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Résumé 

Dans ce mémoire, nous abordons le problème de production et transport entre une usine et 

plusieurs détaillants (« one-warehouse multi-retailer problem – OWMR »). Nous considérons une 

usine qui fabrique un seul type de produit et réapprovisionne multiples détaillants qui possèdent 

une demande dynamique sur un horizon de planification discret et fini. Nous généralisons le 

problème OWMR avec quatre types de contraintes d’émission: globale, cumulative, d’horizon 

glissant et périodique. Nous modélisons le problème en utilisant la formulation de base et la 

formulation multicommodité. Outre l’optimisation des coûts, nous limitons les émissions 

engendrées par les activités de production et de stockage dans ce réseau de distribution à deux 

échelons sur les horizons de temps différents. Nous utilisons deux méthodes pour établir les 

plafonds d’émissions. La première méthode génère les plafonds d’émission équivalents qui 

garantissent la faisabilité des problèmes et de qui nous permet de comparer équitablement les 

quatre types de contraintes d’émission. La deuxième méthode détermine le niveau d’émission 

minimum pour chaque type de plafond d’émission. En augmentant progressivement les plafonds 

d’émission, nous analysons les courbes de compromis entre les coûts et les émissions. L’analyse 

montre que le plafond d’émission le plus serré induit le coût total plus élevé avec tous ces quatre 

types de contraintes, mais plus fortement avec les contraintes périodiques et cumulatives. Ce 

mémoire ajoute à la littérature sur les modèles de lot-sizing dynamique multi-échelon avec les 

contraintes d’émission et donne un aperçu des performances des formulations et des modèles. 

Mots-clés: OWMR, lot-sizing, contraintes d’émission carbone, multi-échelon 

Méthode de recherche: modélisation 

 



iii	
	

Abstract 

In this thesis, we address the one-warehouse-multi-retailer (OWMR) problem. We consider a plant 

that produces a single type of product and replenishes multiple retailers with dynamic demand 

over a discrete and finite time horizon. We generalize the OWMR problem with four types of 

emission constraint: global, cumulative, rolling horizon and periodic. We model the problem using 

the basic formulation and the multicommodity formulation. Besides cost optimization, we limit 

the emissions incurred in the production and stock activities in the two-echelon supply chain 

network on different time horizons. We use two methods to establish the emission caps. The first 

method generates equivalent emission caps that ensure the feasibility of the problems, allowing us 

to fairly compare the four types of emission constraints. The second method determines the 

minimum emission level for each type of emission cap. By gradually increasing the emission caps, 

we analyze the cost-emission trade-off curves. The analysis shows that the tighter emission cap 

induces higher total costs in all four types of constraint, but most strongly in the periodic and 

cumulative constraints. This thesis complements the literature on the multi-echelon dynamic lot-

sizing model with emission constraints and provides insights in the behaviors of different 

formulations and models. 

Keywords: OWMR, lot sizing, carbon emission constraints, multi-echelon 

Research methods: modelling 
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Chapter 1 
Introduction 

In the past few decades, there has been growing concern about climate change, along with a rapid 

increase in environmental regulations globally. In order to comply with legislation and respond to 

social pressures, companies strive to mitigate their environmental impact. 

There is a consensus that anthropogenic emissions are the main cause of global warming. 

Therefore, the reduction of carbon emissions plays a vital role in sustainable management. In 2016, 

175 legislators signed the Paris Agreement, aiming to limit global warming this century to 2�, or 

even less, to 1.5� above pre-industrial levels (United Nations Framework Convention on Climate 

Change, 2015). This objective signifies an objective of a 2.7% annual emissions reduction rate in 

the coming decade (United Nations Environment Programme, 2019). In addition to international 

cooperation, countries implement carbon regulations such as carbon taxes or cap-and-trade 

policies, urging companies to manage their carbon footprints. 

There is a growing body of literature mapping the possible sustainable strategies for companies. 

Dekker, Bloemhof and Mallidis (2012) suggest assessing the environmental impact along the 

supply chain, emphasizing on strategies such as supply chain network design and planning and 

control. They also shed light on tactical decisions, such as the fuel consumption in transportation. 

However, only a few options at the operational level have been mentioned. It is often believed that 

cost-optimization and environmental endeavours are incompatible. Contrary to this misconception, 

however, Benjaafar, Li and Daskin (2013) point out that companies can curb emissions effectively 

by operational adjustments without significant investment. One such measure is green lot sizing. 

Traditionally, a lot-sizing model determines the right amount and time to for production, 

commonly with an objective of minimizing total cost. A green lot-sizing model also considers the 

emissions induced during the production and storage activities. In this thesis, we will focus on a 

specific multi-echelon dynamic lot-sizing problem, namely, the one-warehouse-multi-retailer 

(OWMR) problem with emission constraints. 
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As the name suggests, the OWMR problem tackles a single plant (a distribution centre) that 

replenishes multiple retailers with dynamic demand over a discrete and finite time horizon. To be 

more specific, the dynamics of the problem are as follows. At the beginning of each period, each 

retailer can put an order to the production site; the plant collects the demands of all the retailers, 

then produces and delivers the quantity ordered to each retailer (Levi et al., 2008). In this thesis, 

we assume that the warehouse produces, stores and replenishes the retailers; therefore, the terms 

“warehouse,” “production site” and “plant” are used interchangeably, referring to the same node. 

Three types of cost are incurred: setup costs (fixed production setup costs in the production site 

and fixed delivery setup costs subject to the retailers), unit production and delivery costs, and 

holding costs at the plant and retailers. The objective is to minimize the total cost at all facilities. 

As discussed earlier, in addition to the cost optimization, we also limit the emissions induced in 

all the activities in a classical OWMR problem.  

In this thesis, we model the OWMR problem with two formulations, namely the basic formulation 

(BF) and the multicommodity formulation (MC). Moreover, we propose an extension for the two 

formulations to incorporate the four types of emission constraints proposed by Absi et al. (2013), 

namely the global, cumulative, rolling horizon and periodic emission constraints, respectively. We 

conduct three sets of computational experiments. The first set of experiments validates the two 

formulations without emission constraints. The second set of experiments allows us to compare 

the four types of emission constraints. And in the third set of experiments, we establish the Pareto 

curves to analyze the cost-emission trade-offs for each type of the emission constraints separately. 

In the second set of experiments, in order to have a fair comparison, we need to establish equivalent 

emission caps for the four different types of emission constraints. Taking an instance with 10 

periods for example, if the global emission cap is 100, the corresponding periodic cap is equal to 

10. If the rolling horizon window comprises 3 periods, then the equivalent cap for the rolling 

horizon constraints would be 30. The equivalent caps for the cumulative constraints would be as 

follows: 10 for period 1, 20 for period 2, 30 for period 3, ..., 100 for period 10. Having the 

equivalent caps allows us to directly compare the impact of different types of emission constraints. 

Besides, we need to make sure that the equivalent caps lead to feasible instances. Since the model 

with periodic constraints is the strictest, we first determine the emission caps for this model, and 
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then we calculate the equivalent caps for the other types of emission constraints. If we can 

guarantee the feasibility for the cap in the periodic model, we can also ensure the feasibility of the 

equivalent caps in the other models. We will propose an optimization model to determine the 

minimum level of the period cap that still provides a feasible solution.  

In the third set of computation experiments, we determine the minimum emission level of each 

type of caps using a series of optimization models. Again, these minimum emission levels ensure 

the feasibility of the instances. Moreover, using the minimum emission cap level, the emission 

constraints have an impact on total cost. By gradually increasing the emission caps, we establish 

Pareto curves to analyze the trade-offs between total cost and emissions for the global, rolling 

horizon, periodic and cumulative constraints, respectively.  

All the computational experiments are conducted using CPLEX 12.9.0.0. The instances consist of 

the demand and cost parameters from previous studies of Solyali and Süral (2012), the emission 

factors generated using the approach in Zhong (2014), and the emissions caps generated as 

discussed above.  

This thesis makes a fourfold contribution. First, it validates two formulations of the OWMR 

problem and compares the computational results with those of previous studies. Second, the thesis 

extends the OWMR problem by adding four types of emission constraint. It fills a gap in the 

literature by incorporating cumulative, rolling horizon and periodic emission constraints into 

multi-echelon dynamic lot-sizing models. Third, it introduces two methods to determine the 

emission caps that can be used in the computational experiments. Fourth, it analyzes the emission-

cost trade-offs for each type of emission constraint. The analysis provides practical implications 

for the carbon footprint management of companies. In summary, the thesis complements the 

existing literature in the field of green lot-sizing models by studying the specific OWMR problem 

with four types of emission constraints. 

The remainder of this thesis is organized as follows. Chapter 2 reviews the existing literature in 

modelling green supply chain problems, with a focus on dynamic lot-sizing models with emission 

constraints. Chapter 3 explores the formulations of the OWMR problems and proposes 

formulations with emission constraints. Chapter 4 reports the computational results of the OWMR. 
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Chapter 5 describes the computational experiments on OWMR problem with emission constraints 

(OWMR-E) using equivalent emission caps, then compares the four types of emission constraint. 

Chapter 6 provides the emission-cost trade-offs analysis and a brief analysis of the trade-offs 

between the total emission and the emission caps. The last chapter draws the conclusion with some 

final remarks. 
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Chapter 2 
Literature Review 

This section provides an overview of recent developments in modelling the green supply chain 

before briefly reviewing the lot-sizing models, specifically, the OWMR problem. The final section 

discusses sustainable lot-sizing models with a focus on different types of emission constraints and 

explores extensions to various carbon-pricing schemes. 

2.1 Supply Chain Models with Environmental Factors 

With the growing attention to environmental issues, there has been a significant increase in the 

literature regarding green supply chains. Modelling is the dominant approach for supply chain 

sustainability studies (Brandenburg and Rebs, 2015). This section investigates the methodology of 

modelling a supply chain problem with environmental considerations. 

Scopes of Sustainable Supply Chain Models 

The most common method for incorporating environmental factors into models is the Life Cycle 

Assessment (LCA). This approach gives a general framework for assessing environmental impact 

in the different stages of a supply chain (Lake et al., 2015). The LCA has three scopes, namely, 

cradle-to-grave, cradle-to-gate and gate-to-gate. The cradle-to-grave scope assesses sustainability 

through the whole supply chain, from the extraction of raw materials to production, distribution, 

use, repair, disposal and recycling. The cradle-to-gate scope tracks the processes from raw material 

extraction to the production site. The gate-to-gate scope mainly monitors environmental 

performance at the production and distribution levels (Eskandarpour et al., 2015). Some research 

focuses on the most polluting sectors in the supply chain (Banasik et al., 2018), namely, the 

transport and manufacturing aspects (Brandenburg and Rebs, 2015), which represent 14% and 21% 

of the global carbon emissions, respectively (IPCC, 2015). 

Objectives of Sustainable Supply Chain Models 

In terms of their objectives, sustainable supply chain models can comprise three dimensions—the 

economic, environmental and social—of which the economic is most often addressed (Seuring, 
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2013). Models of the economic dimension prioritize cost optimization while presenting the 

environmental concerns in terms of constraints. Models of the environmental dimension tend to 

set multiple objectives, most commonly one objective on total costs and the other on environmental 

impacts (Banasik et al., 2018). For instance, Wang, Lai and Shi (2011) propose a multi-objective 

green supply chain network model to analyze the trade-offs between total costs and total emission 

amounts. The first objective function optimizes the fixed setup costs, total transportation costs, 

handling costs and investment in sustainability. The second objective function measures total 

carbon emissions through the network. The authors employ the normalized normal constraint 

method to generate the Pareto frontier, then test the model using a case study. A similar yet more 

comprehensive multi-objective model appears in Chaabane, Ramudhin and Paquet (2012), in 

which the authors also consider the costs of reverse logistics and the costs and/or revenue of 

emission permits. 

Key Environmental Indicators 

According to Eskandarpour et al. (2015) , there are four main indicators for measuring 

environmental impact: (1) Greenhouse Gas (GHG) emissions, (2) amount of waste, (3) energy 

consumption and (4) amount of recycling. GHG emissions are composed of CO2, CH4, N2O and 

fluorinated gases, of which carbon emissions constitute the most commonly used indicator in 

supply chain models. Paksoy, Bektaş and Özceylan (2011) use the amount of fuel consumption to 

estimate transport emissions. Similarly, Li and Hai (2019) calculate transport emissions in terms 

of vehicle type, fuel consumption, distance, weight of load and fuel emission rate, with 

warehousing emissions assumed to comprise electricity and other energy costs. Sundarakani et al. 

(2010) propose a more holistic model to measure the carbon footprint in a closed-loop end-to-end 

supply chain, using the long-range Lagrangian and the Eulerian transport methods, a common 

approach in pollution studies. They examine emissions in two categories: emission from stationary 

processes (material processing, production and warehousing) and from non-stationary processes 

(transportation). Note that in all the literature mentioned above, the researchers refer explicitly to 

the difficulty of collecting emissions data and calculating carbon prints. Thus, green supply chain 

models, all based on estimated emissions data, are more effective as a tool for strategic decision-

making than tactical ones.  
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Modelling Emissions under Different Policies 

In 2019, 57 carbon-pricing initiatives are in force (or scheduled) in 48 national and 28 subnational 

jurisdictions (World Bank Group, 2019). These carbon-pricing schemes include Emissions 

Trading Systems (ETSs), carbon taxes, strict caps and carbon offsets. An ETS, also called a cap-

and-trade system, caps the emissions of firms and allows entities to trade emission allowances. A 

carbon tax directly sets a tax rate for the GHGs emitted. A cap policy sets a strict carbon emissions 

limit, whereas a carbon offset system allows firms to compensate for their excess emissions with 

previous unused emissions credits. The supply chain models are applicable to various schemes. 

Zakeri et al. (2015) compare two schemes in a dual-objective model, with the first objective 

function being to optimize total costs, and the second being to minimize carbon costs. Under 

carbon-tax, the second objective function minimizes the charges of the total emissions amount. 

Under cap-and-trade, on the other hand, the objective function minimizes the total costs of 

emissions allowances in the case of over-emitting or minimizes the gap between allowance costs 

and income from selling unused emissions credits. The authors show that cap-and-trade results in 

carbon reduction with fewer costs but the risks of an unpredictable carbon market can be 

significant. 

We have reviewed the main methodology to incorporate emissions into general supply chain 

models. In the rest of this literature review, we will focus on green lot-sizing models. 

2.2 Lot-sizing Models 

Lot sizing determines when and how much to replenish inventory. Inventory models can be 

classified according to different criteria, such as the nature of the data, time scale, number of 

machines, number of levels and capacity constraints. In this section, we mainly review lot-sizing 

models with deterministic demand. 

The well-known Economic Order Quantity (EOQ) model is a paradigm of deterministic models. 

It aims to minimize the total ordering and holding costs on the basis of a set of assumptions, 

including continuous time scale, deterministic and stationary demand, constant lead-time and static 

costs. As we all know, these assumptions are rarely achievable in the real business environment.  
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To address planning problems with dynamic demand, Wagner and Whitin (1958) introduce the 

single-item uncapacitated lot-sizing model (SI-ULSP). The objective is to optimize production and 

inventory costs on the basis of three critical decisions: (1) setup, (2) production size and (3) 

inventory level—over a discrete and finite time horizon. The SI-USLP is widely used because of 

its simplicity and extensibility. The simple objective function intuitively presents trade-offs of 

various decisions (Brahimi et al., 2017; Jans and Degraeve, 2008). The model can be extended to 

settings that are more realistic. Pochet and Wolsey (2006), Jans and Degraeve (2008) and Brahimi 

et al. (2017) discuss extensions of the SI-ULSP. Demand-wise, the problem can include multiple 

items, backlogging, lost sales and stochastic demands. Time-wise, it is compatible with planning 

on a rolling horizon. Constraint-wise, it can comprise capacity constraints, minimum lot size and 

fixed batch size constraints, among others. Cost-wise, the SI-ULSP can take other elements into 

account, such as discounts, start-up costs, outsourcing costs and emissions costs. Structure-wise, 

the problem is extensible to multi-echelon distribution systems. Melo and Wolsey (2010) solve a 

two-echelon uncapacitated lot-sizing problem in series and reformulate it with shortest-path 

constraints. They also study a particular form of the two-echelon problem, namely, a one-

warehouse multi-retailer multicommodity problem. Zhang, Küçükyavuz and Yaman (2012) 

explore a multi-echelon uncapacitated lot-sizing problem in series receiving intermediate demand. 

They propose an O(T4) dynamic programming algorithm, with T being the number of periods in 

the planning horizon. They also suggest a multicommodity formulation for the problem. 

A special case of the multi-echelon lot-sizing problem is the OWMR, a two-echelon, single-

sourcing multi-destination problem. There are six main formulations for the OWMR problem: (1) 

the basic formulation, (2) echelon stock formulation, (3) transportation formulation, (4) shortest-

path formulation, (5) Wagner-Whitin based formulation and (6) multicommodity formulation. 

There are several other formulations that have been derived from the six main formulations above.  

The basic formulation (BF) is often used to present the nature of the problem. It extends the 

formulation of the uncapacitated lot-sizing problem discussed by Pochet and Wolsey (2006) to a 

multi-echelon setting. The echelon stock formulation (ES) proposed by Federgruen and Tzur (1999) 

is one of the most classical formulations for the OWMR problem. ES considers the total inventory 

at a facility and at all its customers. In the OWMR problem, the echelon stock variable deals with 
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the inventory level of the whole distribution system. The formulation is proven to provide stronger 

lower bounds using Lagrangian relaxation algorithm. Multiple reformulations are derived from ES, 

such as the strengthened echelon stock formulation (SES) presented in Solyali and Süral (2012). 

The transportation formulation (TP) introduced by Levi et al. (2008) tracks the location of products. 

The variables contain 4 timestamps: in which period the product is produced, when it is transported 

to the warehouse, when it is delivered to the retailers and eventually when the demand is satisfied. 

The shortest-path formulation (SP) proposed by Solyali and Süral (2012) derives from the 

transportation formulation. SP introduces new variables deciding the proportion of demand 

produced in period k, transported to the warehouse in period t, shipped to the retailer in period j to 

fulfill the demand in l. The flow of the products forms a series of arcs between the timestamps, 

and SP aims to choose the shortest path. Another formulation for the OWMR problem is the 

Wagner-Whitin based formulation (LS) introduced by Melo and Wolsey (2010). It adds the (l, S, 

WW) inequalities for certain relaxations of the problem (Cunha and Melo, 2016). Based on the it, 

Cunha and Melo (2016) develop the two-level lot-sizing Wagner-Whitin based formulation (2LS) 

and partial two-level lot-sizing Wagner-Whitin based formulation (p2LS). In addition, Cunha and 

Melo (2016) generalize the multicommodity formulation (MC) and two-level lot-sizing dynamic 

programming based formulation in Melo and Wolsey (2010) to the OWMR problem. The latest 

paper of Gruson et al. (2019) proposes eight more formulations for the OWMR problem. These 

formulations are based on ES and SES, combining the features of TP, SP, LS and MC. 

The problem is NP-hard, since the joint replenishment problem, a special OWMR problem without 

warehouse inventory, is NP-hard (Arkin, Joneja and Roundy, 1989). Table 1 summarizes the work 

regarding the formulations for the OWMR problem. The column “New formulations” presents the 

formulations proposed in the paper. The column “validations” displays the formulations the 

author(s) have validates. The column “extension” shows the extensions of the OWMR problem 

introduced by the author(s). And the column “recommendations” shows the best formulation 

according to the authors. In the most recent two publications, MC is proven to perform better than 

the other formulations on the uncapacitated instances (Cunha and Melo, 2016; Gruson et al., 2019). 

It also provides strong LP relaxation bounds in shorter solution time. Therefore, in the thesis, we 

focus on the MC while using BF as the baseline for comparison. 
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It is noteworthy that the formulations are adapted to more complex problems. Solyali and Süral 

(2012) and Zhong (2014) extend the formulations to include the initial inventory. Gruson et al. 

(2019) change the magnitude of the problem to a three-echelon distribution system. They validate 

the three-echelon formulations with balanced and unbalanced network, capacitated and 

uncapacitated instances. In addition to the extensions, OWMR also appears as sub-problems of 

complex multi-stage problems. For instance, Adulyasak, Cordeau and Jans (2014) model the 

OWMR as part of a production routing problem. The same approach appears in Adulyasak, 

Cordeau and Jans (2015).  

Table	1.	Formulations	for	OWMR	

 New Formulations Validation Extension Recommendations 

Federgruen and Tzur 
(1999) 

ES ES - ES 

Levi et al. (2008) TP - - TP 

Melo and Wolsey 
(2010) 

LS BF, ES, LS, MC - MC 

Solyali and Süral 
(2012) 

SES, SP ES, SES, TP, SP Initial inventory TP, SP 

Zhong (2014) - BF, TP, SP Initial inventory, 
global emission 
constraints 

TP 

Cunha and Melo 

(2016) 

MC, LS, 2LS, 

p2LS, 2DP 

ES, SES, MC, TP, 

SP, LS, 2LS, p2LS, 

2DP 

- MC, p2LS 

Gruson et al. (2019) MCE, SES-TP, 
SES-LS, SES-SP 

BF, ES, SP, TP, MC, 
ES-SP, ES-TP, ES-
LS, SES, SES-TP, 
SES-LS, SES-LP, 
MCE 

Three-echelon,  MC-uncapacitated, 
MCE-capacitated 

 

Besides the formulations, it is also possible to find studies on developing approximation algorithms 

for the OWMR problem such as in Levi et al. (2008) and the series of papers including Stauffer 

(2012), Gayon et al. (2016), Gayon et al. (2017) and Stauffer (2018). 
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2.3 Lot-Sizing Models with Emissions 

Studies on lot-sizing models with a carbon footprint limit have been growing rapidly since 2008. 

The EOQ and newsvendor problem were most commonly employed for green lot sizing (Bushuev 

et al., 2015). However, we also observe a wide use of dynamic lot-sizing models with emissions.  

The first main category of lot-sizing models with emissions is the EOQ-E. Authors extend the 

classical EOQ model with carbon costs. Hua, Cheng and Wang (2011) pioneer this stream of 

research. They extend the classical EOQ model to the cap-and-trade scheme by including carbon 

costs in the objective function and an emissions balance constraint. Moreover, they investigate the 

impact of the carbon price and emissions caps on operational decisions by a comparison with the 

classical EOQ model without emissions. Similarly, Chen, Benjaafar and Elomri (2013) formulate 

emissions as costs to minimize. They also examine the emissions-cost trade-off under different 

policies. An EOQ-E model can present the trade-offs between different cost types, hence providing 

insights for business and regulatory decision-makers. However, its basis in unrealistic assumptions, 

such as static demand, is a drawback for practitioners, who are in search of a simple yet more 

practical tool.  

The dynamic lot-sizing model has received substantial attention, particularly as a sub-problem for 

a complex supply chain models. Benjaafar, Li and Daskin (2013) introduce four dominant 

emissions policies into a single-item lot-sizing model. Retel Helmrich et al. (2015) examine a 

similar problem with a global emissions constraint and propose multiple heuristic algorithms to 

solve the problem.  

The above lot-sizing problems consist of a single-echelon structure. There is a paucity of literature 

on multi-echelon structures with carbon footprints. Bouchery et al. (2017) integrate the EOQ into 

a two-echelon multi-objective model to optimize both total costs and total emissions. Hammami, 

Nouira and Frein (2015) measure emissions in a multi-echelon supply chain with external suppliers, 

factories and warehouses. They optimize the production-inventory problem with lead-time 

constraints and examine the model in both cap-and-trade and carbon-tax scenarios. Furthermore, 

they compare aggregated emissions constraints with individual emissions caps on each node.  

Toptal and Çetinkaya (2017) integrate the EOQ to optimize production, inventory and emissions 
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costs of a buyer-vendor two-echelon distribution system under two schemes, namely, cap-and-

trade and carbon tax. Under each scheme, they examine two coordination strategies: joint and 

independent. The joint coordination strategy minimizes the total cost subject to the vendor and the 

buyer, and the independent strategy only considers the buyer’s total cost. They show that a joint 

strategy can reduce costs without exceeding emission caps but that it does not mitigate the extra 

costs generated by emissions reductions. 

The OWMR problem can also encompass emissions factors. Zhong (2014) incorporates a linear 

emission constraint in three formulations of the OWMR problem: the BF introduced by Solyali 

and Süral (2012), the four-index facility location formulation proposed by Levi et al. (2008) and 

the combined transportation and shortest-path formulation discussed by Solyali and Süral (2012). 

Zhong (2014) conducts experiments and solves the problem on CPLEX with different settings: (1) 

with or without initial inventory, (2) multiple emission datasets generated in correlation with cost 

parameters in the range of [-20%, 20%], [-50%, 50%] and [-100%, 100%], and (3) different levels 

of emission cap. Zhong (2014) also analyzes the trade-off of costs and emissions reductions, 

observing that the emission reduction cost increases as the reduction amount increases. In addition, 

he extends heuristics to solve the OWMR problem with emission constraints. Li and Hai (2019) 

formulate the OWMR problem with replenishing intervals and impose integer-ratio constraints. In 

contrast to the above, they optimize emissions as costs instead of caps. They also provide equations 

to calculate emissions costs in transportation and inventory management. 

Lot-sizing Model with Emission Constraints 

Almost all the studies above incorporate emissions as a “capacity constraint.” In terms of time 

horizon, Absi et al. (2013) propose four types of carbon emission constraints: (1) periodic emission 

constraints, (2) cumulative emission constraints, (3) global emission constraints and (4) rolling 

horizon emission constraints. Figure 1 illustrates the coverage of each emission constraint type 

over a horizon of 6 periods. 



	
	

13	

 

Figure	1.	Four	Types	of	Emission	Constraints	(Zhong,	2014)	

A periodic emission constraint sets an emission cap in each period. The unused emission credits 

cannot be used to offset the emissions of previous periods nor transferred to the next. A cumulative 

emission constraint imposes a set of emission caps on all periods in a cumulative way starting from 

the first period. The unused emission credits can be carried onto the following periods without 

exceeding the cap. A global constraint limits the total emissions of all periods of the planning 

horizon. The rolling horizon emission constraint sets a cap on each set of n periods, i.e. the 

emissions of period t can be compensated for by the adjacent n periods. It is intuitive to see that, 

of the four types of constraint, the periodic constraint is the strictest and global constraint the 

loosest. However, Absi et al. (2016) do not compare the cumulative and rolling horizon emission 

constraints. Their study shows that the SI-ULSP with periodic emission constraints achieves the 

optimal solution with a polynomial-time dynamic programming algorithm but becomes NP-hard 

with the other three types of emission constraint. Figure 2 presents a comparison of the four types 

of emission constraint in terms of strictness level. 

 

 

 

global	 rolling	 cumulative	 periodic	?	
weak	 strict	

Figure	2.	Comparison	of	Four	Types	of	Emission	Constraints 
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Velázquez Martínez et al. (2014) set a global emission constraint on a single-item lot-sizing 

problem. They aggregate the transportation carbon emissions in the dynamic lot-sizing model on 

six different levels, and analyze which aggregation method is best. To date, most of the research 

has studied the global emission constraint, and few studies can be found on the other three types 

of emission constraint. Absi et al. (2016) introduce a single-item lot-sizing model with periodic 

emission constraints, assuming that a mode will emit a fixed amount of CO2 if it is selected. The 

authors consider average emissions per product. This can be relevant for practitioners who want 

to display the carbon details of their products, contributing to a sustainable brand image. 

Phouratsamay and Cheng (2019) impose a periodic emission constraint on a two-mode single-item 

lot-sizing problem with inventory bounds. The authors also propose an extension on the cap-and-

trade policy by adding the carbon trade costs and/or revenue to the objective function and the 

amount of traded emission permits to the constraint. Wu et al. (2018) investigate the capacitated 

multi-item lot-sizing problem with non-identical parallel machines and periodic emission 

constraints. Yu et al. , in contrast to the literature mentioned above, consider cumulative emission 

constraints in a single-item lot-sizing model. To the best of our knowledge, no literature deals with 

lot-sizing models with a rolling horizon emission constraint. 

Extension on Various Regulations 

As discussed in the previous section, more and more countries are implementing carbon-pricing 

policies. Consequently, studies of lot-sizing models under various carbon schemes are emerging. 

The regulations induce two extensive parts, in addition to a classical lot-sizing model: the carbon 

cost and the carbon cap. He et al. (2015) analyze the trade-offs between holding, ordering and 

carbon costs under cap-and-trade and carbon-tax approaches. Akbalik and Rapine (2013) model 

cap-and-trade into an uncapacitated lot-sizing problem by adding the carbon trade cost to the 

objective function and a global emissions cap to the constraints. In addition, two scenarios are 

tested to analyze the complexity of the problem, namely, with and without budget limits on 

emission transactions. The authors conclude that the uncapacitated lot-sizing problem with cap-

and-trade without budget constraints can be solved in polynomial time, and that the same model 

with global budget constraints is NP-hard. 
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In conclusion, the integration of lot-sizing models with carbon footprint is an important topic. To 

review the current literature in this field systematically, we adopt the framework of Bushuev et al. 

(2015) to classify lot-sizing models with carbon footprint, as shown in Table 2. We first categorize 

the lot-sizing models by the demand type, then by the number of products and the size of the 

distribution system. Besides, the table displays the type of emission constraints used in the lot-

sizing model and the carbon pricing initiatives the model takes into account. 
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Table	2.	Summary	of	Literature	on	Lot-sizing	Models	with	Emissions	

 Emission 
constraint 
type 

Static demand Dynamic demand Regulation 

 Single-item Multi-item Single-item Multi-item  

 Single 
echelon 

Multi 
echelon 

Single 
echelon 

Multi 
echelon 

Single 
echelon 

Multi 
echelon 

Single 
echelon 

Multi 
echelon 

 

   
Hua, Cheng and Wang (2011)  ��        ETS 

Chen, Benjaafar and Elomri (2013) G �        ETS, CT, CO 

He et al. (2015)  �        ETS, CT 

Bouchery et al. (2017)   �        

Toptal and Çetinkaya (2017)   �  �     ETS, CT 

Benjaafar, Li and Daskin (2013) G     �    ETS, CT, CO 

Retel Helmrich et al. (2015) G     �     

Absi et al. (2013) G, R, C, P     �     

Absi et al. (2016) P     ��     

Wu et al. (2018) P       �   

Phouratsamay and Cheng (2019) P     �     

Yu et al. (2013) C     �     

Velázquez Martínez et al. (2014) G     ��     

Akbalik and Rapine  G     ��    ETS 

Hammami, Nouira and Frein (2015) G      �   ETS, CT 

Zhong (2014) G      �    

Li and Hai (2019)   �    �   CT 

Note: G=global, R=rolling horizon, C=cumulative, P=periodic, ETS=cap-and-trade, CT=carbon tax, CO=carbon offset 
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Chapter 3 
OWMR and OWMR-E Formulations 

In this chapter, we describe two formulations of the one-warehouse multi-retailer problem: the 

basic formulation introduced by Pochet and Wolsey (2006) and the multicommodity formulation 

proposed by Cunha and Melo (2015). We then generalize the OWMR problem with four types of 

emission constraints, namely the global, cumulative, rolling horizon and periodic emission 

constraints proposed by Absi et al. (2013). 

In this thesis, we assume that (1) all demands must be satisfied, (2) no backorder is allowed, (3) 

the demands of each retailer can only be fulfilled by the production site, (4) the production and 

delivery time is 0, and there is neither production nor delivery loss, and (5) no capacity constraint. 

3.1 Basic Formulation (BF) 

The decision variables and parameters are denoted as follows: 

Parameters 

N Number of retailers 

T Number of periods of the planning horizon 

"#$
% Production setup cost at the plant in period t 

"#$
& Transportation setup cost from the plant to retailer r in period t 

'#$
% Unit holding cost at the plant in period t 

'#$
& Unit holding cost at the retailer r in period t 

(#$
% 	 Unit production cost at the plant in period t 

(#$
& 	 Unit transportation cost from the plant to retailer r in period t 
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)$
% 	 Demand at the plant in period t, equal to the aggregated demands the retailers 

receive in period t 

)$
& 	 Demand at retailer r in period t 

)$*
%  Total demands at the plant from period t to period k 

)$*
&  Total demands at retailer r from period t to period k 	 Demand	at	the	plant	in	period	t,	∀- ∈ /	

0%
%	 Initial inventory at the plant 	 Demand	of	retailer	i	in	period	t,	∀1	 ≤ - ≤ /, ∀1	 ≤ 4 ≤ 5	

0%
& 	 Initial inventory at retailer r 

Decision variables	

 6$
% 	 Production setup variable, equal	to	1	if	production	occurs at the plant in period t, 

and 0 otherwise  

6$
&   	 Transportation setup variable, equal to 1 if transportation occurs from the plant to 

the retailer r in period t, and 0 otherwise 

0$
% 	 Inventory at the plant at the end of period t 

0$
& 	 Inventory at the retailer r at the end of period t 

E$
% 	 Quantity produced at the plant in period t 

E$
& 	 Quantity delivered from the plant to retailer r in period t 

The formulation of the problem BF is as follows: 

Min		 ("#$
%6$

% + (#$
%E$

%

I

$JK

+ '#$
%0$

%) + ("#$
&6$

& + (#$
&E$

& +

I

$JK

M

&JK

'#$
&0$

&) 1
 

0. -.		0$OK
% + E$

% = E$
&

M

&JK

+ 0$
%																																																						∀t ∈ {1, 2, … , /} 2  

									0$OK
& + E$

& = U$
& + 0$

&																												∀r ∈ 1, 2, … , 5 , ∀t ∈ {1, 2, … , /} 3  
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	 E$
% 	≤ )$I

% 6$
%																																																																								∀t ∈ 1, 2, … , / 	 4

 

		E$
& 	≤ )$I

& 6$
&																																							∀r ∈ 1, 2, … , 5 , ∀t ∈ 1, 2, … , / 		 5  

6$
% ∈ {0, 1}																																																																									∀t ∈ {1, 2, … , /} 6a

 

6$
& ∈ {0, 1}																																								∀r ∈ 1, 2, … , 5 , ∀t ∈ 1, 2, … , / 6b  

	E$
%, 0$

% ≥ 0																																																																										∀t ∈ 1, 2, … , / 	 7a
 

	E$
&, 0$

& ≥ 0																																								∀r ∈ 1, 2, … , 5 , ∀t ∈ 1, 2, … , / 	 7b  

The objective function (1) minimizes the total cost including the production setup costs, variable 

production costs, inventory holding costs at the plant, transportation setup costs, variable delivery 

costs and holding costs at the retailers over a finite time horizon. Constraints (2) and (3) are the 

inventory balance constraints for the plant and retailers, respectively. Constraints (4) and (5) set 

the binary variables to one if a production or delivery setup occurs. Constraints (6) and (7) are the 

binary and non-negativity constraints on the variables. 

As we assume that all demands must be satisfied and no backorder is allowed in this problem, the 

total quantity of products manufactured and delivered is fixed. E
-
0/

-=1  is equal to the difference 

between the total demand and the initial stock (at the plant and at the retailers). Similarly, 

E
-
^/

-=1
5
^=1 	is equal to the difference between the total demand and the initial stock at the retailer. 

Furthermore, we assume that the unit production cost (#_% and the unit transportation cost (#$&	are 

time invariant. Thus, the total production and delivery costs are constant. To facilitate the 

computation, we exclude the two constant costs mentioned above from the objective function, and 

replace the objective function (1) with the function (8). The basic formulation is therefore as 

follows. 

`" 		Min "#$
%6$

% + '#$
%0$

%

a

_JK

+ "#$
&6$

& + '#$
&0$

&

I

$JK

M

&JK

																																																								 8  

  s.t. constraints (2) – (7) 
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3.2 Multicommodity Formulation (MC) 

The multicommodity formulation recognizes each pair of retailer-period. It considers each demand 

)$
& as a distinct product (Cunha and Melo, 2016). In this formulation, we define new continuous 

multicomodity variables. We also introduce the new parameters. 

New parameters 

	c*$ Kronecker delta, c*$ equals to one if k = t, and zero otherwise 

d%$
%& Initial inventory in the production site to satisfy the demand of retailer r in period t 

d%$
K& 	 Initial inventory at retailer r to satisfy its demand in period t 

Decision variables 

e*$
%& Quantity produced in the production site in period k to satisfy the demand of retailer 

r in period t  

e*$
K& Quantity transported from the production site to retailer r in period k to satisfy the 

retailer’s demand in period t  

d*$
%& Quantity stocked in the production site in period k to satisfy the demand of retailer r 

in period t  

d*$
K& 	 Quantity stocked locally at retailer r in period k to satisfy its demand in period t  

The formulation MC is as follows: 

f# 	Min "#*
%6*

%

I

*JK

+ "#*
&6*

&

I

*JK

M

&JK

+ '#*
%d*$

%&

I

$J*

I

*JK

M

&JK

+ '#*
&d*$

K&

I

$J*

I

*JK

M

&JK

	 9  

s. t.		diOK,$
%& + e*$

%& = d*$
%& + e*$

K&							∀r ∈ 1, 2, … , 5 , ∀j ∈ 1, 2, … , / , ∀- ∈ {j, j + 1, … , /} 10 	

																	d*OK,$
K& + e*$

K& = c*$U$
& + 1 − c*$ d*$

K&				∀r ∈ 1, 2, … , 5 , ∀j ∈ 1, 2, … , / , ∀- ∈ j, j + 1, … , / 							 11 	

		 											e*$
%& ≤ )$

&6*
%																										∀r ∈ 1, 2, … , 5 , ∀j ∈ 1, 2, … , / , ∀- ∈ j, j + 1, … , / 										 12 	

															e*$
K& ≤ )$

&6*
&																										∀r ∈ 1, 2, … , 5 , ∀j ∈ 1, 2, … , / , ∀- ∈ j, j + 1, … , / 										 13 	
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								6*
% ∈ 0, 1 																																																																																																							∀j ∈ 1, 2, … , / 14a

	

								6*
l ∈ 0, 1 																																																																					∀r ∈ 1, 2, … , 5 , ∀j ∈ 1, 2, … , / 14b 	

					 				d*$
%&, e*$

%& ≥ 0																									∀r ∈ 1, 2, … , 5 , ∀j ∈ 1, 2, … , / , ∀- ∈ j, j + 1, … , / 							 15a 	

							dj-
1^, e

j-
1^ ≥ 0																													∀r ∈ 1, 2, … , 5 , ∀j ∈ 1, 2, … , / , ∀- ∈ j, j + 1, … , / 15b 	

The objective function (9) minimizes the production setup cost, the transportation setup cost, the 

holding cost at the warehouse and at the retailers, respectively. Constraints (10) are the balance 

constraints for each commodity at the plant. Constraints (11) ensure the inventory balance for each 

commodity at the retailers. Constraints (12) and (13) enforce the setups if an amount of product is 

produced or shipped. Constraints (14) and (15) are the binary constraints and non-negative 

constraints, respectively.  

3.3 Basic Formulation with Emission Constraints (BF-E) 

We follow the classical assumption of a fixed-plus-linear emission structure (Retel Helmrich et 

al., 2015) to formulate the emission constraints. The constraints account for the carbon footprint 

related to the production setup, transportation setup, production quantities, delivery quantities and 

inventory level.  

Similar to the cost function, we assume that (1) the demand is deterministic and (2) the production 

and transportation emission parameters are time invariant. Hence, the total emission related to the 

production and transportation quantities becomes constant. We remove the constant. The emission 

function comprises the emissions induced in production setups, transportation setups and inventory 

at the warehouse and at the retailers. We introduce a set of emission parameters, corresponding to 

the emission activities above. 

"m$
% Production setup emission in period t 

"m$
& Transportation setup emission at retailer r in period t 

'm$
% Emission to hold one unit of product at the plant in period t 

'm$
& Emission to hold one unit of product at the retailer r in period t 



22	
	

(m$
% 	 Emission to produce one unit of commodity at the production site in period t 

(m$
& 	 Emission to deliver one unit of product from the production site to the retailer r 

in period t 

mnopq	 Global emission cap 

mropq	 Rolling horizon emission cap 

m(opq	 Periodic emission cap 

m#$
opq	 Cumulative emission cap 

The global emission constraint sets a cap on total emission of all facilities in all periods over the 

planning horizon. Structurally it resembles the objective function, which minimizes the total cost. 

As discussed above, we remove the constant production and transport emissions, i.e. 

(m$
%E$

%I
$JK + (m$

&E$
&I

$JK
M
&JK . The basic formulation with global constraint (BF-G) is as 

follows:  

     Objective function (8) 

s.t. constraints (2) – (7) 

"m-
06

-
0 + 'm-

00-
0

/

-=1

+ 	 "m-
^6

-
^ + 'm-

^0-
^

/

-=1

5

^=1

≤ mnstu																																							 16  

The first part in constraint (16) represents the total emission incurred in the plant, and the second 

part is emission incurred at the retailers. The total emission of the distribution system cannot 

exceed the global cap.  

The rolling horizon constraints limit the total emission of any u consecutive periods over the 

planning horizon. For instance, the total emission of periods 1-5, 2-6, 3-7, … 11-15, for u = 5 and 

T = 15. The basic formulation with rolling horizon emission constraint (BF-R) can be expressed 

as follows:  
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      Objective function (8) 

s.t. constraints (2) – (7) 

					 "mv
%6v

% + 'mv
%0v

%

$

vJ$OwxK

+ "mv
&6v

& + 'mv
&0v

&

$

vJ$OwxK

M

&JK

≤ mropq					∀- ∈ {y, y + 1, … , /}					 17  

Constraints (17) deal with the total emission in two echelons in any consecutive u periods. Note 

that we can consider the global and periodic constraints as variations of the rolling horizon 

constraint. When the rolling horizon consists of one period, the rolling horizon constraints are 

equal to the periodic constraints; when the length of the rolling horizon u is equal to T, the rolling 

horizon constraint becomes equal to the global emission constraint.  

Alternatively, we can formulate the periodic constraint (BF-P) as follows: 

"m$
%6$

% + 'm$
%0$

% +	 "m$
&6$

& + 'm$
&0$

&

M

&JK

≤ m(opq																			∀- ∈ {1, 2, … , /}	 18  

The constraints (18) limit the setup and holding emissions at the warehouse and the retailers by 

the periodic cap. The cumulative emission constraints distinguish from the other three types. As 

the name suggests, each constraint cumulates the total emission from period 1 to period t. Instead 

of one static right-hand-side value, the cumulative constraints require an incremental set of T caps. 

We express the basic formulation with cumulative emission constraints (BF-C) as follows: 

"mv
%6v

% + 'mv
%0v

%

$

vJK

+ "mv
&6v

& + 'mv
&0v

&

$

vJK

M

&JK

≤ m#$
opq																				∀- ∈ {1, 2, … , /} 19  

Constraints (19) ensure that the sum of setup and holding emissions from period 1 to any period t 

does not exceed the cumulative cap m#$opq. 
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3.4 Multicommodity Formulation with Emission Constraints (MC-E) 

The emission constraints for the multicommodity formulation have the same structure as BF-E. 

We replace the inventory variables s in BF with the multicommodity variables w. The 

multicommodity formulation with global emission constraints (MC-G) is as follows. 

      Objective function (9) 

s.t. (10) – (15) 

	 "m*
%6*

%

I

*JK

+ 'm*
%d*$

%&

I

$J*

I

*JK

M

&JK

+ "m*
&6*

&

I

*JK

M

&JK

+ 'm*
&d*$

K&

I

$J*

I

*JK

M

&JK

≤ mnopq					 20 	

																																																																																																						

 

Constraints (20) limit the production setup emissions, the holding emissions at the plant, the 

transportation emissions and the storage emissions at the retailers over the total time horizon of 

the problem. The rolling horizon constraints limiting the total emission of any u consecutive 

periods over the planning horizon, are formulated as follows. 

"mv
%6v

%

*

vJ*OwxK

+ 'mv
%dv$

%&

I

$Jv

*

vJ*OwxK

M

&JK

+ "mv
&6v

&

*

vJ*OwxK

M

&JK

+ 'mv
&dv$

K&

I

$Jv

*

vJ*OwxK

M

&JK

≤ mropq		 

																																																																																																																																															∀j ∈ y, y + 1, … , / 21  

Constraints (21) ensure that the total setup and holding emissions of any u periods do not exceed 

the rolling horizon cap. Similarly, the periodic emission constraints are expressed as follows. 

"m*
%6*

% + 'm*
%d*$

%&

I

$J*	

M

&JK

+ "m*
&6*

&

M

&JK

+ 'm*
&d*$

K&

I

$J*

M

&JK

	≤ m(opq																			∀j ∈ 1, 2, … , / 	 22  

Constraints (22) set a cap on the emissions of any period k over the planning horizon. The 

cumulative constraints (23) limit the cumulative emissions from period 1 to any period k at the 

warehouse and the retailers. 
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"mv
%6v

%

*

vJK

+ 'mv
%dv$

%&

I

$Jv

*

vJK

M

&JK

+ "mv
&6v

&

*

vJK

M

&JK

+ 'mv
&dv$

K&

I

$Jv

*

vJK

M

&JK

≤ m#*
opq	∀j ∈ 1, 2, … , / 23  

We introduce four types of emission constraints with different time horizon. The use of the 

constraints is not limited to emissions. They can be generalized to any other capacity or cost 

limitations over certain time horizons. For instance, the constraints can apply to the energy 

consumption in the setups and stocks over rolling horizon in a company.
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Chapter 4 
Computational Experiments on OWMR 

In this section, we report the results of the computational experiments. We validate the standard 

formulations of BF and MC in the experiments. The basic formulation serves as a comparison 

baseline, whereas the MC formulation represents the strongest formulation for the OWMR 

problem according to Cunha and Melo (2016) and Gruson et al. (2019). All formulations are coded 

in Python and solved using CPLEX 12.9.0.0 on an Intel(R) Core i7-7800X 3.5GHz machine with 

128GB. The optimality tolerance is set to 10-9 and MIP relative gap tolerance ((best bound – best 

integer) / (1-10 + best integer) to 0.0 (IBM, 2019). The other parameters remain as default. Each 

instance has a time limit of 7200 seconds.  

4.1 Computational Environment Settings and Instances 

We first perform experiments on the basic OWMR to validate the basic code and to check the 

performances of the two formulations. We carry out the computational experiments with the 

instances provided in Solyali and Süral (2012). The instances consider a distribution system of 50, 

100 and 150 retailers, and a planning horizon of 15 and 30 periods. Therefore, we have six 

combinations of retailer-horizon. For each combination, we have four groups of instances 

considering static or dynamic demand and cost patterns. We run two separate experiments with 

and without initial inventory. A standard single-item dynamic lot-sizing problem often assumes 

zero initial inventory at all facilities. However, that is rarely the case in reality. To adapt to the real 

business setting and to compare the performance of the formulations, we run the same instances 

with and without initial inventory at the warehouse. Each group consists of 10 instances. We solve 

480 instances in total. 

The demand and cost consider two patterns: time variant and time invariant. The demand of 

retailers is randomly generated within the range of [5, 100]. In the scenario without initial 

inventory, we set the initial stock to zero in all the instances. In the experiments with initial 

inventory, we set the warehouse’s initial inventory to )K
&M

&JK , i.e. the aggregated demands of all 

retailers in the first period if the demands are time invariant. If the demands are dynamic, the 
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warehouse estimates the required initial inventory to be  K%%xz
{

∙ 5. In terms of costs, the fixed cost 

at the warehouse is set in the range of [1500, 4500]; the setup cost at the retailer has the value of 

[5, 100]. Note that all the parameters mentioned above are integral. The holding costs, on the other 

hand, are decimal and time invariant. The holding cost at the warehouse is fixed at 0.5 per unit per 

period, and the cost to hold a product at the retailers ranges from 0.5 to 1.0. Table 3 shows the 

details of the parameters. 

Table	3.	Characteristics	of	the	Basic	Parameters	

Parameter Value Nature of data 
Number of retailers {15, 30, 45}  

Number of periods {15, 30}  

Demand at retailers U[5, 100] static & dynamic 

Initial inventory { )K
&M

&JK ,
K%%xz

{
×5, 0}  

Fixed cost at warehouse U[1500, 4500] static & dynamic 

Fixed cost at retailer U[5, 100] dynamic 

Holding cost at warehouse 0.5 static 

Holding cost at retailers U[0.5, 1.0] static 

 

4.2 Computational Results of OWMR 

We compare the two formulations based on the following criteria: (1) CPU time to solve the MILP 

problem, (2) CPU time to solve the LP relaxation, and (3) the gaps between the MILP and LP 

objective value. Table 4 presents the results of both formulations with and without initial 

inventory, denoted by II > 0 and II = 0, respectively. To be specific, the column MILP time refers 

to the average elapsed time (in seconds) required to solve the problem. The column LP time shows 

the mean time to solve the formulation using continuous variables instead of the Boolean setup 

decisions. The column LP gap% reflects the average LP relaxation gap, i.e. gap = (MIP solution - 

LP solution)/MIP solution. The column optimal% describes the proportion of instances that are 

solved to optimality, i.e. with a relative MIP gap of 0.0. The last column compares the MIP CPU 

time of the formulations (BF MIP time/MC MIP time). Each result is the average of 40 instances.  



28	
	

Table	4.	Computational	Results	of	BF	and	MC	

 

Our first observation aligns with the conclusions of Cunha and Melo (2016) and Gruson et al. 

(2019): the multicommodity formulation performs better than the basic formulation. BF requires 

substantially higher solution time. On the smallest instance set, i.e. the 50-retailer-15-period 

instances, BF spends 34.5 times more time to solve the MIP problem with zero initial inventory 

and 15.7 times more time on the MIP problem with inventory. Note that the difference of the 

solution time becomes larger as the instances grow larger. In addition, BF cannot solve most of 

the larger instances (100 or 150 retailers, 30 periods) within the 7,200 seconds’ time limit. 

Furthermore, MC formulation provides better linear relaxation bounds. It is noteworthy that MC 

provides very good bounds: the mean LP gap is below 0.02% in the non-initial-inventory scenario 

and below 1% with initial stock. The multicommodity formulation provides a better performance 

with respect to the solution time and linear relaxation bounds. 

The mean LP gaps obtained in the experiments are slightly smaller than the results reported in 

Solyali and Süral (2012), Zhong (2014) and Cunha and Melo (2016). The difference stems from 

the MIP gap tolerance setting of the solver. Instead of CPLEX’ default value of 1-4, we set the 

relative MIP gap tolerance to 0.0. In the computational experiments conducted, MC solves all the 

instances to optimality (relative MIP gap = 0.01. BF solves all the instances with 15 retailers to 

optimality. For the instances with 50 retailers and 15 periods, BF cannot solve 4 instances with 

initial inventory and 5 instances with initial inventory to optimality, leading to an average 

BF/MC
N T MIP time LP time LP gap% optimal% MIP time LP time LP gap% optimal% MIP time
50 15 13.6 0.001 67.9 100.0 0.4 0.6 0.004 100.0 34.5
100 15 133.7 0.006 71.0 100.0 1.1 1.7 0.018 100.0 118.5
150 15 304.8 0.010 72.2 100.0 2.0 3.1 0.015 100.0 152.6
50 30 1702.6 0.008 80.3 87.5 2.5 6.2 0.019 100.0 675.8
100 30 - - - - 8.4 19.2 0.025 100.0 -
150 30 - - - - 16.0 33.5 0.020 100.0 -

- - - - 5.1 10.7 0.017 100.0 -

BF/MC
N T MIP time LP time gap% optimal% MIP time LP time gap% optimal% MIP time
50 15 14.0 0.016 67.9 100.0 0.9 0.7 1.627 100.0 15.7
100 15 188.4 0.011 70.9 100.0 2.9 1.9 1.104 100.0 64.6
150 15 354.7 0.010 72.2 100.0 5.3 3.3 1.007 100.0 67.4
50 30 1713.5 0.009 80.3 90.0 5.8 5.9 0.888 100.0 296.3
100 30 - - - - 29.7 35.4 0.653 100.0 -
150 30 - - - - 47.9 63.6 0.572 100.0 -

- - - - 15.4 18.5 0.975 100.0 -

BF MC

Average

Average

II = 0

II > 0

BF MC
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optimality gap of 4.5% and 0.3%, respectively. Hence, MC also has a better performance with 

respect to MIP solution quality. 

The number of retailers and periods have a great impact on the solution time. Given the instances 

over the same horizon (T=15), the solution time of MC increases considerably by 1.87 and BF by 

8.82 as the number of periods doubles. Given the same number of retailers, MC spends at least 

5.39 time more CPU time to solve the instances of 30 periods than 15 periods, and BF 125 times 

more. Based on the comparison above, we have the following observations: (1) both the number 

of retailers and number of periods lead to a substantial increase in CPU time. The length of the 

planning horizon has greater impact on the solution time than the number of retailers for both 

formulations; (2) BF is more sensitive to the magnitude of the problem. 

In addition, we compare the two scenarios, with and without initial inventory. Both formulations 

use more computational time with the initial inventory. BF spends 69% more time and MC 126% 

to solve the instances with initial inventory than without initial inventory. 

In brief, the multicommodity formulation has a better performance than the basic formulation in 

the numeric experiments we conducted. It obtains stronger linear relaxation bounds and solves the 

MIP with much less computational time.
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 Chapter 5 
Computational Experiments on OWMR-E: Comparison of Four 

Types of Emission Constraints 

In this chapter, we introduce the emission parameters, particularly the method to determine the 

equivalent emission cap. Then we report the computational results of OWMR-E and compare the 

impact of the four types of emission constraints. 

5.1 Emission Parameters 

To solve the formulations with emission constraints, we introduce a new set of emission 

parameters for the instances generated by Solyali and Süral (2012). The emission parameters 

comprise the setup emissions, the holding emissions and emission caps. First, we generate the 

setup emissions and holding emissions applying the method in Zhong (2014). We assume that the 

emissions are correlated with the costs. The correlation is conceptually quantified as a 50% 

positive or negative deviation. Thus, an emission parameter can be generated using uniform 

distribution within the range of 50% - 150% of the corresponding cost parameter. For instance, 

given the transportation setup cost at a retailer r of 100$, a fixed amount of [50, 150] units of CO2 

are emitted. 

Second, we determine the five types of emission caps for each instance, namely a global cap, a 10-

period rolling horizon cap, a 5-period rolling horizon cap, a periodic cap and a string of T 

cumulative caps. We generate the caps in two steps. The first step ensures the feasibility of the 

instances, and the second creates connections between different types of emission constraints, 

which allow us to make fair comparison. The infeasibility occurs when an emission cap is too 

tight. It is most probable to occur with the periodic constraints since they are the strictest. 

Therefore, in the first step, we determine the minimum periodic cap level that guarantees the 

feasibility for the problem with periodic constraints. To find this minimum periodic cap level, we 

use a model that contains all the constraints of the OWMR problem, to make sure that all demand 

is satisfied. Besides, we define a new variable z, which is greater than the total emission in each 

period. We minimize z so that we find exactly the highest value of the total emissions in each 
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period. Using this value as our emission cap guarantees a feasible solution for the problem with 

periodic constraints.  

      Min z                               (24) 

s.t. constraints (2) - (7)  

								~ ≥ 	 "m$
%6$

% + 'm$
%0$

% + "m$
&6$

& + 'm$
&0$

&

M

&JK

																												 					∀- ∈ {1, 2, … , /} (25) 

							~ ≥ 0                              (26) 

Objective function (24) minimizes the maximum amount of emissions permitted per period. 

Constraints (25) ensure that the emission level of each period is lower than the cap. Constraint (26) 

ensures the non-negativity. We solve the model above using all the instances without time limit in 

order to obtain the optimal solutions. We can set m(opq equal to the optimal z*. 

In the second step, we calculate the global, rolling horizon and cumulative caps based on the 

calculated minimum level for the periodic cap. Under the periodic policy, a firm can emit a 

maximum amount of ~∗	units of CO2 each period. Thereby, the firm’s total emission equals to or 

is less than / ∙ ~∗ over T periods, and y ∙ ~∗ over u periods of time. Similarly, at the end of each 

period k, the firm cumulates a maximum emission amount of j ∙ ~∗. Hence, we set the emission 

caps as follows: 

Periodic emission cap m(opq = ~∗ 

Global emission cap mnopq = / ∙ ~∗ 

Rolling horizon emission cap  mropq = y ∙ ~∗ 

Cumulative emission cap [~∗, 2~∗, 3~∗, … , / ∙ ~∗] 

We set the length of rolling horizon to 5 and 10 periods, respectively. Using the two steps above, 

we incorporate the tailored emission cap parameters to each instance. We ensure the feasibility of 

the OWMR-E problem with each type of emission constraints. Knowing that the periodic emission 
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constraints are binding, we further investigate the financial impact of the other three types of 

emission constraints and compare their performance. 

 

5.2 Computational Results of OWMR-E 

We examine the two formulations for the OWMR problem with four types of emission constraints 

on each of the 480 instances (240 with initial inventory and 240 without initial inventory). The 

environment of the computational experiments is identical to the experiments on OWMR as 

described in Chapter 4. Note that we discuss the performance of OWMR-E problem with initial 

inventory in this section. The results of the experiments without initial inventory can be found in 

the appendix. 

An OWMR-E problem contains from 1 to 30 more constraints than the OWMR problem. Thus, 

intuitively the OWMR-E problem may require higher CPU time. Table 5 compares the mean CPU 

time to solve the OWMR problem and the OWMR-E problem ((CPU time of OWMR-E – CPU 

time of OWMR)/CPU time of OWMR) with two formulations using the same instances. The CPU 

time increase significantly with the emission constraints. The CPU time of MC-E is 0.43 times to 

3290 times higher than MC; the solution time of BF-E is 0.4% to 209 times higher than the BF. 

Note that BF-E has a less significant increase in CPU time because it only solves the smaller 

instances. The solution time increase is determined by the nature of the formulation, the scale of 

the problem (N and T), and most importantly the type of emission constraints. 

Table	5.	Comparison	of	CPU	Time	between	OWMR	and	OWMR-E	

 

Table 6 reports the results of MC-E and BF-E using four types of constraints. MC-E shows better 

performance with the global and the rolling horizon constraints, whereas BF-E performs better 

N T Global Rolling 10 Rolling 5 Cumulative Periodic Global Rolling 10 Rolling 5 Cumulative Periodic

50 15 1.4 4.4 6.8 1.5 20913.6 79.0 104.7 271.4 732.5 328980.3

100 15 1.9 106.1 143.7 0.8 - 132.9 441.4 9982.3 2971.1 -

150 15 66.1 49.1 123.3 9.0 - 159.0 768.2 9701.0 7820.1 -

50 30 0.2 0.4 0.4 0.1 - 110.8 224.4 3883.4 600.7 -

100 30 - - - - - 132.0 1667.7 8806.3 3299.7 -

150 30 - - - - - 43.3 2824.0 7446.0 4001.5 -

- - - - - 109.5 1005.1 6681.7 3237.6 -

BF-E/BF% MC-E/MC%

II	>	0

average%
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with periodic constraints. MC-E is better than BF-E on smaller instances but gives poorer results 

on instances of 150 retailers with cumulative constraints. Both formulations cannot solve the larger 

instances with periodic constraints within 7200 seconds. BF-E cannot solve the instances of 100 

and 150 retailers and 30 periods within the time limit. Comparing the results of the 15-period 

instances, the CPU time of BF-G is 35 times higher than MC-G; the CPU time of BF-R10 is 14 

times higher than MC-R10; BF-R5 is 1.6 times of MC-R5; and BF-C is 1.2 times of MC-C. BF-P, 

on the other hand, requires 40% less solution time than MC-P, corresponding to 1,185 seconds’ 

extra solution time on each instance. In terms of solution quality, MC-E performs better with 

global, rolling horizon and cumulative constrains. Comparing the results for all the instances with 

15 periods and the instances with 50 retailers and 15 periods, MC-E solves all but 5 instances to 

optimality with an average optimality gap of 0.01%. BF-E has 15 suboptimal solutions; the average 

optimality gap of these instances is 0.03%. BF-E provides stronger LP bounds with periodic 

constraints. It solves 90% of the instances with periodic constraints to optimality. The non-optimal 

instances have a mean optimality gap of 0.077%. MC-E only gets optimal solutions with 72.5% 

of the instances using periodic emission constraints, leading to the mean optimality gap of 0.085%.  

Comparing the two formulations, we observe that BF is less sensitive to emission constraints. 

Given the smallest instances in Table 5, the global constraints cause a 1.4% increase of CPU time 

with BF, however 79% with MC. The periodic constraints increase the CPU time dramatically by 

209 times with BF and 329 times with MC compared with the original formulation without 

emission constraints.  

Similar to the formulations without emission constraints, the scale of the problem has great impact 

on the solution time. The solution time can increase up to approximately 25 times as the number 

of the retailer doubles, and 70 times as the time scale doubles. The length of the rolling horizon 

plays an equally important role. A shorter rolling horizon of 5 periods makes the emission 

constraints much tighter. The mean solution time is approximately quadruple of the constraints 

compared with the 10-period-rolling-horizon. 
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Table	6.	Results	of	BF-E	and	MC-E	Using	Equivalent	Emission	Caps	

 

 

N T CPU time Optimal% Gap% CPU time Optimal% Gap% CPU time Optimal% Gap% CPU time Optimal% Gap% CPU time Optimal% Gap%
50 15 1.6 100.0 0.0 1.8 100.0 0.00 3.3 100.0 0.00 7.4 100.0 0.000 2934.9 72.5 0.09
100 15 6.8 100.0 0.0 15.8 100.0 0.00 294.1 100.0 0.00 89.6 100.0 0.000 - - -
150 15 13.6 100.0 0.0 45.7 97.5 0.01 515.6 92.5 0.02 416.7 97.5 0.008 - - -
50 30 12.2 100.0 0.0 18.8 100.0 0.00 230.4 100.0 0.00 40.5 100.0 0.000 - - -
100 30 68.9 100.0 0.0 525.1 95.0 0.00 2645.7 77.5 0.01 1009.9 97.5 0.02 - - -
150 30 68.7 100.0 0.0 1401.5 87.5 0.04 3616.8 60.0 0.02 1965.9 85.0 0.01 - - -

28.6 100.0 0.0 334.8 96.7 0.01 1217.6 88.3 0.01 588.3 96.7 0.01 - - -

N T CPU time Optimal% Gap% CPU time Optimal% Gap% CPU time Optimal% Gap% CPU time Optimal% Gap% CPU time Optimal% Gap%
50 15 14.2 100.0 0.00 14.6 100.0 0.00 14.9 100.0 0.00 14.2 100.0 0.000 1749.1 90.0 0.08
100 15 192.1 100.0 0.00 388.4 97.5 0.01 459.1 97.5 0.06 189.9 100.0 0.000 - - -
150 15 589.1 100.0 0.00 528.8 97.5 0.04 792.1 95.0 0.04 386.7 100.0 0.000 - - -
50 30 2023.3 92.5 0.03 2346.0 90.0 0.04 2352.3 95.0 0.05 1970.5 97.5 0.015 - - -
100 30 - - - - - - - - - - - - - - -
150 30 - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - -average

periodic

MC-E global rolling u =10 rolling u=5 cumulative periodic

BF-E global rolling u =10 rolling u=5 cumulative

average
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Figure	3.	Comparison	of	CPU	Time	between	Different	Types	of	Emission	Constraints	(40	instances,	N=50,	T=15)	

Among all types of emission constraints, the global constraints require the least solution time. This 

can be partly explained by the number of constraints. It is also due to how restrictive these 

constraints are. There is only one emission constraint in the model with global emission constraint, 

T-u+1 constraints in the scenario of rolling horizon, and T constraints in the cases of cumulative 

and periodic restrictions. The global emission constraint is the least restrictive. According to the 

experiments, the solution time of the emission constraints may rank as follows: global < rolling 

horizon (10 periods) < rolling horizon (5 periods) < cumulative and periodic. On the other hand, 

the caps have a great impact on the solution time. The periodic constraints are binding with the 

minimum periodic caps. Nevertheless, the other types of caps may not be tight in the experiments 

we conduct. We further investigate the impact of emission caps in next chapter.  

Figure 3 shows the average CPU time of both formulations with different types of emission 

constraints using the instances of 50 retailers and 15 periods. The CPU time of MC-E rises 

significantly as the number of constraints increases. Taking the CPU time of MC-G as benchmark, 

the solution time increase by 0.14, 1.06, 3,78 and 1938 times in the experiments with MC-R10, 
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MC-R5, MC-C and MC-P, respectively. BF-E, on the other hand, shows a more gradual CPU 

increase. The difference of solution time is smaller than 3% using BF-G, BF-R and BF-C. However, 

the mean solution time of BF-C including larger instances is in line with our general observation 

that BF-C has a larger CPU time than BF-G. average BF-C solution time resides between the 

elapsed time of BF-R5 and BF-P.  

Certain errors have occurred in the experiments and adjustments have been taken. In the 

experiment of MC-P, CPLEX stops due to “out of memory” error on two instances. We modify 

CPLEX’ working memory parameter and node file storage parameter to prevent the error, and re-

solve the problem with the two instances. The parameter may increase the solution time, however, 

both instances hit the 7200-second time limit with and without the same parameter, yielding the 

same optimality gap. Therefore, we keep the results. Another error is the “no solution exists” due 

to rounding issues. We relax the caps by 0.01 and re-conduct the experiment on 6 instances having 

the error. The adjustments generate a difference smaller than 0.0003% on the periodic emission 

cap and 0.004% on the global emission cap, which we consider tolerable. 

To summarize, we have compared the performance of (1) OWMR with and without emission 

constraints, (2) the two formulations BF-E and MC-E, (3) the four types of emission constraints. 

The results indicate that OWMR-E takes more solution time than OWMR. MC-E demonstrates 

better performance than BF-E in general. However, as there are more emission capacity constraints, 

MC-E provides a poorer performance. To be specific, the best formulations are MC-G, MC-R5, 

MC-R10 and BF-P. MC-C performs better on instances of 50 and 100 retailers and BF-C is a better 

option for instances of 150 retailers. The CPU time of the four types of emission constraints ranks 

as follows: periodic > cumulative > 5-period rolling horizon > 10-period rolling horizon > global 

constraints.  

5.3 Comparison of Four Types of Emission Constraints 

In the previous section, we have compared the performance of the four types of emission 

constraints. In this section, we analyze the financial and environmental impacts of the four types 

of emission constraints. 
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We first compare the financial impact of each type of constraint. For each instance, we compute 

the minimum total cost (min TC) by solving a standard OWMR problem without emission 

constraints. We then solve the OWMR-E problems for the total cost with each type of emission 

constraints (TC-E). If the instance is solved to optimality and TC-E is equal to TC, it suggests that 

the emission constraints have no impact on the costs. In order to have a fair comparison, we only 

consider the instances that are solved to optimality with all types of emission constraints. Table 7 

depicts the proportion of instances that have binding emission constraints using MC-E. 

Table	7.	Proportion	of	Binding	Emission	Constraints	Using	Equivalent	Emission	Caps	

 

All the periodic emission constraints have an impact on total cost. 97% of the cumulative 

constraints are binding, and the proportion grows to 100% in larger instance groups. 66% of the 

5-period rolling horizon constraints have an impact on costs, however, only 25% of the 10-period 

rolling horizon constraints and 0.95% global constraints are binding. Recall that the MC-P deals 

with the minimum emission level for the periodic cap, whereas the caps of the other emission 

constraints may not be tight.  

N T Global Rolling 10 Rolling 5 Cumulative Periodic

50 15 0.0 2.5 22.5 90.0 100.0

100 15 2.5 25.0 87.5 100.0 -

150 15 0.0 43.6 91.9 100.0 -

50 30 0.0 10.0 37.5 92.5 -

100 30 3.2 36.8 77.4 100.0 -

150 30 0.0 34.3 79.2 100.0 -

Average 1.0 25.4 66.0 97.1 -

% Binding
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Table	8.	Financial	Impact	of	Four	Types	of	Emission	Constraints	–	Equivalent	Emission	Caps	

 

Knowing the proportion of instances with binding emission constraints, we evaluate their financial 

impact explicitly. We calculate the average cost increase rate (TC-E – TC)/TC of each instance 

group using each type of emission constraints. The global emission constraints lead to a very small 

increase of 0.113%. The rolling horizon also result in a small impact. Despite the fact that 66% of 

the 5-period rolling horizon constraints cause extra costs, the costs only increase by 1.23% on 

average. Similarly, 97% cumulative constraints have financial impact, but the average cost 

increase is less than 5%. Notably, the periodic constraints cause a significant cost increase of 31%.  

Based on the analysis, we have the following observations. Observation 1: The different types of 

emission constraints can have very different impacts on costs. Two different types of constraints 

can incur up to 31% difference in total cost. Observation 2: the periodic emission constraints have 

greatest impact on costs. On the contrary, the global constraints show little influence on total cost. 

Observation 3: the financial impact of rolling horizon constraints is associated with the length of 

the rolling horizon. The shorter the rolling horizon is, the higher costs the constraints induce. 

 

Periodic N T Global Rolling 10 Rolling 5 Cumulative Periodic

100.0 50 15 0.000 1.22 1.2 6.90 30.8

- 100 15 0.001 0.76 1.9 6.64 -

- 150 15 0.000 0.96 1.2 0.04 -

- 50 30 0.000 0.04 0.7 2.84 -

- 100 30 0.676 0.44 1.4 3.50 -

- 150 30 0.000 0.64 1.0 2.09 -

- 0.113 0.68 1.2 3.67 -

% Binding % Cost increase
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Chapter 6 
Analysis of Emission Trade-offs 

In this chapter, we explore the trade-offs between the total cost and the emission of each of the 

four types of emission constraints separately. The global, rolling horizon and cumulative emission 

constraints in Section 5.1 do not necessarily have any impact on the total cost because the caps 

may not be binding. Therefore, in order to analyze the trade-offs, we need to establish again the 

minimum emission level for each type of the emission caps. We introduce the optimization models 

to determine the minimum emission level for each type of the emission constraints. 

6.1 Analysis of Cost-emission Trade-offs 

It is easy to determine the minimum emission level for the global caps. We can simply minimize 

the total emission without any cost constraint. However, it becomes more complicated to determine 

the minimum emission level for the other types of caps. As explained in Section 5.1, to determine 

the minimum periodic cap level, we define a new variable z, which is larger than the total emission 

in any period t. Let’s define !" as the total emission in period t. We then minimize z so that we can 

find the highest value of the total emission in each period. Using this value as the periodic emission 

cap, we can guarantee a feasible solution for the OWMR-P problem. To determine the minimum 

emission level for the global and rolling horizon constraints, we now define the variable z as 

follows: 

Global cap # ≥ !% + !' +	!) +	…	+ !+   

Rolling horizon cap (u=10) # ≥ 	!% + !' +	!) +	…	+ !%,   

# ≥ !' + !) +	!- + ⋯	+ !%%   

 … 

# ≥ !+/0 + !+/1 +	!+/2 +	…	+ !+   
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Rolling horizon cap (u=5) # ≥ !% + !' +	!) + !- + !3																										 

# ≥ !' + !) +	!- + !3 + !4 

… 

# ≥ !+/- + !+/) +	!+/' + !+/% + !+ 

To determine the minimum rolling horizon emission level, we first construct a model which 

comprises all the constraints in the standard OWMR problem, i.e. constraints (2) – (7). This step 

guarantees that all demand is satisfied. We then set the variable z larger than the total emission of 

any u consecutive periods, as shown in constraints (27). Constraint (26) guarantees the non-

negativity of z. The objective function (24) minimizes z, so that we can find the highest value of 

the total emission during any consecutive u periods. 

Objective function (24) 

s.t. constraints (2) – (7) 

								# ≥ (6!7,87, + 9!7,
"

7:"/;<%

=7,) + (
"

7:"/;<%

?

@:%

6!7@87@ + 9!7@=7@)																												∀B ∈ {E, E + 1, … H}		(27) 

      constraint (26) 

As discussed, we can consider the periodic emission constraints and global emission constraints 

as variations of the rolling horizon constraints. When u equals to 1, constraints (27) are equal to 

periodic emission constraints; when u equals to T, constraint (27) becomes equal to the global 

constraint. We solve the model using all the instances with the value of u to be 5, 10, T, respectively. 

Thus, we capture the tightest rolling horizon and global emission caps for each instance.  

However, this method cannot be applied to the cumulative emission caps. The cumulative 

constraints require an incremental set of T different caps instead of one fixed right-hand-side 

constant for multiple constraints. Each cap corresponds to a specific period. Table 9 lists the 

emission constraints for a OWMR-E problem with 10 periods as an example. In the example, the 
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global emission cap is 10, periodic cap is 1, and rolling horizon cap is 5. On the other hand, the 

cumulative caps are the tuple (1, 2, 3, …, 10).  

Table	9.	Example:	Different	Types	of	Emission	Caps	

Global Rolling horizon 5 Periodic Cumulative 
!% + !' + !) + ⋯+ !%, ≤ 10 !% + !' + !) + !- + !3 ≤ 5 

 

!% ≤ 1 !% ≤ O 

 !' + !) + !- + !3 + !4 ≤ 5 

 

!' ≤ 1 !% + !' ≤ P 

 !) + !- + !3 + !4 + !2 ≤ 5 

 

!) ≤ 1 !% + !' + !) ≤ Q 

 … … … 

 !4 + !2 + !1 + !0 + !%, ≤ 5 

 

!%, ≤ 1 !% + !' + !) + ⋯+ !%, ≤ OR 

 

Recall that the cumulative caps must satisfy the following conditions in order to lead to a feasible 

instance: 

STU	1 ≥ !% 

STU	2 ≥ !% + !' 

STU	3 ≥ !% + !' + !) 

… 

STU	H	 ≥ !% + !' + !) +⋯+ !+ 

To generate the set of cumulative caps, we construct a sequence of T models and solve them 

iteratively. Each model provides the minimum level of a cumulative cap in a specific period. The 

model is based on the decisions made in the previous round. Figure 4 illustrates the dynamics of 

the problem. Model 1 seeks the minimum amount the company can emit in period 1. By solving 

the model, we obtain the minimum emission cap in period 1 and a set of decisions made, such as 

whether a production setup occurs in period 1. These decisions are fixed in model 2, which 

continues to search for the minimum cumulative emission allowed for period 1 and 2. Likewise, 
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we solve model 2, and then fix its outputs in model 3. The process iterates until model T. Thus, we 

ensure the connection of the models and the coherence of the decisions. At the end of the 

experiments, we obtain the minimum emission level of all the T cumulative caps.  

 

 

We then re-solve OWMR-E with new sets of emission caps to explore the cost-emission trade-

offs. For the sake of efficiency, we select the best forming formulations in Section 3.2.2, namely 

MC-G, MC-R, MC-C, BF-P. Moreover, we focus on the smaller instance group of 50 retailers and 

15 periods, since most of these instances can be solved within 7200 seconds. In the experiments, 

we first set the emission caps to their minimum level, and then gradually increase the emission 

caps by 5% in each experiment, thereby resolving the problems. Thus, the right-hand-side 

constants of the emission constraints are in the range of [minimum cap level, 200%×minimum cap 

level]. We run 21 experiments on each problem (MC-G, MC-R5, MC-R10, MC-C, BF-P). In the 

experiments of MC-G, MC-R and MC-C, we solve all the instances to optimality. In the 

experiments of BF-P, half of the instances cannot be solved to optimality, particularly when the 

emission caps are 5% - 15% higher than their minimum level. 4.3% of the solutions are suboptimal 

Figure	4.	Process	to	Determine	the	Minimum	Cumulative	Emission	Level 
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and these solutions lead to an average optimality gap of 0.04%. Since the gap is insignificant, we 

use the results for further analysis. 

We first examine the computational results with minimum emission capacity. Table 10 

demonstrates the financial impacts of the tightest emission caps with 40 instances of 50 retailers 

and 15 periods. The row %TC displays the additional costs induced by the emission constraints, 

i.e. (TC-E – min TC)/min TC. 

Table	10.	Financial	Impact	of	Four	Types	of	Emission	Constraints	–	Minimum	Emission	Cap	Level	

  global rolling 10 rolling 5 cumulative periodic 
%TC 2.9 8.2 8.4 49.8 30.8 

 

Observation 2 indicates that the periodic constraints have the greatest impact on costs. However, 

the results in Table 10 are inconsistent with the observation. Since we now set all the emission 

caps to their minimum level, the cumulative emission constraints far exceed the others in cost. 

MC-C yields approximately 50% more costs than the cost-optimization scenario. The periodic 

constraints cause 31% more costs compared to minimum total cost; the rolling horizon constraints 

induce 8% extra costs and the global constraints incur less than 3% additional costs. With the 

tightest caps, two different types of emission constraints can induce a cost difference of up to 47%.  

Figure 5 illustrates the trade-off curves of all types of emission constraints. Each curve synthesizes 

the results of 40 instances with 50 retailers and 15 periods. The curves are piecewise convex. All 

the curves depict that the total cost decreases as we increase the emission caps. The decrease is 

fastest when the emission caps are between their minimum level and the minimum level plus 5% 

increase. It is noteworthy that the cost increase dramatically plummets from 50% to 9% with the 

cumulative constraints for the tightest emission level. The global constraints lead to the lowest 

costs in most of the cases. Although the cumulative constraints induce the highest costs when the 

caps are tightest, their total cost becomes lower than the periodic constraints’ when we increase 

both caps by 4%. 
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Figure	5.	Cost-emission	Trade-off	Curves	of	Four	Types	of	Emission	Constraints	(40	instances,	N=50,	T=15)	

Figure 6 displays the trade-off curve of the global emission constraints. The total cost with global 

constraints is low compared to the other types of constraints. When we set the emission cap to its 

minimum level, the total cost is 2.87% higher than the minimum total cost. As we increase the cap 

by 10%, the total costs become equal to the minimum total cost.  

 

Figure	6.	Cost-emission	Trade-off	Curve	of	Global	Constraints	(40	instances,	N=50,	T=15)	

Figure 7 shows the trade-off curve of the rolling horizon constraints with 10 periods. The total cost 

plunges from 8.17% to 1.69% as the emission cap increases by 5%. And the emission constraints 

become not-binding when the cap increases by 25%.  
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The drop of total cost is less sharp in the case of 5-period rolling horizon constraints, as shown in 

Figure 8. The total cost declines by less than 5% and reaches 0% when the cap increases by 30%.  

The decrease in costs becomes less steep as the rolling horizon window becomes longer. This can 

be further supported by the curve of the periodic emission constraints in Figure 9. The total cost 

drops from 31% to 23% in the first range (0-5% increase in caps), and it gradually declines to 0% 

as we increase the cap by 95%.  

 

Figure	7.	Cost-emission	Trade-off	Curve	of	10-period	Rolling	Horizon	Emission		Constraints	(40	instances,	N=50,	T=15)	

 

Figure	8.	Cost-emission	Trade-off	Curve	of	5-period	Rolling	Horizon	Emission	Constraints	(40	instances,	N=50,	T=15)	
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Figure	9.	Cost-emission	Trade-off	Curve	of	Periodic	Emission	Constraints	(40	instances,	N=50,	T=15)	

Figure 10 shows that the tightest cumulative caps lead to 50% cost increase. As we increase the 

emission caps by 5%, the cost increase plummets to 9%. The cost increase becomes slower as we 

increase the emission caps. The cumulative constraints still impact the cost when we double the 

emission caps.  

 

Figure	10.	Cost-emission	Trade-off	Curve	of	Cumulative	Constraints	(40	instances,	N=50,	T=15)	

The analysis of the trade-off curves provides the following observations. Observation 4: the 

emission caps can have significant impact on total costs. The tighter the caps are, the higher costs 

they induce. Observation 5: the total cost increases at different rate as we tighten the emission 

caps. The cost increases fastest when the emission caps are between their minimum level and 5% 

higher. Besides, we complement observation 2 as follows: the cumulative emission constraints 

with tightest caps generate the highest cost. The periodic emission constraints induce higher cost 

than the other types of constraints within the relaxation range of 4% to 95%. On the other hand, 

the global constraints provide the lowest costs in most of the cases. 
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6.2 Analysis of Trade-offs between Total Emission and Emission Caps 

We have analyzed the financial impacts of the emission constraints. In this section, we briefly 

analyze the trade-off between total emission and emission caps of each of the four types of 

emission constraints.  

In the experiments in Section 6.1, we have solved the OWMR-E problem with each of the four 

types of emission constraints, using the minimum cap level and then gradually increasing the 

emission caps by 5% in each experiment. In the experiments, besides the total cost, we have also 

calculated the total emission induced by each type of emission constraints. We then calculate the 

average total emission of 40 instances with 50 retailers and 15 periods for each of the four types 

of emission constraints. Figure 11 illustrates the trade-off curves between the total emission and 

the emission caps for each type of the emission constraints.  

 

Figure	11.	Trade-off	Curves	Between	Emission	Caps	and	Total	Emissions	(40	instances,	N=50,	T=15)	
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total emission than the other types of constraints. As we increase all the emission caps by more 

than 75%, all the four types of emission constraints lead to the similar total emission level, which 

is 3.4% higher than the minimum total emission. 

Based on the above analysis, we provide the observation 7: the global emission cap can effectively 

reduce the total emission. However, a tighter rolling horizon, cumulative and periodic cap can 

paradoxically lead to higher total emission. Combining the cost-emission trade-off analysis in 

Section 6.1 and the analysis of the trade-offs between total emission and emission caps in this 

section, we have the observation 8: the cumulative emission constraints can lead to the highest 

total cost and highest total emission at the same time. The periodic constraints lead to higher total 

cost and total emission than all the other types of emission constraints when we increase all the 

emission caps by 5-45%.
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Chapter 7 
Conclusions 

In this thesis, we consider a one-warehouse multi-retailer problem. We model the problem with 

two formulations: the basic formulation and the multicommodity formulation. Computational 

experiments with standard instances prove that the multicommodity formulation performs better. 

It provides stronger linear relaxation bounds and solve the MIP in shorter solution time.  

To address the growing concerns about carbon footprint, we extend the formulations by adding 

the global, rolling horizon, cumulative and periodic emission constraints, respectively. Due to the 

difficulty to collect emission data, we generate the emission factors by estimation. Furthermore, 

we introduce two methods to obtain the emission caps for different types of emission constraints. 

The first method provides the equivalent emission caps for each of the four types of emission 

constraints, based on the minimum periodic emission level. By using these caps, we guarantee the 

feasibility of the OWMR-E problem. Furthermore, this allows us to fairly compare the four types 

of emission constraints. The computational results indicate that the model with the periodic 

constraints requires the longest CPU time, followed by the cumulative, the rolling horizon and the 

global constraints, respectively. With regard to the two different formulations, the following 

formulations provide better performance: BF-P, MC-C, MC-R and MC-G.  

The second method determines the minimum emission level for each of the four types of emission 

constraints. By setting the emission caps to the minimum emission level, we ensure the feasibility 

of the OWMR-E problem, and we guarantee that the emission constraints have an impact on total 

cost. By gradually increasing the emission caps, we analyze the trade-off curves between the total 

cost and the emission caps for each type of the emission constraints. Furthermore, we briefly 

analyze the trade-off curves between the total emission and the emission caps. Certain observations 

emerge from the analysis. First of all, as we increase the emission caps for each type of the 

emission constraints, the total cost decreases. Second, the cumulative emission constraints lead to 

the highest total cost and total emission when the emission caps are set to the minimum level. The 

global emission constraints, on the other hand, induce the minimum total emission when the global 

caps are tightest. The periodic emission constraints induce both higher total cost and higher total 
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emission compared to the other types of emission constraints when the emission caps are 5% to 

45% higher than the corresponding minimum emission level. 

The OWMR problem with four types of emission constraints could be interesting for different 

actors. It could help the policymakers to set more achievable reduction targets for the business 

entities. Note that the OWMR-E formulations can adapt to different policies by adding the 

emission costs in the objective function and/or additional emission permits in the capacity 

constraints. The models could be equally interesting for companies. Practitioners could plan the 

production while considering the emission caps set by the legislations using the models we have 

proposed. 

This study is limited by the absence of emission data. Due to the difficulty to collect emission data, 

we assume the correlation between emission and cost parameters, which can cause bias in the 

analysis. Fortunately, with the enforcement of the emission regulations, more companies take their 

social responsibilities and invest in tracking carbon footprint. New tools are developed to measure 

the carbon performance. These efforts can facilitate the future studies in lot-sizing models with 

emission concerns. Moreover, there are other methods to determine the minimum cumulative 

emission level. Recall that we determine the minimum cumulative emission level by minimizing 

the total emission in period 1 and then solve a series of optimization models based on the decisions 

made in previous periods. Using the minimum cumulative emission levels obtained from these 

models, the cumulative emission constraints induce much higher total costs than the other types of 

emission constraints. As an alternative, we can simply set the minimum cumulative emission level 

of the last period to the minimum total emission. Using this method, the cumulative emission 

constraints will lead to the same results as the global emission constraints. They will induce low 

total cost and low total emission. 

As discussed, future research might explore the adaption of regulations. The OWMR-E problem 

can integrate the carbon tax and cap-and-trade policies using four types of emission constraints. 

Another progression of this work is to model the OWMR problem with four types of emission 

constraints using the multicommodity echelon stock formulation, which provides better 

performance with capacitated instances according to Gruson et al. (2019). 
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Appendix 

Appendix 1. The Computational Results of OWMR-E without Initial Inventory 

 

N T CPU time Optimal% Gap% CPU time Optimal% Gap% CPU time Optimal% Gap% CPU time Optimal% Gap% CPU time Optimal% Gap%

50 15 1.1 100.0 0.0 1.1 100.0 0.00 2.7 100.0 0.00 19.2 100.0 0.000 3376.0 62.5 0.1

100 15 3.4 100.0 0.0 5.4 100.0 0.00 42.3 100.0 0.00 525.5 97.5 0.003 - - -

150 15 6.4 100.0 0.0 11.7 100.0 0.00 80.1 100.0 0.00 504.0 97.5 0.015 - - -

50 30 16.2 100.0 0.0 10.2 100.0 0.00 195.4 100.0 0.00 135.6 100.0 0.000 - - -

100 30 82.9 100.0 0.0 218.9 100.0 0.00 1358.2 100.0 0.00 1502.0 97.5 1.279 - - -

150 30 131.2 97.5 0.0 588.1 92.5 0.05 2706.4 82.5 0.05 2333.0 90.0 0.001 - - -

40.2 99.6 0.0 139.2 98.8 0.01 730.9 97.1 0.01 836.6 97.1 0.216 - - -

N T CPU time Optimal% Gap% CPU time Optimal% Gap% CPU time Optimal% Gap% CPU time Optimal% Gap% CPU time Optimal% Gap%

50 15 10.0 100.0 0.00 9.4 100.0 0.00 11.6 100.0 0.00 11.5 100.0 0.00 1633.6 85.0 0.1

100 15 96.5 100.0 0.00 117.5 100.0 0.00 174.5 100.0 0.00 425.2 97.5 0.01 - - -

150 15 441.5 100.0 0.00 482.3 100.0 0.00 548.0 100.0 0.00 292.4 97.5 0.04 - - -

50 30 690.4 97.5 1.08 1474.9 95.0 4.60 1339.6 95.0 4.43 849.2 95.0 1.95 - - -

100 30 - - - - - - - - - - - - - - -

150 30 - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - -

periodicMC-E global rolling u =10 rolling u=5 cumulative

periodic

average

average

BF-E global rolling u =10 rolling u=5 cumulative



ii	
	

Appendix 2. Part of the Codes for BF 

The first method constructs the basic LP model; the second method set the setup variables to binary 

and the inventory variables to integer, so the problem become MIP; the last method set the 

parameters in the objective function and the constraints. 

class BF(): 

    def __init__(self, prob, N, T): 

        prob.objective.set_sense(prob.objective.sense.minimize) 

 

        ## Variables 

        # create variable indices 

        def varind(var, i, t): 

            return var*(N+1)*T + i*T + t 

        varnum = 3 

        y = 0 

        q = 1 

        s = 2 

 

        self.colcnt = varnum*(N+1)* T 

        obj = [0] * self.colcnt 

        lb = [0] * self.colcnt 

        ub = [0] * self.colcnt 

        name= [0]* self.colcnt 

 

        # add variables 

        for i in range(N+1): 

            for t in range(T): 

                obj[varind(y, i, t)] = 0 

                lb[varind(y, i, t)] = 0 

                ub[varind(y, i, t)] = 1 

                name[varind(y, i, t)] = "y_" + str(i) + str(t+1) 

 

                obj[varind(q, i, t)] = 0 

                lb[varind(q, i, t)] = 0 

                ub[varind(q, i, t)] = cplex.infinity 

                name[varind(q, i, t)] = "q_" + str(i) + str(t+1) 
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                obj[varind(s, i, t)] = 0 

                lb[varind(s, i, t)] = 0 

                ub[varind(s, i, t)] = cplex.infinity 

                name[varind(s, i, t)] = "s_" + str(i) + str(t+1) 

 

        prob.variables.add(obj=obj, ub=ub, lb=lb, names=name) 

 

        ## Warehouse inventory balance constraint 

        #  If t=1: q_0_1 - s_0_1 - (q_1_1+...+q_r_1) = -s_0_0 

        self.cst1 = [0, "data.s_i_0[0]"] 

        lin = [[varind(q,r,0) for r in range(1, N+1)] + [varind(s,0,0), varind(q,0,0)], [1]*(N+1)+[-1]] 

        prob.linear_constraints.add(lin_expr=[lin], 

                                    senses="E")  

        #  Else: s_0_(t-1) + q_0_t - s_0_t - (q_1_t+...+q_r_t) = 0 

        lin = [] 

        for t in range(1,T): 

            lin += [[[varind(q,r,t) for r in range(1, N+1)] + [varind(s,0,t), varind(q,0,t), varind(s,0,t-1)], [1]*(N+1)+[-1, -1]]] 

        prob.linear_constraints.add(lin_expr=lin, 

                                    senses="".join("E"*(T-1)), 

                                    rhs=[0]*(T-1)) 

         

        # Retailers' inventory balance constraint 

        # if t=0: q_r_1 - s_r_1 = D_r_1 - s_r_0 

        cst2 = prob.linear_constraints.get_num() 

        self.cst2 = [] 

        lin = [] 

        for r in range(1, N+1): 

            lin += [[[varind(s,r,0), varind(q,r,0)], [-1, 1]]] 

            self.cst2 += [[cst2, "data.D_i_t["+str(r)+'][0] - data.s_i_0['+str(r)+']']] 

            cst2 += 1 

        prob.linear_constraints.add(lin_expr=lin, 

                                    senses="".join("E"*N)) 

        # else: s_r_t-1 + q_r_t - s_r_t = D_r_t 

        cst3 = prob.linear_constraints.get_num() 

        self.cst3 = [] 

        lin = [] 

        for r in range(1, N+1): 

            for t in range(1,T): 
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                lin += [[[varind(s,r,t-1), varind(q,r,t), varind(s,r,t)], [1,1,-1]]] 

                self.cst3 += [[cst3, "data.D_i_t["+str(r)+']['+str(t)+']']] 

                cst3 += 1 

        prob.linear_constraints.add(lin_expr=lin, 

                                   senses="".join("E"*N*(T-1))) 

 

        ## Forcing production/delivery constraint  

        # q_i_t <= sum(D_i_tT) *  y_i_t 

        cst4 = prob.linear_constraints.get_num() 

        self.cst4 = [] 

        for i in range(N+1): 

            for t in range(T): 

                self.cst4 += [[cst4, [varind(q,i,t), varind(y,i,t)], [-1, "sum(data.D_i_t["+str(i)+']['+str(t)+":data.T])"]]] 

                cst4 += 1 

        prob.linear_constraints.add(senses="".join("G"*(N+1)*T), 

                                    rhs=[0]*(N+1)*T) 

         

    def mip(self, prob, N, T): 

        allvars = list(range(self.colcnt)) 

        ct = "B" * (N+1) * T + "I" * (N+1) * T * 2 

        prob.variables.set_types([(allvars[x], ct[x]) for x in range(self.colcnt)]) 

         

    def parameters(self, prob, data): 

        def varind(var, i, t): 

            return var*(data.N+1)*data.T + i*data.T + t 

        varnum = 3 

        y = 0 

        q = 1 

        s = 2 

         

        ## objective function 

        obj = [] 

        for i in range(data.N+1): 

            for t in range(data.T): 

                obj += [[varind(y,i,t), data.FC[i][t]]] 

                obj += [[varind(s,i,t), data.HC[i]]] 

        prob.objective.set_linear(obj) 
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        ## constraints 

        # Warehouse inventory balance constraint 

… (set the parameters to the constraints) 


