0.00 0.50%%  0.22% 0.09 0.01 0.48% 0.26
Trimemean 0.66**  0.24* L79% %% 074 0.44 0.13 220 LI
0.45* 0.16 1.20%% o 0.50 0.17 LIV 0.61%
MSPE 1.86%%%  0.69%** 3TTRRE 153 LS6*F 057F  dssee 207
0.63 -0.03 2.68%*%*  (.95%* 1.34% 1.02% % 2 6&% ks 1.18%

Table A.5 Out-of-sample forecasting results for quarterly data and recursive estimation. This table
replicates Table 5 in Paye (2012). Values in black are those reported in Paye (2012), and values in green are

the replication results.
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Appendix B. Data Sources

This appendix provides the sources of data used for the construction of our variables.
Changes in bank leverage (blev): (1952-2023)

To calculate this variable, the relevant quarterly data series, FL664090005.Q (total financial
assets) and FL664190005.Q (total liabilities), were obtained from Table F.130 on the website
of the board of governors of the federal reserve system’. Total equity was computed as the
difference between total financial assets and total liabilities. The leverage ratio was then
calculated as total assets divided by total equity, and finally, to get this variable, the percentage

changes in the leverage ratio was calculated.
Commercial paper-to-Treasury spread (cp): (1927-2023)
To construct cp, defined as the spread between the 3-month commercial paper rate and the 3-

month T-bill rate, several data series from federal reserve economic data (FRED)® were

combined due to the lack of unified complete historical data:
1. Commercial Paper Rates:

e 1927-01 to 1971-03: commercial paper rates for New York, NY
(M13002US35620M 156NNBR).

e 1971-04 to 1997-08: 3-month prime commercial paper, average dollar offering rate,

discount basis.
e 1997-09 to 2023-12: 90-day A A nonfinancial commercial paper rate.
2. Treasury Bill Rates:

e 1927-01 to 1933-12: yields on short-term U.S securities, including three-month

Treasury notes and bills.

3 https://www.federalreserve.gov/

6 https://fred.stlouisfed.org/
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e 1934-01 to 2023-12: 3-month Treasury bill secondary market rate, discount basis.

The cp variable was constructed at both monthly and quarterly frequencies. The monthly
series, derived directly from the sources, represent average daily rates. For the quarterly series,

we simply took the average of monthly cp values per quarter.
Consumption-wealth ratio (cay): (1952-2023)

Consistent with Paye (2012), cay data are obtained from Amit Goyal’s website, using the
version updated through 2024.7

Current GDP growth (gdp): (1952-2023)

gdp data are sourced from federal reserve economic data (FRED): series

A191RL1Q225SBEA: real gross domestic product.

Default return spread (dfir): (1927-2023)

dfr data are obtained from Amit Goyal’s website, using the version updated through 2024.
Default spread (dfy): (1927-2023)

dfy data are also obtained from Amit Goyal’s website, using the version updated through 2024.
Expected GDP growth (egdp): (1952-2023)

Data required to construct this variable are obtained from the “surveys and data” section of

the federal reserve bank of Philadelphia’s website.®
Expected return (exret): (1927-2023)

Forecasting variables for in-sample fitted values of exret for different sample periods in our

study:

7 https://sites.google.com/view/agoyal145

8 https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/livingston-survey

88


https://sites.google.com/view/agoyal145
https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/livingston-survey

Quarterly:
1947-2010:

1972-2010:

'ik_lag'

1982-2010:

'ik_lag'

1972-2000:

'ik_lag'

1947-2023:

1947-2019:

1972-2019:

'ik_lag'

1972-2023:

Monthly:

1947-2010:

1972-2010:

1982-2010:

1972-2000:

1947-2023:

1947-2019:

1972-2023:

1972-2019:

'cp_lag', 'dfr lag', 'dfy lag', npy lag', 'ppi_lag', 'tms lag'

'cp_lag', 'dfr lag', 'dfy lag', 'npy lag', 'ppi_lag', 'tms_lag', 'cay lag', 'egdp lag',

'cp_lag', 'dfr lag', 'dfy lag', 'npy lag', 'ppi_lag', 'tms_lag', 'cay lag', 'egdp lag',

'cp_lag', 'dfr lag', 'dfy lag', 'npy lag', 'ppi_lag', 'tms lag', 'cay lag', 'egdp lag',

'cp_lag', 'dfr lag','dfy lag', 'ppi lag', 'tms lag'
'cp_lag', 'dfr lag', 'dfy lag', npy lag', 'ppi lag', 'tms_lag'

'cp_lag', 'dfr lag', 'dfy lag', 'npy lag', 'ppi_lag', 'tms_lag', 'cay lag', 'egdp lag',

'cp_lag', 'dfr lag','dfy lag', 'ppi_lag', 'tms lag', 'cay lag', 'egdp lag', 'ik lag'

'cp_lag', 'dfr lag','dfy lag', 'ppi_lag', 'tms lag', 'npy lag'
'cp_lag', 'dfr lag', 'dfy lag', 'ppi_lag', 'tms lag', npy lag'
'cp_lag', 'dfr lag', 'dfy lag', 'ppi_lag', 'tms lag', npy lag'
'cp_lag', 'dfr lag', 'dfy lag', 'ppi_lag', 'tms lag', npy lag'
'cp_lag', 'dfr lag', 'dfy lag', 'ppi_lag', 'tms _lag'

'cp_lag', 'dfr lag', 'dfy lag', 'ppi_lag', 'tms lag', npy lag'
'cp_lag', 'dfr lag', 'dfy lag', 'ppi_lag', 'tms _lag'

'cp_lag', 'dfr lag', 'dfy lag', 'ppi_lag', 'tms lag', npy lag'

Growth in industrial production (ip): (1927-2023)

Industrial production data are obtained from the federal reserve economic data (FRED):

industrial production: total index (INDPRO) series.
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Investment-capital ratio (ik): (1952-2023)

ik data are obtained from Amit Goyal’s website, using the version updated through 2024.
Net payout (npy): (1927-2019)

The data for constructing npy are sourced from the website of Michael R Roberts”.

Term spread (tms): (1927-2023)

tms data are sourced from Amit Goyal’s website, using the version updated through 2024.
Volatility of growth in industrial production (ipvol): (1927-2023)

The data are the same used in constructing ip.

Volatility of inflation growth (ppivol): (1927-2023)

This variable is constructed from the series of producer price index by commodity: all

commodities (PPIACO), from federal reserve economic data (FRED).

? https:/finance.wharton.upenn.edu/~mrrobert/research.html
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