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Résumé 

Dans notre étude empirique, nous mettons en œuvre le modèle de taux d'intérêt à facteur unique 

Vasicek pour effectuer des stratégies d’immunisation en utilisant un portefeuille en barbelé sur les 

données de la courbe de rendement fédérale dans un cadre moyenne-variance. Les statistiques de 

performance des stratégies traditionnelles basées sur la durée qui incluent la durée de Macaulay et 

la durée stochastique n'ont pas surpassé les performances de la stratégie de variance minimale 

utilisant le portefeuille en barbelé. Cependant, la performance de la durée de Macaulay était plus 

proche de la stratégie à variance minimale que la stratégie basée sur la durée stochastique. Les 

résultats obtenus à partir de l'analyse hors échantillon et des contrôles robustes ont réitéré une 

conclusion similaire. 

 

Mots clés: Analyse empirique, stratégie d'immunisation, analyse de moyenne-variance, modèle 

Vasicek, stratégie en barbelé, stratégie d'immunisation à variance minimale, stratégies basées sur la 

durée 

Méthodes de recherche: Étude empirique 
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Abstract 

In our empirical study, we implement the Vasicek single-factor interest rate model to perform 

immunization strategies using a barbell portfolio on the Federal yield curve data under the mean-

variance framework. The performance statistics of traditional duration-based immunization 

strategies which include the Macaulay’s duration and stochastic duration have failed to 

outperform the performance of minimum-variance strategy using the barbell portfolio. However, 

the performance of Macaulay’s duration was closer to the minimum-variance immunization 

barbell strategy compared to the stochastic duration-based strategy. The results obtained from the 

out-of-sample analysis and the robust checks have reiterated a similar conclusion. 

Keywords: Empirical analysis, immunization strategy, mean-variance analysis, Vasicek model, 

barbell strategy, minimum-variance immunization strategy, duration-based strategies 

Research methods: Empirical study 

The analyses contained in this thesis are based on the research ideas developed by Professors 

Pascal François and Franck Moraux. I acknowledge the right for them to use these analyses for 

producing research articles in which I will not take part.
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1. Introduction 

Immunization essentially means protection of one’s financial position from the impact of interest 

rate fluctuations in the dynamic environment. Immunization strategies are implemented tactically 

with the help of active and passive investment strategies to exploit the interest rate movements 

and use it for one’s advantage to earn profits rather than let the interest rates impact negatively. 

Short-horizon and long-horizon assets can be traded when interest rates are on the rise or fall to 

lock in the position regardless of the interest rates. Hence, immunization strategies are based on 

the trade-off between resale price risk and reinvestment risk. 

 

Immunization strategies are a common way where multiple stakeholders such as banks and non-

banking financial companies (NBFCs) hedge their financial position against the interest rate 

movements. Banks use immunization strategy to safeguard their net worth and protect their clients. 

On the other hand, NBFCs such as pension funds use immunization since they guarantee their 

clients to return the money after a certain period. An entity can make use of an immunization 

strategy to their advantage and make profits but if implemented incorrectly, it can substantially 

degrade their portfolio. In theory, a 100% immunized position implies there is no impact on the 

portfolio, irrespective of the future interest rates. 

 

In the context of this paper, we use immunization for a bond portfolio. The most common method 

is the duration-based immunization. Duration is the weighted average of the bond’s cash flow 

dates over its life.  It is a better measure to capture the bond’s volatility compared to just taking 
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the maturity of the bond. Thus, duration-based immunization strategies essentially immunize the 

bond portfolio such that the duration of the bond portfolio should match with the investment 

planning horizon. For instance, zero-coupon bonds with a similar maturity to the bond portfolio 

can help hedge fixed-income portfolios. 

 

In this paper, we will particularly study duration-based immunization strategies using a barbell 

strategy. A barbell strategy is hedging the portfolio with the help of short-term maturity bonds 

and a long-term maturity bonds with no investment in the intermediate horizon bonds. The whole 

idea behind implementing a barbell strategy is to get the advantage of investing in short-term 

structures with the help of rolling horizon bond (i.e. we can reinvest frequently) till the planning 

horizon and the benefit of long-term structures since it compensates the investor with high yields 

due to the greater risk that it inherits compared to the short-term bonds. This strategy is an active 

form of portfolio management which helps with risk diversification, liquidity and flexibility but 

at the same time allows earning higher yields by investing in the long-term bonds.  

 

François and Moraux (2008) have performed mean-variance analysis of immunization strategy 

under a two-factor model where they implement static and dynamic immunization strategies. 

Under the static immunization strategy, the result states that traditional and stochastic, both fail 

to be on the efficient frontier set of horizon. However, under dynamic immunization strategy, 

traditional and stochastic perform on the efficient frontier set of horizon. Hence, they conclude 

that the effective immunization performance is influenced by the type of strategies and not based 

on duration. 
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Bond portfolio optimization and duration-constrained mean-variance optimization is developed 

using dynamic factor models by Caldeira et al. (2016) in their research. They benchmark their 

results against different bond portfolio strategies such as bullet, barbell and ladder that are 

popular among bond desks. Their approach consists in implementing a dynamic portfolio 

selection rule by picking the policy with the highest probability of outperforming other policies, 

one month in advance. The proposed strategy outperformed the traditional strategies that are used 

in the fixed-income market in the space of Sharpe ratio and mean excess return. 

 

Agca (2005) performs Monte Carlo simulations on a term structure that evolves to a Heath-

Jarrow-Morton (1992). Agca obtains that implementing the correct term structure model and 

corresponding interest rate risk measure is not an effective way compared to using the right 

immunization strategy and portfolio formation when the objective is immunization. She further 

states that when the parameters of HJM model need to be estimated then traditional risk measures 

outperform HJM risk measures. 

  

Fooladi and Roberts (1992) uses Canadian bond data over a period of approximately 20 years 

and concludes in their research that duration-matching strategies are better at immunizing interest 

rate risk compared to maturity matching strategies of the bond to the planning horizon. The results 

hold even in the absence of the term structure fitting. The various types of strategies implemented 

in the research paper are barbell, bullet and ladder. They further conclude that the duration-

matching strategy outperforms partly due to the portfolio design. 
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Soto (2004) studies various duration-based strategies and portfolio strategies to immunize the 

short-term horizon Spanish government bonds over a period of 7 years. The empirical study 

portrayed that duration-based strategies outperforms partly due to number of risk factors 

compared to the selected model. Furthermore, traditional immunization strategies perform better 

if realistic strategies are added. Also, three-factor immunization strategy i.e. only duration-

matching bullet and barbell portfolios including a maturity bond combined with risk factor with 

the common factor model can be used for effective interest rate risk management. 

 

Mann and Ramanlal (1997) examine the relative performance of yield curve strategies that 

includes barbell, bullet and ladder strategies when the yield curve changes in level, slope and 

curvature. They find out that for downward shift of the yield curve, short-term bullet portfolio 

performs better compared to short-term barbell portfolios. The opposite is true for long-term 

portfolios. This result holds irrespective of the amount of shift, shape and coupon level in the 

yield curve.  

 

Gultekin and Rogalski (1984) test the implications of alternative duration measures in terms of 

explaining the return variance of U.S government bonds. They find that none of the duration 

measures analyzed are superior to the others. Babble (1983) finds that simple duration matching 

strategies perform as well as the proposed alternatives. Ilmanen (1992) finds that simple duration 

measures explain 80% to 90% of the return variance of U.S. government bonds. Rutkowski 

(1999) and Andersson and Lageras, (2013) have also studied properties of the strategy consisting 

in rolling over one dollar in zero coupon bonds during a given time period. The user of such a 
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strategy typically faces a reinvestment risk. Thus, we go a step further by adding the holding of 

a bond for the same time period. 

 

The prior work has mostly measured immunization performance ex-post using bond data over a 

sample period. In this paper, we delve deep into measuring the immunization performance ex-

ante. We analyze immunization-based strategy returns using barbell strategy within the mean-

variance framework. This strategy captures the fundamental issue of trading off reinvestment risk 

and resale price risk of the bond coupons.  

 

First, in section 2, we state all the model assumptions and limitations that our mean-variance 

study of immunization strategies is based on. Subsequently, in section 3 we perform an in-sample 

analysis with the US data yield curves for zero-coupon bonds for immunization-based strategies 

using a barbell portfolio under the Vasicek term structure model. The mean, variance and Sharpe 

ratios of the strategy returns provide a base for comparison between the different strategies across 

multiple investment planning horizons. For the in-sample performance analysis, we require some 

base case parameters of the Vasicek model fitted to the data. Here, we rely on the approximate 

linear Kalman filtering applied to exponential-affine term structure models as estimated by 

François and Moraux (2008). Furthermore, for better visualization and intuition, we showcase 

the mean-variance of the immunization strategies on the efficient frontier curve. The result that 

we obtain from the in-sample performance is that Macaulay’s duration-based strategy and 

stochastic duration-based strategy are not the most mean-variance efficient strategies. We also 

highlight the most mean-variance efficient strategy that provides maximized returns for a given 

level of risk that we state as minimum-variance immunization strategy. 



17 
 

Further, in section 4 we conduct out-of-sample performance analysis of immunization-based 

strategies using a barbell portfolio. However, in this case, we do not assume any parameters, but 

we estimate the parameters historically from one part of the data and implement this on the other 

part of the data yearly. The idea behind out-of-sample analysis is that any trader can implement 

these strategies in the real world with historical estimation.  

 

Additionally, in section 5 we compute robustness checks using yield curves for zero-coupon 

bonds from Bank of Canada. The motivation behind the robustness check is to make sure that the 

immunization strategies using a barbell portfolio behaves in an unbiased fashion on different data 

that has different characteristics. The robustness performance is conducted similarly as the in-

sample analysis, by assuming the same base case parameters. Finally, in the last section, we end 

with some concluding remarks.  
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2. Model assumptions and limitations 

Immunization implies protection of one’s financial position from the impact of interest rate 

fluctuations in the market. Additionally, a barbell strategy is hedging the position with the help of 

short-term maturity bonds and a long-term maturity bonds with no investment in the intermediate 

horizon bonds. Hence, our goal of immunization is to exploit this advantage of investing in short-

term structures with the help of rolling horizon bond (i.e. we can reinvest frequently) till the planning 

horizon and the benefit of long-term structures since it compensates the investor with high yields 

due to the riskiness that it inherits compared to the short-term bonds to safeguard a bond portfolio. 

 

2.1. Stylized strategy 

François and Moraux (2008), in their research paper introduced a stylized strategy that captures 

the trade-off between reinvestment risk and resale price risk. The strategy immunizes an investor 

who has invested in a bond with a face value of $1 and a continuous coupon payment (c). The 

horizon in the strategy is θ which lies between 0 and T. They then implement the strategy by 

holding the coupon bond from 0 to θ, re-investing the coupon in the discount bond P(t, θ - t) every 

time and ending the strategy at time θ. 

2.2. Assumptions 

In this study, the investor invests in a bond portfolio that contains only two different maturities to 

be able to implement the immunization strategy. Models are a way of implementing the theory so 

that one can see the results in a close to a practical environment. Hence, models are supposed to 

be a simplified version of the real world. Our model assumes that there are assets with two 
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maturities only that make the investors’ portfolio.  A short-term zero-coupon bond with maturity 

T1 and a long-term zero-coupon bond with maturity T2. Hence, in this way, the investor can balance 

their exposure to reinvestment risk through exposure in the short-term bond and resale price risk 

through exposure in the long-term bond. This is how a barbell strategy can be implemented. We 

assume that the mean-variance framework captures the investor preferences. 
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2.3. Mean-variance analysis 

For the sake of immunization strategy, we assume that an investor has an initial investment of $1 

at the start of the period. The planning horizon is 𝜃 which is in the range from T1 to T2, and it is 

implemented at time 0.  

 

In this study of the immunization strategy, the investor invests $𝑥 (one part) amount of money in 

a rolling horizon bond which has a maturity of time period of T1 until planning horizon period (θ). 

This essentially means that the investor invests $ 𝑥 which is the weight induced on the rolling zero-

coupon bond that rolls from time 0 until the planning horizon period θ. This part of the strategy 

helps in balancing the reinvestment risk. 

 

Additionally, the remaining weight which is $(1 - 𝑥) amount of money is invested in another zero-

coupon bond with maturity period T2 until the planning horizon period θ. This part of the leg is a 

buy and hold strategy that helps in balancing the exposure towards resale price risk. 

 

P (t, τ) indicates the price of a zero-coupon bond at time t with time to maturity τ with a face value 

of $1. 𝑅𝜃(𝜏) is the value of the rolling horizon bond at time θ for $1 of initial investment invested 

at time 0. The terminal value of an investor’s immunization strategy with time horizon 𝜃 is 𝜋𝜃. 

𝜋𝜃 = 𝑥 ∗ 𝑅𝜃(𝑇1) +
1 − 𝑥

𝑃(0, 𝑇2)
∗ 𝑃(𝜃, 𝑇2 − 𝜃) 

The investor invests x amount of money in the short-term bond (𝑅𝜃) that has a maturity T1 (in our 

case one year) and the remaining amount of money (1 – x) is invested in the long-term bond that 
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has a maturity T2. The terminal value of the long-term bond is the price of a zero-coupon bond 

with planning horizon θ and maturity of T2 − θ. Hence, the terminal value of an investor’s 

immunization strategy (𝜋𝜃) with time horizon θ will be the addition of the short-term leg and the 

long-term leg with their respective weights. 

 

The expected mean of the random terminal value of an investor’s immunization strategy (𝐸(𝜋𝜃)) 

with time horizon θ is: 

𝐸(𝜋𝜃) = 𝑥 ∗ 𝐸(𝑅𝜃(𝑇1)) +
1 − 𝑥

𝑃(0, 𝑇2)
∗ 𝐸(𝑃(𝜃, 𝑇2 − 𝜃)) 

 

The expected variance of the random terminal value of an investor’s immunization strategy 

(𝑣𝑎𝑟(𝜋𝜃)) with time horizon θ is: 

𝑣𝑎𝑟(𝜋𝜃) = 𝑥2𝑉1 + (1 − 𝑥)2𝑉2 + 2𝑥(1 − 𝑥)𝑉12 

Where: 

𝑉1 = 𝑣𝑎𝑟 [𝑅𝜃(𝑇1)] 

𝑉2 =  𝑣𝑎𝑟[𝑃(𝜃, 𝑇2 − 𝜃)/ 𝑃(0, 𝑇2)] 

𝑉12 = co𝑣[𝑅𝜃(𝑇1), 𝑃(𝜃, 𝑇2 − 𝜃)/ 𝑃(0, 𝑇2)] 

 

𝑉1 is the variance of the rolling horizon zero-coupon bond leg that the investor invests a part of the 

money to balance the reinvestment risk. 𝑉2 is the variance of the long-term zero-coupon bond leg 
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that the investor invests the remaining amount of money to balance the resale price risk. V12 is the 

covariance between the rolling horizon zero-coupon bond and long-term zero-coupon bond. 

 

The following postulations will characterize the mean-variance efficiency for the barbell portfolio 

strategy which is free of any term-structure model. Firstly, in the mean-variance space, the terminal 

value of the immunization strategy forms a convex set which results in a minimum variance at x 

= x*
mvi. The following results are shown in François and Moraux (2008): 

𝑥𝑚𝑣ⅈ
∗ =

𝑉2 − 𝑉12

𝑉1 + 𝑉2 − 2𝑉12
 

 

Secondly, the minimum variance of the immunization strategy is obtained by plugging the x*
mvi 

in 𝑣𝑎𝑟(𝜋𝜃) 

𝑉1𝑉2 − 𝑉12
2

𝑉1 + 𝑉2 − 2𝑉12
 

The immunization strategy is mean-variance efficient if the short-term bond has lesser than or 

equal weight (𝑥) compared to x*
mvi when, 

(𝐸(𝑅𝜃(𝑇1)) < 𝐸(𝑃(𝜃, 𝑇2 − 𝜃)) 

Or the short-term bond has greater than or equal weight (𝑥) compared to x*
mvi when, 

(𝐸(𝑅𝜃(𝑇1)) > 𝐸(𝑃(𝜃, 𝑇2 − 𝜃)) 

According to x*
mvi, the new duration-based approach consists of giving weight to both the legs of 

the barbell strategy i.e. the short-term and the long-term to be able to minimize the variance of the 
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barbell portfolio. This barbell strategy can be called as minimum variance immunization. 

However, the minimum variance immunization still has some minimum variance and 100% of the 

risk is not immunized. Hence, if the expected return of the short-term bond is greater (lower) than 

the long-term bond in the portfolio, then any barbell portfolio with a weight (x) more than x*
mvi 

(weight (x) less than x*
mvi) will have a mean and variance higher than the minimum variance 

strategy. 
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2.4. Macaulay and stochastic durations 

To observe the performance of the minimum variance immunization strategy in comparison with 

other strategies, we compare it with Macaulay’s duration-based strategy and stochastic duration-

based strategy. The duration-based strategies allocate bond portfolio by matching the investment 

planning horizon. 

The immunization strategy using Macaulay’s duration implements: 

𝑥(𝑇1) + (1 − 𝑥)𝑇2 =  𝜃 

Which results in Macaulay’s duration-based bond portfolio allocation to be 

𝑥𝑚𝑎𝑐
∗ =

𝑇2 − 𝜃

𝑇2 − 𝑇1
 

 

Macaulay’s duration is a model-free term structure which is simply a function of the rolling 

horizon period, planning horizon period and the long-term horizon period of the bond portfolio.  

 

On the other hand, the Cox-Ingersoll-Ross stochastic duration is not a model-free term structure. 

According to Cox, Ingersoll and Ross (1979), define stochastic duration as the time to maturity of 

a discount bond with the same basis risk as to the initial instrument.  

For one-factor models, the portfolio duration is given by 𝜃. 

𝜃 =  𝑏−1(𝑥𝑏(𝑇1) + (1 − 𝑥)𝑏(𝑇2)) 

 



25 
 

Where, 

𝑏(𝑡) = −
1

𝑃(0)

𝜕𝑃(0,𝑡)

𝜕𝑡
  and r = Instantaneous risk-free rate 

The immunization strategy using Cox-Ingersoll-Ross stochastic duration-based results in the 

following bond portfolio allocation: 

𝑥𝑐ⅈ𝑟
∗ =

𝑏(𝑇2) − 𝑏(𝜃)

𝑏(𝑇2) − 𝑏(𝑇1)
 

 

𝑥𝑐ⅈ𝑟 
∗ is a non-linear transformation of the Macaulay’s duration-based immunization strategy. 
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2.5. Immunization performance in the Vasicek Model 

We observe the performance of duration-based immunization strategies which includes 

Macaulay’s duration and stochastic duration in the mean-variance framework under the Vasicek 

term structure model. 

The instantaneous risk-free rate (𝑟𝑡) follows a Gaussian mean-reverting process under the physical 

probability measure. 

ⅆ𝑟𝑡 = 𝛼(𝛽 − 𝑟𝑡)ⅆ𝑡 + 𝜂 ⅆ𝑍𝑡 

where, 

α = speed reversion, β = long-term mean of 𝑟𝑡, 𝑍𝑡 = Brownian motion and η = volatility  

 

The value of a default-free discount bond with face value $1 at time t and time to maturity τ is: 

𝑃(𝑡, 𝜏) = 𝑎(𝜏) exp (−𝑏 (𝜏) 𝑟𝑡) 

Where, 

𝑎(𝜏) = exp ((𝑏(𝜏) − 𝜏)(𝛽 +
𝜂𝜆

𝛼
−

𝜂2

2𝛼2
) −

𝜂2𝑏2(𝜏)

4𝛼
) 

𝑏(𝜏) =  
1 − exp (−𝛼𝜏)

𝛼
  

λ = risk premium parameter 

 

In the mean-variance framework under the Vasicek term structure model, the mean (𝐸(𝜋𝜃)) and 

variance (𝑣𝑎𝑟(𝜋𝜃))  of the immunization strategy for any arbitrary portfolio allocation (𝑥) can be 

computed. 
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The bond portfolio allocations for all the different immunization strategies using a barbell portfolio 

are as follows: 

𝑥𝑚𝑎𝑐
∗ =

𝑇₂ − 𝜃

𝑇₂ − 𝑇1
 

 

𝑥𝑐ⅈ𝑟
∗ =

𝑏(𝑇2) − 𝑏(𝜃)

𝑏(𝑇2) − 𝑏(𝑇1)
 

 

𝑥𝑚𝑣ⅈ
∗ =

𝑉2 − 𝑉12

𝑉1 + 𝑉2 − 2𝑉12
 

 

Firstly, Macaulay’s duration-based strategy is a model-free term structure. Secondly, the stochastic 

duration-based strategy is a transformation of the Macaulay’s strategy but is not model-free, since 

it is dependent on b which is dependent on the α parameter i.e. the mean reversion parameter.  

Lastly, the mean-variance immunization-based strategy is affected by interest rate dynamics across 

all term structure model parameters. François and Moraux (2008) derive 𝑥𝑚𝑣ⅈ
∗  in a closed-form 

solution in the Vasicek model. 
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2.6. Immunization strategy implementation 

For any given starting date t0, the value at time θ of the continuous investment in the rolling horizon 

is proxied by a daily rollover of 

 

𝑅𝜃(𝑇1) ≈
𝑃(𝑡0 + 𝜃,𝑇1)

𝑃(𝑡0 ,𝑇1)
∏ (1 + 𝛥𝑓𝑡𝑗

(𝑇1))
𝑛−1

𝑗=0
 

Where, 

𝛥 is the daily time step 

n is the number of days within the investment planning horizon (n = θ / 𝛥) 

𝑓𝑡𝑗
(𝑇1) is the instantaneous forward rate at day 𝑡𝑗 with time to maturity T1 

 

The second component of the immunization strategy is the ratio of two zero-coupon bond prices: 

𝑃(𝜃, 𝑇2 − 𝜃)

𝑃(0, 𝑇2)
 

All the zero-coupon bond prices are obtained as 

𝑃(𝑡, 𝜏) = exp (−𝑧𝑡 (𝜏)𝜏 ) 

Where  𝑧𝑡 (𝜏) is the zero-coupon spot rate at time t with time to maturity 𝜏. 

 

We analyze the mean-variance performance of three different immunization strategies that differ 

in the portfolio allocation according to their respective strategies. In Macaulay’s duration-based 
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strategy, the portfolio Macaulay duration should match with the investment planning horizon (𝑥 =

 𝑥𝑚𝑎𝑐
∗ ).  In the stochastic duration-based strategy, the portfolio stochastic duration should match 

with the investment planning horizon (𝑥 =  𝑥𝑐ⅈ𝑟
∗ ). Lastly, in the minimum variance strategy, the 

variance of the portfolio should be minimized at the investment planning horizon (𝑥 =  𝑥𝑚𝑣ⅈ
∗ ). The 

first strategy is a purely model-free strategy. The second strategy uses the estimated alpha 

parameter to compute  𝑥𝑐ⅈ𝑟
∗ . The last strategy uses all the estimated parameters along with r which 

is observed one-year zero-coupon rate to compute 𝑥𝑚𝑣ⅈ
∗ .
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3. In-sample analysis 

3.1. Data and estimation  

 

For the in-sample analysis, we model theoretical and empirical immunization strategies to 

understand how our models perform in the theoretical space compared to the real data on actual 

U.S. term structures in the mean-variance space. 

 

We extracted zero-coupon yield curve rates and instantaneous forward rates from the U.S 

Treasury yield curve of the Federal Reserve Board. The zero-coupon spot rates are computed 

daily for maturities of 1, 2, 5, 10, 15 and 20 years. The instantaneous forward rate is also 

computed daily for 1-year maturity. Our sample period starts on July 2, 1981 and ends on April 

30, 2019, which gives us a total of 9,437 daily observations over a period of approximately 38 

years. 

 

In our study of the immunization strategies using barbell portfolio, we use one of the simplest 

interest rate models which is the Vasicek model. We can derive the 𝑥𝑚𝑣ⅈ
∗  explicitly from this 

model, thus, making it less complex to perform in-sample analysis. First, we implement the 

Vasicek model to understand the theoretical performance of Macaulay’s duration-based strategy, 

the Cox-Ingersoll-Ross duration-based strategy and the minimum-variance immunization 

strategy in the mean-variance space.  
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The Vasicek model requires some base case parameters that we rely on the approximate linear 

Kalman filtering applied to exponential-affine term structure models as estimated by François 

 and Moraux (2008) in their paper. Thus, we assume the base case parameters as α = 0.0329, β = 

0.0257, λ = 0.4284, η = 0.0124 that apply to the whole period of our Federal data from July 2, 1981 

to April 30, 2019. However, for the theoretical immunization we do not implement our strategies on 

the real U.S. data. The investment planning horizons (θ) of 5, 10 and 15 years, the bond maturities 

of T1 = 1 year and T2 = 20 years are all considered for the calibration of the theoretical model. On 

numerically verifying the relationship between r (maturity rate) and 𝑥𝑚𝑣ⅈ
∗ , we obtain that 𝑥𝑚𝑣ⅈ

∗  is not 

dependent on r. However, the theoretical proof of this relationship is beyond the scope of this paper. 

Here, the base case parameters are estimated only once over the entire sample data. 
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3.2. Results 

3.2.1. Theoretical model immunization 

Figures 1, 2 and 3 plot the theoretical mean and standard deviation of the immunization strategy 

using the Vasicek model for all possible bond portfolio allocations (x). For the immunization in the 

mean-variance space, we particularly highlight five cases for the bond portfolio allocations. Firstly, 

when the initial investment ($1) is wholly invested in the rolling horizon bond (x = 1). Secondly, 

when the initial investment ($1) is wholly invested in the buy and hold part of the portfolio (x = 0). 

Thirdly, the bond portfolio allocation is determined by matching the Macaulay’s duration with the 

investment planning horizon (x = 𝑥𝑚𝑎𝑐
∗ ). Fourthly, the portfolio allocation is determined by matching 

the stochastic duration of the portfolio with the investment planning horizon (x = 𝑥𝑐ⅈ𝑟 
∗ ). Lastly, the 

portfolio allocation is determined by minimizing the variance of the portfolio with the investment 

planning horizon (x = x*
mvi).   

Figure 1: In-sample theoretical immunization in the mean-variance space (θ = 5) 
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Figure 2: In-sample theoretical immunization in the mean-variance space (θ = 10) 

 

 

Figure 3: In-sample theoretical immunization in the mean-variance space (θ = 15) 
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Hence, the theoretical immunization in the mean-variance space depicts the outcome of the different 

bond portfolio allocations under the Vasicek model. For instance, if we use all the information on 

the parameter values at one point in time then we can compute the different bond portfolio 

allocations such as x*
mvi, 𝑥𝑚𝑎𝑐

∗  and 𝑥𝑐ⅈ𝑟 
∗ . Therefore, an investor can use these bond portfolio 

allocations today for a planning horizon of θ years and expect an outcome with the respective return 

and volatility of the strategy on an average. In Figures 1, 2 and 3, we can see that the x*
mvi has the 

minimum variance with a weight lesser than 1. 

 

3.2.2. Empirical model immunization 

Now, we compute ex-post in-sample analysis using the Federal data i.e. had the investor known 

the exact dynamics of the interest rate parameters then one would implement the immunization 

strategy and obtain the results according to the Table 1.  

 

We compute the terminal value of $1 invested in barbell immunization strategies that use the T1 = 

1-year bonds and the T2 = 20-year bonds daily from July 2, 1981 until the end of our data (April 

30th, 2019). For our investment planning horizons (θ) of 5, 10, and 15 years, we have a total of 8,187, 

6,937 and 5,687 immunization strategies computed daily, respectively. In this study, we have short-

term and long-term strategies that have strong constraints in implementing them in the current time 

frame where our data is restricted to the end of April 2019. Thus, our methodological standpoint is 

to take advantage of the maximum number of points with the limited data we have over 38 years 

approximately. 
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The output indicates that if the investor had known about the dynamics in advance then on average 

the strategies would perform according to Table 1. 

 

Table 1: In-sample performance statistics for immunization strategies  

 Minimum Variance 

Immunization 

Duration-based Immunization 

           Macaulay                      Stochastic  

            duration                         duration 

Panel A: θ = 5 (8,187 strategies) 

Mean 1.2924 1.3523 1.3875 

Variance 0.0661 0.0867 0.1010 

Sharpe Ratio 0.0431 0.1286 0.1686 

Panel B: θ = 10 (6,937 strategies) 

Mean 2.0611 2.2312 2.3564 

Variance 0.5617 0.7048 0.8222 

Sharpe Ratio 0.1955 0.2386 0.2646 

Panel C: θ = 15 (5,687 strategies) 

Mean 3.8151 3.9311 4.1037 

Variance 2.9947 3.2107 3.5469 

Sharpe Ratio 0.2792 0.2864 0.2961 

**Values in the table are rounded up to 4 decimal places. The Sharpe ratio is computed as (
𝐸(𝜋𝜃)−1

𝜃
− 𝑦̅𝜃) / (

√𝑣𝑎𝑟(𝜋𝜃)

√𝜃
) 

where 𝑦̅𝜃 is the average yield of the planning horizon. 
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Figures 4, 5 and 6 in the appendix shows the histograms of outcomes for each of the strategies 

for θ is 5, 10 and 15 years respectively when we repeat the strategy over a thousand times. The 

outcome implies to the terminal value of the $1 invested at time 0. The histogram depicts that on 

repeating each strategy’s outcomes daily, we get a highly skewed and a long right-tailed 

distribution. The distribution of all the histograms also indicates that the Sharpe ratio is solely an 

indicative performance metric and should not be used as an ultimate performance measure. This 

could give rise to a further discussion when using other metrics of performance. The goal in each 

of our immunization strategies is to try to make a trade-off on the shocks of the short end and the 

long end of the yield curve. Despite that, the strategy outcomes have a significant dispersion and 

variance because of the global volatility of the yield curve. 

 

Subsequently, Figures 7, 8 and 9 replicates the in-sample analysis in Table 1 in a mean-variance 

space, by plotting the empirical mean and standard deviation of the immunization strategy using 

Federal data for all possible bond portfolio allocations (x) in the mean-variance space. Figures 7, 8 

and 9 are the outcome of the in-sample analysis where we repeat ex-post many experiments. Hence, 

it is an empirical estimate that represents the Federal data that we have tested. The respective 

positions of weights induced by the Macaulay duration-based, the Cox-Ingersoll-Ross duration-

based strategy as well as the weight induced by the minimum-variance immunization is highlighted. 

The investment planning horizons (θ) are 5, 10 and 15 years. The bond maturities are T1 = 1 year 

and T2 = 20 years. Additionally, the base case parameters used are α = 0.0329, β = 0.0257, λ = 

0.4284, η = 0.0124. 
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Figure 7: In-sample empirical immunization in the mean-variance space (θ = 5) 

 

Figure 8: In-sample empirical immunization in the mean-variance space (θ = 10) 
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Figure 9: In-sample empirical immunization in the mean-variance space (θ = 15) 

 

Furthermore, the portfolio allocation (x) is theoretically determined to match the duration in case 

of 𝑥𝑚𝑎𝑐
∗  and 𝑥𝑐ⅈ𝑟

∗ . In the case of 𝑥𝑚𝑣ⅈ
∗ , the portfolio allocation is determined to minimize the 

variance of the terminal value. The barbell strategy is implemented such that the short-term bond 

is rolled over, and the long-term bond is held until the investment planning horizon (θ). 

 

The point of minimum variance depends on the characteristics of rolling horizon bond and long-

term bond as well as their mean and variance. Theoretically speaking, a rolling horizon bond is 

generally more volatile as it is dependent on dynamic short-term rates. Hence, the x*
mvi is 

relatively low in a theoretical calibration as it is a minimum-variance barbell strategy. On the 

contrary, when we move to empirical calibration using the real data (Federal data), the x*
mvi is 

not as low as compared to theoretical estimate. Since we use fully overlapping strategies by 

𝑥 = 1

𝑥∗
𝑚𝑣𝑖

𝑥∗
𝑚𝑎𝑐

𝑥∗
𝑐𝑖𝑟

𝑥 = 0

𝑥 = 1.2

𝑥 = 1.4

𝑥 = 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2 2.5

R
et

u
rn

Volatility (Standard deviation)



39 
 
 

repeating thousands of experiments daily that differ only by a day, the resulting outcome of all 

the daily rolling horizon bonds is highly correlated with each other.  

 

Additionally, the long-term bond relies on the price of a bond with T2 maturity and T2 - θ 

maturity. Hence, it depends on two points of the curve that are relatively less volatile and as a 

reason their experiments are relatively less correlated. Thus, due to the highly correlated 

experiments combined partly with model risk leads to an overall underestimated variance for the 

rolling bond. In this way, the minimum variance for θ = 5 is at a point x = 1.2, for θ = 10 and 15 

is at point x = 1.4. Intuitively, an x greater than 1 means short selling the long-term bond and 

over-investing in the short-term bond.  

 

Therefore, in Figures 7, 8 and 9 we can observe that the 𝑥𝑚𝑎𝑐
∗  and 𝑥𝑐ⅈ𝑟 

∗  are above the x*
mvi on the 

efficient frontier curve. However, the minimum variance point is when x is 1.2, 1.4 and 1.4 

respectively. This is the minimum point when the returns are maximized at a given level of 

volatility for the respective planning horizon.  

 

Moreover, there are multiple implications for the investor while using the real data. Firstly, all the 

three strategies here yield mean-variance efficient results but the more the strategy is away from the 

minimum-variance point the riskier it is. Hence, if an investor aims to minimize the risk then the 

results of those strategies would be disappointing. On the other hand, if the investor is more 

aggressive and is a risk lover then he is probably happy with the outcome. Secondly, the Sharpe 



40 
 
 

ratios of all the strategies increase with the increase in the horizon. Thirdly, the differences in the 

performance between the three strategies decreases as the horizon increases. Finally, these investor 

implications for the in-sample analysis also applies for the out-of-sample analysis, which makes our 

conclusions robust. 

 

Hence, we can conclude that in the mean-variance space, the minimum-variance immunization 

strategy as a benchmark against Macaulay’s duration and stochastic duration, has clearly 

outperformed the traditional duration-based strategies. 
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4. Out-of-sample Analysis 

4.1. Data and estimation 

For the out-of-sample analysis, we implement a historical approach on actual U.S. term structures 

to understand how our theoretical models work without any assumptions. Out-of-sample analysis 

indicates that how in real-time one can implement the strategies and considers the model risk 

exposure that the investor faces using the barbell strategy on stochastic duration-based and 

minimum-variance immunization strategies. Macaulay’s duration-based strategy is not affected 

as it is model-free. Thus, it portrays how a market participant would have invested in a bond 

portfolio using the following strategies with the knowledge of the historical data. In the real 

world, an investor doesn’t anticipate how the evolution of the rates will flow. Hence, the output 

of the out-of-sample analysis is what performance (in terms of expected returns and volatility) an 

investor can expect on an average from implementing the three different strategies.  

 

In case of conducting out-of-sample analysis, we don’t assume the base case parameters (α = 

0.0329, β = 0.0257, λ = 0.4284, η = 0.0124) unlike the in-sample analysis. Our historical 

estimation window is from the years July 2nd, 1981 to December 31st, 1997 of the Federal data 

and our implementation window is from January 1st, 1998 to the end of our data. We compute 

the terminal value of $1 invested in barbell immunization strategies that use the T1= 1-year, T2 = 

20-year bonds and the re-estimated parameters. We repeat it yearly (every 250 trading days) from 

January 1st, 1998 until the end of available data in our sample (ends on April 30, 2019) for 

investment planning horizons of 5, 10, and 15 years employing a rolling window. 
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Figure 10: Historical approach for out-of-sample analysis 

 

 

 

The window from 1981 to 1997 is to get acquainted with the dynamics in those periods and 

compute parameters from the historical estimation window. The knowledge grasped and the 

parameters estimated from the first part of the window are then applied to the second part of the 

window by applying all the strategies to the data starting from January 1st, 1998 to April 30th, 

2019, annually. In this way, our parameters are computed on one part of the dataset and then 

implemented to the rest of the data on a rolling basis.  

 

Macaulay’s duration-based strategy is not dependent on any external base case parameters. Thus, 

we compute the Macaulay’s immunization strategy from January 1st, 1998 to the end of the 

sample by employing the 𝑥𝑚𝑎𝑐
∗  from the rolling window. Hence, we get various strategy 

outcomes for each planning horizon but a constant 𝑥𝑚𝑎𝑐
∗ . Subsequently, the stochastic duration-

based strategy is a non-linear transformation of the Macaulay’s strategy. Therefore, it requires an 

additional parameter α, which we recompute using the historical estimation window. Our α 

parameter is recomputed for every rolling window that we slide over by 250 trading days over 

the historical period. As a result, we recompute our bond portfolio allocation for the stochastic 

duration-based strategy (𝑥𝑐ⅈ𝑟
∗ ). Hence, we use different weights computed over the historical 
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estimation window to recompute the outcome of the new strategy using the implementation 

window. 

α = - 
𝑐𝑜𝑣(𝑟𝑡,𝛥𝑟𝑡) 

𝑣𝑎𝑟(𝑟𝑡)
 

where, 

𝑟𝑡= One-year zero-coupon rate 

Δ𝑟𝑡 = First difference of the one-year zero-coupon rate 

 

Similarly, the minimum-variance immunization strategy requires the variance and covariance of 

the rolling horizon bond and the long-term bond. Thus, these statistics are recomputed for every 

rolling window that we keep sliding over our historical estimation window to recalibrate our bond 

portfolio allocation for minimum-variance strategy (𝑥𝑚𝑣ⅈ
∗ ).  

 

𝑥𝑚𝑣ⅈ
∗ =

𝑉2 − 𝑉12

𝑉1 + 𝑉2 − 2𝑉12
 

Where, 

V1 = Variance of the rolling horizon bond 

V2 = Variance of the long-term bond 

V12 = Covariance between the rolling horizon bond and the long-term bond 
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Figure 11: Bond portfolio allocations for the empirical immunization model (θ = 5) 
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Figure 12: Bond portfolio allocations for the empirical immunization model (θ = 10) 
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Figure 13: Bond portfolio allocations for the empirical immunization model (θ = 15) 
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Figures 11, 12 and 13 show the dynamic nature of 𝑥𝑚𝑣ⅈ
∗  and 𝑥𝑐ⅈ𝑟

∗ , whereas, a constant level of 

𝑥𝑚𝑎𝑐
∗  for each θ. 𝑥𝑚𝑣ⅈ

∗  has comparatively a greater level of variation compared to 𝑥𝑐ⅈ𝑟
∗ . A large 

goal of performing an out-of-sample analysis is to make sure that the strategies are valid in the 

long-run and it can be implemented by an investor without knowing the rate dynamics in a real 

environment. Thus, the reason behind taking the same data periods used for the in-sample 

analysis and then splitting it out for the out-of-sample analysis so that we can take maximum 

advantage of the limited data that is at our disposal. In this way, we can implement the strategies 

for a greater number of business cycles which gives us more reliable and true results. However, 

our results could be highly biased due to the high dependence and correlation. Therefore, we try 

to reduce our estimation bias by implementing the bond portfolio allocations in the strategy 

outcome on a yearly rolling basis compared to computing it daily. 

 

In this study, we have short-term and long-term strategies that have strong constraints in 

implementing them in the current time frame where we are restricted to the end of April 2019 in 

our datasets. Thus, our methodological standpoint is to take advantage of the maximum number 

of points.  
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4.2. Results 

Table 2: Out-of-sample performance statistics for immunization strategies  

 Minimum Variance 

Immunization 

Duration-based Immunization 

            Macaulay                     Stochastic  

             duration                       duration 

Panel A: θ = 5  

Mean 1.0325 1.1520 1.1523 

Variance 0.0018 0.0032 0.0032 

Sharpe Ratio -1.5448 -0.5019 -0.4994 

Panel B: θ = 10  

Mean 1.0635 1.6261 1.6276 

Variance 0.0164 0.0216 0.0216 

Sharpe Ratio -2.5318 1.5554 1.5823 

Panel C: θ = 15  

Mean 1.0917 2.4791 2.4814 

Variance 0.0065 0.0625 0.0629 

Sharpe Ratio -7.9314 4.7183 4.7091 

**Values in the table are rounded up to 4 decimal places. The Sharpe ratio is computed as (
𝐸(𝜋𝜃)−1

𝜃
− 𝑦̅𝜃) / (

√𝑣𝑎𝑟(𝜋𝜃)

√𝜃
) 

where 𝑦̅𝜃 is the average yield of the planning horizon. 

 

In comparison with the results obtained from the in-sample model on the Federal data, we can 

see that the Table 2 has the mean and variance of all the strategies are lower in magnitude. In 

addition, the stochastic and Macaulay’s duration-based strategies have a close mean and variance 
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output. The underlying reason is that, as we have mentioned before that the minimum-variance 

immunization strategy and stochastic duration-based strategy are affected by the historical 

approach whereas, the Macaulay’s duration-based strategy is not affected since it is a model-free 

approach. Hence, the historical methodology could be a driving factor for the stochastic duration-

based strategy to overlap the Macaulay’s strategy. 

 

Figures 14, 15 and 16 replicates the out-of-sample analysis in Table 3 in a mean-variance space, 

by plotting the mean and standard deviation of the immunization strategy using Federal data for 

all possible bond portfolio allocations (x). They are an outcome of the out-of-sample analysis 

where we repeat ex-post many experiments. Hence, it is an estimate that represents the Federal 

data that we have tested.  

 

The graphs below plot the empirical mean and the standard deviation of the immunization strategy 

using the U.S. data. The respective positions of weights induced by the Macaulay duration-based, 

the Cox-Ingersoll-Ross duration-based strategy as well as the weight induced by the minimum-

variance immunization is highlighted. Investment planning horizon (θ) is 5, 10 and 15 years 

respectively. The bond maturities are T1 = 1 year and T2 = 20 years.  
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Figure 14: Out-of-sample empirical immunization in the mean-variance space (θ = 5) 

 

 

 

Figure 15: Out-of-sample empirical immunization in the mean-variance space (θ = 10) 
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Figure 16: Out-of-sample empirical immunization in the mean-variance space (θ = 15) 

  

 

In Figures 14, 15 and 16, we can observe that the 𝑥𝑚𝑎𝑐
∗  and 𝑥𝑐ⅈ𝑟 

∗  are above the x*
mvi. Here, we 

can observe that the two traditional duration-based strategies have an almost overlapping strategy 

outcomes of a close mean and variance. However, the stochastic duration-based strategy is yet 

marginally above the Macaulay’s duration-based strategy. On the other hand, the minimum-

variance strategy is below both the traditional duration-based strategies. The points plotted in 

these figures refer to the average position of the respective strategies in our implementation 

sample period from January 1, 1998 to April 30, 2019. 

 

In the out-of-sample analysis, we are implementing immunization strategies every consecutive 

year with updated parameters using historical approach in the dynamic Federal environment. 
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Hence, unlike the in-sample analysis our efficient frontier curve is not constant but keeps moving 

with the updated parameter values. However, the efficient frontier curve does exist in one point 

in time in the mean-variance space using a model with calibrated parameter values. Thus, we 

have only highlighted the average position weights (𝑥𝑚𝑎𝑐
∗ , 𝑥𝑐ⅈ𝑟 

∗ and x*
mvi) for the Macaulay’s 

duration-based strategy, stochastic duration-based strategy and minimum-variance strategy. 

 

We are aware that our historical approach is a drawback to a certain level as the present level of 

interest rates are not always explained by the past behavior of interest rates. Hence, we have used 

a similar historical estimation window across all the strategies. The mean-variance immunization 

strategy and stochastic duration-based strategy are affected by the historical approach whereas 

the Macaulay’s duration-based strategy is unaffected as it is a model-free approach. Therefore, 

we have used the same interest rate environment for all. Moreover, the point of our study is not 

to prove whether the mean-variance immunization strategy is a superior approach, but we are 

simply interested in benchmarking the mean-variance immunization strategy to the traditional 

duration-based strategy. 
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5. Robustness Checks 

5.1. Data and estimation 

We further compute robustness checks, which is essentially checking how our immunization-

based strategies behave when we implement them on a different dataset. Robustness of a model 

is a common methodology in empirical studies to check how the model performs when it is put 

in a different environment compared to the data used for the in-sample analysis data. It is simply 

an exercise to check that our model is not biased or skewed to an outcome due to the Federal data 

used in our in-sample analysis. Thus, in this case, we use Canadian data instead of the U.S data 

that we used in the in-sample analysis. The structure of the analysis is on the same lines with the 

in-sample analysis. 

 

For the robustness check analysis, we implemented immunization strategies on actual Canadian 

term structure data to understand how our theoretical models work on real interest rate yields. 

 

We constructed the daily term structure of interest rates using the data from the Bank of Canada. 

The daily yield curves for zero-coupon bonds were generated by the Bank of Canada using the 

pricing data for the government of Canada bonds and Treasury bills. We extracted the zero-

coupon spot rates from the Bank of Canada for maturities from 4 months to 20 years with a 

quarterly pattern. Our sample period starts on January 2, 1986 and ends on April 30, 2019, which 

gives us a total of 8,164 daily observations. 
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The forward rates were missing so we computed instantaneous forward rate using the following 

theoretical formula: 

[
(1 + R(s))1.25

(1 + R(t))
− 1] × 100 

Where, 

R(t) = zero − coupon rate with maturity of 1 year 

R(s) = zero − coupon rate with maturity of 1.25 years 

 

Like the in-sample analysis, to be able to determine the bond portfolio allocations, we need the 

Vasicek model parameters that should be in lines with our data sample. First, we implement the 

Vasicek model to understand the theoretical performance of Macaulay’s duration-based strategy, 

the Cox-Ingersoll-Ross duration-based strategy and the minimum-variance immunization strategy 

in the mean-variance space. Thus, we assume the same base case parameters as α = 0.052, β = 

0.0267, λ = 0.1329, η = 0.0286 that we apply to the whole period of our data from January 2, 1986 

to April 30, 2019. We compute ex-post robustness check analysis on Canadian data and compute 

what the investor on an average would receive as the output of the strategies as in the Table 3 had 

he known in advance about the interest rate dynamics. 
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5.2. Results 

5.2.1. Theoretical model immunization 

We compute the terminal value of $1 invested in barbell immunization strategies that use the T1= 1-

year bonds and the T2 = 20 years bonds daily from January 2, 1986 until April 30th, 2019. Figures 

17, 18 and 19 plot the theoretical mean and standard deviation of the immunization strategy using 

the Vasicek model for all possible bond portfolio allocations (x) for the investment planning 

horizons (θ) of 5, 10, and 15 years respectively. For the immunization in the mean-variance space, 

we particularly highlight five cases for the bond portfolio allocations), similar to the in-sample 

analysis. 

 

Figure 17: Robust theoretical immunization in the mean-variance space (θ = 5) 
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Figure 18: Robust theoretical immunization in the mean-variance space (θ = 10) 

 

 

Figure 19: Robust theoretical robust immunization in the mean-variance space (θ = 15) 
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Figures 17, 18 and 19 shows the theoretical outcome of the bond portfolio allocations using the 

various immunization strategies, strictly under the Vasicek model. When x = 1, x = 0, 𝑥𝑚𝑎𝑐
∗ , x*

mvi, 

𝑥𝑐ⅈ𝑟 
∗ along with x = 1.2 and x = 1.4 in the theoretical immunization mean-variance space. Hence, the 

investor can use these bond portfolio allocations today for a planning horizon of 5, 10 and 15 years 

and project that the average outcome will be the respective return and volatility of the strategy. In 

Figures 17, 18 and 19, we can observe that the x*
mvi has the minimum variance with a weight lesser 

than 1. 

 

5.2.2. Empirical model immunization 

Now, we compute empirically, using the Canadian data i.e. had the investor known the exact 

dynamics of the interest rate parameters then one would implement the immunization strategies 

and obtain the results as per the Table 3.  

 

We compute the terminal value of $1 invested in barbell immunization strategies that use the T1= 1-

year bonds and the T2 = 20-year bonds daily from January 2, 1986 until April 30, 2019. For our 

investment planning horizons of 5, 10, and 15 years, we have a total of 6,914, 5,664 and 4,414 

immunization strategies computed daily, respectively.  
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Table 3: Robustness performance statistics for immunization strategies  

 Minimum Variance 

Immunization 

Duration-based Immunization 

  Macaulay                   Stochastic        

   duration                      duration 

Panel A: θ = 5 (6,914 strategies) 

Mean 1.1367 1.2008 1.2679 

Variance 0.0043 0.0095 0.0174 

Sharpe Ratio -0.7490 -0.2087 0.0734 

Panel B: θ = 10 (5,664 strategies) 

Mean 1.9743 2.0069 2.2441 

Variance 0.1943 0.2079 0.3211 

Sharpe Ratio 0.3129 0.3250 0.3939 

Panel C: θ = 15 (4,414 strategies) 

Mean 3.5578 3.6509 3.9490 

Variance 1.0064 1.0785 1.3388 

Sharpe Ratio 0.4380 0.4462 0.4670 

**Values in the table are rounded up to 4 decimal places. The Sharpe ratio is computed as (
𝐸(𝜋𝜃)−1

𝜃
− 𝑦̅𝜃) / (

√𝑣𝑎𝑟(𝜋𝜃)

√𝜃
) 

where 𝑦̅𝜃 is the average yield of the planning horizon. 

 

In Table 3, we can observe that the robustness check produces similar output as in Table 1, where 

we observe that minimum-variance immunization strategy has lower mean and variance 

compared to the Macaulay’s duration-based strategy and the stochastic duration-based strategy. 
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Figures 20, 21 and 22 shows the histograms of outcomes for each of the strategies when θ is 5, 

10 and 15 years respectively. The outcome implies to the terminal value of the $1 invested at 

time 0. The histogram depicts that on repeating each strategy’s outcomes daily, we get bimodal 

distributions. The distribution of all the histograms also indicates that the Sharpe ratio is solely 

an indicative performance metric and should not be used as an ultimate performance measure. 

The strategy outcomes have a significant volatility because of the global volatility of the yield 

curve in the Canadian market. 

 

Subsequently, Figures 23, 24 and 25 replicates the robustness analysis in Table 3 in a mean-variance 

space, by plotting the empirical mean and standard deviation of the immunization strategy using 

Federal data for all possible bond portfolio allocations (x) in the mean-variance space. These figures 

are the outcome of the robustness analysis where we repeat ex-post many experiments. Hence, it is 

an empirical estimate that represents the Canadian data that we have tested. The respective positions 

of weights induced by the Macaulay duration-based, the Cox-Ingersoll-Ross duration-based strategy 

as well as the weight induced by the minimum-variance immunization is highlighted. The 

investment planning horizons (θ) are 5, 10 and 15 years. The bond maturities are T1 = 1 year and T2 

= 20 years. Additionally, the base case parameters used are α = 0.052, β = 0.0267, λ = 0.1329, η = 

0.0286. 
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Figure 23: Robust empirical immunization in the mean-variance space (θ = 5) 

 

 

Figure 24: Robust empirical immunization in the mean-variance space (θ = 10) 
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Figure 25: Robust empirical immunization in the mean-variance space (θ = 15) 
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mvi 

is not as low as compared to the theoretical estimate. An x equal to 1 indicates fully investing in the 

short-term bond and nothing in the long-term bond. Therefore, due to the highly correlated 
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horizon. Lastly, the differences in the performance between the three strategies decreases as the 

horizon increases.  
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6. Conclusion 

In our in-sample analysis, we have presumed that we have knowledge of the model that is generating 

the data. Hence, we could be fitting the model if the model is poor and missing important features 

of the yield curve. However, in the out-of-sample analysis, we go a step further and compute the 

𝑥𝑚𝑎𝑐
∗ , 𝑥𝑐ⅈ𝑟 

∗ and x*
mvi by purely relying on the Federal data and no other presumed information. 

Therefore, we are testing the Vasicek interest rate model, its ability to capture the yield curve 

dynamics and check for model risk. Finally, we perform robust checks on Canadian data, to 

understand if the model and results were biased due to a particular data environment. 

 

The underlying reason for our empirical study is not to prove that the minimum-variance 

immunization strategy is a good or bad approach in absolute terms, but we are simply interested 

in benchmarking the minimum-variance immunization strategy to the traditional duration-based 

strategies. Our in-sample analysis, out-of-sample analysis and robustness checks, all indicate that 

the minimum-variance immunization strategy has relatively outperformed the Macaulay’s and 

stochastic duration-based strategy under the mean-variance framework using the Vasicek model. 

 

Our empirical work is based on the Vasicek model as it is one of the simple interest rate models. 

However, further investigation and research could be performed based on a more complex model 

where the x*
mvi could be derived numerically. 
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Appendix 

Figure 4: In-sample histograms of strategy outcomes (θ = 5) 
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Figure 5: In-sample histograms of strategy outcomes (θ = 10) 
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Figure 6: In-sample histograms of strategy outcomes (θ = 15) 
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Figure 20: Robustness histograms of strategy outcomes (θ = 5) 

 

 

 

 

 

 

 

 

a. Minimum-variance duration-based 

strategy 

Strategy outcome 

Strategy outcome 

Strategy outcome 

b. Macaulay’s duration-based strategy 

c. Stochastic duration-based strategy 

Fr
eq

u
en

cy
 

Fr
eq

u
en

cy
 

Fr
eq

u
en

cy
 



70 
 
 

Figure 21: Robustness histograms of strategy outcomes (θ = 10) 
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Figure 22: Robustness histograms of strategy outcomes (θ = 15) 
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