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Abstract

This thesis contributes to growing literature of Markov Regime Switching
GARCH (RSG) models in two ways.

First, this thesis shows that the common path dependence problem of RSG
models can be solved with the Expectation-Maximization Algorithm (EM).
We simulate 100 data series with the path dependent RSG model with known
parameters. We then use the EM algorithm to fit the model to the simulated
data. Our results show that the EM algorithm infers the Data Generating
Process (DGP) parameters satisfactorily and confirm the algorithm is able
to estimate the path dependent Markov Chain Regime Switching GARCH
models.

Second, with simulations studies, this thesis assess the empirical properties
of the Markov Regime Switching GARCH (RSG) model of Gray (1996). We
simulate 100 data series with the RSG model proposed by Gray (1996). We
then fit the model with the simulated data using both the Maximum Likelihood
Estimation (MLE) and the EM algorithm. Our results show that neither the
ML algorithm nor the EM algorithm infers the DGP parameters correctly.
These results confirm that model fails to identify the true parameters that
generate the data. We conclude that the path independent Markov Chain
Regime Switching GARCH model of Gray(1996) is not identified. The findings
reinforce previous research from Haas, Mittnik and Paolla (2004) who raised
concerns about the interpretability of the parameters of the RSG of Gray
(1996).

The merite of this thesis is to be the first analytical work to show empirically
(i) the limits of the Markov Regime Switching GARCH (RSG) model of Gray
(1996) and (ii) to use the EM algorithm to fit the path dependent RSG model
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to data. We show that the EM is an alternative approach and perhaps an
easier way of fitting the path dependent RSG models.

Key Words: Regime Switching, GARCH, Expectation Maximization, Maxi-
mum Likelihood, Mixture, Simulations.
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Chapter 1

Introduction

In an effort to better understand the empirical regularities seen in the dynam-

ics of financial assets’ volatility, AutoRegressive Conditional Heteroskedasticity

(ARCH) models and their generalized versions (GARCH) have been proposed

respectively by Engle (1982) and Bollerslev (1986). These empirical regular-

ities include high persistence and clustering of volatility, leverage effect, etc.

GARCH models and its numerous extensions have been successfully used to

model the dynamics of the volatility of various asset classes.

Like any parametric model, ARCH and GARCH models have their own lim-

itations. In particular, it has been noted that GARCH models with con-

stant parameters produce implausible results in certain applications (See e.g.,

Gray, 1996). This has led many authors to propose different formulations of

Regime Switching GARCH (henceforth, RSG) models. Example of paper that

study RSG models include Gray (1996), Haas, Mittnik, and Paolella (2004),

Bauwens, Preminger and Rombouts (2010), Bauwens, Dufays and Rombouts

(2014).

The traditional RSG models suffer from a path dependence problem that makes

their estimation by maximum likelihood infeasible in practice. To solve this
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problem, two approaches have been used in the literature. The first approach

inspired by Gray(1996) amounts to modifying the traditional RSG to ren-

der its Maximum Likelihood Estimation (MLE) possible; see (Duerke (1997),

Klaassen(2002), Haas et al.(2004)). The second stream of the literature pro-

motes the estimation of the original RSG models with different algorithms;

see Das and Yoo (2004), Bauwens, Preminger and Rombouts (2010), Henneke,

Rachev and Fabozzi (2011).

This paper studies the empirical properties of the Regime Switching GARCH

(RSG) model proposed by Gray (1996) and proposes an estimation of the

traditional RSG models with the Expectation-Maximization (EM) algorithm.

The RSG model of Gray (1996) is appealing because it does not exhibit the

path dependent that is typical to most RSG models. The method collapses

the conditional variances into a single variance by computing their conditional

expectation based on the regime probabilities. Gray (1996) specified this model

with the intention of modeling the volatility of increments of an interest rate

process. In that context, he argued that the RSG model is flexible enough to

accommodated mean reversion in the interest rate process.

To begin, we use common random number simulations to 100 data series for the

traditional path dependent RSG model and the RSG model of Gray (1996). To

assess empirical properties of the (RSG) model proposed by Gray (1996), we fit

the model with the simulated data using the Maximum Likelihood Estimation

(MLE). Our results show that the RSG model of Gray (1996) does not infer the

DGP parameters correctly. We conclude that the path independent Markov

Chain Regime Switching GARCH model of Gray (1996) is not identified. Our

findings echoes previous research by Haas, Mittnik and Paollella (2004) who

also raised concerns about the consequences of recombination of the conditional

variances.

We also investigate by simulations the ability of the EM algorithm to identify

the DGP parameters of the path dependent Regime Switching GARCH (PD-

RSG) model. We shows that the common path dependence problem of RSG
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models can be solved with the Expectation-Maximization Algorithm (EM). We

use the EM algorithm to fit the model with simulated data. Our results confirm

that the EM algorithm infers the Data Generating Process (DGP) parameters

satisfactorily and we conclude that the algorithm is able to estimate the path

dependent Markov Chain Regime Switching GARCH models.

The remainder of the paper is organized as follows. Section 2 reviews the

GARCH and the Regime Switching GARCH models and their basic proper-

ties. Section 3 revisits the RSG model of Gray (1996). Section 4 presents the

conditional mixture representation of the RSG model and the EM algorithm.

Section 5 present the simulation study. Section 6 presents the empirical exper-

iments and Section 7 concludes. The MATLAB codes used in the paper are

presented in appendix.



Chapter 2

Traditional Markov Switching

GARCH Models

2.1 GARCH Models

Let us consider a stationary process yt. The basic ARCH(p) model proposed

by Engle (1982) assumes that:

yt = µt +
√
htεt, (2.1)

ht = w +

p∑
i=1

aie
2
t−i. (2.2)

where et = yt − µt =
√
htεt, εt is IID N(0, 1), w > 0, a1, ..., ap−1 ≥ 0 and

ap > 0. The mean process µt accommodates a wide range of specifications,

including those that lead to view yt as an ARMA process. Indeed, the ARCH

denomination applies only to the specification of the volatility. In this thesis,

yt is the changes in the (logarithm of the gross) short interest rate. However,

yt can be something else in practice, for instance, the log-return on a financial

asset.

4



2.1 GARCH Models 5

ARCH models have been used with relative success in many empirically rel-

evant situations. However, they may lack parsimony in cases where a large

number of lagged error terms (p) is needed in order to fit the data correctly. In

an effort to overcome this limitation, Bollerslev (1986) proposed GARCH(p,q)

models, which parsimoniously extend ARCH(p) models to accommodate arbi-

trarily large values of p. A GARCH(p, q) model specifies the volatility process

as:

ht = w +

p∑
j=1

bjht−j +

q∑
i=1

aie
2
t−i. (2.3)

Andersen and Bollerslev (1998) argued that a standard GARCH(1,1) model

provides accurate forecast of volatility in most cases of practical interest. Since

then, it has become customary to think of volatility processes as GARCH(1,1),

that is:

ht = w + ae2
t−1 + bht−1. (2.4)

where w > 0, a > 0, b > 0 and a+ b < 1.

The GARCH(1,1) model implies that:

V ar (yt|Ωt−1) = ht, (2.5)

where Ωt is the information available up to time t. Also, Equation (2.4) implies

that:

E (ht) = w + aE
(
e2
t−1

)
+ bE (ht−1)

= w + aE
(
ht−1ε

2
t−1

)
+ bE (ht−1) .

By the Law of Iterated Expectation, we have:

E
(
ht−1ε

2
t−1

)
= E

[
E
(
ht−1ε

2
t−1|Ωt−2

)]
= E

[
ht−1E

(
ε2
t−1|Ωt−2

)]
= E (ht−1)

By substituting into the previous equation and assuming stationarity for ht,
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we obtain:

E (ht) =
w

1− a− b
.

Finally, the law of total variance yields:

V ar (yt) = V ar (µt) +
w

1− a− b
. (2.6)

This shows that the constraint a + b < 1 in necessary in order to have a

stationary conditional variance process.

Although GARCH models are very popular because of their simplicity, easy

of estimation and their empirical success in modeling time-varying volatility

(Bollerslev, Chou,and kroner, 1992), an empirical common feature of these

models is that, they tend to impute a high degree of persistence to conditional

volatility. This means that shocks to the conditional variance which occurred

in the distant past continue to have a non trivial impact in the current esti-

mate of volatility. Engel and Bollerslev (1996) show that when a+ b is closed

to one shocks to the conditional variance is hightly persistent and the model

is possibly integrated. Several empirical studies (for example French et al.,

1987; Chou , 1988; Fong, 1997) has reported values of a + b above 0.9 for

weekly stock returns. Lamoureux and lastrapes (1990) associate these high

levels of volatility persistence with structural break in the volatility process.

They point out that the persistence in variance may be overstated because of

presence of, and failure to account for, deterministic structural shifts in the

model. They, then show that GARCH measures of persistence in variance are

sensitive to this type of model mis-specification. Diebold (1986) also indicated

that the high persistence of volatility displayed by interest rate equations may

be due to the failure to include a monetary-regime dummy for the conditional

variance intercept.These empirical results, suggest that to obtain a more ro-

bust estimate of the conditional variance, a more general GARCH model that

allows for regime shifts should be considered.
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2.2 Markov Regime Switching GARCH Models

One popular way of making the GARCH models more flexible is allowing the

parameters to change stochastically between regimes. The regimes are the

outcomes of an unobserved Markov-chain process.

yt = µt,st +
√
ht,stεt, (2.7)

ht,st = wst + aste
2
t−1 + bstht−1. (2.8)

where:

• st ∈ {1, 2} is a stationary and ergodic Markov Chain, with transition

probabilities given by:

π=

(
π11 π21

π12 π22

)
,

with πij=Pr (st = j|st−1 = i) and
∑

j πij = 1.

• µt,st = E (yt|Ωt−1, st) is a state dependent conditional mean process;

• ht,st = V ar (yt|Ωt−1, st) is a state dependent conditional volatility pro-

cess;

• εt is IID N(0, 1) and independent of ht,st ;

• et = yt − E (yt|Ωt−1) and ht = V ar (yt|Ωt−1), where Ωt = {yt, ..., y1} is

the information available at time t.

• (wi, ai, bi, ) , i = 1, 2, are regime specific parameters of the volatility pro-

cess.

The probability law that generates the observed data can be described

as followed:

yt|Ωt−1 =

N(µt,1, ht,1), w.p. pt,1

N(µt,2, ht,2), w.p. pt,2
(2.9)
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where pt,i = Pr(st = i|Ωt−1) represents the state probability or the probability

that given the information set of t − 1 the observation yt is drawn from the

regime i. To fully describe the probability law governing the data, the con-

ditional mean µt,i, the conditional variance ht,i and the state probability pt,i

must be specified.

Specification of the conditional mean

A general specification of the conditional mean is defined as follow:

µt,i = αi + βiXt−1

where the explanatory variable which form the column of Xt−1 are assumed to

be exogenous in the sense that E[et|Xt−1]=0. This means that the explanatory

variable in the conditional mean equation are not independent from the error

term.

Specification of the conditional variance

The conditional variance ht,i depends on the entire past history of the process.

ht,i = wi + aie
2
t−1 + biht−1,i

Specification of the posterior probabilities

The posterior probability pt,1 is determined as follows:

pt,1 = Pr (st = 1|Ωt−1)

= Pr (st = 1|yt−1,Ωt−2) =
f (yt−1, st = 1|Ωt−2)

f (yt−1|Ωt−2)
,

where f (yt−1, st|Ωt−2) is the joint density of yt−1 and st conditional on Ωt−2.
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Hence, we have:

pt,1 =

∑2
i=1 f (yt−1, st = 1, st−1 = i|Ωt−2)∑2

i=1 f (yt−1, st−1 = i|Ωt−2)

=

∑2
i=1 f (yt−1|st = 1, st−1 = i,Ωt−2) Pr (st = 1|st−1 = i,Ωt−2) Pr (st−1 = i|Ωt−2)∑2

i=1 f (yt−1|st−1 = i,Ωt−2) Pr (st−1 = i|Ωt−2)
.

However, we note that:

f (yt−1|st = j, st−1 = i,Ωt−2) = f (yt−1|Ωt−2, st−1 = i) ,

Pr (st = j|st−1 = i,Ωt−2) = Pr (st = j|st−1 = i) = πij and

f (yt|Ωt−1, st = i) =
1√

2πht,i
exp

(
− (yt − µt,i)2

2ht,i

)
for all t.

Therefore, the dynamics of the posterior probabilities is described by the fol-

lowing recursion:

pt,1 = π11
f (yt−1|st−1 = 1,Ωt−2) pt−1,1∑2
i=1 f (yt−1|st−1 = i,Ωt−2) pt−1,i

(2.10)

+ (1− π22)
f (yt−1|st−1 = 2,Ωt−2) pt−1,2∑2
i=1 f (yt−1|st−1 = i,Ωt−2) pt−1,i

and pt,2 = 1− pt,1 for all t.

The Regime Switching Garch Model as defined in this section, (2.7) - (2.10),

suffers from a path dependence problem that occurs because the conditional

variance at time t depends on the entire sequence of regimes visited up to time

t due to the recursive nature of the GARCH process. Even the GARCH model,

(2.1)-(2.2) suffers from the path dependence problem, because ht depends on

its historical sequence up to time t although the couple ht+1 and yt follows

a Markov process. Subsequently, conditioning a regime switching GARCH

model on a single regime would not solve the path dependence problem. To

address the path dependence issue, Hamilton and Susmel (1994) and Cai (1994)

applied a low-order ARCH process to model the conditional variance; which
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empirically would need many lags to capture the dynamic of the volatility.

They justify the use of the ARCH process to model the conditional variance

arguing that regime-switching GARCH models are intractable and impossible

to estimate due the well known path dependency issue inherent to the GARCH

process.

Gray (1996) shows that the problem of path dependence, can be solved in a

way that preserves the essential nature of the GARCH process (including the

important persistence effects) yet allows tractable estimation of the model.

The next chapiter presents in detail the RSG proposed by Gray (1996).



Chapter 3

The Regime Switching GARCH

Model of Gray (1996)

Gray (1996) argued that GARCH models with constant parameters produce

”untenable results” when fitted to short interest rate processes. He therefore

proposed to model the short rate as a Regime Switching GARCH (RSG) of

the following form:

yt = µt,st +
√
ht,stεt, (3.1)

ht,st = wst + aste
2
t−1 + bstht−1. (3.2)

where:

• st ∈ {1, 2} is a stationary and ergodic Markov Chain, with transition

probabilities given by:

Π =

(
π11 π21

π12 π22

)
,

with πij = Pr (st = j|st−1 = i).

11
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• µt,st = E (yt|Ωt−1, st) is a state dependent conditional mean process;

• ht,st = V ar (yt|Ωt−1, st) is a state dependent conditional volatility pro-

cess;

• εt is IID N(0, 1) and independent of ht,st ;

• et = yt − E (yt|Ωt−1) and ht = V ar (yt|Ωt−1), where Ωt = {yt, ..., y1} is

the information available to the econometrician at time t.

• (wi, ai, bi, ) , i = 1, 2, are regime specific parameters of the volatility pro-

cess.

In Gray (1996), yt is assumed to be the first difference of a mean-reverting short

interest rate process, which we denote rt. Mean reversion is accounted for by

letting µt,st = αst + βstrt−1 with βst < 0. In other applications, µt,st may be

specified as constant per regime (µt,st ∈ {µ1, µ2}) or as function of exogenous

variables (µt,st = αst + βstXt−1). Model (3.1)-(3.2) is appealing because it

avoids the path dependence problem akin to regime switching volatility models.

Indeed, the motion of ht,st is specified in terms of ht−1 regardless of the current

state. In a path dependent model, the dynamics of the conditional variance

process would be specified as:

ht = wst + aste
2
t−1 + bstht−1. (3.3)

where ht now denotes the variance of yt conditional on Ωt and {st, ..., s1}. In

this case, the computation of the likelihood of a sample of size T involves an

integration over 2T possible paths of the latent Markov Chain st. This curse

of dimensionality is avoided by Gray’s formulation.

Marginalizing st out of the conditional mean in Gray’s model yields:

E (yt|Ωt−1) = pt,1E (yt|Ωt−1, st = 1) + (1− pt,1)E (yt|Ωt−1, st = 2)

= pt,1µt,1 + (1− pt,1)µt,2 ≡ µt,
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where pt,1 = Pr (st = 1|Ωt−1). For the conditional variance, we have:

V ar (yt|Ωt−1) = E
(
y2
t |Ωt−1

)
− E (yt|Ωt−1)2

=
2∑
i=1

pi,t
[
ht,i + µ2

t,i

]
−

(
2∑
i=1

pi,tµt,i

)2

≡ ht.

The volatility of the current period given a particular state st depends on the

volatility that was expected at the previous period (ht) unconditionally of the

states. As the ”realized” value of the volatility at the previous period can be

higher or lower than the expected volatility, Gray’s RSG model might be less

good at replicating volatility clustering than a path dependent RSG model.

The posterior probability pt,1 is determined as follows:

pt,1 = Pr (st = 1|Ωt−1)

= Pr (st = 1|yt−1,Ωt−2) =
f (yt−1, st = 1|Ωt−2)

f (yt−1|Ωt−2)
,

where f (yt−1, st|Ωt−2) is the joint density of yt−1 and st conditional on Ωt−2.

Hence, we have:

pt,1 =

∑2
i=1 f (yt−1, st = 1, st−1 = i|Ωt−2)∑2

i=1 f (yt−1, st−1 = i|Ωt−2)

=

∑2
i=1 f (yt−1|st = 1, st−1 = i,Ωt−2) Pr (st = 1|st−1 = i,Ωt−2) Pr (st−1 = i|Ωt−2)∑2

i=1 f (yt−1|st−1 = i,Ωt−2) Pr (st−1 = i|Ωt−2)
.

However, we note that, in the regime switching GARCH,

f (yt−1|st = j, st−1 = i,Ωt−2) = f (yt−1|Ωt−2, st−1 = i) ,

Pr (st = j|st−1 = i,Ωt−2) = Pr (st = j|st−1 = i) = πij and

f (yt|Ωt−1, st = i) =
1√

2πht,i
exp

(
− (yt − µt,i)2

2ht,i

)
for all t.

Therefore, the dynamics of the posterior probabilities is described by the fol-
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lowing recursion:

pt,1 = π11
f (yt−1|st−1 = 1,Ωt−2) pt−1,1∑2
i=1 f (yt−1|st−1 = i,Ωt−2) pt−1,i

(3.4)

+ (1− π22)
f (yt−1|st−1 = 2,Ωt−2) pt−1,2∑2
i=1 f (yt−1|st−1 = i,Ωt−2) pt−1,i

and pt,2 = 1− pt,1 for all t.

The RSG model proposed by Gray (1996) departs from the traditional RSG

model in two ways. At any given time t, the conditional mean µt is calcu-

lated as the expectation of µt,st over the two regimes and a single variance ht

is computed by recombining the conditional variances over the two regimes.

This method collapses the conditional variances in each regime by taking the

conditional expectation of ht based on the regime probabilities. The path de-

pendency is removed as ht, the conditional variance at time t depends only on

the current regime and the information set available at t−1 while the GARCH

effect are still allowed. Klaassen (2002) noted that an important inconvenient

to Gray’s model is its inability to generating multi-period variance forecast

and suggested a modified version of the model.



Chapter 4

Fitting the RSG Model to Data

As discussed at the end of the chapter 2 and chapter 3 the path dependent RSG

and the Gray’s family RSG model can not be solved analytically. In fact, the

computation of the likelihood function of the path dependent RSG is infeasible

in practice. Although the Gray’s model solve the path dependency issue and

hence can be estimated by a maximum likelihood method, it displays serious

drawback. Haas, Mittnik and Paolella (2004) argued that by collapsing the two

conditional variances into a single variance, the economic significance of the

variance dynamics, in Gray’s model, became unclear and, the disaggregation

of the overall variance process provided by the model was at best difficult to

interpret. More generally, Haas, Mittnik and Paolella (2004) noted that many

models that combine GARCH features with regimes shifts ”suffer from severe

estimation difficulties” and ”their dynamic properties are not well understood.”

Several versions of the Regime Switching Garch models that can be estimated

by a maximum likelihood method have been proposed; see (Duerke (1997),

Klaassen(2002), Haas et al.(2004)). Rather than modifying the original path

dependent RSG, other researched have proposed a Bayesian Markov Chain

Monte Carlo (MCMC) algorithm that overcomes the path dependence; see Das

and Yoo (2004), Bauwens, Preminger and Rombouts (2010), Henneke, Rachev

and Fabozzi (2011). This thesis shows that the path dependence problem

15
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can be solved with the Expectation-Maximization Algorithm. In this section,

we present two strategies to estimate the parameters of the path dependent

RSG model and the RSG model of Gray (1996). The first approach relies on

the likelihood estimation of a conditional mixture representation of the RSG

model and the second approaches is based on an Expectation-Maximization

(EM) algorithm of the same. This thesis is the first to use the EM algorithm

to test the empirical properties of the path dependent RSG model of and the

RSG model of Gray (1996).

4.1 Maximum Likelihood (ML)

We use the notation f (yt|Ωt−1; θ) instead of f (yt|Ωt−1) to highlight the de-

pendence of the likelihood function on θ, where θ is a vector that collects all

parameters of the model. The sample likelihood function of the RSG model

can be factorized as:

L (θ) = f (Ωt; θ)

= f (y1; θ)
T∏
t=2

f (yt|Ωt−1; θ) ,

where f (y1; θ) is the marginal likelihood of the RSG process. Therefore, the

sample log-likelihood is:

L (θ) =
T∑
t=2

log f (yt|Ωt−1; θ) + log f (y1; θ) .

Unfortunately, the exact form of the marginal likelihood f (y1; θ) is unknown.

For simplicity, we have removed the term log f (y1; θ) from the sample log-

likelihood. This amounts to say that the parameters are estimated conditional

on the first observation.

By noting that f (yt|Ωt−1; θ) is obtained by marginalizing the joint f (yt, st = i|Ωt−1; θ)
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with respect to st, we have:

L (θ) =
T∑
t=2

log

(
2∑
i=1

f (yt, st = i|Ωt−1; θ)

)
(4.1)

=
T∑
t=2

log [pt,1f (yt|Ωt−1, st = 1; θ) + pt,2f (yt|Ωt−1, st = 2; θ)] .

Finally, the Maximum Likelihood (ML) estimator is obtained by maximizing

L (θ) with respect to θ.

There are well-known numerical problems associated with the maximization

of the likelihood of mixtures. Indeed, L (θ) is not necessarily globally convex

in θ due to the summation inside the logarithm. Moreover, the sample like-

lihood of mixture models can be unbounded. This happens when one of the

regimes collapses to only a few observations so that the variance under that

regime is close to zero. Nevertheless, we will estimate the RSG model based

on the likelihood function above and compared the results with those of the

EM algorithm presented below.

4.2 Expectation Maximization (EM)

The Expectation-Maximization (EM) algorithm has been proposed in an effort

to avoid the numerical difficulties associated with the conditional mixture ap-

proach. This technique due to Dempster, Laird and Rubin (1977) updates the

parameter θ iteratively along two steps. The first step (E-step) evaluates the

posterior probabilities at the current value of the parameter and uses them as

input in an auxiliary objective function. The second step (M-step) computes

the updated value of the parameters by maximizing the auxiliary objective

function.

Let θm−1 denote the current value of the parameter. To build our auxiliary
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objective function, we note that:

L (θ)− L (θm−1) =
T∑
t=2

log
f (yt, |Ωt−1; θ)

f (yt|Ωt−1; θm−1)

=
T∑
t=2

log
2∑
i=1

f (yt, st = i|Ωt−1; θ)

f (yt|Ωt−1; θm−1)

Pr (st = i|Ωt−1; θm−1)

Pr (st = i|Ωt−1; θm−1)

Jensen’s inequality implies:

L (θ)− L (θm−1)

≥
T∑
t=2

2∑
i=1

Pr (st = i|Ωt−1; θm−1) log
f (yt, st = i|Ωt−1; θ)

f (yt|Ωt−1; θm−1) Pr (st = i|Ωt−1; θm−1)

=
T∑
t=2

2∑
i=1

Pr (st = i|Ωt−1; θm−1) log f (yt, st = i|Ωt−1; θ)

−
T∑
t=2

2∑
i=1

Pr (st = i|Ωt−1; θm−1) log [f (yt|Ωt−1; θm−1) Pr (st = i|Ωt−1; θm−1)]

The second double summation does not depend on θ. Therefore, our auxiliary

objective function is taken to be:

Q (θ, θm−1) =
T∑
t=2

2∑
i=1

Pr (st = i|Ωt−1; θm−1) log f (yt, st = i|Ωt−1; θ) , (4.2)

where:

log f (yt, st = i|Ωt−1; θ) = log f (yt|Ωt−1, st = i; θ) + log Pr (st = i|Ωt−1; θ) .

Therefore, the EM algorithm proceeds as follows, after setting an initial value

θ0:

- E-step: Use the current value of the parameter to compute the posterior
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probabilities Pr (st = i|Ωt−1; θm−1), t = 1, ..., T and i = 1, 2.

- M-step: Update the value of the parameter by solving:

θm = arg max
θ

(Q (θ, θm−1)) . (4.3)

These two steps are iterated until convergence, e.g., until ‖θm − θm−1‖ becomes

sufficiently small. It has be shown in standard cases that the EM algorithm

converges in a finite number of steps, possibly to a local maximum (see Navidi,

1997).1

After obtaining an estimate θ̂ of θ, the updated posterior probabilities of the

E-step, Pr (st = i|Ωt; θm−1) may be calculated as follows:

Pr
(
st = i|Ωt; θ̂

)
=

f
(
yt|Ωt−1, st = i; θ̂

)
pt,i

(
θ̂
)

∑2
i=1 f

(
yt|Ωt−1, st = i; θ̂

)
pt,i

(
θ̂
) (4.4)

where pt,i (θ) = Pr (st = i|Ωt−1; θ) for i = 1, 2. The updated posterior proba-

bilities, Pr (st = i|Ωt; θ), are supposed to be more informative about the actual

state prevailing at time t than the filtered probabilities, Pr (st = i|Ωt−1; θ).

1The EM algorithm does not necessarily converge to the global maximum. This risk can
be minimized by initializing the algorithm at several differents initial points and comparing
the values of the likelihood function at convergence.



Chapter 5

Simulation studies for model

validation: case of Path dependent

RSG model

In this chapter, we simulated a data-generating process (DGP) corresponding

to the path dependent model presented in Chapter 2. We simulated 100 series

of 10000 weekly observations to which we fit the RSG model to assess its ability

to infer the parameters used to generate the data.

5.1 Simulation of the Path Dependent Markov Chain

RSG Model

In this section, we study by simulation the performance of the full path depen-

dent RS-Garch model (2.7 - 2.10) discussed in chapter 2. The first subsection

presents the design of the simulation, the second subsection presents the algo-

rithm used to evaluate the objective functions and the third subsection presents

20
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the simulations results.

5.1.1 Simulation Strategy and Design

We simulate M = 100 samples of size T = 10000 from the model (2.7), (2.8),

(2.9) and (2.11) using the following parameter values :

α1 = 0.25, β1 = 0.0008, w1 = 0.5, a1 = 0.35, b1 = 0.4,

α2 = −0.07, β1 = −0.0006, w2 = 0.08, a2 = 0.1, b2 = 0.2.

Note that the parameters have been chosen for illustration purpose; the Regime

1 displays positive returns and high volatility and Regime 2 displays low volatil-

ity and low return. The long term conditional volatilities associated with these

parameters are:

v1 =
0.5

1− 0.35− 0.4
= 2

v2 =
0.08

1− 0.1− 0.2
= 0.11

Moreover, Regime 1 displays positive returns as the parameters of the condi-

tional mean are all positive while in Regime 2 the conditional mean parameters

are all negative suggesting low returns compared to Regime 1.

The probability of transitions of st are:

Π =

(
π11 π21

π12 π22

)
=

(
0.9739 0.010 4

0.026 1 0.9896

)
.

The parameters above suggest that the Markov chain has very persistent

regimes while the volatility process in each regime is not very persistent. The
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ergodic probabilities associated with these transition probabilities are:

π1 =
1− 0.9896

2− 0.9739− 0.9896
= 0.285

π2 =
1− 0.9739

2− 0.9739− 0.9896
= 0.715

Hence, Regime 2 is more than twice as probable as Regime 1 in the stationary

distribution. In all the simulation exercise, we use the same variables as in

Gray’s paper. In fact, yt = rt − rt−1 represented a serie of returns of interest

rate rt and Xt−1= rt−1. Hence, we set the initial values of the variables as

follow:

s0 = 1, y0 = 0, r0 = 5 and

h0,i = V ar (y0|no information) =
wi

1− ai − bi
.

where rt = r0 +
∑t

k=1 yt is the cumulative process; rt = rt−1 + yt.

f1,i =
1√

2πh0,i

exp

(
− y2

1

2h0,i

)
=

1√
2πh0,i

, for i = 1, 2.

The posterior probabilities are initialized to the ergodic probabilities:

p1,1 = π1 = 0.285 and p1,2 = π2 = 0.715

Next, we apply a recursion for t = 2 to T . At a given step t, we go through

the following sub-steps:

- Step 1: Compute the potential values of the volatility as:

ht,1 = w1 + a1e
2
t−1 + b1ht−1,1

ht,2 = w2 + a2e
2
t−1 + b2ht−1,2

with the convention that e0 = 0. One of ht,1 and ht,2 is the realized value of

the volatility at time t and both are needed to update ht−1.
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- Step 2: Draw a random number Ut from the uniform distribution on [0, 1].

If st−1 = 1, then set st = 1 if Ut ≤ π11 and st = 2 otherwise. If st−1 = 2, then

set st = 2 if Ut ≤ π22 and st = 1 otherwise.

- Step 3: Compute yt = µ∗
t +

√
h∗t εt, where εt is an independent draw from

N(0, 1), µ∗
t = αst + βstrt−1, h∗t = ht,st . Likewise, compute the cumulative

process as rt = r0 +
∑t

k=0 yt for all t.

- Step 4: Update the posterior probabilities:

pt,1 = π11
ft−1,1pt−1,1

ft−1,1pt−1,1 + ft−1,2pt−1,2

+ (1− π22)
ft−1,2pt−1,2

ft−1,1pt−1,1 + ft−1,2pt−1,2

pt,2 = 1− pt,1

where ft,i = f (rt|st = i,Ωt−1) for all t.

- Step 5: Update the likelihoods:

ft,i =
1√

2πht,i
exp

(
− y2

t

2ht,i

)
, i = 1, 2

Note that Step 1 to 3: are sufficient for data simulation. The next subsection

explains how to evaluate the objective functions.

5.1.2 Evaluating the Objective Functions

Both the sample log-likelihood of the mixture representation L (θ) given at

(4.1) and the auxiliary objective function of the EM algorithm Q (θ, θm−1)

given at (4.2) depend on the posterior probabilities pt,1 = Pr (st = i|Ωt−1; θ)

and pt,2 = 1− pt,1. Indeed, L (θ) is a sum of logarithms of a weighted average

of two likelihood functions while Q (θ, θm−1) is a sum of weighted average of

log-likelihoods.
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In order to evaluate L (θ) and Q (θ, θm−1), we design two separate functions:

• a MATLAB function (called ProbRsGarchPD.m) that takes θm−1 and

{yt, rt−1}Tt=1 as input and returns pt,i (θm−1) , f (yt|Ωt−1, st = i), for i =

1, 2 and t = 1, ..., T ;

• a MATLAB function (called EM RsGarchPD.m) that takes pt,i (θm−1) ,

θ and {yt, rt−1}Tt=1 as input and returns Q (θ, θm−1) .

The second function becomes trivial once the posterior probabilities pt,i (θm−1)

are available. The presentation below therefore focuses on the first function,

ProbRsGarchPD.m.

To begin, we initialize the posterior probabilities at the ergodic probabilities:

p1,1 ≡
1− π22

2− π11 − π22

,

p1,2 ≡
1− π11

2− π11 − π22

,

where Ω0 is an empty set. We have also set the initial conditional variances in

each regime to be equal to the sample variance:

h1,i ≡
1

T − 1

T∑
t=1

(yt − y)2

for i = 1, 2, where y = 1
T−1

∑T
t=1 yt.

Based on these initial values, we compute the first conditional likelihoods:

f (y1|Ω0, s1 = i) ≡ 1√
2πh1,i

exp

(
− (y1 − µ1,i)

2

2h1,i

)
.

where µt,i = αi + βirt−1 and et,i = yt-µt,i for all i and t.

This completes the initialization step.
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Next, we interactively compute the following quantities in a loop starting from

t = 2 and ending at t = T :

• Conditional variance per regime:

ht,i ≡ wi + aie
2
t−1 + biht−1,i; i = 1, 2.

• Likelihood per regime:

f (yt|Ω0, st = i) ≡ 1√
2πht,i

exp

(
− (yt − µt,i)2

2ht,i

)
.

• Posterior probabilities

pt,1 ≡ π11
f (yt−1|st−1 = 1,Ωt−2) pt−1,1∑2
i=1 f (yt−1|st−1 = i,Ωt−2) pt−1,i

+ (1− π22)
f (yt−1|st−1 = 2,Ωt−2) pt−1,2∑2
i=1 f (yt−1|st−1 = i,Ωt−2) pt−1,i

,

pt,2 ≡ 1− pt,1.

At the end of this loop, we have all the inputs needed to evaluate the likelihood

of the conditional mixture (L (θ)) as well as the auxiliary objective function

of the EM algorithm (Q (θ, θm−1)). The codes that evaluate these objective

functions are provided in Appendix.

5.2 Simulation Results

We use the data generated (100 samples of 10000 observations) following the

simulation strategy presented in section 5.2.1 to fit the path dependent RSG

model. The parameters value of the Data Generating Process suggest that

the GARCH equation of the regime 1 is twice as persistent as the regime 2.
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The transition probabilities are close to unity and for each conditional variance

equation ai + bi < 1.

To confirm that the simulated data are drawn from different GARCH processes,

we fit GARCH (1,1) to the square of the error term (yt − µt) for each serie. The

sum of the estimated parameters âi + b̂i = 1 for all 100 samples. These results

suggest that only an integrated GARCH can fit each data serie, confirming a

regime shift in the GARCH equations.

Next we estimate the parameters value of the simulated data using the path

dependent RSG model (2.7 - 2.10). In Table 5.1, we report few statistics

including the minimum, the maximum, the sample mean, the quartiles and

the sample standard deviations of the estimated parameters. First, the sample

mean of the estimated parameters are all close to the DGP value. Second,

all DGP values fall withing the minimum and the maximum bounds of the

estimated parameters. Third, we test the null hypothesis that the estimated

parameters are equal to their DGP value and report the probability of rejecting

(H0 Rejection Rate) the null hypothesis in the last column of the table. For

each parameter, the pvalue is approximated by the rejection rate of the null

hypothesis over the 100 estimations. The results show strong evidence against

rejection of null hypothesis in almost all cases.

Figures 5.1, 5.2 and 5.3 show the empirical distributions of the estimates for

each parameter. We see that the distribution of the estimates delivered by the

EM algorithms are more often unimodal. The parameters of the conditional

variance of display bimodal or trimodal densities which might explain why

they tend to deviate from their DPG value with higher rejection rate of the

null hypothesis.

For the 100 replications, the EM algorithm has inferred the DGP parameters

satisfactorily. Based on these results we can confirm that the EM algorithm is

able to estimate the path dependent Markov Chain Regime Switching GARCH

model. These results also confirm that the EM algorithm performs well.
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Parameter DGP Nb of Min Max Estimated Percentiles Std H0 Rejection
values replications Mean 25th 50th 75th errors Rate

α1 0.25 100 0.21 0.375 0.26 0.25 0.26 0.27 0.02436 0.02
β1 0.0008 100 -0.0004 0.0015 0.0007 0.0005 0.0007 0.0009 0.0004 0.02
w1 0.5 100 0.0003 0.514 0.27 0.13 0.28 0.44 0.1704 0.23
a1 0.35 100 0.00001 0.99975 0.32 0.02 0.16 0.57 0.3379 0.01
b1 0.40 100 0.00007 0.995 0.5 0.12 0.44 0.73 0.3432 0.21
P11 0.9739 100 0.96298 0.9875 0.9742 0.972 0.975 0.9765 0.0032 0.01

α2 -0.07 100 -0.085935 -0.053 -0.07 -0.074 -0.069 -0.065 0.0064 0.02
β2 -0.0006 100 -0.000095 -0.0004 -0.0006 -0.0007 -0.0006 -0.00057 0.0001 0.0
w2 0.08 100 0.00001 0.0833 0.038 0.016 0.043 0.048 0.0238 0.08
a2 0.1 100 0.00001 0.99968 0.43 0.261 0.45 0.546 0.2647 0.05
b2 0.2 100 0.00005 0.1685 0.085 0.065 0.06 0.126 0.0475 0.06
P22 0.9896 100 0.986327 0.9921 0.9894 0.9885 0.9860 0.9901 0.0012 0.0

Table 5.1: EM Algorithm Simulation Results of the Path Dependent Markov Chain Regime Switching GARCH
Model

Note: Null hypothesis is defined as follow: H0: Parameter Estimate = DGP Value; and H0 Rejection Rate refers to the

probability of rejecting the null hypothesis measured by the number of time the null is rejected divided by the number of

replications (100)
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Figure 5.1: Kernel density of the estimated conditional mean parameters
for the Path dependent Regime Switching GARCH Model using the EM
algorithm.

The figure reports the Kernel density distribution of the parameter estimates of the

conditional mean of the Path Dependent Regime Switching GARCH Model. We

use the EM algorithm to fit the model to the 100 data series simulated with the

DGP values from Table 5.1. The left panel reports kernel density distribution of

regime 1 parameters and the right panel displays the kernel density distribution of

the parameters of regime 2

Note: The conditional mean µt,i = αi + βiXt−1; i=1,2.
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Figure 5.2: Kernel density of the estimated conditional variances parameters
for the Path dependent Regime Switching GARCH Model using the EM
algorithm.

The figure reports the Kernel density distribution of the parameter estimates of the

conditional variance of the Path Dependent Regime Switching GARCH Model. We

use the EM algorithm to fit the model to the 100 data series simulated with the

DGP values from Table 5.1. The left panel reports kernel density distribution of

regime 1 parameters and the right panel displays the kernel density distribution of

the parameters of regime 2.

Note: The conditional variance ht,i = wi + aie
2
t−1 + biht−1,i; i=1,2
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Figure 5.3: Kernel density of the transition probabilities for the path depen-
dent Regime Switching GARCH Model using the EM algorithm.

The figure reports the Kernel density distribution of the estimated transition prob-

abilities of the Path Dependent Markov Chain Regime Switching GARCH Model.

We use the EM algorithm to fit the model to the 100 data series simulated with the

DGP values from Table 5.1. The left panel reports kernel density distribution of

the transition probability of regime 1 and the right panel displays the kernel density

distribution of the transition probability of regime 2.

Note: The transition probability Pi,j is the probability that regime i will be followed

by regime j



Chapter 6

Simulation studies for model

validation: case of RSG of Gray

(1996)

In this section we test whether the RSG model of Gray (Equation (3.1) and (3.2))

would replicate the true parameters when used to estimate a simulated time series

with known parameters.

6.1 Simulating of the Markov Chain RSG model of

Gray

In this section, we study by simulation the performance of Gray’s model. We sim-

ulate 100 series of 10000 weekly observations of returns on interest rate and used

them to fit the model described in chapter 3 using the Maximum Likelihood Estima-

tion technique outlined in section 4.1. The first subsection lays out the simulation

strategy and design. The second subsection discusses the algorithm used to evaluate

the objective function and the results of the simulations are presented in the third

31
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subsection.

6.1.1 Simulation Strategy and Design

We simulate M = 100 samples of size T = 10000 from the model (3.1)-(3.2) the

same parameters presented in section 5.1 and an interpretation of the parameters

can be found in subsection 5.1.1.

α1 = 0.25, β1 = 0.0008, w1 = 0.5, a1 = 0.35, b1 = 0.4,

α2 = −0.07, β1 = −0.0006, w2 = 0.08, a2 = 0.1, b2 = 0.2.

The probability of transitions of st are:

Π =

(
π11 π21

π12 π22

)
=

(
0.9739 0.010 4

0.026 1 0.9896

)
.

The ergodic probabilities associated with these transition probabilities are:

π1 =
1− 0.9896

2− 0.9739− 0.9896
= 0.285

π2 =
1− 0.9739

2− 0.9739− 0.9896
= 0.715

We set the initial values of the variables as follow:

s0 = 1, y0 = 0, r0 = 5 and

h0 = V ar (y0|no information) = 0.005.

where rt = r0 +
∑t

k=1 yt is the cumulative process.

We assume that h0,1 = h0,2 = h0 so that y1 has the same likelihood in both

state:

f1,i =
1√

2πh0,i

exp

(
− y2

1

2h0,i

)
=

1√
2πh0

, for i = 1, 2.

The posterior probabilities are initialized to the ergodic probabilities:

p1,1 = π1 = 0.285 and p1,2 = π2 = 0.715



6.1 Simulating of the Markov Chain RSG model of Gray 33

Next, we apply a recursion for t = 2 to T . At a given step t, we go through the

following sub-steps:

- Step 1: Compute the potential values of the volatility as:

ht,1 = w1 + a1e
2
t−1 + b1ht−1

ht,2 = w2 + a2e
2
t−1 + b2ht−1

with the convention that e0 = 0. One of ht,1 and ht,2 is the realized value of the

volatility at time t and both are needed to update ht−1.

- Step 2: Draw a random number Ut from the uniform distribution on [0, 1]. If

st−1 = 1, then set st = 1 if Ut ≤ π11 and st = 2 otherwise. If st−1 = 2, then set

st = 2 if Ut ≤ π22 and st = 1 otherwise.

- Step 3: Compute yt = µ∗t +
√
h∗t εt, where εt is an independent draw from

N(0, 1), µ∗t = αst +βstrt−1, h∗t = ht,st . Likewise, compute the cumulative process as

rt = r0 +
∑t

k=0 yt for all t.

- Step 4: Update the posterior probabilities:

pt,1 = π11
ft−1,1pt−1,1

ft−1,1pt−1,1 + ft−1,2pt−1,2
+ (1− π22)

ft−1,2pt−1,2

ft−1,1pt−1,1 + ft−1,2pt−1,2

pt,2 = 1− pt,1

where ft,i = f (rt|st = i,Ωt−1) for all t.

- Step: Update ht and the likelihoods:

ht = pt,1
(
ht,1 + µ2

t,1

)
+ pt,2

(
ht,2 + µ2

t,2

)
+ (pt,1µt,1 + pt,2µt,2)2

ft,i =
1√

2πht,i
exp

(
− y2

t

2ht,i

)
, i = 1, 2

The next subsection explains how to evaluate the objective functions.
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6.1.2 Evaluating the Objective Functions

The sample log-likelihood of the mixture representation L (θ) given at (4.1) depend

on the posterior probabilities pt,1 = Pr (st = i|Ωt−1; θ) and pt,2 = 1 − pt,1. Indeed,

L (θ) is a sum of logarithms of a weighted average of two likelihood functions.

In order to evaluate the likelihood function L (θ), we design a MATLAB function

called GRsUnGarch11Gray.m that takes θ and {yt, rt−1}Tt=1 as input and returns

pt,i, f (yt|Ωt−1, st = i), ht,i, ht, and L (θ) for i = 1, 2 and t = 1, ..., T : To begin, we

initialize the posterior probabilities at the ergodic probabilities:

p1,1 ≡ 1− π22

2− π11 − π22
,

p1,2 ≡ 1− π11

2− π11 − π22
,

where Ω0 is an empty set. We have also set the initial conditional variances in each

regime to be equal to the sample variance:

h1,i ≡
1

T − 1

T∑
t=1

(yt − y)2

for i = 1, 2, where y = 1
T−1

∑T
t=1 yt. Based on these initial values, we compute the

first error term and the average conditional variance as:

e1 ≡ y1 − (p1,1µ1,1 + p1,2µ1,2) ,

h1 ≡ p1,1 (h1,1 + µ1,1) + p1,2 (h1,2 + µ1,2)− (p1,1µ1,1 + p1,2µ1,2)2 ,

where µt,i = αi + βirt−1 for all i and t. We also compute the first conditional

likelihoods:

f (y1|Ω0, s1 = i) ≡ 1√
2πh1,i

exp

(
− (y1 − µ1,i)

2

2h1,i

)
.

This completes the initialization step. Next, we iteratively compute the following

quantities in a loop starting from t = 2 and ending at t = T :
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• Conditional variance per regime:

ht,i ≡ wi + aie
2
t−1 + biht−1, i = 1, 2.

• Likelihood per regime:

f (yt|Ω0, st = i) ≡ 1√
2πht,i

exp

(
− (yt − µt,i)2

2ht,i

)
.

• Posterior probabilities

pt,1 ≡ π11
f (yt−1|st−1 = 1,Ωt−2) pt−1,1∑2
i=1 f (yt−1|st−1 = i,Ωt−2) pt−1,i

+ (1− π22)
f (yt−1|st−1 = 2,Ωt−2) pt−1,2∑2
i=1 f (yt−1|st−1 = i,Ωt−2) pt−1,i

,

pt,2 ≡ 1− pt,1.

• Error term and average conditional variance:

et ≡ yt − (pt,1µt,1 + pt,2µt,2) ,

ht ≡ pt,1 (ht,1 + µt,1) + pt,2 (ht,2 + µt,2)− (pt,1µt,1 + pt,2µt,2)2 .

At the end of this loop, we have all the inputs needed to evaluate the likelihood of

the conditional mixture (L (θ)). The code that evaluates the objective function is

provided in Appendix.

6.2 Simulation Results

The 100 samples of 10000 observations generated following the simulation strategy

presented in section 6.2.1 are used to fit the path independent RSG model of Gray

as described in chapter 3. Since the model does not suffer from the usual path

dependent problem, it can be simply estimated maximum likelihood.

In Table 6.1, we report the results of the (ML) estimates with some descriptive
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statistics. The sample mean of the estimated parameters are all close to the DGP

value which, fall withing the minimum and maximum bounds of the estimated pa-

rameters. However, the null hypothesis that the estimated parameter is equal to

the DGP value is rejected for the GARCH coefficients of both equations while the

transition probabilities and the coefficients of the conditional mean equations are

significantly not different their DGP values.

Although, path independent RSG model of Gray does not point identify the

DGP values, its solution seems to converge to the same parameter vector. Figures

6.1, 6.2 and 6.3 show the empirical distributions of the estimates for each parameter.

We see that the distribution of the estimates delivered by the ML algorithm are all

unimodal suggesting that the estimated values of each parameter cluster around a

single value.

For the 100 replications, the ML algorithm does not infer the DGP parameters

correctly. These results confirm that there is a regime change in the data but the

RSG of Gray (1996) is not identified because it fails to identify the true parameters

that generate the data. The two regimes are well identified but the path independent

Markov Chain Regime Switching Garch model of Gray (1996) is not identified. The

identification problem displayed by the model arises from the recombination of the

conditional variances as proposed by Gray(1996).
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Parameters DGP Nb of Min Max Estimated Percentiles Std H0 Rejection
values replications Mean 25th 50th 75th errors Rate

α1 0.25 100 0.17 0.44 0.27 0.24 0.27 0.30 0.043 0.16
β1 0.0008 100 -0.0009 0.0021 0.0006 0.0004 0.0006 0.0008 0.001 0.04
w1 0.5 100 0.44 0.75 0.59 0.549 0.591 0.631 0.056 0.57
a1 0.35 100 0.26 0.44 0.36 0.337 0.365 0.388 0.038 0.21
b1 0.40 100 0.20 0.46 0.32 0.287 0.323 0.364 0.059 0.49
P11 0.9739 100 0.9608 0.9824 0.9721 0.9703 0.9721 0.9749 0.004 0.03

α2 -0.07 100 -0.098 -0.04 -0.07 -0.074 -0.068 -0.065 0.008 0.01
β2 -0.0006 100 -0.0011 -0.0002 -0.0006 -0.0007 -0.00062 -0.00057 0.0001 0.03
w2 0.08 100 0.071 0.100 0.087 0.085 0.087 0.090 0.005 0.41
a2 0.1 100 0.0729 0.162 0.111 0.097 0.110 0.122 0.017 0.15
b2 0.2 100 0.0504 0.229 0.135 0.120 0.134 0.150 0.025 0.70
P22 0.9896 100 0.9852 0.9923 0.9892 0.9884 0.9893 0.9900 0.001 0.02

Table 6.1: Maximum Likelihood Simulation Results of the Markov Chain Regime Switching GARCH Model

Note: Null hypothesis is defined as follow: H0: Parameter Estimate = DGP Value; and H0 Rejection Rate refers to the

probability of rejecting the null hypothesis measured by the number of time the null is rejected divided by the number of

replications (100)



6.2 Simulation Results 38

...

Figure 6.1: Kernel density of estimated conditional mean parameters of the
Regime Switching GARCH Model of Gray(1996) using Maximum Likelihood
Estimation.

The figure reports the Kernel density distribution of the parameter estimates of

the conditional mean of the Regime Switching GARCH Model of Gray(1996). We

use the ML algorithm to fit the model to the 100 data series simulated with the

DGP values from Table 6.1. The left panel reports kernel density distribution of

regime 1 parameters and the right panel displays the kernel density distribution of

the parameters of regime 2.

Note: The conditional mean µt,i = αi + βiXt−1; i=1,2
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Figure 6.2: Kernel density of estimated conditional variances parameters
of the Regime Switching GARCH Model of Gray(1996) using Maximum
Likelihood Estimation.

The figure reports the Kernel density distribution of the parameter estimates of the

conditional variance of the Regime Switching GARCH Model of Gray(1996). We

use the ML algorithm to fit the model to the 100 data series simulated with the

DGP values from Table 6.1. The left panel reports kernel density distribution of

regime 1 parameters and the right panel displays the kernel density distribution of

the parameters of regime 2.

Note: The conditional variance ht,i = wi + aie
2
t−1 + biht−1; i=1,2
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Figure 6.3: Kernel density of the estimated transition probabilities of the
Regime Switching GARCH Model of Gray(1996) using Maximum Likelihood
Estimation.

The figure reports the Kernel density distribution of the estimated transition prob-

abilities of the Markov Chain Regime Switching GARCH Model of Gray(1996). We

use the ML algorithm to fit the model to the 100 data series simulated with the

DGP values from Table 6.1. The left panel reports kernel density distribution of

the transition probability of regime 1 and the right panel displays the kernel density

distribution of the transition probability of regime 2.

Note: The transition probability Pi,j is the probability that regime i will be followed

by regime j



Chapter 7

Empirical Application: Fitting the

Regime Switching GARCH

7.1 The Data

For this empirical application, we use a time series of weekly one-month Treasury

bill rates observed from January 1970 to April 1994, (T = 1267 observations). The

same data have been used in the empirical section of Gray (1996). The interest rate

are expressed in annualized percentage, meaning that a 5% annualized interest rate

is recorded as rt = 5. Subsequently, we let rt denotes the interest rate process. Table

2 shows descriptive statistics for the interest rate (rt) and its first difference (∆rt).

The average interest rate on the period covered by the sample is 7.068%, with a

standard deviation of 2.802%. The maximum rate observed during this period is

17.01%. The interest rate process is positively skewed and slightly fat tailed. The

first difference process (∆rt) has a relatively large standard deviation and negative

skewness, and its kurtosis is several times as high as that of rt.

41
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Descriptive Statistics rt ∆rt
Mean 7.0682 −0.0034

Standard Dev. 2.8021 0.3496

Min 2.7300 −4.2200

Max 17.0100 2.2200

Skewness 1.0089 −1.5116

Kurtosis 4.1034 28.3817

Table 7.1: Descriptive Statistics of weekly one-month Treasury bill rates
from January 1970 to April 1994

Figure 5 shows the time series plots of rt (left) and yt = ∆rt (right). These

graphs are the same as those in Figure 3 of Gray (1996). It is seen on the panel at

the right that ∆rt exhibits some jumps. We do not address the presence of these

jumps in the data because our objective is to assess the performance of the same

RSG model as in Gray (1996).

Finally, Figure 6 shows the trajectory of the sample variance of yt over time

based on a 24 weeks rolling windows. It is seen that that high periods of volatility

are followed by low periods of volatility, much like in our previous simulation. This

is not surprising since these simulations are done using parameter values that are

estimated by Gray (1996) from the current data set.
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Interest rate (rt) First difference (yt = ∆rt)

Figure 7.1: Plot of weekly one-month Treasury bill rates rt from January
1970 to April 1994 the data

Figure 7.2: Sample variance of yt = ∆rt based on 24 weeks rolling windows
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7.2 Estimation Results of the RSG of Gray using

the ML algorithm

As a first step of the assessment of the RSG model proposed by Gray, we attempt

to replicate the results of the Gray (1996) paper except for the Generalized RSG

models. We fit the RSG model of Gray (1996) to the data using the Maximum

likelihood algorithm. Next, we fit the path dependent Regime Switching GARCH

(henceforth PD-RSG) model to the same using the EM algorithm. The estimation

of each model is done in three steps.

1. First, we draw independently a sample of 100 000 initial set of values from the

space of parameters where each parameter belongs to its domain of definition.

2. Second, we evaluate the objective function 100 000 times with each set of

parameters and select the value of the objective function that minimizes the

negative log-likelihood.

3. Finally, the parameter obtained in step 2 is used as starting to the optimization

algorithm. This last step is repeated until the optimization algorithm reaches

a satisfactory1 local minimum using the latest estimated parameter vector as

the starting point for the following optimization.

We start by replicating four models from Gray’s paper starting from the simple

model with constant variance to the full Regime Switching GARCH models. Next

we move to the simulation studies.

The results of the replication of Gray’s results are summarized in Table 7.2

and 7.3. Tables 7.2 reports results of two constant variance models while Tables

7.3 reports the results of two GARCH models. The results show that overall, our

programs replicate Gray’s outcomes.

Table 7.2 reports the results of the estimation of a single regime and a markov

1Exiflag =1 or Exitflag =2 and the gradian close (or sufficiently close) to zero and all
other optimizations constraints are respected.
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chain regime switching constant variance model. In the first four column are the re-

sults of the estimations of a single regime model with a constant variance (Equations

(2.1) and (2.2) with ai = 0 for i = 1..k). The last four column of the table display

the results of the estimation of a regime switching with constant variance (Equation

(3.1) and (3.2) with ast = bst = 0). For both single regime and regime switching

cases, our programs converge to a local minimum with log-likelihood slightly higher

and the parameters estimates close to Gray’s results.

The Table 7.3 displays the results of two models (sigle regime and regime switch-

ing) with GARCH error terms. from the estimation of the RSG models (Equation

(3.1) and (3.2)). In the case of the single RSG model or the simple GARCH model,

our estimates are close to Gray’s and although our log-likelihood is slightly smaller,

the first order optimality conditions were fully met. Our programs perform better

in the case of the full RSG model as the maximum log-likelihood from our optimiza-

tion process is higher than Gray’s and the estimated parameters seem more accurate.

These findings suggest that our codes perform well. In the next section we move to

assess the validity of the RSG models of Gray (1996) through simulations studies.
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Single regime with constant variance Regime switching with constant variance
Own calculation Gray 1996 Own calculation Gray 1996

Parameters Estimate T Statistics Estimate T Statistics Estimate T Statistics Estimate T Statistics

α1 0.0475 1.7839 0.0475 1.1757 0.1673 0.0576 0.1687 1.2102
α2 0.0026 0.0143 -0.0057 -0.3132
β1 -0.0072 -2.0567* -0.0072 -1.0746 -0.0189 -0.0765 -0.0190 -1.2752
β2 0.0001 0.0031 0.0015 0.4688
w1 0.1218 0.0054 0.3489 13.7362* 0.4489 0.197 0.6716 8.5762*
w2 0.0223 0.363 0.1496 19.6842*
P 0.9686 9.0324* 0.9698 53.4807*
Q 0.9907 11.0626* 0.9905 202.1429*

Log-likelihood -463.276 -463.143 111.1344 111.1109

First order Optimality 4.36E-04 8.54E-05
Exitflag 1 1

* Significant at 5% or less
Index 1-Regime1
Index 2-Regime2

Table 7.2: Results of the estimation of a single regime and a markov chain regime switching constant variance
model.

The model is fit with a data sample of 1267 observations of weekly one-month Treasury bill yields in annualized percentage

terms from January 1970 to April 1994. The first two columns report the results of our estimations of a single-regime GARCH

model while columns 3 and 4 display the results of the same model from Gray(1996), Table 2 (column 1 and 2). Columns 5

and 6 display the results of our estimations of a markov chain regime switching GARCH model while the last two columns

report the results of the same model from Gray(1996) Table 2 (column 3 and 4).
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Single regime with Garch error term Regime switching with Garch error term
Own calculation Gray 1996 Own calculation Gray 1996

Parameters Estimate T Statistics Estimate T Statistics Estimate T Statistics Estimate T Statistics

α1 0.0054 0.4011 0.0059 0.5017 0.1419 1.3301 0.1407 1.1616
α2 0.0030 0.2044 -0.0011 -0.0762
β1 -0.0012 -0.5414 -0.0013 -0.516 -0.0142 -1.426 -0.0141 -1.0807
β2 -0.0001 -0.0411 0.0006 0.2366
w1 0.0007 3.0553* 0.0004 1.1356 0.1853 3.2398* 0.1870 2.2278*
w2 0.0099 5.5473* 0.4609 1.9885*
a1 0.1632 7.9044* 0.2095 2.5506* 0.4627 3.2419* 0.1977 1.2378
a2 0.1654 3.3575* 0.0099 3.861*
b1 0.8325 39.7376* 0.8208 13.4603* 0.2001 1.5653 0.1655 2.7556*
b2 0.2692 4.0375* 0.2685 2.815*
P 0.9742 75.333* 0.9739 24.1357*
Q 0.9897 237.5014* 0.9896 86.8336*

Log-likelihood 124.5016 129.7304 151.3096 151.2288
output.firstorderopt 7.63E-06 6.65E-05
Exitflag 2 1

* Significant at 5% or less
Index 1-Regime1
Index 2-Regime2

Table 7.3: Results of the estimation of a single regime and a markov chain regime switching GARCH model

The model is fit with a data sample of 1267 observations of weekly one-month Treasury bill yields in annualized percentage

terms from January 1970 to April 1994. The first two columns report the results of our estimations of a single-regime GARCH

model while columns 3 and 4 display the results of the same model from Gray(1996), Table 3 (column 1 and 2). Columns 5

and 6 display the results of our estimations of a markov chain regime switching GARCH model while the last two columns

report the results of the same model from Gray(1996) Table 3(column 3 and 4).
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7.3 Estimation Results of the PD-RSG model using

the EM algorithm

In this section, we fit the path dependent Regime Switching GARCH (henceforth

PD-RSG) model to the same using the EM algorithm. Considering the presentation

in chapter 2 and 3, the RSG model of Gray (1996) resulted from the a modification

of the PD-RSG. The models are different and are expected to yield different param-

eters estimates. Recall that by construction, the EM algorithm does not necessarily

converge to the global maximum. To mitigate this risk, we estimation the model in

three steps as follow.

1. First, we draw independently a sample of 100 000 initial set of values from the

space of parameters where each parameter belongs to its domain of definition.

2. Second, we evaluate the objective function 100 000 times with each set of

parameters and select the value of the objective function that minimizes the

negative log-likelihood.

3. Finally, the parameter obtained in step 2 is used as starting to the optimiza-

tion algorithm. This last step is repeated until the optimization algorithm

reaches a satisfactory1 local minimum using the latest estimated parameter

vector to evaluate the posterior probabilities of the E-Step for the following

optimization.

Alternatively, we use the parameter estimates of the Gray’s model as an informed

guess of the starting point of the algorithm. This approach leads to better results

as the convergence criteria of the EM algorithm is smaller and the log-likelihood is

higher.

Table 7.5 display the results of the estimations to the path dependent RSG model

with the EM algorithm. The results are close to Gray’s estimates. However, most

of the parameter estimates are not statistically different from zero.

1The convergence criteria of the EM algorithm is defined as the distance between two
consecutive vectors of parameter estimates to be less that 0.001.
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Regime switching with constant probabilities

Own Calculation PD-RSG EM Gray (1996) MLE

Parameters Estimate T Statistics Estimate T Statistics

α1 0.1991 5.7887* 0.1407 1.1616
α2 -0.0868 -3.6408* -0.0011 -0.0762
β1 0.0036 0.1960 -0.0141 -1.0807
β2 -0.1174 -0.1186 0.0006 0.2366
w1 0.1868 0.2561 0.1870 2.2278*
w2 0.0113 0.0989 0.4609 1.9885*
a1 0.4606 0.4449 0.1977 1.2378
a2 0.1662 0.2109 0.0099 3.861*
b1 0.1975 0.1929 0.1655 2.7556*
b2 0.2682 0.2899 0.2685 2.815*
P 0.9886 1.5913 0.9739 24.1357*
Q 0.9729 3.7000* 0.9896 86.8336*

* Significant at 5% or less
Index 1-Regime1
Index 2-Regime2

Table 7.4: Results of the Estimation of the Path Dependent Markov Chain RSG Model using the EM algorithm.

The model is fit with 1267 observations of weekly one-month Treasury bill yields in annualized percentage terms from January

1970 to April 1994. The first two columns report the results of our estimations while the last two display the results from

Gray(1996), Table 3.



Chapter 8

Conclusion

There is a growing interest in using Markov Regime Switching GARCH (RSG) mod-

els to analyze and forecast volatilities financial markets. However Maximum Likeli-

hood Estimation (MLE) of the path dependent RSG models is infeasible in practice.

Gray(1996) developed a generalized MSG model that solves the path dependence

issue and rendering the MLE possible. Following Gray(1996), several versions of the

Regime Switching Garch models that can be estimated by a maximum likelihood

method have been proposed; see (Duerke (1997), Klaassen(2002), Haas et al.(2004)).

Rather than modifying the original path dependent RSG, other researched have pro-

posed a Bayesian Markov Chain Monte Carlo (MCMC) algorithm that overcomes

the path dependence; see Das and Yoo (2004), Bauwens, Preminger and Rombouts

(2010), Henneke, Rachev and Fabozzi (2011).

This thesis contributes to this growing literature in two ways.

First, this paper studies the empirical properties of the Regime Switching GARCH

(RSG) of the Gray (1996) model. This model is appealing because it does not ex-

hibit the path dependent that is typical to most RSG models. We investigate by

simulations the ability of the Maximum Likelihood method (based on mixture rep-

resentation) to identify the parameters of this model. To begin, we validate our

programs using common random number simulations to assess the ability of ours

50
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programs to reproduce the parameters used to simulate the data. The second val-

idation technique consisting in comparing the results of our estimation with the

outputs of popular packages in MatLab or Stata.

Subsequently, with simulations studies, we assess the empirical properties of the

Markov Regime Switching GARCH (RSG) model of Gray (1996). We simulate 100

data series with the RSG model proposed by Gray (1996). We then fit the model

with the simulated data using the Maximum Likelihood Estimation (MLE). Our

results show that the RSG model of Gray (1996) does not infer the DGP parameters

correctly. These results confirm that model fails to identify the true parameters that

generate the data. We conclude that the path independent Markov Chain Regime

Switching GARCH model of Gray/(1996) is not identified. The failure of the RSG

model of Gray (1996) to infer true parameters from simulated data can only be

linked to its theoretical properties particularly, the approximation of the true log

likelihood by collapsing the recursive process of the GARCH. Our findings echoes

previous research by Haas, Mittnik and Paollella (2004) who also raised concerns

about the consequences of recombination of the conditional variances.

Second, we also investigate by simulations the ability of the EM algorithm to

identify the DGP parameters of the path dependent Regime Switching GARCH

(PD-RSG) model. We shows that the common path dependence problem of RSG

models can be solved with the Expectation-Maximization Algorithm (EM). We sim-

ulate 100 data series with the path dependent RSG model with known parameters.

We then use the EM algorithm to fit the model with the simulated data. Our results

confirm that the EM algorithm infers the Data Generating Process (DGP) param-

eters satisfactorily and we conclude that the algorithm is able to estimate the path

dependent Markov Chain Regime Switching GARCH models.

The merite of this thesis is to be the first analytical to show empirically (i)

the limits of the Markov Regime Switching GARCH (RSG) model of Gray (1996)

and (ii) to use the EM algorithm to fit the path dependent RSG model to data. We

show that the EM is an alternative approach and perhaps an easier way of fitting the

path dependent RSG models. Against these backdrops, it would not be advisable to

perform financial markets volatilities analyzing based on a RSG model of the family

of the RSG models of Gray (1996).
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AS next steps, next researches could compare the performance of the EM al-

gorithm and MCMC for the estimation of path dependent the RSG models. Also,

empirical properties of modified versions of the original path dependent RSG should

be assessed. Finally, an extension of the use of the EM algorithm to estimate bi-

variate RSG models would be useful especially to derive optimal hedging ratios.
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Appendix A

MATLAB CODES

Copy and paste these codes into a MATLAB ”m-file”. Then, use CTRL+A to select

all and CTRL+I to indent.

A. The function ”Data Sim RSGarch11.m”

This function simulates the 100 series of 10000 observations for the path depen-

dent Markov Chain Regime Switching GARCH(1,1) model.

1 % Data_Sim_RSGarch11

2 %% Parameters

3 clc

4 clear

5

6 % Sample size

7 T = 10000;

8

9 % State variable

10 S = zeros(T+1,1);

11 S(1) = 1; % assumes "S0=1"

12

55



56

13 % Interest rate

14 r = zeros(T+1,1);

15 r(1) = 0.05; % short rate is initialized at 5%

16

17 % Increments of interest rate

18 y = zeros(T,1);

19

20 % Prior transition probabilities

21 p11 = 0.9739;

22 p22 = 0.9896;

23

24

25 alpha1 = 0.25;

26 beta1 = 0.0008;

27 w1 = 0.50;

28 a1 = 0.35;

29 b1 = 0.40;

30 % a1 = 0;

31 % b1 = 0;

32

33 alpha2 = -0.07;

34 beta2 = -0.0006;

35 w2 = 0.08;

36 a2 = 0.10;

37 b2 = 0.20;

38 % a2 = 0;

39 % b2 = 0;

40 %%

41 % Conditional variance per regime

42 hi = zeros(T,1);

43

44 h1 = zeros(T,1);

45 h2 = zeros(T,1);

46

47 h1(1)= w1/(1-(a1+b1));

48 h2(2)= w2/(1-(a2+b2));

49

50 % Conditional means

51

52 mu1 = zeros(T,1);
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53 mu2 = zeros(T,1);

54 mui= zeros(T,1);

55

56 % Likelihoods

57 g1 = zeros(T+1,1);

58 g2 = zeros(T+1,1);

59

60 % Likelihood of r0 for each state

61 g1(1) = 1/sqrt(2*pi*h1(1));

62 g2(1) = 1/sqrt(2*pi*h2(1));

63

64 % Posterior probabilities

65 p1 = zeros(T+1,1);

66 p2 = zeros(T+1,1);

67

68 % qq1 = zeros(T+1,1);

69 % Unconditional regime probabilities

70 % p1(1) = 0.285;

71 p1(1)=(1-p22)/(2-p11-p22);

72 p2(1) = 1 - p1(1);

73

74 % e = 0;

75 e = zeros(T,1);

76 e(1)= randn(1);

77

78 %% Simulation

79 NbSim = 100;

80 SimY_full = zeros(T,NbSim);

81 SimX_full = zeros(T,NbSim);

82

83 for i =1:1:NbSim

84

85 for t=2:T+1

86

87 % Conditional mean per state

88 mu1(t-1) = alpha1 + beta1*r(t-1);

89 mu2(t-1) = alpha2 + beta2*r(t-1);

90

91 % Conditional variance per state

92 h1(t) = w1 + a1*e(t-1)^2 + b1*h1(t-1);
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93 h2(t) = w2 + a2*e(t-1)^2 + b2*h2(t-1);

94

95 % Current state and increment of interest rate: y(t)

96 u = rand;

97 v1 = randn;

98 v2 = randn;

99 if S(t-1) == 1

100 if u < p11

101 S(t) = 1;

102 hi(t) = h1(t);

103 mui(t-1) = mu1(t-1);

104 y(t) = mu1(t-1) + sqrt(hi(t))*v1;

105 % y(t) = normpdf(0,mu1(t-1),sqrt(hi(t-1)));

106 else

107 S(t) = 2;

108 hi(t-1) = h2(t);

109 mui(t-1) = mu2(t-1);

110 y(t) = mu2(t-1) + sqrt(hi(t))*v2;

111 % y(t) = normpdf(0,mu2(t-1),sqrt(hi(t-1)));

112 end

113 elseif S(t-1) == 2

114 if u < p22

115 S(t) = 2;

116 hi(t) = h2(t);

117 mui(t-1) = mu2(t-1);

118 y(t) = mu2(t-1) + sqrt(hi(t))*v2;

119 % y(t) = normpdf(0,mu2(t-1),sqrt(hi(t-1)));

120 else

121 S(t) = 1;

122 hi(t) = h1(t);

123 mui(t-1) = mu1(t-1);

124 y(t) = mu1(t-1) + sqrt(hi(t))*v1;

125 % y(t) = normpdf(0,mu1(t-1),sqrt(hi(t-1)));

126 end

127 end

128

129 % Interest rate

130 r(t) = r(t-1) + y(t);

131

132 % likelihood
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133

134 g1(t-1) ...

=(1/sqrt(2*pi*h1(t-1)))*exp((-1/(2*h1(t-1)))*(y(t)-mu1(t-1))^2);

135 g2(t-1) ...

=(1/sqrt(2*pi*h2(t-1)))*exp((-1/(2*h2(t-1)))*(y(t)-mu2(t-1))^2);

136

137 % Regime posterior probabilities

138 p1(t) = (1-p22)*g2(t-1)*(1-p1(t-1))/(g1(t-1)*p1(t-1) + ...

g2(t-1)*(1-p1(t-1)))...

139 + p11*g1(t-1)*p1(t-1)/(g1(t-1)*p1(t-1) + g2(t-1)*(1-p1(t-1)));

140

141 % p1(t) = ...

(1-p22)+((p11+p22-1)*(g1(t)*p1(t-1))/(g1(t)*p1(t-1)+g2(t)*p2(t-1)));

142 p2(t) = 1 - p1(t);

143

144

145 % error

146 e(t) = y(t) - mui(t-1);

147

148

149 end

150 SimY_full(:,i)= y(2:end);

151 SimX_full(:,i)= r(1:end-1);

152 end
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B. The function ”ProbRsGarchPD.m”

This function evaluates the posterior probabilities and conditional likelihoods.

The outputs of the function are used in the EM approaches.

1

2 function [Pold,Giold] = ProbRsGarchPD(parameter,Y,X1)

3 % % % E-Step:

4 % - Imputs: parameter,Y,X1

5 % parameter: at t+1, parameter = estimated parameter at ...

M-step at time t

6 % - Pold,Giold

7 % Pold : Posterior Probabilities per regime given parameter

8 % Giold : The likelihood function per regime given parameter

9

10 % the parameters

11 k1 = size(X1,2);

12 N=2;

13 np=6;

14 param =zeros(np,N);

15

16 param(1:end,1)=parameter(1:np);

17 param(1:end,2)=parameter(np+1:end);

18

19 alpha = param(1,:);

20 beta = param(2:k1+1,:);

21 w = param(k1+2,:);

22 a = param(k1+3,:);

23 b = param(k1+4,:);

24 P = param(end,1);

25 Q = param(end,2);

26

27 %--------------------------------------------------------------------------

28 T = length(Y);

29 %--------------------------------------------------------------------------

30 %% Initial Values

31 % Initial values for the regime probabilities epsilun

32 % ...



61

-------------------------------------------------------------------------

33 epsilun = zeros(T+1,N); % It maybe better to take this as a ...

N*1 vector

34 epsilun(1,:)= [(1-Q)/(2-P-Q) , (1-(1-Q)/(2-P-Q))]; % the ...

steady state probabilities

35 %--------------------------------------------------------------------------

36 % The conditional mean mu by regime

37 %--------------------------------------------------------------------------

38 mu = zeros(T,N); % It maybe better to take this as a N*1 ...

vector

39 % I compute12d the mu for each obs by regime

40 for i=1:N

41 mu(:,i) = ones(T,1)*alpha(i)+X1*beta(:,i);

42 end

43

44 %--------------------------------------------------------------------------

45 %Computing the conditional variances by regime "hit" for ...

each period

46 %--------------------------------------------------------------------------

47 % Conditionnal variances

48 coefH = [w' a' b'];

49 Hi = zeros(T,N);

50 %Hi(1,:)= w./(ones(1,N)-a-b);

51 Hi(1,:)=var(Y);

52

53 % Error term

54

55 Error = zeros(T,1);

56 Error(1) = Y(1)-(mu(1,:)*epsilun(1,:)');

57

58 % The likelihood function by regime

59 Gi = zeros(T,N);

60 % Gi(1,:)=(1./sqrt(2*pi*Hi(1,:))); % when Error(1)=0

61 Gi(1,:)=(1./sqrt(2*pi*Hi(1,:))).*exp((-1./(2*Hi(1,:))).*(Y(1)-mu(1,:)).^2);

62

63 for t=2:T

64

65 % Hi conditional variances

66 Hi(t,:) =[1 Error(t-1)*Error(t-1) Hi(t-1)]*coefH' ;

67



62

68 % The loglikelihood function

69 Gi(t,:)=(1./sqrt(2*pi*Hi(t,:))).*exp((-1./(2*Hi(t,:))).*(Y(t)-mu(t,:)).^2);

70 % ...

Gi(t-1,:)=(1./sqrt(2*pi*Hi(t-1,:))).*exp((-1./(2*Hi(t-1,:))).*(Y(t-1)-mu(t-1,:)).^2);

71 % the next period regime probabilities

72 % epsilun(t,1)= ...

(1-Q)+((P+Q-1)*(Gi(t,1)*epsilun(t-1,1))/(Gi(t,:)*epsilun(t-1,:)'));

73

74 epsilun(t,1)= ...

(1-Q)*((Gi(t-1,2)*epsilun(t-1,2))/(Gi(t-1,:)*epsilun(t-1,:)')) ...

...

75 + P*((Gi(t-1,1)*epsilun(t-1,1))/(Gi(t-1,:)*epsilun(t-1,:)'));

76 epsilun(t,2)= 1-epsilun(t,1);

77 % error term

78 Error(t)= Y(t)-(mu(t,:)*epsilun(t,:)');

79 end

80 Pold=epsilun(1:T,:);

81 Giold=Gi(1:T,:);
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C. The function ”EMRsGarchPD.m”

This function evaluates the auxiliary function for the EM algorithm .

1 function [EM_MaxRsGarchPD] = EM_RsGarchPD(parameter,Y,WW)

2 %% M-Step imputs

3 X1= WW(:,1); % is r(t-1) of the conditional mean equation

4 Pold = WW(:,2:3); % Posterior Probabilities from the E-Step

5 %Giold = WW(:,4:5); % The likelihood function from the E-Step

6 %%

7 % the parameters

8 k1 = size(X1,2);

9 N=2; % nb of regimes

10 np=6; % nb of parameters per regime

11 param =zeros(np,N);

12

13 param(1:end,1)=parameter(1:np);

14 param(1:end,2)=parameter(np+1:end);

15

16 alpha = param(1,:);

17 beta = param(2:k1+1,:);

18 w = param(k1+2,:);

19 a = param(k1+3,:);

20 b = param(k1+4,:);

21 P = param(end,1);

22 Q = param(end,2);

23 %% Current Posterior Probabilities

24 % Initial Values

25 %--------------------------------------------------------------------------

26 T = length(Y);

27 %--------------------------------------------------------------------------

28 % Initial values for the regime probabilities epsilun

29 % ...

-------------------------------------------------------------------------

30 epsilun = zeros(T+1,N); % It maybe better to take this as a ...

N*1 vector

31 epsilun(1,:)= [(1-Q)/(2-P-Q) , (1-(1-Q)/(2-P-Q))]; % the ...

steady state probabilities
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32 %--------------------------------------------------------------------------

33 % The conditional mean mu by regime

34 %--------------------------------------------------------------------------

35 mu = zeros(T,N);

36 for i=1:N

37 mu(:,i) = ones(T,1)*alpha(i)+X1*beta(:,i);

38 end

39

40 %--------------------------------------------------------------------------

41 %Computing the conditional variances by regime "hit" for ...

each period

42 %--------------------------------------------------------------------------

43 % Conditionnal variances

44 coefH = [w' a' b'];

45 Hi = zeros(T,N);

46 %Hi(1,:)= (w + a)./(ones(1,N)-b);

47 Hi(1,:)=var(Y);

48

49 % Error term

50

51 Error = zeros(T,1);

52 Error(1) = Y(1)-(mu(1,:)*epsilun(1,:)');

53

54 % The likelihood function by regime

55 Gi = zeros(T,N);

56 %Gi(1,:)=(1./sqrt(2*pi*Hi(1,:)));

57 Gi(1,:)=(1./sqrt(2*pi*Hi(1,:))).*exp((-1./(2*Hi(1,:))).*(Error(1)).^2);

58

59

60 for t=2:T

61

62 % Hi conditional variances

63 Hi(t,:) =[1 Error(t-1)*Error(t-1) Hi(t-1)]*coefH' ;

64

65 % The loglikelihood function

66 % ...

Gi(t,:)=(1./sqrt(2*pi*Hi(t-1,:))).*exp((-1./(2*Hi(t-1,:))).*(Y(t)-mu(t,:)).^2);

67 Gi(t,:)=(1./sqrt(2*pi*Hi(t,:))).*exp((-1./(2*Hi(t,:))).*(Y(t)-mu(t,:)).^2);

68 % the next period regime probabilities

69 % epsilun(t,1)= ...
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(1-Q)+((P+Q-1)*(Gi(t,1)*epsilun(t-1,1))/(Gi(t,:)*epsilun(t-1,:)'));

70 epsilun(t,1)= ...

(1-Q)*((Gi(t-1,2)*epsilun(t-1,2))/(Gi(t-1,:)*epsilun(t-1,:)')) ...

...

71 + P*((Gi(t-1,1)*epsilun(t-1,1))/(Gi(t-1,:)*epsilun(t-1,:)'));

72 epsilun(t,2)= 1-epsilun(t,1);

73 % error term

74 Error(t)= Y(t)-(mu(t,:)*epsilun(t,:)');

75 end

76

77 Pnew=epsilun(1:T,:); % Current Posterior Probabilities

78

79 Qn = Pold.*log(((Pnew.*Gi)./Pold));

80 EM_MaxRsGarchPD = -sum(Qn*ones(N,1));

81

82 %% Auxiliary objective function

83 % RsGarchPD2 = log(Pnew.*Gi)*ones(N,1);

84 % EM_MaxRsGarchPD= -sum((Pold.*RsGarchPD2)*ones(N,1));

85

86 %%

87 EM_MaxRsGarchPD(isnan(EM_MaxRsGarchPD))=1e6;

88 EM_MaxRsGarchPD(isinf(EM_MaxRsGarchPD))=1e6;
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C. The function ”SimulationGrayshortrate.m”

This function simulate data using RSG omodel of Gray (1996)

1 %% Parameters

2 clc

3 clear

4

5 % Sample size

6 T = 10000;

7

8 % State variable

9 S = zeros(T+1,1);

10 S(1) = 1; % assumes "S0=1"

11

12 % Interest rate

13 r = zeros(T+1,1);

14 r(1) = 7.0682; % short rate is initialized at 5%

15

16 % Increments of interest rate

17 y = zeros(T,1);

18

19 % Prior transition probabilities

20 p11 = 0.9739;

21 p22 = 0.9896;

22

23 % Posterior probabilities

24 p1 = zeros(T+1,1);

25 p2 = zeros(T+1,1);

26

27 p1(1)=(1-p22)/(2-p11-p22);

28 p2(1) = 1 - p1(1);

29

30 %

31 alpha1 = 0.25;

32 beta1 = 0.0008;

33 w1 = 0.50;

34 a1 = 0.35;
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35 b1 = 0.40;

36 % a1 = 0;

37 % b1 = 0;

38

39 alpha2 = -0.07;

40 beta2 = -0.0006;

41 w2 = 0.08;

42 a2 = 0.10;

43 b2 = 0.20;

44 % a2 = 0;

45 % b2 = 0;

46

47 % variances

48 h0 = 0.005; % first observation is Var(r0|no information)

49

50 % Error term

51 e = 0;

52

53 % Conditional variance per regime

54 h1 = zeros(T,1);

55 h2 = zeros(T,1);

56

57 h1(1) = w1 + a1*e^2 + b1*h0;

58 h2(1) = w2 + a2*e^2 + b2*h0;

59

60 % Conditional variances (regime independent)

61 h = zeros(T+1,1);

62 h(1) = h0;

63

64 % Likelihoods

65 g1 = zeros(T,1);

66 g2 = zeros(T,1);

67

68

69

70 %% Simulation

71 NbSim = 100;

72 SimY_full = zeros(T,NbSim);

73 SimX_full = zeros(T,NbSim);

74
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75 for i =1:1:NbSim

76

77 for t=2:T+1

78

79 % Conditional mean per state

80 mu1 = alpha1 + beta1*r(t-1);

81 mu2 = alpha2 + beta2*r(t-1);

82

83 % Conditional variance per state

84 h1(t-1) = w1 + a1*e^2 + b1*h(t-1);

85 h2(t-1) = w2 + a2*e^2 + b2*h(t-1);

86

87 % Current state and increment of interest rate

88 u = rand;

89 if S(t-1) == 1

90 if u < p11

91 S(t) = 1;

92 % hi(t-1) = h1(t-1);

93 y(t) = mu1 + sqrt(h1(t-1))*randn;

94 else

95 S(t) = 2;

96 % hi(t-1) = h2(t-1);

97 y(t) = mu2 + sqrt(h2(t-1))*randn;

98 end

99 elseif S(t-1) == 2

100 if u < p22

101 S(t) = 2;

102 % hi(t-1) = h2(t-1);

103 y(t) = mu2 + sqrt(h2(t-1))*randn;

104 else

105 S(t) = 1;

106 % hi(t-1) = h1(t-1);

107 y(t) = mu1 + sqrt(h1(t-1))*randn;

108 end

109 end

110

111 % Interest rate

112 r(t) = r(t-1) + y(t);

113

114 % The loglikelihood function
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115 g1(t-1)=(1./sqrt(2*pi*h1(t-1))).*exp((-1./(2*h1(t-1))).*(y(t)-mu1).^2);

116 g2(t-1)=(1./sqrt(2*pi*h2(t-1))).*exp((-1./(2*h2(t-1))).*(y(t)-mu2).^2);

117

118

119 % Regime posterior probabilities

120 p1(t) = (1-p22)*g2(t-1)*p2(t-1)/(g1(t-1)*p1(t-1) + ...

g2(t-1)*p2(t-1))...

121 + p11*g1(t-1)*p1(t-1)/(g1(t-1)*p1(t-1) + g2(t-1)*p2(t-1));

122 p2(t) = 1 - p1(t,1);

123

124 % Current conditional variances (regime independent)

125 mu = p1(t)*mu1 + p2(t)*mu2;

126 e = y(t) - mu;

127 h(t) = p1(t)*(h1(t-1) + mu1^2) + p2(t)*(h2(t-1) + mu2^2) - ...

mu^2;

128

129 end

130 SimY_full(:,i)= y(2:end);

131 SimX_full(:,i)= r(1:end-1);

132 end
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C. The function ” OptimiserSimYGRsGarch11Gray.m”

This script on conducts the Monte Carlo study based on the EM algorithm

1 clear; clc; close all;

2

3 %% Data

4 % data = xlsread('SimY_full.xlsx');% data

5 % data0 =load('SimY_full08282020Gray.mat', 'SimY_full');

6 % data0X=load('SimY_full08282020Gray.mat', 'SimX_full');

7

8 data0 =load('SimY_full08282020FullGray.mat', 'SimY_full');

9 data0X=load('SimY_full08282020FullGray.mat', 'SimX_full');

10

11 data = data0.SimY_full;

12 dataX = data0X.SimX_full;

13

14 T = length(data);

15 NbSim =size(data,2);

16 k1 = 1;

17 %% Initial values of the parameters

18

19 % Regime probabilities

20 n =2; % number of regimes

21 P0 =[0.96 0.04;0.1 0.90];

22 % GARCH parameters

23 p=1;

24 q=1;

25

26 % param01 = [0.00059; -0.0013; 0.0004 ;0.2095 ; ...

0.8208;P0(1,1)]; % For regime 1 from Gray Table 3

27 % param02 = [0.00059; -0.0013; 0.0004 ;0.2095 ; ...

0.8208;P0(2,2)]; % For regime 2 from Gray Table 3

28

29 param01 =[0.25;0.0008;0.5;0.35;0.40;0.9739];

30 param02 =[-0.07;-0.0006;0.08;0.1;0.2;0.9896];

31

32 % param01 =[0.25;0.0008;0.5;0;0;0.9739];
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33 % param02 =[-0.07;-0.0006;0.08;0;0;0.9896];

34 parameter00 = [param01 ; param02];

35 parameter0 = [param01 ; param02]; % Time the number of ...

regimes, N times

36 ParamEstimates = zeros(size(parameter0,1)+3,NbSim);

37 %% Constraintes

38 nbcon = 12; % number of constraints

39 A = zeros(nbcon,size(parameter0,1));

40 A01 = zeros(nbcon/n,size(param01,1));

41

42 A01(1,2+k1) =-1;

43 A01(2,3+k1) =-1;

44 A01(3,4+k1) =-1;

45 A01(4,3+k1:end-1) =1;

46 A01(5,end) =-1;

47 A01(6,end) =1;

48

49 A(1:nbcon/2,1:size(parameter0,1)/2) = A01;

50 A(nbcon/2+1:end,size(parameter0,1)/2+1:end) = A01;

51 % My consttraints are strict inequality but in MatLab the ...

inequality constrainte is not strict (that<s why I have ...

substracted -0.0001)

52 aa = 0.0001;

53 B01 = [-aa;0;0;1-aa;-aa;1-aa];

54 % B01 = [-aa;-aa;0;0;1-aa;-aa;1-aa];

55 B = [B01;B01];

56

57 %% Equality constraints

58 % Aeq = zeros(nbcon,size(parameter0,1));

59 % Aeq01 = zeros(nbcon/n,size(param01,1));

60 % Aeq01(1,2) =1;

61 % Aeq01(2,end-2) =1;

62 % Aeq01(3,end-1) =1;

63 %

64 % Aeq(1:nbcon/2,1:size(parameter0,1)/2) = Aeq01;

65 % Aeq(nbcon/2+1:end,size(parameter0,1)/2+1:end) = Aeq01;

66

67 nbcon = 4; % number of constraints

68 Aeq = zeros(nbcon,size(parameter0,1));

69 Aeq01 = zeros(nbcon/n,size(param01,1));
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70

71 % Aeq = zeros(4,size(parameter0,1));

72 % Aeq01 = zeros(2,size(param01,1));

73 %Aeq01(1,2) =1;

74 Aeq01(1,end-2) =1;

75 Aeq01(2,end-1) =1;

76

77 Aeq(1:nbcon/2,1:size(parameter0,1)/2) = Aeq01;

78 Aeq(nbcon/2+1:end,size(parameter0,1)/2+1:end) = Aeq01;

79

80 Beq01 = [0;0];

81 Beq = [Beq01;Beq01];

82

83 %% Optimization

84 %NbSim = 1;

85

86 SimPara = zeros(16,NbSim);

87 TStudent = zeros(12,NbSim);

88

89

90 for i =1:1:NbSim

91 % for i =1:1:2

92 Y = data(:,i);

93 X1 = dataX(:,i);

94

95 exitflag0 = 0;

96 option.MaxFunEvals=10000;

97 %options = optimset(option,'Display','iter','TolX',1e-6);

98 options = ...

optimoptions('fmincon','Display','iter','Algorithm', ...

'interior-point');

99 % 'interior-point' 'sqp'

100 output.firstorderopt0 = 10000;

101 %fval0=0;

102 %while output.firstorderopt0 >1e-3

103

104 while (exitflag0 6=1 && exitflag0 6=2)

105 f=@(parameter) ...

RsUnGarch11Gray([parameter(1),parameter(2),parameter(3),parameter(4),parameter(5),parameter(6)...

106 ,parameter(7),parameter(8),parameter(9),parameter(10),parameter(11),parameter(12)],Y,X1);
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107 [parameter,fval,exitflag,output,lambda,grad,hessian]= ...

fmincon(f,parameter0,A,B,[],[],[],[],[],options);

108 std_error = sqrt(diag(pinv(hessian)));

109 tstat = (parameter-parameter00)./std_error;

110 TStudent(1:end,i)= abs(tstat);

111 ParamEstimates(1:end-3,i)= parameter;

112 ParamEstimates(end-2,i)= exitflag;

113 ParamEstimates(end-1,i)= fval;

114 ParamEstimates(end,i)=output.firstorderopt;

115

116 parameter0 = parameter;

117 output.firstorderopt0 = output.firstorderopt;

118 exitflag0 = exitflag;

119 end

120 end



74

C. The function ”RsUnGarch11Gray.m”

This function evaluates the Maximum Likelihood function of the RSG model of

Gray

1 function [LogRsUnGarch11, epsilun,Gi,Hi] = ...

GRsUnGarch11Gray(parameter,Y,X1)

2

3 % the parameters

4 k1 = size(X1,2);

5 N=2;

6 %np = size(parameter,1)/N; % Number of parameter to ...

estimate by state

7 np=6;

8 param =zeros(np,N);

9

10 param(1:end,1)=parameter(1:np);

11 param(1:end,2)=parameter(np+1:end);

12

13 c1=param(end-1,1);

14 d1=param(end,1);

15

16 c2=param(end-1,2);

17 d2=param(end,2);

18 % % % t=0;

19 % % % for k=1:N

20 % % % param(:,k)=parameter(t+1:k*np,1);

21 % % % t=k*np;

22 % % % end

23 % parameter = [alpha ; beta; w; A;B;gamma;P]; % this is a ...

(1+k1+3+k2)xN matrix

24 alpha = param(1,:);

25 beta = param(2:k1+1,:);

26 % % % w = exp(param(k1+2,:));

27 % % % a = param(k1+3,:).^2;

28 % % % b = param(k1+4,:).^2;

29 w = param(k1+2,:);

30 a = param(k1+3,:);
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31 b = param(k1+4,:);

32

33 % % % P = param(end,1);

34 % % % Q = param(end,2);

35

36 P = normcdf(c1 +d1*X1);

37 Q = normcdf(c2 +d2*X1);

38

39 %% Initial Values

40 %--------------------------------------------------------------------------

41 T = length(Y);

42 %--------------------------------------------------------------------------

43 % Initial values for the regime probabilities epsilun

44 % ...

-------------------------------------------------------------------------

45 epsilun = zeros(T+1,N); % It maybe better to take this as a ...

N*1 vector

46 epsilun(1,:)= [(1-Q(1,1))/(2-P(1,1)-Q(1,1)) , ...

(1-(1-Q(1,1))/(2-P(1,1)-Q(1,1)))];

47 %--------------------------------------------------------------------------

48 % The conditional mean mu by regime

49 %--------------------------------------------------------------------------

50 mu = zeros(T,N); % It maybe better to take this as a N*1 ...

vector

51 % I compute12d the mu for each obs by regime

52 for i=1:N

53 mu(:,i) = ones(T,1)*alpha(i)+X1*beta(:,i);

54 end

55

56 %--------------------------------------------------------------------------

57 %Computing the conditional variances by regime "hit" for ...

each period

58 %--------------------------------------------------------------------------

59 coefH = [w' a' b'];

60 Hi = zeros(T+1,N);

61

62 Hi(1,:)=var(Y);

63

64 % Computing the conditional variance at time t=1

65 H = zeros(T,1);
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66 Error = zeros(T,1);

67

68 % The likelihood function by regime

69 Gi = zeros(T,N);

70

71 % computing the H

72

73 for t=1:T

74

75 H(t) = (mu(t,:).^2+Hi(t,:))*epsilun(t,:)' ...

-(mu(t,:)*epsilun(t,:)')^2; %

76

77 Error(t) = Y(t)-(mu(t,:)*epsilun(t,:)'); % Y-Xbeta

78 % The loglikelihood function

79 Gi(t,:)=(1./sqrt(2*pi*Hi(t,:))).*exp((-0.5*(Y(t)-mu(t,:)).^2)./Hi(t,:));

80

81 % the next period regime probabilities

82 epsilun(t+1,1)= ...

(1-Q(t,1))+((P(t,1)+Q(t,1)-1)*(Gi(t,1)*epsilun(t,1))/(Gi(t,:)*epsilun(t,:)'));

83 epsilun(t+1,2)= 1-epsilun(t+1,1);

84 % Hi

85 Hi(t+1,:) =[1 Error(t)*Error(t) H(t)]*coefH' ;

86 end

87 % Deleting the additional row of the regimes probabilities ...

matrix

88 epsilun=epsilun(1:T,:);% X2(T+1,:) =[]; %Hadd(T+1,:) =[];

89

90 % the log likelihood is to be maximzed but bcz I am using ...

fmincon I will

91 % multiply by -1

92 LogRsUnGarch11 = -sum(log((epsilun.*Gi)*ones(N,1)));

93

94 LogRsUnGarch11(isnan(LogRsUnGarch11))=1e6;

95

96 LogRsUnGarch11(isinf(LogRsUnGarch11))=1e6;


