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Résumé 

En s’appuyant sur les conclusions de Paye (2012), cette thèse examine si l’intégration de 

variables macroéconomiques dans les modèles d’apprentissage automatique (ML) permet de 

produire des prévisions plus précises de la volatilité des rendements boursiers, 

comparativement à un modèle autorégressif (AR) de référence. Nous estimons la volatilité 

réalisée sur la période allant de 1927 à 2023, aux fréquences mensuelle et trimestrielle, à l’aide 

de la régression linéaire ordinaire (OLS), de la régression ridge, du lasso, de l’elastic net, de 

la forêt aléatoire, des arbres de régression à gradient boosting (GBRT) et d’un réseau de 

neurones à mémoire longue à court terme (LSTM). Les prévisions sont élaborées selon des 

fenêtres glissantes et récursives, couvrant huit périodes d’échantillonnage incluant des 

contextes de marché stables et de crise. Nous constatons des améliorations modestes de la 

précision prédictive hors échantillon pour les modèles linéaires (OLS et régressions 

régularisées) ainsi que pour le LSTM, lorsque les données sont mensuelles et le schéma de 

fenêtre récursive appliqué. Toutefois, ces gains ne sont pas statistiquement significatifs et, par 

conséquent, les modèles les plus performants tendent à égaler le modèle AR en termes de 

performance prédictive. En comparant l’ensemble des échantillons de prévision, nous 

observons que la qualité des prévisions s’améliore lorsque la fenêtre d’estimation s’élargit et 

lorsque l’on passe des données trimestrielles aux données mensuelles. Les tests par 

permutation réalisés sur les modèles LSTM et elastic net indiquent que la volatilité passée 

représente environ deux tiers du pouvoir prédictif, suivie par les variables d’écart de crédit, 

tandis que les mesures de l’activité économique réelle contribuent peu. 

 

Mots clés: Prévision de la Volatilité, Ridge, Lasso, Elastic Net, Gradient Boosting, Mémoire 

Longue à Court Terme, Causalité de Granger, Modèle Autorégressif, Fenêtre Glissante, 

Fenêtre Récursive 
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Summary 

Building on the findings of Paye (2012), this thesis investigates whether machine learning 

models augmented with macroeconomic variables yield more accurate forecasts of stock 

return volatility compared to the autoregressive (AR) benchmark model. We estimate ordinary 

least squares (OLS), ridge, lasso, elastic net, random forest, gradient boosted regression trees 

(GBRT), and a long short-term memory (LSTM) network on realized volatility spanning from 

1927 to 2023 at both monthly and quarterly frequencies. Forecasts are generated under rolling 

and recursive windows across eight sample periods, which include tranquil and crisis market 

conditions. We find modest improvements in out-of-sample prediction accuracy in linear 

models (OLS and regularized regressions) and LSTM in monthly data and recursive window 

scheme. However, these gains are not statistically significant and therefore, the best 

performing models tend to match the AR benchmark in terms of predictive performance. 

Comparing all forecasting samples, we find that forecast quality improves when the estimation 

window expands and when data move from quarterly to monthly. Permutation tests on the 

LSTM and elastic net models show that past volatility accounts for roughly two-thirds of 

predictive power, followed by credit spread variables, while measures of real economic 

activity contribute little. 

 

Keywords: Volatility Forecasting, Ridge, Lasso, Elastic Net, Gradient Boosting, Long Short-

Term Memory, Granger Causality, Autoregressive Model, Rolling Window, Recursive 

Window  
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Chapter 1. Introduction 

Forecasting is crucial for making informed decisions in many different fields of study, 

including finance, economics, supply chain management, meteorology, and even public health 

and epidemiology. Accurate forecasts equip individuals and organizations to plan, mitigate 

risk, and allocate resources efficiently. Specifically, in the finance industry, the ability to 

forecast volatility in asset prices plays a significant role in risk management, portfolio 

allocation, pricing of derivatives, and broader policy making (Engle, 1982; Bollerslev, 1986; 

Ding et al., 1993; Christensen et al., 2023). As a result, volatility forecasting has attracted 

extensive attention from academic finance researchers and practitioners.  

However, despite the ample attention volatility modeling has received, reliable volatility 

forecasting is challenging due to many factors, such as the complex behaviour of financial 

markets, incomplete and inconsistent understanding of volatility drivers, and frequent 

structural changes in market dynamics, especially during market downturns (Schwert, 1989; 

Glosten et al., 1993; Engle and Rangel, 2008).  

Initial efforts at volatility modeling relied predominantly on linear econometric approaches, 

including the ARCH and GARCH models, proposed by Engle (1982) and Bollerslev (1986), 

respectively. Applied in different financial time series, these models successfully captured key 

features of volatility such as persistence and clustering behaviour, mean reversion, leverage 

effects, and heavy-tailed return distributions (Engle and Patton, 2001; Filipovic and 

Khalilzadeh, 2021).  

Despite their effectiveness, ARCH and GARCH models struggle to incorporate a wide range 

of information, such as macroeconomic variables and firm- and market-specific features, 

limiting their predictive power.  

Later studies proposed alternative volatility modeling techniques, such as AR and HAR 

models, that use realised volatility (RV) computed from high-frequency return data (Taylor, 

1986; French et al., 1987; Schwert, 1989; Paye, 2012). Because RV is observable, it could be 

directly employed in linear forecasting models, producing more transparent predictions and 

avoiding the potential misspecification risks encountered with ARCH and GARCH models. 
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However, because these linear models can handle a large set of predictors, they are prone to 

biased and inconsistent parameter estimates, resulting in inferior out-of-sample forecasting 

performance (Paye, 2012; Filipovic and Khalilzadeh, 2021). 

More recently, machine learning (ML) models have gained great attention in volatility 

forecasting due to their ability to handle complex and non-linear relationships and handle a 

broad set of predictive variables better than simpler models (Zhu et al., 2023).  ML methods 

such as regularized regressions, tree-based (or ensemble) models, and neural networks, 

applied to volatility forecasting, have demonstrated superior out-of-sample predictive 

accuracy in most cases (Mittnik et al., 2015; Luong and Dokuchaev, 2018; Carr et al., 2019; 

Moon and Kim, 2019; Nybo, 2020; Filipovic and Khalilzadeh, 2021; Nõu et al., 2021; 

Petrozziello et al., 2022; Christensen et al., 2023; Zhu et al., 2023; Zhang et al., 2024; Niu et 

al., 2024; Rahimikia and Poon, 2024). Furthermore, several hybrid approaches, which 

combine linear econometric models, such as ARCH/GARCH, with ML algorithms, have also 

shown improved forecast accuracy (Donaldson and Kamstra, 1997; Nõu et al., 2021). A few 

studies, however, documented the underperformance of ML models compared to simpler 

benchmarks (Branco et al., 2022; Audrino and Chassot, 2022). 

Despite broad evidence supporting the superior performance of ML models, there is 

considerable variation in findings due to differences in model specifications, data frequency, 

predictor sets, and estimation windows. For example, some studies have used highly granular 

market data such as bid-ask spreads and intraday volatility measures, which enhanced 

predictive accuracy through market microstructure information (Filipovic and Khalilzadeh, 

2021; Zhang et al., 2024; Rahimikia and Poon, 2024). Some others have incorporated 

macroeconomic data alongside the market-based predictors and have reported that the 

predictive power of ML models relies predominantly on market-related variables (Filipovic 

and Khalilzadeh, 2021; Christensen et al., 2023), questioning the incremental value of 

macroeconomic variables in such forecasting frameworks.  

These observations suggest that despite advancements in modeling techniques, financial 

market volatility forecasting remains challenging and inconclusive. Furthermore, although 

some studies have indicated the impact of economic events (notably market crashes) on 

volatility forecasting (Paye, 2012; Nybo, 2020; Rahimikia and Poon, 2024), to our knowledge, 
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there is limited research focusing solely on the predictive power of macroeconomic variables 

as a feature set in advanced machine learning techniques. Addressing these problems, this 

thesis investigates whether the application of machine learning techniques and the integration 

of exclusively financial and macroeconomic variables can significantly improve volatility 

forecasts, closing the existing gap in the literature. Specifically, our main research objectives 

are: 

1. To test whether machine learning techniques, ranging from simpler regularized 

regression models to advanced ensemble and deep learning methods, significantly 

outperform the autoregressive benchmark in forecasting stock return volatility. 

2. To assess the incremental predictive power of macroeconomic variables in forecasting 

volatility. 

Our research has theoretical and practical pertinence. Theoretically, it contributes to the 

existing literature by assessing the predictive accuracy of advanced ML forecasting methods 

that employ macroeconomic predictors. Practically, our findings provide valuable insights for 

financial analysts, risk managers, and portfolio managers, helping them make optimal 

investment decisions. The originality of our work stems from its explicit focus on 

macroeconomic variables employed in machine learning models, which addresses a gap 

identified in existing volatility forecasting literature.  

To conduct the analysis and answer the research questions, this thesis employs a diverse range 

of forecasting models, including regularized regressions (ridge, lasso, and elastic net), 

ensemble methods (random forest and gradient boosted regression trees (GBRT)), and a deep 

learning technique (long short-term memory (LSTM)). These models are tested using 

historical monthly and quarterly data on realized volatility and macroeconomic variables 

through rolling and recursive window approaches. 

The set of macroeconomic variables used in our study is selected from Paye (2012). Paye 

(2012) investigated whether it was possible to enhance volatility forecasts on a monthly and 

quarterly basis by conditioning on macroeconomic variables. The author compared the 

forecasts generated from augmented ordinary least squares (OLS) with those generated from 

a simple autoregressive (AR) model. Similarly, the benchmark used in this thesis is the same 
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AR model from Paye (2012). Our study starts with replicating the findings of Paye (2012) and 

then extending his study by employing more advanced forecasting techniques beyond the 

traditional regression (OLS) model.  

The remainder of this thesis is structured as follows: Chapter 2 reviews the relevant literature 

on volatility forecasting and outlines specific gaps motivating this research. Chapter 3 details 

the research design and methodology, including data collection and variable construction, 

forecasting models, evaluation methods, and specific details on forecast settings. Chapter 4 

presents empirical results on the predictive accuracy of ML models against the AR benchmark. 

Moreover, this chapter discusses key findings in the context of existing literature, highlights 

practical implications, and suggests directions for future research. Finally, Chapter 5 presents 

the conclusion. 

 

 

 

 

 

 

  



5 

 

Chapter 2. Literature Review 

2.1 Introduction 

In finance, forecasting is fundamental for investors, portfolio managers, risk managers, 

policymakers, and other market participants in their decision-making process. Reliable and 

accurate forecasts can significantly enhance investment strategies and risk management 

practices, as well as support more informed fiscal and monetary policy decisions. 

Consequently, forecasting financial variables such as asset prices, returns, volatility, interest 

rates, exchange rates, and economic indicators has gained considerable interest from both 

academics and practitioners over recent decades. 

Among financial variables, volatility is critical in risk management, portfolio allocation, 

derivatives pricing, and market regulation. However, volatility is challenging to predict for 

several reasons. First, there is an incomplete understanding of the true drivers of volatility, 

despite numerous studies attempting to identify these factors (Campbell, 1987; Schwert, 1989; 

Breen et al., 1989; Shanken, 1990; Glosten et al., 1993; Whitelaw, 1994; Graham and Harvey, 

2001; Marquering and Verbeek, 2004; Ludvigson and Ng, 2007; Engle and Rangel, 2008; 

Engle et al., 2008; Campbell and Diebold, 2009; Lettau and Ludvigson, 2010; Paye, 2012). 

Second, financial markets exhibit complex, nonlinear behavior and sudden structural shifts, 

making volatility hard to predict. Still, Engle (1982), Bollerslev (1986), Ding et al. (1993), 

and more recently Christensen et al. (2023) all reported that volatility is persistent. In other 

words, large fluctuations in prices tend to be followed by large fluctuations, a pattern known 

as volatility clustering. This slow decay in the autocorrelation of absolute returns suggests 

there is some predictability in market volatility. 

Third, existing literature on volatility forecasting indicates inconsistent and various 

conclusions, due to differences in modeling techniques, volatility variable measurement, 

predictors, data frequencies, and forecasting horizons. This diversity makes it difficult to reach 

a consensus on whether volatility can be forecasted with high precision in financial markets.  

In this chapter, we review prior studies, looking at their forecasting approaches, specific 

models used, data choices, and results. We then discuss how these findings align with our 

research objectives. 
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2.2 Evolution of volatility modeling  

Methodologies in volatility modeling have evolved considerably over time. Initially, studies 

relied predominantly on linear econometric models, such as ARCH, GARCH, AR, and HAR 

models. However, more recently, an increasing number of studies employ nonlinear and 

advanced modeling techniques, including machine learning algorithms. In this section, we 

review the evolution of volatility forecasting models from traditional linear to advanced 

methods, discussing their effectiveness and limitations. 

2.2.1 ARCH and GARCH frameworks  

After decades of assuming constant variance for time series in econometric models, Engle 

(1982) introduced the autoregressive conditional heteroscedastic (ARCH) model, the first 

stochastic process to let volatility change over time. More specifically, Engle showed that 

while the unconditional variance (the long-run average volatility) remains fixed, the 

conditional variance evolves each period as a function of past squared forecast errors, so that 

volatility today reflects recent shocks (Engle, 1982). 

To test his new model, Engle employed it to estimate the mean and variance in UK inflation, 

based on quarterly inflation data from 1958Q2 to 1977Q2. His analysis revealed that the 

ARCH effect played a significant role in modeling the volatility of UK inflation. In particular, 

there was a cluster of large variances in the mid-1970s, during which the UK inflation became 

hard to predict. However, the ARCH model captured this increased volatility more accurately 

than a homoscedastic model, which assumes that variance remains constant over time.  

Overall, Engle (1982) demonstrated that variance is itself time-varying and should be 

explicitly modeled rather than treated as a constant noise level.  

Later, Engle (1983) applied the ARCH technique to model the conditional variance of US 

inflation. His study provided support for the ARCH model by showing that volatility is time-

varying rather than constant. His tests rejected homoskedasticity and demonstrated that 

modeling today’s variance as a function of past squared errors allowed the ARCH model to 

track rises and falls in volatility. Building on this, Engle and Kraft (1983) extended the ARCH 

framework beyond one-period-ahead forecasts to multiperiod forecasting of US inflation 
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volatility, showing that iterating the model preserves volatility’s persistence over multiple 

horizons. 

Engle et al. (1987) thereafter extended the ARCH model to estimate time-varying risk premia 

in the term structure. To this end, the authors employed a new version of the ARCH, known 

as the ARCH-M model, which incorporated conditional variance directly into the mean 

equation. This model specification reflected the economic idea that risk-averse economic 

agents require higher returns for holding riskier assets. The authors applied the ARCH-M 

model to three fixed income products: 2-month Treasury bills, 6-month Treasury bills, and 20-

year Aaa corporate bonds to determine whether time-varying risk premia exist for these assets. 

The empirical evidence demonstrated that risk premia are not constant over time; instead, they 

change with the degree of market uncertainty. In periods when investors perceived greater risk 

(higher conditional volatility), they demanded higher returns.   

After several successful applications of the ARCH model, Bollerslev (1986) introduced the 

generalized ARCH (GARCH) model. This model included lagged values of conditional 

variance in addition to lagged squared errors from the original ARCH technique (Bollerslev, 

1986). Bollerslev (1986) proved that incorporating past values of conditional variance into the 

traditional ARCH model accounts for the long memory of volatility and provides a more 

flexible lag structure. In the GARCH model, estimating more parameters can reduce the 

number of lags required for both squared errors and conditional variance, which leads to a 

more parsimonious model than the original ARCH model. 

Baillie and Bollerslev (1989) put the GARCH model into practice by fitting it to daily 

exchange rate data and examining its pattern. Their study revealed that although daily 

exchange rate returns followed a random walk in the mean, their volatility was not constant 

over time. The authors implemented a GARCH(1,1) model, which uses one lag each of the 

conditional variance and past squared errors. The results indicated persistent, time-varying 

volatility and heavy-tailed behavior in the data. By successfully modeling the time-varying 

volatility of exchange rates using this framework, this study helped explain the risk dynamics 

of daily exchange rate movements.  
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Further studies introduced other extensions of ARCH and GARCH models, notably the 

exponential GARCH (EGARCH), which was developed by Nelson (1991). This new model 

used the log of the conditional variance as a function of past shocks. Nelson applied EGARCH 

to CRSP daily return series, and the results showed that the model not only captured volatility 

clustering but also exhibited the leverage effect, meaning that past negative shocks increased 

future volatility relative to positive shocks of the same magnitude (Nelson, 1991). 

The ARCH and GARCH family models have become standard and useful tools for forecasting 

volatility, widely adopted by academics and risk managers. They also serve as the benchmark 

against which other modeling techniques are compared, in terms of prediction accuracy. 

2.2.2 AR model  

In the ARCH/GARCH models discussed above, volatility is inferred indirectly from return 

equations. In contrast, the autoregressive (AR) approach is based on observed volatility series 

directly. The mostly used variable in AR models in volatility forecasting studies, is realized 

volatility (RV), an ex-post measure of return variability over a fixed interval. It is constructed 

by summing squared high-frequency returns. For example, daily realized volatility is 

computed by summing the squared intraday returns for a given trading day (Andersen and 

Bollerslev, 2001; 2003). In this study, we adopted RV as the target variable at monthly and 

quarterly frequencies; accordingly, realized volatility was calculated as the sum of the squared 

daily returns within each month or quarter. Details of our volatility measurement are presented 

in the next chapter (methodology and research design). Some of the earliest studies employing 

realized volatility included Taylor (1986), French et al. (1987), Schwert (1989), and our 

reference study, Paye (2012).  

The AR approach assumes that today’s realized volatility is a linear function of its own past 

values (or lags). In one of the earliest applications of AR on realized volatility, Andersen and 

Bollerslev (1998) showed that an AR(1) model, using one lag of daily RV computed from 

five-minute returns, explained most of the predictable variation in the US equity market. 

Taylor and Xu (1997) similarly fitted an AR model to the realized volatility of UK equities, 

finding significant persistence in volatility up to ten trading days. 
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Subsequent studies have adopted AR models as benchmarks for more sophisticated methods. 

Andersen et al. (2001), using daily realized volatility constructed from high-frequency foreign 

exchange (FX) returns, found that a simple AR model performed competitively with more 

complex approaches in terms of forecasting accuracy. Ghysels et al. (2006) pushed this further 

by using an AR(5) on daily realized volatility of the S&P 500 index and showed that it often 

outperformed a GARCH(1,1) in one-day-ahead forecasts. Hansen and Lunde (2005) also 

demonstrated that straightforward AR fits on realized volatility were hard to beat in out-of-

sample tests across a wide range of equity and FX series.  

Overall, whereas ARCH/GARCH models predict today’s volatility from yesterday’s return 

shock, the AR approach forecasts today’s volatility directly from past realized volatility. By 

using an observed volatility series, AR models generate more transparent forecasts, capture 

the strong persistence seen in the volatility of financial time series, and avoid potential 

misspecification in the return equation used in ARCH/GARCH. Since AR on realized 

volatility has proven to be a strong framework, and following our reference study (Paye, 

2012), we also used AR(2) and AR(6) models in our study for quarterly and monthly data, 

respectively, as the benchmarks comparing their one-step-ahead forecasts to those generated 

from augmented and more advanced models.  

2.2.3 HAR model  

Building on the traditional autoregressive (AR) model for realized volatility, Corsi (2009) 

proposed the heterogeneous autoregressive HAR model. HAR employs multiple realized 

volatility components over different horizons as its inputs and accordingly, captures the long-

term nature of market volatility in a parsimonious way, without using complex long-memory 

models. Specifically, the HAR model incorporates different realized volatility measures, 

including daily, weekly, and monthly, reflecting different time horizons of the market 

participants (Corsi, 2009).  

Using the HAR model, Corsi (2009) generated out-of-sample forecasts for the realized 

volatility of three series: the USD/CHF exchange rate, the S&P 500 index, and US Treasury 

bonds, and showed that, at one-day, one-week, and two-week horizons, HAR reduced forecast 

errors significantly compared to short-memory benchmarks like simple AR or GARCH 
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models. Although it did not consistently beat more complex long-memory models, its 

performance was mostly similar to them, despite HAR’s simpler structure. 

Nevertheless, due to its simplicity and possible inefficiency at managing more complex data, 

later studies proposed extended versions of the standard HAR model. For example, Corsi and 

Reno (2012) added macroeconomic variables to account for the business cycle impacts on 

volatility, while Patton and Sheppard (2015) developed a jump-robust version of HAR to 

handle sudden price moves. Bollerslev et al. (2016) incorporated leverage effects and option 

implied volatility, Luong and Dokuchaev (2018) adjusted for high-frequency noise and 

microstructure bias, and Niu et al. (2024) combined HAR with machine learning techniques 

to learn nonlinear patterns flexibly.  

Accordingly, the easy structure of HAR and its capability to add additional predictors (other 

than volatility lags), made it a popular forecasting tool or benchmark in the most recent 

studies. Notably, Christensen et al. (2023) enhanced HAR with macroeconomic and survey 

variables and reported gains in out-of-sample accuracy, Niu et al. (2023) mixed HAR inputs 

into a neural network and reported better short-term forecasts, and Rahimikia and Poon (2024) 

integrated jumps and liquidity measures into HAR to capture extreme moves and trading 

frictions. These studies will be discussed further in the following section. 

In summary, the HAR model is a simple but powerful technique to forecast realized volatility 

by combining daily, weekly, and monthly measures. Its straightforward setup makes it easy to 

add new predictors, while still delivering strong accuracy.  

2.2.4 Machine learning models 

In addition to the time series frameworks such as ARCH/GARCH, AR, and HAR, a wide 

range of research has shifted toward implementing machine learning (ML) techniques for 

forecasting tasks. This shift is justified by the inherent complexity and nonlinearity of 

financial market data. While linear models capture persistent patterns using lagged volatility 

inputs, as discussed earlier, they might not be able to discover nonlinear dependencies in large 

and noisy datasets. Machine learning methods provide a data-driven approach that can find 

complex patterns without depending on any prior assumptions about the dataset being 

analyzed.  
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In simple words, machine learning techniques are a class of algorithms that can identify 

patterns in data and optimize prediction accuracy through experience. These algorithms 

minimize human intervention in detecting the patterns and relationships from the data. 

However, as noted by Filipovic and Khalilzadeh (2021), this minimal human intervention 

requires significant computational resources. Nevertheless, with the increasing use of high-

frequency data, cloud computing, and efficient algorithms, ML approaches have become more 

feasible and practical for forecasting different variables in finance. 

Specifically, prior studies have implemented ML models to predict volatility in various 

financial data including equity returns, comparing their forecasting performance to benchmark 

models such as ARCH/GARCH, AR, and HAR. However, the diversity of methodologies, 

predictors, volatility definitions (such as realized volatility, implied volatility, conditional 

variance), evaluation criteria, and time horizons has made it difficult to come up with 

consistent and unified conclusions across the literature. In this section, we review some of the 

most influential and interesting studies that have applied machine learning techniques, ranging 

from simplest ones like regularized linear models to neural networks for volatility forecasting.  

2.2.4.1 Applications of multiple ML models 

A vast majority of existing literature has applied multiple ML techniques (rather than a single 

model) to be able to compare their prediction performance. For instance, Christensen et al. 

(2023) applied a variety of ML models, including ridge regression, lasso, elastic net, random 

forest, gradient boosting, and neural networks, to forecast realized volatility for constituents 

of the Dow Jones Industrial Average. Not only did the authors employ several ML techniques, 

but their benchmark was also a set of extended versions of the HAR model, namely LevHAR, 

HAR-X, HARQ, SHAR, and LogHAR (Christensen et al., 2023).  

The forecasting variables used in this study included lagged values of realized volatility in 

different time horizons, incorporated in benchmarks and ML models, and a range of market-

related and a few macro variables, specifically used in ML models. The findings revealed that 

even with minimal hyperparameter tuning by the researchers, ML models outperformed 

benchmark HAR models in out-of-sample forecasting, especially at longer horizons. Notably, 

ML models incorporating only lagged realized volatility still outperformed HAR, suggesting 
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that ML’s ability to capture long-term dynamics provides a practical advantage over the HAR-

family models. Moreover, using the accumulated local effects (ALE) technique to assess 

variable importance, the authors found consistent, still model-specific rankings, indicating 

that different ML models extract distinct insights from the same dataset. 

Similarly, Filipovic and Khalilzadeh (2021) evaluated a range of ML algorithms, including 

elastic net, gradient boosted regression trees (GBRT), feedforward neural networks, and long 

short-term memory (LSTM), for forecasting future stock volatility. They used 46 market- and 

firm-specific characteristics like accounting variables and past returns, and eight 

macroeconomic predictors, such as interest rates, GDP growth rate, etc. Interestingly, the 

LSTM outperformed other models, particularly in market conditions with high volatility. 

Furthermore, the LSTM model with only volatility and return as predictors up to one year into 

the past, performed as good as an LSTM model with the full set of predictors and the same 

number of lags. The authors found that a small set of predictors, including current realized 

volatility, idiosyncratic volatility, bid-ask spread, and return, accounted for most of the models' 

predictive power.  

In general, both Christensen et al. (2023) and Filipovic and Khalilzadeh (2021) found that 

parsimonious ML models, mainly using past volatility and market-based lagged predictors, 

perform as well as, or even better than, more complex models that incorporate a broad range 

of macroeconomic variables.  

Consistent with this finding, Nõu et al. (2021) directly compared ML models to the 

econometric linear models, using only lagged prices as input features, for forecasting both 

returns and volatility. The authors evaluated random forest, support vector regression (SVR), 

and k-nearest neighbors (KNN) against ARMA (an AR model that incorporates moving 

averages of past volatilities) and GARCH on the NASDAQ Baltic Index. They also tested a 

hybrid GARCH-neural network (GARCH-NN) model to see whether combining models 

improves prediction performance. For return forecasting, SVR consistently outperformed 

ARMA. Regarding volatility forecasting, although GARCH models performed well in many 

cases, the hybrid GARCH-NN was able to outperform them in some settings, showing that 

combining traditional models with machine learning can improve predictions.  
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Hybrid models were originally introduced by Donaldson and Kamstra (1997) for forecasting 

daily volatility of the Canadian equity market. They proposed a GARCH-NN hybrid model 

where they first estimated volatility using a GARCH(1,1) model, and then applied a neural 

network to the residuals. The goal was to capture nonlinear dynamics that GARCH models 

could miss. Their study found that the hybrid model performed superior in terms of out-of-

sample forecasting accuracy than a standard GARCH model.  

Some studies employing multiple forecasting approaches have provided insights beyond the 

performance comparison of ML models and benchmarks. Specifically, Zhang et al. (2024) 

suggested that forecast horizon and data granularity significantly influence model 

performance in volatility forecasting. The authors studied the forecasting of intraday and daily 

volatility for the top 100 most liquid S&P 500 stocks. They tested various models, including 

ordinary least squares (OLS) regression, lasso, HAR, gradient boosting, multilayer 

perceptrons (MLP), and LSTM. Other than the lagged realized volatility measures, the 

predictors included market-wide volatility measures and microstructure features such as quote 

imbalances and stock-specific data. The results indicated that neural networks performed best 

for intraday volatility, especially when pooling data across stocks and incorporating market-

wide volatility. However, for daily-basis data, simpler models such as OLS performed better. 

Further research explored various aspects and analytical approaches in addition to testing 

several forecasting models. For example, Carr et al. (2019) attempted to forecast realized 

volatility using derivatives market data. Zhu et al. (2023) developed a panel data framework 

rather than relying solely on a time-series structure for their analysis. Finally, Niu et al. (2024) 

examined whether industry-specific realized volatility can predict aggregate future market 

volatility.  

To be precise, Carr et al. (2019) extended the volatility forecasting literature by applying ML 

models to predict realized variance using option price data, specifically from out-of-the-

money S&P 500 calls and puts. Instead of using past returns or volatility, their method looked 

at patterns in current option prices to understand what the market expects about future 

volatility. This reflects a forward-looking aspect that is not typically seen in econometric 

models. The study tested various models and found that ridge regression and shallow neural 

networks consistently outperformed both the VIX benchmark and simple linear models. This 
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suggests that ML techniques can effectively capture pricing signals embedded in option 

markets, under certain conditions.  

Considering the role of cross-sectional information, Zhu et al. (2023) introduced a panel data-

based machine learning framework for forecasting daily volatility across S&P 500 stocks. 

Instead of fitting separate models for each asset, they stacked features such as realized 

volatility, semi-variance, and jump components into a panel structure.  ML models, including 

lasso, elastic net, random forest, and gradient boosting, outperformed traditional time series 

models like HAR, delivering better forecast stability and adaptability to different market 

conditions. 

Niu et al. (2024) extended the gradual information diffusion hypothesis to volatility by 

assessing whether industry-specific realized volatility can predict aggregate market volatility. 

The idea behind this hypothesis, which was originally introduced by Hong et al. (1999), is 

that the information doesn't affect all parts of the market at once; it shows up in certain sectors 

first and then spreads more broadly. To test this in the context of volatility, Niu and colleagues 

used eight machine learning models, including support vector regression (SVR), neural 

networks, LightGBM, and AdaBoost, and found that LightGBM consistently had the best 

performance. Using SHAP, which is a variable importance analysis, the study identified health 

care, technology, and consumer services as early indicators at different forecast horizons. The 

results also revealed that adding sector-level information not only led to more accurate 

forecasts but also improved portfolio performance metrics such as Sharpe ratios and certainty 

equivalent returns. 

While many of the studies discussed above have shown that ML models at least matched or 

achieved higher prediction accuracy than linear benchmark models, some literature indicated 

that various benchmarks consistently (or most of the time) delivered better forecasts. For 

instance, Branco et al. (2022) investigated whether ML models can outperform traditional 

linear models, specifically the HAR model, in forecasting one-day-ahead realized volatility of 

10 major global stock indices. Using data from 2000 to 2021, the authors incorporated not 

only past RV values but also a broad set of predictors, including lagged returns and 

macroeconomic indicators. They evaluate both linear (OLS, lasso) and nonlinear (random 

forests, neural networks) models. Interestingly, their findings revealed that nonlinear ML 
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models did not statistically outperform the HAR or the linear ML models when enhanced with 

the same predictors. This suggests that linear models could be robust and competitive with 

complex ML models in realized volatility forecasting. 

More interestingly, Audrino and Chassot (2022) evaluated the performance of the HAR model 

relative to ML techniques in forecasting realized volatility across a massive panel of 1,445 

individual stocks. The ML models included lasso, random forest, gradient boosted tree, and 

feedforward neural networks. Even with extensive hyperparameter optimization, ML models 

consistently underperformed the HAR model with a rolling window estimation approach. 

Results showed that HAR, despite its simplicity and low computational expense, outperforms 

advanced ML models when both models use only realized volatility and VIX as predictors. 

The study underscores the importance of rolling window size and re-estimation frequency on 

model performance.   

2.2.4.2 Applications of a single ML model 

Among existing literature in volatility forecasting, numerous studies have evaluated the 

prediction accuracy of only one ML technique, such as a tree-based model or one of the neural 

networks. In an interesting setting, Luong and Dokuchaev (2018) proposed a two-stage ML 

approach using random forest. In the first stage, they predicted the direction of volatility using 

technical indicators and a purified implied volatility series. In the second, a random forest 

regression combined these predictions with traditional HAR inputs to forecast the magnitude 

of volatility. The results showed that their approach successfully predicted both the direction 

and magnitude of volatility, outperforming HAR models in predictive accuracy using high-

frequency data. 

Given the effectiveness of tree-based methods, Mittnik et al. (2015) demonstrated the impact 

of the boosting technique in stock market volatility forecasting. They developed a flexible 

approach by combining traditional ARCH models with the learning power of component-wise 

gradient boosting. Instead of estimating the model with fixed assumptions like in standard 

GARCH or exponential GARCH (EGARCH) models, they let the boosting algorithm learn 

how and to what extent different variables influence volatility, capturing non-linear 

relationships and important thresholds. Their model used a broad set of predictors, including 
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lagged returns, macroeconomic indicators (like interest rates), external variables such as oil 

prices, volatility indices, and exchange rates, as well as month/year effects and past volatility 

estimates. Compared to benchmark models like GARCH(1,1) and EGARCH, their approach 

produced more accurate out-of-sample forecasts and indicated how different economic and 

financial variables impact market volatility. 

Further studies evaluated the performance of deep learning models (neural networks) in 

forecasting volatility. Among them, Nybo (2021) compared the effectiveness of GARCH 

models and artificial neural networks (ANNs) in forecasting stock market volatility across 

different sector categories with low, medium, and high volatility profiles. The results indicated 

that the volatility profile impacted the performance of forecasting models. In specific, ANNs 

outperformed GARCH models when applied to low-volatility sectors with smaller 

fluctuations, while GARCH models delivered stronger forecasts in medium and high-

volatility sectors, probably due to their ability to capture persistent volatility clusters.  

In another study, Petrozziello et al. (2022) used LSTM to forecast one-day-ahead realized 

volatility for US equities using only past returns and volatility. Compared with benchmarks 

such as GARCH(1,1), the LSTM model demonstrated superior accuracy, especially during the 

2007-2008 financial crisis. However, the linear benchmarks performed comparably during 

calm market periods. This finding suggests that neural networks, in particular LSTM, can 

dynamically adjust to changing volatility dynamics. 

More recently, Rahimikia and Poon (2024) advanced the research on neural networks by 

incorporating HAR variables, limit order book data, and news sentiment into LSTM models 

to 23 Nasdaq stocks over 15 years. With over 3.6 million model variations, the authors 

reported that LSTM outperformed standard HAR in most of out-of-sample forecasts, except 

during periods of extreme market stress, where HAR remained competitive. Moreover, SHAP 

analysis showed that mid-price, bid/ask levels, and pre-2018 sentiment indicators were the 

key drivers of forecast accuracy. 

Findings of Nybo (2021), Petrozziello et al. (2022), and Rahimikia and Poon (2024) indicated 

that neural networks responded differently to various levels of market volatility. Petrozziello 

et al. (2022) showed strong LSTM performance during the 2007-2008 crisis, while Nybo 
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(2021) found that ANNs underperformed in high-volatility sectors. Similarly, Rahimikia and 

Poon (2024) reported that LSTM models were less effective than benchmarks during periods 

of extreme market stress. 

Finally, Moon and Kim (2019) introduced “hybrid momentum” as a type of target variable for 

forecasting, using LSTM models. This hybrid measure combines both price momentum and 

volatility momentum, designed to reflect market behavior better. The authors tested various 

input feature sets, including moving averages, technical indicators, and market signals, to see 

how different data combinations affect model performance. Their results showed that using 

hybrid momentum as a forecasting target improved predictions for both index levels and 

market volatility. Moreover, adding more features helped improve price forecasts but had little 

impact on volatility predictions, suggesting that volatility is mostly driven by its recent 

patterns rather than additional variables. This highlights that although greater feature sets help 

in return forecasting, volatility may need a modeling approach with its own related and past 

values. 

The next section reviews how macroeconomic variables have been integrated into the 

volatility forecasting literature. To conclude, we summarize the important empirical evidence 

discussed in this chapter to motivate our research objectives. 

2.3 Macroeconomic predictors in volatility forecasting 

Macroeconomic variables have been broadly used in return modeling literature, but their 

integration into the volatility forecasting has only gained interest more recently. As we 

discussed in the previous sections, traditionally, volatility models, namely ARCH/GARCH, 

AR, and HAR, have mainly relied on the past values of return or volatility. However, 

macroeconomic indicators provide forward-looking information and signals about the broader 

economy, possibly improving forecast accuracy.  

One of the earliest and most impactful studies employing macroeconomic variables in 

volatility forecasting is by Paye (2012), which serves as the basis for our study. The author 

assessed whether aggregate US stock market volatility can be forecasted more accurately by 

using macroeconomic and financial variables, rather than relying solely on an autoregressive 

(AR) benchmark. Using monthly and quarterly realized volatility of the S&P 500, Paye first 
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documented the countercyclical and highly persistent behavior of volatility. He then 

assembled a wide set of macroeconomic predictors, which are all listed and discussed in detail 

in the next chapter of this thesis. 

In-sample analysis indicated that several variables, notably the commercial paper‐Treasury 

spread, default return spreads, and an investment‐to‐capital ratio, Granger-caused volatility. 

The author, then, tested out-of-sample forecasts using ordinary least squares (OLS) regression 

for multiple time horizons in three different settings: incorporating each macroeconomic 

variable separately, kitchen sink (which included all variables in OLS), and combining all 

forecasts from individual variables with mean, median, trimmed mean, or MSPE weighted 

schemes. He then compared all forecasts to those generated from AR benchmark models 

(Paye, 2012). The results of out-of-sample tests demonstrated that OLS models rarely beat 

parsimonious AR models.  However, some small yet statistically significant gains emerged 

from combined forecasts, especially around the onset of NBER recessions.  Paye concluded 

that macroeconomic variables indeed contain incremental information about future market 

risk (according to the Granger causality tests), however, their economic contribution to 

forecasting accuracy is limited.  

Several studies, all discussed in more detail in the previous sections, have also incorporated 

macro variables as input features of their forecasting models. Corsi and Reno (2012) used 

macroeconomic indicators in an extended HAR framework to capture business cycle impacts 

on volatility. Filipovic and Khalilzadeh (2021) included macro variables among their 54 

predictors when evaluating LSTM. Mittnik et al. (2015) incorporated multiple macro variables 

into their ensemble model. Similarly, Branco et al. (2022) added macro predictors to both 

linear and nonlinear models. And more recently, Christensen et al. (2023) included several 

macroeconomic variables as part of their extended feature set.  

Although these studies have not consistently and explicitly indicated a clear advantage for 

macroeconomic variables over market-related or lagged variables in volatility forecasting, 

some others (Paye, 2012; Nybo, 2021; Petrozziello et al., 2022; and Rahimikia and Poon, 

2024) have documented that macroeconomic events such as recessions and financial crises 

significantly impacted volatility forecast results. This suggests that macroeconomic variables 

may hold undiscovered predictive power.  
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2.4 Identified gaps and research motivation 

Despite extensive research in financial volatility forecasting, discussed mainly in previous 

sections, there are significant gaps regarding application of machine learning techniques, 

particularly in the context of macroeconomic and financial predictors. In earlier studies, 

volatility modeling was predominantly based on linear econometric frameworks, including 

ARCH, GARCH, AR, and HAR models, which successfully captured the persistence and 

clustering nature of volatility (Engle, 1982; Bollerslev, 1986; Andersen and Bollerslev, 1998; 

Corsi, 2009). However, these models faced limitations in reflecting complex and nonlinear 

patterns frequently observed in financial markets (Mittnik et al., 2015; Luong and Dokuchaev, 

2018). 

Recent literature has increasingly demonstrated the potential of ML models to overcome these 

shortcomings. Studies employing multiple ML techniques, ranging from penalized regressions 

to ensemble and deep learning models, have found encouraging yet inconclusive results 

regarding their superior performance over linear traditional benchmarks (Filipovic and 

Khalilzadeh, 2021; Christensen et al., 2023; Zhang et al., 2024). Notably, some findings 

suggest that ML models consistently outperformed classical linear models, especially in high 

volatility market conditions (Filipovic and Khalilzadeh, 2021; Petrozziello et al., 2022), while 

others report comparable or even inferior performance relative to simpler benchmarks like the 

HAR model (Branco et al., 2022; Audrino and Chassot, 2022). 

Moreover, although some previous studies showed that macroeconomic variables provided 

predictive value especially during economically turbulent periods (Paye, 2012; Nybo, 2021; 

Rahimikia and Poon, 2024), there is no consensus in the literature about their advantage 

relative to lagged return and volatility and market-based variables. Nevertheless, the finding 

that macroeconomic variables hold predictive power during recessions and financial crises 

underscores an unexplored potential of these variables in volatility forecasting. 

Consequently, two clear gaps emerge from this synthesis: first, due to inconsistent evidence, 

there is still area for research in volatility forecasting and a need for a thorough comparison 

between ML models (ranging from simpler penalized regressions to advanced tree-based and 

deep learning methods) and strong benchmarks like AR model, second, the literature lacks an 
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explicit and detailed exploration of how macroeconomic variables exclusively, perform in 

volatility forecasting models (previous studies have used macro variables alongside many 

other variables such as lagged returns and market-based data e.g. bid-ask spread). Our research 

specifically addresses these two gaps by evaluating whether different ML techniques, which 

incorporate a set of macroeconomic variables, can significantly improve predictive accuracy 

compared to the standard AR model, extending the core findings of the seminal study of Paye 

(2012). 

In the next chapter, we describe our research design and methodology thoroughly. We walk 

through how the data is prepared, describe each forecasting model, and explain the rolling and 

recursive steps and all relevant forecast settings in detail. 
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Chapter 3. Methodology and Research Design 

In this chapter, we describe the methodology adopted to address our research question. In 

particular, this thesis investigates whether machine learning methods, ranging from simpler to 

more advanced models, using macroeconomic and financial predictors, can outperform the 

benchmark autoregressive (AR) model in forecasting US stock return volatility. 

A variety of methods, widely applied in previous forecasting studies, are employed in our 

study to assess volatility prediction performance. Simple linear regression is included due to 

its simplicity and widespread use in previous studies, particularly in our reference study (Paye, 

2012). Regularized regression models such as ridge, lasso, and elastic net were chosen because 

of their effectiveness in selecting relevant predictors through the introduction of penalties to 

regression coefficients. Ensemble methods, including random forest (RF) and gradient 

boosted regression trees (GBRT), were selected due to their capability to capture complex, 

nonlinear relationships among predictors and the target variable. Lastly, the long short-term 

memory (LSTM) model was adopted to explicitly account for long-term dependencies and 

volatility persistence inherent in financial time series data. 

The chapter begins with a brief discussion of the replication process of the reference study 

(Paye, 2012). Then, a detailed description of all variables used in the analysis is provided. 

This is followed by a clear outline of the forecasting models and the evaluation criteria adopted 

to assess their predictive accuracy. The chapter concludes by explaining the forecasting setup, 

hyperparameter choices, and the variable importance analysis approach employed in this 

study. 

3.1 Replication of the reference study 

The initial step in our research was to replicate, as closely as possible, the findings of Paye 

(2012), which provided the foundation for our study. In his study, Paye examines whether the 

inclusion of macroeconomic and financial variables can enhance the forecasting of stock 

return volatility. Both in-sample and out-of-sample analyses were conducted using monthly 

and quarterly data. The main methodology relied on simple linear regression, applying lagged 

predictors within both rolling and recursive estimation windows. 
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For the replication process, we attempted to use the same datasets or, when unavailable, to 

reconstruct variables according to the definitions and procedures described by the author. The 

replicated tables and figures from Paye (2012) are provided in Appendix A for the purpose of 

consistency and comparison. 

In the sections that follow, the full research design of this thesis is described in detail. 

Specifically, the data description, the OLS regression model, the evaluation metrics and 

statistical tests applied, main forecasting sample periods, and the estimation window 

procedures (rolling and recursive) are all closely aligned with Paye (2012). In contrast, the 

use of additional forecasting models, their corresponding hyperparameter tuning processes, 

the variable importance analysis, and the incorporation of extended sample periods represent 

extensions beyond the original study of Paye (2012). 

3.2 Data description 

This section describes the construction of the dependent variable; stock return volatility, and 

the macroeconomic and financial predictors employed in our forecasting models. Detailed 

information on data sources and the time horizon for which each variable is available is 

provided in Appendix B. 

3.2.1 Target variable: stock return volatility 

Construction of stock return volatility follows the same process as the reference study (Paye, 

2012) and is explained step by step below. Specifically, this variable is measured as the natural 

logarithm of annualized realized volatility. First, realized volatility is calculated as the sum of 

the daily squared excess returns of the S&P 500 over the risk-free rate, at both monthly and 

quarterly frequencies. The formula used to compute realized volatility, adapted from Paye 

(2012), is: 

    𝑅𝑉(𝑡) = ∑ 𝑅𝑖,𝑡
2𝑁𝑡

𝑖=1
,                                                            [1] 

where 𝑅𝑉(𝑡) denotes the realized volatility in month or quarter 𝑡,  𝑁𝑡 indicates the number of 

trading days in in the corresponding period, 𝑅𝑖,𝑡 denotes the excess return of S&P 500 over 

risk-free rate on trading day 𝑖 of month or quarter 𝑡.  
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Paye (2012) notes that, following prior evidence from Andersen et al. (2001), taking the 

natural logarithm of realized volatility results in a distribution closer to Gaussian (Paye, 2012; 

Anderson et al., 2001), which improves estimation robustness. Consequently, the same 

transformation is applied as: 

𝐿𝑉𝑂𝐿(𝑡) ≡ 𝐿𝑛(√𝑚𝑅𝑉(𝑡)),                                                     [2] 

where 𝐿𝑉𝑂𝐿(𝑡) denotes the log volatility in month or quarter 𝑡, and m is the annualization 

factor, set to four for quarterly data and twelve for monthly data.  

The volatility variable is constructed from January 1927 to December 2023 at the monthly 

frequency (denoted as MLVOL), and from 1927Q1 to 2023Q4 at the quarterly frequency 

(denoted as QLVOL). Our study covers multiple forecasting periods, which are defined in the 

subsequent sections of this chapter. The quarterly stock return volatility series is presented in 

Figure 3.1, which is similar to Figure 1, Panel A of Paye (2012), but spans an extended period.  

 

 

Figure 3.1 Quarterly volatility of the S&P 500 index, 1927-2023. This figure illustrates the time series plot 

of quarterly log realized volatility for the S&P 500 index from the first quarter of 1927 to the last quarter 

of 2023. The figure is inspired by and is an extended version of Paye (2012), Figure 1, Panel A. 

 

As shown in Figure 3.1, sharp spikes in market volatility generally occur during periods of 

market stress and economic downturn, including the years 1929-1933, 1987, 2000-2002, 
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2008, and 2020.1 This pattern suggests a close relationship between market volatility and the 

business cycle. To provide visual evidence of this, Figure 3.2, adapted from Paye (2012), 

illustrates the covariance between market volatility and the business cycle from 1947 to 2023.2  

 

 

 

Figure 3.2 Relationship between market volatility and the business cycle, 1947-2023. This figureshows the 

covariation between quarterly volatility of the S&P 500 index and the US business cycle. The blue lines in 

both panels represent the opposite of the standardized values of quarterly log volatility, and the orange 

dashed lines represent the standardized values of US real gross domestic product (rGDP) from the first 

quarter of 1947 to the fourth quarter of 2023. Specifically, Panel A presents the raw data, and Panel B 

presents smoothed data computed as six-quarter moving averages. 

 

 

1 These critical economic events are discussed further in the following sections. 

2 The figure extends Figure 1: Panel B and Panel C of Paye (2012), covering a longer historical period. 
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The business cycle in Figure 3.2 is measured as the standardized growth rate of US real gross 

domestic product (GDP). In the figure, the time series data for log realized volatility are 

inverted by multiplying the standardized series by −1. Panel A displays the raw series and 

Panel B shows the smoothed series, computed using a six-quarter moving average. 

As more evident in Panel B, the covariation is strong from the mid 1960s through the early 

1980s; however, it weakens in certain periods, such as after 1987, throughout the 1990s, and 

during the mid to late 2010s. This implies a time varying relationship between volatility and 

the business cycle. These observations support the inclusion of macroeconomic and financial 

variables in our study, as they may capture additional information not already captured in past 

volatility. In the next section, we describe all financial and macroeconomic variables used as 

predictors in our models. As our study extends the work of Paye (2012), we employ the same 

set of forecasting variables used in his analysis. 

3.2.2 Macroeconomic and financial variables  

This section outlines all forecasting variables and their definitions. The frequency of each 

variable (monthly or quarterly) is consistent with Paye (2012). 

Changes in bank leverage (blev) 

This variable is computed as the percentage change in the leverage ratio; defined as total assets 

divided by total equity for security brokers and dealers, following the approach of Adrian and 

Shin (2010). blev is constructed on a quarterly basis. 

Commercial paper-to-Treasury spread (cp) 

This variable is calculated as the difference between the three-month commercial paper rate 

and the three-month Treasury bill rate. cp is constructed at both monthly and quarterly 

frequencies. 

Consumption-wealth ratio (cay)  

cay, originally introduced by Lettau and Ludvigson (2001), is defined as the residual from a 

cointegrating relationship between aggregate consumption, wealth, and labor income (Lettau 

and Ludvigson, 2001; Paye, 2012). This variable is constructed on a quarterly basis. 
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Current GDP growth (gdp)  

gdp is the annualized growth rate of real, seasonally adjusted US gross domestic product 

(GDP). This variable is on a quarterly basis. 

Default return spread (dfr) 

This variable is calculated as the return difference between the long-term corporate bond and 

the long-term government bond. dfr is constructed at both monthly and quarterly frequencies.  

Default spread (dfy)  

Default spread is calculated as the difference between the yields on BAA-rated corporate 

bonds and long-term US government bonds. dfy is constructed at both monthly and quarterly 

frequencies. 

Expected GDP growth (egdp) 

Construction of egdp follows Campbell and Diebold (2009) and is based on the Livingston 

survey from the Federal Reserve Bank of Philadelphia. The survey collects macroeconomic 

forecasts from economists on a biannual basis (June and December). According to Paye 

(2012), egdp is computed as the log difference between the median 12-month and 6-month 

nominal GDP forecasts, then adjusted by subtracting the corresponding log-differenced 

consumer price index (CPI) forecast to obtain real GDP growth. Since the Livingston Survey 

is only available in June and December each year, the egdp series remain constant in the first 

and third quarters (Paye, 2012). This variable is constructed at quarterly frequency. 

Expected return (exret) 

This variable is an in-sample estimate of expected excess returns on the S&P 500 index over 

the risk-free rate, using a simple regression model. These fitted values are not meant for actual 

forecasting but are used as an ex-post proxy for the unobserved, time-varying expected stock 

returns (Paye, 2012). Because of this, overfitting is less of a concern compared to out-of-

sample forecasting.  

The independent variables are selected from the same macroeconomic and financial predictors 

used in our main forecasting models, with their first lag employed as regressors. However, 
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some variables are not available over the entire sample period, so the set of predictors varies 

across sub-periods.  

To avoid information leakage across time, the regressions are estimated separately for each of 

the eight sub-samples for both monthly and quarterly data.  Following Paye (2012) and 

Campbell and Thompson (2008), any negative fitted values are replaced with zero (Paye, 

2012; Campbell and Thompson, 2008). exret is estimated on both monthly and quarterly basis.  

Growth in industrial production (ip)  

ip represents the percentage change (growth rate) in industrial production. This variable is 

primarily constructed to derive the variable ipvol, however, it is also used on its own as a 

predictor in our monthly samples. 

Investment-capital ratio (ik)   

Originally proposed by Cochrane (1991), this variable is calculated as the ratio of aggregate 

investment to aggregate capital in the US economy. ik is available at a quarterly frequency. 

Net payout (npy)  

The variable npy is constructed following the approach of Paye (2012), using data on 

aggregate market capitalization, dividends, and net equity issuance from Boudoukh et al. 

(2007). The net payout for month 𝑡 (𝑛𝑝𝑦𝑡), adapted from Paye (2012), is calculated as: 

𝑛𝑝𝑦𝑡 = ln⁡(0.1 + 𝑑𝑦𝑡 − 𝑛𝑒𝑦𝑡),                                                    [3] 

where 𝑑𝑦𝑡 is the dividend yield at month 𝑡 and 𝑛𝑒𝑦𝑡 is the net equity issuance yield at month 

𝑡. The components are computed as follows:  

𝑑𝑦𝑡 =
aggregate⁡dividends⁡over⁡months⁡𝑡⁡through⁡month⁡𝑡⁡−11⁡

market⁡capitalization⁡at⁡month⁡𝑡
,                              [4] 

𝑛𝑒𝑦𝑡 =
aggregate⁡net⁡equity⁡issues⁡over⁡months⁡𝑡⁡through⁡month⁡𝑡⁡−11

market⁡capitalization⁡at⁡month⁡𝑡
,                       [5] 

net equity issuance at month 𝑡 is calculated as: 

net⁡equity⁡issue = (∆shares⁡outstanding) × (
𝑝𝑟𝑖𝑐𝑒𝑠𝑡𝑎𝑟𝑡+𝑝𝑟𝑖𝑐𝑒𝑒𝑛𝑑

2
),                   [6] 
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npy is constructed at both monthly and quarterly frequencies. Quarterly values are obtained 

by taking the arithmetic average of the three corresponding monthly observations. 

Term spread (tms)  

This variable is calculated as the difference between the yield on long-term government bonds 

and the short-term Treasury bill rate. It is constructed at both monthly and quarterly 

frequencies. 

Volatility of growth in industrial production (ipvol)  

Following Paye (2012), the variable ipvol is used as a proxy for the conditional volatility of 

US industrial production growth. It is constructed based on the method of Engle et al. (2008), 

originally adapted from Schwert (1989). 

To build this variable, we first calculate the percentage growth in industrial production (ip), 

which is explained above, and then, estimate the following autoregressive (AR) model 

(Schwert, 1989; Engle et al., 2008): 

𝑋𝑡 = ∑ 𝛼𝑗𝐷𝑗𝑡 + ∑ 𝛽𝑖𝑋𝑡−𝑖
𝑘
𝑖=1

𝑘
𝑗=1 + 𝜀𝑡 .⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡[7] 

In this model, 𝑋𝑡 represents the growth rate in industrial production (the ip variable), 𝐷𝑗𝑡 

denotes dummy variable for seasonality, and 𝑋𝑡−𝑖 refers to the lagged values of ip. The 

parameter 𝑘 depends on the data frequency: 𝑘 = 4 for quarterly data, and 𝑘 = 12 for monthly 

data. The squared residuals (𝜀𝑡̂
2) from this model are used as the volatility measure (ipvol). 

This variable is constructed on both monthly and quarterly basis.  

Volatility of inflation growth (ppivol) 

This variable is used as a proxy for conditional volatility of inflation growth (Paye, 2012). It 

is constructed using the percentage changes in the Producer Price Index (PPI) data, applying 

the same autoregressive method used for constructing ipvol. In this context, 𝑋𝑡 in Equation 

[7] represents the growth rate in the PPI series. ppivol is built at monthly and quarterly 

frequencies.  

The following table summarizes all the forecasting variables, and their abbreviations used in 

this study. 
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Abbreviation Description 

blev Percentage changes in the bank leverage ratio 

cp 3-month commercial paper rate minus 3-month T-bill rate 

cay Cointegration residual from aggregate consumption, wealth, and labor income 

gdp Growth rate of real US GDP  

dfr Return difference between long-term corporate bonds and government bonds  

dfy Difference between BAA-rated corporate and long-term US government bond yields 

egdp Forecasted GDP growth from the Livingston survey 

exret Expected excess returns on the S&P 500 index 

ip Percentage changes in industrial production 

ik Ratio of aggregate investment to aggregate capital in the US economy 

npy Net payout 

tms Long-term government bond yield minus short-term T-bill rate 

ipvol Volatility of US industrial production growth 

ppivol Volatility of inflation growth 

Table 3.1 List of financial and macroeconomic variables of our study. These variables are used as predictors 

(or input features) in our forecasting models. All variables and their construction methods are directly 

adapted from Paye (2012). 

 

3.2.3 Summary statistics and correlation analysis 

Table 3.2 presents the descriptive statistics for the forecasting variables (predictors), using the 

same metrics as in Paye (2012). Panel A reports statistics for quarterly data from 1952Q2 to 

2019Q4, and Panel B shows statistics for monthly data from February 1952 to December 

2019. The sample period (1952-2019) is selected to ensure full data coverage for all variables. 

For each variable, the table reports the mean, standard deviation, skewness, kurtosis, first and 

second order autocorrelations (𝜌1 and 𝜌2) and results from the Phillips Perron unit root test 

(Phillips and Perron, 1998). Specifically, the final two columns display the test statistic (𝑍𝑡) 

and the corresponding MacKinnon p-value (MacKinnon, 1994).  

The statistics show that the variables differ in their average values and variability. To improve 

comparability and reduce the effect of outliers or extreme values, variables are standardized 

in some forecasting models of our study when appropriate.  
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Table 3.2 Descriptive statistics of macroeconomic variables, 1952-2019. The table, which is an extended 

version of Table 1 in Paye (2012), summarizes descriptive statistics for the forecasting variables analyzed 

in this study. We report the mean, standard deviation, skewness, and kurtosis, along with the first and second 

order autocorrelation coefficients (𝜌1 and 𝜌2). The table also displays the 𝑍𝑡 test statistic from the Phillips 

Perron unit root test and the corresponding MacKinnon p-value (Phillips and Perron, 1998; MacKinnon, 

1994). Panel A is for quarterly data from 1952Q2 to 2019Q4, and Panel B is for monthly data from February 

1952 to December 2019. 

 

Looking at the 𝜌1 and 𝜌2 statistics, most of the forecasting variables show high first and second 

order autocorrelations, often exceeding 0.80. This indicates that the variables are highly 

persistent over time, a common feature of non-stationary time series data. As discussed in 

Stambaugh (1999) and Paye (2012), such persistence can lead to biased coefficient estimates 

in forecasting models, especially when predictor variables are also correlated with model 

residuals. To verify whether this persistence reflects non-stationarity, we follow Paye (2012) 

and apply the Phillips Perron (PP) test, which tests for the presence of a unit root. A rejection 

of the null hypothesis indicates that the variable is stationary and suitable for regression 

analysis. As shown in the final column of Table 3.2, the PP test rejects the unit root hypothesis 

for most variables based on low p-values (except for npy and cay, which show weak evidence 

Philips-Perron test

Symbol Name Mean Satndard Deviation Skewness Kurtosis ρ 1 ρ 2 Z t p -value

Panel A: Quarterly sampling frequency

blev ﻿Changes in bank leverage -0.0025 0.0887 -0.23 1.37 -0.28 0.21 -4.44 0.00

﻿cp CP-to-Treasury spread 0.5476 0.4428 2.11 8.27 0.77 0.59 -4.31 0.00

cay Consumption–wealth ratio 0.0044 0.0258 -0.52 -0.84 0.97 0.95 -1.67 0.45

gdp GDP growth 3.1203 3.6103 -0.14 1.55 0.34 0.20 -8.51 0.00

dfr Default return 0.0003 0.0078 0.30 11.37 -0.10 0.05 -8.57 0.00

dfy Default yield 0.0097 0.0043 1.78 4.45 0.90 0.77 -4.65 0.00

egdp Expected GDP growth 2.5164 1.3333 -0.65 3.23 0.86 0.72 -3.99 0.00

exret Expected return 0.0190 0.0144 0.65 1.14 0.80 0.73 -3.94 0.00

ik Investment-capital ratio 0.0361 0.0031 0.36 -0.23 0.97 0.90 -4.17 0.00

npy Net payout yield -2.1903 0.1940 -1.80 4.91 0.96 0.90 -2.00 0.29

tms Term spread 0.0169 0.0137 -0.01 -0.58 0.91 0.78 -4.15 0.00

ipvol Industrial production volatility 0.0002 0.0005 4.13 19.82 0.15 0.24 -3.80 0.00

ppivol Inflation volatility 0.0002 0.0010 13.12 193.87 0.05 0.14 -9.75 0.00

Panel B: Monthly sampling frequency

﻿cp CP-to-Treasury spread 0.5498 0.4659 2.35 10.21 0.88 0.77 -4.16 0.00

dfr Default return 0.0003 0.0141 -0.37 6.64 -0.08 -0.09 -8.25 0.00

dfy Default yield 0.0097 0.0043 1.84 4.89 0.97 0.92 -3.57 0.01

exret Expected return 0.0041 0.0032 0.56 -0.13 0.81 0.77 -3.63 0.01

ip ﻿Growth in industrial production 0.0022 0.0091 0.27 7.31 0.38 0.23 -8.81 0.00

npy Net payout yield -2.1898 0.1957 -1.75 4.88 0.98 0.97 -2.32 0.16

tms Term spread 0.0169 0.0140 -0.12 -0.14 0.96 0.91 -4.45 0.00

ipvol Industrial production volatility 0.0001 0.0002 12.19 192.66 0.13 0.05 -14.46 0.00

ppivol Inflation volatility 0.0001 0.0002 10.34 131.63 0.34 0.24 -5.72 0.00
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of stationarity). Overall, this suggests that our forecasting variables are appropriate for 

forecasting models, with no strong need to use special methods for highly persistent and non-

stationary data. Figure 3.3 presents the correlation heatmap for all variables.  

 

 

Figure 3.3 Correlation heatmap of all variables (log realized volatility and forecasting variables), 1952-

2019. Panel A presents the correlation measures for quarterly data from 1952Q2 to 2019Q4, and Panel B 

shows the correlation values for monthly data from February 1952 to December 2019. 
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As seen in both heatmaps, most variables have low to moderate correlations with each other, 

suggesting that multicollinearity is not a major issue in our forecasting models. In particular, 

the quarterly heatmap in Panel A shows that most correlation values are below 0.60, which 

implies that the predictors contain a good variety of information without too much overlap. 

This supports their use in models that include multiple variables, as each one seems to reflect 

a different part of the economic and financial environment. 

Similarly, the monthly heatmap in Panel B shows a similar pattern. Most variables are only 

moderately correlated, and while a few correlations are a bit stronger or weaker than those in 

the quarterly case, most stay under 0.60 as well. Taken together, the results from both panels 

suggest that the predictors are well-balanced and suitable for use in regression analysis. 

3.3 Forecasting models  

3.3.1 Autoregressive benchmark model 

Following Paye (2012), we adapt a univariate autoregressive (AR) model as a benchmark to 

evaluate the out-of-sample predictive performance of our models. In particular, we compare 

the forecasts generated by forecasting models to those produced by this benchmark. The 

AR(P) model used in our study is defined as follows: 

𝐿𝑉𝑂𝐿𝑡 = 𝛼 +∑ 𝜌𝑖𝐿𝑉𝑂𝐿𝑡−𝑖
𝑃
𝑖=1 + 𝜖𝑡,                                            [8] 

where 𝐿𝑉𝑂𝐿𝑡 indicates the log realized volatility (our target variable) for quarter or month t, 

and 𝑃 represents the number of lags used in the model, set to two for quarterly data and six 

for monthly data. 

3.3.2 Ordinary least squares (OLS) regression 

Traditional ordinary least squares (OLS) regression was applied for our forecasting purpose, 

in line with Paye (2012). The purpose of our study is to see how more advanced forecasting 

models perform compared to the benchmark and to the traditional multiple regression model 

in forecasting the log realized volatility of stock returns. This model, in part, was for our 

replication purpose for the common time periods with the reference paper. The OLS regression 

model used in the quarterly sampling, adapted from Paye (2012), is as follows:  
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𝐿𝑉𝑂𝐿𝑡 = 𝛼 + 𝜌1𝐿𝑉𝑂𝐿𝑡−1 + 𝜌2𝐿𝑉𝑂𝐿𝑡−2 + 𝛽́𝑋𝑡−1 + 𝜖𝑡 ,                             [9] 

where 𝐿𝑉𝑂𝐿𝑡−1 and 𝐿𝑉𝑂𝐿𝑡−2 represent the first and second lags of the log volatility, 

respectively, and 𝑋𝑡−1 denotes a vector containing the first lag of the variables used in our 

forecasting models. The OLS regression model for our monthly sampling, adapted from Paye 

(2012), is the same as the model used for the quarterly sampling, except that it includes six 

lags of log realized volatility:  

𝐿𝑉𝑂𝐿𝑡 = 𝛼 +∑ 𝜌𝑖𝐿𝑉𝑂𝐿𝑡−𝑖
6
𝑖=1 + 𝛽́𝑋𝑡−1 + 𝜖𝑡.                                     [10] 

3.3.3 Regularized models 

In a multivariate OLS regression model, adding more predictors lowers the model’s bias in 

the fitting sample but raises its variance on new data. This phenomenon, called overfitting, 

can reduce the signal-to-noise ratio because the model fits random noise instead of genuine 

information and patterns (Christensen et al., 2023). A common way to limit the overfitting 

problem, is to introduce a penalty term to the loss function (Hoerl and Kennard 1970; 

Tibshirani 1996; Zou and Hastie 2005) to minimize the residual sum of squares between the 

predicted values and the actual values (Maglaras et al., 2024). The penalized loss function is: 

ℒ̃(𝛼, 𝛽, 𝜃) = ℒ(𝛼, 𝛽) + 𝜙(𝛽; 𝜃),                                            [11] 

where 𝛼 indicates the intercept, 𝛽 represents the vector of regression coefficients, 𝜙(𝛽; 𝜃) is 

the penalty term, and 𝜃 is the vector of hyperparameters, which determines how strongly the 

penalty is applied (Christensen et al., 2023). There are two main types of regularization terms, 

𝐿2 and 𝐿1, which are explained in the following models.  

Ridge regression (RR) 

Ridge regression was originally introduced by Hoerl and Kennard (1970) as a method to 

enhance the generalisation of linear models. This is achieved by including an 𝐿2 regularization 

(or penalty) term in the loss function, which shrinks less important parameters towards zero, 

but never exactly reaching zero. The penalty term is expressed as follows: 

𝜙(𝛽; 𝜆) = 𝜆 ∑ 𝛽𝑖
2𝐽

𝑖=1 ,      𝜆 ≥ 0                                             [12] 
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where 𝜆 is the single hyperparameter, which controls the strength of shrinkage and can take 

any value from zero to infinity. A larger value of 𝜆 results in a stronger penalty and, therefore, 

produces a smaller coefficient (Maglaras et al., 2024). The hyperparameter optimization 

process in our study is based on a training set and a validation set for all models, which is 

explained in detail in the subsequent sections.  

Ridge regression can be used with time series data by including lagged values of predictors as 

features (Maglaras et al., 2024). In our study, we applied ridge regression using the same 

structure as the OLS regression (Equation [9]). Specifically, for quarterly sampling, we created 

two lagged values of log realized volatility and one lagged value of each macroeconomic 

predictor. For monthly sampling, we used six lagged values of log realized volatility and one 

lagged value of each predictor. All these lagged variables are treated as features (input 

variables) in our forecasting models. 

Ridge regression has been widely used in forecasting studies, including Christensen et al. 

(2023), Rahimikia and Poon (2024), Carr et al. (2019), Bianchi et al. (2020), and Gu et al. 

(2019). We employed this model in our study because it effectively reduces overfitting by 

shrinking coefficient estimates, especially when working with a moderate number of 

predictors. Although the predictors in our dataset are not highly correlated, ridge still helps 

stabilize the model and can improve out-of-sample forecasting performance by controlling the 

impact of less informative variables. 

Least absolute shrinkage and selection operator (lasso)  

Lasso was originally proposed by Tibshirani (1996) and is designed to select only the most 

relevant predictors by shrinking less important coefficients towards zero. It uses an 𝐿1 

regularization term, which, unlike ridge regression, can force some coefficients to become 

exactly zero (Zhu et al., 2023). This gives lasso the advantage of performing automatic 

variable selection by removing predictors that contribute little to the model (Niu et al., 2023). 

The penalty term for lasso is defined as: 

𝜙(𝛽; 𝜆) = 𝜆 ∑ |𝛽𝑖|
𝐽
𝑖=1 ,      𝜆 ≥ 0                                            [13] 

where 𝜆 is the tuning hyperparameter and controls the intensity of shrinkage. Larger values of 

𝜆 lead to stronger shrinkage and more coefficients being reduced to zero. In addition to 
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variable selection, lasso helps reduce overfitting by simplifying the model structure, especially 

when working with many predictors.  

We include both ridge regression and lasso in our study because prior research shows no 

consistent evidence that one method always outperforms the other (Tibshirani, 1996, Fu, 

1998). Like ridge regression, the lasso model in our study, uses lagged variables as features 

and applies the same regression structure described in Equation [9]. Hyperparameter tuning is 

based on a training set and a validation set. The lasso technique has been applied in forecasting 

and financial studies including Gu et al. (2019), Bianchi et al. (2020), Niu et al. (2023), Zhang 

et al. (2024), Zhu et al. (2023), Christensen et al. (2023), and Wu et al. (2021). 

Elastic net (EN)  

Elastic net was introduced by Zou and Hastie (2005) as a regularization method that combines 

the strengths of both ridge regression and lasso. It applies a mixed penalty: the 𝐿2 

regularization from ridge (which shrinks coefficients) and the 𝐿1 regularization from lasso 

(which induces sparsity by setting some coefficients to zero) (Maglaras et al., 2024). The 

elastic net penalty function is defined as:  

𝜙(𝛽; 𝜆, 𝛼) = 𝜆(𝛼 ∑ 𝛽𝑖
2𝐽

𝑖=1 + (1 − 𝛼)∑ |𝛽𝑖|
𝐽
𝑖=1 ),       𝜆 ≥ 0                       [14] 

where 𝛼 ∈ [0, 1] is the second hyperparameter (in addition to 𝜆), which determines the balance 

between the ridge and lasso components. When 𝛼 = 1, the model reduces to ridge regression, 

and when 𝛼 = 0, it becomes equivalent to lasso. Like ridge and lasso, both hyperparameters 

(𝜆 and 𝛼) are tuned based on a training and a validation data split. Elastic net has been applied 

in previous forecasting studies such as Christensen et al. (2023), Niu et al. (2024), Zhu et al. 

(2023), Filipovic and Khalilzadeh (2021), Niu et al. (2023), Bianchi et al. (2020), and Gu et 

al. (2019). We apply elastic net in our study because it gives a flexible balance between ridge 

and lasso. EN can improve the forecasting accuracy of volatility in our study by shrinking less 

important variables and removing the least useful ones, depending on the data. 
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3.3.4 Ensemble models 

Ensemble models combine the predictions of multiple individual models to produce one 

stronger forecast. The idea is that by aggregating several weak or moderately accurate models, 

the final prediction is more reliable and robust than any single model (Zhou, 2012). 

Ensemble methods can reduce overfitting (by averaging or sequential corrections) and capture 

complex non-linear relationships in the data that simple linear models might miss. In this 

study, we focus on two widely used ensemble methods: random forest (RF) and gradient 

boosted regression trees (GBRT), which are described in the following sections.   

Random forest (RF) 

Random forest (RF), introduced by Breiman (2001), is an ensemble learning method that 

builds multiple decision trees and combines their outputs to produce more accurate forecasts. 

Each tree in the forest is trained on a random sample of the training data, and a random subset 

of features is selected at each split. This approach reduces the correlation between trees and 

increases overall model stability. Compared to standard decision trees such as classification 

and regression tree (CART), random forest lowers generalization error by averaging across 

many trees, which helps reduce overfitting and variance (Breiman, 2001). This makes RF 

models particularly effective for forecasting non-linear patterns with moderate numbers of 

predictors. 

In our implementation, bootstrapping with replacement is used to generate resampled training 

sets (Breiman, 2001) during hyperparameter tuning. The final forecast is obtained by 

averaging the predictions from all trees. Consistent with all models in this study, we use the 

same lagged variables (quarterly and monthly) as input features for the RF model. 

Additionally, instead of relying on the out-of-bag (OOB) error approach, we tune the model’s 

hyperparameters using a separate validation set. The prediction function of the random forest 

regression model, following Breiman (2001), is given by: 

𝑓𝑅𝐹(𝑥) =
1

𝐵
∑ 𝑇(𝑥; Θ𝑏
𝐵
𝑏=1 , 𝐷𝑏),                                              [15] 
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where 𝑥 indicates the input feature vector for which the forecast is made, 𝐵 is the total number 

of trees in the forest, Θ𝑏  represents the randomness used when building tree b, 𝐷𝑏  is a bootstrap 

sample drawn from the training set, and 𝑇(𝑥; Θ𝑏 , 𝐷𝑏) is the prediction made by tree b.  

Random forest technique for forecasting has been applied in several studies 

including Christensen et al. (2023), Luong and Dokuchaev (2018), Niu et al. (2024), Zhu et 

al. (2023), Carr et al. (2019), Niu et al. (2023), Krauss et al. (2017), Nõu et al. (2021), Bianchi 

et al. (2020), Gu et al. (2019) and Wu et al. (2021).  

Gradient boosted regression trees (GBRT) 

GBRT is a tree-based ensemble method proposed by Friedman (2001). Unlike bagging 

methods such as random forest, GBRT builds trees sequentially, with each new tree trained to 

correct the errors made by the ensemble so far (Friedman, 2001). This approach makes GBRT 

especially effective at refining predictions over time and often leads to better predictive 

accuracy than random forest technique (Caruana and Niculescu-Mizil, 2006). 

The boosting process in GBRT constructs a series of shallow trees, each trained on the 

residuals left by the previous model. These residuals represent the negative gradients of the 

chosen loss function. At each stage, a new tree is added to reduce the remaining error. A 

learning rate parameter 𝜈 (also called the shrinkage factor) controls how much each tree 

contributes to the final model, helping to prevent overfitting while improving accuracy 

(Filipovic and Khalilzadeh, 2021). 

The final prediction of the GBRT model after 𝑀 boosting stages, following Friedman (2001), 

is:  

𝐹̂𝐺𝐵(𝑥) = 𝐹𝑀(𝑥) = 𝐹0(𝑥) + ∑ 𝜈𝑀
𝑚=1 𝛾𝑚ℎ𝑚(𝑥),                                [16] 

where 𝑥 indicates the input feature vector, 𝐹0(𝑥) is the initial guess (typically the mean of the 

target variables) before any trees are added, 𝑀 is the total number of boosting stages (or 

number of trees), 𝜈 (0 < 𝜈 ≤ 1)⁡is the learning rate controlling the contribution of each tree, 

𝛾𝑚 is the weight for tree 𝑚, chosen to minimize the loss at that stage, ℎ𝑚(𝑥) is the 𝑚-th weak 

learner (a shallow regression tree) fitted to the pseudo‐residuals at stage m.  
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We apply GBRT in our study due to its strong performance in capturing non-linear 

relationships and reducing bias through iterative learning. The model uses the same lagged 

variables as features, consistent with previous models, and its hyperparameters are tuned using 

a training and validation set.  

GBRT has been applied in a range of forecasting studies, including Christensen et al. 

(2023), Rossi (2018), Alessandretti et al. (2018), Niu et al. (2024), Wu et al. (2021), Zhu et al. 

(2023), Filipovic and Khalilzadeh (2021), Zhang et al. (2024), Krauss et al. (2017), Bianchi 

et al. (2020), and Gu et al. (2019).  

3.3.5 Deep leaning model 

Deep learning is a type of machine learning that uses neural networks with multiple layers to 

learn patterns in data. These models are useful for working with complex and time dependent 

data, such as financial time series (LeCun et al., 2015). Deep learning has become popular in 

both academic research and industry-level forecasting tasks because of its flexibility and 

strong performance. In this study, we employ one of the most widely used deep learning 

models for time series data: the long short-term memory (LSTM) network. 

Long short-term memory (LSTM) 

The models discussed so far use only a small number of lags: two lags for log realized 

volatility in quarterly data and six in monthly data, along with one-period lag for each 

predictor (consistent with Paye, 2012). This setup may miss important long-term patterns in 

the data. Since stock return volatility is known to be persistent, it is worth testing whether 

including more lags can improve forecasts of future volatility. 

However, testing all our models with many lag combinations for each time period would 

require excessive time and computing power. Recurrent neural networks (RNNs) are 

specifically designed to model such time dependencies by retaining information from previous 

time steps through internal states. But regular RNNs usually cannot remember information 

from earlier time steps because their memory fades over time (known as vanishing gradient 

problem) (Filipovic and Khalilzadeh, 2021). LSTM, which is a specialized version of RNNs 

and was first introduced by Hochreiter and Schmidhuber (1997), solves this problem by using 

special gates that help decide what information to keep, forget, or pass on. Like RNNs, LSTMs 
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work by passing information through repeating network units, but their structure is more 

advanced and better at capturing long term relationships. 

A unit in LSTM model includes a memory cell and three gates: the input gate, forget gate, and 

output gate (Rahimikia and Poon, 2024). Figure 3.4 in the following, which we created but is 

inspired by Filipovic and Khalilzadeh (2021), shows a schematic diagram of an LSTM unit. 

 

Figure 3.4 A long short-term memory (LSTM) unit. The figure illustrates the input, forget, and output gates, 

along with memory cell state and hidden state updates. 

 

In this unit, the memory cell (represented by the horizontal line from 𝑐𝑡−1 to 𝑐𝑡) stores 

information across time steps. The three gates control how information flows in and out of 

this memory cell (Rahimikia and Poon, 2024). The candidate value for the memory cell, 

follwoing Hochreiter and Schmidhuber (1997) and Rahimikia and Poon (2024)3, is computed 

as: 

𝑐̃𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐[𝑎
𝑡−1, 𝑋𝑡] + 𝑏𝑐),                                             [17] 

 

 

3 All equations (17, 18, 19, 20, 21, 22) related to LSTM model are directly adapted from Rahimikia and Poon 

(2024). 
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where 𝑤𝑐  and 𝑏𝑐  are the weight and bias values in a memory cell, [𝑎𝑡−1, 𝑋𝑡] is the combination 

of the previous hidden state and current input, where 𝑎𝑡−1 is the hidden state at 𝑡 − 1 and 𝑋𝑡⁡is 

the input vector at 𝑡, and 𝑡𝑎𝑛ℎ is the hyperbolic tangent activation function.  

Following Rahimikia and Poon (2024), the gates are defined as: 

𝐺𝑢 = 𝜎(𝑤𝑢[𝑎
𝑡−1, 𝑋𝑡] + 𝑏𝑢),                                                [18] 

𝐺𝑓 = 𝜎(𝑤𝑓[𝑎
𝑡−1, 𝑋𝑡] + 𝑏𝑓),                                                 [19] 

𝐺𝑜 = 𝜎(𝑤𝑜[𝑎
𝑡−1, 𝑋𝑡] + 𝑏𝑜),                                                 [20] 

where 𝜎 is the sigmoid activation function. 𝐺𝑢, 𝐺𝑓, and 𝐺𝑜 are the input, forget, and output 

gates respectively. Following Rahimikia and Poon (2024), the updated memory cell is 

computed as:  

⁡𝑐𝑡 = 𝐺𝑢 × 𝑐̃𝑡 + 𝐺𝑓 × 𝑐𝑡−1,                                                    [21] 

where 𝑐𝑡−1 indicates the previous memory state and 𝑐̃𝑡 is the new candidate value from 

Equation [17]. Finally, the hidden state output 𝑎𝑡, following Rahimikia and Poon (2024), is 

calculated as: 

𝑎𝑡 = 𝐺𝑜 × tanh(𝑐𝑡),                                                       [22] 

which represents the part of the memory passed on to the next time step. All weights and 

biases are learned during the training process. LSTM helps avoid the vanishing gradient 

problem by using gates to control what information is remembered or forgotten. This allows 

the model to capture long term relationships in time series data (Rahimikia and Poon, 2024).  

LSTM has been used in various studies aiming to improve forecasting accuracy through deep 

learning methods, including Moon and Kim (2019), McNally et al. (2018), Alessandretti et al. 

(2018), Filipovic and Khalilzadeh (2021), Rahimikia and Poon (2024), Zhang et al. (2024), 

Petrozziello et al. (2022), Bansal et al. (2022), and Nõu et al. (2021). 

3.4 Evaluation criteria and statistical tests 

This section describes the evaluation tools used to assess and compare the forecasting 

performance of our models. The main metric in this study is the mean squared prediction error 

(MSPE), which is used to tune hyperparameters during model training, to evaluate our 
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variable importance analysis, to calculate statistical tests, and to compute changes in out-of-

sample 𝑅2. The following subsections explain MSPE, 𝑅2, and the statistical tests used in more 

detail. 

3.4.1 Mean squared prediction error (MSPE) 

Following Paye (2012), the mean squared prediction error (MSPE) is used to evaluate the 

accuracy of each model's one-step-ahead forecasts. It is defined as: 

𝜎̂𝑖
2 ⁡= 𝑃−1∑(𝐿𝑉𝑂𝐿𝑡+1 − 𝐿𝑉𝑂𝐿̂𝑖,𝑡+1)

2,                                        [23] 

where 𝑃 is the total number of out-of-sample forecasts within each sample period, 𝐿𝑉𝑂𝐿̂𝑖,𝑡+1 

is the forecast of volatility from model 𝑖, and 𝐿𝑉𝑂𝐿𝑡+1 is the actual observed value at time 

𝑡 + 1.  

3.4.2 R-squared (𝑹𝟐) 

To evaluate the economic relevance of each model’s forecasts, we compute the change in out-

of-sample 𝑅2 of each forecasting model relative to the benchmark (univariate AR model). 

Following Campbell and Thompson (2008), Goyal and Welch (2008), Zhou et al. (2010), and 

Paye (2012), the out-of-sample 𝑅2 for each model is calculated as: 

𝑅𝑜𝑜𝑠
2 = 1 −

𝜎̂𝑖
2

𝜎̂0
2,                                                           [24] 

where 𝜎̂𝑖
2 is the MSPE of model 𝑖 and 𝜎̂0

2 represents the MSPE of the simple historical average 

model. The change in out-of-sample 𝑅2 between the forecasting model and the benchmark is 

calculated by:  

Δ𝑅𝑜𝑜𝑠
2 = (1 −

𝜎̂2
2

𝜎̂0
2) − (1 −

𝜎̂1
2

𝜎̂0
2) =

𝜎̂1
2−𝜎̂2

2

𝜎̂0
2 ,                                    [25] 

where 𝜎̂2
2 is the MSPE of the forecasting model, and 𝜎̂1

2 refers to the MSPE of the benchmark 

(the autoregressive model). This Δ𝑅𝑜𝑜𝑠
2  is expressed as a percentage. A positive value indicates 

that the forecasting model performs better than the benchmark in terms of prediction accuracy.  
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3.4.3 Clark and West (CW) test   

We apply the Clark and West (2007) test, following the approach used in Paye (2012), which 

is designed to compare a simple benchmark model (in our case, the univariate AR model) with 

a more complex, augmented model. Under the null, the augmented model’s MSPE is no lower 

than the benchmark’s, implying that the additional predictors do not improve out-of-sample 

forecasts (or as noted by Paye (2012), do not ‘Granger-cause’ volatility). While more complex 

models may include additional useful information, they can also produce more error in out-

of-sample forecasts because they estimate more parameters. This extra error can make their 

forecast performance appear worse, even when they are more informative. The CW test 

adjusts for this issue by adding a correction term to the simple MSPE comparison. The test 

statistic, following Paye (2012), is calculated as: 

𝐶𝑊 = 𝜎̂1
2 − 𝜎̂2

2 + 𝑃−1∑(𝐿𝑉𝑂𝐿̂1,𝑡+1 − 𝐿𝑉𝑂𝐿̂2,𝑡+1)
2,                          [26] 

where 𝜎̂1
2 and 𝜎̂2

2 are the MSPEs of the benchmark and forecasting models, respectively. The 

last term is the adjustment, which is the average of the squared differences between the two 

models’ forecasts.  

According to Paye (2012), if the CW statistic is significantly greater than zero, we can reject 

the null of no Granger-causality of the forecasting variables in volatility. This is a one-sided 

test, where the alternative hypothesis is that the forecasting model has a lower MSPE than the 

benchmark: 𝜎̂2
2 < 𝜎̂1

2. 

3.4.4 Giacomini and White (GW) test  

In addition to the CW test, we also apply the Giacomini and White (2006) test to evaluate the 

forecasting performance of our models, following the approach in Paye (2012). While the CW 

test compares different forecasting models, the GW test is more general and compares the 

performance of different forecasting methods. These methods may include differences in 

model estimation, forecast construction (e.g., rolling vs recursive windows), or data handling 

techniques. For example, in our study, we generate two forecasts using the same model; one 

based on a rolling window and another using a recursive window. Although the model is the 

same, the forecasting methods differ.  
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The GW test allows researchers to test forecasting performance using either unconditional 

comparisons (without extra information) or conditional ones (based on information available 

at time 𝑡) (Paye, 2012). The null hypothesis of the GW test is that, given the available 

information 𝒢𝑡, the expected MSPE difference between the two models is zero: 

𝐻0:⁡⁡𝐸(𝜎̂1
2 − 𝜎̂2

2|𝒢𝑡) = 0,                                                 [27] 

where 𝜎̂1
2 and 𝜎̂2

2 are the MSPEs of the benchmark and forecasting models, respectively. The 

test statistic, following Paye (2012), is computed by: 

𝐺𝑊 =
(𝜎̂1

2−𝜎̂2
2)

𝜎̂𝑃
√𝑃

⁄
,                                                          [28] 

where 𝜎̂𝑃 is a heteroskedasticity and autocorrelation consistent (HAC) estimator of the 

asymptotic variance of the MSPE difference and 𝑃 is the number of out-of-sample forecasts. 

Unlike the CW test, which is one-sided, the GW test is two-sided, meaning it checks whether 

either model is significantly better, not just whether one outperforms the other. 

3.5 Forecasting settings 

This section explains how the forecasting process is designed and implemented in this study. 

It describes the sample periods used for training and testing our models, the procedures for 

generating forecasts using different types of estimation windows (rolling and recursive), and 

the approach followed to tune model hyperparameters. 

3.5.1 Sample periods 

Our analysis uses several out-of-sample periods to test how well different models forecast 

volatility across various time periods. The main time periods include the original ones used in 

Paye (2012): 1947-2010, 1972-2010, 1982-2010, and 1972-2000. We expand these sample 

periods to include the most recent data, creating four new periods and serving as robustness 

check tests for our study: 1947-2023, 1947-2019, 1972-2023, and 1972-2019. Each period 

reflects a different economic environment, which can influence how macroeconomic variables 

affect the stock market and how well the models perform. 

The longest period used in Paye (2012), 1947-2010, provides a broad historical view for 

testing volatility models. However, some forecasting variables are not available in the earlier 
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years of this period. To address this, Paye (2012) also examined the 1972-2010 period, which 

provides more complete data and includes additional variables. Two more periods, 1972-2000 

and 1982-2010, are included in our analysis (consistent with Paye, 2012) to examine how the 

presence or absence of the volatile 1970s affects forecasting performance. This is important 

because, according to Goyal and Welch (2008), the oil shocks of 1973-1975 strongly impacted 

how well some economic variables predicted market behavior. Although both periods have 

the same number of observations, only the 1972-2000 timeframe includes the economic 

disruptions of the 1970s, such as stagflation, the collapse of the Bretton Woods system, and 

major changes in global oil markets (Paye, 2012). 

To capture more recent events and long-term trends in financial markets, we include four 

extended forecasting periods in our analysis, to be used in our robustness check: 1947-2023, 

1947-2019, 1972-2023, and 1972-2019. These timelines allow us to assess the impact of both 

pre and post pandemic environments on volatility forecasting. Table 3.3 lists all out-of-sample 

forecasting periods in our study, and Figure 3.5 indicates the major economic events that 

occurred within each sample period. To get a broader picture, Figure 3.6 presents the timeline 

of the most important economic shocks between 1970 and 2023. 

 

Main sample periods Sample periods for robustness check 

1947-2010 1947-2023 

1972-2010 1947-2019 

1982-2010 1972-2023 

1972-2000 1972-2019 

Table 3.3 List of forecasting sample periods. Periods listed in the first column are directly adapted from Paye 

(2012) and represent our main sample periods. Those listed in the second column represent extended 

periods used for our robustness check. 
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Figure 3.5 Coverage of major economic events across forecasting periods. The figure includes critical 

economic events such as the oil shocks of the 1970s, the recession of the 1980s, the crash of 1987, the dot-

com bubble, the market crash of 2007-2008, the COVID-19 pandemic, and the inflationary period of the 

post-pandemic era. (red-shaded cells indicate which events are included in each out-of-sample window). 

 

 

Figure 3.6 Economic events timeline (1970-2023). This figure presents the timeline of each critical 

economic event from 1970 to 2023. The events included in this figure are the same as those noted in Figure 

3.5. 

 

3.5.2 Estimation window strategies 

Similar to Paye (2012), two common approaches are used in our study for model estimation 

over time: the rolling window and the recursive window. These methods allow the models to 

update their parameters dynamically as new data becomes available.  

In the rolling window approach, we use a fixed-length sample of the most recent 20 years 

(equivalent to 80 quarters or 240 months) before each forecast date. This means the model is 

re-estimated using a moving window of the latest 20 years, which helps it adapt to possible 

structural changes or shifts in economic conditions. By contrast, the recursive window begins 
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with the initial 20-year sample and expands over time. As each new observation becomes 

available, it is added to the training data, allowing the model to learn from an increasingly 

larger dataset. For both methods, the models generate a one-step-ahead forecast for the log 

realized volatility, either the next quarter or next month, depending on the frequency of the 

data. Figure 3.7 represents a simplified schematic of the structure of the rolling window and 

the recursive window approaches. 

 

 

Figure 3.7 Illustration of estimation strategies. The estimation scheme on the left (in blue) indicates the 

rolling window approach, where the sample window moves forward by dropping the oldest observation 

and adding the newest. The scheme on the right (in red) represents the recursive window strategy, where 

the initial sample expands over time by adding new observations without dropping past data. The gray data 

points indicate the out-of-sample, one-period-ahead forecasts generated after each estimation window.  

 

3.5.3 Hyperparameter tuning 

Hyperparameters control a model’s complexity, helping it generalize effectively by balancing 

bias and variance. However, selecting optimal hyperparameters is challenging, as existing 

guidance in literature is limited (Christensen et al., 2023). This section explains the 

hyperparameter tuning approach adopted in this research. 

We optimize hyperparameters by splitting each estimation window into training and validation 

sets. Specifically, for each window (whether rolling or recursive, as described previously), 

80% of data is used for training, and 20% for validation. To preserve the time order of our 

data, the validation set always come after the training set chronologically. Thus, standard k-

fold cross-validation, which randomly splits data, is not appropriate for our time series 

analysis. 

We first train the models on the training data with various hyperparameter combinations. Next, 

we calculate the mean squared prediction error (MSPE) on forecasts made for the validation 

Estimation window 1 Forecast 1 Estimation window 1 Forecast 1

Estimation window 2 Forecast 2 Estimation window 2 Forecast 2

Estimation window 3 Forecast 3 Estimation window 3 Forecast 3

Estimation window 4 Forecast 4 Estimation window 4 Forecast 4

Estimation window 5 Forecast 5 Estimation window 5 Forecast 5
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set, choosing hyperparameters with the lowest MSPE. Using these optimal hyperparameters, 

we generate one-step-ahead out-of-sample forecasts. The hyperparameter tuning process is 

repeated for each forecast in our study. We use the same training-validation split for all models 

to ensure consistency and fair comparison. Details about specific hyperparameters for each 

forecasting model are presented in Table 3.4. 

 

Forecasting model Hyperparameters Optimization search space 

Ridge and lasso Lambda (𝜆)  𝜆 ∈ [10−4, 103] 

Elastic net (EN) 
Lambda (𝜆)  𝜆 ∈ [10−4, 103] 

Alpha (𝛼)  𝛼 ∈ [10−4, 1] 

Random forest (RF) 

Max depth (𝑑𝑚𝑎𝑥)  𝑑𝑚𝑎𝑥 ∈ {3, 6, 9, 12, 15} 

Min samples split (𝑠min−𝑠𝑝𝑙𝑖𝑡)  𝑠min−𝑠𝑝𝑙𝑖𝑡 ∈ {2, 5, 10, 20, 50} 

Min samples leaf (𝑠min−𝑙𝑒𝑎𝑓)  𝑠min−𝑙𝑒𝑎𝑓 ∈ {1, 3, 5, 10, 20} 

Number of trees (𝑛estimators)  𝑛estimators ∈ {10, 50, 100} 

Max features (𝑚)  𝑚 ∈ {"sqrt",⁡"𝑙𝑜𝑔2", 0.5} 

GBRT 

Learning rate (𝜂)  𝜂 ∈ {0.01, 0.05, 0.1, 0.2, 0.3} 

Number of estimators (𝑛estimators)  𝑛estimators ∈ {50, 100, 200} 

Max depth (𝑑𝑚𝑎𝑥)  𝑑𝑚𝑎𝑥 ∈ {3, 5, 7, 9} 

Min child weight (𝑤𝑚𝑖𝑛)  𝑤𝑚𝑖𝑛 ∈ {1, 3, 5} 

LSTM 

LSTM units (𝑢)  𝑢 ∈ {32, 64} 

LSTM layers (𝐿)  𝐿 ∈ {1, 2} 

Batch size (𝑏)  𝑏 ∈ {16, 32} 

Learning rate (𝜂)  𝜂 ∈ {10−3, 10−2} 

Dropout rate (𝛿)  𝛿 ∈ {0.0, 0.2} 

Epochs (𝐸)  𝐸 ∈ {50, 100} 

Table 3.4 Hyperparameter search spaces for our forecasting models, showing the specific hyperparameters 

tuned for each model (ridge and lasso, elastic net, random forest, gradient boosted regression tree (GBRT), 

and long short-term memory (LSTM)), along with the ranges or sets of values explored during the 

optimization process. 
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In ridge, lasso, elastic net, and for consistency, random forest and GBRT, all features (or all 

lagged variables) are standardized so penalties or splits aren’t biased by variables with big 

numbers. To be consistent with Paye (2012), the features are not standardized in OLS. We also 

skip the standardization process for LSTM to avoid extra computational costs, as its internal 

normalisation already learns the right scale. During hyperparameter tuning, we standardize 

the training set itself by calculating its mean and standard deviation for each feature. These 

training-set parameters are then applied to standardize the validation set to avoid data leakage. 

For generating out-of-sample forecasts, we standardize the entire estimation window (rolling 

or recursive) and use its parameters to standardize the data for forecasting. The general 

formula for standardizing a feature 𝑋 is: 

𝑋𝑠𝑡𝑑 =
(𝑋−𝜇)

𝜎
,                                                             [29] 

where 𝜇 is the mean of 𝑋, computed from the training set for tuning, or the entire estimation 

window for forecasting, and 𝜎 is the standard deviation of 𝑋, with any zero values replaced 

by one to avoid division by zero.  

3.5.4 Variable importance analysis 

One of the main objectives of our study is to assess whether financial and macroeconomic 

variables have incremental predictive power in forecasting stock return volatility. 

Accordingly, we perform a variable importance analysis to measure the relative contribution 

of each predictor in forecasting volatility.  

Previous studies have adopted different approaches to measure variable importance, including 

SHAP analysis (Rahimikia and Poon, 2024; Niu et al., 2024). In our study, we employ the 

permutation feature importance method initially introduced by Breiman (2001), which is 

model-agnostic and can be used with any predictive model4. According to Strobl et al. (2007), 

permutation importance can be distorted when predictors are highly correlated. Our 

 

 

4 scikit-learn developers, “Permutation importance,” in Scikit-learn: Machine learning in Python (User Guide, 

version 1.3.0), accessed August 1, 2025, https://scikit-learn.org/stable/modules/permutation_importance.html. 

https://scikit-learn.org/stable/modules/permutation_importance.html
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correlation analysis (Figure 3.3), however, shows that no pair of forecasting variables in our 

study has an absolute correlation coefficient greater than 0.70.  

This method measures the importance of each predictor by randomly permuting its values and 

therefore disrupting its relationship with the target variable, realized volatility. The rationale 

is that a significant increase in forecast error following permutation indicates high variable 

importance.  

Specifically, we assess the feature importance using the mean squared prediction error 

(MSPE), which is the same evaluation metric used in hyperparameter tuning and statistical 

tests in our study. For each estimation window, the model is first fitted on the first 80% of the 

data (training set) with all features included. Permutation importance is then computed on the 

next 20% (validation set) by randomly permuting each feature and breaking its association 

with the target and measuring the changes in MSPE. For each feature, the increase in 

validation MSPE is averaged across multiple random permutations to get ∆MSPE. The 

variables are then ranked by their ∆MSPE as a measure of their contribution to forecasting 

volatility. 

The variable importance analysis in our study will be applied only to the machine learning 

models with better predictive performance among others, to avoid unnecessary computational 

costs. Further details regarding the specific models selected and additional settings for the 

variable importance analysis will be provided in the results chapter. 

Next chapter presents the empirical results of our study in detail and then discusses our 

observations in the context of the existing literature, highlighting where our findings confirm, 

extend, or challenge earlier work. 

 

 

 

 

 



50 

 

Chapter 4. Empirical Results, Analysis, and Discussion 

In this thesis, we apply several machine learning methods augmented with macroeconomic 

variables used in Paye (2012) to forecast stock return volatility. Specifically, we test the 

predictive accuracy of our forecasting models in comparison to an autoregressive benchmark. 

This chapter presents the empirical findings of our study, highlighting the results of the 

statistical tests and evaluation metrics described in the previous chapter. Following the 

numerical results and their interpretation, we discuss our key findings in the context of existing 

literature and empirical evidence. Finally, the chapter concludes with the implications of our 

research, its limitations, and recommendations for future studies.  

4.1 Quarterly out-of-sample forecasting performance (main analysis and robustness 

check) 

The results of the one-period-ahead forecasts for quarterly sampling are presented in this 

section. Tables 4.1 and 4.2 show the results for two estimation methods: rolling window and 

recursive window, respectively. Each table has two parts: Panel A and Panel B. Panel A 

presents the forecasting results across four main time horizons (those covered in Paye, 2012), 

and Panel B demonstrates the results for extended time periods, serving as our robustness 

checks. For every forecasting model, the tables present the Clark and West (CW) test, which 

measures the adjusted difference in the mean squared prediction error (MSPE) of the 

forecasting model and the benchmark AR(2) model. The significance levels alongside the CW 

test values, shown as *, **, and ***, reflect the rejection of the null hypothesis of no Granger 

causality from the macroeconomic variables in the model at the conventional 0.90, 0.95, and 

0.99 confidence levels, respectively.  

The tables also report the changes in out-of-sample 𝑅2 values of the forecasting models 

compared to the benchmark AR(2), presented as ∆𝑅2. This metric directly measures how well 

each model forecasts relative to the benchmark. Positive values for ∆𝑅2 indicate the 

forecasting model predicts volatility more accurately than the benchmark, while negative 

values indicate the benchmark performs better. GW test results are reported alongside ∆𝑅2 

values as asterisks. This test assesses whether to reject the null hypothesis of equal predictive 
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accuracy between the forecasting model and the benchmark, regardless of direction, at the 

0.90, 0.95, and 0.99 confidence levels.  

4.1.1 Rolling window results 

Panel A: Results of main time periods 

 

Panel B: Results of extended time periods (as robustness check) 

 

Table 4.1 Out-of-sample forecasting results, quarterly data and rolling estimation. The table reports CW 

test statistics (Clark and West, 2007), calculated as adjusted differences in MSPE multiplied by 1,000, 

which are used to assess equal predictive accuracy relative to the AR(2) benchmark and, in this context, to 

test for Granger causality. Symbols ***, **, and * indicate rejection of the null hypothesis at the 1%, 5%, 

and 10% significance levels, respectively. The table also presents ∆𝑅2, measuring the improvement in out-

of-sample 𝑅2 over the AR(2) benchmark, with significance determined by the Giacomini-White (2006) test 

using the same notation. Forecasts are generated using a rolling estimation window of 80 quarters (or 20 

years). Panel A reports results for the main sample periods, and Panel B shows the robustness check results 

for extended time periods. 

 

Forecasting Model CW ΔR
2 CW ΔR

2 CW ΔR
2 CW ΔR

2

OLS Regression 8.18 -23.05* 16.96 -21.96 -3.51 -25.87* 38.30*** -4.91

Ridge Regression (RR) 0.20 -14.35* 2.25 -16.10* -0.67 -21.12* 4.81 -7.67**

Lasso 4.63 -6.77** 0.83 -12.19* -7.83 -15.59** 10.46** -3.76

Elastic Net (EN) 4.07 -7.47** -0.32 -11.67* -8.96 -16.19** 10.62** -3.38

Random Forest (RF) 5.17 -9.19** 7.69* -4.72 0.93 -11.06*** 0.78 -10.65***

Gradient Boosted  (GBRT) 17.72** -8.46* 21.78** -10.99** 24.42*** -4.75 27.27** -9.33

Long Short-Term Memory (LSTM) 8.48** -1.30 21.75** -3.68 7.72 -4.67 31.70*** -0.57

﻿1947Q3–2010Q4

N=254

﻿1972Q3–2010Q4

N=154

﻿1982Q3–2010Q4

N=114

﻿1972Q3–2000Q4

N=114

Forecasting Model CW ΔR
2 CW ΔR

2 CW ΔR
2 CW ΔR

2

OLS Regression 2.95 -26.76* 9.96 -20.08* 2.5 -37.41** 18.60* -17.06*

Ridge Regression (RR) -4.08 -17.07* 3.89 -11.54* -9.04 -29.10* 4.20 -15.68*

Lasso -4.62 -14.37** 4.71 -6.73** -7.64 -20.42* 0.75 -10.92**

Elastic Net (EN) -4.24 -15.89* 5.75 -5.90** -7.88 -21.17* -0.21 -10.45**

Random Forest (RF) 4.37 -7.30*** 3.53 -9.27*** 6.14 -10.37*** 6.08 -9.53**

Gradient Boosted  (GBRT) 9.77* -10.88*** 22.13*** -6.63 26.03*** -8.66* 24.80*** -7.71

Long Short-Term Memory (LSTM) 9.83** -1.66 8.94** -0.82 18.16** -3.33 22.12*** -2.32

﻿1972Q3–2019Q4

N=190

﻿1947Q3–2023Q4

N=306

﻿1947Q3–2019Q4

N=290

﻿1972Q3–2023Q4

N=206
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As shown in Table 4.1, across all eight time periods, the CW test is positive and statistically 

significant predominantly for the gradient boosted regression tree (GBRT) and long short-

term memory (LSTM) models, rejecting the null hypothesis of no Granger causality. This 

suggests that these two models can capture the informational content of the macroeconomic 

variables for volatility series. However, for the rest of the models across all time periods, the 

CW test results are mainly a mixture of negative or insignificant positive values.     

Looking at the values of ∆𝑅2, the results are strongly negative for all linear models (OLS, 

ridge, lasso, and elastic net (EN)) across all time horizons, and also for the ensemble models 

(random forest (RF) and gradient boosted (GBRT)) in some time periods, which means that 

the AR(2) benchmark provides more accurate predictions. The LSTM has the lowest negative 

values of ∆𝑅2, all statistically insignificant, suggesting that for the quarterly sampling and 

rolling window, this model has performed better than other models in forecasting volatility, 

although still underperforming the benchmark. 

The contradiction between CW values (positive) and the ∆𝑅2 values (negative), e.g., the 

results of GBRT for 1947Q3-2010Q4, implies that the predictive performance of the 

forecasting model is worse than the benchmark but not to the extent that we can conclude the 

predictors lack useful information, or, in the terms of Paye (2012), that they do not Granger 

cause volatility. 

Comparing the results for different time periods employed, among the first four sample 

periods adapted originally from Paye (2012): 1947Q3-2010Q4, 1972Q3-2010Q4, 1982Q3-

2010Q4, and 1972Q3-2000Q4, the worst results generally belong to 1982Q3-2010Q4, with 

more negative CW test values and stronger negative ∆𝑅2 values. This time period, unlike the 

others, excludes the turbulent environment of 1970s (oil shock). This suggests that economic 

shocks and market turbulence help models learn from significant volatility fluctuations. When 

the 1970s oil shock is excluded, there is less variation for the models to detect, leading to 

inferior forecasts relative to the AR(2) benchmark. This highlights the importance of including 

periods of economic turbulence when evaluating and comparing volatility forecasting models.  

Analyzing the extended time periods covered only in our study and considered as robustness 

check: 1947Q3-2023Q4, 1947Q3-2019Q4, 1972Q3-2023Q4, and 1972Q3-2019Q4, which 



53 

 

include pre- and post-pandemic data, the results predominantly indicate negative or weaker 

positive CW test and stronger negative ∆𝑅2 values for the two periods including post-2019 

data. This may suggest that the COVID-19 pandemic changed volatility patterns in ways that 

our forecasting variables could not capture effectively. In summary, in our analysis using 

quarterly data and rolling estimation approach, none of the forecasting models was able to 

forecast volatility better than the AR(2) benchmark across all time horizons. The LSTM model 

came closest to consistently matching the benchmark; however, it did not clearly outperform 

it. 

4.1.2 Recursive window results 

Panel A: Results of main time periods 

 

Panel B: Results of extended time periods (as robustness check) 

 

Table 4.2 Out-of-sample forecasting results, quarterly data and recursive estimation. The table reports CW 

test statistics (Clark and West, 2007), calculated as adjusted differences in MSPE multiplied by 1,000, 

which are used to assess equal predictive accuracy relative to the AR(2) benchmark and, in this context, to 

Forecasting Model CW ΔR
2 CW ΔR

2 CW ΔR
2 CW ΔR

2

OLS Regression 11.70*** -0.74 30.12*** -8.24 12.07** -12.1 31.21*** -0.74

Ridge Regression (RR) 12.53*** 0.33 13.05*** -9.03 10.23** -11.34 7.68* -1.72

Lasso 10.61*** 0.41 13.80** -9.69 13.41** -11.29 9.70* -1.74

Elastic Net (EN) 11.43*** 0.17 10.08** -10.08 12.09** -11.52 2.57 -4.13

Random Forest (RF) 3.81 -5.79** 0.46 -7.42** 3.81 -7.86*** 0.90 -10.11**

Gradient Boosted  (GBRT) 6.64 -11.12*** 17.55** -9.39** 8.12 -13.18** 16.17* -12.92*

Long Short-Term Memory (LSTM) 3.12 -3.82** 19.66** -1.10 6.25 -4.36 24.86** -0.69

﻿1972Q3–2000Q4

N=114

﻿1947Q3–2010Q4

N=254

﻿1972Q3–2010Q4

N=154

﻿1982Q3–2010Q4

N=114

Forecasting Model CW ΔR
2 CW ΔR

2 CW ΔR
2 CW ΔR

2

OLS Regression 8.93*** -0.47 12.83*** 0.29 26.47*** -6.83 27.65*** -6.06

Ridge Regression (RR) 9.74*** -0.58 13.68*** 1.22 14.16** -7.87** 14.25*** -5.48

Lasso 8.84*** 0.07 11.27*** 1.02 6.59 -4.33** 12.78** -7.49

Elastic Net (EN) 9.83*** -0.08 12.24*** 0.90 8.94* -6.02* 10.25*** -6.64

Random Forest (RF) 8.32* -4.30* 8.16* -3.47 -0.74 -9.84*** -12.68 -14.94***

Gradient Boosted  (GBRT) 8.99 -10.46*** 3.27 -13.82*** 8.17 -12.34*** 21.85*** -8.63*

Long Short-Term Memory (LSTM) 5.41* -2.48 5.75* -2.42 10.68 -3.65 20.20*** -0.10

﻿1972Q3–2019Q4

N=190

﻿1947Q3–2023Q4

N=306

﻿1947Q3–2019Q4

N=290

﻿1972Q3–2023Q4

N=206
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test for Granger causality. Symbols ***, **, and * indicate rejection of the null hypothesis at the 1%, 5%, 

and 10% significance levels, respectively. The table also presents ∆𝑅2, measuring the improvement in out-

of-sample 𝑅2 over the AR(2) benchmark, with significance determined by the Giacomini-White (2006) test 

using the same notation. Forecasts are generated using a recursive estimation approach, with an initial 

window length of 80 quarters (20 years). Panel A reports results for the main sample periods, and Panel B 

shows the robustness check results for extended time periods. 

 

Looking at the results from quarterly sampling and the recursive window approach presented 

in Table 4.2, the results of the CW test are mainly positive and statistically significant for the 

linear models (OLS, ridge regression, lasso, and elastic net) across all time periods. This 

contrasts with the CW test results for the linear models using rolling window estimation shown 

in Table 4.1. For more complex models, including the tree-based models (random forest and 

gradient boosted regression tree) and the LSTM, CW test results indicate a mixture of strongly 

positive and weak values, with random forest performing the worst. Overall, it seems that, 

unlike the linear models, the GBRT and LSTM models deliver better CW test results under 

the rolling window approach. Random Forest results, however, indicate no major changes 

under the rolling and recursive estimation approaches. 

Comparing the results across the first four time periods, following Paye (2012), the ∆𝑅2 values 

are closest to zero for 1947Q3-2010Q4 and 1972Q3-2000Q4 for the linear models. For the 

extended periods of our robustness check, which include data from before and after the 

COVID-19 pandemic, ∆𝑅2 results for the linear models are slightly better for 1947Q3-

2023Q4 and 1947Q3-2019Q4 than for the two other periods starting from 1972Q3 and ending 

in 2023Q4 and 2019Q4, respectively. 

In short, based on the results from quarterly sampling and the recursive window, all linear 

models (OLS and penalized linear models) and the long short-term memory (LSTM) 

performed better than the ensemble models (random forest and gradient boosted) across all 

time periods. While the LSTM performed roughly the same under both estimation windows 

in terms of prediction accuracy, the linear models clearly improved from the rolling to the 

recursive window. Despite these findings, none of the models across all time periods 

outperformed the benchmark AR(2) model. 
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4.2 Monthly out-of-sample forecasting performance (main analysis and robustness 

check) 

Tables 4.3 and 4.4 in this section present the results of one-period-ahead forecasts for monthly 

data using two estimation methods: rolling window (Table 4.3) and recursive window (Table 

4.4). Each table has two parts: Panel A and Panel B. Panel A presents the forecasting results 

across four main time horizons (those covered in Paye, 2012), and Panel B demonstrates the 

results for extended time periods, serving as our robustness checks. The tables report the same 

evaluation metrics as those used for the quarterly data in the previous section. ∆𝑅2 values 

indicate the out-of-sample prediction accuracy of the forecasting models relative to the 

benchmark AR(6) model. 

4.2.1 Rolling window results 

A general look at Table 4.3 below shows that, under the rolling window approach, the out-of-

sample monthly forecasts perform better than the quarterly forecasts (as shown in Table 4.1), 

in terms of CW test statistics and ∆𝑅2 values. Specifically, the CW test results from Table 4.3 

are predominantly positive and statistically significant in nearly every sample, implying strong 

Granger causality from financial and macroeconomic variables at higher frequency. In 

contrast, for the quarterly data using the same windowing approach, only the GBRT and 

LSTM models produced significantly positive CW test results. 

 

Panel A: Results of main time periods 

 

Forecasting Model CW ΔR
2 CW ΔR

2 CW ΔR
2 CW ΔR

2

OLS Regression 7.13** -1.57 14.05*** 0.18 11.43** 0.12 9.85*** -0.26

Ridge Regression (RR) 6.97*** -1.29 12.98*** 0.70 12.48** 1.27 9.29*** -0.14

Lasso 4.67** -1.12 8.56*** -0.33 8.19** -0.21 5.23* -1.78

Elastic Net (EN) 6.08*** -0.76 9.64*** 0.33 9.47** 0.54 6.88** -0.78

Random Forest (RF) 3.04 -5.74*** 7.11** -3.39** 10.35*** -2.28 8.71** -3.11*

Gradient Boosted  (GBRT) 5.44* -10.41*** 6.57* -9.58*** 12.13** -7.09*** 10.96** -7.28**

Long Short-Term Memory (LSTM) 8.84*** -2.01 15.24*** 0.55 14.48*** 1.06 15.16*** 0.43

﻿1972.3–2000.12

N=346

﻿1947.3–2010.12

N=759/766*

﻿1972.3–2010.12

N=459/466

﻿1982.3–2010.12

N=339/346
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*759/766 indicates that, due to NaN values (i.e., some missing data), our models produced fewer forecasts than expected. 

This applies to other time periods as well, as indicated in their respective columns. 

Panel B: Results of extended time periods (as robustness check) 

 

Table 4.3 Out-of-sample forecasting results, monthly data and rolling estimation. The table reports CW test 

statistics (Clark and West, 2007), calculated as adjusted differences in MSPE multiplied by 1,000, which 

are used to assess equal predictive accuracy relative to the AR(6) benchmark and, in this context, to test for 

Granger causality. Symbols ***, **, and * indicate rejection of the null hypothesis at the 1%, 5%, and 10% 

significance levels, respectively. The table also presents ∆𝑅2, measuring the improvement in out-of-sample 

𝑅2 over the AR(6) benchmark, with significance determined by the Giacomini-White (2006) test using the 

same notation. Forecasts are generated using a rolling estimation window of 240 months (or 20 years). 

Panel A reports results for the main sample periods, and Panel B shows the robustness check results for 

extended time periods. 

 

The results from the ∆𝑅2 metric suggest that the linear models (OLS and all penalized 

regressions) and the LSTM have performed better than the ensemble models (random forest 

and GBRT). Across all time periods, we even observe some positive but statistically 

insignificant ∆𝑅2 values for these best-performing models. Notably, the ∆𝑅2 values presented 

in this table show considerable improvements from their equivalent metrics under the rolling 

window for quarterly data (Table 4.1). 

Among the original time periods adopted from Paye (2012), the results for the periods 

1972Q3-2010Q4 and 1982Q3-2010Q4 are slightly better than those for 1947Q3-2010Q4 and 

1972Q3-2000Q4, in terms of prediction accuracy (∆𝑅2). Regarding the extended time periods 

and our robustness check, although the results are very close, the longest one (1947Q3-

2023Q4) shows slightly worse performance than the rest. Moreover, the results for the two 

Forecasting Model CW ΔR
2 CW ΔR

2 CW ΔR
2 CW ΔR

2

OLS Regression 7.32*** -1.80 8.83*** -0.72 11.72*** -1.31 15.28*** 1.11

Ridge Regression (RR) 9.21*** -0.99 8.73*** -0.63 13.99*** 0.23 13.91*** 0.96

Lasso 4.16** -2.04** 6.42*** -0.47 7.49*** -1.71 10.49*** 0.54

Elastic Net (EN) 4.89** -2.21** 7.60*** -0.38 9.00*** -1.49 11.52*** 0.86

Random Forest (RF) 3.10 -8.30*** 1.07 -7.50*** 5.86* -6.03*** 8.94** -3.92**

Gradient Boosted  (GBRT) 9.64*** -7.98*** 4.27 -12.12*** 14.74*** -5.29** 9.40** -7.61***

Long Short-Term Memory (LSTM) 8.48*** -2.86** 8.09*** -2.35** 11.31*** -1.75 12.84*** -0.60

﻿1972.3–2019.12

N=567/574

﻿1947.3–2023.12

N=911/922

﻿1947.3–2019.12

N=867/874

﻿1972.3–2023.12

N=611/622
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periods that do not include pandemic data (ending at 2019Q4) are slightly better than those 

that include post-pandemic data (extending through 2023Q4).  

In summary, at the monthly frequency and under the rolling window estimation approach, all 

models demonstrate strong CW test results. The ∆𝑅2 values for the linear models and LSTM 

are close to zero, positive or negative, but statistically insignificant. Overall, both metrics (CW 

test and ∆𝑅2) indicate that our models perform better on monthly data than on quarterly data 

using the same estimation methods. 

4.2.2 Recursive window results 

Panel A: Results of main time periods 

 

Panel B: Results of extended time periods (as robustness check) 

 

Table 4.4 Out-of-sample forecasting results, monthly data and recursive estimation. The table reports CW 

test statistics (Clark and West, 2007), calculated as adjusted differences in MSPE multiplied by 1,000, 

which are used to assess equal predictive accuracy relative to the AR(6) benchmark and, in this context, to 

test for Granger causality. Symbols ***, **, and * indicate rejection of the null hypothesis at the 1%, 5%, 

Forecasting Model CW ΔR
2 CW ΔR

2 CW ΔR
2 CW ΔR

2

OLS Regression 5.69*** 0.19 8.90*** 0.96 6.67** 0.68 9.10*** 0.71

Ridge Regression (RR) 6.81*** 0.43 8.96*** 1.12 8.55*** 1.05 9.33*** 1.12

Lasso 4.21*** 0.18 7.86*** 1.04 4.99** 0.09 7.15*** 0.46

Elastic Net (EN) 5.39*** 0.12 8.29*** 1.02 7.03** 0.58 7.64*** 0.34

Random Forest (RF) 0.56 -5.01*** 1.53 -4.32*** 8.86** -1.87 5.38** -3.33**

Gradient Boosted  (GBRT) 0.90 -4.95*** 6.71** -4.35*** 11.70*** -3.16* 10.58*** -2.02

Long Short-Term Memory (LSTM) 5.64** -2.98*** 11.83*** 0.07 6.45*** -0.86 16.17*** 2.19

﻿1972.3–2000.12

N=346

﻿1947.3–2010.12

N=759/766

﻿1972.3–2010.12

N=459/466

﻿1982.3–2010.12

N=339/346

Forecasting Model CW ΔR
2 CW ΔR

2 CW ΔR
2 CW ΔR

2

OLS Regression 5.01*** 0.40 6.02*** 0.46 6.72*** 0.01 8.62*** 1.19

Ridge Regression (RR) 6.33*** 0.48 7.01*** 0.68 6.03*** -0.06 8.35*** 1.14

Lasso 4.60*** 0.29 4.72*** 0.44 5.22*** 0.12 7.04*** 0.95

Elastic Net (EN) 5.39*** 0.15 5.79*** 0.40 5.34*** 0.01 7.23*** 0.87

Random Forest (RF) 3.46 -3.83*** 2.18 -4.76*** 2.62 -4.27*** 1.01 -4.59***

Gradient Boosted  (GBRT) 1.35 -5.62*** 1.93 -5.32*** 6.64** -4.37*** 7.92*** -3.77**

Long Short-Term Memory (LSTM) 9.07*** -1.60 8.17*** -1.88* 12.51*** 1.33 11.67*** 0.42

﻿1972.3–2019.12

N=567/574

﻿1947.3–2023.12

N=911/922

﻿1947.3–2019.12

N=867/874

﻿1972.3–2023.12

N=611/622
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and 10% significance levels, respectively. The table also presents ∆𝑅2, measuring the improvement in out-

of-sample 𝑅2 over the AR(6) benchmark, with significance determined by the Giacomini-White (2006) test 

using the same notation. Forecasts are generated using a recursive estimation approach, with an initial 

window length of 240 months (20 years). Panel A reports results for the main sample periods, and Panel B 

shows the robustness check results for extended time periods. 

 

The results from Table 4.4 clearly show that all models perform best under the recursive 

window with monthly data. The CW test statistic is predominantly and strongly positive across 

all time periods, indicating Granger causality and confirming the informativeness of the 

predictors for forecasting volatility.  

In addition, the ∆𝑅2 values for almost all linear models are positive across all time periods but 

remain statistically insignificant. This supports our earlier finding from the quarterly results 

that moving from a rolling to a recursive window improves the predictive performance of 

linear models. The LSTM model performs similarly to its results under the monthly rolling 

window, with ∆𝑅2 values close to zero, either slightly positive or negative. However, the two 

ensemble models (random forest and GBRT) achieve their best results here compared to all 

previous setup results. Their ∆𝑅2 values mostly range from -3% to -5%, which is slightly 

better than in the monthly rolling window setting. This supports the idea that ensemble 

models, like linear models, also benefit from more data, both in terms of frequency and 

estimation window length. Comparing different time periods, we observe little variation in the 

results. 

To summarize, although the linear models (OLS, ridge, lasso, and r net) and the LSTM model 

show the highest number of positive ∆𝑅2 values, none of them outperform the benchmark 

AR(6) model in a statistically significant way. This suggests that these models mostly match 

the benchmark AR models in terms of prediction accuracy. The fact that even these positive 

gains lack statistical significance highlights the difficulty of consistently outperforming a 

univariate autoregressive benchmark, even with monthly data. Random Forest and GBRT 

perform better in prediction and manage to narrow the gap in out-of-sample 𝑅2 compared to 

the benchmark.  
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4.3 Overall model comparison  

In the previous sections, we presented and interpreted the evaluation metrics and statistical 

test results of our forecasting models in detail. To provide a broader view of whether the 

complex and augmented forecasting models used in this study outperformed the univariate 

autoregressive benchmarks (AR(2) for quarterly and AR(6) for monthly data), we summarize 

their predictive performance (∆𝑅2) in Figure 4.1. 

Figure 4.1 illustrates the average ∆𝑅2 values for each model, calculated across all time 

horizons (the main four periods and the four extended periods for robustness check) within 

four estimation windowing: quarterly rolling, quarterly recursive, monthly rolling, and 

monthly recursive. As noted earlier, a positive ∆𝑅2 indicates superior forecast accuracy 

relative to the benchmark, while a negative ∆𝑅2 reflects underperformance. 

 

 

Figure 4.1 Average ∆𝑅2 by forecasting model, data frequency, and estimation window. The y-axis shows 

∆𝑅2 values in percentage points. For each model, the average ∆𝑅2 was computed across all sample periods, 

separately for each data frequency and estimation window type. 
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The figure does not display statistical significance; it is intended solely to show the average 

change in ∆𝑅2 over time. The key takeaways from the figure are as follows: 

• Quarterly rolling: all models show negative mean ∆𝑅2 values, with LSTM performing 

closest to zero (-2.29%) and tree-based models averaging around -9%. Linear models 

(OLS and penalized regressions) perform the worst, showing the strongest negative 

mean ∆𝑅2 values. 

• Quarterly recursive: all regression models show substantial improvement over the 

rolling window results, while ensemble methods remain similar to the rolling window 

results (around -8% to -11%). LSTM again shows the smallest average gap (-2.33%), 

with no notable change from its rolling window performance. 

• Monthly rolling: mean ∆𝑅2 values are clustered near zero for the linear models and 

LSTM, indicating notable improvement, particularly for the linear models, when 

shifting from quarterly to monthly data. The ensemble models show larger negative 

gaps compared to the others, although random forest shows some improvement over 

its quarterly performance. 

• Monthly recursive: all linear models exhibit positive mean ∆𝑅2 values, though never 

statistically significant. LSTM shows a slightly negative mean ∆𝑅2, close to zero, 

while both ensemble models remain negative but improve compared to their rolling 

window results. 

These averages reflect the detailed period-by-period results in Tables 4.1 to 4.4 and confirm 

three key findings. First, our forecasting models rarely outperform the AR benchmark. 

Second, expanding the estimation window (using recursive instead of rolling) improves the 

performance of linear models and, to a smaller extent, the other models, especially at the 

quarterly frequency. Third, increasing data frequency from quarterly to monthly significantly 

enhances predictive accuracy. Taken together, these results show that the best overall 

performance, though still not surpassing the benchmark, is achieved using monthly data with 

the recursive estimation window. 
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4.4 Results of variable importance analysis 

Our results presented in the previous section highlight that the linear models and the LSTM 

overall performed better than the ensemble methods. These models nearly matched the 

benchmark AR model, specifically for monthly data. Consequently, in the last phase of our 

study, we conducted a variable importance analysis, namely permutation feature importance, 

to identify which variables contributed the most to the performance of these models.  

To avoid unnecessary and extensive computational costs associated with worst performing 

models, including random forest and GBRT, we applied the permutation feature analysis only 

on the LSTM and the elastic net, the latter representing the linear models as it combines ridge 

and lasso.  

Regarding the sample period for the variable importance analysis, we selected the 1972-2019 

forecasting period because among eight time periods in our study, it is the only one that 

contains all available variables. This analysis was carried out on both monthly and quarterly 

data under rolling and recursive estimation windows. The results of permutation feature 

importance for quarterly and monthly data are presented below. 

4.4.1 Variable importance analysis results of quarterly sampling 

Figures 4.2 and 4.3 in the following indicate the average of the permutation importance 

measure of all lagged variables across all windows generated from the elastic net, under the 

rolling and recursive windows, respectively. These two figures illustrate the strong persistence 

of volatility, as the first two lags of volatility (QLVOL_L1 and QLVOL_L2) account for 

roughly two-thirds of the elastic net model’s predictive power. After controlling for this 

persistence, the most important predictors, under both rolling and recursive windows, are the 

credit risk measures, the default spread (dfy) and the commercial paper-to-Treasury spread 

(cp), followed by economic uncertainty captured in producer price index volatility (ppivol). 

The net payout yield (npy) gives the model additional information about future volatility by 

signalling whether firms are net issuers of equity or returning cash through dividends and 

share buybacks. The investment-capital ratio (ik) indicates that shifts in corporate investment 

activity also contribute to the model’s predictive accuracy.  
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Figure 4.2  Average permutation importance across all rolling windows, quarterly data, elastic net model, 

1972Q3-2019Q4. The y-axis values represent the mean increase in MSPE when each variable is randomly 

permuted, averaged over all windows. Higher values indicate greater importance of the variable in the 

forecasting task. 

 

Figure 4.3 Average permutation importance across all recursive windows, quarterly data, elastic net model, 

1972Q3-2019Q4. The y-axis values represent the mean increase in MSPE when each variable is randomly 

permuted, averaged over all windows. Higher values indicate greater importance of the variable in the 

forecasting task. 
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Figures 4.4 and 4.5 in the following demonstrate the average of the permutation importance 

measure across all windows generated from the LSTM, under the rolling and recursive 

windows, respectively. Both figures confirm that volatility is mainly self-driven, similar to the 

elastic net results, the first two lags of volatility together account for about two-thirds of the 

model’s predictive power under either estimation window. Beyond these lags, the model relies 

on credit market indicators, largely the commercial paper-to-Treasury spread (cp) and, to a 

lesser extent, the default return spread (dfr). The GDP growth (gdp) also shows noticeable 

importance in both figures, indicating that recent economic activity changes help the LSTM 

in volatility forecasting. The survey-based expected GDP growth (egdp) adds a smaller but 

still positive contribution, suggesting that growth expectations provide an additional signal 

about future volatility. 

 

 

Figure 4.4 Average permutation importance across all rolling windows, quarterly data, LSTM model, 

1972Q3-2019Q4. The y-axis values represent the mean increase in MSPE when each variable is randomly 

permuted, averaged over all windows. Higher values indicate greater importance of the variable in the 

forecasting task. 
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Figure 4.5 Average permutation importance across all recursive windows, quarterly data, LSTM model, 

1972Q3-2019Q4. The y-axis values represent the mean increase in MSPE when each variable is randomly 

permuted, averaged over all windows. Higher values indicate greater importance of the variable in the 

forecasting task. 

 

In summary, for quarterly data, both models (elastic net and LSTM) indicate that volatility is 

largely driven by its own past values. After this persistence, credit market variables (cp, dfy, 

and dfr) are the key macro drivers in both elastic net and LSTM results. The elastic net also 

uses two balance sheet measures, net payout (npy) and the investment-capital ratio (ik), 

whereas the LSTM receives additional signals from economic growth measures, specifically 

current GDP growth (gdp) and, to a lesser extent, expected GDP growth (egdp). 

4.4.2 Variable importance analysis results of monthly sampling 

Figures 4.6 and 4.7 indicate the average of the permutation importance measure across all 

windows generated from the elastic net, under the rolling and recursive windows, respectively.  
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Figure 4.6 Average permutation importance across all rolling windows, monthly data, elastic net model, 

1972.3-2019.12. The y-axis values represent the mean increase in MSPE when each variable is randomly 

permuted, averaged over all windows. Higher values indicate greater importance of the variable in the 

forecasting task. 

 

Figure 4.7 Average permutation importance across all recursive windows, monthly data, elastic net model, 

1972.3-2019.12. The y-axis values represent the mean increase in MSPE when each variable is randomly 

permuted, averaged over all windows. Higher values indicate greater importance of the variable in the 

forecasting task. 
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As can be seen from Figures 4.6 and 4.7, with monthly data, the elastic net again shows that 

volatility is largely driven by its own past. In both rolling and recursive settings, the first lag 

of volatility dominates the permutation order, and the second lag adds a smaller increment. 

The credit spread variables provide most of the external signals: default return spread (dfr) 

and default spread (dfy) in the rolling window, and commercial paper-to-Treasury spread (cp) 

in both windows. Additional volatility lags and all other macro variables contribute 

progressively less and have permutation scores near zero. 

Figures 4.8 and 4.9 indicate the average of the permutation importance measure across all 

windows generated from the LSTM, under the rolling and recursive windows, respectively.  

 

 

Figure 4.8 Average permutation importance across all rolling windows, monthly data, LSTM model, 

1972.3-2019.12. The y-axis values represent the mean increase in MSPE when each variable is randomly 

permuted, averaged over all windows. Higher values indicate greater importance of the variable in the 

forecasting task, with the ranking reflecting relative predictive contribution. 
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Figure 4.9 Average permutation importance across all recursive windows, monthly data, LSTM model, 

1972.3-2019.12. The y-axis values represent the mean increase in MSPE when each variable is randomly 

permuted, averaged over all windows. Higher values indicate greater importance of the variable in the 

forecasting task, with the ranking reflecting relative predictive contribution. 

 

Figure 4.8 confirms the dominance of the first and second lag of volatility in the predictive 

power of LSTM for monthly data under the rolling window estimation approach. The 

commercial paper-to-Treasury spread (cp) and the default return spread (dfr) represent the 

next important variables in this sample. Additional lags of volatility follow cp and dfr in 

importance and have a smaller contribution in this setting. In the recursive setting as shown 

in Figure 4.9, the LSTM depends mainly on last month’s volatility. The most important 

external feature is the commercial paper-to-Treasury spread (cp), with the second and fifth 

volatility lags (LVOLM_L2 and LVOLM_L5) ranking behind it. The net payout yield (npy) 

and the default return spread (dfr) provide only small incremental gains. 

4.5 Discussion 

After presenting our empirical results, this section places the findings in the context of the 

volatility forecasting literature. Our results provide evidence on how different modeling 

choices, data frequency, estimation window, time horizon, and the use of macroeconomic 
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predictors impact forecast performance relative to a univariate autoregressive (AR) 

benchmark. 

Our main observation is that every forecasting model we tested (OLS, ridge, lasso, random 

forest, GBRT, and LSTM) either equalled or fell short of the AR benchmark in out-of-sample 

accuracy. “Equal” here means small, statistically insignificant changes in out-of-sample 𝑅2, 

whether positive or negative. This reinforces earlier evidence that simple AR models are hard 

to beat in volatility forecasting (Paye, 2012; Andersen et al., 2001; Ghysels et al., 2006; 

Hansen and Lunde, 2005). 

This persistence of the AR model’s strength suggests that information embedded in past 

volatility alone captures much of the predictable variation, so added model complexity does 

not always lead to better forecasts. This outcome mirrors the conclusions of Branco et al. 

(2022) and Audrino and Chassot (2022), who found little benefit from advanced machine 

learning (ML) methods over simpler linear benchmarks. 

Turning to economic shocks, our quarterly results show mixed effects. Including the 1970s oil 

shock, in the sample period of 1972Q3-2010Q4, improved performance of our forecasting 

models, compared with a subsample that begins in 1982Q3, which excludes this event. As a 

result, higher volatility periods may provide richer signals that complex models can exploit, 

consistent with findings of Paye (2012) and with the superior LSTM forecasts reported by 

Petrozziello et al. (2022) during the 2007-2008 crisis. Nevertheless, when we extend the 

sample periods to cover the COVID-19 event, forecast accuracy weakens slightly: models 

perform a bit better when the pandemic years are excluded (ending in 2019). This echoes 

Rahimikia and Poon (2024), who also found that neural networks underperformed during 

extreme market stress. 

Looking at monthly data, all models improve. CW statistics are mostly positive, and 

statistically significant and ∆𝑅2 values move closer to zero, confirming that higher-frequency 

data contain richer short-term signals, as also documented by Christensen et al. (2023). 

Several studies that reported ML gains also relied on high-frequency data (daily or intraday), 

such as Donaldson and Kamstra (1997); Zhu et al. (2023); and Zhang et al. (2024). 
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In the monthly setting, linear models (OLS and penalized regressions) and the LSTM 

consistently outperform ensemble trees (random forest and GBRT), especially under recursive 

estimation. This finding highlights neural networks’ ability to capture nonlinear dynamics in 

volatility (Petrozziello et al. 2022; Rahimikia and Poon 2024). 

The switch from rolling to recursive windows further improves forecasting accuracy, mostly 

pronounced in linear models. This indicates that expanding the estimation window helps the 

models adapt to changing economic conditions, a conclusion also noted by 

Audrino and Chassot (2022) in their study of window length impact on model performance. 

Concerning macroeconomic predictors, CW tests show that these variables, most of the time, 

have informational value and Granger-cause the realized volatility, supporting Paye (2012). 

However, the prediction accuracy test results, measured by changes in out-of-sample 𝑅2 and 

GW test statistics, imply limited incremental value of these variables in forecasting volatility. 

This evidence is supported by findings of previous studies, such as Christensen et al. (2023); 

Filipovic and Khalilzadeh (2021); Nõu et al. (2021); Petrozziello et al. (2022); and 

Moon and Kim (2019), where ML models using only past price or volatility data performed as 

well as, or better than, versions that added an extended set of macro and other external 

predictors.  

Permutation feature importance results are consistent with Paye (2012). Across all eight 

samples on which we conducted this analysis (quarterly vs monthly, rolling vs recursive, and 

elastic net vs LSTM), the first one to two lags of realized volatility accounted for near two-

thirds of the model performance, regardless of frequency, estimation windowing, or algorithm. 

After this persistence, the variables related to credit risk, including commercial paper-to-

Treasury spread (cp), default return spread (dfr), and default spread (dfy), frequently 

dominated other macroeconomic predictors. Elastic net and LSTM both rely on these spreads, 

with only minor to modest extra help from PPI volatility (ppivol), net payout yield (npy), the 

investment-capital ratio (ik), and at the quarterly horizon, real current and expected GDP 

growth (gdp and egdp). In short, credit conditions provide the most important external signal 

for future volatility, confirming Paye’s original insight with advanced machine learning 

evidence. 
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In summary, we find only modest gains from complex ML techniques with macroeconomic 

predictors over autoregressive benchmarks. However, some conditions, such as higher-

frequency data, turbulent periods, and recursive estimation windowing, enhance forecast 

quality and allow advanced ML models to add value. 

4.6 Implications of findings 

Our findings have several practical and academic implications for volatility forecasting. First, 

the persistent strength of the autoregressive (AR) benchmark shows that simple, parsimonious 

models still hold a significant predictive power. Therefore, investment professionals, risk 

managers, and policymakers should think more carefully before adopting ML frameworks to 

avoid, as much as possible, the unnecessary computational costs and extra time needed for 

complex settings of these models. 

Second, the small incremental value of macroeconomic variables in predictive accuracy of 

ML models, despite their statistical relevance under the Clark and West (CW) test, suggests 

that volatility forecasts mostly benefit from market-based information and the recent history 

of volatility itself (as also confirmed in our variable importance analysis results). Therefore, 

focusing on direct market signals may be more efficient in practice because such data respond 

faster to changing conditions, whereas macro indicators and variables are much slower to 

update. 

Third, the improved results observed from higher-frequency data (monthly vs quarterly) and 

during some of the turbulent periods indicate that the forecasting model effectiveness depends 

largely on data granularity and the market condition. As a result, practitioners should consider 

higher frequency data and use estimation approaches, such as recursive window, that can adapt 

as information accumulates and economic regimes shift.  

Finally, because our variable importance analysis shows that credit spread variables dominate 

all other macro predictors and that higher-frequency (monthly) data perform better, 

practitioners should monitor real time movements in credit conditions as these predictors offer 

the greatest incremental value when forecasting stock return volatility. 
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4.7 Limitations and recommendations for future studies 

Although our study compares eight forecasting models (including the benchmark AR) across 

two data frequencies (quarterly and monthly), two estimation schemes (rolling and recursive), 

and eight sample periods (four main periods and four extended periods for robustness check), 

several limitations remain that open avenues for further research. 

Our first constraint is data frequency. We use realized volatility aggregated at a monthly and 

quarterly basis. However, high-frequency sampling, such as weekly, daily, or even intraday, 

contains many more observations and therefore, richer short-term signals. Moreover, some 

previous studies showed that realized variance measures converge to the underlying quadratic 

variation as the sampling interval gets smaller (Andersen et al. 2003; Barndorff 

Nielsen and Shephard 2002). Future studies can examine whether our models improve when 

trained on higher-frequency data. 

The next limitation of our study is predictor choice. To stay consistent with Paye (2012), we 

use the same set of macroeconomic variables. Choosing different sets of features that have 

been previously proven useful in forecasting realized volatility, such as option implied 

metrics, order book measures, or news and social media sentiment, may reveal whether other 

types of input features help ML methods outperform a strong linear benchmark such as an AR 

model. 

Model architecture is another constraint of this study. Although we include lagged volatility 

(up to two lags for quarterly and six lags for monthly sampling) in addition to the macro 

predictors in our forecasting models, to account for temporal dependency of time series data, 

our ensemble methods assume observations are independent and identically distributed, which 

possibly ignores volatility clustering. Block bootstrap resampling or other bagging approaches 

could preserve time dependency more effectively. While Christensen et al. (2023) noted that 

they have not observed a difference in results from standard bootstrap and block bootstrap, 

additional tests in future research would be valuable.  

Model validation during hyperparameter tuning is also a constraint, as we rely on a fixed split 

between training and validation sets. Although in our study, the validation period follows the 
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training period to respect time order, a rolling or time series cross-validation approach in 

future studies may produce more robust hyperparameter choices. 

Finally, due to the computational cost, we evaluate only one deep learning model, the LSTM, 

which adds another limitation to this study. Future research could explore other neural 

networks such as gated recurrent units, temporal convolutional networks, transformers, or 

attention-based hybrids to see whether they can capture volatility dynamics more effectively. 
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Chapter 5. Conclusion 

The main objective of this thesis was to investigate the effectiveness of machine learning (ML) 

models, augmented with macroeconomic variables, in forecasting US stock return volatility. 

Specifically, the central questions addressed were: 1) whether machine learning algorithms 

can consistently improve one-step-ahead forecasts relative to the autoregressive (AR) 

benchmark model, and 2) whether the financial and macroeconomic variables introduced by 

Paye (2012) provide incremental information over the volatility’s past values. These questions 

were motivated by the mixed evidence in existing literature and by the theoretical discussion 

of macroeconomic variables as forward-looking signals of financial risk. 

To answer them, our analysis began by replicating Paye (2012), which provided a baseline for 

all subsequent extensions we added in our study. Building on that foundation, six machine 

learning models, including ridge, lasso, elastic net, random forest, gradient boosted regression 

trees (or GBRT), and long short-term memory (LSTM) networks, were estimated alongside 

ordinary least squares (OLS) and the AR model. Each model was employed on eight different 

sample periods to assess the impact of calm and turbulent market environments, and the data 

were on both a quarterly and a monthly basis. Forecasts were produced under rolling and 

recursive (or expanding) windows. The predictive accuracy was gauged by changes in out-of-

sample 𝑅2, Giacomini-White (GW) test, and Clark and West (CW) test statistics. 

At the last step, a variable importance analysis was performed to assess the contribution of 

each predictor in forecasting performance of our models. Following Breiman (2001), each 

predictor was randomly permuted and the resulting increase in mean squared prediction error 

(MSPE) was recorded. This analysis only focused on two best performing algorithms, elastic 

net and LSTM.  

This study provided several important conclusions. First, none of our machine learning 

predictive models delivered statistically significant gains over an AR(2) at the quarterly 

horizon and AR(6) at the monthly frequency. However, the results from linear models (OLS 

and penalized regressions) and the LSTM suggested that these models nearly matched the AR 

model’s predictive accuracy in most cases, as indicated by slightly positive or negative 

changes in 𝑅2. The tree-based models consistently indicated the worst predictive performance. 
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Second, data frequency and estimation window length influenced our models’ performance. 

In particular, moving from quarterly to monthly data and from rolling to recursive estimation 

window improved the out-of-sample 𝑅2 values. Third, the models performed differently 

across various volatility regimes. Including the 1970s oil-shock interval enhanced the 

forecasting performance of our models, whereas the inclusion of COVID-19 data slightly 

decreased their prediction accuracy, suggesting that high-volatility periods can both improve 

and distort predictive relationships. Fourth, Clark and West (CW) test statistics revealed that 

the macroeconomic predictors in our models mostly Granger-caused the realized volatility, 

however, their incremental economic value (as measured by ∆𝑅2) was not significant. Fifth, 

the permutation analysis revealed that after accounting for the persistence of volatility, credit 

market spread variables (commercial paper-to-Treasury spread, default spread, and default 

return spread) were the most relevant macroeconomic variables among all. 

Accordingly, this thesis offers several empirical findings to the literature. First, extending 

Paye’s study through 2019 and 2023 and employing more complex machine learning 

algorithms reveals that simple AR models remain difficult to outperform in forecasting 

volatility. Second, when incorporating macroeconomic variables into machine learning 

models, we find no statistically significant out-of-sample improvement beyond lagged 

volatility across our samples and horizons. Finally, permutation tests show that credit spreads 

are the most informative macro variables; however, their incremental predictive power is not 

statistically significant. 
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Appendix A. Paye (2012) Replication Results 

The tables in this appendix present the results of the replication process from Paye (2012).  

 

Table A.1 Descriptive statistics. This table replicates Table 1 in Paye (2012). Values in black are those 

reported in Paye (2012), and values in green are the replication results. 

Philips and Perron test

Symbol Name Mean Satndard Deviation Skewness Kurtosis ρ 1 ρ 2 Z t p -value

Panel A: Quarterly sampling frequency

﻿0.0072 ﻿0.1344 ﻿-0.68 ﻿4.88 ﻿-0.19 0.13 -18.95 0.00

-0.0017 0.0948 -0.24 0.83 -0.29 0.21 -3.95 0.00

﻿0.0001 ﻿0.0193 ﻿0.09 ﻿2.52 ﻿0.92 ﻿0.86 ﻿-2.75 ﻿0.07

0.0026 0.0186 -0.63 -0.06 0.91 0.88 -2.46 0.12

﻿0.6461 ﻿0.4920 ﻿2.25 ﻿10.55 ﻿0.60 ﻿0.45 ﻿-8.04 ﻿0.00

0.6133 0.4396 2.17 8.60 0.73 0.52 -4.54 0.00

﻿-0.0002 ﻿0.0995 ﻿0.03 ﻿15.80 ﻿-0.02 ﻿0.06 -16.99 ﻿0.00

0.0002 0.0076 0.51 13.95 -0.07 0.07 -8.36 0.00

﻿0.0158 ﻿0.0072 ﻿1.41 ﻿7.02 ﻿0.85 ﻿0.73 -4.23 ﻿0.00

0.0097 0.0045 1.72 3.82 0.91 0.78 -4.17 0.00

﻿2.5364 ﻿1.4331 -0.66 ﻿5.37 ﻿0.86 ﻿0.72 -3.87 ﻿0.00

2.5466 1.4231 -0.67 2.52 0.87 0.73 -3.41 0.01

﻿0.0199 ﻿0.0201 ﻿0.90 ﻿3.78 ﻿0.78 ﻿0.67 ﻿-5.40 ﻿0.00

0.0199 0.0197 0.97 1.19 0.46 0.45 -4.84 0.00

﻿3.0439 ﻿3.8156 -0.38 ﻿4.34 ﻿0.37 ﻿0.19 -9.99 ﻿0.00

3.2289 3.8165 -0.20 1.16 0.35 0.20 -7.89 0.00

﻿0.0358 ﻿0.0036 ﻿0.27 ﻿2.43 ﻿0.96 ﻿0.89 -2.57 ﻿0.10

0.0362 0.0032 0.24 -0.53 0.97 0.90 -3.88 0.00

﻿0.0045 ﻿0.0046 ﻿2.25 ﻿8.86 ﻿0.26 ﻿0.11 -12.71 ﻿0.00

0.0000 0.0001 4.05 17.37 0.19 0.10 -7.05 0.00

-2.1916 ﻿0.2064 -1.63 ﻿7.23 ﻿0.94 ﻿0.87 -2.59 ﻿0.10

-2.1947 0.2073 -1.63 3.76 0.97 0.90 -1.86 0.35

﻿0.0036 ﻿0.0046 ﻿4.36 ﻿33.26 ﻿0.42 ﻿0.28 -10.39 ﻿0.00

0.0000 0.0001 12.01 162.93 0.20 0.14 -8.67 0.00

﻿0.0160 ﻿0.0143 -0.11 ﻿3.00 ﻿0.83 ﻿0.69 -4.61 ﻿0.00

0.0162 0.0139 0.07 -0.60 0.90 0.77 -3.90 0.00

Panel B: Monthly sampling frequency

﻿0.6147 ﻿0.4646 ﻿2.42 ﻿13.61 ﻿0.86 ﻿0.74 -7.40 ﻿0.00

0.6160 0.4658 2.41 10.56 0.86 0.74 -4.33 0.00

-0.0091 ﻿0.2236 ﻿1.64 ﻿37.78 -0.12 -0.03 -30.61 ﻿0.00

0.0002 0.0135 -0.27 7.70 -0.07 -0.06 -9.05 0.00

﻿0.0157 ﻿0.0072 ﻿1.30 ﻿6.10 ﻿0.93 ﻿0.87 -4.92 ﻿0.00

0.0097 0.0046 1.79 4.30 0.97 0.93 -3.20 0.02

﻿0.0052 ﻿0.0040 ﻿1.19 ﻿5.87 ﻿0.89 ﻿0.82 -6.52 ﻿0.00

0.0028 0.0036 2.31 9.31 0.52 0.48 -4.96 0.00

﻿0.0024 ﻿0.0095 ﻿0.27 ﻿9.43 ﻿0.39 ﻿0.24 -18.35 ﻿0.00

0.0024 0.0095 0.21 6.58 0.39 0.24 -8.30 0.00

﻿0.0062 ﻿0.0064 ﻿3.31 ﻿23.01 ﻿0.24 ﻿0.14 -23.20 ﻿0.00

0.0001 0.0003 11.31 164.57 0.12 0.05 -13.48 0.00

﻿2.1905 ﻿0.2069 -1.67 ﻿7.34 ﻿0.98 ﻿0.96 -2.75 ﻿0.07

-2.1941 0.2090 -1.59 3.82 0.98 0.97 -2.08 0.25

﻿0.0044 ﻿0.0056 ﻿3.79 ﻿24.67 ﻿0.37 ﻿0.39 -24.17 ﻿0.00

0.0001 0.0002 9.63 112.08 0.35 0.25 -5.30 0.00

﻿0.0162 ﻿0.0142 -0.05 ﻿2.85 ﻿0.95 ﻿0.90 -4.19 ﻿0.00

0.0162 0.0143 -0.05 -0.16 0.96 0.90 -4.24 0.00

Inflation volatility

﻿Changes in bank leverage

Consumption–wealth ratio

CP-to-Treasury spread

Default return

Default yield

Expected GDP growth

CP-to-Treasury spread

Term spread

blev

cay

﻿cp

dfr

egdp

dfy

exret

gdp

ik

Expected return

GDP growth

Investment-capital ratio

Industrial production volatility

Net payout yield

ipvol

npy

ppivol

tms

﻿cp

exret Expected return

dfr Default return

dfy Default yield

ip ﻿Growth in industrial production

tms Term spread

ipvol Industrial production volatility

npy Net payout yield

ppivol Inflation volatility
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Table A.2 In-sample regressions for quarterly data. This table replicates Table 2 in Paye (2012). Values in 

black are those reported in Paye (2012), and values in green are the replication results. 

 

 

Symbol Name β ΔR
2 β ΔR

2 β ΔR
2 β ΔR

2 β ΔR
2

- - -0.03 ﻿0.09 - - -0.14** 1.98 ﻿0.08 ﻿0.60

- - -0.05 0.29 - - -0.11 1.16 0.05 0.18

- - -0.05 ﻿0.26 - - -0.09 ﻿0.75 ﻿-0.09 ﻿0.77

- - 0.07 0.43 - - 0.01 0.01 0.04 0.13

0.12*** ﻿1.36 0.11** ﻿1.11 0.23** ﻿2.77 0.31*** ﻿7.78 ﻿0.07 ﻿0.45

0.12*** 1.30 0.10** 0.99 0.25*** 2.84 0.29*** 7.00 0.08 0.55

﻿﻿﻿﻿﻿﻿﻿﻿﻿-0.08** ﻿0.58 ﻿-0.13*** ﻿1.54 ﻿0.04 ﻿0.20 ﻿-0.08* ﻿1.45 ﻿-0.14** ﻿1.59

-0.05 0.28 -0.14*** 1.89 0.14** 1.99 -0.14* 1.95 -0.15* 1.83

0.17*** ﻿1.22 ﻿0.07 ﻿0.26 0.33*** ﻿3.46 ﻿0.11 ﻿0.79 ﻿0.04 ﻿0.08

0.14*** 1.00 0.04 0.12 0.23** 1.83 0.10 0.73 0.03 0.05

- - -0.02 ﻿0.06 - - ﻿0.00 ﻿0.00 -0.03 ﻿0.10

- - -0.06 0.38 - - -0.04 0.19 -0.07 0.47

﻿0.00 ﻿0.00 ﻿﻿﻿﻿﻿-0.08** ﻿0.56 ﻿0.00 ﻿0.00 ﻿-0.08 ﻿0.57 ﻿-0.13** ﻿1.65

0.00 0.00 -0.03 0.11 0.04 0.15 -0.03 0.06 -0.06 0.37

- - ﻿0.00 ﻿0.00 - - ﻿0.00 ﻿0.00 -0.02 ﻿0.04

- - -0.01 0.02 - - -0.01 0.02 -0.05 0.19

- - ﻿-0.12*** ﻿1.42 - - 0.12** ﻿1.48 0.15** ﻿2.27

- - 0.11** 1.24 - - 0.07 0.49 0.16** 2.46

﻿0.01 ﻿0.01 -0.02 ﻿0.05 -0.03 ﻿0.08 -0.04 ﻿0.14 ﻿0.09 ﻿0.76

0.02 0.03 -0.02 0.05 -0.01 0.01 -0.08 0.59 0.18** 2.77

-0.03 ﻿0.12 ﻿-0.11*** ﻿1.08 ﻿-0.06 ﻿0.34 ﻿0.00 ﻿0.00 ﻿-0.08 ﻿0.68

-0.04 0.12 -0.09* 0.75 -0.08 0.58 0.03 0.07 -0.07 0.44

﻿0.04 ﻿0.12 ﻿0.09 ﻿0.64 -0.03 ﻿0.09 0.18*** ﻿2.87 ﻿0.02 ﻿0.03

0.01 0.02 0.06 0.34 -0.07 0.45 0.10 1.03 0.03 0.10

-0.03 ﻿0.08 ﻿-0.01 ﻿0.02 -0.05 ﻿0.21 ﻿-0.06 ﻿0.31 ﻿﻿﻿﻿-0.08*** ﻿0.56

-0.02 0.06 -0.02 0.04 -0.03 0.10 -0.07 0.52 -0.07 0.49

F ΔR
2 F ΔR

2 F ΔR
2 F ΔR

2 F ΔR
2

5.29*** ﻿3.32 4.21*** ﻿6.76 2.34** ﻿5.35 8.16*** ﻿11.56 7.63*** ﻿7.00

50.63*** 3.16 17.21*** 7.48 21.04*** 7.96 5.91*** 12.11 8.85*** 9.88
sink Kitchen sink

ppivol

tms

Expected GDP growth

Expected return

GDP growth

Investment-capital ratio

Industrial production volatility

Net payout

Inflation volatility

Term spread

egdp

exret

npy

ipvol

ik

cay Consumption-wealth ratio

cp

dfr

dfy

CP-tp-Treasury spread

Default return

Default yield

gdp

﻿1927Q2–1951Q4 ﻿1952Q2–1985Q4 ﻿1986Q1–2010Q4﻿1952Q2–2010Q4

blev Changes in bank leverage

﻿1927Q2–2010Q4
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Table A.3 In-sample regressions for monthly data. This table replicates Table 3 in Paye (2012). Values in 

black are those reported in Paye (2012), and values in green are the replication results. 

Symbol Name β ΔR
2 β ΔR

2 β ΔR
2 β ΔR

2 β ΔR
2

0.07*** ﻿0.47 0.06** ﻿0.29 0.17*** ﻿1.40 0.16*** ﻿2.01 ﻿0.03 ﻿0.05

0.08*** 0.54 0.06*** 0.39 0.19*** 1.63 0.16*** 2.14 0.04 0.11

-0.05*** ﻿0.20 ﻿-0.06** ﻿0.35 -0.02 ﻿0.06 ﻿-0.01 ﻿0.00 ﻿-0.11*** ﻿1.22

-0.07*** 0.44 -0.09*** 0.78 -0.03 0.10 -0.06* 0.31 -0.14*** 1.58

0.10*** ﻿0.40 ﻿0.04 ﻿0.07 0.20*** ﻿1.27 ﻿0.03 ﻿0.05 ﻿0.09 ﻿0.32

0.08*** 0.32 0.02 0.03 0.18*** 1.14 0.04 0.10 0.05 0.11

﻿-0.01 ﻿0.01 ﻿-0.04* ﻿0.17 ﻿-0.01 ﻿0.01 ﻿-0.06** ﻿0.29 -0.02 ﻿0.04

-0.03* 0.10 -0.04 0.14 -0.06 0.32 -0.04 0.18 -0.01 0.01

﻿-0.01 ﻿0.02 -0.01 ﻿0.01 -0.03 ﻿0.10 ﻿0.01 ﻿0.01 -0.08 ﻿0.53

﻿﻿-0.03* 0.11 -0.02 0.05 -0.06* 0.35 -0.01 0.02 -0.06* 0.34

﻿0.00 ﻿0.00 ﻿0.00 ﻿0.00 ﻿-0.02 ﻿0.04 -0.03 ﻿0.07 ﻿0.10 ﻿0.96

-0.01 0.01 0.01 0.01 -0.03 0.09 -0.01 0.01 0.11*** 1.05

-0.02 ﻿0.03 ﻿-0.06** ﻿0.29 -0.03 ﻿0.09 ﻿0.00 ﻿0.00 -0.05 ﻿0.22

-0.02 0.04 -0.04* 0.18 -0.04 0.16 0.00 0.00 -0.03 0.12

﻿0.03 ﻿0.11 0.05* ﻿0.26 ﻿0.01 ﻿0.02 0.07** ﻿0.47 ﻿0.04 ﻿0.15

0.00 0.00 0.05** 0.26 -0.03 0.08 0.02 0.03 0.08** 0.56

-0.02 ﻿0.02 ﻿-0.01 ﻿0.01 ﻿-0.01 ﻿0.01 ﻿-0.02 ﻿0.05 ﻿-0.05 ﻿0.27

-0.02 0.04 -0.02 0.05 -0.01 0.01 -0.04 0.19 -0.05 0.23

F ΔR
2 F ΔR

2 F ΔR
2 F ΔR

2 F ΔR
2

4.06*** ﻿1.22 6.29*** ﻿1.61 2.97*** ﻿2.26 4.12*** ﻿2.67 2.08** ﻿3.07

144.03*** 1.52 84.71*** 1.84 38.71*** 3.95 34.69*** 2.45 37.36*** 3.64

ip Growth in industrial production

sink Kitchen sink

npy Net payout

ppivol Inflation volatility

tms Term spread

ipvol Industrial production volatility

dfy Default yield

exret Expected return

cp CP-tp-Treasury spread

dfr Default return

﻿1927.2–2010.12 ﻿1952.2–2010.12 ﻿1927.2–1951.12 ﻿1952.1–1985.12 ﻿1986.1–2010.12
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Table A.4  Out-of-sample forecasting results for quarterly data and rolling estimation. This table replicates 

Table 4 in Paye (2012). Values in black are those reported in Paye (2012), and values in green are the 

replication results. 

 

Symbol Name CW ΔR
2 CW ΔR

2 CW ΔR
2 CW ΔR

2

- - 2.43* ﻿0.13 -1.39 -1.52* ﻿2.55 -0.01

- - 0.42 -0.46 -1.85 -1.27** 1.66 0.13

- - ﻿3.09 ﻿-0.70 ﻿-0.95 -1.22 4.72** ﻿1.96

- - -3.22 -2.17** -2.04 -1.26** -3.50 -2.72**

﻿7.77** -0.71 ﻿15.29** ﻿1.99 ﻿1.99 ﻿-2.45 ﻿21.86*** ﻿4.37

10.16*** 0.60 17.25*** 2.55 5.53* -0.44 22.85*** 4.46

﻿2.93** ﻿0.37 ﻿3.98* ﻿0.32 ﻿3.97 ﻿0.05 ﻿2.63 ﻿0.14

2.91* -0.17 4.88* 0.52 3.89 -0.46 3.08* 0.43

-0.26 -1.21 ﻿-0.95 ﻿-1.54 ﻿0.25 -0.24 -0.27 -0.45

-0.77 -1.94 -1.06 -2.47 -1.93 -3.25 0.17 -0.73

- - -1.68 -1.30 ﻿1.03 ﻿0.36 -1.34 -1.29

- - -0.46 -1.22 -0.16 -0.54 -0.30 -1.57

-0.33 -1.22 ﻿3.32* -0.15 ﻿1.78 ﻿-0.23 ﻿2.27 ﻿0.62

-0.50 -1.14 -0.66 -1.14 -0.37 -1.10 -2.89 -2.76**

- - ﻿-0.51 -0.64 -0.86 -0.73 ﻿0.34 -0.26

- - 0.68 -0.23 0.08 -0.41 1.38 -0.01

- - ﻿6.07** ﻿1.30 ﻿5.69* ﻿0.74 ﻿6.22** ﻿2.02

- - 6.03** 1.01 7.45** 1.04 4.93** 1.35

-1.25 -0.83 -2.04 -1.41 ﻿-1.43 -0.90 -0.59 -0.51

0.51 -0.21 1.00 -0.25 0.67 -0.44 0.13 -0.25

﻿-1.59 -1.54* -1.91 ﻿-2.12 -0.15 ﻿-0.79 -1.82 -2.12

-2.32 -2.10** -2.61 -2.28* -2.38 -2.21 -3.23 -3.08**

﻿4.65** ﻿0.16 ﻿6.83* ﻿-0.06 -2.79 -2.97*** ﻿10.32** ﻿0.88

-1.77 -4.96 -2.80 -8.22 -5.54 -9.91 2.31 -0.57

﻿2.64 -0.66 ﻿1.43 -1.22 -1.77 -1.46 ﻿3.05 -0.46

2.49 -0.61 1.72 -0.92 0.16 -1.18 2.58 -0.40

﻿5.71 -7.89** ﻿5.58 -15.79** ﻿-2.34 -6.90** ﻿19.69** -7.94

6.62 -17.29** 21.70* -21.79** -2.92 -22.97* 35.99** -11.48

Combined forecasts

﻿1.82** ﻿0.62 ﻿2.72*** ﻿1.25* ﻿0.41 ﻿0.10 ﻿3.84*** ﻿2.16**

1.29* 0.34 1.63* 0.65 0.27 -0.06 2.24** 1.23*

﻿0.77 ﻿0.26 ﻿0.98** ﻿0.48 ﻿0.04 -0.03 ﻿1.31*** ﻿0.75**

0.82* 0.36 0.21 0.07 -0.49 -0.30 0.40 0.19

﻿1.17* ﻿0.41 ﻿1.75** ﻿0.81 ﻿0.12 -0.02 ﻿2.46*** ﻿1.39**

0.76 0.23 0.92 0.38 0.03 -0.08 1.11* 0.58

﻿2.05** ﻿0.73 ﻿3.66*** ﻿1.69* ﻿0.91 ﻿0.34 ﻿5.08*** ﻿2.84**

0.88 -0.19 2.26** 0.72 0.38 0.59 3.10** 1.38

Median

Trim-mean

MSPE

sink Kitchen sink

ipvol Industrial production volatility

tms Term spread

Mean

npy Net payout

ppivol Inflation volatility

exret Expected return

gdp GDP growth

ik Investment-capital ratio

dfr Default return

dfy Default yield

egdp Expected GDP growth

﻿1972Q3–2000Q4, 

N=114

cay Consumption-wealth ratio

cp CP-tp-Treasury spread

blev Changes in bank leverage

﻿1947Q3–2010Q4, 

N=254

﻿1972Q3–2010Q4, 

N=154

﻿1982Q3–2010Q4, 

N=114
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Table A.5 Out-of-sample forecasting results for quarterly data and recursive estimation. This table 

replicates Table 5 in Paye (2012). Values in black are those reported in Paye (2012), and values in green are 

the replication results. 

 

 

  

Symbol Name CW ΔR
2 CW ΔR

2 CW ΔR
2 CW ΔR

2

- - ﻿1.03 ﻿-0.66 ﻿-2.62 -1.90** ﻿2.58 -0.30

- - 0.67 -0.14 -1.68 -1.03** 0.79 -0.24

- - ﻿0.66 -0.06 ﻿-0.69 ﻿-0.60 ﻿0.38 -0.32

- - -0.51 -0.53 0.53 0.12 -1.15 -1.13

﻿5.90** ﻿0.13 ﻿11.35** ﻿0.60 -0.01 ﻿-2.39 ﻿16.87** ﻿2.56

5.86** 0.11 10.41** 0.75 -0.56 -4.27** 15.97** 3.18

﻿1.92* ﻿0.48 ﻿6.77** ﻿1.21 ﻿6.81* ﻿0.76 ﻿3.28* ﻿0.38

-0.37 -0.77 8.60** 1.70 9.89* 1.00 3.34* 0.72

﻿6.02** ﻿0.46 ﻿0.60 ﻿0.04 ﻿0.71 ﻿0.04 ﻿0.29 ﻿-0.10

5.19*** 0.84 0.20 -0.22 0.32 -0.38 0.28 -0.29

- - -0.26 ﻿-0.14 ﻿0.15 ﻿0.06 ﻿-0.32 ﻿-0.20

- - 0.49 0.13 2.70* 0.89 0.37 0.05

-0.17 ﻿-0.20 ﻿2.01** ﻿0.49 ﻿1.69 ﻿0.26 ﻿1.22 ﻿0.36

-0.19 -0.29 -0.69 -0.45 -1.23 -1.04* -1.15 -0.84*

- - ﻿-0.55 ﻿-0.30 -0.27 ﻿-0.12 -0.56 -0.39

- - -0.53 -0.29** 0.46 -0.02 -0.70 -0.47**

- - ﻿5.82*** ﻿1.56 ﻿5.13** ﻿0.95 ﻿7.50*** ﻿3.11**

- - 4.19** 1.30 4.56* 0.27 3.99** 1.75*

-0.47 ﻿-0.21*** -0.49 -0.32 ﻿-0.70 ﻿-0.40 ﻿0.62 ﻿0.27

-0.02 -0.01 -0.92 -0.97 -1.73 -0.89 1.68* 0.41

﻿-0.04 ﻿-0.16 ﻿3.19 ﻿0.22 ﻿5.45* ﻿0.94 ﻿2.56 ﻿0.30

-0.03 -0.19 1.60 0.06 1.81 0.06 0.00 -0.69

﻿0.42 -0.01 ﻿7.39** -0.50 ﻿0.10 ﻿-2.15* ﻿8.84* -0.05

-0.42 -0.25** 5.14* -7.72 2.60 -9.02 2.36 -0.29

-0.70 -0.41* ﻿0.43 ﻿-0.71 -2.33 -1.20* ﻿1.26 -0.75

-0.71 -0.41* 0.10 -0.59 -1.94 -1.43 0.81 -0.49

﻿11.91*** ﻿0.77 ﻿21.08*** ﻿1.25 ﻿12.59*** ﻿0.59 ﻿23.06** ﻿0.90

9.15*** -1.14 30.20*** -6.58 15.35** -6.73 32.11*** -3.16

Combined forecasts

﻿1.61*** ﻿0.59** ﻿2.92*** ﻿1.20** ﻿1.03** ﻿0.36 ﻿3.42*** ﻿1.72*

1.12** 0.43** 2.21*** 0.95*** 1.21* 0.41 2.04*** 1.12**

﻿-0.03 ﻿-0.03 ﻿0.66* ﻿0.27 ﻿0.10 ﻿0.01 ﻿0.94** ﻿0.48*

0.03 0.00 0.50** 0.22* 0.09 0.01 0.48* 0.26

﻿0.66** ﻿0.24* ﻿1.79*** ﻿0.74* ﻿0.44 ﻿0.13 ﻿2.21*** ﻿1.12*

0.45* 0.16 1.20*** 0.54*** 0.50 0.17 1.11** 0.61**

﻿1.86*** ﻿0.69*** ﻿3.77*** ﻿1.53** ﻿1.56** ﻿0.57* ﻿4.55*** ﻿2.27*

0.63 -0.03 2.68*** 0.95** 1.34* 1.02*** 2.68*** 1.18*

﻿1972Q3–2000Q4, 

N=114

cay Consumption-wealth ratio

cp CP-tp-Treasury spread

blev Changes in bank leverage

﻿1947Q3–2010Q4, 

N=254

﻿1972Q3–2010Q4, 

N=154

﻿1982Q3–2010Q4, 

N=114

dfr Default return

dfy Default yield

egdp Expected GDP growth

exret Expected return

gdp GDP growth

ik Investment-capital ratio

ipvol Industrial production volatility

MSPE

npy Net payout

ppivol Inflation volatility

tms Term spread

sink Kitchen sink

Mean

Median

Trim-mean
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Appendix B. Data Sources 

This appendix provides the sources of data used for the construction of our variables. 

Changes in bank leverage (blev): (1952-2023) 

To calculate this variable, the relevant quarterly data series, FL664090005.Q (total financial 

assets) and FL664190005.Q (total liabilities), were obtained from Table F.130 on the website 

of the board of governors of the federal reserve system5. Total equity was computed as the 

difference between total financial assets and total liabilities. The leverage ratio was then 

calculated as total assets divided by total equity, and finally, to get this variable, the percentage 

changes in the leverage ratio was calculated.  

Commercial paper-to-Treasury spread (cp): (1927-2023) 

To construct cp, defined as the spread between the 3-month commercial paper rate and the 3-

month T-bill rate, several data series from federal reserve economic data (FRED)6 were 

combined due to the lack of unified complete historical data: 

1. Commercial Paper Rates: 

• 1927-01 to 1971-03: commercial paper rates for New York, NY 

(M13002US35620M156NNBR). 

• 1971-04 to 1997-08: 3-month prime commercial paper, average dollar offering rate, 

discount basis. 

• 1997-09 to 2023-12: 90-day AA nonfinancial commercial paper rate. 

2. Treasury Bill Rates: 

• 1927-01 to 1933-12: yields on short-term U.S securities, including three-month 

Treasury notes and bills. 

 

 

5 https://www.federalreserve.gov/ 

6 https://fred.stlouisfed.org/ 

https://www.federalreserve.gov/
https://fred.stlouisfed.org/
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• 1934-01 to 2023-12: 3-month Treasury bill secondary market rate, discount basis. 

The cp variable was constructed at both monthly and quarterly frequencies. The monthly 

series, derived directly from the sources, represent average daily rates. For the quarterly series, 

we simply took the average of monthly cp values per quarter.  

Consumption-wealth ratio (cay): (1952-2023) 

Consistent with Paye (2012), cay data are obtained from Amit Goyal’s website, using the 

version updated through 2024.7 

Current GDP growth (gdp): (1952-2023) 

gdp data are sourced from federal reserve economic data (FRED): series 

A191RL1Q225SBEA: real gross domestic product. 

Default return spread (dfr): (1927-2023) 

dfr data are obtained from Amit Goyal’s website, using the version updated through 2024. 

Default spread (dfy): (1927-2023) 

dfy data are also obtained from Amit Goyal’s website, using the version updated through 2024. 

Expected GDP growth (egdp): (1952-2023) 

Data required to construct this variable are obtained from the “surveys and data” section of 

the federal reserve bank of Philadelphia’s website.8 

Expected return (exret): (1927-2023) 

Forecasting variables for in-sample fitted values of exret for different sample periods in our 

study: 

 

 

 

7 https://sites.google.com/view/agoyal145 

8 https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/livingston-survey 

https://sites.google.com/view/agoyal145
https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/livingston-survey
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Quarterly: 

1947-2010: 'cp_lag', 'dfr_lag', 'dfy_lag', 'npy_lag', 'ppi_lag', 'tms_lag' 

1972-2010: 'cp_lag', 'dfr_lag', 'dfy_lag', 'npy_lag', 'ppi_lag', 'tms_lag', 'cay_lag', 'egdp_lag', 

'ik_lag' 

1982-2010: 'cp_lag', 'dfr_lag', 'dfy_lag', 'npy_lag', 'ppi_lag', 'tms_lag', 'cay_lag', 'egdp_lag', 

'ik_lag' 

1972-2000: 'cp_lag', 'dfr_lag', 'dfy_lag', 'npy_lag', 'ppi_lag', 'tms_lag', 'cay_lag', 'egdp_lag', 

'ik_lag' 

1947-2023: 'cp_lag', 'dfr_lag', 'dfy_lag', 'ppi_lag', 'tms_lag' 

1947-2019: 'cp_lag', 'dfr_lag', 'dfy_lag', 'npy_lag', 'ppi_lag', 'tms_lag' 

1972-2019: 'cp_lag', 'dfr_lag', 'dfy_lag', 'npy_lag', 'ppi_lag', 'tms_lag', 'cay_lag', 'egdp_lag', 

'ik_lag' 

1972-2023: 'cp_lag', 'dfr_lag', 'dfy_lag', 'ppi_lag', 'tms_lag', 'cay_lag', 'egdp_lag', 'ik_lag' 

Monthly:  

1947-2010: 'cp_lag', 'dfr_lag', 'dfy_lag', 'ppi_lag', 'tms_lag', 'npy_lag' 

1972-2010: 'cp_lag', 'dfr_lag', 'dfy_lag', 'ppi_lag', 'tms_lag', 'npy_lag' 

1982-2010: 'cp_lag', 'dfr_lag', 'dfy_lag', 'ppi_lag', 'tms_lag', 'npy_lag' 

1972-2000: 'cp_lag', 'dfr_lag', 'dfy_lag', 'ppi_lag', 'tms_lag', 'npy_lag' 

1947-2023: 'cp_lag', 'dfr_lag', 'dfy_lag', 'ppi_lag', 'tms_lag' 

1947-2019: 'cp_lag', 'dfr_lag', 'dfy_lag', 'ppi_lag', 'tms_lag', 'npy_lag' 

1972-2023: 'cp_lag', 'dfr_lag', 'dfy_lag', 'ppi_lag', 'tms_lag' 

1972-2019: 'cp_lag', 'dfr_lag', 'dfy_lag', 'ppi_lag', 'tms_lag', 'npy_lag' 

Growth in industrial production (ip): (1927-2023) 

Industrial production data are obtained from the federal reserve economic data (FRED): 

industrial production: total index (INDPRO) series. 
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Investment-capital ratio (ik): (1952-2023) 

ik data are obtained from Amit Goyal’s website, using the version updated through 2024. 

Net payout (npy): (1927-2019) 

The data for constructing npy are sourced from the website of Michael R Roberts9.  

Term spread (tms): (1927-2023) 

tms data are sourced from Amit Goyal’s website, using the version updated through 2024. 

Volatility of growth in industrial production (ipvol): (1927-2023) 

The data are the same used in constructing ip.  

Volatility of inflation growth (ppivol): (1927-2023) 

This variable is constructed from the series of producer price index by commodity: all 

commodities (PPIACO), from federal reserve economic data (FRED). 

 

 

9 https://finance.wharton.upenn.edu/~mrrobert/research.html 

https://finance.wharton.upenn.edu/~mrrobert/research.html
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