

HEC MONTRÉAL

Optimization Models for Lot-sizing with

Multiple Storage Locations

by

Chi Xu

Thesis director

Raf Jans

A thesis submitted in partial fulfillment

of the requirement for the degree of Master of Science

November 2019

©Chi Xu

i

ABSTRACT

Traditional lot-sizing problems have been studied for decades. In more recent studies,

researchers have further proposed mixed integer programming models for various

extensions, in an effort to bring step by step the mathematical problem closer to the complex

reality.

In this thesis, we focus on modeling the multi-item capacitated lot-sizing problem with

multiple storage locations, which we denote as CLSP-MSL. In the CLSP-MSL, the storage

space is divided into several individual locations. Inventory is assigned to the storage

locations according to specific rules and conditions, and can be relocated between two time

periods. In addition to the cost elements in the traditional lot-sizing models, we further

include three new types of costs: storage fixed cost, handling cost, and item relocation cost.

A general model is proposed for the CLSP-MSL, as well as a transportation reformulation

(TP), which provides a better LP relaxation bound. Next, using simulated data sets, we carry

out a series of computational tests on both the general CLSP-MSL model, and the TP

formulation.

In order to analyze the impact of the various parameters, we perform a sensitivity analysis.

Through this analysis, we find that results show that breaking the storage space into several

storage locations helps lower the total cost. Allowing the inventory to be relocated at a cost

also improves the efficiency of inventory management, although this effect appears to be

very small in our tests. It is also shown that the symmetry between these storage locations

can greatly add to the computational burden.

Keywords: Lot-sizing, Production planning, Mixed integer programming, Storage fixed cost,

compatibility, Item relocation

ii

ACKNOWLEDGEMENT

I would like to thank my sincere gratitude to my supervisor Raf Jans for all his valuable

comments, remarks and engagement through the research and the writing of this master

thesis. Without him, this work would not have been possible.

I must also express the deepest gratitude to my family. My caring wife, Xiaoye Ma, help me

through many difficulties with her unconditional support. My father, Chenguang Xu, made

my study financially possible while taking on the great responsibilities in the family. And

especially, my dearest mother, Jiang Xue, who passed away before the completion of this

work, had made countless sacrifices during her fight against the disease.

iii

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION ... 1

 LOT-SIZING PROBLEMS ... 1

 RESEARCH OBJECTIVE ... 2

 METHODOLOGY .. 4

CHAPTER 2. LITERATURE REVIEW ... 5

 SINGLE-ITEM LOT-SIZING PROBLEM .. 5

2.1.1 UNCAPACITATED LOT-SIZING PROBLEM .. 5

2.1.2 PRODUCTION CAPACITY .. 7

2.1.3 STORAGE CAPACITY .. 7

2.1.4 STORAGE FIXED COST .. 9

 MULTIPLE ITEMS ... 10

2.2.1 PRODUCTION CAPACITY FOR MULTI-ITEM PROBLEMS 11

2.2.2 STORAGE CAPACITY AND FIXED COST FOR MULTI-ITEM PROBLEMS 12

 COST STRUCTURE ... 14

 LINK TO CURRENT RESEARCH ... 17

CHAPTER 3. SINGLE-ITEM CLSP-MSL .. 18

 HOMOGENEOUS LOCATIONS ... 18

 HETEROGENEOUS LOCATIONS .. 19

CHAPTER 4. MULTI-ITEM CLSP-MSL .. 22

 HOMOGENEOUS LOCATIONS FOR MULTIPLE ITEMS .. 22

 HETEROGENEOUS LOCATIONS FOR MULTIPLE ITEMS ... 23

 GENERAL MODEL WITH INVENTORY RELOCATION ... 25

4.3.1 LOGIC AND PROCESS .. 26

4.3.2 PROBLEM FORMULATION ... 28

4.3.3 EXAMPLE OF INVENTORY RELOCATION ... 31

 TRANSPORTATION PROBLEM FORMULATION OF THE GENERAL MODEL.................... 33

CHAPTER 5. COMPUTATIONAL EXPERIMENTS .. 35

 DATA DESCRIPTION ... 35

 BASE CASE ANALYSIS ... 40

 SENSITIVITY ANALYSIS ... 45

5.3.1 TEST FRAMEWORK ... 48

5.3.2 PLANNING HORIZON .. 49

5.3.3 PRODUCTION SETUP COST .. 50

5.3.4 PRODUCTION CAPACITY .. 51

5.3.5 VARIABLE HOLDING COST ... 52

5.3.6 HANDLING COST .. 53

5.3.7 LOCATION COMBINATIONS .. 54

5.3.8 COST STRUCTURE FOR STORAGE FIXED COSTS ... 56

iv

5.3.9 SYMMETRY .. 57

5.3.10 COMPATIBILITIES .. 59

5.3.11 DISABLING ITEM RELOCATION ... 61

5.3.12 TRANSPORTATION REFORMULATION ... 63

CHAPTER 6. CONCLUSIONS, LIMITATIONS, AND FUTURE RESEARCH .. 64

 CONCLUSIONS ... 64

 LIMITATIONS AND FUTURE RESEARCH .. 65

REFERENCES ... 67

APPENDIX A – IMPLEMENTATION OF THE GENERAL MODEL 69

APPENDIX B – IMPLEMENTATION OF THE TRANSPORTATION

FORMULATION ... 73

Page | 1

Chapter 1. Introduction

 Lot-sizing problems

The lot-sizing problem is one of the most studied problems of modern production

planning. For the purpose to determine the optimal quantity for each production batch, an

abundance of theories, models, and heuristics have been proposed throughout the century.

At the heart of the production planning problems is the trade-off between setup costs and

holding costs: large batches mean infrequent setups but high overall holding costs,

whereas small batches lead to frequent setups but low overall holding costs. From the

famous Economic Order Quantity model (EOQ) by Harris (1913) which assumes

unlimited capacity and a constant demand on an infinite time horizon, to the numerous

Mixed Integer Programming (MIP) models for the dynamic lot-sizing problem with a

finite planning horizon in which the demand varies as well as the optimal lot size from

period to period, more and more characteristics of industrial production environment are

taken into consideration to create more realistic, solid and applicable tools.

When looking into the dynamic lot-sizing problem, one may begin from its most basic

form, i.e. the single-item uncapacitated lot-sizing problem (ULSP) in which only one

product is produced to fulfill the known demand for a finite time horizon. This basic

model has been extended to take into account the limited capacity of various resources.

Typically, according to Trigeiro, Thomas and McClain (1989) and Jans and Degraeve

(2007), constraints have been imposed on the production capacity taking into

consideration both the variable production time and the setup times. Since businesses,

large or small, are rarely providing only one product, many extensions are made to include

multiple items. The Capacitated Multi-Item Lot Sizing Problem (CLSP) is a big-bucket

lot-sizing problem that addresses more than one type of item sharing an overall production

capacity in each period, with each item having its own unit consumption of capacitated

resource. This production capacity can take different forms in different situations and

industries: processing power of the machine, limited number of workers, limited capital,

fixed amount of material available for each period, etc. Although the holding cost is

Page | 2

included in the objective function, this basic model does not impose any restriction on the

maximum inventory to be held, assuming an unlimited storage space.

In more recent studies, researchers have also been further extending the lot-sizing models

with capacity constraints on storage, which brings the problem one step closer to the

reality. Some other extended studies focus on a fixed charge on stock, generated by

inventory carried over from the previous period, resembling the fixed cost per batch in

the production phase.

 Research objective

While researchers have spent great efforts to model the production planning problem for

a more realistic context by considering multiple items, production and storage capacities,

or fixed costs on setups and stock, little attention has been paid to cases where multiple

storage locations are available. In this M.Sc. thesis, we will look into this problem with

multiple storage locations, hereafter denoted by CLSP-MSL.

In CLSP-MSL, we break into the black box of inventory storage to examine in detail the

activities happening in the storage area, which we will later refer to as the warehouse. We

will consider material handling and storage fixed costs. The aim is to create a better tool

for production planning in harmony with the warehouse operations by taking these

considerations into account.

The simplest example of such a problem might be the production and storage of liquid

products. Different liquids cannot be mixed, and therefore have to be stored in different

tanks. Production plans should accommodate not only the demand for each item, but also

the storage capacity of each tank. The typical approach of considering a global shared

storage capacity no longer remains valid, since the empty space in each tank cannot be

used to contain a second type of product.

In other cases, certain items cannot be stored together, so that the storage space has to be

divided physically and logically into different zones. It is therefore evident that each of

these zones will have their respective limited capacities. These kinds of restrictions are

Page | 3

commonly seen in the chemical industry. For instance, acids and bases are usually

required to be separated by chemically stable materials; flammable matters must also be

stored away from other hazard classes, especially oxidizers and toxics. Below are several

other examples of specialized storage conditions that generate more costs and

complexities to the planning activity.

a) Food: due to their different natures and perishability, food materials and products

often impose various requirements on their storage conditions and environments,

such as temperature, moisture and ventilation. This leads to higher fixed and

variable storage cost.

b) Pharmaceuticals: while most pharmaceutical products should be stored under

temperature control, they also often require a sterilized environment, which

translates into even higher variable and fixed cost on stocks.

c) Chemicals: apart from controlled temperature, moisture, and exposure to light, etc.,

other special conditions have to be strictly obeyed to maintain the stability of many

chemicals, such as vacuum or oil sealing. In addition, when multiple items share

the same storage location, it is also important to consider their mutual

compatibility and divide the warehouse into zones allowing a separate storage of

different items.

In order to minimize the costs related to these complex storage conditions, managers need

a tool to help them scientifically manage the inventory. The objective of this research is

to incorporate the requirements with respect to complex storage conditions in the

production planning models. More specifically, we will consider multiple capacitated

storage locations. This will typically require modeling extra constraints, while

incorporating additional decisions such as the assignment of items to specific storage

locations. The models proposed in this thesis will also serve as such a tool to support the

decision-making process.

Page | 4

 Methodology

In this thesis, we aim to model the CLSP-MSL using the mixed integer programming

(MIP) method. We assume a finite planning horizon with dynamic deterministic demand.

We will generate instances with different characteristics for the key input parameters. The

proposed models will be tested using a general-purpose MIP solver (CPLEX) in

computational tests. We will analyze the structure of the solutions. The CPU time and the

quality of the solution in terms of optimality gap is also important especially in this case

when we increase the complexity of the model because the size of the instances also

contributes greatly to the computational burden.

After this introductory chapter follows the literature review which summarizes the

previous works and studies in this field, providing an insight into the various types of lot-

sizing problems and their formulations. In Chapter 3 and Chapter 4, we introduce the lot-

sizing problem with multiple storage locations and propose formulations first for a single-

item system, then for multi-item problems (i.e. CLSP-MSL). Chapter 5 explains the

method and data sets of our computational tests and contains the analysis of the results.

Chapter 6 concludes the thesis.

Page | 5

Chapter 2. Literature Review

There exists an abundance of literature on the optimization of lot-sizing problems,

covering a large diversity of problem variations and model extensions for different

industrial environments (Pochet and Wolsey, 2006). Our review of the literature begins

with the single-item lot-sizing problems, and then extends to multi-item systems. Special

attention is paid to problems with relatively complex cost structures and capacities with

respect to the production and storage.

 Single-item lot-sizing problem

In the single-item lot-sizing problem, only one item is produced. The goal is to design a

production plan to fulfill given demands of a series of discrete time periods over a finite

planning horizon. In this work, the demand that we consider is deterministic and dynamic

i.e. the demand is known in advance, but may vary over time.

2.1.1 Uncapacitated lot-sizing problem

The uncapacitated lot-sizing problem (ULSP) under dynamic demand was first proposed

by Wagner and Whitin (1958). To formulate ULSP, we use the following notations:

Set:

T Set of all periods within the planning horizon,

Parameters:

𝑣𝑐𝑡 Variable production cost per unit of produced item in period t,

𝑓𝑡 Setup cost of each production batch in period t,

ℎ𝑐𝑡 Inventory holding cost per unit in period t,

𝑑𝑡 Demand to be fulfilled in period t,

𝑚 Number of planning periods considered,

Decision variables:

Page | 6

𝑥𝑡 Production level in number of units in period t,

𝑦𝑡 Setup decision: 𝑦𝑡 = 1 if any item is produced in period t; otherwise

𝑦𝑡 = 0,

𝑠𝑡 Inventory level in number of units at the end of period t.

ULSP Model:

Minimize: ∑(𝑣𝑐𝑡𝑥𝑡 + 𝑓𝑡𝑦𝑡 + ℎ𝑐𝑡𝑠𝑡)

𝑡∈𝑇

 (1)

Subject to: 𝑠𝑡−1 + 𝑥𝑡 = 𝑑𝑡 + 𝑠𝑡 ∀𝑡 ∈ 𝑇 (2)

 𝑥𝑡 ≤ ∑ 𝑑𝑘

𝑚

𝑘=𝑡

𝑦𝑡 ∀𝑡 ∈ 𝑇 (3)

 𝑠0 = 0 (4)

 𝑥𝑡 , 𝑠𝑡 ≥ 0; 𝑦𝑡 ∈ {0, 1} ∀𝑡 ∈ 𝑇 (5)

The objective function (1) minimizes the total cost including the variable production cost,

production setup cost and the variable holding costs under the following constraints.

Constraints (2) balance the flow of goods by specifying that the demand in period t must

be fulfilled with items produced in the same period or with the inventory carried over

from the previous period, and any excess items will be kept in inventory.

Constraints (3) are the setup forcing constraints. Such constraints can also take the form

of 𝑥𝑡 ≤ 𝑀𝑦𝑡, where the ‘big M’ is a coefficient large enough for the model to choose

appropriate values for the 𝑥𝑡 variables when 𝑦𝑡 = 1 without excluding any feasible

solution. However, a ‘big M’ value that is too large will lead to a poor LP relaxation value

and add to the computational burden to solve the problem. In the ULSP, we can set the

‘big M’ equal to the sum of remaining demands. This is valid because, given positive

holding costs, there always exists an optimal solution in which the inventory at the end of

the horizon is zero. Constraint (4) indicates that there is no initial inventory. Finally,

constraints (5) impose the non-negativity and binary conditions.

Page | 7

We can see that in the ULSP, three kinds of costs are considered: the variable production

cost, the setup cost of production, and the variable holding cost. On condition that the

demand, if any, must be fulfilled without any backlog, the trade-off here is similar as in

the classical EOQ model.

2.1.2 Production capacity

The first extension made to the ULSP is an upper bound on the production, since

obviously, no business can produce an unlimited number of products within a certain

period. The production capacity can be easily incorporated in the model by adding extra

constraints specifying the upper bounds. Using 𝑃𝑡 to denote this production capacity in

period t, the capacity constraints can be written as follows:

𝑥𝑡 ≤ 𝑚𝑖𝑛 (∑ 𝑑𝑖𝑘

𝑚

𝑘=𝑡

, 𝑃𝑡) ∀𝑡 ∈ 𝑇 (6)

The upper bounds for production quantity depend not only on the capacity 𝑃𝑡, but also on

the total demand of the remaining periods (including period t), since, in certain periods,

the latter may provide tighter bounds.

2.1.3 Storage capacity

Just as the production is limited in the real world by time, manpower, and means of

production, the inventory cannot accumulate infinitely. One of the most obvious

limitations is the space used to store this inventory. Once a warehouse is acquired or

rented and the physical feature of the product is given, the maximum number of units that

can be stored is fixed.

Page | 8

Author(s)
Problem Characteristics

Demand Production Inventory Other features

Love (1973) DD Capacitated
Upper &

Lower bounds

Erenguc and Aksoy (1990) DD Capacitated Upper bounds

Jaruphongsa, Çetinkaya and Lee (2004) DD Capacitated Upper bounds
Multi-echelon

Delivery time windows

Wolsey (2006) DD
Capacitated/

Uncapacitated
Upper bounds Delivery time windows

Guan and Liu (2010) SD
Capacitated/

Uncapacitated
Upper bounds

Hwang and van den Heuvel (2012) DD Capacitated Upper bounds
Storage shared between

production and inventory

Chu et al. (2013) DD Capacitated
Upper &

Lower bounds
With backlogging
and outsourcing

DD=deterministic dynamic SD=stochastic dynamic

Table 2.1-1 Summary of literature on single-item lot-sizing problems with bounded inventory

Table 2.1-1 summarizes the previous works on the single-item lot-sizing problems with

bounded inventory. In most of the lot-sizing problems previously studied, the inventory

level is limited by the storage capacity as upper bounds, while Love (1973) and Chu et al.

(2013) applied also lower bounds. In this thesis, we only consider upper bounds on

inventory while not allowing any backlogging. Using 𝐻 to denote the storage capacity in

each period, the inventory upper bounds can be imposed by adding the following

constraints to the model:

𝑠𝑡 ≤ 𝑚𝑖𝑛 (∑ 𝑑𝑖𝑘

𝑚

𝑘=𝑡+1

, 𝐻) ∀𝑡 ∈ 𝑇 (7)

In the constraints (7), the inventory is limited not only by the storage capacity 𝐻, but also

by the sum of the remaining demand (excluding period t). For some time periods, the

former might provide tighter bounds than the latter.

In a single-item problem, since only one item is involved, the physical feature of the

warehouse can be easily translated into the maximum number of units to be stored.

However, in a multi-item problem, the dimensions might vary according to the different

types of item. In that case, the value of 𝐻 signifies the overall available space in the

storage facility and the constraints should be modified accordingly as well.

Page | 9

2.1.4 Storage fixed cost

Fixed charges on inventory is another important extension to the previous model. Similar

to the production setup cost, the fixed cost on stock does not vary according to the amount

of inventory. It is only generated by the decision to keep the storage space open to hold

inventory. If the inventory in a period is strictly positive, then the storage fixed cost has

to be paid. In business operations, this fixed cost on stock may take the form of warehouse

rental, salaries, maintenance fee, or other overhead costs. Table 2.1-2 summarizes the

related literature on single-item lot-sizing problem with fixed cost on stock.

Author(s)
Problem Characteristics

Demand Production Storage fixed cost Other features

Van Vyve and Ortega (2004) DD Capacitated Linear

Atamtürk and Küçükyavuz (2005) DD Capacitated Linear Possible initial stock

Atamtürk and Küçükyavuz (2008) DD Capacitated Linear

Di Summa and Wolsey (2010) DD Capacitated Only on initial inventory Bounded initial stock

Wolsey (2015) DD Capacitated Linear

Table 2.1-2 Summary of literature on single-item lot-sizing problems with fixed storage cost

Based on the ULSW, a capacitated version of the model can be easily formulated with the

following elements added:

Additional Parameters:

𝑔𝑡 fixed cost of having a positive inventory level at the end of period t,

Additional Decision variables:

𝑧𝑡 Binary variable, 𝑧𝑡 = 1 if the inventory is positive at the end of period

t; 𝑧𝑡 = 0 if otherwise,

Single-item CLSP with upper bounds and fixed cost on stock:

Minimize: ∑(𝑣𝑐𝑡𝑥𝑡 + 𝑓𝑡𝑦𝑡 + ℎ𝑐𝑡𝑠𝑡 + 𝑔𝑡𝑧𝑡)

𝑚

𝑡=1

 (8)

Subject to: 𝑠𝑡−1 + 𝑥𝑡 = 𝑑𝑡 + 𝑠𝑡 ∀𝑡 ∈ 𝑇, (9)

 𝑥𝑡 ≤ 𝑚𝑖𝑛 (∑ 𝑑𝑘

𝑚

𝑘=𝑡

, 𝑃) 𝑦𝑡 ∀𝑡 ∈ 𝑇 (10)

Page | 10

 𝑠𝑡 ≤ 𝑚𝑖𝑛 (∑ 𝑑𝑘

𝑚

𝑘=𝑡+1

, 𝐻) 𝑧𝑡 ∀𝑡 ∈ 𝑇 (11)

 𝑠0 = 0, (12)

 𝑥𝑡, 𝑠𝑡 ≥ 0; 𝑦𝑡, 𝑧𝑡 ∈ {0, 1} ∀𝑡 ∈ 𝑇. (13)

In the objective function (8), all three types of costs previously considered are present as

well. In addition, 𝑔𝑡𝑧𝑡 represents the fixed cost on stock in period t: in case of positive

inventory at the end of period t, 𝑧𝑡 takes the value of 1, therefore generating a cost of 𝑔𝑡;

otherwise, 𝑧𝑡 = 0, meaning that no inventory is held at the end of the period.

Since the discussion here involves only one type of item, stored in one location, the

production setup-forcing constraints can be integrated in the production capacity

constrains (10) through the multiplication of the upper bounds with the setup binary

variables 𝑦𝑡. Thus, the production quantity is not only limited by the capacity and the

remaining demands, but also by the setup decision: if no setup occurs, even if the capacity

is enough, the right-hand side of the inequality equals 0, therefore disabling the production.

The same logic applies for the storage capacity and storage fixed cost constraints (11).

Constraints (9) and (12) remain the same, while the new binary variable 𝑧𝑡 is added to the

domain constraints (13).

 Multiple items

To include more than one item in our production, there are generally 2 kinds of models,

each addressing a different type of production environment (Pochet and Wolsey, 2006):

the large bucket models in which multiple items can be produced using the same resource

within a given time period; and the small bucket model, where only one item can be

processed in a given time period. Moreover, since we assume that all items are produced

on the same machine, it is then inevitable to include the production capacity.

We assume the same demand characteristics, zero initial inventory and zero ending

inventory in our discussion for the multi-item lot-sizing problem as for the single-item

problems.

Page | 11

2.2.1 Production capacity for multi-item problems

In this thesis, we will focus on the multi-item CLSP, which can be categorized as a large

bucket model. This means that within one time period, multiple types of items can be

produced. To distinguish each type of item, the related parameters and decision variables

are indexed with i, while I is the set all types. Additional parameters and the problem

formulation are as follows:

Additional Set:

I Set of all types of items to be produced,

Additional Parameters:

𝑣𝑡𝑖 Consumption of capacity to produce 1 unit of item i,

𝑃 Production capacity,

Multi-item CLSP Model:

Minimize: ∑ ∑(𝑣𝑐𝑖𝑡𝑥𝑖𝑡 + 𝑓𝑖𝑡𝑦𝑖𝑡 + ℎ𝑐𝑖𝑡𝑠𝑖𝑡)

𝑡∈𝑇𝑖∈𝐼

 (14)

Subject to: 𝑠𝑖,𝑡−1 + 𝑥𝑖𝑡 = 𝑑𝑖𝑡 + 𝑠𝑖𝑡 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇, (15)

 𝑥𝑖𝑡 ≤ 𝑚𝑖𝑛 (∑ 𝑑𝑖𝑘

𝑚

𝑘=𝑡

,
𝑃

𝑣𝑡𝑖
) 𝑦𝑖𝑡 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇, (16)

 ∑ 𝑣𝑡𝑖𝑥𝑖𝑡

𝑖∈𝐼

≤ 𝑃 ∀𝑡 ∈ 𝑇, (17)

 𝑠𝑖0 = 0 ∀𝑖 ∈ 𝐼, (18)

 𝑥𝑖𝑡, 𝑠𝑖𝑡 ≥ 0; 𝑦𝑖𝑡 ∈ {0, 1} ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇. (19)

The objective function (14) and the demand constraints (15) are adapted to include

multiple items. Constraints (18) and (19) are similar to their respective counterparts in the

single-item problem.

Page | 12

The setup forcing constraints (16) is modified as well. In the multi-item problem, the

production capacity can no longer be measured directly by the number of units, since not

all items have the same requirement with respect to the production time. In this case, 𝑃𝑡

represents the capacity of the shared resource measured in units of time available.

Therefore, in the capacity constraints (17), the left-hand side is a sum of total resource

usage over all items.

2.2.2 Storage capacity and fixed cost for multi-item

problems

It has been stated in Van Vyve and Ortega (2004) that “Fixed charges on the stocks may

be necessary to model holding costs. Another situation where fixed charges on the stocks

arise naturally are models involving several items linked by combinatorial constraints on

stocks.”. However, the authors focused solely on a single-item model without further

exploration down this direction.

Later on, the storage capacity has been researched as well for multiple items by numerous

researchers. The following tables summarizes the related literature on multi-item lot-

sizing problems with storage bounds.

Author(s)

Problem Characteristics

Demand Production Storage capacity
Storage

fixed cost
Other features

Minner (2009) DD Capacitated Shared None

Coppens (2013) DD Capacitated Shared None

Akbalik, Penz and Rapine (2014) DD Uncapacitated Shared None

Akbalik, Penz and Rapine (2015) DD Capacitated Shared None

Melo and Ribeiro (2016) DD Capacitated Shared None

Cunha and Santos (2017) DD Capacitated Multiple tanks None
Alternative recipes

By-products

Cunha et al. (2018) DD Capacitated Multiple tanks None Multi-purpose tanks

Table 2.2-1 Summary of literature on multi-item lot-sizing problems

Similar to the big bucket model for the production capacity, most models proposed in the

previous studies all assume that different types of item are stored in one shared space. In

Cunha and Santos (2017) and Cunha et al. (2018), the inventory is stored in several

capacitated tanks, but neither study considers any sort of fixed costs generated by the

storage equipment.

Page | 13

However, although researchers have paid much attention to the inventory bounds, a

discussion on the storage fixed cost within a multi-item context appears to be absent. To

incorporate the storage capacity as well as fixed cost in the multi-item CLSP model, we

need to introduce new parameters to denote the per-unit consumption of space for each

item.

Additional Parameters:

𝑠𝑡𝑖 Consumption of storage capacity to store 1 unit of item i,

Multi-item CLSP Model with inventory bounds and fixed cost:

Minimize: ∑ ∑(𝑣𝑐𝑖𝑡𝑥𝑖𝑡 + 𝑓𝑖𝑡𝑦𝑖𝑡 + ℎ𝑐𝑖𝑡𝑠𝑖𝑡)

𝑡∈𝑇𝑖∈𝐼

+ ∑ 𝑔𝑡𝑧𝑡

𝑡∈𝑇

 (20)

Subject to: 𝑠𝑖,𝑡−1 + 𝑥𝑖𝑡 = 𝑑𝑖𝑡 + 𝑠𝑖𝑡 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇, (21)

 𝑥𝑖𝑡 ≤ 𝑚𝑖𝑛 (∑ 𝑑𝑖𝑘

𝑚

𝑘=𝑡

,
𝑃

𝑣𝑡𝑖
) 𝑦𝑖𝑡 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇, (22)

 ∑ 𝑣𝑡𝑖𝑥𝑖𝑡

𝑖∈𝐼

≤ 𝑃 ∀𝑡 ∈ 𝑇, (23)

 𝑠𝑖𝑡 ≤ 𝑚𝑖𝑛 (∑ 𝑑𝑖𝑘

𝑚

𝑘=𝑡+1

,
𝐻

𝑠𝑡𝑖
) 𝑧𝑡 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇, (24)

 ∑ 𝑠𝑡𝑖𝑠𝑖𝑡

𝑖∈𝐼

≤ 𝐻 ∀𝑡 ∈ 𝑇, (25)

 𝑠𝑖0 = 0 ∀𝑖 ∈ 𝐼, (26)

 𝑥𝑖𝑡, 𝑠𝑖𝑡 ≥ 0; 𝑦𝑖𝑡, 𝑧𝑡 ∈ {0, 1} ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇. (27)

Compared to the single-item CLSP, a storage fixed cost is added to the objective function

(20). Constraints (21) – (23), (26), and (27) remain the same as in the previous models.

Constraints (24) function in the same way of the production setup forcing constraints (22).

In the storage capacity constraints (25), the left-hand side of the inequality is the total

space occupied by the inventory.

Page | 14

 Cost structure

Early studies on lot-sizing problems, such as Wagner and Whitin (1958), consider only

the most basic trade-offs in extremely simplified scenarios. In this thesis, we continue to

include these costs in our models:

➢ Variable production cost: this cost represents the consumption of resources, such as

raw material, energy, and human labor etc., during the production activities. It usually

depends on the nature of the product as well as the production process, and is assumed

to be proportional to the number of units produced. When these costs are time-

invariant, and when all demand must be exactly satisfied, these costs can be left out

of the objective function since they represent a fixed total, independent of the lot-

sizing decisions.

➢ Fixed production cost (setup cost): This usually includes the costs of preparing,

changing, testing, or cleaning the equipment before a batch is being produced. This

cost is fixed regardless of the number of units to be produced, but may vary according

to the type of item.

➢ Variable holding cost: We adopt the conventional definition for this cost, as the cost

per period for a unit held in stock. This cost typically include a cost related to the cost

of capital (opportunity cost), as well as a physical holding cost. In different contexts,

this cost may be composed of different parts such as depreciation, insurance, and

obsolescence etc. Since one of our focus is to discuss the storage location assignments,

the space rental and personnel costs are treated differently in comparison with many

other simplified structures. Existing literature on this topic is reviewed in the

following chapter.

➢ Variable holding cost: In classical lot-sizing models, inventory generates only

consider a unit holding cost per unit per time period, typically as a percentage of the

value of the product. This cost represents the opportunity cost generated according to

the value of products held as inventory, as well as the physical holding cost such as

rent, depreciation and obsolescence.

Page | 15

In reality, the cost structure is more complex, e.g. fixed costs related to the storage location,

handling cost, order preparation cost, etc. Researchers have investigated the various

activities throughout the whole production and storage process, trying to draw a better

picture of the cost structure. An accurate mathematical description of the operations

allows us to modify the model to obtain results that better reflect the reality. Kaplan and

Bruns (1987) first brought the idea of activity-based costing (ABC) into the

manufacturing industry. Horngren et al. (2010) defined ABC as “…(to) calculate the costs

of individual activities and assign costs to cost objects such as products and services on

the basis of the activities undertaken to produce each product or service”. Lin et al. (2001)

examine the adoption of ABC in supply chain management, and recommended a series of

implementation procedures and techniques while also pointing out several drawbacks.

Berling (2008) looked specifically into the inventory holding cost which is assumed to

increase linearly with a rate equal to a percentage of the product value. By applying the

concept of ABC, the authors proposed a model incorporating individual cost-generating

activities in the inventory holding operation. Azzi et al. (2014) carried out a case study

and summarize the different sources of storage costs into two different groups as shown

in Table 2.3-1.

Table 2.3-1 Storage cost structures in two groups. From Azzi et al. (2014), Table I

Page | 16

The authors specify that the cost structure A corresponds to the traditional approach of

holding cost as a percentage of the stored product value, while the cost structure B consists

of a storage cost parameter “expressed as a function of the total number of pallet positions

available in the warehouse (or other specific stock keeping unit (SKUs)), without

including the opportunity cost value”.

In this thesis, we are inspired by the ABC perspective and develop our major models by

including the following additional components in the cost structure:

➢ Fixed storage cost: Similar to a production batch, a storage location may need

preparation as well. This part includes the fixed part of the rental fee, operational

charges and salary of employees to prepare and maintain storage locations in a

specific period. For example, there are fixed costs involved to keep a storage location

at a specific temperature or to keep it sterile.

➢ Variable handling cost: The variable handling cost in this work specifically reflects

the effort to move a unit from the production line to the assigned storage location.

This cost only has to be paid when the units are moved into (and out of) the storage

location, and is hence different from the variable holding cost, which has to be paid

for each period in which the item is in storage.

➢ Variable relocation cost: In a later part of this study, we will consider a situation

where stored items are allowed to be moved from one storage location to another at

a certain cost. This cost is related to the size and weight of the item as well as the

distance between the origin and destination. It is considered to consist of the

manpower and energy required by the movements.

By adopting such a cost structure which include the traditional and new cost elements

listed above, we are able to balance multiple trade-offs among the six types of costs at the

same time under a holistic perspective and thus build better tools for decision makers.

Page | 17

 Link to current research

As revealed by our review on related literature, there is an absence of focus on the multi-

item lot-sizing problems with inventory bounds and storage fixed cost. We will make

extensions to include these considerations in a multi-item context. Moreover, we will

further look into the warehouse which will be divided into several storage locations to

which the inventory is assigned considering cost and storage requirements.

In our research, although we still adopt the traditional concept of the variable holding cost,

we will look into the details related to the inventory holding activities. More specifically,

in addition to the costs considered in the classical lot-sizing problems, we will go further

by including the unit handling cost, storage fixed cost, and unit relocation cost in CLSP-

MSL.

In light of all these previous works, we will develop several mixed integer programming

(MIP) models for CLSP-MSL with different characteristics, therefore requiring the

formulation to change accordingly.

Page | 18

Chapter 3. Single-item CLSP-MSL

The literature review indicates that the ideas of inventory bounds and fixed costs on stock

have already been proposed. We extend the existing work by considering multiple storage

locations. This also means that we must explicitly include decisions on where to stock

specific items, i.e. the storage location assignment.

In this chapter, we start by building new models for the CLSP within a single-item

production environment with multiple storage locations.

In the literature on single-item lot-sizing problem, fixed charges on stock and stock

capacity limits were only considered for one storage location. As such, many common

business practices in the real world are omitted, such as multiple warehouses, self-storage

units, and even server rental or cloud data storage. To address this issue, we will consider

multiple storage locations, each with its own limited capacity and fixed cost.

As a concrete example, imagine a producer of a chemical solvent with several tanks at its

disposal. Instead of constantly producing exactly the demand in each period, the manager

decides to take advantage of the well determined data of future demands and the available

storage capacity consisting of multiple tanks, hoping to cut some costs through a better

planned production.

 Homogeneous Locations

We first assume that the storage locations are homogeneous, i.e., they are identical in

terms of capacity and fixed cost. In order to model this, we expand the value range of 𝑧𝑡

to non-negative integers. Thus, by allowing 𝑧𝑡 to take integer values greater than 1, we

enable the option to open multiple storage locations, each at the same fixed cost 𝑔𝑡 .

However, in this case, H stands for the capacity of an individual storage location. The

total storage capacity can therefore be expressed as 𝐻𝑧𝑡 . By modifying the related

constraints, the single-item CLSP with homogeneous storage locations can be formulated

as follows:

Page | 19

Additional parameter:

𝑛 Total number of available locations

Problem formulation:

Minimize: ∑(𝑣𝑐𝑡𝑥𝑡 + 𝑓𝑡𝑦𝑡 + 𝑠𝑡ℎ𝑐 + 𝑔𝑡𝑧𝑡)

𝑚

𝑡=1

 (28)

Subject to: 𝑠𝑡−1 + 𝑥𝑡 = 𝑑𝑡 + 𝑠𝑡 ∀𝑡 ∈ 𝑇, (29)

 𝑥𝑡 ≤ 𝑚𝑖𝑛 (∑ 𝑑𝑖𝑘

𝑚

𝑘=𝑡

, 𝑃) 𝑦𝑡 ∀𝑡 ∈ 𝑇 (30)

 𝑠𝑡 ≤ 𝑚𝑖𝑛 (∑ 𝑑𝑖𝑘

𝑚

𝑘=𝑡+1

, 𝐻) 𝑧𝑡 ∀𝑡 ∈ 𝑇 (31)

 𝑧𝑡 ≤ 𝑛 (32)

 𝑠0 = 0 (33)

 𝑥𝑡, 𝑠𝑡 ≥ 0; 𝑦𝑡 , 𝑧𝑡 ∈ ℕ0 ∀𝑡 ∈ 𝑇. (34)

This model is largely similar to model (8)-(13). Without modifying the objective function

and constraints (31), we allow 𝑧𝑡 to take any non-negative integer value to incorporate

multiple homogeneous locations. As the objective is to minimize the total cost, 𝑧𝑡will be

limited to the minimal necessary integer, meaning that the fewest possible locations are

opened to hold all the inventory. Constraints (32) limit the total number of available

locations. Constraints (33) imposes zero initial inventory. The domain constraints (34) are

adjusted accordingly as well.

When we increase the inventory, the new inventory will be first added to the partially used

storage location (if any). Similarly, inventory retrieved will first be taken also from the

partially used locations (if any).

 Heterogeneous Locations

Just as in production planning, where there might be several machines with different

characteristics to complete the same task, this heterogeneity can also be relevant for the

Page | 20

storage locations. Even if we still produce only one item, the decision of putting the

inventory in one location or another can have a different impact on the total costs.

Again, consider the example used in previous discussions. This chemical company

expanded and has acquired some newer and larger tanks. Yet, the older tanks are not to

be discarded, and can still be used. This brings more complexity into our considerations.

Suppose that, due to the limited production capacity, the inventory accumulates through

several periods and, before shipping to the customer, exceeds the maximum volume of a

single old tank. In some cases, it might have been more reasonable to use the larger tank

from the start. The decision of which tanks to use hence has to be incorporated in the

mathematical formulation.

To characterize the different storage locations, our model needs to be expanded with a

new index l signifying a specific location, while L is the set of all available locations. And

the related elements of the model are accordingly modified as follows:

Minimize: ∑(𝑣𝑐𝑡𝑥𝑡 + 𝑓𝑡𝑦𝑡)

𝑚

𝑡=1

+ ∑ ∑(𝑠𝑙𝑡ℎ𝑐𝑙 + 𝑔𝑙𝑡𝑧𝑙𝑡)

𝑡∈𝑇𝑙∈𝐿

 (35)

Subject to: ∑ 𝑠𝑙,𝑡−1

𝑙∈𝐿

+ 𝑥𝑡 = 𝑑𝑡 + ∑ 𝑠𝑙𝑡

𝑙∈𝐿

 ∀𝑡 ∈ 𝑇, (36)

 𝑥𝑡 ≤ 𝑚𝑖𝑛 (∑ 𝑑𝑖𝑘

𝑚

𝑘=𝑡

, 𝑃) 𝑦𝑡 ∀𝑡 ∈ 𝑇 (37)

 𝑠𝑙𝑡 ≤ 𝑚𝑖𝑛 (∑ 𝑑𝑖𝑘

𝑚

𝑘=𝑡+1

,
𝐻𝑙

𝑠𝑡
) 𝑧𝑙𝑡 ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (38)

 𝑠0 = 0, (39)

 𝑥𝑡 , 𝑠𝑡 ≥ 0; 𝑦𝑡, 𝑧𝑙𝑡 ∈ {0, 1} ∀𝑡 ∈ 𝑇. (40)

Since the storage capacity, variable and fixed inventory cost can vary from location to

location, the related parameters are marked by an index l. In the objective function (35),

the variable and fixed costs for inventory are now summed not only over time periods,

but also over locations. The demand balance constraints (36) are modified accordingly as

well to take into account the multiple locations.

Page | 21

In this case of heterogenous storage locations for a single item, the model assumes that

inventory can be moved without any cost from one location to another between two time

periods. This means that we only need to consider the inventory balance at the global level

as done in (36). Considering the fixed cost of storage location, it may be beneficial to

change location when inventory is increased or reduced. Although, in this chapter, we

assume that no extra cost is generated by such a relocation, such a cost will be taken into

consideration in a later part of this thesis as a further extension.

Page | 22

Chapter 4. Multi-item CLSP-MSL

In modern industries, a manufacturer rarely produces only one type of product. To better

plan the production of multiple items, it is important to see their different characteristics

such as requirement of materials and occupation of storage space. Having discussed

several extensions of the single-item version in the previous parts, we now move on to the

multi-item capacitated lot-sizing problem with multiple capacitated storage locations and

fixed storage cost.

 Homogeneous locations for multiple items

We first assume that all storage locations are homogeneous. Different types of items are

indexed by i, while I is the set of all types. Each type of item is characterized by its variable

production cost (𝑣𝑐𝑖), fixed production cost (𝑓𝑖), and holding cost (ℎ𝑐𝑖).

In addition, the different natures of these items also determine the way in which they share

the production and storage capacities. For a certain item i, we use 𝑣𝑡𝑖 to represent the per-

unit utilization of production capacity 𝑃, and 𝑠𝑡𝑖 to represent the per-unit utilization of

storage capacity H. Since each location has the same individual capacity H, the warehouse

as a whole is thus naturally capacitated by 𝑧𝑡𝐻. The model can be formulated as follows:

Minimize: ∑ ∑(𝑣𝑐𝑖𝑥𝑖𝑡 + 𝑓𝑖𝑦𝑖𝑡 + ℎ𝑐𝑖𝑠𝑖𝑡)

𝑖∈𝐼𝑡∈𝑇

+ ∑ 𝑔𝑧𝑡

𝑡∈𝑇

 (41)

Subject to: 𝑠𝑖,𝑡−1 + 𝑥𝑖𝑡 = 𝑑𝑖𝑡 + 𝑠𝑖𝑡 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (42)

 𝑥𝑖𝑡 ≤ 𝑚𝑖𝑛 (∑ 𝑑𝑖𝑘

𝑚

𝑘=𝑡

,
𝑃

𝑣𝑡𝑖
) 𝑦𝑖𝑡 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (43)

 ∑𝑣𝑡𝑖𝑥𝑖𝑡

𝑖∈𝐼

≤ 𝑃 ∀𝑡 ∈ 𝑇 (44)

Page | 23

 ∑𝑠𝑡𝑖𝑠𝑖𝑡

𝑖∈𝐼

≤ 𝑚𝑖𝑛 (∑ ∑ 𝑠𝑡𝑖𝑑𝑖𝑘

𝑚

𝑘=𝑡+1𝑖∈𝐼

, 𝐻) 𝑧𝑡 ∀𝑡 ∈ 𝑇 (45)

 𝑠𝑖1 = 0 ∀𝑖 ∈ 𝐼 (46)

 𝑥𝑡 , 𝑠𝑡 ≥ 0; 𝑦𝑖𝑡 ∈ {0, 1}; 𝑧𝑡 ∈ ℕ0 ∀𝑡 ∈ 𝑇 (47)

Note that in the objective function (41), for each time period, the fixed cost on stock now

stands apart from the sum of other types of costs, because this fixed cost is item-

independent and occurs only once per period. With related variables and parameters

adapted to include multiple items, the flow balance constraints (42) functions in the same

way as (29). Since the physical dimension of the items may vary, in constraints (45), we

use the total required space to impose the storage capacity and setup constraints. Different

from the single-item model, the production capacity in constraint (44) is expressed, not as

upper bounds on the number of units produced, but as the total amount of used time or the

resource shared among different items, since each item has a different production

requirement 𝑣𝑡𝑖. As a result, to enforce the production setup, we now need a separate

constraint (44), where, for a specific item and time period, we use the lesser between the

maximum number of units allowed by the current capacity and the total demand in the

remaining periods. Although this provides us with a better LP relaxation bound, the

formulation typically still results in a large positive LP gap, which drives researchers to

find alternative formulations with better bounds on this value. In later parts of this work,

we also try to improve the formulation by reformulating the problem using the

Transportation Formulation and test this reformulation to examine its performance.

Finally, constraints (47) define the domain for the decision variables.

 Heterogeneous locations for multiple items

In this scenario, the warehouse disposes of a finite set of storage locations indexed by l.

The individual storage capacity and fixed cost for each location is now location-dependent,

thus respectively denoted by Hl and 𝑔𝑙. As a result of the differences among the storage

locations, it is now necessary to go further into details and monitor the inventory in each

location. Several changes are made to the model accordingly:

Page | 24

1. The decision variable 𝑧𝑙𝑡 is again binary and location-dependent, indicating

whether or not a storage location is used in period t.

2. The storage capacity is now managed at the location level. When the inventory

in each location respect its own individual capacity, the overall storage

capacity is naturally bounded by the finite set of locations L.

3. A new decision is integrated into the model to assign different types of item to

storage locations. This decision is denoted by the binary variable 𝑤𝑖𝑙𝑡, which

equals 1 if item i is stored in location l in period t, otherwise 0.

4. Considering the heterogeneity of storage locations, two binary input

parameters are needed to describe the related compatibilities. 𝛼𝑖𝑙 indicates the

compatibility between each item and each location, taking the value of 1 if

item i is allowed to be stored in location l; otherwise, 0. 𝛽𝑖𝑗 indicates the

compatibility between two items i and j. If they can coexist in the same

location, 𝛽𝑖𝑗 = 1; otherwise, 𝛽𝑖𝑗 = 0.

This problem can be formulated as follows:

Minimize: ∑ ∑(𝑣𝑐𝑖𝑡𝑥𝑖𝑡 + 𝑓𝑖𝑡𝑦𝑖𝑡)

𝑡∈𝑇𝑖∈𝐼

+ ∑ ∑ ∑ ℎ𝑐𝑖𝑙𝑠𝑖𝑙𝑡

𝑡∈𝑇𝑙∈𝐿𝑖∈𝐼

+ ∑ ∑ 𝑔𝑙𝑧𝑙𝑡

𝑡∈𝑇𝑙∈𝐿

 (48)

Subject to: ∑ 𝑠𝑖𝑙,𝑡−1

𝑙∈𝐿

+ 𝑥𝑖𝑡 = 𝑑𝑖𝑡 + ∑ 𝑠𝑖𝑙𝑡

𝑙∈𝐿

 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (49)

 𝑥𝑖𝑡 ≤ 𝑚𝑖𝑛 (∑ 𝑑𝑖𝑘

𝑚

𝑘=𝑡

,
𝑃𝑡

𝑣𝑡𝑖
) 𝑦𝑖𝑡 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (50)

 𝑠𝑖𝑙0 = 0 ∀𝑖 ∈ 𝐼, ∀𝑙 ∈ 𝐿 (51)

 ∑𝑣𝑡𝑖𝑥𝑖𝑡

𝑖∈𝐼

≤ 𝑃𝑡 ∀𝑡 ∈ 𝑇 (52)

 𝑠𝑡𝑖𝑠𝑖𝑙𝑡 ≤ 𝑚𝑖𝑛 (∑ 𝑠𝑡𝑖𝑑𝑖𝑘

𝑚

𝑘=𝑡+1

, 𝐻𝑙) 𝑤𝑖𝑙𝑡 ∀𝑖 ∈ 𝐼, ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (53)

Page | 25

 ∑ 𝑠𝑡𝑖𝑠𝑖𝑙𝑡

𝑖∈𝐼

≤ 𝐻𝑙𝑧𝑙𝑡 ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (54)

 𝑤𝑖𝑙𝑡 ≤ 𝛼𝑖𝑙 ∀𝑖 ∈ 𝐼, ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (55)

 𝑤𝑖𝑙𝑡 + 𝑤𝑗𝑙𝑡 ≤ 𝛽𝑖𝑗 + 1 ∀𝑖, 𝑗 ∈ 𝐼, ∀𝑖 ≤ 𝑗, ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (56)

 𝑥𝑖𝑡, 𝑠𝑖𝑙𝑡 ≥ 0; 𝑤𝑖𝑙𝑡, 𝑦𝑖𝑡, 𝑧𝑙𝑡 ∈ {0, 1} ∀𝑡 ∈ 𝑇 (57)

In constraints (49) the flow of an item is balanced using the consolidated inventory across

all locations, without further tracking the specific numbers of units going in and out of

each location. This implies that, from period to period, inventory of an item can be moved

between locations for the sake of other newly stocked items, or with the purpose of

economizing space and fixed cost. In this model, these movements between different

storage locations, called inventory relocation, are allowed at no extra cost, and hence they

are not modeled. In the next section we will present a more general formulation that

models inventory relocation and tracks inventory at the storage location level.

In constraints (53), we model the inventory allocation: the inventory variable is linked to

the binary decision variable 𝑤𝑖𝑙𝑡, meaning that the inventory of item i in location l can

only exist if we assign item i to location l. As for the storage capacity, constraints (54)

impose that on one hand, products can be stored in location l only when this location is

opened (𝑧𝑙𝑡 = 1), while on the other hand, the total space occupied by all types of items

in it cannot exceed its capacity 𝐻𝑙.

At last, constraint (55) and (56) make sure that all items are stored with respect to their

location compatibility and product compatibility rules. Constraints (57) impose the

domain for the decision variables.

 General model with inventory relocation

As a result of the item-location and item-item compatibilities introduced in our previous

discussion, items have to be carefully assigned to different locations – not only to respect

the compatibility, but also to reach optimality by avoiding unnecessary cost.

Page | 26

In the previous formulation, we assumed that the inventory can be relocated within the

warehouse in every time period at no additional cost. Such a relocation might be beneficial

in order to reduce the total fixed inventory cost or maintain feasibility. However, if items

are moved to different locations within the warehouse from one period to the next, which

we will refer to as inventory relocation, this will typically entail an additional processing

cost. We will analyze this issue in more detail taking into account the extra cost of

inventory relocation. This will also require to track the inventory at the individual storage

location level instead of at an aggregate level. This results in the most general model.

4.3.1 Logic and process

Prior to mathematically formulating this problem, in order to clarify the premises and

assumptions, let us first examine the various movements and the interaction among the

production, demand, and inventory.

We are given a series of demand over a finite time horizon, based on which we have to

design an economic production and storage plan. For a certain time period, we have to

make decisions considering not only the future demand, but also other factors such as the

traditional production and holding costs, the fixed costs on production and storage, the

capacities, and the newly introduced storage compatibility requirements, etc.

In each period, on one hand, the produced items (if any) can be either shipped to the

customers or stored in our warehouse. On the other hand, the demand of that period can

be fulfilled with products coming either directly from the production line or from the

inventory accumulated in previous periods. The resulting interaction between the

production and inventory in each period includes three scenarios:

Under-production: in the current period, the amount produced is less than the demand.

Products have to flow out of the warehouse to compensate this lack, lowering the

inventory level.

Page | 27

Exact-production: in the current period, the amount produced equals the demand, and

is directly shipped to the customer without going into or out of the warehouse. There

is no change in inventory level.

Over-production: in the current period, the amount produced is more than the current

demand. These extra items flow into the warehouse, raising the inventory level.

We use the following terminology to describe the related movements of goods:

Inflow: this is the flow of products entering the warehouse to be stored as inventory as

a result of over-production.

Outflow: this is the flow of products leaving the warehouse to satisfy the demand as a

result of over-production.

Direct flow: this is the flow of finished products going from the production line

directly to the customers, without entering the warehouse.

Relocation: this is the movement within the warehouse, carrying products from one

storage location to another.

These different flows should be considered in the optimization model with their related

costs as explained next. With respect to the handling costs of inflow and outflow, since

we assume zero inventory at the end of the planning horizon, all items that go into the

warehouse will leave eventually. Without loss of generality, we can aggregate the

handling costs of both directions and apply them only on the inflow. Within the warehouse,

the relocation cost mainly represents the effort to move the products from the original

location to its new destination. This cost depends on the travel distance and the product

feature such as dimension and weight. The direct flow of goods, i.e. goods that do not go

in storage, do not have any warehouse handling cost associated with them. Assuming a

transportation cost per unit would result in a fixed cost since there is no ending inventory

and all units produced (whether directly shipped or first stored) need to be transported.

Therefore, we do not include this transportation cost in our model.

Page | 28

Under these assumptions, the optimal movement of items can be depicted more precisely

with the following characteristics:

➢ On the global inventory level: In case of an over-production, there should

be only inflow but no outflow, since the demand of that period should be

fully satisfied directly from the production, i.e. using direct flow. Similarly,

in case of an under-production, there should be only an outflow but no inflow.

In other words, an inflow and an outflow can by no means coexist within the

same period.

➢ On the local inventory level: In a specific period, the relocation of any type

of item does not involve any intermediate location. In other words, no item

should pass through a third location other than its origin and destination.

4.3.2 Problem formulation

To incorporate the relocation in our model, we use 𝑣𝑖𝑘𝑙𝑡 to denote the number of item i

moved from location k to location l in period t, each at a unit moving cost 𝑟𝑖𝑘𝑙 depending

on the type of item and the distance between the two locations. Thus, in period t, the total

number of item relocated to location l equals ∑ 𝑣𝑖𝑘𝑙𝑡𝑘∈𝐿 , while the total number of item i

relocated from location l to other locations equals to ∑ 𝑣𝑖𝑙𝑘𝑡𝑘∈𝐿 .

With respect to the inflow (i.e. the movement from the production line into the warehouse)

and the outflow (i.e., the movement from the warehouse to the customer), we define 𝛿𝑖𝑙𝑡
+

as the inflow of item i into location l and 𝛿𝑖𝑙𝑡
− as the outflow of item i extracted from

location l. As claimed in the previous part, a unit handling cost, denoted by ℎ𝑎𝑖𝑙, is linked

to 𝛿𝑖𝑙𝑡
+ . Both types of variables are non-negative, and can be mathematically defined as

follows:

∑ 𝛿𝑖𝑙𝑡
+

𝑙∈𝐿

− ∑ 𝛿𝑖𝑙𝑡
−

𝑙∈𝐿

= 𝑥𝑖𝑡 − 𝑑𝑖𝑡 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (58)

In case of an over-production (𝑥𝑖𝑡 − 𝑑𝑖𝑡＞0), we have ∑ 𝛿𝑖𝑙𝑡
+

𝑙∈𝐿 ＞∑ 𝛿𝑖𝑙𝑡
−

𝑙∈𝐿 . Considering

the related cost, the minimization of objective will yield a positive inflow and zero out

Page | 29

flow. The same logic applies to the case of under-production, resulting in a positive

outflow and zero inflow. At last, both the inflow and outflow are zero in case of an exact-

production.

Accordingly, the flow balance for each location can be expressed by the following

equation:

𝑠𝑖𝑙,𝑡−1 + 𝛿𝑖𝑙𝑡
+ + ∑ 𝑣𝑖𝑘𝑙𝑡

𝑘∈𝐿

= 𝑠𝑖𝑙𝑡 + 𝛿𝑖𝑙𝑡
− + ∑ 𝑣𝑖𝑙𝑘𝑡

𝑘∈𝐿

 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿
(59)

Although, for the two types of movement, both directions appear in the same constraint,

the minimization process will eliminate the possibility of coexisting opposite movements

of the same type. More specifically, ∑ 𝑣𝑖𝑘𝑙𝑡𝑘∈𝐿 and ∑ 𝑣𝑖𝑙𝑘𝑡𝑘∈𝐿 will not be positive at the

same time. If both are positive, a certain amount of item I is moved in and out of location

l within the same period. However, a relocation route including any intermediate location

will by nature induce more cost, which then translates into the Characteristic 3 stated in

the previous part. Similarly, if both 𝛿𝑖𝑙𝑡
+ and 𝛿𝑖𝑙𝑡

− are positive, some amount of item i enters

and leaves the warehouse within the same period. Since there is a cost associated to the

inflow, a solution in which both 𝛿𝑖𝑙𝑡
+ and 𝛿𝑖𝑙𝑡

− are positive will not be optimal, as both

amounts can be reduced simultaneously. The general formulation of the problem is thus

as follows:

Minimize: ∑ ∑(𝑣𝑐𝑖𝑥𝑖𝑡 + 𝑓𝑖𝑦𝑖𝑡)

𝑡∈𝑇𝑖∈𝐼

+ ∑ ∑ ∑ ℎ𝑐𝑖𝑠𝑖𝑙𝑡

𝑡∈𝑇𝑙∈𝐿𝑖∈𝐼

+ ∑ ∑ ∑ ℎ𝑎𝑖𝑙𝛿𝑖𝑙𝑡
+

𝑡∈𝑇𝑙∈𝐿𝑖∈𝐼

+ ∑ ∑ 𝑔𝑙𝑧𝑙𝑡

𝑡∈𝑇𝑙∈𝐿

+ ∑ ∑ ∑ ∑ 𝑟𝑖𝑘𝑙𝑣𝑖𝑘𝑙𝑡

𝑡∈𝑇𝑙∈𝐿𝑘∈𝐿𝑖∈𝐼

(60)

Subject to: 𝑥𝑖𝑡 − 𝑑𝑖𝑡 = ∑(𝛿𝑖𝑙𝑡
+ − 𝛿𝑖𝑙𝑡

−)

𝑙∈𝐿

 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇
(61)

 𝑠𝑖𝑙,𝑡−1 + 𝛿𝑖𝑙𝑡
+ + ∑ 𝑣𝑖𝑘𝑙𝑡

𝑘∈𝐿

= 𝑠𝑖𝑙𝑡 + 𝛿𝑖𝑙𝑡
− + ∑ 𝑣𝑖𝑙𝑘𝑡

𝑘∈𝐿

∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿

(62)

Page | 30

 𝑠𝑖𝑙0 = 0 ∀𝑖 ∈ 𝐼, ∀𝑙 ∈ 𝐿 (63)

𝑥𝑖𝑡 ≤ 𝑚𝑖𝑛 (∑ 𝑑𝑖𝑘

𝑚

𝑘=𝑡

,
𝑃𝑡

𝑣𝑡𝑖
) 𝑦𝑖𝑡 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇

(64)

 ∑𝑣𝑡𝑖𝑥𝑖𝑡

𝑖∈𝐼

≤ 𝑃𝑡 ∀𝑡 ∈ 𝑇
(65)

𝑠𝑖𝑙𝑡 ≤ 𝑚𝑖𝑛 (∑ 𝑑𝑖𝑘

𝑚

𝑘=𝑡+1

,
𝐻𝑙

𝑠𝑡𝑖
) 𝑤𝑖𝑙𝑡 ∀𝑖 ∈ 𝐼, ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇

(66)

 ∑ 𝑠𝑡𝑖𝑠𝑖𝑙𝑡

𝑖∈𝐼

≤ 𝐻𝑙𝑧𝑙𝑡 ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇
(67)

 𝑤𝑖𝑙𝑡 ≤ 𝛼𝑖𝑙 ∀𝑖 ∈ 𝐼, ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (68)

 𝑤𝑖𝑙𝑡 + 𝑤𝑗𝑙𝑡 ≤ 𝛽𝑖𝑗 + 1 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐼|𝑗 ≥ 𝑖, ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (69)

 𝑥𝑖𝑡, 𝑠𝑖𝑙𝑡, 𝛿𝑖𝑙𝑡
+ , 𝛿𝑖𝑙𝑡

− ≥ 0; 𝑢𝑖𝑡 , 𝑤𝑖𝑙𝑡, 𝑦𝑖𝑡, 𝑧𝑙𝑡 ∈ {0, 1}

∀𝑖 ∈ 𝐼, ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇

(70)

Constraints (61) define the inflow and outflow at the global level while constraints (62)

balance the flow of products at each storage location. At the beginning of period t, location

l has an inventory level of 𝑠𝑖𝑙,𝑡−1. It may receive additional products from the production

(𝛿𝑖𝑙𝑡
+) or from other locations (∑ 𝑣𝑖𝑘𝑙𝑡𝑘∈𝐿). Its inventory may be extracted to fulfill the

demand (𝛿𝑖𝑙𝑡
−) or be relocated to other locations (∑ 𝑣𝑖𝑙𝑘𝑡𝑘∈𝐿). The remainder is kept as the

inventory at the end of the period (𝑠𝑖𝑙𝑡). Constraints (63) imposes that there is no initial

inventory at the beginning of the planning horizon. The remaining constraints (64) to (70)

resemble the corresponding constraints in the previous model.

We regard this as a general model since the models given in previous parts can be seen as

special cases derived from this one. When set I contains only one element, the problem

becomes a single-item problem. When 𝐻𝑙 and 𝑔𝑙 are uniform, all locations become

homogeneous. When all 𝛼𝑖𝑙 and 𝛽𝑖𝑗 variables are set to 1, the compatibility no longer

Page | 31

limits the optimization. We can also force 𝑣𝑖𝑘𝑙𝑡 = 0 to unable the relocation between

storage locations while still keeping track of the flows at each location level.

4.3.3 Example of inventory relocation

In this part, we design and solve a simple problem to better illustrate the mechanism of

item relocation. Table 4.3-2 shows the demand and cost parameters of the problem.

As shown in Table 4.3-1, the demand of 4 items are given for 3 periods. All items have

the same cost structure. Each item consumes the same amount of space in the storage

location and uses the same amount of capacity for production. The total production

capacity is 12 units while the storage capacity is 3 units for each of the three locations.

According to the compatibility relationships shown in Table 4.3-2, item A and item C

cannot coexist in the same location, just as item B and item D, while item B cannot be

stored in location 1.

This simplified example can be easily solved to optimality, allowing us to analyze the

result through observation. This problem is modeled according to the model with

relocation, then solved in IBM ILOG CPLEX Optimization Studio (Version: 12.8.0.0).

The optimal solution is illustrated in Figure 4-1.

Table 4.3-1 Relocation example – compatibility matrix

α Item A Item B Item C Item D

Location 1 1 0 1 1

Location 2 1 1 1 1

Location 3 1 1 1 1

β Item A Item B Item C Item D

Item A 1 1 0 1

Item B 1 1 1 0

Item C 0 1 1 1

Item D 1 0 1 1

Demand Item A Item B Item C Item D

 Period 1 1 1 1 0

 Period 2 0 1 1 1

 Period 3 4 3 0 2

Variable Cost (vc) 1 1 1 1

Fixed Cost (f) 10 10 10 10

Holding Cost (hc) 1 1 1 1

Stock Fixed (g) 1 1 1 1
Table 4.3-2 Relocation example - demand and cost parameters

Page | 32

Due to the relatively high production fixed cost, it is desirable to produce as few batches

as possible, in this specific case, only 1 batch for each item. At the end of period 1, we

have to carefully assign the inventory to each location to accommodate the compatibilities

and future storage. Since item A is incompatible with item C, and since at least two

locations are needed to store 4 unites of item A, this one unit of item C can only be put

into the other location without A, in this case, location 2. The rest of the storage space is

filled by 4 units of item B.

Location 1 Item Production Demand Result

Location 2 A 5 1 4

Location 3 B 5 1 4

C 2 1 1

Location 1 A A A D 0 0 0

Location 2 C B B

Location 3 A B B

Item Production Demand Result

Location 1 A A A A 0 0 0

Location 2 B B B 0 1 -1

Location 3 A B C 0 1 -1

D 3 1 2

Location 1 A A A

Location 2 B B B

Location 3 A D D Item Production Demand Result

A 0 4 -4

Location 1 B 0 3 -3

Location 2 C 0 0 0

Location 3 D 0 2 -2

P
e
rio

d
 1

P
e
rio

d
 2

P
e
rio

d
 3

Figure 4-1 Relocation example - optimal solution

Page | 33

In the following period, 1 unit of item C and 1 unit of item B are taken out from storage

and shipped to the customers, while 2 units of the new item D enter the warehouse.

According to the current situation, our next question then becomes which unit of item B

to ship out. Again, considering the compatibilities, item B cannot coexist with item D in

the same location. A relocation between location 2 and location 3 must be carried out to

make room for the incoming item D. To minimize the cost, it is therefore ideal to move 1

unit of item B in the second period as indicated by the red arrow in Figure 4-1.

Finally, all inventory is used to meet the demand in period 3.

 Transportation problem formulation of the general model

According to Krarup and Bilde (1977), reformulating the CLSP as a transportation

problem provides a tighter LP relaxation. Such a formulation can possibly also find better

upper bounds if an instance cannot be solved within the time limit. Define 𝑝𝑖𝑡𝑢 as the

number of units produced in period t to satisfy the demand of item i in period u, where

𝑡 ≤ 𝑢 , while other notations remain the same. Using these new variables, we can

reformulate the CLSP-MSL problem. The reformulation is as follows:

Minimize:
∑ ∑ ∑ 𝑝𝑖𝑡𝑢

𝑚

𝑢=𝑡

𝑣𝑐𝑖

𝑡∈𝑇𝑖∈𝐼

+ ∑ ∑ ∑ ℎ𝑐𝑖𝑠𝑖𝑙𝑡

𝑡∈𝑇

+ ∑ ∑ ∑ 𝛿𝑖𝑙𝑡
+ ℎ𝑎𝑖𝑙

𝑡∈𝑇𝑙∈𝐿𝑖∈𝐼𝑙∈𝐿𝑖∈𝐼

+ ∑ ∑ 𝑓𝑖𝑦𝑖𝑡

𝑡∈𝑇𝑖∈𝐼

+ ∑ ∑ 𝑔𝑙𝑧𝑙𝑡

𝑡∈𝑇𝑙∈𝐿

+ ∑ ∑ ∑ ∑ 𝑟𝑖𝑘𝑙𝑣𝑖𝑘𝑙𝑡

𝑡∈𝑇𝑙∈𝐿𝑘∈𝐿𝑖∈𝐼

(71)

Subject to: 𝑠𝑖𝑙,𝑡−1 + 𝛿𝑖𝑙𝑡
+ + ∑ 𝑣𝑖𝑘𝑙𝑡

𝑘∈𝐿

= 𝑠𝑖𝑙𝑡 + 𝛿𝑖𝑙𝑡
− + ∑ 𝑣𝑖𝑙𝑘𝑡

𝑘∈𝐿

∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿

(72)

∑ 𝑝𝑖𝑡𝑢

𝑢

𝑡=1

= 𝑑𝑖𝑢 ∀𝑖 ∈ 𝐼, ∀𝑢 ∈ 𝑇
(73)

Page | 34

∑ 𝑝𝑖𝑡𝑢

𝑚

𝑢=𝑡

− 𝑑𝑖𝑡 = ∑(𝛿𝑖𝑙𝑡
+ − 𝛿𝑖𝑙𝑡

−)

𝑙∈𝐿

 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇
(74)

 𝛿𝑖𝑙1
− = 0 ∀𝑖 ∈ 𝐼, ∀𝑙 ∈ 𝐿 (75)

 𝑝𝑖𝑡𝑢 ≤ 𝑑𝑖𝑢𝑦𝑖𝑡 ∀𝑖 ∈ 𝐼, ∀𝑡, 𝑢 ∈ 𝑇, 𝑡 ≤ 𝑢 (76)

∑ ∑ 𝑝𝑖𝑡𝑢𝑣𝑡𝑖

𝑚

𝑢=𝑡𝑖∈𝐼

≤ 𝑃𝑡 ∀𝑡 ∈ 𝑇
(77)

𝑠𝑖𝑙𝑡 ≤ 𝑚𝑖𝑛 (∑ 𝑑𝑖𝑢

𝑚

𝑢=𝑡+1

,
𝐻𝑙

𝑠𝑡𝑖
) 𝑤𝑖𝑙𝑡 ∀𝑖 ∈ 𝐼, ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇

(78)

 ∑ 𝑠𝑡𝑖𝑠𝑖𝑙𝑡

𝑖∈𝐼

≤ 𝐻𝑙𝑧𝑙𝑡 ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇
(79)

 𝑤𝑖𝑙𝑡 ≤ 𝛼𝑖𝑙 ∀𝑖 ∈ 𝐼, ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (80)

 𝑤𝑖𝑙𝑡 + 𝑤𝑗𝑙𝑡 ≤ 𝛽𝑖𝑗 + 1 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐼|𝑗 ≥ 𝑖, ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (81)

 𝑝𝑖𝑡𝑢, 𝑠𝑖𝑙𝑡 ≥ 0; 𝑤𝑖𝑙𝑡, 𝑦𝑖𝑡, 𝑧𝑙𝑡 ∈ {0, 1} ∀𝑡 ∈ 𝑇 (82)

Different from the 𝑥𝑖𝑡 variables signifying the production amount of product i in period t,

the total production of item i in period t is given by ∑ 𝑝𝑖𝑡𝑢
𝑚
𝑢=𝑡 , with m signifying the total

number of time periods. Related expressions are modified accordingly in the objective

function (71) and in the constraints.

Constraints (73) impose the demand fulfillment by specifying that the accumulated

production ∑ 𝑝𝑖𝑡𝑢
𝑢
𝑡=1 targeting period u equals to the demand in period u. Constraints (74)

provide the new definition of inflows and outflows: in period t, if the total production

∑ 𝑝𝑖𝑡𝑢
𝑚
𝑢=𝑡 is larger than the demand of the same period, there is a positive inflow;

otherwise, a positive outflow. Constraints (76) are the new production setup forcing

constraints.

Page | 35

Chapter 5. Computational experiments

The general CLSP-MSL model incorporating handling costs and item relocation

discussed in Chapter 4.4 has been implemented using IBM ILOG Studio (ver.12.8.0) and

ILOG OPL Script. The computation is carried out using a 64-bit operating system with an

Intel® CoreTM i7-6700HQ CPU of 2.60GHz. During the computation, we allow CPLEX

the access to all 8 threads of the CPU and a total RAM of 10GB. In case that this working

memory runs out, we also allow the software to move a group of nodes to temporary files

on the hard disk. There is no limit on the maximal number of nodes to be processed before

the computation is forced to stop. We instead limit the computation time to 30 minutes

per instance since we deem that beyond this point, the optimizing process would be

impractical for production planning purposes. While the solver incorporates its own

symmetry breaking function, we set this option to default to let the software decide.

In all our experiments, we try to solve the problem to optimality. The computation will

not stop until CPLEX finds an optimal solution or reaches the time limit. CPLEX uses a

default optimality tolerance of 1e-5. We keep the optimality tolerance at this default level.

In the computational experiments, we will indicate the number of instances which end

within this tolerance, but with a non-zero gap.

 Data description

Since our literature review shows an absence of existing data sets with the various

locational parameters required to perform the tests, our test data are generated according

to preliminary tests. A base case is thus established with 20 instances, of which the output

data serve as the benchmark in our comparisons with other alternative parameter settings.

Number of items: According to the result of similar experiments through the literature,

having additional types of item is supposed to considerably complicate the problem.

Hence, to obtain valid results for multi-item problems while avoiding unnecessary

extreme complexities, we include 5 items in all the instances to be tested.

Page | 36

Planning horizon: A longer planning horizon significantly adds to the computational

burden. In our tests, while the base case consists of 15 periods, we also test the problem

with 12 and 20 periods to observe the impact of different planning horizons.

Demand: For each item, the demand in each period is randomly generated from a uniform

distribution between 40 and 60, with an average of 50 units.

Per-unit utilization of capacity/space: In order to facilitate the computational tests, we

assume that all items require the same capacity to produce, while they occupy the same

amount of storage space. Thus, the capacities of production and storage directly translate

into the number of units.

Production capacity: Since the average demand for each item is 50 units per period, a

total of 250 units should be produced on average during each period. To ensure the basic

flexibility and to avoid infeasible problems, especially when no inventory exists at the

beginning periods, we set the production capacity to 500 units in the base case.

Comparisons on this parameter include another two scenarios: 375 units and 750 units.

Production setup cost: The fixed cost of production for each item is randomly generated

following a uniform distribution between 80 and 120, with an average of 100. The

influence of this cost is examined with an alternative case where the setup costs are halved.

Variable production cost: Since we do not allow backlogs or lost sales, the variable

production costs always add up to a constant amount according to the total demand.

Without any loss of generality, this type of cost is therefore omitted in our tests.

Storage Locations: Different from the production capacity, the total storage capacity is

decided by the types and numbers of location used in each period. Across all instances,

we designed three types of locations depending on the average demand. A small location

holding inventory up to one period (50 units); two periods for a medium location (100

units); and four periods for a large location (200 units). In the base case, 4 medium

locations are available.

Page | 37

Storage fixed cost: The storage fixed costs varies according to the type of location. In

order to have a reasonable balance between the production setup cost and the inventory

system costs, we set the storage fixed cost based on the following reasoning.

In our base case, given a production capacity of 500 units and an average demand of 250

units per period, the production set-up needs to occur at least once every two periods. The

resulting average total setup cost is 250 for all five items.

In order to establish links between the storage fixed cost and the production setup cost,

we set this average total setup cost as a base cost. Since we have 4 medium locations, the

base cost per location is therefore 62.5. Having carried out several preliminary tests, we

found 20% of this base cost per location (12.5) to be reasonable for a medium location.

To observe the impact of combining different types of storage locations, we test two

alternative combinations, both with the same total storage capacity as the base case. The

fixed costs of the different types of location are proportional with their individual capacity.

Table 5.1-1 shows the two alternative combinations.

 Small Medium Large Total

Capacity Fixed Cost 6.25 12.5 25

Base case 0 4 0 400

Combination 1 2 1 1 400

Combination 2 0 0 2 400

Table 5.1-1 Test settings - location combinations

Cost structure for storage fixed cost: To observe the results of fixed costs exhibiting

economies of scale (EOS) or diseconomies of scale (DOS), we established another two

alternative scenarios, both using the Combination 1, i.e. 2 small, 1 medium and 1 large

location. In case of EOS, a location twice as large generates 1.5 times the cost instead of

2 times; while in case of DOS, it is 2.5 times. Table 5.1-2 summarizes the fixed costs of

different types of locations:

Page | 38

 Small Medium Large

Combination 1 6.25 12.5 25

Economy of scale 8.33 12.5 18.75

Diseconomy of scale 5 12.5 31.25

Table 5.1-2 Test settings - fixed costs per location

Variable holding cost: In order to balance the trade-off between production and holding,

we adopt the concept of time between orders (TBO) derived from the EOQ model to set

the holding cost. Let 𝑑 be the average demand, 𝑓 if the fixed production setup cost, and

ℎ𝑐 the holding cost per unit per period, deriving from 𝐸𝑂𝑄 = √
2𝑑𝑓

ℎ𝑐
 and 𝑇𝐵𝑂 =

𝐸𝑂𝑄

𝑑
, we

have ℎ𝑐 =
2𝑓

𝑇𝐵𝑂2𝑑
. We test three scenarios where the TBO takes the value of 2, 4 or 8.

The holding cost is therefore respectively calculated to be 1, 0.25 or 0.0625.

Relocation cost: We assume that the item relocation allows a better organization of

inventory but generates certain costs depending on the relocated weight, volume, and

distance. However, to facilitate the tests, we adopt a uniformed relocation cost of 0.0625

per unit per movement, regardless of the distance between each pair of the four locations.

Handling cost: In order incorporate the trade-off between the two types of movements –

relocation (within the warehouse) and handling (into the warehouse), the unit handling

cost is set to be 10 times the unit relocation cost. We also have also carried out tests on

this ratio (2, 6, 14 times) to examine the impact of different ratios between handling and

relocation cost.

Item-item/item-location compatibility: As another major feature added to our models,

the compatibilities are introduced using binary variables, with 0 indicating incompatible,

and 1 indicating compatible. To facilitate the analysis, we measure the level of

compatibility of each instance with the percentage of non-zero variables over the total

number of variables within the compatibility matrix.

Page | 39

𝜷 Item 1 Item 2 Item 3 Item 4 Item 5

Item 1 - 1 1 1 0

Item 2 1 - 1 0 1

Item 3 1 1 - 1 0

Item 4 1 0 1 - 1

Item 5 0 1 0 1 -

Table 5.1-3 An example of the compatibility matrix

For example, the matrix of item-item variable shown in Table 5.1-3 indicates the

compatibility between each pair of two items. Among all 20 variables listed, 14 takes the

value of 1. The level of item-item compatibility for this instance therefore equals

14

20
× 100% = 70%. The level of item-location compatibility is calculated in the same

way.

In our computational tests, we assume five different levels of compatibility: 100% (perfect

compatibility), 90%, 80%, 70%, and 60%. Table 5.1-4 illustrates the 9 alternative cases

being tested:

Table 5.1-4 Test settings - levels of compatibility

In the following parts, we first present and analyze the results of the base case. Then, after

introducing the complete structure of the computational tests, we continue to show the

results and sensitivity analysis of each test groups.

Overall
Item
Only

Location
Only

Overall
Item
Only

Location
Only

Overall
Item
Only

Location
Only

Overall
Item
Only

Location
Only

Item-item 100% 90% 90% 100% 80% 80% 100% 70% 70% 100% 60% 60% 100%

Item-product 100% 90% 100% 90% 80% 100% 80% 70% 100% 70% 60% 100% 60%

90% Compatibility 80% Compatibility 70% Compatibility 60% Compatibility
Base
Case

Page | 40

 Base case analysis

Table 5.2-1 illustrates the results of all 20 instances in the base case. The notions used in

our tables are explained as follows:

Status: Final status of the computation.

(1=Solved to optimality; 11=Exceeding time limit)

Gap: Relative optimality gap. Equals to 0% if solved to optimality.

RlaxedOBJ: The final objective value of the linear relaxation of the original

problem

Holding: Total variable holding cost

Setup: Total production setup cost

StockFixed: Total storage fixed cost

Handling: Total handling cost

Relocation: Total relocation cost

Handled: Total number of handled units

(i.e. the total number of units entering the warehouse)

Relocated: Total number of relocated units

NSetups: Total number of production setups

NLocations: Total number of activated locations

Total Space: Total storage space provided by all activated locations

Used Space: Total storage space occupied by the inventory

Utilization: The percentage of space occupied by inventory over the total

opened space

Objective: The final value of the objective function at the end of the

calculation

Time: The time consumed during the calculation (in seconds)

Best Bound: The best overall lower bound at the end of the computation

Nodes: Total number of nodes explored at the end of the computation

Page | 41

 Average Results Relaxation Separated Costs

Instance Objective Time
Best

Bound
Nodes Status Gap RelaxedOBJ Time Status Holding Setup StockFixed Handling Relocation

1 5606.13 203.31 5606.13 569923 1 0% 1734.73 0.008 1 13.91% 53.10% 8.03% 24.96% 0.00%

2 5500.25 217.24 5500.25 636782 1 0% 1691.46 0.008 1 12.95% 55.60% 7.50% 23.95% 0.00%

3 5405.00 326.28 5405.00 814547 1 0% 1604.79 0.007 1 13.35% 53.67% 7.40% 25.58% 0.00%

4 5516.88 576.32 5516.88 1631471 1 0% 1665.73 0.008 1 14.83% 51.17% 8.38% 25.61% 0.00%

5 5268.25 25.61 5268.25 86745 1 0% 1556.69 0.008 1 12.70% 55.39% 6.88% 25.03% 0.00%

6 5407.50 143.61 5407.50 453767 1 0% 1656.93 0.008 1 12.03% 57.48% 6.93% 23.56% 0.00%

7 5635.38 358.04 5635.38 1249872 1 0% 1773.70 0.007 1 14.99% 51.57% 8.21% 25.23% 0.00%

8 5345.25 258.90 5345.25 1165304 1 0% 1590.72 0.007 1 13.28% 54.61% 7.25% 24.86% 0.00%

9 5475.25 111.40 5475.25 221663 1 0% 1704.00 0.007 1 13.35% 54.85% 7.76% 24.04% 0.00%

10 5466.25 336.93 5466.25 828329 1 0% 1688.76 0.006 1 12.88% 55.65% 7.32% 24.15% 0.00%

11 5483.62 554.69 5483.62 1440029 1 0% 1629.69 0.010 1 13.59% 53.67% 7.98% 24.77% 0.00%

12 5471.13 230.94 5471.13 531637 1 0% 1629.63 0.006 1 12.48% 55.84% 7.31% 24.37% 0.00%

13 5547.50 76.08 5547.50 210417 1 0% 1701.10 0.007 1 14.42% 51.64% 8.11% 25.82% 0.00%

14 5693.63 1800.04 5680.00 1811985 11 0.24% 1755.30 0.010 1 12.08% 57.94% 6.81% 23.17% 0.00%

15 5824.50 261.20 5824.50 565017 1 0% 1835.91 0.006 1 14.80% 51.78% 8.58% 24.83% 0.00%

16 5422.00 523.22 5422.00 1722733 1 0% 1632.76 0.006 1 13.38% 54.37% 7.61% 24.64% 0.00%

17 5645.75 354.17 5645.75 1226418 1 0% 1760.82 0.006 1 13.32% 54.93% 7.53% 24.22% 0.00%

18 5519.38 60.65 5519.38 157217 1 0% 1691.64 0.007 1 12.19% 57.45% 7.02% 23.34% 0.00%

19 5504.25 705.93 5504.25 2366383 1 0% 1700.91 0.006 1 14.41% 51.80% 8.40% 25.39% 0.00%

20 5429.88 256.91 5429.88 798960 1 0% 1690.71 0.006 1 13.98% 53.02% 8.06% 24.94% 0.00%

Average 5508.39 369.07 5507.71 924459.95 - - 1684.80 0.007 - 13.45% 54.27% 7.66% 24.62% 0.00%

Table 5.2-1 Results of the base case

Page | 42

 Other Parameters

Instance Handled Relocated NSetups NLocations Total Space Used Space Utilization Total Demand

1 2239.00 0.000 29 36 3600.00 3119.00 86.64% 3777.00

2 2108.00 0.000 31 33 3300.00 2849.00 86.33% 3760.00

3 2212.00 0.000 31 32 3200.00 2886.00 90.19% 3835.00

4 2261.00 0.000 29 37 3700.00 3273.00 88.46% 3848.00

5 2110.00 0.000 32 29 2900.00 2676.00 92.28% 3777.00

6 2038.00 0.000 32 30 3000.00 2603.00 86.77% 3772.00

7 2275.00 0.000 28 37 3700.00 3380.00 91.35% 3733.00

8 2126.00 0.000 32 31 3100.00 2840.00 91.61% 3845.00

9 2106.00 0.000 30 34 3400.00 2924.00 86.00% 3696.00

10 2112.00 0.000 31 32 3200.00 2817.00 88.03% 3732.00

11 2173.00 0.000 31 35 3500.00 2980.00 85.14% 3846.00

12 2133.00 0.000 32 32 3200.00 2732.00 85.38% 3824.00

13 2292.00 0.000 29 36 3600.00 3200.00 88.89% 3859.00

14 2111.00 0.000 32 31 3100.00 2751.00 88.74% 3817.00

15 2314.00 0.000 28 40 4000.00 3449.00 86.23% 3865.00

16 2138.00 0.000 31 33 3300.00 2901.00 87.91% 3798.00

17 2188.00 0.000 30 34 3400.00 3009.00 88.50% 3784.00

18 2061.00 0.000 32 31 3100.00 2691.00 86.81% 3770.00

19 2236.00 0.000 29 37 3700.00 3173.00 85.76% 3782.00

20 2167.00 0.000 29 35 3500.00 3036.00 86.74% 3667.00

Average 2170.00 0.000 30.400 33.750 3375.00 2964.45 87.84% 3789.35

Table 5.2-1 Results of the base case (continued)

Page | 43

The first group of data includes the basic information of the computational tests. With a

maximum of 5824.500 and a minimum of 5268.250, the objective values are relatively

stable across all instances. However, not all instances are solved to optimality. Instance

14 is marked by a status code 11, which indicates that the computation for this instance

exceeded the time limit of 30 minutes. Its computation time of 1,800 seconds delivers the

same message. Only in this instance, the best bound is different from the objective value.

More generally, when the computation of an instance ceases before reaching optimality,

the best bound is the best overall lower bound at the end of the computation. Since our

objective function minimizes the total cost, a best bound value is always less than (not

optimal) or equal to (optimal) the final objective value.

The huge variance in the computational time can be partly explained by the number of

nodes explored by the solver before it stops or reaches optimality. Chart 5.2-1 indicates a

strong positive correlation between the total number of explored nodes and the

computational time.

Using the linear relaxation of the original model, all instances are all solved to optimality

within a very short time of no more than 10ms. The relaxed problems yield an average

objective value of 1684.799, i.e. 30.58% of the average objective value of the MIP

problems. The huge differences in computational time and objective value indicate the

complexity and burden introduced by the integrality conditions.

Chart 5.2-1 Base case- number of nodes and computational time

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

2000.00

0

500000

1000000

1500000

2000000

2500000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

T
im

e

N
o

d
es

Instances

Nodes Time

Page | 44

The second group of data, as illustrated in Chart 5.2-2, consists of five kinds of costs being

balanced during the optimization process, except the variable production cost which is

constant as previously explained. The following chart illustrates the relative compositions

of total cost.

Despite minor variations, the proportions of each type of cost remains stable across all 20

instances. Contributing the most to the total cost, the production setup cost varies around

an average of 54.27%. The handling cost comes second with an average of 24.62%,

indicating that a considerable number of units are put into the warehouse. The variable

holding cost accounts for 13.45% of the total cost, while the 7.66% is paid as the fixed

cost for storage locations. In the base case, the conditions are not strict enough to trigger

the relocation. Hence, the relocation cost remains 0 for all the 20 instances.

Chart 5.2-3 Base case - Handled units and number of locations

25

27

29

31

33

35

37

39

2000.00

2050.00

2100.00

2150.00

2200.00

2250.00

2300.00

2350.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
L

o
ca

ti
o

n
s

H
an

d
le

d

Instances

Handled NLocations

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Holding Setup StockFixed Handling Relocation

Chart 5.2-2 Base case - separated costs

Page | 45

According to the total handled units and the total demand illustrated in Chart 5.2-3, on

average, 57.26% of the products are stored in the warehouse before being sent to the

customers. We count on average 30.4 production batches, which, considering the

production capacity of 500 units, translates into 15,200 units of cumulated capacity. In

comparison with the total demand of 3789.35 units, this indicates that each batch only

uses an average of 24.93% of the production capacity.

 Sensitivity analysis

We now present the results of the computational experiments. Considering the numerous

parameters involved in the general model, we allow only one parameter to vary during

each test to observe its influence on the performance and results of our model. The results

of different parameter settings are compared to those of the base case, which allow us to

carry out the related sensitivity analysis.

Page | 46

 Average Results Relaxation

Condition IP IPTime Best LB S.O.
1
 W.T.

2
 Nodes C.Gap

3
 A.Gap

4
 RelaxedOBJ Time

General Formulation

Base case 5508.39 369.07 5507.71 1 0 924459.95 0.24% 0.012% 1684.80 0.007

Planning Horizon

12 periods 4421.50 62.26 4421.50 0 0 263449.50 1537.65 0.008

20 periods 7322.97 1314.85 7317.39 11 0 1693739.40 0.14% 0.075% 1935.84 0.014

Production Setup

Half setup cost 3617.00 3.25 3617.00 0 0 9743.30 851.46 0.008

Production Capacity

375 5561.65 204.18 5561.65 0 0 609607.85 1801.61 0.007

750 5476.15 299.27 5476.10 1 0 872740.25 0.02% 0.001% 1626.76 0.009

Variable Holding

0.0625 4837.37 322.04 4837.37 0 0 542744.85 1631.26 0.010

1 6942.44 13.26 6942.44 0 0 25097.95 1702.91 0.009

Handling Cost

ha = 2x reloc 4357.83 452.09 4357.41 1 0 1006118.10 0.20% 0.010% 1585.18 0.007

ha = 6x reloc 4946.71 688.59 4945.75 3 0 1538050.40 0.13% 0.019% 1646.85 0.008

ha = 14x reloc 6038.49 277.83 6038.49 0 1 945808.45 1699.99 0.007

Location Combinations

2S 1M 1L EOS 5415.51 12.41 5415.51 0 0 15793.35 1680.00 0.008

2S 1M 1L Normal 5480.49 31.65 5480.49 0 0 54871.45 1684.80 0.009

2S 1M 1L DOS 5492.50 40.23 5492.50 0 0 38723.55 1681.89 0.008

2L 5555.84 59.88 5555.84 0 0 119212.90 1684.80 0.007

Symmetry

Integral storage 5724.79 1.64 5724.79 0 0 5300.65 1684.80 0.006

Initial symmetry breaking 5508.39 334.46 5508.39 0 0 989695.50 1684.80 0.008

Compatibility

90% Overall 5508.99 327.34 5508.91 1 0 747518.35 0.03% 0.001% 1684.80 0.007

90% item-item 5508.99 367.30 5508.80 1 2 864081.15 0.07% 0.003% 1684.80 0.008

90% item-location 5508.39 287.96 5508.16 1 0 718273.40 0.08% 0.004% 1684.80 0.008

80% Overall 5515.55 720.15 5514.50 4 0 838247.50 0.10% 0.019% 1684.80 0.009

80% item-item 5515.48 1030.70 5512.90 7 1 1506278.45 0.13% 0.047% 1684.80 0.009

80% item-location 5508.39 100.57 5508.39 0 0 217649.50 1684.80 0.008

70% Overall 5523.52 816.44 5520.00 5 2 598691.00 0.25% 0.063% 1684.80 0.011

70% item-item 5519.20 1800.17 5508.79 20 0 1347052.95 0.19% 0.189% 1684.80 0.011

70% item-location 5509.13 79.77 5509.13 0 0 162615.45 1684.80 0.008

60% Overall 5572.39 821.76 5567.09 6 1 554675.60 0.32% 0.095% 1685.23 0.010

60% item-item 5528.41 1800.40 5498.46 20 0 770209.25 0.54% 0.539% 1684.80 0.015

60% item-location 5540.86 28.70 5540.86 0 0 45988.15 1685.23 0.008

No Relocation

Base case No relocation 5508.39 145.15 5508.39 0 0 424077.60 1684.80 0.008

60% Overall No relocation 5575.69 666.00 5570.75 5 0 521057.20 0.35% 0.088% 1685.23 0.012

2S 1M 1L DOS No relocation 5496.68 58.54 5496.68 0 0 55003.45 1681.89 0.009

1 S.O.=Suboptimal, i.e. number of instances not solved to optimality within the time limit 2 W.T.=Within tolerance, i.e. number of instances finishing within the default tolerance of 1e-5

3 C.GAP=Conditional gap, i.e. average optimality gap among S.O. instances 4 A.GAP=Average gap, i.e. average optimality gap among all 20 instances

Table 5.3-1 Average results of all computational tests

Page | 47

 Costs Structure Other Parameters

Condition Holding Setup Stock Fixed Handling Relocation Handled Relocated NSetup NLocation Total Space Used Space Utilization

General Formulation

Base case 13.45% 54.27% 7.66% 24.62% 0.000% 2170.00 0.00 30.40 33.75 3375.00 2964.45 87.84%

Planning Horizon

12 periods 13.41% 54.49% 7.65% 24.45% 0.000% 1730.00 0.00 24.50 27.05 2705.00 2371.30 87.66%

20 periods 14.02% 52.82% 7.92% 25.24% 0.000% 2957.65 0.00 39.30 46.40 4640.00 4105.95 88.49%

Production Setup

Half setup cost 6.05% 75.44% 3.37% 15.14% 0.000% 876.00 0.00 55.90 9.75 975.00 876.00 89.85%

Production Capacity

375 13.43% 54.87% 7.52% 24.18% 0.000% 2151.90 0.00 30.95 33.45 3345.00 2987.15 89.30%

750 14.13% 52.33% 7.95% 25.58% 0.000% 2241.10 0.00 29.10 34.85 3485.00 3096.15 88.84%

Variable Holding

0.0625 5.42% 50.86% 11.91% 31.81% 0.000% 2143.49 0.00 25.00 46.10 4610.00 4197.75 91.06%

1 18.75% 66.73% 2.80% 11.72% 0.000% 1626.89 0.00 47.25 15.55 1555.00 1301.95 83.73%

Handling Cost

ha = 2x reloc 21.17% 60.17% 11.79% 6.87% 0.000% 2395.90 0.00 26.55 41.10 4110.00 3690.15 89.78%

ha = 6x reloc 17.06% 55.80% 9.65% 17.49% 0.000% 2307.15 0.00 28.00 38.20 3820.00 3375.70 88.37%

ha = 14x reloc 10.93% 53.07% 6.23% 29.77% 0.000% 2054.55 0.00 32.55 30.10 3010.00 2640.05 87.71%

Location Combinations

2S 1M 1L EOS 14.15% 54.07% 6.31% 25.46% 0.011% 2206.30 4.68 29.75 21.80 3347.50 3064.75 91.55%

2S 1M 1L Normal 13.72% 53.90% 7.38% 24.99% 0.010% 2191.20 4.20 30.00 28.95 3237.50 3006.90 92.88%

2S 1M 1L DOS 12.73% 56.19% 6.83% 24.21% 0.050% 2127.15 22.02 31.35 37.85 3022.50 2796.65 92.53%

2L 12.75% 55.62% 7.69% 23.93% 0.000% 2127.30 0.10 31.40 17.10 3420.00 2833.85 82.86%

Symmetry

Integral storage 16.02% 46.23% 12.01% 25.73% 0.000% 2357.00 0.00 26.85 13.75 5500.00 3669.45 66.72%

Initial symmetry breaking 13.45% 54.27% 7.66% 24.62% 0.000% 2170.00 0.00 30.40 33.75 3375.00 2964.45 87.84%

Compatibility

90% Overall 13.41% 54.34% 7.66% 24.60% 0.000% 2167.95 0.00 30.45 33.75 3375.00 2955.20 87.56%

90% item-item 13.41% 54.34% 7.66% 24.60% 0.000% 2167.95 0.00 30.45 33.75 3375.00 2955.20 87.56%

90% item-location 13.45% 54.27% 7.66% 24.62% 0.000% 2170.00 0.00 30.40 33.75 3375.00 2964.45 87.84%

80% Overall 13.57% 54.00% 7.74% 24.69% 0.001% 2178.85 0.55 30.30 34.15 3415.00 2993.30 87.65%

80% item-item 13.57% 54.00% 7.74% 24.69% 0.000% 2178.85 0.00 30.30 34.15 3415.00 2993.30 87.65%

80% item-location 13.45% 54.27% 7.66% 24.62% 0.000% 2170.00 0.00 30.40 33.75 3375.00 2964.45 87.84%

70% Overall 13.36% 54.40% 7.68% 24.54% 0.017% 2168.50 7.42 30.55 33.95 3395.00 2951.60 86.94%

70% item-item 13.37% 54.34% 7.71% 24.58% 0.000% 2170.65 0.05 30.50 34.05 3405.00 2952.05 86.70%

70% item-location 13.45% 54.27% 7.66% 24.62% 0.000% 2170.25 0.00 30.40 33.75 3375.00 2964.20 87.83%

60% Overall 13.02% 54.98% 7.95% 24.02% 0.025% 2141.80 11.05 31.05 35.45 3545.00 2901.45 81.85%

60% item-item 13.58% 53.75% 7.95% 24.72% 0.005% 2186.90 2.07 30.20 35.15 3515.00 3002.85 85.43%

60% item-location 13.13% 55.15% 7.55% 24.16% 0.009% 2141.85 4.10 31.05 33.45 3345.00 2911.05 87.03%

No Relocation

Base case 13.45% 54.27% 7.66% 24.62% 0.000% 2170.00 0.00 30.40 33.75 3375.00 2964.45 87.84%

60% Overall 12.80% 55.41% 7.90% 23.89% 0.000% 2132.81 0.00 31.30 35.25 3525.00 2854.20 80.97%

2S 1M 1L DOS 12.66% 56.37% 6.82% 24.15% 0.000% 2125.52 0.00 31.45 37.90 3025.00 2782.45 91.98%

 Table 5.4 1 Average results of all computational tests (continued)

Page | 48

5.3.1 Test framework

In order to facilitate the comparisons and analysis, we group our tests according to the

tested parameters or features. Table 5.3-2summarizes the logic and structure of the tests:

 Base case Sensitivity analysis

Planning horizon 15 12, 20

Production setup cost [80, 120] [40, 60]

Production capacity 500 375, 750

Variable holding cost 0.25 0.0625, 1

Handling cost 0.625 0.125, 0.375, 0.875

Location combinations 4M 2S 1M 1L, 2L

Cost structure for

storage fixed cost
—

2S 1M 1L EOS (Economies of scale)

2S 1M 1L Normal (Proportional)

2S 1M 1L EOS (Diseconomies of scale)

Symmetry
4M (identical

locations)
Integral storage, Initial symmetry breaking

Compatibilities

Perfect

compatibility

(100%)

90% overall, 90% item-item, 90% item-location

80% overall, 80% item-item, 80% item-location

70% overall, 70% item-item, 70% item-location

60% overall, 60% item-item, 60% item-location

No relocation
Allowing

relocation

Base case no relocation,

60% overall compatibility no relocation,

2S 1M 1L DOS no relocation

Table 5.3-2 Test framework

Additionally, we also test the transportation formulation to observe its performance. The

results are compared with those of the general formulation in the same selected scenarios.

In this group of tests, we include the following data settings: Base case, 2S 1M 1L Normal,

90% Overall compatibility, 80% Overall compatibility, 70% Overall compatibility and

60% Overall compatibility.

Page | 49

5.3.2 Planning horizon

Although the preliminary tests indicate that 15 periods appear to be appropriate for our

analysis, we decide to compare the results of 12 periods and 20 periods with the base in

order to demonstrate the impact of changing the planning horizon.

 Average Results

Condition IP IPTime Best LB S.O. W.T. Nodes C.Gap A.Gap

12 periods 4421.50 62.26 4421.50 0 0 263449.50

Base case (15 periods) 5508.39 369.07 5507.71 1 0 924459.95 0.24% 0.012%

20 periods 7322.97 1314.85 7317.39 11 0 1693739.40 0.14% 0.075%

Table 5.3-3 Planning horizon - average results

Since all our data settings share the same demand, the total demand is positively related

to the planning horizon. The resulting objective value therefore follows an increasing

trend. As the problem size grows, the computation takes more time in order to explore the

additional nodes, leading to more S.O. instances as well. In the case of 20 periods,

although the S.O. instances have a smaller conditional average gap, the global average

gap across all instances appear to be larger.

 Separated Costs

Condition Holding Setup StockFixed Handling Relocation

12 periods 13.41% 54.49% 7.65% 24.45% 0.000%

Base case (15 periods) 13.45% 54.27% 7.66% 24.62% 0.000%

20 periods 14.02% 52.82% 7.92% 25.24% 0.000%

 Other Parameters

Condition Handled Relocated NSetup NLocation TotalSpace UsedSpace Utilization

12 periods 1730.00 0.00 24.50 27.05 2705.00 2371.30 87.66%

Base case (15 periods) 1185.78 0.00 30.40 33.75 3375.00 2964.45 87.84%

20 periods 2957.65 0.00 39.30 46.40 4640.00 4105.95 88.49%

Table 5.3-4 Planning horizon - separated costs and other parameters

As shown in Table 5.3-4, as we extend the planning horizon, the production setup cost

represents a smaller percentage of the total cost, while all the three inventory-related costs

occupies increased proportions. This indicates that allows us to further benefit from the

inventory by reducing the production frequency and raising the inventory level. Another

proof is the increasing utilization rate of space.

Page | 50

5.3.3 Production setup cost

One of the major trade-offs in the production planning problems is between the production

frequency and the size of inventory. In order to observe the impact of different production

frequencies on our model, we test a scenario in which the production setup cost is halved

with regard to the base case.

 Average Results

Condition IP IPTime Best LB S.O. W.T. Nodes C.Gap A.Gap

Base case 5508.38 369.07 5507.70 1 0 924459.95 0.24% 0.012%

Half setup cost 3617.00 3.24 3617.000 0 0 9743.30

As shown in the Table 5.4-2, the greatest impact of the lowered setup cost is on the

computational time and the number of nodes. 98.94% less nodes are explored by the

solver before reaching optimality, resulting in 99.12% of computational time saved. The

only instance exceeding the time limit in the base case is now solved to optimality as well.

The reduction in production setup cost also leads to a 34.34% drop in the total cost.

This large reduction in computational burden might be explained by the production-

inventory trade-off. Given a much higher production frequency, a larger part of our

demand is fulfilled through direct flows. Consequently, for this part of demand, there is

no longer a need to decide to which locations we should assign the products, or from

which locations we should take out the extract inventory.

 Separated Costs

Condition Holding Setup StockFixed Handling Relocation

Base case 13.45% 54.27% 7.66% 24.62% 0.00%

Half setup cost 6.06% 75.44% 3.37% 15.13% 0.00%

 Other Parameters

Condition Handled Relocated NSetup NLocation TotalSpace UsedSpace Utilization

Base case 2170.00 0.00 30.40 33.75 3375.00 2964.45 87.84%

Half setup cost 876.00 0.00 55.90 9.75 975.00 876.00 89.85%

Table 5.3-5 Production setup cost - separated cost and other parameters

Table 5.4-2 Production setup cost – average results

Page | 51

Taking a closer look at the cost structure, we can see that reducing the production setup

cost results in an increase in the total number of setups and a significant drop in the

variable holding cost. Moreover, other inventory-related costs have been reduced as well.

Since the handling cost is linked to the overall inflow, the total handled units reflect

directly the total amount of products put into the storage. As a result of a higher production

frequency, the number of total stored units is reduced by 59.63%. However, the total

storage space used indicates that the overall inventory has reduced by 70.45% compared

to the base case. The average inventory level has seen a larger decrease than the average

flow rate indicated by the total stored units. According to Little’s Law, the inventory

storage can be seen as a process, in which 𝐹𝑙𝑜𝑤 𝑡𝑖𝑚𝑒 =
𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑙𝑒𝑣𝑒𝑙

𝐹𝑙𝑜𝑤 𝑟𝑎𝑡𝑒
. Considering the

different percentages of decrease in the inventory level and in the average flow rate,

reducing the production setup cost also results in a shorter inventory flow time.

At last, a decrease of 71.11% can also be observed in the total number of locations used

throughout the planning horizon, leading to an economy of the same percentage in the

stock fixed cost. Since all four storage locations are medium locations, which is the same

as in the base case, the total available space is always 100 times the number of locations

except in later scenarios with alternative location combinations.

5.3.4 Production capacity

In comparison with the base case where the production capacity is set to 500, we tested

two alternative settings: low capacity (375) and high capacity (750).

 Average Results

Condition IP IPTime Best LB S.O. W.T. Nodes C.Gap A.Gap

Low (375) 5561.65 204.18 5561.65 0 0 609607.85

Base case (500) 5508.39 369.07 5507.71 1 0 924459.95 0.24% 0.012%

High (750) 5476.15 299.27 5476.10 1 0 872740.25 0.02% 0.001%

Table 5.3-6 Production capacity - average results

By expanding the production capacity, we loosen the constraints for the production

planning. It is therefore reasonable to see the objective value and the best bounds improve

as the production capacity increases.

Page | 52

A higher production capacity also facilitates the calculation process. By exploring less

nodes, the solver saves 18.9% of time on each instance. There is still one instance not

solved to optimality, but showing a smaller gap than in the base case. Unexpectedly, the

stricter condition in the low capacity case does not add computational burden to the

calculation. On the contrary, in this case, the solver ran through the least nodes among all

three cases, spending only 204.18 seconds per instance.

 Separated Costs

Condition Holding Setup StockFixed Handling Relocation

Low (375) 13.43% 54.87% 7.52% 24.18% 0.000%

Base case (500) 13.45% 54.27% 7.66% 24.62% 0.000%

High (750) 14.13% 52.33% 7.95% 25.58% 0.000%

 Other Parameters

Condition Handled Relocated NSetup NLocation TotalSpace UsedSpace Utilization

Low (375) 2151.90 0.00 30.95 33.45 3345.00 2987.15 89.30%

Base case (500) 2170.00 0.00 30.40 33.75 3375.00 2964.45 87.84%

High (750) 2241.10 0.00 29.10 34.85 3485.00 3096.15 88.84%

Table 5.3-7 Production capacity - separated costs and other parameters

A high production capacity allows larger batches at a lower frequency, bringing down the

total number of setups and the total setup cost. In general, this extra capacity contributes

to a higher inventory instead of direct flows, which is indicated by the increases in all the

inventory-related costs and parameters except the space utilization rate. Following the

same logics, a low production capacity impacts the results in an opposite way.

5.3.5 Variable holding cost

We test three different values for the per-unit variable holding cost.

 Average Results

Condition IP IPTime Best LB S.O. W.T. Nodes C.Gap A.Gap

0.0625 4837.37 322.04 4837.37 0 0 542744.85

Base case (0.25) 5508.39 369.07 5507.71 1 0 924459.95 0.24% 0.012%

1 6942.44 13.26 6942.44 0 0 25097.95

Table 5.3-8 Variable holding cost - average results

The results shown in Table 5.3-8 indicates that the variable holding cost has a significant

positive correlation with the total cost. However, it impacts the computational burden

differently. While lowering the per-unit variable holding cost results in a shorter CPU

Page | 53

time and fewer nodes explored, raising this parameter leads to a much larger reduction in

the computational time and in the number of nodes.

 Separated Costs

Condition Holding Setup StockFixed Handling Relocation

0.0625 5.42% 50.86% 11.91% 31.81% 0.000%

Base case (0.25) 13.45% 54.27% 7.66% 24.62% 0.000%

1 18.75% 66.73% 2.80% 11.72% 0.000%

 Other Parameters

Condition Handled Relocated NSetup NLocation TotalSpace UsedSpace Utilization

0.0625 2143.49 0.00 25.00 46.10 4610.00 4197.75 91.06%

Base case (0.25) 2170.00 0.00 30.40 33.75 3375.00 2964.45 87.84%

1 1626.89 0.00 47.25 15.55 1555.00 1301.95 83.73%

Table 5.3-9 Variable holding cost - separated costs and other parameters

A closer look at the detailed parameters may help us explain the above-mentioned

phenomenon. Since it cost more to keep inventory, the total number of handled units has

dropped by approximately 25% as compared to the base case. This lower overall inventory

level requires less than half the number of locations, which has an positive impact in the

CPU time. Besides, as a consequence of a lower inventory level, the case of high per-unit

variable holding cost is also characterized by a more frequent production.

5.3.6 Handling cost

As the second largest among all costs, the handling cost is another factor to consider when

deciding whether to build up a higher inventory. The unit handling cost in the base case

is set to 10 times the unit relocation cost. Alternative settings of this parameter are 2 time

(lowest), 6 times (lower) and 14 times (high) the unit relocation cost.

 Average Results

Condition IP IPTime Best LB S.O. W.T. Nodes C.Gap A.Gap

2x 4357.83 452.09 4357.41 1 0 1006118.10 0.20% 0.010%

6x 4946.71 688.59 4945.75 3 0 1538050.40 0.13% 0.019%

10x (Base Case) 5508.39 369.07 5507.71 1 0 924459.95 0.24% 0.012%

14x 6038.494 277.832 6038.494 0 1 945808.45

Table 5.3-10 Handling cost - average results

Table 5.3-10 shows the average results of each tested data settings. As the unit handling

cost increases, we see an obvious increasing trend in the objective value and the best

Page | 54

bounds. However, the computational time and the number of nodes seem to peak in the

2nd case where the unit handling cost equals 6 times the unit relocation cost. Changing

this parameter in either direction within the tested range reduces the of burden of

computation.

 Separated Costs

Condition Holding Setup StockFixed Handling Relocation

2x 21.17% 60.17% 11.79% 6.87% 0.00%

6x 17.06% 55.80% 9.65% 17.49% 0.00%

10x (Base Case) 13.45% 54.27% 7.66% 24.62% 0.00%

14x 10.93% 53.07% 6.23% 29.77% 0.00%

 Other Parameters

Condition Handled Relocated NSetup NLocation TotalSpace UsedSpace Utilization

2x 2395.90 0.00 26.55 41.10 4110.00 3690.15 89.78%

6x 2307.15 0.00 28.00 38.20 3820.00 3375.70 88.37%

10x (Base Case) 2170.00 0.00 30.40 33.75 3375.00 2964.45 87.84%

14x 2054.55 0.00 32.55 30.10 3010.00 2640.05 87.71%

Table 5.3-11 Handling cost - separated costs and other parameters

As the unit handling cost increases, this portion grows as its absolute value rise as well.

Meanwhile, it becomes less and less interesting to keep products in inventory, which

directly leads to a drop in the number of handled units and in the total holding cost. A

smaller inventory requires less space. Hence, the total number of open locations and the

storage fixed cost are reduced as well.

The reduction in inventory is made possible by a more frequent production. It is therefore

easy to explain the increase in the number of production setup. However, the percentage

of this cost follows an opposite trend, dropping from 60.17% to 53.07%. The cause for

this seemingly contradictory result is the total handling cost which rises drastically, out-

pacing the increase rate of the total setup cost.

5.3.7 Location combinations

We first compare the result of the three combinations of storage locations. In all three

cases, the fixed cost of each type of location is proportional to its individual capacity.

Including the base case, all three settings have the same overall storage capacity of 400

units.

Page | 55

 Average Results

Condition IP IPTime Best LB S.O. W.T. Nodes C.Gap A.Gap

Base case

4M
5508.39 369.07 5507.71 1 0 924459.95 0.24% 0.012%

Normal

2S 1M 1L
5480.49 31.65 5480.49 0 0 54871.45

2L 5555.84 59.88 5555.84 0 0 119212.90

Table 5.3-12 Location combination - average results

Although the alternative combinations do not have a significant impact on the total cost

or on the best bounds, they result in a largely reduced computational time, allowing all

instances to reach optimality in the two alternative cases.

A possible explanation for this behavior is the symmetry between storage locations. In the

base case, the four storage locations are identical in terms of compatibility, fixed cost, and

individual capacity. This means that for a given solution (i.e. an allocation of inventory to

a specific location), the locations can be permuted to obtain an equivalent solution.

Without additional differentiating constraints, these locations will generate symmetric

nodes in the search tree. Due to these duplicate nodes, much more CPU time is required

to solve the problem to optimality. Comparing the base case with the first alternative

setting (2S 1M 1L), we can see that differentiating the storage locations allows the solver

to explore 94.06% fewer nodes before reaching optimality. The comparison between the

base case and the second alternative setting (2L) indicates that the computational burden

escalates drastically as the system is broken into more symmetric elements.

 Separated Costs

Condition Holding Setup StockFixed Handling Relocation

Base case

4M
13.45% 54.27% 7.66% 24.62% 0.000%

Normal

2S 1M 1L
13.72% 53.90% 7.38% 24.99% 0.010%

2L 12.75% 55.62% 7.69% 23.93% 0.000%

 Other Parameters

Condition Handled Relocated NSetup NLocation TotalSpace UsedSpace Utilization

Base case

4M
2170.00 0.00 30.40 33.75 3375.00 2964.45 87.84%

Normal

2S 1M 1L
2191.20 4.20 30.00 28.95 3237.50 3006.90 92.88%

2L 2127.30 0.10 31.40 17.10 (30 max) 3420.00 2833.85 82.86%

Table 5.3-13 Location combinations - separated costs and other parameters

Page | 56

By analyzing these parameters, we first notice that, given the same overall storage

capacity, a more flexible combination leads to more handled units. The most flexible

combination is the first alternative setting (2S 1M 1L) where different types of locations

can be combined as needed, while the least flexible is the second alternative (2L) in which

the overall storage capacity can only take three values, i.e. 0, 200, and 400. This is

reasonable since, in some periods, the fixed cost of one additional medium or large

location might undermine the choice of further increasing inventory. The total variable

holding cost follows the same trend. As a result of a higher inventory, more savings can

be made on the total setup cost through less frequent production batches.

Another benefit of combining different types of locations is the higher utilization rate of

space. Although the solution of the first alternative (2S 1M 1L) suggests the highest

inventory among all three cases, it also uses the smallest storage space, therefore

generating the least storage fixed cost.

5.3.8 Cost structure for storage fixed costs

We also a run groups of tests on the structure of storage fixed costs using the first

alternative combination 2S 1M 1L to observe the impacts of economy of scale (EOS) and

diseconomy of scale (DOS).

 Average Results

Condition IP IPTime Best LB S.O. W.T. Nodes C.Gap A.Gap

2S 1M 1L EOS 5415.51 12.41 5415.51 0 0 15793.35

2S 1M 1L Normal 5480.49 31.65 5480.49 0 0 54871.45

2S 1M 1L DOS 5492.50 40.23 5492.50 0 0 38723.55

Table 5.3-14 Storage fixed cost - average results

As shown in the table above, an EOS environment generates the total cost, while requiring

the least time for the computation. A DOS environment generates extra cost, while

consuming more time on the computation. However, under the normal cost structure

where locational fixed costs are proportional with the individual storage capacity, the

solver has gone through the largest number of nodes.

Page | 57

 Separated Costs

Condition Holding Setup StockFixed Handling Relocation

2S 1M 1L EOS 14.15% 54.07% 6.31% 25.46% 0.011%

2S 1M 1L Normal 13.72% 53.90% 7.38% 24.99% 0.010%

2S 1M 1L DOS 12.73% 56.19% 6.83% 24.21% 0.050%

 Other Parameters

Condition Handled Relocated NSetup NLocation TotalSpace UsedSpace Utilization

2S 1M 1L EOS 2206.30 4.68 29.75 21.80 3347.50 3064.75 91.55%

2S 1M 1L Normal 2191.20 4.20 30.00 28.95 3237.50 3006.90 92.88%

2S 1M 1L DOS 2127.15 22.02 31.35 37.85 3022.50 2796.65 92.53%

Table 5.3-15 Storage fixed cost - separated costs and other parameters

The locational fixed costs influence directly the number of opened locations. The EOS

favors larger locations over small ones. Therefore, in this case, the least number of

locations are used throughout the 20 periods, yet providing the largest total opened space.

As a result, even though more units are stored in the warehouse, the EOS structure has led

to a lower space utilization rate. As in the previous test, the higher inventory under the

EOS helps reduce the number of production setups.

In the case of DOS, smaller locations are prioritized. Although, in this case, a largest

number of locations are opened, the total storage fixed cost appears lower than in the

normal case because small locations are used much more frequently.

It is also worth noticing that all three cases discussed here have involved certain relocation.

Despite the low quantity of relocated units, their existence indicates that the relocation is

not a movement forced by the strict compatibility constraints. Even under perfect

compatibility, relocations can be included in the optimal solution.

5.3.9 Symmetry

Based on the results observed in the previous tests, we decide to run an additional group

of tests to examine the impact of symmetry on the calculation. Two alternative cases are

included in this group: the first case features one integral storage space with a fixed cost

of 50 and a capacity of 400 units (i.e. four medium locations combined). In the second

case, new constraints are added for the first time period to break the symmetry by

imposing a sequence for storage locations (𝑧11 ≥ 𝑧21 ≥ 𝑧31 ≥ 𝑧41) . However, since

Page | 58

relocating inventory between locations will generate certain costs, we cannot break the

temporal linkage of inventory in each location. This symmetry breaking technique can

only be applied to the first period in our model.

 Average Results

Condition IP IPTime Best LB S.O. W.T. Nodes C.Gap A.Gap

Base case 5508.39 369.07 5507.71 1 0 924459.95 0.24% 0.012%

Integral storage 5724.79 1.64 5724.79 0 0 5300.65

Initial symmetry breaking 5508.39 334.46 5508.39 0 0 989695.50

Table 5.3-16 Symmetry - average results

Table 5.3-16 shows the average results of the problem. Comparing the base case to the

case of integral storage, we first notice a reduction of 99.56% in CPU time and 99.43% in

nodes explored, while all instances are solved to optimality. These results, coupled with

the results of alternative location combinations, provide further evidence that the

symmetry among identical locations significantly increases the computational burden.

Moreover, the integration of storage locations has greatly reduced the flexibility of

inventory management to optimize costs. Regardless of the inventory size, the whole

storage space has to be opened, generating a high fixed cost. This has led to a higher

objective value.

The second alternative case shows that the addition of symmetry-breaking constraints for

the first time period also help to reduce the CPU time. However, on average, the solver

has run through more nodes than in the base case.

 Separated Costs

Condition Holding Setup StockFixed Handling Relocation

Base case 13.45% 54.27% 7.66% 24.62% 0.000%

Integral storage 16.02% 46.23% 12.01% 25.73% 0.000%

Initial SB 13.45% 54.27% 7.66% 24.62% 0.000%

 Other Parameters

Condition Handled Relocated NSetup NLocation TotalSpace UsedSpace Utilization

Base case 2170.00 0.00 30.40 33.75 3375.00 2964.45 87.84%

Integral storage 2357.00 0.00 26.85 13.75 (15 max) 5500.00 3669.45 66.72%

Initial SB 2170.00 0.00 30.40 33.75 3375.00 2964.45 87.84%

Table 5.3-17 Symmetry - separated costs and other parameters

Page | 59

Taking a closer look at the separated costs and other parameters, we can see that

integrating the storage locations leads to a much higher storage fixed cost. In addition,

more units are kept as inventory, therefore generating a higher variable holding cost and

a higher handling cost. Since the whole storage space is opened once the storage fixed

cost is paid, it is thus intuitively reasonable to make the most of this space, rather than

keeping a relatively smaller inventory. Although more units are stored, there is still a

significant drop in space utilization rate. The higher inventory level has also led to a higher

production frequency and a higher total production setup cost.

5.3.10 Compatibilities

We first compare the results of overall compatibility changes, where the item-item

compatibility is at the same percentages level as the item-location compatibility, e.g. 80%

overall compatibility means that in this case, the both compatibility levels are at 80%.

 Average Results

Condition IP IPTime Best LB S.O. W.T. Nodes C.Gap A.Gap

Base case 5508.39 369.07 5507.71 1 0 924459.95 0.24% 0.012%

90% Overall 5508.99 327.34 5508.91 1 0 747518.35 0.03% 0.001%

80% Overall 5515.55 720.15 5514.50 4 0 838247.50 0.09% 0.019%

70% Overall 5523.52 816.44 5520.00 5 2 598691.00 0.25% 0.063%

60% Overall 5572.39 821.76 5567.09 6 1 554675.60 0.32% 0.095%

Table 5.3-18 Overall compatibilities - average results

As the overall level of compatibility decreases, the problem becomes more and more

restricted, resulting in an increasing objective value. The computational burden increases

considerably as well. In the extreme case of 60% compatibility, the CPU time has more

than doubled in comparison to the base case, while 6 instances could not be solved to

optimality within the time limit. In addition, the lowering overall compatibility level leads

to increasing optimality gaps among all instances, as well as among suboptimal instances.

However, the extra computational burden does not arise from more nodes to explore. On

the contrary, the average number of nodes explored decreases as we lower the overall

compatibility level. Considering the time increase, this means that the solver has to spend

much more time on each node.

Page | 60

We also notice that, compared to the base case, the case of 90% overall compatibility is

even faster to solve with less explored nodes. This improvement in computational speed

could possibly be explained by the slightly lower compatibility level. As we see in the

previous analysis, the symmetry between locations has greatly contributed to the

computational burden in the base case. With a 10% lower level of compatibility, the four

locations can be differentiated. In this case, the effect of this differentiation outweighs the

negative impact of tighter constraints, resulting in a shorting computational time. But the

effect of symmetry-breaking is relatively limited in others cases of this test.

 Separated Costs

Condition Holding Setup StockFixed Handling Relocation

Base case 13.45% 54.27% 7.66% 24.62% 0.000%

90% Overall 13.41% 54.34% 7.66% 24.60% 0.000%

80% Overall 13.57% 54.00% 7.74% 24.69% 0.001%

70% Overall 13.36% 54.40% 7.68% 24.54% 0.017%

60% Overall 13.02% 54.98% 7.95% 24.02% 0.025%

 Other Parameters

Condition Handled Relocated NSetup NLocation TotalSpace UsedSpace Utilization

Base case 2170.00 0.00 30.40 33.75 3375.00 2964.45 87.84%

90% Overall 2167.95 0.00 30.45 33.75 3375.00 2955.20 87.56%

80% Overall 2178.85 0.55 30.30 34.15 3415.00 2993.30 87.65%

70% Overall 2168.50 7.42 30.55 33.95 3395.00 2951.60 86.94%

60% Overall 2141.80 11.05 31.05 35.45 3545.00 2901.45 81.85%

Table 5.3-19 Overall compatibilities - separated costs and other parameters

From Table 5.3-19, we can see that the cost structure remains stable across all these 5

cases. As the compatibility level drops, an increasing number of units are relocated

between different storage locations. Although this cost is very low when compared to

other types of cost, its increasing trend indicates that, under strict storage conditions,

allowing relocation can be beneficial.

In case of a low compatibility level, the storage space is no longer available to all types

of item as in the case of perfect compatibility. As a result, the overall inventory level drops

while more locations are opened. In addition, the low compatibility level also leads to the

deteriorating space utilization rate.

Page | 61

In order to observe the different impacts of the item-item compatibility and item-location

compatibility, we ran another group of tests, separating the two types of compatibility

conditions.

 Average Results

Condition IP IPTime Best LB S.O. W.T. Nodes C.Gap A.Gap

Perfect Compatibility

(Base case)
5508.39 369.07 5507.71 1 0 924459.95 0.24% 0.012%

90% Overall 5508.99 327.34 5508.91 1 0 747518.35 0.03% 0.001%

90% item-item 5508.99 367.30 5508.80 1 2 864081.15 0.07% 0.003%

90% item-location 5508.39 287.96 5508.16 1 0 718273.40 0.08% 0.004%

80% Overall 5515.55 720.15 5514.50 4 0 838247.50 0.09% 0.019%

80% item-item 5515.48 1030.70 5512.90 7 1 1506278.45 0.13% 0.047%

80% item-location 5508.39 100.57 5508.39 0 0 217649.50

70% Overall 5523.52 816.44 5520.00 5 2 598691.00 0.25% 0.063%

70% item-item 5519.20 1800.17 5508.79 20 0 1347052.95 0.19% 0.189%

70% item-location 5509.13 79.77 5509.13 0 0 162615.45

60% Overall 5572.39 821.76 5567.09 6 1 554675.60 0.32% 0.095%

60% item-item 5528.41 1800.40 5498.46 20 0 770209.25 0.54% 0.539%

60% item-location 5540.86 28.70 5540.86 0 0 45988.15

Table 5.3-20 Separated compatibilities - average results

In all four item-item cases, the storage locations are perfectly compatible with any item.

Therefore, lowering the item-item compatibility only adds to the complexity of the

problem without breaking the symmetry between locations. Consequently, these four

cases all take much longer time to solve. In the 70% and 60% item-item cases, none of

the instances can be solved to optimality within the time limit.

A lower item-location compatibility level, however, not only tightens the compatibility

constraints, but also breaks the symmetry between the storage locations. The

computational time, as well as the number of nodes, is both largely reduced in these cases.

5.3.11 Disabling item relocation

To further demonstrate the impact of item relocation, we choose three cases to rerun

without allowing any relocation, including the base case and two other cases with

relatively significant relocation activities.

Page | 62

 Average Results

Condition IP IPTime Best LB S.O. W.T. Nodes C.Gap A.Gap

Base case 5508.39 369.07 5507.71 1 0 924459.95 0.24% 0.012%

Base case No relocation 5508.39 145.15 5508.39 0 0 424077.60

2S 1M 1L DOS 5492.50 40.23 5492.50 0 0 38723.55

2S 1M 1L DOS No relocation 5496.68 58.54 5496.68 0 0 55003.45

60% Overall 5572.39 821.76 5567.09 6 1 554675.60 0.32% 0.095%

60% Overall No relocation 5575.69 666.00 5570.75 5 0 521057.20 0.35% 0.088%

Table 5.3-21 Disabling item relocation - average results

When item relocation is forbidden, the number of decision variables is in fact reduced,

therefore simplifying the problem. Hence, we can observe a large reduction in

computational time both in the base case where the original solution does not include any

relocation, and in the case of 60% overall compatibility.

 Separated Costs

Condition Holding Setup StockFixed Handling Relocation

Base case 13.45% 54.27% 7.66% 24.62% 0.000%

Base casae No relocation 13.45% 54.27% 7.66% 24.62% 0.000%

2S 1M 1L DOS 12.73% 56.19% 6.83% 24.21% 0.050%

2S 1M 1L DOS No

relocation
12.66% 56.37% 6.82% 24.15% 0.000%

60% Overall 13.02% 54.98% 7.95% 24.02% 0.025%

60% Overall No relocation 12.80% 55.41% 7.90% 23.89% 0.000%

 Other Parameters

Condition Handled Relocated NSetup NLocation TotalSpace UsedSpace Utilization

Base case 2170.00 0.00 30.40 33.75 3375.00 2964.45 87.84%

Base casae No relocation 2170.00 0.00 30.40 33.75 3375.00 2964.45 87.84%

2S 1M 1L DOS 2127.15 22.02 31.35 37.85 3022.50 2796.65 92.53%

2S 1M 1L DOS No

relocation
2125.52 0.00 31.45 37.90 3025.00 2782.45 91.98%

60% Overall 2141.80 11.05 31.05 35.45 3545.00 2901.45 81.85%

60% Overall No relocation 2132.81 0.00 31.30 35.25 3525.00 2854.20 80.97%

Table 5.3-22 Disabling item relocation - separated costs and other parameters

Since the original solution to the base case does not include any relocation, its separated

costs and all other parameters remain the same. In the other two cases, forbidding

relocation imposes stricter conditions to manage the inventory. As a result, a reduced

number of units are put into storage while the production setups become slightly more

frequent. As a direct indicator of storage flexibility, the space utilization rate drops as well.

The result of this group shows that allowing item relocation helps reduce the total cost.

Page | 63

5.3.12 Transportation reformulation

In the previous discussion, we proposed a transportation reformulation for the CLSP-MSL

problem. Six cases (marked with “TP”) are tested to illustrate the performance of this

alternative formulation.

 Average Results Relaxation

Condition IP IPTime Best LB S.O. W.T. Nodes C.Gap A.Gap RelaxedOBJ Time Status

Base case TP 5508.39 284.77 5508.31 1 0 280764.00 0.03% 0.001% 4227.18 0.031 1

Base case 5508.39 369.07 5507.71 1 0 924459.95 0.24% 0.012% 1684.80 0.007 1

2S 1M 1L Normal TP 5480.49 78.02 5480.49 0 0 50590.25 4227.18 0.037 1

2S 1M 1L Normal 5480.49 31.65 5480.49 0 0 54871.45 1684.80 0.009 1

90% Overall TP 5508.99 283.03 5508.99 0 0 239550.15 4227.18 0.033 1

90% Overall 5508.99 327.34 5508.91 1 0 747518.35 0.03% 0.001% 1684.80 0.007 1

80% Overall TP 5515.56 695.93 5513.94 4 0 270321.10 0.15% 0.029% 4227.18 0.034 1

80% Overall 5515.55 720.15 5514.50 4 0 838247.50 0.09% 0.019% 1684.80 0.009 1

70% Overall TP 5523.48 1077.32 5519.49 6 0 255863.65 0.24% 0.072% 4227.18 0.042 1

70% Overall 5523.52 816.44 5520.00 5 2 598691.00 0.25% 0.063% 1684.80 0.011 1

60% Overall TP 5572.43 820.89 5566.76 5 0 183600.40 0.40% 0.101% 4260.99 0.039 1

60% Overall 5572.39 821.76 5567.09 6 1 554675.60 0.32% 0.095% 1685.23 0.010 1

Table 5.3-23 Transportation formulation - average results and relaxation

Thanks to the lower upper bounds in the production setup constraints, solving the linear

relaxation of the problem gives an improved objective in all the six cases. However, as

previously discussed, there are a larger number of production variables in the TP, which

requires more time to compute. It takes the solver 4 times longer to solve the linear

relaxation using TP.

For the original problem, less nodes are explored using TP, with different impacts on the

computational time. In the base case, using TP saves 22.84% of computational time, with

a remarkable improvement in the conditional gap and in the average gap. In the case of

90% overall compatibility, a shorter computational time allows the S.O. instance to reach

optimality. In the case of 80% overall compatibility, despite the smaller time consumption,

the 4 S.O. instances show a larger conditional gap and average gap. In the rest three cases,

solving the problem using TP costs more time than using the general formulation. These

inconsistent impacts on CPU time is possibly due to the fact that CPLEX is automatically

adding several cuts while solving the problem.

Page | 64

Chapter 6. Conclusions, limitations, and future research

 Conclusions

In order to scientifically manage the manufacturing activities, researchers have extended

the lot-sizing models in various directions. However, little effort has been addressed to

the optimization of production and inventory at the same time. In this thesis, we focus on

modeling the CLSP-MSL using MIP. In the CLSP-MSL, the storage space is divided into

several individual locations. Inventory is assigned to the storage locations according to

specific rules and conditions. By extending the traditional CLSP model with new

constraints and parameters, we are able to formulate models for CLSP-MSL under

complex storage conditions.

We first looked into the single-item version of the problem. Since only one item is

involved, the assignment task is mainly based on the individual capacity and fixed cost of

storage locations. However, in a multi-item production environment, additional factors

have to be taken into consideration to optimize the production and storage process at the

same time. The individual capacity remains important, but is complicated by the different

space requirements of multiple items. We also assume that incompatibilities might exist

between certain pairs of items, or between items and storage locations. Moreover, we also

include the possibility to relocate inventory from one location to another. Item relocation

is necessary in certain cases with strict compatibility constraints, while in other cases it

allows a more efficient inventory management at a lower cost. A general model has been

proposed for the CLSP-MSL. All situations discussed above including the original CLSP

can be derived from this general model. We also reformulated the problem as a

transportation problem (TP), which provides a better LP relaxation bound.

Such an integrated optimization model provides managers with a tool to coordinate their

production lines with warehouses. Situations can thus be avoided where the additional

storage cost of large batches overweighs the economy of scale. Moreover, by dividing the

warehouse into several storage locations, the model serves as another step towards the

complex reality. Storage conditions and related activities can now be mathematically

modeled and optimized, while their impacts become visible and quantified.

Page | 65

In order to observe the impact of the various extensions on the CLSP-MSL model and the

performance of the TP reformulation, we have carried out a series of computational tests.

Due to the absence of existing data sets that contains the compatibility and relocation

parameters discussed in this thesis, we generated our own instances according to results

of the preliminary tests.

A base case has first been calculated as the benchmark. Next, a sensitivity analysis is done

among all test groups. In each group, only the target parameter changes, generating

several alternative scenarios. Solving the CLSP-MSL in these alternative data settings

using the general model allows us to analyze the trade-offs between various parameters.

Results show that, with the warehouse broken downs to several storage locations, we can

organize the space more efficiently at a lower cost rather than running the warehouse as

an integral storage. Allowing the inventory to be relocated at a cost also helps reduce the

total cost by allowing more flexibility to decide which locations to open. However, in out

tests, the cost of relocation remains trivial in comparison to other type of costs. Even in

cases where we observe the highest number of relocated units, disabling the possibility of

item relocation does not lead to a significant increase in the total cost.

It is also shown that the CPU time can be largely reduced when we include different types

of storage locations in our decision, or when the locations are differentiated by the

compatibility parameters. This leads us to the hypothesis that a large part of the

computational burden is caused by the symmetry between these storage locations.

Solving the CLSP-MSL using the TP formulation yields similar results in terms of

solution quality and CPU time for the MIP. But solving the linear relaxation of the

problem gives a higher objective value, indicating that this reformulation provides better

lower bounds than the original general formulation.

 Limitations and future research

Even though in this research we have attempted to bring the lot-sizing models one step

closer to the complex reality of an operating business, simplifications and assumptions

have been made in order to control the scope of study and the size of the problem.

Page | 66

We have used a more complex cost structure with respect to the inventory related costs in

comparison with the classical lot-sizing problems in which only a variable unit holding

cost is taken into account. According to the theory of ABC, we can identify numerous

cost-generating activities throughout the process. However, our discussion only involved

several costs which occur in the warehouse including handling cost, fixed cost for

locations, variable holding cost, and relocation cost. A possible path for future research is

to formulate a more general model with a more detailed breakdown of various activities,

e.g. fixed inventory cost covering a window of periods instead of only one period.

The proposed formulations are more general than the traditional CLSP which presume

one general storage location and no fixed storage costs. However, these new formulations

may need further modifications to accommodate certain products and industries with

unique characteristics. For example, liquid products are usually stored in tanks. Keeping

the same type of item in a tank for several consecutive periods may not generate extra

fixed cost. In this case, the fixed cost of stock takes rather the form of product changeovers:

when a different type of item needs to be stored in this location, the residual of the

previous item must be cleaned up. Another situation is when the new item must be stored

under different conditions, such as a different temperature, therefore requiring a cost-

generating preparation before the new item can be stored.

Due to the limited computational capability of the machine and the test environment, we

had to strictly control the size of the data sets. In certain test groups, the tested parameter

varies within a selected range, while only several values are chosen for the experiments.

The correlation between different parameters and the impact of changing these parameters

will be better illustrated if more values can be tested. Moreover, the values given to all

parameters were set to appropriate levels according to our preliminary tests. Altering these

values may better reflect the characteristic of a specific industry, which might as well

provide new insights of the studied subject, e.g. a scenario with significant inventory

relocation.

Page | 67

References

Akbalik, Ayse, Bernard Penz and Christophe Rapine (2014). « Multi-item uncapacitated lot sizing

problem with inventory bounds », Optimization Letters, vol. 9, no 1, p. 143-154.

Akbalik, Ayse, Bernard Penz and Christophe Rapine (2015). « Capacitated lot sizing problems with

inventory bounds », Annals of Operations Research, vol. 229, no 1, p. 1-18.

Atamtürk, Alper and Simge Küçükyavuz (2005). « Lot sizing with inventory bounds and fixed costs:

Polyhedral study and computation », Operations Research, vol. 53, no 4, p. 711-730.

Atamtürk, Alper and Simge Küçükyavuz (2008). « An o(n2) algorithm for lot sizing with inventory

bounds and fixed costs », Operations Research Letters, vol. 36, no 3, p. 297-299.

Azzi, Anna, Daria Battini, Maurizio Faccio, Alessandro Persona and Fabio Sgarbossa (2014). «

Inventory holding costs measurement: A multi-case study », The International Journal of

Logistics Management, vol. 25, no 1, p. 109-132.

Berling, Peter (2008). « Holding cost determination: An activity-based cost approach »,

International Journal of Production Economics, vol. 112, no 2, p. 829-840.

Chu, Chengbin, Feng Chu, Jinhong Zhong and Shanlin Yang (2013). « A polynomial algorithm for

a lot-sizing problem with backlogging, outsourcing and limited inventory », Computers &

Industrial Engineering, vol. 64, no 1, p. 200-210.

Coppens, Tim (2013). Capacitated lot sizing in a dynamic make-to-order production environment

with practical inventory restrictions on warehouses, Master's thesis, Eindhoven University

of Technology, 92 p.

Cunha, Artur Lovato and Maristela Oliveira Santos (2017). « Mathematical modelling and solution

approaches for production planning in a chemical industry », Pesquisa Operacional, vol.

37, no 2, p. 311-331.

Cunha, Artur Lovato, Maristela Oliveira Santos, Reinaldo Morabito and Ana Barbosa-Póvoa (2018).

« An integrated approach for production lot sizing and raw material purchasing », European

Journal of Operational Research, vol. 269, no 3, p. 923-938.

Di Summa, Marco and Laurence A. Wolsey (2010). « Lot-sizing with stock upper bounds and fixed

charges », SIAM Journal on Discrete Mathematics, vol. 24, no 3, p. 853-875.

Erenguc, S Selcuk and Yasemin Aksoy (1990). « A branch and bound algorithm for a single item

nonconvex dynamic lot sizing problem with capacity constraints », Computers &

Operations Research, vol. 17, no 2, p. 199-210.

Guan, Yongpei and Tieming Liu (2010). « Stochastic lot-sizing problem with inventory-bounds and

constant order-capacities », European Journal of Operational Research, vol. 207, no 3, p.

1398-1409.

Harris, F. W. (1913). « How Many Parts to Make at Once », Factory, The Magazine of Management

10, 135-136, 152.

Horngren, C. T., G. Foster, S. M. Datar, M. Rajan, C. Ittner and A. A. Baldwin (2010). Cost

accounting: A managerial emphasis, 25e éd., Toronto, Pearson Canada, coll. Issues in

accounting education.

Hwang, Hark-Chin and Wilco van den Heuvel (2012). « Improved algorithms for a lot-sizing

problem with inventory bounds and backlogging », Naval Research Logistics (NRL), vol.

59, no 3-4, p. 244-253.

Jans, Raf and Zeger Degraeve (2007). « Meta-heuristics for dynamic lot sizing: A review and

comparison of solution approaches », European Journal of Operational Research, vol. 177,

no 3, p. 1855-1875.

Jaruphongsa, Wikrom, Sila Çetinkaya and Chung-Yee Lee (2004). « Warehouse space capacity and

delivery time window considerations in dynamic lot-sizing for a simple supply chain »,

International Journal of Production Economics, vol. 92, no 2, p. 169-180.

Page | 68

Krarup, Jakob and Ole Bilde (1977). « Plant location, set covering and economic lot size: An o

(mn)-algorithm for structured problems », in Numerische methoden bei

optimierungsaufgaben band 3, Springer, p. 155-180.

Lin, Binshan, James Collins, Robert K Su and Logistics Management (2001). « Supply chain

costing: An activity-based perspective », International Journal of Physical Distribution,

vol. 31, no 10, p. 702-713.

Love, Stephen F (1973). « Bounded production and inventory models with piecewise concave costs

», vol. 20, no 3, p. 313-318.

Melo, Rafael A. and Celso C. Ribeiro (2016). « Formulations and heuristics for the multi-item

uncapacitated lot-sizing problem with inventory bounds », International Journal of

Production Research, vol. 55, no 2, p. 576-592.

Minner, Stefan (2009). « A comparison of simple heuristics for multi-product dynamic demand lot-

sizing with limited warehouse capacity », International Journal of Production Economics,

vol. 118, no 1, p. 305-310.

Pochet, Yves and Laurence A Wolsey (2006). Production planning by mixed integer programming,

Springer Science & Business Media.

Trigeiro, William W, L Joseph Thomas and John O McClain (1989). « Capacitated lot sizing with

setup times », Management science, vol. 35, no 3, p. 353-366.

Van Vyve, M. and F. Ortega (2004). « Lot-sizing with fixed charges on stocks: The convex hull »,

Discrete Optimization, vol. 1, no 2, p. 189-203.

Wagner, Harvey M and Thomson M Whitin (1958). « Dynamic version of the economic lot size

model », Management Science, vol. 5, no 1, p. 89-96.

Wolsey, Laurence A (2006). « Lot-sizing with production and delivery time windows »,

Mathematical Programming, vol. 107, no 3, p. 471-489.

Wolsey, Laurence A (2015). Uncapacitated lot-sizing with stock upper bounds, stock fixed costs,

stock overloads and backlogging: A tight formulation, no 2015041, Université catholique

de Louvain, Center for Operations Research and Econometrics (CORE).

Page | 69

Appendix A

Implementation of the general model

The general model for the CLSP-MSL proposed in 4.3.2 is implemented using OPL

(Optimization Programming Language) as follows:

/**
*********************** Parameters ************************
**/

/*************** Indexes ***************/
int T=...;
range periods=1..T;
int I=...;
range items=1..I;
int L=...;
range locations=1..L;

/*************** Cost Structure ***************/
float f[items]=...;//production fixed
float g[locations]=...;//storage fixed
float vc[items]=...;//unit production cost
float hc[items]=...;//unit holding cost
float r[locations][locations]=...;//relocation cost

/*************** Other Parameters ***************/
float d[items][periods]=...;
float vt[items]=...;//unit production capacity usage
float P=...;//production capacity
float st[items]=...;//unit volume
float H[locations]=...;//locational storage capacity
int alpha[locations][items]=...;//item-location compatibility
int beta[items][items]=...;//item-item compatibility
float ha=...;

/**
************************ Variables ************************
**/
dvar float+ x[items][periods];
dvar float+ s[items][locations][periods];
dvar boolean y[items][periods];//production decision binary
dvar boolean z[locations][periods];//storage decision binary
dvar boolean w[items][locations][periods];//allocation item-
loaction binary
dvar float+ v[items][locations][locations][periods];//relocated

Page | 70

items
dvar float+ inflow[items][locations][periods];//inflow
production-locations
dvar float+ outflow[items][locations][periods];//outflow
locations-demand

/*************** Expresssions ***************/
dexpr float production_cost=sum(i in items, t in
periods)(x[i][t]*vc[i]);

dexpr float holding_cost=sum(i in items, l in locations, t in
periods)(s[i][l][t]*hc[i]);

dexpr float production_fixed=sum(i in items, t in
periods)(f[i]*y[i][t]);

dexpr float stock_fixed=sum(l in locations, t in
periods)(g[l]*z[l][t]);

dexpr float handling_cost=sum(i in items, l in locations, t in
periods)(inflow[i][l][t]*ha);

dexpr float handled_units=sum(i in items, l in locations, t in
periods)inflow[i][l][t];

dexpr float relocation_cost=sum(i in items, k in locations, l in
locations:k!=l, t in periods)(r[k][l]*v[i][k][l][t]);

dexpr float units_reloc=sum(i in items, k in locations, l in
locations:k!=l, t in periods)v[i][k][l][t];

dexpr float setup_count=sum(i in items, t in periods)y[i][t];

dexpr float location_count=sum(l in locations, t in
periods)z[l][t];

dexpr float total_space=sum(t in periods, l in
locations)H[l]*z[l][t];

dexpr float used_space=sum(i in items, l in locations, t in
periods)st[i]*s[i][l][t];

dexpr float total_demand=sum(i in items, t in periods)d[i][t];

Page | 71

/**
************************ Objective ************************
**/
minimize production_cost + holding_cost +
 production_fixed + stock_fixed +
 relocation_cost + handling_cost;

/**
*********************** Constraints ***********************
**/
subject to{
ignore_production:
forall (i in items)
 vc[i]==0;

ct_balance:
forall (i in items, l in locations)
 s[i][l][1] == inflow[i][l][1]; //in period 1, inventory=inflow
forall (i in items, l in locations, t in periods:t>=2)
 s[i][l][t-1]+inflow[i][l][t]+sum(k in
locations:k!=l)v[i][k][l][t]
== s[i][l][t]+outflow[i][l][t]+sum(k in
locations:k!=l)v[i][l][k][t];

ct_fulfillment:
forall (i in items, l in locations)
 sum(l in locations)s[i][l][1]==x[i][1]-d[i][1];
forall (i in items, t in periods : t>=2)
 sum(l in locations)s[i][l][t-1] + x[i][t] == d[i][t] + sum(l in
locations)s[i][l][t];

ct_production_setup:
forall (i in items, t in periods)
 x[i][t]<=y[i][t]*minl(P/vt[i], sum(k in
periods:k>=t)d[i][k]);

ct_production_capacity:
forall (t in periods)
 sum(i in items)vt[i]*x[i][t]<=P;

ct_inventory_setup:
forall (i in items, l in locations, t in periods)
 s[i][l][t]<= w[i][l][t]*minl(H[l]/st[i], sum(k in
periods:k>=t+1)d[i][k]);

Page | 72

ct_inventory_capacity:
forall (l in locations, t in periods)
 sum(i in items)st[i]*s[i][l][t]<=H[l]*z[l][t];

ct_compatibility_location:
forall (i in items, l in locations, t in periods)
 w[i][l][t]<=alpha[l][i];

ct_compatibility_item:
forall (i in items, j in items:i<j, l in locations, t in periods)
 w[i][l][t]+w[j][l][t]<=beta[i][j]+1;
};

In our test on the symmetry, the initial symmetry breaking in the first period is realized by

imposing a specific sequence among the four storage locations. The additional constraints

are implemented by adding the following codes:

Symmetry_Breaking:
z[1][1]>=z[2][1];
z[2][1]>=z[3][1];
z[3][1]>=z[4][1];

In our test of disabling item relocation, the additional constraints are implemented by the

following codes:

Disabling_Relocation:
forall (i in items, k in locations, l in locations, t in periods)
 v[i][k][l][t]==0;

Page | 73

Appendix B

Implementation of the transportation formulation

The transportation problem formulation proposed in 4.4 is implemented using OPL as

follows:

/**
*********************** Parameters ************************
**/

/*************** Indexes ***************/
int T=...;
range periods=1..T;
int I=...;
range items=1..I;
int L=...;
range locations=1..L;

/*************** Cost Structure ***************/
float f[items]=...;//production fixed
float g[locations]=...;//storage fixed
float vc[items]=...;//unit production cost
float hc[items]=...;//unit holding cost
float r[locations][locations]=...;

/*************** Other Parameters ***************/
float d[items][periods]=...;
float vt[items]=...;//unit production capacity usage
float P=...;
float st[items]=...;//unit volume
float H[locations]=...;//locational storage capacity
int alpha[locations][items]=...;//item-location compatibility
int beta[items][items]=...;//item-item compatibility
float ha=...;

/**
************************ Variables ************************
**/
dvar float+ p[items][periods][periods];
dvar float+ s[items][locations][periods];
dvar boolean y[items][periods];//production decision binary
dvar boolean z[locations][periods];//storage decision binary
dvar boolean w[items][locations][periods];//allocation item-
loaction binary

Page | 74

dvar float+ v[items][locations][locations][periods];//relocated
items
dvar float+ inflow[items][locations][periods];//inflow
production-locations
dvar float+ outflow[items][locations][periods];//outflow
locations-demand

/*************** Expresssions ***************/
dexpr float production_cost=sum(i in items, t in periods, u in
periods:u<=t)(p[i][u][t]*vc[i]);

dexpr float holding_cost=sum(i in items, l in locations, t in
periods)(s[i][l][t]*hc[i]);

dexpr float production_fixed=sum(i in items, u in
periods)(f[i]*y[i][u]);

dexpr float stock_fixed=sum(l in locations, t in
periods)(g[l]*z[l][t]);

dexpr float handling_cost=sum(i in items, l in locations, u in
periods)(inflow[i][l][u]*ha);

dexpr float handled_units=sum(i in items, l in locations, u in
periods)inflow[i][l][u];

dexpr float relocation_cost=sum(i in items, k in locations, l in
locations:k!=l, t in periods)(r[k][l]*v[i][k][l][t]);

dexpr float units_reloc=sum(i in items, k in locations, l in
locations:k!=l, u in periods)v[i][k][l][u];

dexpr float setup_count=sum(i in items, u in periods)y[i][u];

dexpr float location_count=sum(l in locations, t in
periods)z[l][t];

dexpr float total_space=sum(t in periods, l in
locations)H[l]*z[l][t];

dexpr float used_space=sum(i in items, l in locations, t in
periods)st[i]*s[i][l][t];

dexpr float total_demand=sum(i in items, t in periods)d[i][t];

Page | 75

/**
************************ Objective ************************
**/
minimize production_cost + holding_cost +
 production_fixed + stock_fixed +
 relocation_cost + handling_cost;

/**
*********************** Constraints ***********************
**/
subject to{
ignore_production:
forall (i in items)
vc[i]==0;

forall (i in items, t in periods)
 sum(u in periods:u<=t)p[i][u][t] == d[i][t];

forall (i in items, u in periods)
 sum(t in periods:t>=u)p[i][u][t]-d[i][u] == sum(l in
locations)(inflow[i][l][u]-outflow[i][l][u]);

ct_balance:
forall (i in items, l in locations)
 s[i][l][1] == inflow[i][l][1]; //in period 1, inventory=inflow
forall (i in items, l in locations)
 outflow[i][l][1]==0;
forall (i in items, l in locations, u in periods:u>=2)
 s[i][l][u-1]+inflow[i][l][u]+sum(k in
locations:k!=l)v[i][k][l][u]
== s[i][l][u]+outflow[i][l][u]+sum(k in
locations:k!=l)v[i][l][k][u];

ct_production_setup:
forall (i in items, u in periods, t in periods: t>=u)
 p[i][u][t]<=y[i][u]*d[i][t];

ct_production_capacity:
forall (u in periods)
 sum(i in items, t in periods:t>=u)vt[i]*p[i][u][t]<=P;

ct_inventory_setup:
forall (i in items, l in locations, t in periods)
 s[i][l][t]<= w[i][l][t]*minl(H[l]/st[i], sum(u in
periods:u>=t+1)d[i][u]);

Page | 76

ct_inventory_capacity:
forall (l in locations, t in periods)
 sum(i in items)st[i]*s[i][l][t]<=H[l]*z[l][t];

ct_compatibility_location:
forall (i in items, l in locations, t in periods)
 w[i][l][t]<=alpha[l][i];

ct_compatibility_item:
forall (i in items, j in items:i<j, l in locations, t in periods)
 w[i][l][t]+w[j][l][t]<=beta[i][j]+1;
};

