
1 
 

HEC MONTRÉAL 
 

Antibiotics Effectiveness Dynamics: Modelling Antibiotic 

Resistance in the Population and the Use of Rapid 

Diagnostic Tests 

 

By 

Joshua Maiheng Luo 

 

Sciences de la gestion 

(Économie appliquée) 
 

Mémoire présenté en vue de l’obtention 

du grade de maîtrise ès sciences en gestion 

 

(M. Sc.) 

Décembre 2019 

© Joshua Maiheng Luo, 2019 



3 
 

  



4 
 

Abstract 
 

 Antibiotic resistance is a global issue. This phenomenon threatens our health care 

system as well as other sectors, such as our global trade, our agriculture, and our 

environment. The social and economic costs of this resistance are enormous and will be 

a huge burden for families, governments and the global economy. Nevertheless, we must 

consider the efficacy of an antibiotic as a natural renewable resource, precious and 

scarce, that we must manage optimally and sustainably. The overuse, misuse, and 

inappropriate prescriptions of antibiotics are considered a major problem in the rise of 

antimicrobial resistance. Rapid diagnostic tests, as a public good, could greatly reduce 

inappropriate and unnecessary prescriptions. In order to understand how rapid diagnostic 

tests are one of the best strategies against the increase of antibiotic resistance, we 

propose a bio-economic model simulating the infection in population and the level of 

effectiveness of an antibiotic while introducing the use rapid diagnostic tests and a new 

susceptible population linked to antibiotic resistance. Our bio-economic model examines 

the interaction between infection transmissions (antibiotic-resistant and antibiotic 

sensitive) in population in a pricing policy of a monopolist who is protected by a patent. 

Keywords: Antibiotic resistance, antibiotic effectiveness, rapid diagnostic tests, 

infection control, dynamic population models, monopolist strategy. 
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Resumé 
 

La résistance aux antibiotiques est un enjeu mondial. Cette résistance menace 

évidemment notre système des soins de santé ainsi que d’autres secteurs, comme le 

commerce mondial, l'agriculture, et l'environnement. Les coûts sociaux et économiques 

de cette résistance sont énormes et représenteront un fardeau gigantesque pour les 

familles, les gouvernements et l’économie mondiale. Malgré tout, nous devons considérer 

l'efficacité d'un antibiotique comme une ressource naturelle renouvelable, précieuse et 

peu abondante, qu’il nous faut gérer de façon optimale et durable. La surutilisation et la 

prescription inappropriée des antibiotiques sont considérées comme un problème majeur 

dans la montée de la résistance aux antimicrobiens. Les tests de diagnostiques rapides, 

en tant que bien public, pourraient réduire considérablement les prescriptions 

inappropriées et inutiles. Afin de comprendre en quoi les tests de diagnostiques rapides 

sont l’une des meilleures stratégies contre l’augmentation de la résistance aux 

antibiotiques, nous proposons un modèle bioéconomique simulant l’infection en 

population et le niveau d’efficacité d’un antibiotique tout en introduisant l’utilisation des 

tests de diagnostiques rapides et une nouvelle population reliée à la résistance aux 

antibiotiques. Notre modèle bioéconomique examine l'interaction entre les transmissions 

d'infections en population (résistant aux antibiotiques et sensible aux antibiotiques) dans 

une politique de prix d'un monopoleur protégé par un brevet. 

Mots clés: Résistance aux antibiotiques, efficacité des antibiotiques, tests de diagnostic 

rapides, contrôle des infections, modèles de population dynamiques, stratégie 

monopolistique. 

  



6 
 

Table of Contents 
 

Abstract ...................................................................................................................................................... 4 

Resumé ....................................................................................................................................................... 5 

List of diagrams ........................................................................................................................................ 8 

Acknowledgements / Remerciements ................................................................................................ 9 

1. Introduction ..................................................................................................................................... 10 

2. Literature Review ........................................................................................................................... 16 

2.1. Epidemiological Component ............................................................................................... 16 

a) Basic Compartmental Models ............................................................................................. 16 

b) Models with the Evolution and Spread of Antibiotic Resistance .............................. 17 

2.2. Economic Component – Effectiveness of an Antibiotic as a Scarce Natural 
Resource .............................................................................................................................................. 20 

a) Fitness cost of antibiotic resistance ................................................................................. 20 

b) Renewable Natural Resource.............................................................................................. 21 

2.3. Externality and Optimal Use ................................................................................................ 22 

2.4. The Bio-Economic Model of Herrmann (2010) ............................................................... 24 

a) The Model ................................................................................................................................. 24 

3. Theoretical Modelling.................................................................................................................... 30 

3.1. Model ......................................................................................................................................... 30 

a) The Bio-Economic Model ..................................................................................................... 30 

b) Population Dynamics ............................................................................................................ 37 

c) Demand Function ................................................................................................................... 44 

3.2 Profit Maximization Problem of the Non-Myopic Monopolist Set-Up ....................... 45 

4. Resolution of the Model and Profit Maximization Problem ................................................ 47 

4.1 Monopolistic (Non-Myopic) Behaviour ............................................................................. 47 

a) Model 1 - Without Rapid Diagnostic Tests ...................................................................... 47 

b) Model 2 - With Rapid Diagnostic Tests ............................................................................ 52 

4.2 Welfare Implications .............................................................................................................. 57 

4.3 Discussion ............................................................................................................................... 61 

4.4 Incentive Models .................................................................................................................... 62 

a) « Fully-Delinked » Reward System .................................................................................... 63 

b) Dual pricing strategy and value-based model ................................................................ 63 



7 
 

5. Conclusion and future directions .............................................................................................. 65 

6. References ....................................................................................................................................... 67 

Annexe 1 – Python Code ...................................................................................................................... 69 

 

  



8 
 

List of diagrams 
 

Diagram 2.1: Monopolistic interior solution fm at state (w, I) at time t ……………………………28 

Diagram 3.1: Proposed basic model …………………………………………………………………36 

Diagram 3.2: Positive externality with the use of diagnostics …………………………………….40 

Diagram 3.3: Elimination of the dead weight loss with RDTs …………………………………….41 

Diagram 3.4a: Proposed model with the use of rapid diagnostic tests ………………………….42 

Diagram 3.4b: Proposed model with the use of rapid diagnostic tests ………………………….43 

Diagram 4.1: Interior solution for the monopolist – without rapid diagnostic tests……………...49 

Diagram 4.2: Antibiotic effectives – dynamics in time …………………………………………….50 

Diagram 4.3a: Healthy population prone to resistance – dynamics in 

time ……………………………………………………………………………………………………..51 

Diagram 4.3b: Effectiveness and Healthy population prone to resistance – dynamics in time..51 

Diagram 4.3c: Effectiveness and Healthy population prone to resistance – phase diagram…..52 

Diagram 4.4: Interior solution for the monopolist – with rapid diagnostic tests …………………54 

Diagram 4.5: Antibiotic effectiveness – dynamics in time comparison …………………………..55 

Diagram 4.6a: Healthy population prone to resistance – dynamics in time 

comparison ……………………………………………………………………………………………..56 

Diagram 4.6b: Effectiveness and Healthy population prone to resistance – dynamics in time 

comparison………………………………………………………………………………………………56 

Diagram 4.6c: Effectiveness and Healthy population prone to resistance – phase diagram 

comparison………………………………………………………………………………………………57 

  



9 
 

Acknowledgements / Remerciements 
 

At first, I would like to express my sincere gratitude to Justin Leroux and Sophie 

Bernard who not only took the role as my thesis advisors and teachers, but also as 

mentors and friends guiding me through this journey. Their commitment, patience and 

positivity ensured that I was on a good path to develop both professionally and personally. 

I will never forget their life lessons and I hope to be as inspirational to others as they were 

to me. Thank you Justin and Sophie! 

I would also like to take this opportunity to show my heartfelt appreciation to Lou who 

patiently listened to all my challenges, understood them and motivated me to push harder 

in life. I am very grateful to have the support of my family as well – Weiwei, Zhilong and 

Milanda who believed in me and taught me to embrace uncertainties. I also want to take 

the time to thank my long-time friends François and Minh who were always by my side 

through the ups and downs of my adulthood. Of course, a special thank goes to Stéphanie 

for her encouragement and time in the proof-reading of this paper.  

Enfin, J’aimerais également remercier la Fondation Francis et Geneviève Melançon 

de m’avoir octroyé une prestigieuse bourse. Cette bourse représente pour moi une aide 

précieuse et rassurante durant mes études, et m’aide à rester ferme dans ma décision 

de poursuivre mon cheminement dans le domaine incertain, mais passionnant qu’est la 

recherche économique.  

 

  



10 
 

1. Introduction 

The discovery of antibiotics has led to a revolution in our approach to healthcare. 

However, we rely heavily on them today and they are becoming less and less effective. 

The phenomenon of antimicrobial resistance (AMR) started long before the discovery of 

antibiotics early in the 20th century. A micro-organism may acquire the ability to resist the 

effects of an antibiotic by natural selection (the process whereby organisms better 

adapted to their environment tend to survive and produce more offspring) or by horizontal 

gene transfer (the process in by which an organism incorporates genetic material from 

another organism without being the offspring). 1  Bacteria have always developed 

resistance to survive in nature, but with a very low frequency. In an environment where 

there is a large presence of antibiotics because of human intervention, natural selection 

favours the survival of antibiotic-resistant bacteria. Bacteria multiply very fast and, 

because of genetic mutations (natural event – changes in the genome due to mistakes 

that enzymes make when copying DNA for its offspring), differences exist in their genetic 

makeup from one generation to the next. By wiping out most of the bacteria with 

antibiotics, a small portion would survive – the ones which are usually immune to the 

effect of an antibiotic. This small number of antibiotic-resistant bacteria are surrounded 

by all the resources within a body without any competition from the sensitive bacteria 

strain. These antibiotic-resistant bacteria then multiply and infect other bodies.   

As a result, AMR currently threatens our healthcare system, global trade, 

agriculture, environment, as well as many other health sectors. The social and economic 

costs of this resistance are gigantic and represent an enormous burden on families, 

governments, and the global economy. The Review on Antimicrobial Resistance (the 

Review), was commissioned by the UK Government, who asked economist Jim O’Neill 

to analyse the global problem of rising drug resistance and propose concrete actions to 

tackle it internationally (RAR, 2016). The problem is considered one of the major threats 

to human health just as in the case of climate change. The Review shows that a 

continuation of the increase in antibiotic resistance would lead to the death of 10 million 

                                                           
1 The theory of its action was first fully expounded by Charles Darwin in 1859 and is now believed to be 
the main process that brings about evolution. Contrary to popular belief, people do not become resistant 
to antibiotics, only the pathogen does. 
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people annually by 2050, and a reduction of 2 to 3.5 percent in Gross Domestic Product 

globally (these losses may rise up to USD 100 billion). In the US, for example, bacteria 

that are resistant to the first line of antibiotic treatments alone are causing around 2 million 

infections every year. This is costing the US healthcare system around USD 20 billion in 

excess costs each year (Smith and Coast, 2013). The Review also states that due to the 

AMR and the birth of multidrug-resistant bacterial strains, common infections are causing 

around 700,000 deaths every year (this number might be underestimated due to poor 

surveillance). Tuberculosis (TB) infections alone will cause nearly 200,000 deaths 

every year from multidrug-resistant bacteria. In India, antibiotic-resistant neonatal 

infections cause the deaths of nearly 60,000 newborns each year (Laxminarayan, 2013). 

What is more frightening is that we are down to using our last line of defence to treat 

diseases such as gonorrhoea because of the rapid development of drug-resistant strains 

and the lack of rapid diagnostic tests (Davies, 2013). If the new antibiotics fail, 

gonorrhoea-resistant bacteria may not be controlled, and no more treatment options 

would be available on the shelf. 

Fortunately, with all the resources that countries have pooled together and with the 

addition of new public policies, including improving global surveillance of drug resistance 

and antimicrobial consumption in humans and animals, cutting unnecessary use of 

antibiotics, promoting early-stage and non-commercial research, and giving better 

incentives to promote investment for new drugs and improving existing ones, the combat 

against AMR seems promising.  By transforming the way we use antibiotics, we can 

reduce unnecessary use, slowing down AMR (eliminating natural selection process for 

antibiotic resistant-bacteria) which will ultimately making existing drugs last longer. 

Nevertheless, we should still be very careful and consider the effectiveness of an 

antibiotic as a renewable natural resource that is both precious and scarce. We will have 

to manage it optimally and sustainably. With the help of bio-economic models described 

below, one can refine policy recommendations that account for epidemiological and 

economic aspects. AMR is a classic problem of an externality, both in terms of health and 

in the economic sense. 
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 The overuse and misuse of antibiotics are considered a major problem in the rise 

of AMR. The Review demonstrates that the overuse of antibiotics may compromise 

modern medicine to such an extent that we would return to medieval-era medicine: many 

modern procedures, like surgeries, rely on the use of antibiotics to prevent infections. 

Should we be unable to prevent infections, many standard procedures of today may 

become out of reach. The team responsible for this study explains that doctors are 

frequently under pressure to treat patients quickly, leading to the overuse of unnecessary 

antibiotics. Furthermore, in Southern and Eastern Europe, around twenty to thirty percent 

of antibiotics are used without a doctor prescription, while in some parts of Africa this 

figure rises to almost one hundred percent (Laxminarayan et al., 2011). Particularly in 

those regions, antibiotics are easy to buy, and the lack of regulation certainly promotes 

overuse. The possibility of buying products online in several countries has also 

contributed to the increase of antibiotic resistance.  

Inappropriate prescriptions have also contributed to the development of such 

resistance. Studies have shown that the length of antibiotic therapies is incorrect in thirty 

to fifty percent of cases. Furthermore, antibiotics are also widely used to induce growth 

and to prevent infections in farm animals and are extensively used in agriculture. An 

estimated eighty percent of antibiotics sold in the United States are used on animals, 

which are then ingested by humans. Studies carried out over 35 years ago already have 

shown that there is a transfer of resistant bacteria of farm animals to humans (Ventola, 

2015). Finally, few new antibiotics are being developed in the pharmaceutical industry 

and obtaining regulatory approval is often an obstacle. This is explained by the fact that, 

unlike drugs that are used to treat chronic diseases, antibiotics are used for a short period, 

generate low profits and are often curative.  

One of the main findings of the Review is that innovation in rapid diagnostic tests2 

(RDTs) can play an important role in the fight against antimicrobial resistance by reducing 

unnecessary consumption. In this case, newly developed rapid diagnostic tests would 

optimise treatment. In this study, Dr. Margaret Chan, Director General of the World Health 

                                                           
2 They are diagnostic tests that can rapidly determine the type of an infection (viral vs. bacterial) allowing 
doctors to prescribe correctly for patients.  
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Organisation, stated that diagnostic tests can show whether an antibiotic is actually 

needed, and which one. Having rapid, low-cost, and readily available diagnostics is an 

essential part of the solution to solve the AMR problem. Thus, the use and development 

rapid diagnostic tests are crucial to solve the unnecessary antibiotic utilization problems. 

Rapid diagnostic tests would greatly reduce inappropriate and unnecessary 

prescriptions. For example, in the US, out of 40 million people who received prescriptions 

for respiratory problems, about 13 million needed those antibiotics (Shapiro et al., 2009). 

In most cases, infections in the throat are either caused by a virus or bacteria. However, 

antibiotics do not work on viruses – without a rapid diagnostic test and with the pressure 

to treat the patient right away just in case, antibiotics will also be given to patients who 

are infected virally. Rapid diagnostic tests are urgently needed by doctors to help patients 

requiring immediate treatment. Such tests would be able to test for resistance, allowing 

doctors to give patients the most appropriate available medicine for them. In the case of 

gonorrhoea, doctors have sometimes stopped prescribing many older drugs due to an 

increase in antibiotic resistance in the population. However, studies have shown that over 

70 percent of gonorrhoea cases in England and Wales were treatable with older drugs 

(Barry, 2009) such as penicillin. 

RDTs represent one of the best strategies against the increase of antibiotic 

resistance. When treating patients, doctors should be able to test for resistance, allowing 

them to give patients the most appropriate available medicine and not rush by prescribing 

the newest antibiotics in treating a certain infection. The use of rapid diagnostic tests will 

not only improve direct outcomes, but it can also stop transmission rates by shortening 

the time that people are infectious, thus improving infection control and allowing us to 

protect our most valuable drugs by only using them when no other drugs would be 

effective. 

The use of diagnostics can be viewed as a public good in which society benefits 

from the conservation of antibiotic effectiveness and the slow development of antibiotic 

resistance (Laxminarayan, 2010). However, there are near-term costs for physicians and 

patients being treated. According to the Review, without rapid diagnostic tests, normal 

tests would simply be too expensive and time consuming compared to the use of an 
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antimicrobial for doctors just in case. Even the use of traditional diagnostic tests, then, 

could help save costs and reduce waste at a system-wide level and help preserve the 

usefulness of antibiotics for all. Over the long-term, current related costs are just too high. 

Meanwhile, many drug companies, including those producing affordable generic 

antibiotics, have no commercial interest in the advent of rapid diagnostics, which would 

act to limit the number of antibiotics prescribed. The literature suggests that diagnostic 

innovation has been very slow, with limited financial incentives to sell or buy these 

innovative products. This paper will answer whether it is optimal for a firm (the monopolist) 

to invest in and develop such rapid diagnostic tests as well. 

This thesis uses a bio-economic model to examine the interaction between 

infection transmissions within populations, antibiotic effectiveness (or resistance), and the 

use of rapid diagnostic tests in the pricing policy of a monopolist who is protected by a 

patent. More precisely, this study’s aim is to develop a dynamic model analyzing the 

impact of using rapid diagnostic tests with a monopolist that controls fully and 

endogenously the effectiveness of an antibiotic as well as the market size (infected 

population) and treatment quantity. This thesis aims at answering the following research 

question: How does the behavior of a non-myopic monopolist change as a result of the 

availability of rapid diagnostics tests? We also want to answer how the rapid diagnostic 

tests benefit the society and what is the mechanism behind to preserve antibiotic 

effectiveness.    

The resolution of our model concluded that an interior solution can be determined 

for a non-myopic monopolist where its marginal profit equals to the marginal cost plus an 

external cost which also takes into consideration the effectiveness of the antibiotic and 

the infected population. However, a smaller portion of the population will be treated for 

the non-myopic monopolist with rapid diagnostic tests in society. A simulation in 

continuous time of our models shows that the increased use of rapid diagnostic tests 

benefits society by maintaining the effectiveness of the antibiotics and by reducing the 

number of a newly introduced population in our model – healthy individuals who are prone 

to antibiotic resistance (we will explain this new concept further below and how it is linked 

to the antibiotic resistance problem). It is also important to notice that our current model 
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incorporating rapid diagnostic tests do not seem to align with the monopolist incentives. 

We support novel incentive mechanisms where we introduce a de-linked system and a 

dual-pricing model to be used as a reward model for the monopolist to ensure a viable 

market. 
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2. Literature Review 

In this section, we will be conducting a literature review on key issues, concepts, 

contributions, and results related to the fight against antibiotic resistance and explore the 

foundations on which to build our bio-economic model in Section 3. First, we will analyze 

a few epidemiological models on the transmission of infections in populations 

(epidemiological component). We will then discuss the effectiveness of antibiotics as a 

natural resource to better understand the phenomenon of antibiotic resistance (the 

economic component). Finally, we will link the problem of resistance to similar problems 

in the field of natural resources management. In this case, we will study a bio-economic 

model that treats the effectiveness of an antibiotic as a scarce natural resource while 

characterizing the pricing policy of a patent-protected monopolist. 

2.1. Epidemiological Component 
a) Basic Compartmental Models 

The book Compartmental Models in Epidemiology (Brauer, 2008) introduces 

mathematical epidemiology and presents models to study the underlying mechanism for 

the spread of disease. Brauer formulates the models with the population under study as 

being divided into compartments and with assumptions about the nature and time rate of 

transfer from one compartment to another.  

For example, the “SIR” model or the Kermack-McKendrick model describes and 

computes the theoretical number of people infected with a contagious illness in a closed 

population over time. To model this, the population is being studied into three classes 

labelled S, I, and R. S(t) denotes the number of individuals who are susceptible to the 

disease but no infected. I(t) denotes the number of infected individuals, who are assumed 

to be infectious and able to spread the disease by contact with a susceptible individual. 

R(t) denotes the number of individuals who have recovered from infection and are then 

removed from the possibility of being infected again or of spreading infection. The starting 

point for the study of an epidemic model is (in rate of change):  
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𝑺𝑺′ =  −𝜷𝜷𝑺𝑺𝜷𝜷 

𝜷𝜷′ = 𝜷𝜷𝑺𝑺𝜷𝜷 − 𝜶𝜶𝜷𝜷 

𝑹𝑹′ =  𝜶𝜶𝜷𝜷 

Since the probability that a random contact by an infected individual with a 

susceptible individual who can then transmit infection is (𝑆𝑆
𝑁𝑁
), the number of new infections 

in unit time per infected individual is (βN)(𝑆𝑆
𝑁𝑁
), giving a rate of new infections: (βN) (𝑆𝑆

𝑁𝑁
) I = 

βSI. Alternately, it can be said that, for a contact by a susceptible individual, the probability 

that this contact is with an infected individual is ( 𝐼𝐼
𝑁𝑁
) and thus the rate of new infections per 

susceptible individual is (βN) ( 𝐼𝐼
𝑁𝑁
), giving a rate of new infections: (βN) ( 𝐼𝐼

𝑁𝑁
) S = βSI. 

The bio-economic model presented in Section 3 of this paper will borrow from the 

epidemiological literature the basic compartmental models and their underlying 

assumptions. In our model, we will assume that the infection takes place with rate βN per 

unit time and that the infected individuals will leave the infected class when they become 

healthy. However, infections do not give immunization upon recovery and healthy 

individual will become susceptible again and might develop a resistance to a treatment.  

b) Models with the Evolution and Spread of Antibiotic Resistance 

Advanced epidemiological studies were conducted to model the spread of 

antibiotic-resistant and antibiotic-sensitive bacterial strains from one host to another 

(Spicknall et al. 2013). The authors show how between-host models are categorized 

considering the basis of properties of within-host dynamics of antibiotic-resistant and 

antibiotic-sensitive bacterial strains. Within a host, resistant and sensitive bacteria strains 

can coexist either at equal levels or where one strain predominates over the other. In 

contrast, a host may be infected exclusively by a resistant or sensitive strain if coexistence 

is not permitted. Within-host competition can have differing results; if a host is infected 

with one strain, there is potential for a novel strain to replace the resident strain. If a host 

is superinfected with both sensitive and resistant strains, a predominant strain may 
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convert from sensitive to resistant or vice versa. The extent of within-host strain 

coexistence can be characterized in one of three ways described below: 

1. In the first case, coexistence will occur within a host with strains of bacteria 

(resistant or sensitive) at even levels. Both strains of bacteria can infect a host (S) 

– sensitive or resistant infections. In this case, the presence of one bacterial strain 

has no effect on the presence of another, indicating no competition of resources at 

the within-host level or for hosts at the population level. There will be no strain 

conversion or strain replacement. By referring to the SIS model explained above, 

coexistence will add a level to the SIS model as presented in the diagram below 

where 𝐼𝐼𝑤𝑤  and 𝐼𝐼𝑧𝑧 represent infected individuals with antibiotic resistant and sensitive 

strains of bacterial respectively. We observe both sensitive and resistant infections. 

𝛾𝛾 and 𝛾𝛾’ represent of the recover rates of for both bacterial strains. 𝜀𝜀 represents 

the portion of the population receiving a treatment.  

2. In the second case, within-host coexistence will not be allowed. This case does not 

allow strain conversion. Infected individuals will be infected exclusive by one strain 

of bacteria, and a novel strain may not infect the strain already present in the host. 

Sometimes, in a replacement infection model, there is a potential for replacement 

infection when a novel strain challenges a resident strain within a host, while 

coexistence is still not allowed. The diagram below represents this model when 

coexistence is not allowed. 
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3. In the last case, within-host coexistence can happen for both antibiotic-sensitive 

and antibiotic-resistant bacterial strains. They occur at uneven levels including 

both the unidirectional and bidirectional conversion of antibiotic sensitive and 

resistant strains. In this case, there is an implicit majority-minority relationship 

between the frequency of coexisting sensitive and resistant strains within a host. 

Neither of these structures allow for complete replacement infection (dominance 

of one bacterial strain), while both allow for strain conversion. This conversion can 

be in one direction (unidirectional), usually conversion of sensitive to resistant, or 

two directions (bidirectional), where predominantly sensitive infections may 

convert to resistant and vice versa. The authors propose two models: Sensitive-to-

Resistant Conversion and Resistant-to-Sensitive Conversion. The diagram below 

represents the conversions augmenting the SIS basic model. ρ and φ represents 

the conversion rates.  
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The models presented in the third case will serve as an important basis for the bio-

economic model presented in this paper because of the strain conversion within the 

host due to competition and coexistence of the two trains. In such a case, the 

effectiveness of an antibiotic can be restored. This phenomenon is further explored 

and explained below.  

 

 

2.2. Economic Component – Effectiveness of an Antibiotic as a Scarce Natural 
Resource 

a) Fitness cost of antibiotic resistance 

The foundation of the economic model developed in this paper is based on the 

phenomenon by which bacteria with antibiotic-resistant genes must also pay a price, or 

an “opportunity cost”, to survive. Research has shown that, in some cases, the resistant 

bacteria cannot reproduce very well and tend to have a higher mortality rate in an 

environment without antibiotics (Bjorkman et al., 1998). Scientists call this phenomenon 

“the opportunity cost of antibiotic resistance”, or the “fitness cost of resistance”. There is 
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a cost associated with the gain of resistance, and in the absence of antibiotics, resistant 

bacteria tend to reproduce more slowly than non-resistant bacteria. Hence, there is 

competition between antibiotic-resistant bacteria and non-resistant bacteria for resources 

to survive inside their hosts.  

The opportunity cost can be an important factor contributing to the renewal of 

antibiotic effectiveness (Laxminarayan, 2010). To preserve the effectiveness of an 

antibiotic, there is a need to study how resistant bacteria and non-resistant bacteria 

interact. It is important to establish a model that takes the effectiveness of our antibiotics 

as a scarce natural resource in the same way economists model the extraction of 

renewable but depletable resources. Just like other natural resources, an optimal 

management of the effectiveness of our antibiotics is determined by biological dynamics, 

the evolution of resistant bacteria, the spread of infections, and the demand for treatment 

in a market. 

b) Renewable Natural Resource 

The bio-economic model presented in this paper will also consider the 

effectiveness of antibiotics as a renewable natural resource. This assumption is based on 

theories developed by Wilen and Msangi (2003). They are the first ones to consider the 

effectiveness of an antibiotic as a renewable natural resource since some bacteria pay 

an opportunity cost (fitness cost) to gain resistance which represents an evolutionary 

disadvantage in an environment without antibiotics. In an environment where the supply 

of antibiotics, or treatment rate, is low enough, the population of antibiotic-sensitive and 

antibiotic-resistant bacteria strikes a balance. Researchers show that the effectiveness of 

an antibiotic can also be regenerated to reach an equilibrium. The objective of Wilen and 

Msangi’s economic theory is to minimize the discounted social costs associated with 

infections in populations. The researchers demonstrated that the best solution, according 

to their model, would be to offer an extreme initial treatment followed by an intermediate 

treatment to the population.  

Furthermore, the dynamic model developed in this thesis is based on the 

foundations laid by Herrmann & Gaudet (2009). Their ideas compare the optimal use of 

antibiotics when there is an open-access regime. They demonstrated that contrary to the 
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competitive producers in an open-access regime, the socially optimal solution takes into 

account the fact that the current treatment decision affects both the future level of efficacy 

of the antibiotic and the future stock of infected population. Following that, the model 

developed by Herrmann (2010) demonstrated that a monopolist protected by a patent will 

behave optimally taking into consideration the future level of antibiotic effectiveness and 

infected individuals. However, when the patent expires, the monopolist will begin acting 

more and more myopically leading to an open-access regime. When giving a prolongation 

of the patent, the monopolist will behave in favour of preserving the effectiveness of an 

antibiotic, however, it will also favor the spread of infection (market size 

2.3. Externality and Optimal Use 

In addition, the dynamic model developed in this paper will also compare the social 

choice of having rapid diagnostic tests being used by a monopolist who is protected by a 

patent. The model builds on Herrmann and Laxminarayan (2010), in which they state that 

medical treatment with antibiotics involves benefits and external or non-controllable costs 

for the person receiving this treatment. By healing the sick suffering from a contagious 

disease, there will be a positive externality in society: there will be fewer infections in the 

future and fewer people that can transmit the disease. However, the cost of using an 

antibiotic is not only the price of the treatment paid by the patient, the government or the 

insurance provider. There is also a negative externality, or a fictitious cost (shadow price), 

associated with the reduction in the effectiveness of an antibiotic. Ideally, an antibiotic 

should be used when the full marginal benefits equal or exceed the full marginal costs.  

Our paper also examines the dynamics of infections in two cases: when physicians 

make use of rapid diagnostic tests, and when they don’t. When rapid diagnostic tests are 

not used, physicians often use the most effective antibiotic. Researchers found that, 

according to the cost of production and the relative speed in which the efficiency 

decreases, it is ideal to use a single antibiotic initially (Laxminarayan & Brown 2001). For 

example, when two drugs have similar production costs, but differ in their level of 

efficiency, the most effective antibiotic should be used first, since it offers a wider 

possibility of effective treatments to avoid future infections. This phase continues until the 
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two antibiotics are equally effective; then, it becomes more efficient to ensure that their 

use is inversely proportional to the rate at which their effectiveness is reduced. 

However, in many cases, powerful antibiotics should ideally be kept in reserve and 

only be used in a case where the infections cannot be stopped by older medications. For 

example, as explained earlier, the last line of defence (the most powerful antibiotics) to 

treat gonorrhoea is prescribed as a precaution for almost all patients, although 70–80% 

of the older antibiotics could be used. This paper will build a model in which doctors can 

know if infections are resistant or not and examine the optimal use of antibiotics.  

Our dynamic model also explores the market structure in which rapid diagnostic 

tests are used. Before a patent expires, only one company sells the antibiotic and controls 

the evolution of its effectiveness. The basic idea came from Mechoulan (2007) and the 

paper shows that even if it is socially optimal to eradicate an infection, a monopolist will 

not do so because the spread of the infection represents the market size. The author also 

shows that the reactivation of a patent after its original expiration can improve the well-

being of the population. This occurs when the price given by a monopolist approaches a 

price that is socially optimal (higher), while the price set by the generic manufacturers is 

not socially optimal (lower). Therefore, for the development of our dynamic model, it is 

essential that the monopolist can choose the level of antibiotic effectiveness for a fraction 

of the population being treated (endogenous). 
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2.4. The Bio-Economic Model of Herrmann (2010) 
a) The Model 

To analyse the effect of rapid diagnostic tests in the population and for a 

monopolist as well as the social benefit derived from them, the dynamic model built in this 

paper uses a structure developed by Herrmann (2010). In the author’s model, the global 

population is constant and equals N. The healthy population is given by S = N - I, where 

I is equal to the infected individuals. The infected population I is composed of two sub-

populations: the people infected with bacteria susceptible to an antibiotic (Iw) and those 

infected by bacteria resistant to an antibiotic (Ir). Both versions of bacteria are naturally 

present in the system (coexistence). β is the rate of transmission of infection within the 

healthy population and the infected population. The time it takes for one person to infect 

another is given by terms (2.1) and (2.2) at the change at time t (rate of change). 

𝜷𝜷𝑺𝑺(𝒕𝒕)𝜷𝜷𝒓𝒓(𝒕𝒕)      (2.1) 

𝜷𝜷𝑺𝑺(𝒕𝒕)𝜷𝜷𝒘𝒘(𝒕𝒕)      (2.2) 

The problem of antibiotic resistance is determined by a dominant presence of 

antibiotic-resistant bacteria (Ir) in the system because antibiotic-sensitive bacteria (Iw) are 

eliminated by antibiotics (phenomenon of natural selection). In this context, the author 

presents a model (equation 2.3) to measure the effectiveness of an antibiotic (w) at time 

t by the proportion of those infected by the antibiotic-sensitive bacteria (Iw) from the 

infected population overall, or (Iw + Ir). 

𝒘𝒘 = 𝜷𝜷𝒘𝒘
𝜷𝜷𝒘𝒘+𝜷𝜷𝒓𝒓

= 𝜷𝜷𝒘𝒘
𝜷𝜷
     (2.3) 

The author also states that the infected population can recover naturally. The 

natural recovery rate when infected with non-resistant bacteria is given by 𝑟𝑟𝑤𝑤 and the 

natural recovery rate for the population infected with resistant bacteria is given by 𝑟𝑟𝑟𝑟. If all 

infected people, I, are treated with an antibiotic, the recovery rate for those infected by 

resistant bacteria is unchanged, while the recovery rate for those infected by susceptible 

bacteria becomes 𝑟𝑟𝑤𝑤  +  𝑟𝑟𝑓𝑓 where the variable 𝑟𝑟𝑓𝑓  represents the additional recovery rate 

when given treatment. 
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If a fraction f ∈ [0, 1] of the infected population is treated with the antibiotic 

(endogenous to the monopolist), the recovery rate for those infected by susceptible 

bacteria would be 𝑟𝑟𝑤𝑤 + 𝑓𝑓𝑟𝑟𝑓𝑓 , where the total population infected decreases with a rate 

of 𝑟𝑟𝑟𝑟𝐼𝐼𝑟𝑟(𝑡𝑡) + �𝑟𝑟𝑤𝑤 + 𝑓𝑓𝑟𝑟𝑓𝑓�𝐼𝐼𝑤𝑤(𝑡𝑡).  

�̇�𝜷𝒘𝒘 = �𝜷𝜷𝑺𝑺 − 𝒓𝒓𝒘𝒘 − 𝒇𝒇𝒓𝒓𝒇𝒇�𝜷𝜷𝒘𝒘    (2.4) 

�̇�𝜷𝒓𝒓 = (𝜷𝜷𝑺𝑺 − 𝒓𝒓𝒓𝒓)𝜷𝜷𝒓𝒓     (2.5) 

�̇�𝑺 =  −�̇�𝜷 =  −�̇�𝜷𝒘𝒘 − �̇�𝜷𝒓𝒓     (2.6)   

The differential equations (2.4) to (2.6) represent the dynamics within the population. 

Equation (2.4) states that the change of people infected with susceptible bacteria is 

affected by the transmission rate, the natural recovery rate and the recovery of a fraction 

of the population f who is getting the treatment. Equation (2.5), meanwhile, says that 

changing infected bacteria into resistant bacteria is affected by the transmission rate and 

the natural rate of recovery. Finally, equation (2.6) indicates the change in the healthy 

population. Using these equations and a total differential of equation (2.3), the author 

derived the following differential system:  

𝒘𝒘 ̇ = 𝒘𝒘(𝟏𝟏 − 𝒘𝒘)[𝜟𝜟𝒓𝒓 − 𝒓𝒓𝒇𝒇𝒇𝒇]     (2.7)  

𝜷𝜷 ̇ = 𝜷𝜷�𝜷𝜷(𝑵𝑵− 𝟏𝟏) − 𝒓𝒓𝒓𝒓 + 𝒘𝒘[𝜟𝜟𝒓𝒓 − 𝒓𝒓𝒇𝒇𝒇𝒇] �   (2.8)  

Equation (2.7) represents the change in the effectiveness of an antibiotic at time t 

and equation (2.8) represents the change in the infected population at time t. The author 

indicates that ∆𝑟𝑟 = 𝑟𝑟𝑟𝑟  −  𝑟𝑟𝑤𝑤 , which measures the opportunity cost of resistance we 

mentioned in the previous section. The author shows the two important effects in its 

dynamic system (Equation 2.7). 

The first effect is explained by ∆𝑟𝑟 . If ∆𝑟𝑟 = 𝑟𝑟𝑟𝑟  −  𝑟𝑟𝑤𝑤  is positive, this means that 

resistant bacteria must incur an opportunity cost of the resistance in the absence or low 

presence of antibiotics. As a result, people infected with resistant bacteria have a natural 

recovery rate greater than those infected by susceptible bacteria. In other words, the 

effectiveness of an antibiotic is renewable (because of this opportunity cost) in the system 
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determined by 𝑤𝑤  (Equation 2.3). The other effect is represented by natural selection 

(selecting antibiotic resistant bacteria). The additional rate 𝑟𝑟𝑓𝑓 (with antibiotic treatment) in 

the recovery of infected people by susceptible bacteria potentially leads to the domination 

of resistant bacteria because antibiotics will remove all non-resistant bacteria in the 

system (antibiotic-resistant bacteria no longer need to compete against non-resistant 

bacteria). If a fraction of the infected population (𝑓𝑓 = ∆𝑟𝑟
𝑟𝑟𝑓𝑓

) is treated with an antibiotic, the 

two effects cancel each other out. For all other values of f, a dominant effect, leading to 

an increase or a decrease of the level of effectiveness of an antibiotic. Assuming that both 

the fitness cost effect and the natural selection effect are apparent in the system, we must 

have 𝑓𝑓 = ∆𝑟𝑟
𝑟𝑟𝑓𝑓

 <  1. 

The probability of recovering from infection without antibiotic treatment is defined 

as  π(w) = 𝑤𝑤𝑟𝑟𝑤𝑤 + (1 − 𝑤𝑤)𝑟𝑟𝑟𝑟 . A higher probability is given to infection with antibiotic 

treatment:�π(w) + 𝑤𝑤𝑟𝑟𝑓𝑓�.  We will model demand as the same way Herrmann derived 

demand, by using the following utility function (Equation 2.9). The inverse demand 

function (Equation 2.10) is derived from the utility of a type of individual who is indifferent 

between buying the antibiotic or not when infected.   

    (2.9) 

𝑷𝑷(𝒇𝒇,𝒘𝒘) = 𝒓𝒓𝒇𝒇𝒘𝒘(𝟏𝟏 − 𝒇𝒇)     (2.10)  

In the case of a monopolist, if a patent exists, assigning exclusive rights to the  

firm to sell the antibiotic for an exogenously give period of time after which the antibiotic 

is sold by a generic industry, a non-myopic monopolist will consider the impact of his 

current decisions on future levels of antibiotic efficacy and infection, and thus on the 

evolution of the quality of his product and its market size over time.  Equation 2.10 is 

used to derive profit maximization. The objective function of the monopolist is given by 

equation 2.11 below: 
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     (2.11) 

 

The first order conditions can be derived from the differential systems with equations (2.7) 

and (2.8) as constraints. The current-value Hamiltonian associated to problem (2.11) is 

given by (2.12) below: 

𝑯𝑯(𝒇𝒇,𝒘𝒘, 𝜷𝜷,𝒖𝒖,𝝀𝝀) = �𝒓𝒓𝒇𝒇𝒘𝒘(𝟏𝟏 − 𝒇𝒇) − 𝒄𝒄�𝒇𝒇𝜷𝜷 + 𝒖𝒖𝒘𝒘(𝟏𝟏 − 𝒘𝒘)�𝜟𝜟𝒓𝒓 − 𝒓𝒓𝒇𝒇𝒇𝒇� +  𝝀𝝀𝜷𝜷(𝜷𝜷(𝑵𝑵− 𝜷𝜷) − 𝒓𝒓𝒓𝒓 +

                                  𝒘𝒘[𝜟𝜟𝒓𝒓 − 𝒓𝒓𝒇𝒇𝒇𝒇]         (2.12) 

Its derivative with respect to the control variable is given below with equation 2.13 

below: 

     (2.13) 

  (2.14) 

Equation 2.13 is the first-order condition for the maximization of the Hamiltonian with 

respect to f(t) at each instant t. The author states that with condition written in equation 

2.13, it can never be optimal for the monopolist to sell the antibiotic with a fraction (f = 1) 

of the population. This gives a negative current profit without generating profits in the 

future. By setting f = 1, it inevitably decreases the level of antibiotic efficacy and infection, 

or at least decelerates the increase in the level of infection, and thus negatively affects 

the future quality and market size of the antibiotic. It is therefore necessary to have ∂H/∂f 

< 0. However, it may be optimal to have f = 0, thus postponing production and allowing 

antibiotic efficacy and infection to rise as fast as possible. 

There are arbitrage equations that determine the evolution of u(t) and λ(t) over time and 

transversality conditions which states that if there is a strictly positive stock of antibiotic 

efficacy or of the infected population left at the end of the patent lifetime (w(t) > 0, I(t) > 

0), then that stock must be of no value to the non-myopic monopolist. The same reasoning 

applies in the limit as t tends to infinity in the case of an infinitely long-lasting patent. 
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In the case of an interior solution, (0 < fm < 1), 2.13 can be written as the following with 

the condition 2.14 to give 2.15 below: 

     

    (2.15) 

The Diagram 2.1 below shows the monopolistic interior solution fm at state (w, I) at time 

t: 

 

 

 

 

 

 

 

 

 

The author shows that for an interior solution (𝑓𝑓𝑚𝑚), the marginal benefit ((𝑟𝑟𝑓𝑓𝑤𝑤(1 −

2𝑓𝑓𝑚𝑚)) equals the marginal cost (c) plus an external cost that takes into consideration the 

effectiveness of the antibiotic (w) and the infected population (I). This reflects the fact 

that the stock of the infected population can be viewed as an “asset” by the monopolist, 

since it represents market size when the antibiotic is economically viable. As explained 

above, whenever ∆𝑟𝑟
𝑟𝑟𝑓𝑓

 ∈ [1 /2, 1], the fitness cost effect dominates, i.e. the level of 

antibiotic efficacy will be increasing over time, as the optimal fraction f served by the 

monopolist will always be lower than 1 /2 (for c > 0) 

Our dynamic model retains the structure developed by Herrmann but contains 

three additional items. First, there is the addition of a new category of susceptible 

population. This population is a susceptible and healthy population that is prone to resist 

Diagram 2.1: Monopolistic interior solution fm at state (w, I) at time t 
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certain antibiotics due to prior use (infected population who was recently treated and 

became healthy) and due to the presence of antibiotic resistance in the environment. 

Secondly, the use of rapid diagnostic tests is added to the dynamic model. The model 

will analyze the impact of using rapid diagnostic tests on a monopolist who controls the 

market size and derive the social benefit from it. Lastly, the model will provide a more 

in-depth analysis of the interaction between infected, non-infected populations and the 

effectiveness of an antibiotic. The different theories will be further examined in the 

following section.  
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3. Theoretical Modelling 

In this section, we develop a theoretical model that considers the impact of rapid 

diagnostic tests and model the transmission of antibiotic resistance in a more 

sophisticated way. The incorporation of a mechanism of infection transmission in the 

model will allow us to better understand the antibiotic resistance that is generated. The 

conceptual framework underlying our model is the one developed by Herrmann (2010) 

where a monopolist is protected by a patent who controls the effectiveness of an 

antibiotics. However, the transmission mechanism and the population dynamics are 

specific to this thesis. As mentioned above, our dynamic model will contain three 

additional items – a new category of susceptible population, the use of rapid diagnostic 

and an in-depth analysis of the interaction between infected, non-infected populations 

and the effectiveness of an antibiotic. After presenting the theoretical framework of our 

model, we will also simulate the social benefit that is generated by rapid diagnostic tests.   

3.1. Model 
a) The Bio-Economic Model 

In our model, we define that the healthy population is given by 𝑆𝑆 = 𝑁𝑁 − 𝐼𝐼, where I is 

equal to infected individuals. The infected population I is composed of two sub-

populations: the people infected with bacteria susceptible to an antibiotic and those 

infected by bacteria resistant to an antibiotic. Both versions of bacteria are naturally 

present in the system (with-in hot coexistence). β is the rate of transmission of infection 

within the healthy population and the infected population. 

We present below our assumptions regarding the transmission of infections and 

antibiotic resistance. We formulate  the population dynamics with the following terms 

and definitions: 

𝑺𝑺𝑵𝑵𝑹𝑹: Susceptible and healthy population that is not prone to infections by antibiotic-

resistant bacteria. 

𝑺𝑺𝑹𝑹 : We introduce a new category of healthy population and we will incorporate the 

“competing bacteria” model. When a patient has been exposed to resistant bacteria, 
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traces of it remains in the body, so that future infections are more likely to be by antibiotic-

resistant bacteria. This new population in our model therefore represents susceptible and 

healthy population that is prone to resist certain antibiotics due to prior use and/or the 

presence of antibiotic resistance in the environment.  

𝑺𝑺: The overall healthy population, which is equal to 𝑆𝑆 = 𝑁𝑁 − 𝐼𝐼.  

𝜷𝜷𝑪𝑪: Infected population with a non-resistant bacterial strain or sensitive bacterial strain. 

Therefore, we assume that this population can be cured with the available antibiotics. 

𝜷𝜷𝑵𝑵𝑪𝑪: Infected population with a resistant bacterial strain. Therefore, we assume that this 

population cannot be cured. 

𝑵𝑵: The overall population, which is assumed to be constant. 

𝜷𝜷: The overall infected population, 𝐼𝐼 = 𝐼𝐼𝐶𝐶 + 𝐼𝐼𝑁𝑁𝐶𝐶. 

Moreover, we will also assume different types of infection and recovery relative to different 

types of infected populations. These are further explained below. Each of the following 

paragraphs corresponds to an arrow on Diagram 3.1 on page 36. We explain the each 

of the type of transmission below based on our understanding of epidemiological models 

(Spicknall et al. 2013). 

1. Susceptible Healthy Population Conversion 

The SR population will not indefinitely carry within them the signs of antibiotic 

resistance acquired from prior use or misuse of antibiotics. We assume that traces of 

antibiotics in the body of the SR population will eventually disappear, so that a fraction δ 

of this population will become a healthy susceptible population that is not prone to resist 

to antibiotics again (SNR).  

δ: Rate at which the resistance in the susceptible population disappears. 

2. Curable Infection 
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We assume that there exists an antibiotic to efficiently treat a case of sensitive 

bacterial strain infection. In this case, the transmission is from antibiotic-sensitive bacteria 

(instead of resistance to the one antibiotic used). This results in an interaction between 

SNR and IC. We will also define the transmission parameter βc and assume it to be specific 

to a sensitive bacterial strain. 

𝜷𝜷𝒄𝒄:  Rate of transmission of non-resistance infection or sensitive infection. These 

infections are caused by a non-resistant bacterial strain (or sensitive strain) between 

healthy and infected populations. This term determines the rate of addition at time t to the 

infected population (IC) or the rate at time t at which the infected population (IC) grows. 

The rate of addition is given by 𝛽𝛽𝑐𝑐𝑆𝑆𝑁𝑁𝑁𝑁(𝑡𝑡)𝐼𝐼𝐶𝐶(𝑡𝑡). 

3. Curable Natural Recovery 

The recovery from an infection with the antibiotic-sensitive bacterial strain occurs 

naturally. This means that our immune system can often take care of this type of infection, 

or that the bacteria itself will not survive long enough in our body. If there is no antibiotic 

treatment in a population, this natural recovery occurs at an innate and constant rate 𝑟𝑟𝑐𝑐. 

Since a portion f of the population will be given treatment, only 1-f of the population can 

naturally recover.  

𝒓𝒓𝒄𝒄 : Natural recovery rate from non-resistant infection, or the recovery rate without 

antibiotic treatment for a non-resistant bacterial strain. 

𝒇𝒇: Fraction of infected population treated with antibiotics and f ∈ [0,1]. Thus, 1-f will be 

the population that will naturally recover. 

4. Non-Curable Natural Recovery 

Populations can also be infected with antibiotic-resistant bacteria that are non-curable. 

We assume that there are no antibiotics to treat this type of infection. However, natural 

recovery from this infection is possible, thanks to one’s immune system or some other 

conditions that inhibited their survival (i.e., the fitness cost). This occurs at a rate of 𝑟𝑟𝑁𝑁𝐶𝐶, 

which is not modified by antibiotic treatment. Therefore, the population that went through 

non-curable natural recovery and did not receive treatment is also 1-f. 
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𝒓𝒓𝑵𝑵𝑪𝑪: Natural recovery rate from resistant infection, or the recovery rate without antibiotic 

treatment of a resistant bacterial strain. 

5. Non-Curable Infection 

In this case, the infection is transmitted from antibiotic-resistant bacteria. This results 

in an interaction between SNR and INC with a rate of transmission denoted by βNC, which 

we assume to be specific to the resistant strain. In some cases, in order to express the 

fact that the resistant strain is less “fit” than the sensitive strain, we take βNC to be no 

greater than βC.  

β𝑵𝑵𝑪𝑪: Rate of transmission of resistant infection (non-curable infection). These infections 

are caused by a resistant bacterial strain. This term determines the rate of addition at time 

t to the infected population (INC) or the rate at time t at which the infected population (INC) 

grows. The rate of addition at time t is given by β𝑁𝑁𝐶𝐶𝑆𝑆
𝑁𝑁𝑁𝑁(𝑡𝑡)𝐼𝐼𝑁𝑁𝐶𝐶(𝑡𝑡). 

6. Curable to Non-Curable Conversion 
In the case of mixed infections, or where both resistant and sensitive bacterial strains 

coexist in a host body, the resistant strain sometimes becomes the predominant strain. 

This phenomenon is the consequence of the natural selection effect. The use of 

antibiotics in a population will most likely eliminate all nonresistant or sensitive bacterial 

strains in our body so that there is no competition left for the resistant strain. This strain 

conversion, from sensitive to resistant, depends on the antibiotic treatment proportion f 

and the rate ρ at which the resistant strain outcompetes the sensitive strain in the 

presence of antibiotics. Under the presence of antibiotics, the resistant minority of 

bacteria within the host takes over at rate ρ as a function of the resistant strain replication 

rate, the reduced sensitive strain replication rate, and the death rate of sensitive bacteria 

from antibiotic exposure. The mixed infection could result in either 1) reinfection with one 

or more strains; 2) initial infection with a heterogeneous bacterial population, some with 

and some without the resistant trait, rather than a homogeneously sensitive population. 

In our work, to simplify our model, we assume that this conversion does not occur, or ρ = 

0. In the literature, this sort of infection is called a single-strain infection, or exclusive 

infection.  
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𝝆𝝆: The amplification rate of resistant strains under antibiotics. This rate depends on 

population treatment level 𝑓𝑓. This is also the failure rate, which can be written as 1 − 𝑟𝑟𝑓𝑓. 

7. Non-Curable to Curable Conversion 
If we assume that there is in-host strain coexistence, then sometimes there is also a 

conversion from resistant to sensitive strains. This phenomenon is the consequence of 

the fitness cost effect. A rate of amplification for the non-resistant bacteria is determined 

by φ and the proportion of the population not receiving antibiotic treatment, (1– 𝑓𝑓). φ is 

very similar to ρ above. Assuming that there is a mixed infection with predominantly 

resistant bacteria and some sensitive bacteria, the absence of antibiotic treatment in a 

host body results in the sensitive bacteria outcompeting the resistant bacteria at rate φ. 

The underlying fitness cost effect could be explained by the mechanism of loss of 

resistance through backwards mutation or plasmid loss; again, to simplify our model, we 

assume that this conversion does not occur, or φ = 0. 

8. Curable Recovery with Resistance 

When the IC population is receiving a treatment, its recovery will occur at a faster rate 

defined by 𝑟𝑟𝑓𝑓 . If only a proportion of the population, f, is receiving the antibiotic, we 

assume that the recovery rate from IC is a function of rC and rf. The expected recovery 

rate from IC would then be: 𝑟𝑟𝑐𝑐(1 − 𝑓𝑓) + 𝑟𝑟𝑓𝑓𝑓𝑓. The population that will naturally recover will 

be the 1 − 𝑓𝑓 portion. In the other case, the healthy population having recovered from 

antibiotics is defined as SR (and not SNR) because we assume that traces of antibiotics 

will remain inside the host’s body for some period of time. Thus, the rate of addition at 

time t for SR is given by 𝑓𝑓𝑟𝑟𝑓𝑓𝐼𝐼𝐶𝐶(𝑡𝑡). 

𝒓𝒓𝒇𝒇: Recovery rate with antibiotic treatment. 𝑟𝑟𝑓𝑓 is bigger than 𝑟𝑟𝑐𝑐.  

9. Non-Curable Reinfection 

We mentioned above that the SR population is a healthy population that acquired 

resistance through prior use or misuse of antibiotics. When SR is infected again (assuming 

that SR will be in contact with both resistant and sensitive bacterial strains, or IC and INC 

populations), this SR population would then become an infected population that cannot be 
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cured (INC). The leftover presence of antibiotics in the host’s body will favour the survival 

of resistant bacteria inside the body when SR is infected. The rate of addition at time t for 

INC is given by βNC𝐼𝐼𝑁𝑁𝐶𝐶𝑆𝑆𝑁𝑁(𝑡𝑡) + βC𝐼𝐼𝐶𝐶𝑆𝑆𝑁𝑁(𝑡𝑡) because of the acquired resistance by SR. 

10. Misuse of Treatment 
We mentioned earlier that the infected population that cannot be cured (INC) could 

naturally recover at a rate of 𝑟𝑟𝑁𝑁𝐶𝐶 to become SNR.  In the misuse case, an antibiotic is given 

to a population infected with a resistant bacterial strain INC. The population will not recover 

faster as a response (antibiotic not being effective), and traces of the antibiotic can usually 

be found in the body. More importantly, a resistance to this antibiotic will be built when 

the infected population (INC) recovers naturally because. Therefore, the INC population 

would become a healthy population SR with a rate of addition at time t, given by 𝑓𝑓𝑟𝑟𝑁𝑁𝐶𝐶𝐼𝐼𝑁𝑁𝐶𝐶(𝑡𝑡). 
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  Diagram 3.1: Proposed basic model  



37 
 

b) Population Dynamics 

In this section, we will formulate the rate of change for each of the studied populations. 

Population 𝑺𝑺𝑵𝑵𝑹𝑹 

We have identified five phenomena affecting SNR. These five changes are formulated 

below and numbered according to the different types of cases described above in a): 

1. Addition of δ from SR; 

2. Reduction to IC by βCIC; 

3. Addition of 𝑟𝑟𝐶𝐶(1-f) from IC; 

4. Addition of 𝑟𝑟𝑁𝑁𝐶𝐶(1-f) from INC, and 

5. Reduction to INC by βNCINC. 

We will also assume that βC = βNC = β; the rate of change SNR is thus given as equation 

3.1 below:  

�̇�𝑺𝑵𝑵𝑹𝑹 =  𝜹𝜹𝑺𝑺𝑹𝑹 −  𝜷𝜷(𝜷𝜷𝑪𝑪 + 𝜷𝜷𝑵𝑵𝑪𝑪)𝑺𝑺𝑵𝑵𝑹𝑹 + (𝟏𝟏 − 𝒇𝒇) (𝒓𝒓𝑪𝑪𝜷𝜷𝑪𝑪 + 𝒓𝒓𝑵𝑵𝑪𝑪𝜷𝜷𝑵𝑵𝑪𝑪)   (3.1) 

Population 𝜷𝜷𝑪𝑪 

We have identified five phenomena affecting IC. These five changes are formulated 

below and numbered according to the different types of cases described above in a): 

2. Addition of βCIC from SNR; 

3. Reduction to SNR by 𝑟𝑟𝐶𝐶(1-f); 

6. Reduction to INC by ρf; 

7. Addition of φ(1-f) from INC; and 

8. Reduction to SR by 𝑟𝑟𝑓𝑓𝑓𝑓. 

To make things simple, we will also assume that φ = ρ = 0 for now. Therefore, the 

rate of change of IC is given as equation 3.2 below:  

�̇�𝜷𝑪𝑪 = (𝛃𝛃𝐂𝐂𝐒𝐒𝐍𝐍𝐍𝐍– 𝐫𝐫𝐂𝐂(𝟏𝟏 − 𝒇𝒇) − 𝐫𝐫𝐟𝐟𝒇𝒇)𝐈𝐈𝐂𝐂       (3.2) 
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Population 𝑺𝑺𝑹𝑹 

We have identified four phenomena affecting SR. These four changes are formulated 

below and numbered according to the different types of cases described above in a): 

1. Reduction to SNR by δ; 

8. Addition of 𝑟𝑟𝑓𝑓𝑓𝑓 from IC; 

9. Reduction to INC by βNCINC + βCIC; and 

10. Addition of 𝑓𝑓𝑟𝑟𝑁𝑁𝐶𝐶 from INC. 

Thus, the rate of change of SR is given as equation 3.3 below:  

�̇�𝑺𝑹𝑹 = −(δ +  𝛃𝛃𝐍𝐍𝐂𝐂𝐈𝐈𝐍𝐍𝐂𝐂)𝐒𝐒𝐍𝐍  +  𝒇𝒇(𝐫𝐫𝐟𝐟𝐈𝐈𝐂𝐂 + 𝐫𝐫𝐍𝐍𝐂𝐂𝐈𝐈𝐍𝐍𝐂𝐂))     (3.3) 

Population 𝜷𝜷𝑵𝑵𝑪𝑪 

We have identified six phenomena affecting INC. These six changes are formulated 

below and numbered according to the different types of cases described above in a): 

4. Reduction to SNR by (1-f)𝑟𝑟𝑁𝑁𝐶𝐶; 

5. Addition of βNCINC from SNR; 

6. Addition of (1 - 𝑟𝑟𝑓𝑓)f or ρf from IC; 

7. Reduction to IC by φ(1-f); 

9. Addition of βNCINC + βCIC from SR; and 

10. Reduction to SR by 𝑓𝑓𝑟𝑟𝑁𝑁𝐶𝐶. 

To keep things simple, we will also assume that φ = ρ = 0 for now. Therefore, the rate 

of change of INC is given as equation 3.4 below (we will also assume that βNC = βC = β):  

�̇�𝜷𝑵𝑵𝑪𝑪 = (𝛃𝛃𝐒𝐒 − 𝐫𝐫𝐍𝐍𝐂𝐂)𝐈𝐈𝐍𝐍𝐂𝐂 + 𝛃𝛃𝐒𝐒𝐍𝐍𝐈𝐈𝐂𝐂      (3.4) 
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The Use of Rapid Diagnostic Tests 

In current medicine practice, on the one hand, a portion of antibiotic prescriptions are 

made outside the hospital, by doctors without using a diagnostic tool, by pharmacists or 

by self-medicating patients buying antibiotics over-the-counter (RAR, 2016). This is part 

of the overuse of antibiotics problem described above. On the other hand, doctors usually 

use empirical diagnosis: they will use their expertise, intuition and professional judgement 

to ‘guess’ whether an infection is present and what is likely to be causing it, and thus the 

most appropriate treatment (RAR, 2016).  

In some instances, diagnostic tools (traditional diagnostic tests) are used later to 

confirm or change that prescription. These traditional diagnostic tests can show whether 

an antibiotic is needed, and which one is needed. Antibiotics are rarely prescribed based 

on a definitive diagnosis. Each time a diagnostic test is used, an appropriate option for 

prescription is followed (e.g.: test for resistance, allowing the most appropriate available 

medicine for an infection or test for viral infection). The benefits of using traditional 

diagnostic tests are to preserve antibiotic effectiveness and minimize antibiotic resistance. 

Thus, the use of ordinary or traditional diagnostic tests can be viewed as a public good. 

A positive externality is created with the use diagnostic tools because it is socially 

desirable for antibiotic conservation and slower development of resistance. The cost of 

using traditional diagnostic tests are longer waiting times and potential complications for 

patients that are not treated. Tests might represent additional expenses. Bacteria must 

be cultured for 36 hours or more to confirm the type of infection and the drugs to which it 

is susceptible (RAR, 2016). An acutely ill patient cannot wait this long for treatment, and 

even when the health risks are not that high, most doctors’ surgeries and pharmacies are 

under time, patient and financial pressure, and must address patients’ needs much faster. 

Diagram 3.2 below presents the social benefit and private benefit from the use of 

traditional diagnostic test.  
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The S curve presented in Diagram 3.2 represents the marginal cost or the supply 

curve for the diagnostic tests. S is pointing upward by assuming that each incremental 

test is going to be a little bit expensive (longer waiting time). D1 represents the demand 

curve or the marginal benefit of the diagnostic tests. D1 is, thus, the marginal private 

benefit (MPB) for the users of the diagnostic tests. With D1, we will get at a quantity of 

diagnostic used (Qm). The social benefit of each diagnostic tests used is represented by 

D2. A marginal social benefit (MSB) is added to each MPB which gives us D2 (the 

external benefit is presented by MXB and this is presented as the vertical distance 

between D1 and D2). With D2, we will get at a socially desirable quantity of diagnostic 

used (Qop). The efficiency loss is where we are leaving behind some social benefit. This 

is represented by the deadweight loss. One way to reduce this loss is to raise the 

private demand (D1). This could be achieved by giving incentives to doctors. However, 

this method does not help the patient directly or immediately. The cost related to the 

use traditional diagnostic tests as explained above remains, even if we raise the 

demand. The alternative way to obtain this surplus is to shift the S curve downward. 

This can be achieved through rapid diagnostic tests or RDTs. Cheap and rapid 

diagnostic tests, when developed, can reduce the dead weight loss. Longer waiting 

times and potential complications for patients can be eliminated. The Diagram 3.3 

below presents this method.  

Diagram 3.2: Positive externality with the use of traditional diagnostics 
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Diagram 3.3: Elimination of the dead weight loss with RDTs 

In the diagram, D1 and D2 meet when the percentage of diagnostic tests used reaches 

100% (this is in a situation where RDTs are used on all cases or diagnostics because 

they are rapid and precise). As the treatment percentage increases, the marginal 

externality decreases. In fact, the distance between D1 and D2 is the positive externality 

of the rapid diagnostic tests linked to the reduction of antibiotic resistance.  Therefore, 

rapid point-of-care diagnostic tests are a central part of the solution to this demand 

problem, which results currently in enormous unnecessary antibiotic use. 

In the case where rapid diagnostic tests are used, we assume that these tests are 

extremely efficient and accurate. Consequently, we can detect whether the infection is 

antibiotic-sensitive or antibiotic-resistant. In this situation, a fraction f1 and f2 of the 

infected population will be treated with antibiotics. With the use of rapid diagnostic tests, 

f1 will be associated with the infected population that can be cured (IC), and f2 will be 

associated with the infected population that cannot be cured (INC). For this section, we 

assume the test is extremely accurate, and 𝑓𝑓2  =  0. This means that, with the use of 

diagnostic tests, there is no misuse of antibiotics (sub-section 10: misuse of treatment). 

For a non-myopic monopolist to treat the population with its antibiotic in which it takes 

into consideration the effectiveness of the antibiotic and the infected population in the 

long run, it is advantageous to develop such rapid diagnostic test since it will reduce the 

*Qop =100% 
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number of newly healthy population who are prone to antibiotic resistance which, in 

turn, will preserve the effectiveness of the antibiotics.  

Diagram 3.4a below first summarizes the proposed model with the use of rapid 

diagnostic. Diagram 3.4b displays the simplified model where f2 = 0.  

   Diagram 3.4a: Proposed model with the use of rapid diagnostic tests 
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Diagram 3.4b: Proposed model with the use of rapid diagnostic tests 
(𝒇𝒇𝟐𝟐 = 𝟎𝟎) 
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c) Demand function 

We will use the following assumptions to determine the demand function.  

• At first, we will define the effectiveness of an antibiotic (𝑒𝑒). This can be measured 

as the proportion of the curable population over the total infected population. This 

means that the proportion of the infected population that can be cured is directly 

proportional to the effectiveness of the antibiotic (the larger the infected population 

which can be cured within the total population, the more effective is the antibiotic). 

𝒆𝒆 =  𝜷𝜷𝑪𝑪
𝜷𝜷𝑪𝑪+𝜷𝜷𝑵𝑵𝑪𝑪

                                          (3.5) 

• The probability of recovery without the use of antibiotics (i.e., when patients do not 

know which strains of bacterial they are infected with) is written as the following 

equation where e represents the probability of being infected with the sensitive 

strains of bacteria (𝐼𝐼𝐶𝐶 ) and (1-e) being the probability of being infected with the 

resistant strains of bacteria (𝐼𝐼𝑁𝑁𝐶𝐶):  

                                                     π(𝒆𝒆) = 𝒆𝒆𝒓𝒓𝑪𝑪 + (𝟏𝟏 − 𝒆𝒆)𝒓𝒓𝑵𝑵𝑪𝑪                         (3.6) 

• The probability of recovery with the use of antibiotics or treatment is written as the 

following equation:  

                                                                  𝑷𝑷(𝒓𝒓) = π(𝒆𝒆) + 𝒆𝒆𝒓𝒓𝒇𝒇                               (3.7) 

• The health consideration can be determined with the gross utility of an individual 

of type θ.  

o 𝑈𝑈(θ) = θ, if the individual is in good health (not infected). 

o 𝑈𝑈(θ) = π(e)θ, if the individual is infected, but is not taking any antibiotics and 

do not know which strains of bacterial he is being infected with. 

o 𝑈𝑈(θ) = (π(𝑒𝑒) + 𝑒𝑒𝑟𝑟𝑓𝑓)θ, if the infected individual is taking antibiotics. 

• We introduce θ’ which is defined as the type of individual who is indifferent 

whether receiving treatment or not. 

• P is defined as the price of the antibiotics. We can therefore determine the value 

of θ’ in equation 3.8: 

                                                                  π(𝒆𝒆)θ ′ = �π(𝒆𝒆) + 𝒆𝒆𝒓𝒓𝒇𝒇�θ ′ − 𝑷𝑷             (3.8) 
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Which means that: 

                                                                        θ ′ =  𝑷𝑷
𝐫𝐫𝐟𝐟𝒆𝒆

                                          (3.9)  

With the function associated with θ’ (in equation 3.9), the inverse demand function 

can be derived as equation 3.10 below:  

                                𝑷𝑷(𝒇𝒇, 𝒆𝒆) = 𝒓𝒓𝒇𝒇𝒆𝒆(𝟏𝟏 − 𝒇𝒇)                              (3.10) 

1.2 Profit Maximization Problem of the Non-Myopic Monopolist Set-Up 

We will assume that a patent exists, assigning exclusive rights to a monopolistic firm 

to sell the antibiotic for an exogenously given period of time after which the antibiotic is 

sold by a generic industry. The monopolist will consider the impact of the current decisions 

on future levels of antibiotic efficacy and infection, and thus, on the evolution of the 

effectiveness of the antibiotic and its market size over time.   

By using the inverse demand function above, we can derive the profit function below: 

𝝅𝝅(𝒆𝒆) = �𝒓𝒓𝒇𝒇𝒆𝒆(𝒕𝒕) ��𝟏𝟏 − 𝒇𝒇(𝒕𝒕)� − 𝐜𝐜�� 𝒇𝒇(𝒕𝒕)𝐈𝐈(𝒕𝒕)   (3.11) 

Endogenous for e and f. 

The effectiveness of an antibiotic can be assumed to be e. As previously stated, the 

proportion of the infected population that can be cured is directly proportional to the 

effectiveness of the which determine the effectiveness of the antibiotic. Therefore, we 

assume e to be equation 3.5  

From the population dynamics derived in part Section 3b, the assumptions for e and 

equations 3.1, 3.2, 3.3. and 3.4, we can derive the following dynamic equations3:  

�̇�𝒆 = 𝒆𝒆 (( 𝟏𝟏 − 𝒆𝒆)� ∆𝐫𝐫 + 𝒇𝒇�𝒓𝒓𝑪𝑪 − 𝒓𝒓𝒇𝒇� − 𝑩𝑩𝑺𝑺𝑹𝑹�)    (3.12) 

�̇�𝜷 = 𝜷𝜷[𝑩𝑩𝑺𝑺 − 𝒓𝒓𝑵𝑵𝑪𝑪 + 𝒆𝒆(∆𝐫𝐫 +  𝒇𝒇�𝒓𝒓𝑪𝑪 − 𝒓𝒓𝒇𝒇�]    (3.13) 

𝑺𝑺�̇�𝑹 = 𝒇𝒇𝜷𝜷 �𝒓𝒓𝒇𝒇𝒆𝒆 + 𝒓𝒓𝑵𝑵𝑪𝑪(𝟏𝟏 − 𝒆𝒆)� − (𝑩𝑩𝜷𝜷 + 𝜹𝜹)𝑺𝑺𝑹𝑹    (3.14) 

                                                           
3 The change in the effectiveness (�̇�𝑒) is derived from a total differential of the equation 3.5.  
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These are the constraints to the profit maximization problem. The two important effects 

in the biological system are still apparent in Equations 3.12 and 3.13. The term ∆r is 

represented by 𝑟𝑟𝑁𝑁𝐶𝐶 −  𝑟𝑟𝐶𝐶 . This is the fitness cost effect: if ∆r is positive, then there is 

renewability of the resource of antibiotic efficacy (resistant strains bacterial will clear 

faster). The natural selection effect is determined with 𝑟𝑟𝐶𝐶 − 𝑟𝑟𝑓𝑓. This suggests that after a 

fraction of population f receives the antibiotics, the non-resistant bacteria strain will be 

wiped out giving the dominance of resistant-strain bacteria. Again, if a fraction 𝑓𝑓 = ∆𝑟𝑟
𝑟𝑟𝑓𝑓

 of 

the infected population is treated with the antibiotic, the fitness cost effect and the natural 

selection cost effects will cancel out. For all other admissible values of f, one effect will 

dominate giving an increase or decrease in the level of antibiotic efficacy. We must have 

(∆𝑟𝑟
𝑟𝑟𝑓𝑓

) < 1, assuming that both the fitness cost effect and the natural selection effect are 

apparent in the system. The term −𝐵𝐵𝑆𝑆𝑁𝑁  coincides with the increase of resistance in 

population (decrease of effectiveness of antibiotics).  

The maximization problem is described as the following: 

𝑴𝑴𝑴𝑴𝑴𝑴 𝝅𝝅(𝒕𝒕) = ∫ 𝒆𝒆−𝝆𝝆𝐭𝐭𝑻𝑻
𝟎𝟎 𝝅𝝅(𝒕𝒕)𝒅𝒅𝐭𝐭    (3.15) 

Equation 3.15 is subject to constraints 3.12, 3.13 and 3.14 since a non-myopic monopolist 

does consider the long-run effects of his current decisions. 
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4. Resolution of the Model and Profit Maximization Problem 
4.1 Monopolistic (Non-Myopic) Behaviour 

In this section, we will explore the optimum of the non-myopic monopolist protected 

by a patent infinitely and the impact on the effectiveness of the antibiotic. We will set up 

the Hamiltonian and derive the first order conditions. A non-myopic monopolist considers 

the effectiveness of the antibiotic, the infected population and the treatment quantities in 

the long-term. Therefore, the maximization function (3.15) will be subject to the evolution 

of e, I, and SR (equations 3.12, 3.13 and 3.14). 

a) Model 1 - Without Rapid Diagnostic Tests 

In our basic model proposed above (Diagram 3.1), we established that without rapid 

diagnostic tests, we derived the following dynamic/differential equations:  

�̇�𝑺𝑵𝑵𝑹𝑹 =  𝜹𝜹𝑺𝑺𝑹𝑹 −  𝜷𝜷(𝜷𝜷𝑪𝑪 + 𝜷𝜷𝑵𝑵𝑪𝑪)𝑺𝑺𝑵𝑵𝑹𝑹 + (𝟏𝟏 − 𝒇𝒇) (𝒓𝒓𝑪𝑪𝜷𝜷𝑪𝑪 + 𝒓𝒓𝑵𝑵𝑪𝑪𝜷𝜷𝑵𝑵𝑪𝑪)    (3.1) 

�̇�𝜷𝑪𝑪 = (𝜷𝜷𝑺𝑺𝑵𝑵𝑹𝑹 −  𝒓𝒓𝑪𝑪(𝟏𝟏 − 𝒇𝒇) − 𝒓𝒓𝒇𝒇𝒇𝒇) 𝜷𝜷𝑪𝑪                                     (3.2) 

�̇�𝑺𝑹𝑹 = −(δ +  𝜷𝜷𝑵𝑵𝑪𝑪𝜷𝜷𝑵𝑵𝑪𝑪)𝑺𝑺𝑹𝑹 + 𝒇𝒇(𝒓𝒓𝒇𝒇𝜷𝜷𝑪𝑪 + 𝒓𝒓𝑵𝑵𝑪𝑪𝜷𝜷𝑵𝑵𝑪𝑪))                                   (3.3) 

�̇�𝜷𝑵𝑵𝑪𝑪 = (𝜷𝜷𝑺𝑺 − 𝒓𝒓𝑵𝑵𝑪𝑪)𝜷𝜷𝑵𝑵𝑪𝑪 + 𝜷𝜷𝑺𝑺𝑹𝑹𝜷𝜷𝑪𝑪                                                          (3.4) 

At first, there are steady-state configurations to the epidemiological dynamics described 

by equations 3.8, 3.9 and 3.10. This gives rise to eSS, ISS and SRSS which denote the 

steady-state values of e, I and SR respectively. In order to not have the fitness cost and 

natural selection effects cancel out on each other, we will have value of any 𝑓𝑓 ≠  (∆𝑟𝑟
𝑟𝑟𝑓𝑓

). 

Following that, we will then have �̇�𝑒 = 0 (no change in antibiotic effectiveness) for 𝑒𝑒 = 0 or 

𝑒𝑒 = 1.  

By using the Hamiltonian, we can derive the first order conditions and the shadow prices 

of the antibiotic effectiveness and the infected individuals. With respect to the non-myopic 

monopolist, the current-value Hamiltonian associated to the problem is described below:  

𝑯𝑯 (𝒇𝒇, 𝒆𝒆, 𝜷𝜷,𝑺𝑺𝑹𝑹,𝒖𝒖, λ, 𝐳𝐳) = [𝒓𝒓𝒇𝒇𝒆𝒆 (𝟏𝟏 − 𝒇𝒇) − 𝒄𝒄]𝒇𝒇𝜷𝜷 + 𝒖𝒖𝒆𝒆 [(𝟏𝟏 − 𝒆𝒆)(−𝑩𝑩𝑺𝑺𝑹𝑹 + ∆𝐫𝐫 + 𝒇𝒇(𝐫𝐫𝐜𝐜 − 𝐫𝐫𝐟𝐟)] +

 λ𝐈𝐈[(𝑩𝑩𝐒𝐒 − 𝐫𝐫𝐍𝐍𝐂𝐂 + 𝐞𝐞(∆𝐫𝐫 + 𝒇𝒇(𝒓𝒓𝒄𝒄 − 𝒓𝒓𝒇𝒇)]  +  𝒛𝒛[𝒇𝒇𝐈𝐈(𝐫𝐫𝐟𝐟𝐞𝐞 + 𝐫𝐫𝐍𝐍𝐂𝐂(𝟏𝟏 − 𝐞𝐞) − (𝑩𝑩𝐈𝐈 +  𝛅𝛅)𝐒𝐒𝐍𝐍]  (4.1) 
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where u and λ and z measure for the shadow values (prices/costs) associated to the level 

of antibiotic efficacy and the stock of infected population and the healthy population 

respectively. The following conditions are necessary for intertemporal profit maximization: 

𝛛𝛛𝛛𝛛
𝛛𝛛𝐟𝐟
≤  𝟎𝟎, 𝛛𝛛𝛛𝛛

𝛛𝛛𝐟𝐟
𝐟𝐟 =  𝟎𝟎, 𝐟𝐟 ≥  𝟎𝟎 𝐨𝐨𝐫𝐫 𝛛𝛛𝛛𝛛

𝛛𝛛𝐟𝐟
 ≥  𝟎𝟎, 𝛛𝛛𝛛𝛛

𝛛𝛛𝐟𝐟
 (𝟏𝟏 −  𝐟𝐟)  =  𝟎𝟎, 𝐟𝐟 ≤  𝟏𝟏                 (4.2) 

�̇�𝒖 −  ρ𝒖𝒖 = 𝛛𝛛𝛛𝛛/𝛛𝛛𝐞𝐞         (4.3) 

λ̇−  ρλ = 𝛛𝛛𝛛𝛛/𝛛𝛛𝐈𝐈          (4.4) 

�̇�𝒛 −  ρ𝒛𝒛 = 𝛛𝛛𝛛𝛛/𝛛𝛛𝑺𝑺𝑹𝑹          (4.5) 

The condition 𝜕𝜕𝜕𝜕
𝜕𝜕𝑓𝑓

 ≤  0 in 4.2 is necessary since it will never be optimal for the monopolist 

to sell the antibiotic to the overall infected population (𝑓𝑓 =  1). This makes current profits 

negative without generating compensating future profits. Conditions 4.3 to 4.5 are the 

arbitrage equations to measure the path or evolution over time of the shadow prices 

associated to the level of antibiotic efficacy and the stock of infected population and the 

healthy population respectively. These conditions also state that when the monopolist is 

protected by a patent, the effectiveness of the antibiotics and the infected individuals at 

the end of patent has no value.  

Furthermore, the derivative with respect to the control variable 𝑓𝑓 of the Hamiltonian is 

derived as the following: 

𝛛𝛛𝛛𝛛
𝛛𝛛𝐟𝐟

 =  (𝐫𝐫𝐟𝐟𝐞𝐞(𝟏𝟏 − 𝟐𝟐𝒇𝒇) − 𝐜𝐜)𝐈𝐈 +  𝐞𝐞(𝐫𝐫𝐜𝐜 − 𝐫𝐫𝐟𝐟)(𝒖𝒖(𝟏𝟏 − 𝐞𝐞) + λ𝐈𝐈)  +  𝐳𝐳𝐈𝐈(𝐫𝐫𝐟𝐟𝐞𝐞 + 𝐫𝐫𝐧𝐧𝐜𝐜(𝟏𝟏 − 𝐞𝐞))   (4.6) 

When 𝜕𝜕𝜕𝜕
𝜕𝜕𝑓𝑓

 = 0, we have the following monopolistic interior solution 𝑓𝑓𝑚𝑚 at state (e, I) at time 

t: 

𝐫𝐫𝐟𝐟𝒆𝒆(𝟏𝟏 − 𝟐𝟐𝒇𝒇𝒎𝒎) = 𝒄𝒄 + �𝒆𝒆
𝜷𝜷
� �𝒓𝒓𝒇𝒇 − 𝒓𝒓𝒄𝒄�[(𝒖𝒖(𝒆𝒆 − 𝟏𝟏) − λ𝐈𝐈) − 𝒛𝒛�𝒓𝒓𝒇𝒇𝒆𝒆 + 𝒓𝒓𝒏𝒏𝒄𝒄(𝟏𝟏 − 𝒆𝒆)�]   (4.7) 

The solution at time t can be demonstrated with the following graph:  
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It is optimal for the non-myopic monopolist to treat the population at fm.  In Diagram 4.1, 

the interior solution (𝑓𝑓𝑚𝑚 ) is shown. The marginal benefit ((𝑟𝑟𝑓𝑓𝑒𝑒(1 − 2𝑓𝑓𝑚𝑚))  equals the 

marginal cost ( 𝑐𝑐 ) plus an external cost which also takes into consideration the 

effectiveness of the antibiotic (𝑒𝑒) and the infected population (𝐼𝐼). This result is consistent 

with the literature as demonstrated in Herrmann’s paper. As for the myopic monopolist, 

the marginal benefit equals only to the marginal cost for a solution at f since it does not 

consider the effectiveness of the antibiotic (𝑒𝑒) and the infected population (𝐼𝐼). Therefore, 

the non-myopic monopolist will treat a smaller portion of the population given the 

constraints derived for 𝑒𝑒 and 𝐼𝐼.  

On the other hand, we will depict the dynamics in time of the variables under study4 in a 

simulation. We will be looking particularly at the evolution of the effectiveness of the 

antibiotics (e) and the susceptible healthy population who are prone to resistance (SR) in 

our model. 

The Diagram 4.2 below shows the dynamics in time of the effectiveness of the antibiotics5. 

                                                           
4 Python (programming language) is used and codes are available in the annexe. 
5 In our simulation, the time horizon is fixed, and we assume that our population size is fixed as well. The 
values for other parameters used in the dynamic equations are based on epidemiological studies 
(Spicknall et al. 2013). 

Diagram 4.1: Interior solution for the monopolist – without rapid diagnostic tests 
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We assume that the effectiveness of the antibiotic is not at 100% initially since there might 

be resistance already existing in nature. As time goes by, we observe that, in our 

simulation, the effectiveness diminishes since the antibiotic is being used in population 

for all infected individuals (without knowing what type of infections). In the simulation, the 

effectiveness of the antibiotic asymptotically approaches 0 for the non-myopic monopolist 

as the effectiveness of an antibiotic has no value for the monopolist at the end of the 

patent. The fitness cost of the resistant strain of bacteria (opportunity cost) could 

contribute to the renewal of antibiotic effectiveness. However, we observe that this was 

not enough to increase the effectiveness of the antibiotic in our first model (without RDTs).  

Moreover, the Diagram 4.3a below shows the dynamics in time of the healthy population 

who are prone to resistance (SR) in our simulation. In Diagram 4.3b, we added the 

antibiotic effectiveness dynamic as well. Diagram 4.3c presents the phase diagram. 

Diagram 4.2: Antibiotic effectiveness – dynamics in time 
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Diagram 4.3a: Healthy population prone to resistance – dynamics in time 

Diagram 4.3b: Effectiveness and Healthy population prone to resistance – 
dynamics in time 
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In our proposed model, we suggested that the crucial component leading to antibiotic 

resistance is the population prone to infections by bacteria that are resistant to antibiotics 

(SR). This population will increase as infected individuals will be mistreated giving rise to 

antibiotic resistance. As the effectiveness of the antibiotics decrease with time as shown 

above, we observe that the SR population will then decrease with time. This is consistent 

with our model since this population will eventually all be infected with antibiotic resistant 

bacteria.  

b) Model 2 - With Rapid Diagnostic Tests 

Our proposed second model (Diagram 3.3) incorporate the use of rapid diagnostic tests 

where we assume 𝑓𝑓2 = 0, since the diagnostics tests are extremely efficient, and we do 

not mistreat infected individuals.   

The following dynamic equations are derived (by repeating steps in section 3.1b):  

�̇�𝑺𝑵𝑵𝑹𝑹 =  𝜹𝜹𝑺𝑺𝑹𝑹 −  𝜷𝜷(𝜷𝜷𝑪𝑪 + 𝜷𝜷𝑵𝑵𝑪𝑪)𝑺𝑺𝑵𝑵𝑹𝑹 + (𝟏𝟏 − 𝒇𝒇) (𝒓𝒓𝑪𝑪𝜷𝜷𝑪𝑪) + 𝒓𝒓𝑵𝑵𝑪𝑪𝜷𝜷𝑵𝑵𝑪𝑪    (4.8) 

�̇�𝜷𝑪𝑪 =  (𝛃𝛃𝐒𝐒𝐍𝐍𝐍𝐍– 𝐫𝐫𝐜𝐜(𝟏𝟏 − 𝒇𝒇) − 𝐫𝐫𝐟𝐟𝒇𝒇)𝐈𝐈𝐂𝐂                                                (4.9) 

�̇�𝑺𝑹𝑹 =  −(δ +  𝛃𝛃𝐈𝐈)𝐒𝐒𝐍𝐍  +  𝐈𝐈𝐂𝐂𝐫𝐫𝐟𝐟𝐟𝐟                                                         (4.10) 

�̇�𝜷𝑵𝑵𝑪𝑪 =  −(𝛃𝛃𝐒𝐒 − 𝐫𝐫𝐍𝐍𝐂𝐂)𝐈𝐈𝐍𝐍𝐂𝐂 + 𝛃𝛃𝐒𝐒𝐍𝐍𝐈𝐈𝐂𝐂                                                        (4.11) 

Diagram 4.3c: Effectiveness and Healthy population prone to resistance – Phase 
Diagram 
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We observe that only the differential equations  �̇�𝑆𝑁𝑁𝑁𝑁 and �̇�𝑆𝑁𝑁 are different in our second 

model.  

With the use of the equations derived above and the assumption of e proposed (total 

differential), we can also derive the following epidemiological dynamic equations:  

�̇�𝒆 = 𝒆𝒆 (( 𝟏𝟏 − 𝒆𝒆)� 𝒓𝒓𝑵𝑵𝑪𝑪 −  𝒓𝒓𝑪𝑪 + 𝒇𝒇�𝒓𝒓𝑪𝑪 − 𝒓𝒓𝒇𝒇� − 𝑩𝑩𝑺𝑺𝑹𝑹�)     (4.12) 

�̇�𝜷 = 𝜷𝜷[𝑩𝑩𝑺𝑺 − 𝒓𝒓𝑵𝑵𝑪𝑪 + 𝒆𝒆(𝒓𝒓𝑵𝑵𝑪𝑪 −  𝒓𝒓𝑪𝑪 +  𝒇𝒇�𝒓𝒓𝑪𝑪 − 𝒓𝒓𝒇𝒇�]      (4.13) 

𝑺𝑺�̇�𝑹 = 𝒇𝒇𝜷𝜷�𝒆𝒆𝒓𝒓𝒇𝒇� − (𝑩𝑩𝜷𝜷 + 𝜹𝜹)𝑺𝑺𝑹𝑹        (4.14) 

As there are no changes regarding the equations involving 𝐼𝐼�̇�𝑁𝑁𝑁 and 𝐼𝐼�̇�𝐶, only the equation 

for ṠR is different from the constraints derived in equations 4.12, 4.13 and 4.14.  

The Hamiltonian associated to the problem is described below with our second case using 

rapid diagnostic tests:  

𝑯𝑯(𝒇𝒇, 𝒆𝒆, 𝜷𝜷, 𝐒𝐒𝐍𝐍,𝒖𝒖, λ,𝒛𝒛)  =  [𝐫𝐫𝐟𝐟𝒆𝒆(𝟏𝟏 − 𝒇𝒇) − 𝐜𝐜]𝒇𝒇𝐈𝐈 +  𝒖𝒖𝒆𝒆[(𝟏𝟏 − 𝒆𝒆)(−𝑩𝑩𝐒𝐒𝐍𝐍 + ∆𝐫𝐫 + 𝒇𝒇(𝐫𝐫𝐜𝐜 − 𝐫𝐫𝐟𝐟)] +

 λ𝐈𝐈[(𝑩𝑩𝐒𝐒 − 𝐫𝐫𝐍𝐍𝐂𝐂 + 𝐞𝐞(∆𝐫𝐫 + 𝒇𝒇(𝒓𝒓𝒄𝒄 − 𝒓𝒓𝒇𝒇)]  +  𝒛𝒛[𝒇𝒇𝐈𝐈(𝐞𝐞𝐫𝐫𝐟𝐟 (𝑩𝑩𝐈𝐈 +  𝛅𝛅)𝐒𝐒𝐍𝐍]     (4.13) 

The condition 𝜕𝜕𝜕𝜕
𝜕𝜕𝑓𝑓

 ≤ 0 is again necessary since it will never be optimal for the monopolist 

to sell the antibiotic to the overall infected population (f = 1). This makes current profits 

negative without generating compensating future profits.  

The derivative with respect to the control variable f of the Hamiltonian is derived as the 

following: 

𝛛𝛛𝛛𝛛
𝛛𝛛𝐟𝐟

= �𝒓𝒓𝒇𝒇𝒆𝒆(𝟏𝟏 − 𝟐𝟐𝒇𝒇) − 𝒄𝒄�𝜷𝜷 + 𝒆𝒆�𝒓𝒓𝒄𝒄 − 𝒓𝒓𝒇𝒇�(𝒖𝒖(𝟏𝟏 − 𝒆𝒆) + λ𝐈𝐈) + 𝒛𝒛𝜷𝜷𝒆𝒆𝒓𝒓𝒇𝒇     (4.14) 

When 𝜕𝜕𝜕𝜕
𝜕𝜕𝑓𝑓

 = 0, we have the monopolistic interior solution 𝑓𝑓𝑚𝑚∗ at state (e, I) at time t: 

𝒓𝒓𝒇𝒇𝒆𝒆(𝟏𝟏 − 𝟐𝟐𝒇𝒇𝒎𝒎∗) = 𝒄𝒄 + (𝒆𝒆
𝜷𝜷
)(𝒓𝒓𝒇𝒇 − 𝒓𝒓𝒄𝒄)[(𝒖𝒖(𝒆𝒆 − 𝟏𝟏) − λ𝐈𝐈) − 𝒛𝒛�𝒓𝒓𝒇𝒇𝒆𝒆�]                 (4.15) 

The solution at time t is demonstrated in Diagram 4.4 below:  
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As discussed above, it is optimal for the non-myopic monopolist to treat the 

population at 𝑓𝑓𝑚𝑚 (in the first case).  In our second model with rapid diagnostic tests, the 

marginal benefit  (𝑟𝑟𝑓𝑓𝑒𝑒(1 − 2𝑓𝑓𝑚𝑚)  also equals the marginal cost (c) plus an external cost 

which also takes into consideration the effectiveness of the antibiotic (e) and the infected 

population (I). In Diagram 3.6, the interior solution (𝑓𝑓𝑚𝑚∗) is shown to the left of 𝑓𝑓𝑚𝑚   from 

the solution in the first model, since the external cost (which takes into consideration e 

and I) is smaller (the term 𝒛𝒛�𝒓𝒓𝒇𝒇𝒆𝒆�  in equation 4.15 is smaller than the term 

𝒛𝒛 �𝒓𝒓𝒇𝒇𝒆𝒆 + 𝒓𝒓𝒏𝒏𝒄𝒄(𝟏𝟏 − 𝒆𝒆)�] presented in equation 4.7). With the rapid diagnostic tests, there 

are less infected population that the monopolist can treat since we eliminated 

mistreatment and overuse. To maximize profit, the monopolist choses to treat a smaller 

portion of the population given the constraints derived for e and I.  

We will again depict the dynamics in time of the variables under study in our second 

model: the effectiveness of the antibiotics (e) and the susceptible healthy population who 

are prone to resistance (SR). 

Diagram 4.4: Interior solution for the monopolist – with rapid diagnostic tests 
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In Diagram 4.5, we present the dynamics of the effectiveness of the antibiotics for both 

models. As the time goes by, we observe that the effectiveness diminishes slower in our 

second model. For example, at t = 40, we have the effectiveness of the antibiotic at 40% 

whereas in our first model with the misuse of antibiotics, the effectiveness of the antibiotic 

dropped to roughly 18% already. Since we eliminated misuse and overuse of antibiotics 

in our second model, social benefit can be expected from the increase of rapid diagnostic 

tests as predicted. We can therefore preserve the effectiveness of the antibiotics for a 

longer period.   

If we look at the evaluation of the decisive health population (SR) who are prone to 

resistance in Diagram 4.6a and Diagram 4.6b below, we also observe benefit from the 

Diagram 4.5: Antibiotic effectiveness – dynamics in time comparison 
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use of rapid diagnostic tests. Diagram 4.6c presents the phase diagram.

 

 

 

 

 

 

 

 

Diagram 4.6a: Healthy population prone to resistance – dynamics in time comparison 

 

Diagram 4.6b: Effectiveness and Healthy population prone to resistance – dynamics 
in time comparison 
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When the misuse and the overuse of antibiotics are eliminated in our second model, the 

SR population is reduced as observed in Diagram 4.6a. In the simulation of the first model, 

the SR population peaked at 8 individuals whereas in the second model, the peak is at 6 

individuals. Consequently, there will be less infected individuals who will developed 

resistant infections because of a reduced number of the SR population.  

4.2 Welfare Implications 

Social welfare function is the sum of the surplus of all individuals (whether infected 

or not and whether being treated or not) and the surplus of the manufacturers of the 

antibiotics. Recall from Section 3c), the probability of recovery without the use of 

antibiotics (i.e., when patients do not know which strains of bacterial they are infected 

with) is written as the following equation, where e represents the probability of being 

infected with the sensitive strains of bacteria (IC) and (1 − 𝑒𝑒) being the probability of 

being infected with the resistant strains of bacteria (INC):  

                                                     π(𝒆𝒆) = 𝒆𝒆𝒓𝒓𝑪𝑪 + (𝟏𝟏 − 𝒆𝒆)𝒓𝒓𝑵𝑵𝑪𝑪                         (3.6) 

The probability of recovery with the use of antibiotics or treatment is written as the 

following equation (augmented from π(𝒆𝒆) ):  

                                                                  𝑷𝑷(𝒓𝒓) = π(𝒆𝒆) + 𝒆𝒆𝒓𝒓𝒇𝒇                               (3.7) 

Diagram 4.6c: Effectiveness and Healthy population prone to resistance – Phase 
diagram comparison 
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The health consideration can be determined with the gross utility of an individual of type 

θ6.  

o 𝑈𝑈(θ) = θ, if the individual is in good health (not infected). 

o 𝑈𝑈(θ) =  π(𝒆𝒆)θ, if the individual is infected, but is not taking any antibiotics 

and do not know which strains of bacterial he is being infected with. 

o 𝑈𝑈(θ)  = (π(𝒆𝒆) + 𝒆𝒆𝒓𝒓𝒇𝒇) θ, if the infected individual is taking antibiotics for 

treatment. 

We also introduced θ’ which is defined as the type of individual who is indifferent whether 

receiving treatment or not. P is defined as the price of the antibiotics. Therefore, we can 

derive equation 3.8 

                                                                  π(𝒆𝒆)θ ′ = �π(𝒆𝒆) + 𝒆𝒆𝒓𝒓𝒇𝒇�θ ′ − 𝑷𝑷             (3.8) 

The inverse demand function can be derived as the following:  

                                𝑷𝑷(𝒇𝒇, 𝒆𝒆) = 𝒓𝒓𝒇𝒇𝒆𝒆(𝟏𝟏 − 𝒇𝒇)                              (3.10)  

Given the determination of the demand function from the above, the social welfare can 

be written as:  

 𝑾𝑾(𝒇𝒇, 𝒆𝒆, 𝜷𝜷) = 𝑵𝑵∫ 𝑼𝑼(𝜽𝜽)𝟏𝟏
𝟎𝟎 𝒅𝒅𝜽𝜽 − 𝒄𝒄𝒇𝒇𝜷𝜷         (4.17) 

              = (𝑵𝑵− 𝜷𝜷)� 𝑼𝑼(𝜽𝜽)
𝟏𝟏

𝟎𝟎
𝒅𝒅𝜽𝜽 +    (𝜷𝜷)�  π (𝒆𝒆)

θ ′(𝒑𝒑)

𝟎𝟎
𝜽𝜽 𝒅𝒅𝜽𝜽 +  (𝜷𝜷)�  (π (𝒆𝒆) + 𝒓𝒓𝒇𝒇𝒘𝒘)

𝟏𝟏

θ ′(𝒑𝒑)
𝜽𝜽

− 𝒑𝒑) 𝒅𝒅𝜽𝜽 + (𝒑𝒑 − 𝒄𝒄)𝒇𝒇𝜷𝜷 

𝑾𝑾(𝒇𝒇, 𝒆𝒆, 𝜷𝜷) = 𝟏𝟏
𝟐𝟐

( 𝑵𝑵− 𝟏𝟏) + 𝟏𝟏
𝟐𝟐
π(𝒆𝒆)𝜷𝜷 + 𝟏𝟏

𝟐𝟐
𝒓𝒓𝒇𝒇𝒆𝒆𝜷𝜷𝒇𝒇𝟐𝟐 + �𝒓𝒓𝒇𝒇𝒆𝒆(𝟏𝟏 − 𝒇𝒇) − 𝒄𝒄�𝒇𝒇𝜷𝜷     (4.18) 

In Equation 4.18:  

• The term 𝟏𝟏
𝟐𝟐

(𝑵𝑵− 𝜷𝜷) can be defined as the surplus derived by the portion of the 

population which is healthy. θ = ½ represents the mean valuation of the good 

health.  

                                                           
6 We assume that θ is equally distributed on the interval 0-1. 
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• The term 𝟏𝟏
𝟐𝟐
π(𝒆𝒆)𝜷𝜷  can be understood as the surplus of portion of the infected 

population which values good health at less than θ’(p), therefore this portion of 

population chooses to not buy the antibiotic. They recover at the natural recovery 

π(𝒆𝒆). 

• The term  𝟏𝟏
𝟐𝟐
𝒓𝒓𝒇𝒇𝒆𝒆𝜷𝜷𝒇𝒇𝟐𝟐  can be interpreted as is the surplus to the individuals who 

choose to buy the treatment at price P, since they have a valuation of good health 

higher than θ’(p). They recover at an increased probability: 𝑷𝑷(𝒓𝒓) = π(𝒆𝒆) + 𝒆𝒆𝒓𝒓𝒇𝒇 

• Consistent with the monopolist maximization problem, the last term �𝒓𝒓𝒇𝒇𝒆𝒆(𝟏𝟏 − 𝒇𝒇) −

𝒄𝒄�𝒇𝒇𝜷𝜷 is the surplus of the producers of an antibiotic against the sensitive infection.  

The social optimum problem is to determine 𝑓𝑓(𝑡𝑡) to maximize the welfare function7: 

𝑴𝑴𝑴𝑴𝑴𝑴 𝝅𝝅(𝒘𝒘) = � 𝒆𝒆−𝝆𝝆𝐭𝐭
𝑻𝑻

𝟎𝟎
𝒘𝒘(𝒇𝒇(𝒕𝒕),𝒆𝒆(𝒕𝒕), 𝜷𝜷(𝒕𝒕))𝒅𝒅𝐭𝐭 

Subject to the following constraints demonstrated in our second model (with the use of 

rapid diagnostics):  

�̇�𝒆 = 𝒆𝒆 (( 𝟏𝟏 − 𝒆𝒆)� 𝒓𝒓𝑵𝑵𝑪𝑪 −  𝒓𝒓𝑪𝑪 + 𝒇𝒇�𝒓𝒓𝑪𝑪 − 𝒓𝒓𝒇𝒇� − 𝑩𝑩𝑺𝑺𝑹𝑹�)      (4.12) 

�̇�𝜷 = 𝜷𝜷[𝑩𝑩𝑺𝑺 − 𝒓𝒓𝑵𝑵𝑪𝑪 + 𝒆𝒆(𝒓𝒓𝑵𝑵𝑪𝑪 −  𝒓𝒓𝑪𝑪 +  𝒇𝒇�𝒓𝒓𝑪𝑪 − 𝒓𝒓𝒇𝒇�]       (4.13) 

𝑺𝑺�̇�𝑹 = 𝒇𝒇𝜷𝜷�𝒆𝒆𝒓𝒓𝒇𝒇� − (𝑩𝑩𝜷𝜷 + 𝜹𝜹)𝑺𝑺𝑹𝑹         (4.14) 

The Hamiltonian associated to the problem is described below:  

𝑯𝑯(𝒇𝒇, 𝒆𝒆, 𝜷𝜷, 𝐒𝐒𝐍𝐍,𝒖𝒖, λ,𝒛𝒛)  =  𝟏𝟏
𝟐𝟐

( 𝑵𝑵− 𝟏𝟏) + 𝟏𝟏
𝟐𝟐
π(𝒆𝒆)𝜷𝜷+ 𝟏𝟏

𝟐𝟐
𝒓𝒓𝒇𝒇𝒆𝒆𝜷𝜷𝒇𝒇𝟐𝟐 + �𝒓𝒓𝒇𝒇𝒆𝒆(𝟏𝟏 − 𝒇𝒇) − 𝒄𝒄�𝒇𝒇𝜷𝜷 +  𝒖𝒖𝒆𝒆[(𝟏𝟏 −

𝒆𝒆)(−𝑩𝑩𝐒𝐒𝐍𝐍 + ∆𝐫𝐫 + 𝒇𝒇(𝐫𝐫𝐜𝐜 − 𝐫𝐫𝐟𝐟)] +  λ𝐈𝐈[(𝑩𝑩𝐒𝐒 − 𝐫𝐫𝐍𝐍𝐂𝐂 + 𝐞𝐞(∆𝐫𝐫 + 𝒇𝒇(𝒓𝒓𝒄𝒄 − 𝒓𝒓𝒇𝒇)]  +  𝒛𝒛[𝒇𝒇𝐈𝐈(𝐞𝐞𝐫𝐫𝐟𝐟 (𝑩𝑩𝐈𝐈 +  𝛅𝛅)𝐒𝐒𝐍𝐍]  

              (4.19) 

The derivative with respect to f is:  

𝛛𝛛𝛛𝛛
𝛛𝛛𝐟𝐟

= 𝒓𝒓𝒇𝒇𝒆𝒆𝜷𝜷𝒇𝒇 + �𝒓𝒓𝒇𝒇𝒆𝒆(𝟏𝟏 − 𝟐𝟐𝒇𝒇) − 𝒄𝒄�𝜷𝜷 + 𝒆𝒆�𝒓𝒓𝒄𝒄 − 𝒓𝒓𝒇𝒇�(𝒖𝒖(𝟏𝟏 − 𝒆𝒆) + λ𝐈𝐈) + 𝒛𝒛𝜷𝜷𝒆𝒆𝒓𝒓𝒇𝒇    

                                                           
7  We assume a finite time T. 
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      = (𝒓𝒓𝒇𝒇𝒆𝒆(𝟏𝟏 − 𝒇𝒇) − 𝒄𝒄)𝜷𝜷 + 𝒆𝒆�𝒓𝒓𝒄𝒄 − 𝒓𝒓𝒇𝒇�(𝒖𝒖(𝟏𝟏 − 𝒆𝒆) + λ𝐈𝐈) + 𝒛𝒛𝜷𝜷𝒆𝒆𝒓𝒓𝒇𝒇    (4.20) 

As explained above, where u,  λ and z stand for the shadow values associated to the 

level of antibiotic efficacy and the stock of infected population and the healthy population 

respectively. 

The following conditions are necessary for intertemporal profit maximization: 

𝛛𝛛𝛛𝛛
𝛛𝛛𝐟𝐟
≤  𝟎𝟎, 𝛛𝛛𝛛𝛛

𝛛𝛛𝐟𝐟
𝐟𝐟 =  𝟎𝟎, 𝐟𝐟 ≥  𝟎𝟎 𝐨𝐨𝐫𝐫 𝛛𝛛𝛛𝛛

𝛛𝛛𝐟𝐟
 ≥  𝟎𝟎, 𝛛𝛛𝛛𝛛

𝛛𝛛𝐟𝐟
 (𝟏𝟏 −  𝐟𝐟)  =  𝟎𝟎, 𝐟𝐟 ≤  𝟏𝟏                 (4.2) 

�̇�𝒖 −  ρ𝒖𝒖 = 𝛛𝛛𝛛𝛛/𝛛𝛛𝐞𝐞         (4.3) 

λ̇−  ρλ = 𝛛𝛛𝛛𝛛/𝛛𝛛𝐈𝐈          (4.4) 

�̇�𝒛 −  ρ𝒛𝒛 = 𝛛𝛛𝛛𝛛/𝛛𝛛𝑺𝑺𝑹𝑹          (4.5) 

Condition in 4.2 is the first-order condition for the Hamiltonian maximization for 𝑓𝑓(𝑡𝑡).  

When 𝜕𝜕𝜕𝜕
𝜕𝜕𝑓𝑓

 = 0, we have the social optimum interior solution 𝑓𝑓𝑠𝑠 at state (e, I) at time t and 

condition 4.2 can be derived as:  

𝒓𝒓𝒇𝒇𝒆𝒆(𝟏𝟏 − 𝒇𝒇𝒔𝒔) = 𝒄𝒄 + (𝒆𝒆
𝜷𝜷
)(𝒓𝒓𝒇𝒇− 𝒓𝒓𝒄𝒄)[(𝒖𝒖(𝒆𝒆 − 𝟏𝟏) − λ𝐈𝐈) − 𝒛𝒛�𝒓𝒓𝒇𝒇𝒆𝒆�] (4.21)

• The left side of equation 4.21 can be defined as the social optimum price of the

antibiotic.

• The social optimum price of the antibiotic is equal to the marginal cost (c) plus an

opportunity cost which also takes into consideration the effectiveness of the 

antibiotic (e) and the infected population (I). Similar to the monopolist problem, we 

observe that in the socially optimal solution with the use of rapid diagnostics, the 

future level of effectiveness of an antibiotic and the future number of infected 

individuals will be impacted by the current level of treatment. The monopolist 

problem and the social optimum problem both introduce an implicit social benefit 

to preserve the effectiveness of the antibiotics and an implicit the social cost 

related to the infection level in population (the respective shadow prices). A 

simulation for the effectiveness of the antibiotic and the 𝑆𝑆𝑁𝑁  population should 

match the monopolist in the model 2 with the use of rapid diagnostic tests.
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4.3 Discussion 

As discussed earlier, the overuse and misuse of antibiotics are the main cause of 

antibiotic resistance. To further understand this problem, we assume that when a patient 

has been exposed to antibiotic-resistant bacteria, traces of it remains in the body, so that 

future infections are more likely to be by antibiotic-resistant bacteria. We also assume 

that even after a successful treatment, the infected population ( 𝐼𝐼𝐶𝐶)  will become a 

susceptible and healthy population that is prone to resist to an antibiotic due to prior use 

or the presence of antibiotic resistance in the environment. We build on Herrmann’s 

model to integrate a crucial factor in the development of antibiotic resistance. 

Consequently, we introduce a newly healthy population (𝑆𝑆𝑁𝑁) and a mechanism in our bio-

economic model to link this population to antibiotic resistance.   

Considering the fact that rapid diagnostic tests represent one of the best strategies 

and by construct in our model, rapid diagnostic tests alleviate the externality problem 

linked to the overuse and misuse of antibiotics. However, we still need to identify the 

impact of these tests on the 𝑆𝑆𝑁𝑁 population since this population is a key factor to antibiotic 

resistance. Therefore, we introduced rapid diagnostic tests in our model to simulate 

situations where antibiotics are used in an efficient way (when 𝑓𝑓2 = 0  or no 

misuse/overuse of antibiotics).  As observed in our simulation, when an antibiotic is 

overused or misused (without rapid diagnostic tests), the 𝑆𝑆𝑁𝑁  population peaked at a 

higher level. When there is a higher level of 𝑆𝑆𝑁𝑁 population among healthy individuals, the 

effectiveness of an antibiotic decreases more rapidly as the 𝑆𝑆𝑁𝑁 population will eventually 

all turn into 𝐼𝐼𝑁𝑁𝐶𝐶  (where the infected individuals are untreatable). When the infected 

population is mostly composed of the  𝐼𝐼𝑁𝑁𝐶𝐶 population, the effectiveness of an antibiotic 

will be extremely low (recall that 𝒆𝒆 =  𝜷𝜷𝑪𝑪
𝜷𝜷𝑪𝑪+𝜷𝜷𝑵𝑵𝑪𝑪

).   We therefore observe an important 

relationship between the use rapid diagnostic tests and the 𝑆𝑆𝑁𝑁 population. In fact, the 

rapid diagnostic tests do not affect the effectiveness of antibiotic directly, it instead 

controls the spread 𝑆𝑆𝑁𝑁 population which will eventually preserve antibiotic effectiveness.  

From the in-depth analysis of our model and from the results shown, it is socially 

desirable to have rapid diagnostic being carried out and to preserve the effectiveness of 
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the antibiotic. Moreover, we realized that in order to have a better fighting chance against 

antibiotic resistance, it is indispensable to control the spread of the 𝑆𝑆𝑁𝑁 population and 

rapid diagnostic tests can strongly help. However, from the monopolist point of view, 

efficient rapid diagnostic tests can limit their potential market (the monopolist will be 

limited to treat sensitive infections). If the monopolist were to invest to develop such 

efficient rapid diagnostic tests, the return on investment for the new technologies will not 

be directly proportional to the volume of tests used since we showed above that a smaller 

portion of population will be treated. 

Nonetheless, our analysis and results demonstrated the important relationship 

between the 𝑆𝑆𝑁𝑁  population and antibiotic resistance. While investment in the 

development of efficient rapid diagnostic test is important, it is imperative to monitor the 

change in the 𝑆𝑆𝑁𝑁 population or to minimize this population as a preventive measure. In 

our model, we also suggested the susceptible healthy population conversion where a 

fraction δ of the 𝑆𝑆𝑁𝑁 population will become again a healthy susceptible population that is 

not prone to resist to antibiotics (we assume this occurs also naturally). In the absence of 

efficient rapid diagnostic tests, a deeper understanding of this conversion might provide 

us other ammunitions to tackle the problem of antibiotic resistance. Policies should be 

centered to reduce traces of antibiotics in our environment. This might increase the rate 

of δ which will decrease the 𝑆𝑆𝑁𝑁 population and preserve antibiotic effectiveness.   

4.4 Incentive Models 

In this section, we will explore incentives for the monopolist to develop such rapid 

diagnostic tests. Most of the current reward systems adopted in our society to advance 

for devolvement of antibiotics are called “push incentives” (Aral, 2017). Government 

agencies and private companies have essentially only provided push incentives for 

antibiotic development. We observe that this is typically in the form of grants and public-

private partnerships, as well as regulatory disincentives. However, in the context of rapid 

diagnostic tests, the push incentives can only reduce the overall cost of research and 

development at best. Therefore, this will not solve the problem that the rapid diagnostic 

tests will limit the potential market (infected people) for the monopolist. We will present 

two additions to our proposed model which are based on new mechanisms of action.  
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a) « Fully-Delinked » Reward System 

We learned the antibiotic market is unique as the effectiveness of a drug decreases 

with its use. Therefore, the market model for antibiotics is usually not aligned with public 

health objectives. In the book “Superbugs: An Arms Race against Bacteria”, there are 

currently proposals for a reward system against sales volumes to ensure a viable market. 

These systems are called “pull incentives” and the basic idea behind this model is to 

reward successful development by increasing or ensuring future revenue. Pull incentives 

provide known return on investment (i.e., periodic payments or market-entry rewards).  

 We can incorporate pull incentives in our model to reward the use of rapid diagnostic 

tests used and to ensure known return on the investment for the monopolist. Payments 

will be made to reward efficient rapid diagnostic tests used that align with the current 

public health priorities. These payments can also provide a predictable return on 

investment for the monopolist if it was developing such tests.  

We previously set the profit function of the monopolist as the following in our proposed 

model:  

𝝅𝝅(𝒆𝒆) = �𝒓𝒓𝒇𝒇𝒆𝒆(𝒕𝒕) ��𝟏𝟏 − 𝒇𝒇(𝒕𝒕)� − 𝐜𝐜�� 𝒇𝒇(𝒕𝒕)𝐈𝐈(𝒕𝒕) 

The alternative with the addition of pull incentive would give rise to the following profit 

function:  

𝝅𝝅(𝒆𝒆) = �𝒓𝒓𝒇𝒇𝒆𝒆(𝒕𝒕) ��𝟏𝟏 − 𝒇𝒇(𝒕𝒕)� − 𝐜𝐜�� 𝒇𝒇(𝒕𝒕)𝐈𝐈(𝒕𝒕) + 𝒍𝒍𝒖𝒖𝒎𝒎𝒑𝒑𝒔𝒔𝒖𝒖𝒎𝒎 𝒑𝒑𝒆𝒆𝒓𝒓𝒑𝒑𝒑𝒑𝒅𝒅𝒑𝒑𝒄𝒄 𝒑𝒑𝑴𝑴𝒑𝒑𝒎𝒎𝒆𝒆𝒏𝒏𝒕𝒕 

These payments can be in form of reimbursement or market entry reward.  

However, lumpsum payments or transfers are poor choices of incentives because of the 

costs maintaining them. A tax would ideally need to be introduced and other mechanism 

to obtain fund are needed to ensure sustainability.  

b) Dual pricing strategy and value-based model 

When an infected individual is being treated initially, a doctor might use the new 

antibiotic developed by the monopolist because of the patient’s needs. The price of the 

antibiotic for the first few days would be set to a base price that would be lower than the 
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full price charged by the monopolist. When rapid diagnostic tests are ordered by 

physicians and when clinicians would confirm the right use the new antibiotic empirically, 

a premium higher price would be charged to the hospital. If no diagnostic tests are ordered 

by clinicians, any longer treatment duration with this antibiotic would also be charged the 

higher price.  

This model compensates the value of the antibiotic developed by the monopolist in 

the presence of rapid diagnostic tests. In our proposed model, we understand that if an 

individual is infected with drug-resistance infection or other types of infection, the value 

of the monopolist antibiotic is low, and a treatment with this antibiotic is not socially 

desirable. However, after a rapid diagnostic test, the type infection can be confirmed. The 

antibiotic developed by the monopolist might become significantly more valuable if no 

other antibiotics can treat the infection. The second higher price captures the value of the 

monopolist’s antibiotic. The model compensates for the loss of market size of the 

monopolist with the use of rapid diagnostic tests by physicians. While the rapid diagnostic 

tests give the precision on the treatment choices, it also confirms when an antibiotic is 

more valuable than others. Therefore, a premium price would be charged by the 

monopolist after infections are confirmed by the rapid diagnostic tests.  
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5. Conclusion and future directions 

Antibiotic resistance could lead us back into the dark ages where minor infections or 

surgeries can claim human lives. One of the main causes of antibiotic resistance is the 

misuses and overuse of antibiotics. Rapid diagnostic tests would greatly reduce 

inappropriate and unnecessary prescriptions and represent one of the best strategies 

against the increase of antibiotic resistance. The use of rapid diagnostic tests will not only 

improve direct outcomes, but it can also preserve the effectiveness of an antibiotic. We 

have built a bio-economic model to examine the interaction between infection 

transmissions within populations, antibiotic effectiveness (or resistance), and the use of 

rapid diagnostic tests in the pricing policy of a monopolist who is protected by a patent. 

In order to better understand antibiotic resistance and the impact of rapid diagnostic tests, 

we build on Herrmann’s model to add a susceptible and healthy population that is prone 

to resist certain antibiotics due to prior use and due to the presence of antibiotic resistance 

in the environment and how rapid diagnostic tests impact this new population. Our first 

model concluded that a non-myopic monopolist (without the use of rapid diagnostic tests) 

will find an interior solution where its marginal benefit equals the marginal cost plus an 

external cost which also takes into consideration the effectiveness of the antibiotic and 

the infected population. A smaller portion of the population will be treated compared to 

the interior solution of a myopic monopolist who does not care about future impact on the 

effectiveness of the antibiotics. In our second model (with the use of rapid diagnostics 

tests), we showed that an even smaller portion of population will be treated by the non-

myopic monopolist. Nonetheless, the simulation of our models show that in fact the 

increased use of rapid diagnostic tests benefited the society by reducing the number of 

newly healthy population who are prone to antibiotic resistance which, in turn, will 

preserve the effectiveness of the antibiotics. Although we demonstrated the benefit of the 

rapid diagnostic tests, the current model incorporating rapid diagnostic tests do not seem 

to align with the monopolist incentives. We present novel mechanism of incentives for the 

monopolist in our model to increase the development and the use of rapid diagnostic tests. 

A mixture of a de-linked system and a dual-pricing model can be used as a reward model 

for the monopolist to ensure a viable market. These incentives could be sustained through 

a tax on generic antibiotic use while providing a disincentive for inappropriate use of 
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antibiotic. We also proposed a better monitoring and the development of new policies to 

control the newly introduced healthy population which we believe is a key factor in the 

development of antibiotic resistance.    



67 
 

6. References 

Årdal C. “Pull Incentives for Antibacterial Drug Development: An Analysis by the 

Transatlantic Task Force on Antimicrobial Resistance Clinical Infectious Disease”. 

Clinical Infectious Disease. 2017 

Barry. “The use of cephalosporins for gonorrhea: the impending problem of 

resistance”. Expert Opin Pharmacother. 2009. 

Bjorkman et al., “Virulence of antibiotic-resistant Salmonella typhimurium”. 

Proceedings of the National Academy of Sciences of the United States of America. 1998. 

Brauer. “Compartmental Models in Epidemiology”. Mathematical Epidemiology. 2008 

Davies. “Antimicrobial resistance in search of a collaborative solution”. WISH 

Antimicrobial Resistance Report. 2013. 

Hall, McDonnell and O’Neil. Superbugs: An Arms Race against Bacteria. Harvard 

University Press; 1 edition (April 9, 2018) 

Herrmann, M. and G. Gaudet. “The Economic Dynamics of Antibiotic Efficacy 

under Open Access”. Journal of Environmental Economics and Management. 2009 

Herrmann, M. “Monopoly Pricing of an Antibiotic Subject to Bacterial Resistance”. 

Journal of Health Economics. 2010 

Laxminarayan. “Antibiotic resistance-the need for global solutions”, The Lancet 

Infectious Diseases. 2013. 

Laxminarayan et al. “Communicating trends in resistance using a drug resistance 

index”. The British Medical Journal. 2011 

Laxminarayan. “Antibiotic Effectiveness: New Challenges in Natural Resource 

Management”. Annual Reviews of Resource Economic, 2010. 

Laxminarayan, R. and G.M. Brown. “Economics of Antibiotic Resistance: A Theory of 

Optimal Use”. Journal of Environmental Economics and Management. 2001 

Mechoulan S. “Market structure and communicable diseases”. Canadian Journal 



68 
 

of Economics. 2007 

O’Neill J. “The Review on Antimicrobial Resistance”. The UK Government and 

Wellcome Trust, 2016. 

Shapiro et al. “Antibiotic prescribing for adults in ambulatory care in the USA”. Journal 

of Antimicrobial Chemotherapy. 2014 

Smith and Coast. “The true cost of antimicrobial resistance”. The British Medical 

Journal. 2013. 

Spicknall et al. “A Modeling Framework for the Evolution and Spread of Antibiotic 

Resistance: Literature Review and Model Categorization”. American Journal of 

Epidemiology. 2013. 

Ventola. “The Antibiotic Resistance Crisis”. US National Library of Medicine. 2015. 

Wilen, J.E. and S. Msangi. “Dynamics of Antibiotic Use: Ecological versus 

Interventionist Strategies to Manage Resistance to Antibiotics, in R. Laxminarayan (ed.), 

Battling Resistance to Antibiotics and Pesticides: An Economic Approach”. Washington, 

DC: Resources for the Future. 2003 

  



69 
 

Annexe 1 – Python Code 
 

Model 1 - Without rapid diagnostic: 

 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy import integrate 

# define system in terms of a Numpy array 

def Sys(X, t=0): 

    # here X[0] = x and x[1] = y and x[2] = z 

    return np.array([(X[0]*(1-X[0]))*(rnc - rc + f*(rc-rf) - b*X[2]),  

                     X[1]*((b*s - rnc) + (X[0]*(rnc-rc + f*(rc-rf)))),  

                     f*X[1]*(rf*X[0]+rnc*(1-X[0]))- (b*X[1]+q)*X[2]]) 

 

# generate 1000 linearly spaced numbers for x-axes 

t = np.linspace(0,5,100) 

# initial values:  

Sys0 = np.array([0.7, 10, 20]) 

 

# type "help(integrate.odeint)" if you want more information about integrate.odeint inputs 

and outputs. 

X, infodict = integrate.odeint(Sys, Sys0, t, full_output=True) 

# infodict['message']                      # integration successful 
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x,y,z = X.T 

 

#plot 

fig = plt.figure(figsize=(15,5)) 

fig.subplots_adjust(wspace = 0.5, hspace = 0.3) 

ax1 = fig.add_subplot(1,2,1) 

ax2 = fig.add_subplot(1,2,2) 

 

ax1.plot(x, 'r-', label='Antibiotic effectiveness') 

ax1.set_title("Dynamics in time") 

ax1.set_xlabel("time") 

ax1.grid() 

ax1.legend(loc='best') 

 

ax2.plot(x, y, color="blue") 

ax2.set_xlabel("x") 

ax2.set_ylabel("y")  

ax2.set_title("Phase space") 

ax2.grid() 

 

#2 
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fig = plt.figure(figsize=(15,5)) 

fig.subplots_adjust(wspace = 0.5, hspace = 0.3) 

ax1 = fig.add_subplot(1,2,1) 

ax2 = fig.add_subplot(1,2,2) 

 

ax1.plot(y, 'b-', label='Total infected people') 

ax1.set_title("Dynamics in time") 

ax1.set_xlabel("time") 

ax1.grid() 

ax1.legend(loc='best') 

 

ax2.plot(x, y, color="blue") 

ax2.set_xlabel("x") 

ax2.set_ylabel("y")  

ax2.set_title("Phase space") 

ax2.grid() 

 

#3 

fig = plt.figure(figsize=(15,5)) 

fig.subplots_adjust(wspace = 0.5, hspace = 0.3) 

ax1 = fig.add_subplot(1,2,1) 

ax2 = fig.add_subplot(1,2,2) 
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ax1.plot(z, 'g-', label='Susceptible healthy pop. and prone to resistance') 

ax1.set_title("Dynamics in time") 

ax1.set_xlabel("time") 

ax1.grid() 

ax1.legend(loc='best') 

 

ax2.plot(x, z, color="blue") 

ax2.set_xlabel("x") 

ax2.set_ylabel("z")  

ax2.set_title("Phase space") 

ax2.grid() 

Model 2 - With Rapid Diagnostic: 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy import integrate 

# define system in terms of a Numpy array 

def Sys(X, t=0): 

    # here X[0] = x and x[1] = y and x[2] = z 

    return np.array([(X[0]*(1-X[0]))*(rnc - rc + f*(rc-rf) - b*X[2]),  

                     X[1]*(b*s - rnc + X[0]*(rnc-rc+f*(rc-rf))),  

                     f*X[1]*(rf*X[0]) - (b*X[1]+q)*X[2]]) 

 

# generate 1000 linearly spaced numbers for x-axes 
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t = np.linspace(0,2,100) 

# initial values:  

Sys0 = np.array([0.7, 10, 20]) 

 

# type "help(integrate.odeint)" if you want more information about integrate.odeint inputs 

and outputs. 

X, infodict = integrate.odeint(Sys, Sys0, t, full_output=True) 

# infodict['message']                      # integration successful 

 

x,y,z = X.T 

 

#plot 

fig = plt.figure(figsize=(15,5)) 

fig.subplots_adjust(wspace = 0.5, hspace = 0.3) 

ax1 = fig.add_subplot(1,2,1) 

ax2 = fig.add_subplot(1,2,2) 

 

ax1.plot(x, 'r-', label='Antibiotic effectiveness') 

ax1.set_title("Dynamics in time") 

ax1.set_xlabel("time") 

ax1.grid() 

ax1.legend(loc='best') 

 



74 
 

ax2.plot(x, y, color="blue") 

ax2.set_xlabel("x") 

ax2.set_ylabel("y")  

ax2.set_title("Phase space") 

ax2.grid() 

 

#2 

 

fig = plt.figure(figsize=(15,5)) 

fig.subplots_adjust(wspace = 0.5, hspace = 0.3) 

ax1 = fig.add_subplot(1,2,1) 

ax2 = fig.add_subplot(1,2,2) 

 

ax1.plot(y, 'b-', label='Total infected people') 

ax1.set_title("Dynamics in time") 

ax1.set_xlabel("time") 

ax1.grid() 

ax1.legend(loc='best') 

 

ax2.plot(x, y, color="blue") 

ax2.set_xlabel("x") 

ax2.set_ylabel("y")  

ax2.set_title("Phase space") 
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ax2.grid() 

 

#3 

fig = plt.figure(figsize=(15,5)) 

fig.subplots_adjust(wspace = 0.5, hspace = 0.3) 

ax1 = fig.add_subplot(1,2,1) 

ax2 = fig.add_subplot(1,2,2) 

 

ax1.plot(z, 'g-', label='Total susceptible healthy pop. and prone to resistance') 

ax1.set_title("Dynamics in time") 

ax1.set_xlabel("time") 

ax1.grid() 

ax1.legend(loc='best') 

 

ax2.plot(x, z, color="blue") 

ax2.set_xlabel("x") 

ax2.set_ylabel("z")  

ax2.set_title("Phase space") 

ax2.grid() 

 

#all together 

 

fig = plt.figure(figsize=(15,5)) 
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fig.subplots_adjust(wspace = 0.5, hspace = 0.3) 

ax1 = fig.add_subplot(1,2,1) 

ax2 = fig.add_subplot(1,2,2) 

 

ax1.plot(z, 'g-', label='Effectiveness') 

ax1.plot(y, 'b-', label='Total infected') 

ax1.plot(x, 'r-', label='Total susceptible healthy') 

ax1.set_title("Dynamics in time") 

ax1.set_xlabel("time") 

ax1.grid() 

ax1.legend(loc='best') 
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