
HEC MONTRÉAL

Optimal Order Execution with Deep Reinforcement Learning

par

Brittany Rockwell

Mémoire présenté en vue de l’obtention

du grade de maîtrise ès sciences en analytique d’affaires

Département de sciences de la décision

Décembre 2019

© Brittany Rockwell, 2019



2



Résumé

L’ordre optimal d’exécution est un problème important auquel font face les gros 

joueurs des marchés financiers, étant donné qu’il requiert de balancer le risque de détenir 

les actifs contre le risque de volatilité engendré par la vente d’une large position. Si un 

participant place un ordre d’exécution trop large, le risque de marché s’accroît, affectant 

ainsi le prix des actifs à travers les mécanismes traditionnels d’offres et de demande. Si le 

participant garde sa position trop longtemps, il accroît son risque d’être exposé à un 

mouvement défavorable des prix. Ce travail est le premier exemple connu de l’application 

de l’algorithme ‘Twin Delayed Deep Deterministic Policy Gradient’ (TD3) ou ‘Deep 

Deterministic Policy Gradient’ (DDPG) au problème d’ordre optimal d’exécution. Il s’agit 

aussi de la première application d’apprentissage par renforcement pour exploiter le biais 

du processus de prix Brownien dans le contexte boursier. Nous démontrons que le TD3 

peut converger, relativement rapidement, vers la stratégie optimale, le prix moyen pondéré 

en fonction du temps (TWAP), lors d’un processus de prix ‘’martingale’’, tout en utilisant un

espace d’action continu. De plus, nous démontrons que le TD3 surpasse significativement 

le modèle de référence TWAP et se révèle être plus stable que l’algorithme DDPG, pour 

un processus de prix Brownien lorsque le paramètre de biais est posé à 10%.

Mots clés : apprentissage par renforcement, ordre optimal execution, apprentissage en  

profondeur  
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Abstract

Optimal  order  execution  is  an  important  problem  faced  by  large  market

participants, as it requires the participant to balance the risk of holding the asset through

price volatility with the market impact risk of exiting a large position. If a participant

places too large an order, the risk of market impact increases, thereby affecting the price

of  the  asset  through  standard  supply-demand  dynamics  in  the  order  book.  If  the

participant  holds  the  position  too  long,  he/she  increases  the  risk  of  exposure  to

unfavorable price movements.  This work is the first known example of applying  Twin

Delayed Deep Deterministic  Policy Gradient  (TD3) or  Deep Determistic Policy Gradient

(DDPG) algorithm to the optimal order execution problem. It is also the first known work

where  reinforcement  learning  is  used  to  exploit  the  bias  in  a  skew-normal  Brownian

motion price process in trading. We demonstrate that TD3 can achieve relatively quick

convergence to the optimal policy of a martingale price process when using a continuous

action-space.  Further,  we demonstrate  how TD3 significantly  outperforms the baseline

time-weighted  average  price  strategy  and  proves  to  be  more  stable  than  the  DDPG

algorithm in a skew-normal Brownian motion price process with the skew parameter set to

only 10%.  

Keywords : optimal order execution, reinforcement learning, stock trading, deep learning, 

actor-critic, dynamic optimization
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Introduction

Optimal  order  execution  is  an  important  problem  faced  by  large  market

participants, as it requires the participant to balance the risk of holding the asset through

price volatility with the market impact risk of exiting a large position. If a participant

places too large an order, the risk of market impact increases, thereby affecting the price

of  the  asset  through  standard  supply-demand  dynamics  in  the  order  book.  If  the

participant  holds  the  position  too  long,  he/she  increases  the  risk  of  exposure  to

unfavorable price movements.

The  intent  of  this  work  is  to  demonstrate  the  feasibility  of  using  deep

reinforcement learning (DRL) in practical applications related to financial stock trading.

Many of the hurdles facing the adoption of DRL in trading relates to the length of time it

takes more traditional DRL methods to converge. In true market conditions, stock price

movements are non-stationary, where patterns are quickly eliminated because of market

efficiency. It is imperative for algorithms to converge quickly and adjust to new patterns

accordingly if they are to ever be used in live trading. 

This  thesis  attempts  to  answer  questions  of  signal  detection  and  time  to

convergence by explicitly creating synthetic price processes that closely resemble that of

real-time data so that tangible and definitive conclusions of performance can be made.

Answers  to  questions  of  this  nature  are  important  for  real-world  implementation  in

financial stock trading where training on historical data alone is simply not enough (López
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de Prado, 2018). The successful implementation of machine learning requires that patterns

uncovered in training data can be generalized to hold-out data. Off-line machine learning

fails frequently in non-stationary financial time-series where patterns change quickly and

abruptly, so on-policy methods can be applied to mitigate the risk of over-fitting. For this

reason, ground truth comparisons using synthetic price processes are used to highlight the

strength and flexibility of DRL in financial stock trading. A great deal of work was done to

create  experiments  that  closely  resemble  true  market  conditions  to  demonstrate  the

algorithm’s ability to detect and exploit varying levels of signal in a stock’s price process.

The  reason  for  opting  for  synthetic  data  that  closely  resembles  true  short-term price

movements is so the experiments can confirm the algorithm’s ability to converge to an

optimal policy. Further, injecting varying degrees of synthetic bias into the price process

can help us understand the true speeds at which the algorithm converges and its ability to

adjust to new patterns when learning in real-time. 

Optimal Order Execution

Optimal  Order  Execution  (OOE) is  a  dynamic  optimization  problem that  can  be

modeled as a Markov Decision Process. First, this section will discuss the concept of an

order book, order types and the impact an order can have on market prices and thus the

trader’s return. Second, we will outline game dynamics of the OOE problem. Finally, there

will be a review of the more traditional methods in solving the OOE problem, as well as

their limitations.     
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Order Book

The order book represents a record of all active orders for a financial instrument on

the market at any given time. Each instrument possesses its own order book and changes

as new orders for the instrument are received by the market. The book contains two sides:

the ask side, which is the side of orders signalling a desire to sell at a given price and the

bid side, which signals a desire to buy at a given price. The most favourable ask price is

naturally  higher  than the  most  favourable  bid price,  demonstrating  a  seller’s  desire  to

maximize the price at which they sell and a buyer’s desire to minimize the price at which

they buy for; the difference between these two most favourable orders is called the spread.

There are primarily two types of orders that can be submitted to the market: limit

orders and market orders. A limit order signals to the market a promise to pay at a given

price for a specified volume of stocks. In a way, it is a conditional promise to pay which is

triggered by changes in price competitiveness in the order book. If the desired price is

never realized,  the limit  order will  never be placed. Conversely,  a market  order is  an

unconditional promise to trade a given number of shares, where the price is determined by

the most competitive limit orders in the order book.  For example,  if a trader places a

market  order  looking  to  buy  a  specific  number  of  stocks,  the  order  will  be  fulfilled

automatically at the lowest available ask price across all  limit orders. Say for instance,

there are two limit orders in the book on the ask side. Limit order A is to sell 50 shares at

$10  and  limit  order  B  is  to  sell  100  shares  at  $11.  Limit  order  A  is  clearly  more

competitive than B based on price. If we were to place a market order to buy 100 shares,

we would fill limit order A at $10/share, but we would still need 50 more shares to fill our

market order of 100. Because limit  order A no longer exists, we would have to travel
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deeper into the book to hit limit order B, where we would buy 50 shares at the less optimal

$11/share.  Limit  order  B  would  still  exist,  but  rather  than  100 shares  being  listed  at

$11/share, there would only be 50 remaining. The most competitive limit order on the ask

side is now limit order B for 50 shares at $11/share. The average price per share paid

using  the  market  order  was  $10.5  per  share:  ($10·50A+$11·50B)/100  shares  =

$10.5/share.

As can perhaps be inferred from the above example,  large market orders tend to

impact  the  price  of  an  asset  because  it  realizes  several  orders  in  the  order  book

simultaneously. With every order that is filled, the most competitive price must go further

and further up or down the order book, thus trading at increasingly sub-optimal  price

points. In this work, large orders are penalized using a quadratic penalty, which eats into

the agent’s return by simulating the need to go deeper into the order book. These dynamics

directly contribute to why order execution optimization problems have been a point of

discussion in the financial trading literature.

Problem

OOE is a one-sided trading problem and therefore is much simpler than the more

popular trading game where the participant must ‘buy’, ‘hold’ or ‘sell’ stocks to maximize

returns. OOE consists of a trader being given X total inventory to sell at the beginning of

the episode, each episode being of a fixed length in time T number of seconds. When T

amount of time has elapsed, we say the current step is terminal and the game is over .

There are  N  decision points over the course of an episode, we refer to these as  k steps
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where k ∈ [0, 1, .., N]. Each k is separated by a discrete time interval t where t ∈ [0, 1, ..,

N]. Each t spans
T
N

seconds, or referred to as M seconds moving forward. At each step

k, we must determine the amount of inventory to sell xk such that ∑ xk  equates to X to

ensure  full  liquidation  when  the  episode  terminates. Rather  than submitting  one  large

order at the beginning of each step and negatively impacting available prices in the order

book, we would like to equally disperse  xk throughout the time interval  t  by following a

uniform schedule at 1 second time-increments. To obtain the size of the per second order

increment,  we must  compute  
xk

M
. Once  the  order  is  complete  at  the  end  of  time

interval  t we move to step k+1 where a new amount xk+1 must be determined to then be

sold over the course of  t+1.  For example, say  our episode length  T is 3600 seconds (1

hour) with 5 steps N every 720 seconds M, and we must sell 100,000 shares X. We must

decide how much inventory xk to sell at the beginning of every k step. To mitigate the risk

of impacting the order book, we wish to sell equal sized orders every 1-second that sum to

xk throughout t. We compute the size of the incremental per second orders using 
xk

720
.

We are setting a new uniform schedule at the beginning of every step. Once xk has been

decided, we are locked in until 720 seconds has elapsed, and we have liquidated all  xk.

Naturally, selling every second exposes us to any price fluctuations over the course of the

720 second time interval. Define i  ∈ [0, 1, .., 720] where i represents each second within
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the time interval t. We calculate our step-wise return as pi

xk

720
 where pi is the price at

time-increment i.    

Next, we discuss how the baseline is determined in the OOE problem. Volume-weighted

Average  Price  (VWAP) strategy  is  often  used as  a  benchmark  in  algorithmic  trading

because it represents the average performance of a trader over the course of a given time-

horizon if the volume traded by the trader was always proportional to the volume trading

in the market at the time of each trade (Berkowitz et al., 1988). VWAP is determined by

finding the average price at which the instrument was traded at over a given time horizon

weighted by the ratio of volume to total volume for which the trade price was realized.

VWAP is used as a benchmark for strategists looking to gauge their performance relative

to how the market performed historically in a limit-order-only setting. Recall the impact

executed orders will have on the order book, where larger orders must trade with limit

orders  deeper  into  the  book  and  thus  trading  at  increasingly  unfavourable  prices.

Conversely, Time-weighted Average Price (TWAP) is the average price of a security over

a specified time, regardless of volume and order book state. The OOE problem in this

work will only allow the agent to execute market orders at equidistant time-intervals while

applying a quadratic penalty  (Ning et al., 2018). The quadratic penalty will simulate the

impact the market order will have on the return of the agent and any transaction costs

incurred from order size. TWAP, where the agent sells the same amount at each of the

3600 orders and is used as the performance benchmark in this work. Baseline TWAP

simulates a steady-sell off at each time step increment  i for each  t. For example, if the
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agent must sell 100,000 shares,  the agent will sell
100,000

3600
=27.77  shares a second or

20,000 shares every step k.

 

Traditional Methods

The OOE problem is a well studied dynamic optimization problem. This section will

outline  several  past  methods  that  have  been  proposed,  mostly  involving  traditional

optimization  and  significant  modelling  assumptions.  Ning,  Ling,  &  Jaimungal  (2018)

assert that researchers have attempted to solve the OOE problem by following a fairly

established methodology: first, select a stochastic model or stochastic volatility process,

estimate model configurations using past trading data, then specify an objective function

and  solve  the  problem  by  way  of  stochastic  optimal  control.  They  argue  that  these

traditional methods are limited in circumstances where the price process is highly complex

or unknown. This section details a few of these more traditional methods.

One of the earliest works in the field of optimal order execution is that of Almgren &

Chriss  (2001).  The authors  formulated the problem as  to  maximize  returns  in  lieu of

trading frictions, such as trading expenditures and price volatility. The objective was to

find the optimal balance in minimizing the impact  of liquidation on total return while

positively  benefiting from price  volatility  where  the authors  opted to  model  the  price

process as a Brownian motion and used dynamic programming methods under three core

assumptions: risk-averse, risk-neutral and risk-neutral gain due to serial correlation. It is

important to note that this work served as a stepping stone for several other works in the

optimal order execution space  (Cartea & Jaimungal, 2015; Hendricks, n.d.; Kato, 2017;
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Romero & Bautista, 2016; Zhou et al., 2017). As automated trade execution became more

prevalent with the adoption of telecommunications infrastructure in trading, understanding

the  interplay  between  volatility  risk  and  reward  in  inventory  sell-off became  more

important as well. For our purposes, the limitations in the Almgren & Chriss paper have

more to do with the assumptions underlying the methodology, whereas much of the later

works  building  off of  the  Almgren-Chriss  model  still  follow  this  same  traditional

methodology outlined by Ning, Ling & Jaimungal  (2018). Because of this, much of the

literary review will focus on model-free reinforcement learning and its ability to solve the

OOE problem.

Reinforcement Learning

It is difficult to outline the relevant developments of reinforcement learning without

referencing  the  important  work  of  Sutton  and  Barto  in  Introduction  to  Reinforcement

Learning, originally published in 1998, with a second edition recently published in 2018.

The authors  draw on work from colleagues and personal  research  to paint  a  cohesive

picture of how reinforcement learning (RL) evolved from optimal control problems in the

1950s to more advanced topics and research frontiers. 

Like  Sutton and  Barton’s  book,  this  section  begins  by  summarizing  much of  the

general  concepts  in  RL that  are fundamental  to  this  thesis,  such as historical  context,

tabular methods and approximate methods. This section deviates away from Sutton and

Barton  by  detailing  recent  advances  in  the  field  of  RL,  particularly  developments  in

model-free sensor-like input learning, a branch of DRL that has heavily influenced the
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advent of the TD3 algorithm, which is the primary model used in this work. The first part

of  this  section  outlines  the  core  elements  of  traditional  RL  to  better  understand  its

limitations  in  the  broader  context  of  sequential  decision-making.  Second,  recent

advancements in the field will  be discussed to show theoretical  improvements to these

limitations. Third, in order to demonstrate the feasibility of DRL to learn from sensor-like

data alone, several examples of DRL exceeding human-level performance on real-world

applications will be provided. The primary purpose of this section is to provide insight

into algorithm choice, design and game elements (reward, observation and action space,

etc.) for the reader. 

Markov Decision Processes

A Markov Decision Process (MDP) is a way of formulating a sequential decision-

making problem where we have full knowledge of the environment, that is we know the

transition probability function and reward function. It is important to make this distinction

early on; MDPs relate to the formulation of a problem, whereas RL relates to the methods

used to solve for them when there exists no formal definition of the transition probability

function or the reward function. An MDP is a way of formulating problems requiring

sequential decision-making, where an agent interacts with its environment through taking

one action a from a restricted set of actions A, thereby influencing both its immediate and

future rewards. An environment is a set of states s, where states can change from one to

another as a direct result of the agent’s actions, where the next state is determined using

the state-transition model. The agent is goal oriented, as it attempts to learn an optimal

policy π* that will maximize its reward function. MDPs will generally use 4 elements to

produce the trajectories it uses to learn the optimal policy: (st, p(st+1|st, at), at, rt). We define
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these components in the following section. We have found the structural flow of certain

resources  on  the  topic,  namely  the  MDP documentation  of  Ritchie  Ng (2018),  to  be

excellent and have tried to shape our explanation of the MDP problem in a similar fashion

for clarity. 

State

A state st is typically a vectorized representation of the agent’s environment at time

t. A central assumption of MDPs is that they possess the Markov property, that the future

state only depends on the current state,  st  and action  at, as opposed to, for example, the

history of previous states.

Another important facet of a state is that of a terminal state. Terminal states are

states  in  which  a  condition  was  met  that  ends  the  game.  Terminal  conditions  can  be

constraints on a wide range of factors, for instance, maximum number of steps an agent is

permitted to take, maximum reward and lives lost. 

State Transition Model

MDPs  can  define  a  state  transition  model  that  describes  the  way  in  which  the

environment  st  will transition to st+1 when selecting at. We refer to this as state-transition

probabilities which are defined as

27
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Action

Agents  interact  with the  environment  using  available  actions  A  in  each  state  st,

thereby entering a new state st+1. Actions are defined by the action space A and can be both

continuous  or  discrete  in  nature.  The  way  the  action  space  is  designed  has  several

implications, such as algorithm restrictions and varying complexity. These implications

will be discussed in detail in sections discussing the optimal order execution problem in a

reinforcement learning setting.

Reward

Reward  Rt is measure of utility derived from the reward function and is attributed

when an agent chooses an action at within a given state st  that subsequently transitions to

st+1 using the transition probability function. Rewards are aggregated as the agent interacts

with its environment:

Gt=R t+1+γRR t+ 2+...+γRk Rt+k +1 (1)

Where  k represents  the  number  of  steps  before  encountering  a  terminal  state  and  γ

signifies the discount rate and is typically within the range [0, 1]. The objective of an

MDP is to maximize Gt. Higher values in γ emphasize the importance of future rewards to

the agent, a concept central to both traditional MDPs and modern RL. Once future returns

are aggregated, we can then derive the state-value function Vπ  and action-value function

Qπ such that:
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V π (s )= Eπ [Gt ∣ S t=s ]  

and

Qπ (s , a)= Eπ[Gt ∣ S t=s , At=a ]

Where the value function describes the expectation of how valuable it is to be in state s

and the action-value function describes the expectation of how valuable it would be to

take action a in state s. To complete our explanation of an MDP, we will next describe the

agent and common methods for solving these types of problems. 

Agent

The goal of the agent is to maximize future aggregated rewards ∑γγt-1Rt where t ∈ T

before reaching a terminal state and γ represents the discount factor. The agent determines

the expected total reward  Gt at each time step, with the inclusion of a discount rate to

consider that future rewards may or may not be as important as more immediate ones. An

agent’s policy π can be either deterministic or stochastic:

• Deterministic policy: a deterministic policy intakes a state and produces an action

such that:

a=π(s)

• Stochastic policy: a stochastic policy intakes an action given a state and produces a

probability of selecting that action given that state such that:
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Pπ [A=a ∣ S=s] = π(a∣s)  

The agent selects the action according to policy π and recovers the next state st+1 by using

the state transition probability function P such that:

P(st+1 ∣s , a)=P [S t+1=st+1 ∣S t=s , A t=a]

Using  the  information  from  its  new  transition,  the  agent  computes  the  reward  from

committing action at in state st and ending up in the next state st+1. The optimal policy for a

state is the policy in which the value-function and the action-value function are maximized

such that:

π∗(s t)= argmaxπV π (st) = argmaxπQπ(st ,π(st)) (2)

Optimizing the Value Functions using Bellman’s Optimality Equation

The problem arises when we need to estimate future discounted rewards to obtain Gt ;

although it is simple to compute our immediate rewards, how can we account for future

rewards that have yet to occur? The Bellman equation (BE), an equation conceived by

Richard E. Bellman, describes the relationship between the value function (or action-value

function) in the current state  st and the value function (or action-value function) in the
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next state  st+1 (Bellman, 1952). According to the BE, the action-value function can be

reformulated to express this relationship such that:

Qπ(s , a)= Eπ [Gt ∣ St=s , A t=a]

                                                 = Eπ [R t+1+γ R t+2+γ
2 Rt+3+ ... ∣ S t=s , At=a]

                                                  = Eπ [R t+1+γ(Rt+2+γ Rt+3+ ...)∣ S t=s , At=a ]

                            = Eπ [Rt+1+γGt+1 ∣S t=s , A t=a]
                                          = Eπ[Rt+1+γQπ (s t+1 , at+1)∣ St=s , A t=a]

Likewise, for the state-value function:

V π (s )= Eπ [Rt+1+γV π (st+1)∣ S t=s ]

 

The interplay between the state-value function and the action-value function is critical for

understanding concepts described in the pseudo-code of the various DRL algorithms we

will discuss later on in this work. The value of a given state determined by the state-action

function is the probability-weighted sum of all action-state values such that:

V π (s )=∑a∈A
π(a ∣s )Qπ (s , a)   

Using similar mechanics, the action-value function can be determined by taking the sum

of all state-values of future states which follow the transition probabilities of arriving in

that state given the available actions at st such that:
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Qπ (s , a)= R(a , s)+γ∑st+1∈S
P(st+1 ∣ s , a)V π(st+1)

Recall equation (2), the argmax procedure for finding the optimal policy π* where π* is

equivalent to maximizing the state-value function and the action-state function. We can

now reformulate our value functions as Bellman optimality equations such that:

V *(s )=maxa∈A (R s , a+γ∑st+1∈S
P(st+1 ∣s t , at)V *(st+1))

Likewise, for the action-value function:

Q*(s , a)= R(a , s)+γ∑st+1∈S
P(st+1 ∣ s , a)maxat+1∈A Q*(st+1 , at+1)

The MDP is solved by updating the state-value and action-value functions for every state 

until convergence. Both the V*(s) and Q*(s, a) are interchangeable when:

V *(s )=max
a

Q*(s , a)

Which simply means that the maximum expected total discounted reward when starting 

from state s is the maximum Q(s, a) over all actions, which touches again on the 

relationship expressed by equation (2). 
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Tabular Methods

An MDP with full-knowledge of the environment requires the explicit definition of

the transition probability  function and reward  function.  These  types  of  MDPs can be

solved  using  dynamic  programming  methods.  In  the  event  that  the  MDP  does  not

explicitly define a transition probability function or a reward function, RL methods can be

used to solve the MDP, such as Monte-Carlo learning, temporal-difference learning and

policy gradient methods. Tabular methods either know the dynamics of an environment or

record experiences accumulated by interacting with that environment and reference them

directly to  determine  the  optimal  action  to  take  in  each  state.  Because  of  this  direct

reference  to  dynamics  or  state  experiences,  tabular  methods  can  only  be  applied  to

environments of small dimensionality and where the action and state-space are discrete,

otherwise they are no longer tractable. For example, tabular methods can be used by an

adventurer as a log system of past experiences in order to determine the optimal route to

cross a dangerous terrain.  If the adventurer  were to analyze a log of every continuous

movement  they  ever  took  while  navigating  the  terrain,  they  would  become  easily

overwhelmed if  the dimensionality  of the terrain  was large.  Likewise,  if  they tried to

analyze a log of each individual step they ever took when exploring the terrain, they would

also be overwhelmed. The adventurer would benefit greatly from simplifying the log. For

instance, they could have limited their actionable movements to “up”, “down”, “left” and

“right”, while only creating a new log entry every 100 meters or when coming into contact

with a point of interest, at which point, they could note whether they were closer to their

objective or not.  Similar  to our adventurer,  tabular methods require a certain level  of

abstraction in order to determine the optimal policy. 
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Dynamic Programming

Dynamic programming (DP) methods break down a problem into a series of sub-

problems to then store each solution to a relational structure. It determines the optimal

policy by recursively solving for all possible immediate sub-problems of the final optimal

state. In order for this approach to be successful, the problem’s optimal solution must be

made up of the optimal solutions of all sub-problems and that the number of possible sub-

problems is small, with overlapping structure. From our previous example, it assumes the

adventurer already possesses a map of the terrain and recursively solves for the optimal

path to the start of the journey. As discussed previously,  DP requires the MDP to be

formulated explicitly with a transition probability function and a reward function.

Solving MDPs using Reinforcement Learning

RL is simply an approach for solving MDPs where the transition probability function

or  the  reward  function  are  not  available.  We will  use  this  section  to  transition  from

traditional  MDPs to RL-based solutions by discussing a few particularities  of RL and

when they are most appropriately used. First, we will briefly discuss concepts such as on-

policy vs off-policy learning, the exploration-exploitation dichotomy and model-free vs

model-based approaches. Second, we will conclude our discussion on tabular methods but

in  environments  where the transition or  reward function are  unknown. Third,  we will

introduce approximate  methods.  Fourth,  we will  discuss  a more  modern approach for

formulating  an  RL-based  solution  called  policy  gradient  methods.  Last,  we  will  tie

together both concepts of value function approximation and policy gradient methods to

introduce the actor-critic algorithm class. 
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On-policy vs. Off-policy 

On-policy methods attempt to improve upon the policy used to produce decisions,

whereas  off-policy  methods  generate  observations  with  a  predetermined  policy  and

optimizes for another. In other words, the value function is updated using the action that is

expected to optimize the value function in off-policy learning, whereas the value function

is updated using the action chosen from the policy that generated the observations in on-

policy learning.

Exploration vs Exploitation

The exploration exploitation dichotomy is an important concept in RL. Without

prior knowledge of the game dynamics, the agent has to collect experiences that are unlike

the experiences it already knows in order for it to learn anything new. We call this process

“exploration”. In competing fashion, the agent must also be able to execute what it has

already learned in order to maximize the reward. We call this process “exploitation”. Most

methods  will  typically  have  a  predetermined exploration  policy,  such as  ε-greedy.   ε-

greedy is  an exploration policy  where the agent  either  follows its  learned  policy with

probability  P(π)  =  (1-ε)) or  chooses  an  action  from the  action-state  randomly.  ε  will

decrease as the agent interacts with the environment. As ε reduces, exploitation, that is to

select the action the highest value estimate according to the learned value function, begins

to increasingly guide the agent’s decisions (follow more closely the actions producing the

highest value function estimate).
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Model-free vs Model-based

Model-free and model-based RL relates to the approach used to solve an MDP when

both  the  transition  probability  and  reward  functions  are  unavailable.  Model-based

reinforcement  learning  attempts  to  solve  for  the  MDP  by  learning  the  transition

probability and reward functions directly and then solving the MDP by applying planning

methods, like dynamic programming, to the learned model. The next section will discuss

dynamic programming in greater detail. Model-free reinforcement learning is a vein of

RL that attempts to learn the optimal policy directly, without necessarily learning a model

of  the  environment.  There  have  been  a  number  of  algorithmic  innovations  in  Deep

Learning that have made model-free methods much more popular in recent years, where

problem sets that were previously deemed to be overly-complex are now tractable with

model-free DRL.

Monte-Carlo Learning

Monte-Carlo learning (MC) is a tabular method that can be used when the model of

the  environment  is  unknown.  MC  generates  episodic  trajectories  by  exploring  the

environment until termination. An episodic trajectory refers to a collection of state-action

pairs  (s,  a)  accumulated  from  the  first  step  t to  a  terminal  step.  Once  the  episode

terminates, the value of each state visited in the trajectory can be updated such that:

V (st)←V (st)+α[Gt−V (s t)]
(3)
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Recall, Gt is the discounted cumulative reward of the episode, therefore the value function

in equation (3) can only be updated once the episode is complete. 𝛼 represents the learning

rate which dictates the magnitude of the update to the value estimate. MC is a method that

can be used when the transition probabilities or reward function of an environment are

unknown. Although MC allows us to operate in ambiguity,  it tends to be infeasible in

problems with large state-spaces and action-spaces. It also fails when episodes are too long

or termination is not required. Long episodes are problematic for MC learning because it

becomes  increasingly  difficult  to  pinpoint  which  action  or  series  of  actions  led  to  a

favourable or  unfavourable terminal reward.   

Temporal Difference Learning 

Temporal  difference  (TD)  learning  solves  the  MC  drawback  of  not  getting

intermittent feedback by breaking up episodes into trajectories of action-state experiences

by estimating the future discounted reward and updating the value function for every new

trajectory  in the table of experiences  using a  bootstrapping procedure.  We define this

algorithm as TD(0) such that:

V (st)←V (st)+α[Rt+1+γ V (s t+1)−V (s t)]
(4)

Where  α represents  the  learning  rate  and  Rt+1+𝛾V(st+1)  is  defined as  the  TD-target  in

equation (4). The 0 in TD(0) is used to describe the single step moving from t to t+1 .

Experiences,  or trajectories,  consist of the action taken in a given state along with the

resulting reward and future state. This inclusion of the future state and reward creates a
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recursive relationship across trajectories and becomes reflected in the value update. This

means that estimation of future rewards are obtained from the onset, rather than upon

termination  or  realization  of  a  reward.  TD(0)  learning  leverages  bootstrapping,  which

refers to the update of estimated values for each observation independently, regardless of

the ordering of when the observations occurred. It removes the need to rely on sequencing

all time-steps in an episode chronologically beyond a time-step’s neighbouring steps to

learn optimal policies or value functions like in MC. 

SARSA vs. Q-Learning

SARSA is an on-policy algorithm that stands for “state-action-reward-state-action”

which refers  to  its  trajectory  formulation.  SARSA was originally  published under  the

name Modified Connectionist Q-Learning  (Rummery & Niranjan, 1994). SARSA is an

on-policy algorithm and its updates are formulated as such:

Q(st , a t)←Q(st , at)+α(rt+γQπ(st+1 , at+1)−Q(st ,a t))
(5)

In equation  (5), notice how the action is selected preemptively without reference to an

argmax procedure for selecting the next state’s action. This is because the action selected

using the (typically) ε-greedy policy is also the action used in the action-value update. 

Conversely, Q-Learning is a type of temporal difference learning that uses an off-line

policy to generate actions such as ε-greedy, but uses the Q-value produced from selecting
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the optimal action for the next state to perform the update. The Q-learning trajectories are

(state-action-reward-state). The update for the Q-values can be formulated as such:

Q(st , a t)←Q(st , at)+α(rt+γ max
at +1

Q (st+1, a t+1)−Q(st , at)) (6)

In equation (6), the action producing the highest action-value estimate for the next state is

selected as part of the TD-target in the Q-function update.

Now, let us revisit our adventurer’s dilemma of crossing the terrain by discussing a

few problems with solely using logs to determine the optimal path. For instance, what if

the adventurer  had to cross  a  very  large and complex  geographical  area?  Carrying an

extremely detailed set of logs of every experience the adventurer ever had over the terrain,

including information about what not to do, would be impractical. Approximate methods

can be seen as a parametric mapping of the best route that was derived by learning from

past  logged experiences,  without  having to  necessarily  reference  the  logs  explicitly  to

know the optimal route.    

Approximate Methods

Tabular  methods  prove  to  be  intractable  in  large  state-spaces.  Approximate

methods parameterize the learned policy or value function and update incrementally as

new observations are encountered by the agent. This greatly alleviates the computational
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burden of holding observations in memory, as the learned optimal policy can simply be

mapped by either linear or non-linear approximation methods.

Linear Approximation

Linear  approximation  uses  a  linearly  parameterized  model,  such  as  linear

regression, to approximate the policy or value function of the agent. Each element within

the vectorized state s  is represented by xi  , sometimes referred to as the state’s features,

and has a weight wi which belongs to the linear model.  As the model learns, the weights

will shift to better estimate the value or policy, thus reducing the estimation error. The

value function is formulated as such:

v̂ (s ,w)=wT x (s)=∑
i=1

d

w i x i(s). (7)

For simplicity,  we only  show the state-value function as opposed to also showing the

action-value function. Linear approximators, such as linear regression, can use a gradient-

based method to shift its weights to improve the mapping between its inputs and outputs.

Practically speaking, the model will adjust its weights as to more accurately predict the

outcome  of  taking  a  particular  action  within  a  given  state.  With  this  learned

approximation, the agent will either choose to “exploit” this knowledge by selecting the

action which is expected to produce the most favourable future outcome or it will choose

to “explore” by following another policy. An interesting property of linear approximation

methods is that finding a local optimum close to the global optimum is nearly guaranteed
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(Sutton & Barto, 2018). This is a very strong property when comparing linear to non-linear

methods, largely because there is no guarantee the local optimum is near a global optimum

in non-linear approximation in high-dimensional state spaces. This distinction is important

when considering stock trading environments where linear methods are insufficient for

approximating the policy or value function (Ning et al., 2018).

Non-Linear Approximation

In problems where the value function is unknown and linear models fail to achieve

satisfactory performance, non-linear methods are often used, although their convergence

to an optimal policy is not guaranteed. The algorithm used in this work falls under the

umbrella of non-linear approximation and it is important to discuss both their advantages

and disadvantages. Often, non-linear methods have several hyper-parameters that require

significant  tuning to  achieve  satisfactory  performance.  Further,  when policies  must  be

learned in non-stationary game environments, like OOE, non-linear methods often cannot

converge fast enough and thus have a tendency to fail on-line (Mnih et al., 2013; Roibu,

2019;  Sutton  &  Barto,  2018).  Specifics  on  the  network  architecture  used  in  our

experiments will be discussed in later sections.

Linear vs Non-Linear Approximation

Whether a model can guarantee convergence to its global optima is not the de facto

reason for selecting it as the model best suited for the problem at hand. For instance, take

the figures 1 and 2 below:
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Both figures have the same data points. Figure  1 depicts a linear model’s solution

when  attempting  to  separate  two  colours  of  points.  By  virtue  of  the  linear  model’s

properties,  we have most likely minimized the loss function to the best of the model’s

abilities. We can know definitively that changing the derivative of the tangent in either

direction will either improve or worsen our loss, and if we continue to iterate, eventually

the loss will no longer continue to improve. Clearly, the model does a poor job of fitting

our data.  Figure  2 fits the data using a highly flexible  non-linear  model,  say,  a  neural

network. The neural network does not guarantee a global optimum as is the case for the

linear method. It does however, do a better job of fitting the data. This was a simple toy

example  to  demonstrate  in  what  scenarios  a  linear  model  is  very  much  sub-optimal,

despite guaranteeing converging to a global optimum. 
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Figure 2: Non-Linear Model Decision Boundaries
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Neural Networks

Neural  networks  are  non-linear  function  approximators.  Their  architectures  are  a

series of weights and biases, much like the weights and biases in the linear approximator

described above in equation (7), but with the inclusion of a non-linear activation function

applied to its output. Below is a simple comparison of the two architectures:

One feature comparison: 
linear regression:                                                                                    b + x i ∗ w = y i

1 neuron neural network:                                                    activation(b + x i ∗w )= y i

Two feature comparison: 
muliple linear regression:                                                b + x1 ∗ w 1 + x2i ∗w 2= y i

1 neuron neural network:                                  activation(b + x i ∗ w 1 + x i ∗ w 2)= y i

Figure 3: Linear Regression vs 1-Neuron Neural Network

As the simple example in figure 3 demonstrates, the activation function is the central

differentiator  between  the  linear  and non-linear  approximator  in  their  simplest  forms.

Although the activation function allows us to find non-linear mappings between inputs and

outputs while approximating the value-function, it also is the main contributor to neural

networks  being  very  prone  to  over-fitting.  Similar  to  the  linear  approximator,  neural

networks must adjust their weights to produce a better mapping between their inputs and

outputs. They too use a gradient-based algorithm to do so, with the inclusion of the chain-

rule to back-propagate the error  through the network to determine the derivative with

respect to each weight. This principle is called Back-propagation and was first applied to

neural  networks by  Rumelhart,  Hinton,  and  Williams (1986) in  their  ground-breaking
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work  Learning Representations by Back-propagating Errors.  Although we could dive into

neural networks by discussing the algorithmic expression of back-propagation, it might

stray us too far from our primary purpose. There are two important takeaways from this

section: first, neural networks are very similar to linear approximators with the inclusion of

activation  functions  to  induce  non-linearity  and  back-propagation  to  compute  the

derivatives of the weights, second the only differentiator between a neural network and a

deep neural network is the former only has one hidden-layer. A single hidden-layer refers

to the function or set of functions that connect the input and outputs directly. Thus, two

hidden-layers  would  mean  there  are  two sets  of  functions  that  connect  the  input  and

output, where the activated output of the first set of functions becomes the input of the

second set of functions. When we refer to a “deep” neural network, we are simply stating

that the architecture has at least  two hidden-layers.  DRL is simply RL that uses some

variant  of a neural  network with more than one hidden-layer as its  nonlinear function

approximator. 

Policy Gradients

Unlike  typical  action-value  methods,  which  refer  to  a  value  function  to  choose

actions,  policy  gradient  methods  use a  parametrized  policy.  Rather  than minimizing  a

value  loss,  policy  gradient  methods  attempt  to  maximize  performance  by  computing

learned probabilities of each action in the discrete case, and probability distributions in the

continuous case  (Sutton & Barto, 2018). There are several reasons why policy gradient

methods tend to outperform value function methods:
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1. Value-function  methods  are  simplest  in  discrete  action  spaces,  which  is

impractical for OOE. Having probability distributions to determine preferred

actions produces less erratic changes to the gradient-based updates of the non-

linear approximator.

2. Policy gradient  methods can learn appropriate  levels of explorations,  rather

than using deterministic ones, like ε-greedy, that may not follow an appropriate

search schedule for the problem at hand.

3. Policy  gradient  methods  do  not  require  implementing  a  complicated  value

function, such as the Bellman equation.     

Actor-Critic Methods

The  actor-critic  method,  the  RL  modelling  type  in  which  TD3  falls  under,

leverages  both  policy  gradients  and  value  function  approximation.  The  architecture

consists of an actor, a separate network that uses state information to produce an optimal

action. Actions taken by the actor are then provided to the critic along with the state. The

critic then produces a value estimate which is then used to compute the gradient for the

critic network. The actor is updated using the resulting reward determined by the critic.

Actor-critic  algorithms are discussed in  great  detail,  both theoretically  and practically,

when the DDPG and TD3 are introduced in later sections.
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Deep Reinforcement Learning for Optimal Order Execution

Much of the recent revival  in reinforcement  learning can be attributed to several

ground-breaking  contributions  to  the  field  of  deep  reinforcement  learning,  where

numerous adaptations in algorithmic design have enabled agents to learn policies directly

from sensor-like data (Doria, Dawson, and Vindiola 2015; Mnih et al. 2013; Moreno-Vera

2019;  Roibu  2019;  Zhai  et  al.  2016). Sensor-like  data  refers  to  computer-generated

information that is not altered or pre-processed by humans prior to training the model. For

example, pixel-data used to render every frame of a video game can be used as the input

to an approximator that will learn to map the sensor-like input and action to a reward or

value estimate. Drawing on the knowledge we gained from our MDP and RL introduction,

each frame, or several consecutive stacked frames, define the state of our trajectory. The

agent’s actions are the available moves in the video game. The reward can be events from

the video game itself, such as the loss of a game “life” or beating the computer opponent

at a task. When we refer to the next state, we would simply collect the resulting next

frame or set of frames after performing an action. In the context of this work, these works

are leveraged to understand how model-free reinforcement learning can be extended to

single-side stock trading. 

First,  this  section  will  cover  the  first  known example  of  DRL successfully  using

sensor-like data as input to learn policies able to achieve human-level performance in the

Atari  arcade  games  using  experience  replay  (Mnih  et  al.  2013).  The  second  work

discussed  introduces  a  method  to  reduce  over-estimation  in  the  value  function  (van

Hasselt, Guez, and Silver 2015). Extensions to continuous action-spaces were made via the
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advent of the Deep Deterministic Policy Gradient method which was a departure from

depending solely on value function learning but suffered from similar over-estimation in

the  network’s  value  estimation  (Lillicrap  et  al.  2015).  Finally,  Twin  Delayed  Deep

Deterministic Policy Gradient (TD3) by Fujimoto (2018) will be discussed as this is the

primary  algorithm used in  this  work  due to  it  circumventing  many  of  the  limitations

discussed from the previous works. 

Deep-Q Learning (DQN)

DQN with  experience  replay  was  the  first  example  of  model-free  reinforcement

learning leveraging solely sensor-like data to achieve human-level game play performance

on the famous Atari arcade games (Mnih et al., 2013). This paper was so successful that

the  arcade  games  are  now  used  extensively  in  the  field  of  DRL  as  experimental

environments  (Doria et al., 2015; Mnih et al., 2013; Moreno-Vera, 2019; Roibu, 2019;

Zhai  et  al.,  2016).  It  is  important  to  note  that  Mnih  et  al.  (2013)  were  not  the  first

researchers  to  introduce  reinforcement  learning  in  conjunction  with  non-linear

approximation using neural networks  (Tesauro, 1995), but several pivotal improvements

were made to the algorithm that led to its impressive performance gains and thus is largely

responsible for putting DRL in the forefront of modern artificial intelligence research.    

The mechanics of DQN (Deep Q-Network), are straight forward and build off the

basics of Q-learning that were discussed previously, with the exception that it uses a deep

convolutional architecture, which is a type of deep neural network that fairs particularly

well  in  image  recognition  tasks.  The  DQN  variant  used  in  the  original  Atari  paper
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introduces three modifications which will be discussed in great detail later in this section

(Mnih et al., 2013). The first modification by the authors is how they use a target network,

θ_, while training. The target network is a duplicated set of parameters to the action-value

network, θ, but updated less frequently as to solve the common occurrence of chasing a

moving  target  in  Q-learning.  Q-learning  is  said  to  chase  a  moving  target  because  it

estimates the action-value function and the target using the same set of parameters. By

having a fixed set of parameters that is separate from the training network, DQN can be

run on-line, despite being an off-policy algorithm. The second modification is the addition

of an experience replay buffer, which helps decorrelate trajectories and stabilizes learning.

The third modification was in how the authors stacked four consecutive frames as a single

state for two reasons: it decorrelated the states by reducing the likelihood of no movement

taking place from one state to another and it provides information to the model about how

things are moving in the game across frames. Similar to Q-learning, the optimal action-

value function for  the DQN is  defined as  the best  possible  future expected  return by

following a policy π mapping sequence s to actions a. The following equation defines the

gradient update for the DQN:

Δθ  =  α[(r+γmax aQ̂(st+1 , at ,θ
-
)−Q̂(st , a t ,θ))]∇w Q̂ (s t , at ,θ)

At every T steps :
θ   -←θ

(8)

Where r +γmax Q̂(st+1 , at+1 ,θi−1) is the TD-target and Q(s, a, θi) represents the Q-

value prediction associated with being in the current state  s and committing action  a  in

that same state. Recall from equation  (6) the TD-target and action-value functions, they
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are similar to those of equation (8), with the inclusion of the network weights referenced

as θ as well as the target weights referenced as θ-. The gradient is computed by finding the

change in the weights of the network due to the value-estimation error between what the

action-value  network  anticipated  the  future  discounted  reward  to  be  and  the  target

network’s value estimate of the future next state.

Experience Replay 

One of the chief reasons the DQN was so successful was due to the introduction of a

mechanism called experience replay using a replay buffer.  A replay buffer serves as a

storage  of  experiences  accumulated  by  the  agent  as  it  iteratively  interacts  with  the

environment. The parameters of the original DQN are updated using gradient descent. The

replay buffer benefits the network in two ways: first, it enables learning from the same

experience several times, second, it decorrelates learning from consecutive states and thus

stabilizes training. These two improvements were previously considered as major hurdles

in the application of DRL. Using some variant of a replay buffer is now included in nearly

all subsequent implementations of DRL because of its consistent impact on performance.

Delayed Target Network Updates

Delaying the target  network update is  beneficial  for several  reasons.  It  allows for

experimentation in the value-function without affecting the real-time performance of the

target  network,  the  model  learns off-line  but  can  be  implemented  in  real-time  where

updates happen only after a certain number of additional experiences have been accrued in
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the replay buffer. This stabilizes performance by preventing the target network from being

overly responsive to sudden changes in the environment.

Pseudo Code

In order to better  outline the DQN algorithm’s  internal  workings,  pseudo code is

provided (Mnih et al., 2013). The pseudo-code is from the original DQN paper, although

we recognize some customs have changed since its conception.  We have attempted to

keep the concepts from the original pseudo-code in subsequent algorithm definitions in

hopes of  maintaining  linearity  and consistency across  explanations.  We recognize  that

more current examples of pseudo-code may have slight differences, however, we build on

the original works and make subsequent changes to pseudo-code from more recent works

to  demonstrate  algorithmic  improvements  more  explicitly  that  follow  the  original

conventions.
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Take note of the first three lines from the DQN’s pseudo-code in figure 4; the replay

buffer  is  defined along  with  an  observation  count  limit  N,  then  the  value-function  is

initialized randomly and then copied over to the target network. On line 5, the first state is

derived from pre-processing the current features, where  ɸ represents the pre-processing

function, such as the transformation performed to stack four consecutive frames to create

a  single  state.  Line  6 begins  the  episode.  On line  7,  the  first  transition  is  created  by

selecting an action that either maximizes the estimated value of the state or, if a randomly

generated number between 0 and 1 falls below 1-ε, then randomly selects an action. Keep

in mind that ε will decay as the algorithm continues to interact with the environment. This

decay implies that random exploration of the action-space occurs less and less frequently

as training progresses.  Recall,  this is the concept of trade-off between exploration and

exploitation in action,  which was discussed in previous sections. Line 8,  describes  the
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Deep Q-Learning with Experience Replay in Atari Experiments
(1) Initialize replay memory D  to capacity N
(2) Initialize action-value function Q  with random weights θ
(3) Initialize target action-value function Q̂  with weights θ _ 

=θ
(4) For episode = 1, M do :
    (5) Initialize sequence s1={x1} and preprocess sequence ϕ1=ϕ(s1)

    (6) For t = 1, T do
        (7) With probability ϵ  select a random action at

        otherwise selecta t=argmaxaQ(ϕ(st) , a;θ )

        (8) Execute actionat  in emulator and observe reward rt  and image x t+1

       (9) Set s t+1=st , a t , x t+1  and preprocess ϕt+1=ϕ(st+1)

        (10) Store transition (ϕt , a t , r t ,ϕt+ 1)  in D
        (11) Sample random minibatch of transitions (ϕ j , a j , r j ,ϕ j+1)  from D

        (12) Set y j={
r j                                                            if episode terminates at step j+1

r j+γmaxa ' Q̂(ϕ j+1 , a ' ;θ _ 
)                        otherwise                                 }

        (13) Perform a gradient descent step on ( y j−Q(ϕ j ,a j ;θ))
2  with respect to 

               network parameterθ
        (14) Every C  steps reset Q̂=Q
    End For
End For

Figure 4: Deep Q-Learning with Experience Replay



retrieval of the reward from executing that action in that state and on line 9, pre-process

the resulting state in order to create a trajectory to then store in the replay buffer on line

10.  Once there  exists  a  minimum number  of  transitions  in  the  replay  buffer,  line  11

randomly  samples  a  mini-batch  and  line  12  produces  a  value  estimation  of  each

transition’s initial state using the value-function if it is non-terminal. Line 13 computes the

gradient by finding the squared loss between the estimation of the value of the past state

with the target’s value estimation of the next state. Finally, on line 14, the newly learned

weights from the value-function network are copied over to the target network after a

predetermined number of steps.

It  is  important  to note that  the same network which produces  the estimate for

valuing the actions, which subsequently chooses the action which produces the highest

value estimate of the future next state, is also used to derive the gradient from the value-

estimation error which is then used to update the target network. In other words, the same

target  network  that  selects  a’ also  values  its  selection  and  is  used  for  computing  the

gradient update. This tends to lead to the target being overly optimistic in assessing the

value of a particular action-state pair, and is amplified in highly stochastic environments

where action-state outcomes are highly variable. It is as though the network rewards itself

for selecting what it  believes to be the best action, which welcomes counterproductive

learning behaviour, such as being overly optimistic about the value of an action-state pair

and slowing convergence by muddying the gradient update with this over-optimism.
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Double Q-Learning (DDQN)

As previously  mentioned,  there  were  a  few significant  drawbacks with  the initial

implementation  of  DQN that  could be  improved upon,  such as  the  tendency to  over-

estimate the value of a particular action. The difference between DQN and DDQN is in

the estimation of the Q-values of the resulting state using the target network. Recall, in the

DQN pseudo-code, the target network that evaluated the current state’s best action is the

same network of weights that were copied over from the action-value function. This leads

to an overestimation of the target y and thus is slower to converge and produces poorer

results  (van Hasselt, Guez, and Silver 2015). In DDQN, the target  network is initialized

using a different set of weights and is subsequently updated using soft-updates, not copied

directly  from  the  action-value  function.  This  decouples  the  networks  completely  and

essentially trains two completely different networks tasked with evaluating the value of the

current  state  to  select  an  action  and  evaluating  the  value  of  the  resulting  state  and

computing the loss from the two.
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Algorithmic Differences between DQN and DDQN

Pseudo-code  from the  DQN paper  is  shown  in  figure  5,  with  updates  from the

DDQN in red (van Hasselt, Guez, and Silver 2015). The first change signifies a completely

new set of weights to initialize the target network as opposed to a direct copy of the value-

action network. Next, the target network is used to evaluate the next state’s value using the

action chosen by the action-value function. The gradient is computed by determining the

loss between what the target network’s value of the next state was given the action chosen

by the action-value function and the value placed on the previous state by the action-value
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Double Q-Learning with Experience Replay 
Initialize replay memory D  to capacity N
Initialize action-value function Q  with random weights θ
Initialize target action-value function Q̂  with weights θ⋯

=θ '  *
For episode = 1, M do:
   Initialize sequence s1={x1} and preprocess sequence ϕ1=ϕ(s1)

    For t = 1, T do
        With probabilityϵ  select a random actionα t

        otherwise selectα t=argmaxaQ (ϕ(s t) , a ;θ )

        Execute actionα t  in emulator and observe reward rt  and image xt+1

        Set st+1=st , at , x t+ 1  and preprocess ϕt+1=ϕ(s t+1)

        Store transition (ϕt , at , rt ,ϕt+1)  in D
        Sample random minibatch of transitions (ϕ j , a j , r j ,ϕ j+1)  from D

        Set y j={r j                                      if episode terminates at step j+1
r j+γ Q̂(ϕ j+1 , a j ;θ ')  **          otherwise }

        Perform a gradient descent step on ( y j−Q (ϕ j , a j;θ))
2  with respect to network parameterθ

        Update target network parameters θ ' ← τ∗ θ + (1 − τ)∗θ '  ***
    End For
End For

* Entirely new weights are initialized for the value evaluation. Experiences are randomly assigned
   to either value function for updating, thereby creating two separate learned networks.
** Although the action selection remains the same as in the DQN, the value function is decoupled
and therefor the max operation can be removed.
*** Soft-updates to the target network occur at every step rather than direct copies of the action-value function.

Figure 5: Double Q-Learning with Experience Replay



function. Updates to the target networks are made using soft-updates at every step, rather

than complete copies as was the case for the DQN. 

Deep Deterministic Policy Gradients (DDPG)

DDPG was the policy gradient equivalent of the DQN algorithm as it used sensor-

like data and a model-free approach to find an optimal policy in the Atari arcade games

necessitating a continuous action-space  (Lillicrap et al., 2015). The DDPG is an  actor-

critic method because it uses both a value-function (critic) and a policy gradient approach

(actor) in its architecture. The implications for the inclusion of the actor are numerous :

1. Decoupling the action from the value estimate gives the flexibility of using policy

gradient methods for the policy network (actor) and value-function methods for 

the critic.

2. Using policy gradient methods for action selection gives us the ability to operate 

in a continuous action-space, unlike value-function methods which strictly need a 

distinct action to estimate the value of the action-state pair, a task that is 

otherwise computationally infeasible in continuous action spaces.

3. Decoupling the networks also means the two can follow different update 

schedules or learning rates which can add more fine-control during training.

4. Continuous action spaces allow for smoother network updates because value 

estimates can be gradual, as opposed to possibly large updates due to sharp 

changes in value estimates from discrete actions.
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Pseudo Code

We show DDPG pseudo-code from the original paper in Figure  6 (Lillicrap et al.,

2015). Notice the inclusion of the actor network and its respective target network on the

first two lines. Like DQN and DDQN, DDPG’s authors included experience replay which

helps decorrelate experiences and stabilizes learning. Note how the target networks are

updated at  every  time step using ‘soft-updates’  dictated by  τ,  where  larger  values  will

ensure smaller updates. Further, notice the soft-updates are performed on both the actor

and the critic networks.
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Deep Deterministic Policy Gradients
Randomly initialize critic network Q(s , a∣θ Q

)  and actor μ(s∣θ μ
)  with weightsθ Q andθ

μ .
Initialize target network Q' andμ ' with weightsθ Q '

←θ
Q , θ μ '

←θ
μ

Initialize replay buffer R
for episode = 1,  M do
   Initialize a random process N for action exploration
   Receive initial observation state s1

   for t=1, Tdo
       Select action a t=μ(s t∣θ

μ
)+N t  according to the current policy and exploration noise

       Execute action at  and observe reward rt  and observe new state st+1

       Store transition (s t , at , rt , st+1)  in R
       Sample a random minibatch of N  transitions (s i , ai ,ri , si+1)  from R

       Set y i=r i+γQ' (s i+1 ,μ '(si+1∣θμ ')∣θ
Q'
)

       Update critic by miniminizing the loss: L=
1
N
∑i

( y i−Q(s i , ai∣θ
Q
))

2

       Update the actor policy using the sampled policy gradient:

∇ θμ J≈
1
N
∑

i

∇ aQ(s , a∣θQ
)∣s=si , a=μ(si)

∇
θ μμ(s∣θ μ

)∣si

       Update the target networks:
θ

Q'
←τθ

Q
+(1−τ)θ

Q'

θ
μ '
←τ θ

μ
+(1−τ)θ

μ '

   end for
end for

Figure 6: Deep Deterministic Policy Gradients



Twin Delayed Deep Deterministic Policy Gradient (TD3)

The TD3 algorithm is nearly identical to that of the DDPG. Three modifications were

introduced,  however,  to  better  address  approximation  errors  in  the  DDPG  algorithm

(Fujimoto, 2018). 

Architectural Comparison with DDPG
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Figure 7: TD3 (left) vs DDPG (right) Architectures



Figure  7 is  a  visual  representation  of  the  architectural  differences  between  TD3  and

DDPG  (Caspi  et  al.,  2019).  Notice  they  are  virtually  identical  except  for  the  special

middle-ware and head.
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Twin Delayed Deep Deterministic Policy Gradients (TD3)
Randomly initialize critic network s  Q(s , a∣θ1

Q
)  and Q(s , a∣θ2

Q
)

Randomly initialize actor network μ(s∣θ μ
)  with weightsθ Q andθ

μ .
Initialize target networks Q' 1 ,Q '2  andμ ' with weightsθ Q '1←θ

Q1 , θ Q' 2←θ
Q2 , θ μ '

←θ
μ

Initialize replay buffer R
for episode = 1,  M do
   Initialize a random process N for action exploration
   Receive initial observation state s1

   for t=1, Tdo
       Select action a t=μ(s t∣θ

μ
)+N t  according to the current policy and exploration noise

       Execute action at  and observe reward r t  and observe new state s t+1

       Store transition (s t , at , rt , st+1)  in R
       Sample a random minibatch of N  transitions (si , ai ,ri , si+1)  from R
       ~a←πϕ ' (s)+ϵ , ϵ∼clip(N (0 ,~σ),−c , c)*
       Set y i=ri+ γmink=1,2 Q' k (si+1 ,~a )**
      if t mod d then ***

           Update critic by miniminizing the loss: L=
1
N
∑i

( y i−Q (s i ,a i∣θ
Q
))

2

           Update the actor policy using the sampled policy gradient:

∇θμ J≈
1
N
∑

i

∇a Q(s , a∣θQ
)∣s= si , a=μ(si)

∇
θ μμ(s∣θ μ

)∣si

           Update the target networks:
θ

Q'
←τθ

Q
+(1−τ)θ

Q '

θ
μ '
←τθ

μ
+(1−τ)θ

μ '

   end for
end for

* Target policy smoothing
** Clipped double Q-learning
*** Delayed update of target and policy networks 

Figure 8: Twin Delayed Deep Deterministic Policy Gradients (TD3)



Pseudo Code

In order to highlight TD3’s algorithmic improvements over DDPG, pseudo-code is

provided in Figure 8 (Fujimoto, 2018). The improvements are written in red. In all, these

three modifications can be summarized as follows:

1. Smooth the action selection of the target network.

 This  modification  injects  noise  into  the  agent’s  actions  for  continuous

exploration and thus produces a more varied replay buffer.  

2. Select the minimum value estimate produced by the critics.

 This modification reduces over-estimation in the value estimate of the action.

Recall the impact that selecting the maximum value estimate can have on the

model’s  performance  as  seen  in  DQN/DDQN.  Likewise,  taking  the  more

conservative  estimate  of  the  two  critics  reduces  the  likelihood  of  over

responsiveness from the actor and target networks.

3. Delay the update for actor and target networks.

• This modification stabilizes learning by not allowing the actor and targets to

respond too drastically to noise in the critic’s estimation.

Optimal Order Execution using Reinforcement Learning

There exists a select few works in the OOE body of research that use RL, but few

have applied many of the recent advances discussed earlier in this thesis. Important to

note, we have chosen to simulate data to understand precisely if and when the algorithms

converge  to  the  known  optimal  policy  for  bench-marking  purposes.  In  the  case  of  a

Martingale price process, this is to follow a TWAP schedule, that is, a Time-Weighted
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Average Price schedule, where identically sized market orders are submitted at equidistant

time intervals apart.  In the real-world, the true price process is unknown, therefore we

would  like  to  understand  the  effectiveness  of  model-free  reinforcement  learning  in

approximating these types of problems. By construction, these approaches are not given

the model-dynamics, making them potentially good candidates for real-world applications

where model-dynamics are unknown. The problem setup for this thesis was very much

inspired by (Ning et al., 2018) but diverges away from their work in regard to algorithm

choice and minor changes in game setup and data. We have dedicated a section, called

“Comparison with Ning et al. 2018” describing key differences between both works just

before the results and analysis section.

Setup

Naturally,  model-based,  such  as  DP,  could  potentially  outperform  model-free

methods when the price process is  artificially  generated and therefore known, but this

would  not  shed  light  on  the  central  question  of  this  thesis  of  whether  model-free

reinforcement learning could be applied in practice to OOE when model-dynamics are

unknown and model-based methods are inapplicable. To emulate a real-world scenario,

the model-free problem is constructed as such: The agent is given 100,000 shares at the

beginning of an episode lasting 1 hour. The agent must find the optimal sell-off schedule

that maximizes its return by choosing how much remaining inventory to sell at the start of

every step, of which there are 5, each lasting for a period of 12-minutes. The amount of

inventory decided upon at each step will be executed as equal-sized market orders every

second over  the course  of  the 12 minutes,  in  other  words,  the  agent  will  submit  720

equidistant  orders  every  step.  This  forces  the  agent  to  submit  market  orders  that  are
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subject to price fluctuations during this time. The returns are compared to that of a TWAP

schedule,  where  no  decisions  can  be  taken  at  the  beginning  of  the  episode.  This  is

equivalent to selling ~28 shares every second for 1 hour, subject to all price fluctuations

during that  time.  In the event of the agent not fully liquidating before the end of the

episode, we enforce full terminal liquidation. 

Evaluation Metric and Reward

The agent’s reward is the relative profit and loss (P&L) and is used to assess agent

performance.  It  is returned to the agent after each episode as the accumulated reward

incurred  over  the course  of  the episode.  P&L is  considered  relative  because it  is  the

performance in terms of profit when compared to the profit generated from the TWAP

baseline strategy:

P & L=∑
k=0

N −1

∑
i=0

M k−1

(x t k, i
p tk , i

−z (
xT k

M k

)

2

) . (9)

P&L  for  each  observation  is  contingent  on  the  aggregated  step-wise  return  from

liquidating stock inventory at the going market price. An observation is defined as a state-

action pair  (s,  a).  N represents  the total  number  of steps  in  an episode,  k is  the step

identifier,  i  represents  the second-level  time-increment  identifier  and  M represents  the

total number of time-increments (number of seconds) per step k. Like Ning et al. (2018),

we define  
xT k

M k

as the total number of shares sold in step  k  over the total number of
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seconds M in step k, whereas  x tk , i
is the amount of inventory sold at every second over

the course of step k, multiplied by ptk , i
, which is the corresponding price of the asset at

every second over the course of step k. Please refer to the section “Problem” earlier in this

work  to  revisit  these  concepts  if  needed.  The  expression  −z (
xTk

M k

)

2

in  Equation  9

represents the quadratic penalty, where z is the penalty coefficient. Large orders are clearly

penalized as this term is subtracted from the brute P&L before calculating the relative

P&L. The use of the quadratic  penalty is  also  borrowed from Ning et  al.  (2018) and

simulates market impact and transaction costs incurred from large orders. 

Recall, the OOE problem is a single-side trading problem so the return will always be

positive relative to profit at the beginning of the episode. We found that using brute profit

as a reward was slower to converge likely because the brute profit is largely dependent on

the value of the state which can add unnecessary complexity to the task of the agent. For

example,  it  is more difficult  to discern which action was truly optimal when the price

process was trending upwards and any variation of actions over the course of the episode

will  lead to higher profits  by virtue that  we are only selling inventory and not buying

inventory. This problem of action-indifference being overlooked is a very real problem in

traditional  value  function  methods.  The  action-value  function  is  the  sum  of  two

components: the advantage and the value estimate. Advantage refers to the value of taking

that action over all other possible actions. It can be used to decouple the value of the state

from the action-value function to produce a measure of value for an action over all other
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possible action. By doing this, we could have potentially mitigated the issue of  action-

indifference (Schulman et al., 2018). 

Rather than modifying the TD3 algorithm, we opted to compare its  return to the

baseline TWAP by recursively bootstrapping the last terminal  state’s relative P&L and

limiting the number of steps in the episode. Because relative P&L is only meaningful at

the end of an episode, we chose to produce sparse rewards by delaying the reward until the

terminal state where intermittent steps produce no reward signal. If we did not delay the

reward, the algorithm would not be able to operate on-line because of the need to wait

until  the  end  of  the  episode  to  know  relative  P&L  despite  needing  to  take  actions

throughout the episode, which would defeat the purpose of wanting to assess whether TD3

could be appropriate for live trading. Intermittent relative P&L does not encourage the

right behaviour from the agent. For example, take an episode where the price increases in

the last  few steps,  selling most  inventory  on the first  step would produce a very  high

relative P&L on step 1 and small relative P&L subsequently. Conversely, if the price were

to decrease slightly, the same strategy would produce very high relative P&L on step 1 and

small  relative  P&L  subsequently.  Since  TWAP  is  also  measured  at  the  same  prices

throughout the episode, the relative P&L is the same in either case, despite there being

completely opposite changes in the price; This is definitely not the type of reward structure

we are looking for. We also found that awarding brute P&L at the end of every step was

adding  unnecessary  noise  to  the  reward  because  of  major  price  differences  across

episodes. We could have standardized the P&L to the price at the beginning of the episode

to compute the reward, but instead, we chose to aggregate the brute P&L throughout the

episode and compute the relative P&L using Equation 9 at termination. Using 5 steps was
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found to allow for enough flexibility to regularly beat the TWAP baseline by adjusting

inventory amounts regularly but was short enough to allow for the reward signal’s efficient

recursion  across  the  bootstrapped  trajectories  upon  updating  the  policy  and  value

estimates. 

Independence Assumption and the Quadratic Penalty

In this version of OOE, we assume action-state independence across time steps. In

other words, the agent has no impact on the market beyond its immediate step’s action.

This assumption is supported by one of the first  works using RL to address the OOE

problem (Dempster & Leemans, 2006). The authors demonstrate that the price impact on

the  order  book  of  a  large  executed  trade  is  realized  immediately,  but  reverts  to  the

expected  price  shortly  after,  had  the  trade  never  occurred.  This  implies  that  market

participants  do not  stray  from their  strategy  based  on the strategy of  one  participant.

Although the authors test using upwards of 1M shares over 2 to 8 minutes on highly liquid

stocks, one would be tempted to question if the assumption still holds today, nearly 14

years after the study was published and before high-frequency trading became the industry

norm for executing orders. To mitigate this risk, this implementation’s version of OOE

limits the number of shares to 100,000 over the course of 1 hour, an amount that is not

likely to impact the strategies of competing market participants in the case of highly liquid

stocks. The quadratic penalty serves as the immediate impact on the price and is revised

after 720 seconds of trading. 
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Transaction Costs

The quadratic penalty we use from equation (10) also serves as a way to account for

transaction costs. Submitting large orders will incur large per share fees. This means that

the quadratic penalty serves 2 purposes: to reflect the impact the size of an order will have

on the order book immediately after an action and the per share transaction costs incurred

from submitting large orders. 

Hypotheses

1. The  TD3  converges  to  the  optimal  policy,  which  is  a  steady-sell  off TWAP

schedule when the price process is that of a Martingale which will be explained in

great detail in the next section. We consider this to be the first experiment.

2. When we bias the Martingale price process by skewing the distribution from which

its  price  movements  are  drawn  from,  we  hypothesize  the  TD3 algorithm will

outperform the DDPG algorithm and consistently  surpass  the baseline  TWAP.

Three different degrees of skewness are tested, we consider these as 3 separate

experiments for the 2nd hypothesis. We believe TD3 will surpass TWAP because,

with the inclusion of a bias in the price process, we open up the possibility for the

algorithms to exploit a pattern. Exploitable patterns are used to beat the baseline

steady-sell  of strategy,  without them, the price process is  a Martingale  and the

algorithm hypothetically should converge to TWAP or below TWAP, because of

the loss incurred from not being able to exploit the given bias.
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Methodology

Data

We simulate price data by initiating an independent process over the course of 250

trading days. This implies that volumes sold do not directly affect the price process. We

explain this assumption in the previous sections describing the independence assumption

and the  quadratic  penalty.  Four trading hours  are  accounted for  each day.  Each hour

consists of 5 steps. Each step is made up of 720 seconds of prices. The total amount for

each price process is roughly 3.6M price points, 5k price points over the course of each 12

minute trajectory. 

These price points can be seen as rolled-up (forward-filled) tick data where the last

price is used at the end of every second-level time increment. Tick data is a term used in

finance to represent the transaction-like data produced by each newly submitted quote or

trade on the market.  Tick data is  event driven,  not time-driven.  To ‘roll-up’  tick data,

which is a term also used in finance, means to take the last available price and forward-

filling it to equidistant time intervals. For instance, a 1 second roll-up for the first three

seconds of  a  minute where  s  ∈ [0,  1,  2]  would mean  to  take the last  available  price

between: the previous minute’s 59th second and the start of the current minute where s = 0,

the start of the current minute s = 0 and the beginning of the first second s = 1, and finally

from the start of the first completed second s = 1 to the start of the second s = 2. It is a

technique used to standardize stock data to time, which is helpful when wanting to reduce

the size of the available data or to standardize episodes and steps in reinforcement learning

environments that may be time-sensitive (i.e. the agent must liquidate all inventory after
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60 minutes of trading). This also helps simplify the problem-space by restricting the agent

to a fixed number of decisions and therefore given equal amounts of information across all

time-intervals. 

Brownian Motion as a Price Process for Order Execution  

A Brownian motion (BM) or Wiener process, is a stochastic process derived from

approximating the movements of a random walk using the central limit theorem. Different

variants of BM are often used in finance to generate stock price processes. For instance,

Almgren  &  Chriss  (2001)  use  arithmetic  Brownian  random  walk  with  zero  drift  to

generate their price processes for their work in OOE given the high-frequency of the data

in the OOE problem. Conversely, Geometric Brownian motion (GBM) is a well studied

proxy for modelling the price movements of stocks in medium to long-term stock trading

applications (Gatheral & Schied, 2011; Reddy & Clinton, 2016). GBM takes into account

a drift parameter and also enforces a non-negativity constraint on the process, which is

desirable when modelling stock prices over the medium and long-term. Almgren & Chriss

(2001) argue that the geometric  variant should be used in highly volatile or long-term

trading  settings  but  that  in  short-term  trading,  the  differences  between  the  two  are

negligible. We decide to generate our initial price process in the same manner as Almgren

& Chriss (2001) since we use a 1-hour time-horizon and the model is exposed only to

relative price changes rather than brute prices, as will be discussed further in the feature

engineering section of this thesis. Further, our reward of P&L is relative to TWAP and so

also is unchanged by adopting this type of price process.
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When  a  stock’s  price  fluctuates  independently  of  its  historical  behaviour  and

possesses  no drift,  where  each  step’s  fluctuation from the  starting price  falls  within  a

normal  distribution,  it  supports  the  Efficient  Market  Hypothesis,  that  in  a  fair  and

competitive market with symmetrical access to information, future price is independent of

historical price  (Malkiel & Fama, 1970). When there is no drift added to this process,

where the expected price of a stock is equivalent to its current price, it is referred to as a

Martingale.

This thesis will use four variants of arithmetic Brownian motion with zero drift: one

without bias (a martingale) and three with varying degrees of skew in how the error term

is distributed. To compute the price process, we use Scipy, a popular Python library for

scientific applications. The formula for Brownian motion from the Scipy documentation

(2017) (Brownian Motion—SciPy Cookbook documentation, 2017) is as follows:

Where  N (a , b ; t 1 , t 2) is a normally distributed random variable with mean a and

variance  b.  The  parameters  t1 , t2 are  two  sequential  moments  in  time  and  are

predetermined. This means that from every step to its corresponding next step, the change

in x is solely determined by the variance, because the expected value of x at the next time-

step  is  simply  x. This  implies  that,  if  we  assume  movements  in  x  follow  a  normal

distribution,  no historical  information of x is  relevant  for predicting x,  except  for the

current price of x. Despite the wide-scale use of BM to represent stock prices, several

researchers  have  postulated  that  short-term  price  movements  have  a  tendency  to  not
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follow a normal distribution  (Dhesi et al., 2012; Fama, 1965; Imperial,  2018). For this

reason, we introduce varying degrees of slight bias to the normally-distributed movements

of the BM process to understand the model’s ability to quickly detect and exploit such

discrepancies.  We bias  the  normal  distribution  by  using  the  skew-normal  distribution,

which introduces a parameter  ɑ that serves as a regulator for skewness where  ɑ=0 is a

normal  distribution  without  bias  (Azzalini  &  Capitanio,  1999).  The  standard  normal

distribution is defined as:

PDF of N (0,1)=ϕ(x )=
1

√2 π
e

−1
2

x2

CDF of N (0,1)=Φ(x )=∫
−∞

x

ϕ(t)dt

We can then generate the skew-normal distribution by introducing the parameter ɑ:

PDF SN (x )=2ϕ(x)Φ(ax) (10)

We ignore the location and scale parameters in our experiments, which can be included in

alternative  versions  of the skew-normal  distribution,  and so we do not define them in

equation  (10) for  simplicity.  The  first  publication  of  using  Azzalini’s  skew-normal

distribution  to  bias  the  price  movements  in  a  Brownian  motion  price  process  for  a

financial instrument was authored by  (Eling et al., 2010). The authors demonstrate that

Azzalini’s  skew-normal  distribution  outperformed  classical  skewness  coefficients  when

performing goodness-of-fit tests on hedge fund returns. Several works have leveraged the

use of skew-normal distribution when generating a price process with Brownian motion

since  (Doostparast, 2017; Maeda & Jacka, 2018; Zhu & He, 2018). The 2nd, 3rd and 4th

experiments will use a skewness parameter of .1%, 1% and 10% respectively, all of which
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are very small  skews when compared to most of the previously mentioned works. We

provide examples  of the probability  distributions of different  skewness parameters  for

reference in Figure 9. 

As mentioned previously, the intent of this work is to determine the overall efficiency

and proficiency of the TD3 algorithm to identify and exploit very slight bias in a noisy

price process.  In the context of OOE, if the price process is a Martingale without skew-

normal bias such that  ɑ=0 as depicted in Figure  9, the optimal policy would be to do a

steady sell-off of inventory at every time step, that is, following a steady TWAP strategy.

For a refresher, we ask that you refer to previous sections of this thesis, namely where the

TWAP strategy was described in great detail with examples. 
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Technical Specifications

The agents were trained using an Ubuntu virtual machine with 32 GB of RAM with

500 GB of disk space. Python 3.6 was used for all experiments. Python 2.7 was used for

visualization purposes due to incompatibility issues with certain libraries.  All software,

libraries and agents used are open-source and belong to the public domain to at least the

extent to which this thesis uses them.  

Feature Engineering

Several features were derived from the data of each respective simulated stock.

The data  was “rolled”  up to  second increments  to  simulate  a  standardized  time scale,

meaning features were derived temporally from the last simulated price of each second.

Tick data is event driven and must be transformed to know when decision breaks should

occur at the start of each step. This ‘fill-forward’ procedure was explained in detail with

examples in the section of the thesis describing the data.

Raw Features

 Last price: The last traded price of the instrument. Roll-up tick prices at

second-level time increments.

 Step: identifier for step number

 Observation: identifier for each collection of 5 steps of price for each day.
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Derived from Raw Features

 Scaled Price: The last price is scaled between [-1, 1] by subtracting the mean and

dividing by 2 standard deviations computed from the historical ‘last price’ from the

previous step.

 Remaining Inventory:  The amount of inventory remaining at each step.  This is

determined during game-play. It is obtained by dividing the remaining inventory

by the starting maximum inventory to ensure the value represents a proportion.

 Time Remaining: The amount of time remaining upon entering each step. This is

determined during game-play. It is obtained by dividing the remaining number of

steps  by the total  maximum number of steps in each hour to ensure the value

represents a proportion.

 Price Transformed  p: the original price is transformed to fall between -1 and 1.

The price at the beginning of the hour is subtracted from every price increment.

This means that only extreme outliers fall outside the given range. This approach

was directly taken from (Ning, Ling, and Jaimungal 2018).

 Quadratic Variation: Similar to Ning et al. (2018), we use quadratic variation to

model the degree of variability in price movements from one step to the next.

 Quadratic Variation can be modeled as such:
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QV T k
= ∑

i=0

M k−1−1

( pt k−1 , i
− pt k−1 , i−1

)
2 , ∀ k∈1,. .. ,N−1

Where T represents the hour, k represents the step and i represents the second-level

time increment.

Algorithm Selection

The most  promising  preliminary  results  were  obtained with  the TD3 and DDPG

algorithms (when the problem was given a continuous action space) over DQN and DDQN

(when the action space was discrete). Discretizing the action-space refers to separating a

continuous  action  space  into  non-ordinal  classes.  This  is  consistent  with  other  works

related  to applying DRL in  trading-type tasks,  where policy  gradient  methods tend to

outperform  purely  value-based  methods  in  an  online  setting  (Dempster  and  Leemans

2006; Deng et al. 2015, 2017; Moody and Saffell 2001). For this reason, we chose to stay

with algorithm types that can operate in continuous action-spaces. 

Incremental performance of the target network is recorded to demonstrate the agent’s

ability to learn to generalize and operate in an on-line setting. Minor changes were made to

the  author’s  original  implementation  in  Pytorch  and  are  detailed  in  later  sections

(Fujimoto, 2018). For tractability, the agent’s actions are limited between [-1, 1] using a

tanh function  while  training.  The  output  is  then  scaled  between  [0,  1]  for  human

interpretation to determine the percentage of inventory the agent wishes to liquidate at that

step.  In  order  to  obtain  the  relative  P&L  of  that  action-state  pair,  we  convert  the

percentage to unit-volume x in Equation 9. 
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Training

Experiments

Four  experiments  were  conducted,  each  with  a  simulated  stock  using  a  different

price process. For the first experiment, TD3 is compared to baseline TWAP. The 2nd , 3rd

and 4th experiments compare TD3 and DDPG to baseline TWAP. An account of how each

agent was trained is given in the subsections detailing each experiment. Observations from

each experiment during training are noted for each figure. We provide an example of 10

episodes of standardized price processes under the different biases in Figures 10, 13 and

15. We show the inventory sell-off schedule changes from experiment 1 in Tables 3 and 4.

We report relative P&L of the test results over the course of training in Figures 11, 12 and

14, where the x-axis at y=0 is baseline TWAP. We also provide summary statistics for

returns in Tables 2, 5, 6 and 7.

Hyper-parameters

Training  settings  were  taken from the  original  TD3 paper.  All  experiments  were

conducted with the following parameters for both TD3 and DDPG where applicable:  

74



# Name Value Definition

1
Seed

0
The   seed at which all stochastic processes
will rely on.

2 Start Time-steps 100

The number of initial steps taken before 
training begins. Used to collected varied 
observations.

3 Eval Frequency 100

The number of training steps that occur 
before  the target network is evaluated on 
the test set.

4 Max Steps 10,000 Maximum number of training steps taken.

5
Exploration

Noise 0.1 Level of noise added to the agent’s action. 

6 Batch Size 100
Number of instances included in each 
mini-batch during training.

7 Discount 0.99

The rate at which future rewards are 
discounted. Higher puts more emphasis on
future returns.

8 Tau 0.0005

Target update rate.  Soft updates of target 
weights are used to encourage steady and 
gradual learning.

9 Policy Noise 0.95
Level of noise added to the target 
network’s actions. 

10 Noise Clip 0.5 Range (+/-) to restrict policy noise.

11
Policy

Frequency 2
Number of times the critic networks are 
updated compared to the actor.

Table 1: List of TD3 Hyper-parameters

Pre-training

Pre-training is done to introduce more variation in the training data and to expose the

algorithms  to  fringe  cases  early  on.  Observations  are  stored,  100  in  the  case  of  our

implementation, by interacting with the environment using randomly sampled actions. We

can see this as an off-line warm-up of 100 steps before allowing the target network to

actually make any on-line decisions. Fringe cases could be: the enforcement of terminal

liquidation at the last step, not getting a reward if there is no inventory remaining despite
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the action being to sell, etc. This practice would be used in a real-world setting as well, so

that the model is provided the opportunity to generate fringe trajectories without actually

making those mistakes on-line.

Tuning

The  hyper-parameters  were  found  by  manually  tuning  the  algorithms  but  were

generally  similar  to  the  original  papers.  Parameters  that  were  most  notably  tweaked:

number of steps, eval frequency, number of starting steps, batch size, tau and policy noise.

Number of steps, eval frequency, number of starting steps, batch size were greatly reduced

to fit the size of the problem. Further, Atari games are closed environments that can afford

many starting steps with no repercussions. Conversely, active trading does not have this

luxury,  so only 100 starting steps  were allowed compared to the 10,000 starting steps

permitted by the original paper. Further, the learning rate was reduced to 0.0005 from

0.005 to prevent converging too quickly to a sub-optimal policy. Policy noise with 0.95

standard deviation as opposed to 0.2 was changed. Recall, policy noise adds an epsilon

drawn from a normal distribution with 0 mean and 0.95 standard deviation and is clipped

to 0.5 on either side of the predicted action. If we had to stipulate as to why these two

parameters had to be adjusted, it would most likely be because of the algorithm’s ability to

easily over-fit. We would also assume that there are an infinite number of optimal policies

due to the continuous-action space and therefore adding quite a bit of noise to the action

allows for several trajectories to bootstrap off of one another.  
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Train and Test Data

RL does not tend to segment data in the same manner one would split data into train,

validation and test sets like in supervised machine learning. For the TD3 algorithm, for

instance, the training is governed by the action and value functions, whereas the evaluation

of the algorithm is done using the target networks. It is very important to highlight, there

are fewer iterations of testing than training because we train the action and value networks

for several steps between every evaluation step of the target network. This is done to allow

the algorithm to learn something before evaluating it every time.

Recall,  there  are small  updates  to  the target  networks from the action  and value

networks throughout training. The resulting target network is what we use to then evaluate

what the model has learned. This means, the action-value networks are used for training

and generate  trajectories  that  will  be stored  in  the replay  buffer following an off-line

policy. In the case of the TD3 algorithm, the trajectories have a lot of noise added to their

actions to make the algorithm more generalizable.  Simultaneously,  the target  networks

follow a  learned  optimal  policy  and  draw  from either  a  true  Brownian  motion  price

process or a true skew-normal Brownian motion price process. In the event that we would

continue to generate trajectories from the last point of the price process, the data would

follow  the  same  principles  and  so  the  target  network  would  continue  to  perform  as

expected. The interest in RL as opposed to dynamic programming is that the agent will

continue to adapt as it interacts with an unknown environment, even if the price process

changes.
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Comparison with Ning et al. 2018

Now that we have gone over the OOE problem as well as a number of core DRL

algorithms in  detail,  we would like to  compare  and contrast  with a paper we used as

inspiration for much of this work, particularly in how we set up the OOE problem.

Setup and Data

This thesis largely uses the same setup as Ning at al. (2018). Both works use hour-

long episodes and have actions determine how much of the agent’s inventory should be

sold at each of the 5 steps. The action-space in the Ning et al. paper uses a discretized

formulation of how much inventory should be sold at each step whereas this work uses a

continuous action-space. The action-space has a direct impact on which algorithms can be

used. As for data, Ning et al. use real market data to train their agent, whereas we simulate

data. They too use the same train and test mechanics as this work.

Algorithm

Since Ning et al. discretize their action space, they use value-function methods as

opposed to  actor-critic  methods.  They use the DDQN with experience  replay  as  their

agent.  Because  we  formulate  our  action-space  as  a  proportion  of  current  inventory

between [0, 1], we can leverage TD3.

78



Reward

Unlike the reward from Equation 9, the reward used in Ning et al. is awarded at the

end of every step and is a brute number whereas we directly use the relative P&L as a

sparse reward by only making it available at the end of the episode when relative P&L can

be computed. This was done because the brute reward signal could be heavily influenced

by the state (i.e. the price at that episode) regardless of the action whereas using relative

P&L to TWAP seemed to help alleviate much of this burden.

Analysis

Ning et  al.  only  use DDQN in  relation  to  TWAP, whereas  we compare  TD3 to

TWAP  in  a  synthetic  Martingale  price  process  and  outline  the  different  actions  the

algorithm takes while converging to the optimal policy TWAP. We also compare TD3 to

DDPG in relation to baseline TWAP in the presence of bias. 
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Results and Analysis

The following section details the results from the experiments conducted on the 4

different price processes. The first experiment depicts TD3’s performance when compared

to TWAP in the event that the price process is a Martingale. Secondly, we compare the

performance of TD3, TWAP, and DDPG in 3 experiments where we introduce different

degrees  of  slight  skew to the arithmetic  Brownian random walk with  zero drift  price

process.  

Experiment 1: Agent Performance at Learning Optimal Policy

At the beginning of each experiment’s section, we give an example of 10 episodes of

standardized  price  processes  without  skew  for  reference  in  Figure  10.  The  first

experiment’s analysis and results are presented in three parts: First, we show in Figure 11

the changes in test performance of relative P&L over the course of training. We discuss

the properties of how the algorithm converged by providing a visual representation of the

incremental  improvements  with  every  additional  evaluation  step.  Second,  we  present

summary statistics of the action distribution for the first half of training and compare them

to the final segment of training in Tables 3 and 4 respectively. The summary statistics of

the action distribution at every time step during an episode tells us that the algorithm isn’t

just simply matching the returns of the optimal policy, but is actually converging towards

selling off 20% of starting inventory at every time step. Third, we report a few summary

statistics on the entire test performance in Table 2. 
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Brownian Motion Comparative Returns to Steady Sell-off  

Figure 11 depicts TD3’s relative P&L when tested against the TWAP strategy, which

is the optimal policy in the case of a Martingale. TWAP represents the value along the x-

axis where y=0. This means Figure  11, like Figures  12,  14 and  16, depicts the average

episodic return obtained on every evaluation iteration relative to TWAP in their respective

experiments. Every evaluation iteration consists of sampling 10 trajectories from the price

process and computing average relative P&L over those same 10 trajectories. Since we

scaled back the number of training iterations for experiment 1, we will evaluate the target

network every 10 training steps to maintain  the total  number of evaluations across all

experiments  (100 total  evaluation  iterations  per  experiment).  TD3 must  learn  that  the

optimal  policy  is  to  sell  20% of  starting inventory  at  every  step.  This  strategy  would

optimize for the quadratic penalty on size of orders and the price volatility over the course

of the hour.
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Notice how TD3 goes through a period of high volatility but converges very quickly

to the optimal policy. The hyper-parameters used for the first experiment are identical to

the second (see table 1 for more details), but they are scaled back considerably in regard

to how long it  can train for because of how quickly it can over-fit the data. Tweaking

parameters  to  try  to  slow  the  rate  at  which  TD3  learns  was  performed  extensively.

Although reducing the learning rate to 5e-6 did slow the model, the most impactful change

was to restrict the number of training steps. Max steps was reduced to 1000 and the target

network was evaluated  every  10 training steps,  which  equates  to  evaluating the target

network 100 times on 10 trajectories each time over the course of 1000 training steps.

Table  2 demonstrates  the network generally converges  to the optimal  policy,  the next

section details summary statistics of the action distribution.
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Figure 11: Target Network Relative P&L for TD3 vs TWAP Experiment 1



Relative P&L TD3

Mean .0001

Standard Deviation .0083

Table 2: Relative P&L Experiment 1

First Half of Training Action Distribution

Recall,  a  Martingale  price  process  means  that  the  future  value  of  the  stock  is

expected to be the current price. This means that the optimal policy for this price process

is to sell off equal amounts across all time steps, in other words, each of the 5 actions

should be to sell off 20% of starting inventory. Table 3 reports summary statistics for the

actions as a percentage of starting inventory for the first half of training.

Statistic Step 1 Step 2 Step 3 Step 4 Step 5 Averages

Count 50 50 50 50 50 50

Mean .29 .20 .14 .09 .26 0.2

Std .19 .04 .03 .03 .17 0.09

Min .11 .14 .08 .03 .02 0.08

25% .14 .16 .14 .07 .07 0.12

50% .18 .20 .15 .11 .30 0.19

75% .45 .24 .17 .12 .40 0.28

Max .65 .27 .20 .15 .50 0.35

Table 3: First Half Action Distribution Experiment 1
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Second Half of Training Action Distribution

Table 4 reports summary statistics for the second half of training.

Statistic Step 1 Step 2 Step 3 Step 4 Step 5 Averages

Count 50 50 50 50 50 50

Mean .18 .23 .22 .14 .23 0.2

Std .03 .01 .01 .01 .04 0.02

Min .12 .2 .19 .11 .14 0.15

25% .14 .22 .21 .13 .20 0.18

50% .18 .23 .22 .13 .20 0.19

75% .21 .24 .23 .14 .26 0.22

Max .24 .27 .26 .17 .32 0.25

Table 4: Second Half Action Distribution Experiment 1

Notice how the standard deviation has decreased roughly 80% as the model starts to

converge to the optimal policy. Further, notice how the means of all steps are very close to

selling 20% of starting inventory, which is the optimal policy in the case of a martingale

price process. Finally, notice how the extremes have narrowed significantly. The shift in

the summary statistics towards the optimal policy is a strong indication the TD3 algorithm

can identify the optimal policy when presented with a Martingale price process. 

Experiment 2: Agent Performance in Different Degrees of Bias 

The second experiment’s analysis and results are presented in 3 parts, with each part

consisting of 2 or 3 sub-parts: first, we show the TD3’s performance compared to TWAP

and DDPG when we bias the price process by .1%. The inclusion of this bias means that

the price process is no longer a Martingale, therefore, TWAP is  not  the optimal policy.

This implies that the model will have to find the inventory schedule that maximizes the
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return from exploiting the bias while minimizing the impact from the quadratic penalty.

The Figure 12 illustrates the relative P&L of the evaluation iterations during training. We

discuss the properties of how the algorithm converged by providing a visual representation

of the incremental improvements with every additional evaluation iteration. The following

two sub-experiments consist of the same analysis but with 1% and 10% bias respectively.

To highlight the degree to which this bias affects the distribution from which the price

changes are drawn, we provide a comparative illustration in the case of 1% and 10% bias

in Figures 13 and 15. We chose not to include the .1% comparative distribution because

the difference was too faint to be visually discernible from the Martingale example. After

each analysis,  summary  statistics  on relative  returns  are reported  in tables  5,  6 and  7

respectively. 

Brownian Motion Price Process with Bias +.001

Recall, for experiments 2, 3 and 4, we scale up the number of training steps to 10k.

To maintain the same number of times we evaluate the agent, we scale up the number of

training  steps  in-between  each evaluation iteration  to  100.  This  means  that  every  100

training steps, the target network is tested on 10 trajectories drawn from the price process.

Below are the reported results of average relative P&L of every evaluation iteration over

the course of training: 
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Figure  12 depicts  the  smoothed comparative  returns  to TWAP for both TD3 and

DDPG. Smoothing the returns makes for a more interpretable graph. The less pronounced

lines  are  the  true  return  values  whereas  the  more  pronounced lines  are  the  smoothed

returns.  Both  are  consistently  below  TWAP,  although  TD3  comes  quite  close  to

converging, it is still considered to be roughly 1 basis point below TWAP. TWAP is an

optimal policy for mitigating market impact costs incurred by the quadratic penalty, but it

does  not exploit  the newly added bias  by design.  DDPG seems to  consistently under-

perform. It cannot exploit the bias while simultaneously managing the quadratic penalty.

After taking into account the differences in scale from the first experiment’s results, the

DDPG has similar performance to the TD3 before it converges to TWAP, while the TD3

is closer in performance to the first  experiment  depicted in table  2 (for experiment  2

metrics,  please  refer  to  Table  5).  A potential  reason  for  TD3 not  surpassing  TWAP

consistently could be that the profitable area of the solution space that falls between the

action of fully exploiting the bias or fully minimizing the impact of the quadratic penalty

86

Relative P&L

Number of Evaluations

Figure 12: Target Network Relative P&L for TD3 vs DDPG Price Process with .1% Bias 

TD3 (light blue), DDPG (dark blue)



through TWAP may be very narrow. This perhaps could be improved with further tuning

of the hyper-parameters. The improvements to TD3 over DDPG are notable, however.

Delaying its update, clipping its value estimate and injecting noise into the target action all

seem to dramatically stabilize the algorithm when operating in a noise-heavy environment

with  a  challenging  solution  space.  For  instance,  the  DDPG  is  known  to  be  overly-

responsive to erratic state changes. For this reason, delaying the update, as seen in TD3,

would help regularize the input to avoid pre-mature adjustments to its parameters.     

Relative P&L DDPG TD3

Mean -.0095 -.0016

Standard Deviation .0069 .0031

Table 5: Relative P&L Experiment 2

Brownian Motion Price Process with Bias +1%

For comparison, we provide an example of 10 episodes of a price process with 1%

skew in figure 13. There does seem to be a slight upward bias, but in all fairness, we can
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only be sure there is a bias because we have synthetically created it; the figure is provided

simply for comparative purposes to highlight differences when we increase the bias.

Figure 14 depicts the comparative returns to TWAP for both TD3 and DDPG. The

TD3 algorithm starts  to consistently surpass TWAP after a few hundred training steps

(equivalently,  roughly 8 evaluation iterations),  then briefly drops to TWAP and finally

closes above TWAP. DDPG, although seems to improve in performance from the last

experiment  after  taking  into  account  the  differences  in  scale,  still  under-performs.  It

cannot exploit the bias while simultaneously managing the quadratic penalty, although it

seems to do a slightly better job when the bias is more pronounced. Interestingly, there is a

drop in performance for both algorithms at roughly the midway point of training. We

believe  this  drop  is  important  for  highlighting  both  the  similarities  and  differences

between  these  algorithms.  It  seems  as  though the  TD3 modifications  are  successfully
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stabilizing the target network when the network is at risk of experiencing moments of high

volatility. Indeed, the modifications could be greatly reducing the magnitude of volatility

in  returns.  Both  algorithms suffer  losses,  but  the  DDPG’s  performance  degradation  is

much more pronounced than TD3’s. 

Relative P&L DDPG TD3

Mean -.0072 -.0004

Standard Deviation .0055 .0019

Table 6: Relative P&L Experiment 3

Brownian Motion Price Process +10%
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Figure 15: Example of 10% Skew Brownian Motion Price Process: 10 Episodes



For comparison, we provide an example of 10 episodes of a price process with 10%

skew in figure 15. The bias is still faint, but does seem to be less negatively inclined. 

Finally, we use a price process with 10% bias to compare the TD3 and DDPG to

TWAP and we visualize the test performance during training in Figure 16. Interestingly,

the DDPG converges to a profitable policy faster than the TD3, although both stabilize for

thousands of training steps until degradation. Another interesting observation is how the

TD3’s clear dominance from previous experiments doesn’t seem to be present for most of

the training period. However, notice how the DDPG suffers from significant performance

degradation at the 80th evaluation iteration, whereas the TD3’s drop is far less pronounced

and  largely  still  profitable.  This  is  another  example  of  how  TD3  can  help  reduce
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Figure 16: Target Network Relative P&L for TD3 vs DDPG Price Process with 10% Bias 

TD3 (blue), DDPG  (red)



performance volatility by restricting large changes in the target network from one update

to the next. We report summary statistics of the test performance in Table 7.

Relative P&L DDPG TD3

Mean .0061 .0075

Standard Deviation .0078 .0059

Table 7: Relative P&L Experiment 4
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Discussion

Summary of Problem

Optimal  order  execution  is  an  important  problem  faced  by  large  market

participants, as it requires the participant to balance the risk of holding the asset through

price volatility with the market impact risk of exiting a large position. If a participant

places too large an order, the risk of market impact increases, thereby affecting the price

of  the  asset  through  standard  supply-demand  dynamics  in  the  order  book.  If  the

participant  holds  the  position  too  long,  he/she  increases  the  risk  of  exposure  to

unfavorable price movements.

Given a set number of shares at the beginning of an episode, the agent must find

the optimal sell-off schedule that will optimize its returns when compared to a steady sell-

off schedule, known as steady-sell off TWAP, where no adjustment decisions can be made

throughout. OOE consists of a trader being given X total inventory to sell at the beginning

of an episode, each episode being of a fixed length in time T number of seconds. There are

N decision points over the course of an episode, we refer to these as k steps where k ∈ [0,

1, .., N] and N represents the terminal step. Each k is separated by a discrete time interval

t where t ∈ [0, 1, .., N]. Each t spans
T
N

seconds, or referred to as M seconds. At each

step k, we must determine the amount of inventory to sell xk such that ∑ xk  equates to

X to ensure full liquidation when the episode terminates. Rather than submitting one large

order at the beginning of each step and negatively impacting available prices in the order

book, we would like to equally disperse  xk throughout the time interval  t  by following a

TWAP schedule at 1 second time-increments. To obtain the size of the per second order
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increment,  we must  compute  
xk

M
. Once  the  order  is  complete  at  the  end  of  time

interval  t we move to step k+1 where a new amount xk+1 must be determined to then be

sold over the course of t+1. 

Summary of Model

The TD3 algorithm is nearly identical to that of the DDPG. Three modifications were

introduced,  however,  to  better  address  approximation  errors  in  the  DDPG  algorithm

(Fujimoto 2018). First is to smooth the action selection of the target network, second is to

select the minimum value estimate produced by the critic networks and last is to delay the

update for the actor and target network. These improvements were introduced to reduce

over-estimation in the critic output and stabilize training.

Summary of Results

According  to  the  results  from  the  previous  section,  increases  in  bias  positively

correlate with the TD3 algorithm successfully identifying an exploitable pattern. Likewise,

DDPG also experiences an improvement, albeit not to the same degree. If the bias is too

weak or non-existent, as would be the case in the first price processes of Brownian motion,

the TD3 algorithm converges to a TWAP steady sell-off schedule. This is consistent with

previous research that demonstrates that the optimal policy is to sell-off shares in equal

increments throughout the period in the event of a Martingale process. Prior to starting the

experiments, two hypotheses were made:
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Hypothesis 1: In the first experiment, the TD3 converges to the optimal policy,

which is a steady-sell off in the case of a Martingale price process.

Figure 11 demonstrates the TD3’s eventual oscillation around 0, which is the baseline

TWAP strategy and is theoretically optimal in the event of a Martingale price process. To

demonstrate TD3 not only produces equivalent results to baseline TWAP but also matches

its action strategy, tables 3 and 4 were included in the analysis. The tables clearly show a

change in action preferences towards the optimal policy of selling off equal increments of

20% of starting inventory at the beginning of every step during the episode. Although the

TD3 algorithm definitely  converges,  we had to  aggressively  scale  back the number  of

iterations it could train for because of how erratic it could behave in a context where the

problem  is  possibly  overly-simplistic.  We  could  have  possibly  added  a  decay  to  the

learning rate to prevent this from happening. This served as an important reminder of how

quickly DRL algorithms can over-fit the data, despite extensively tweaking their hyper-

parameters  in an attempt to restrict  the rate  at  which it  learns.  Even when employing

models like TD3, which are specifically designed to mitigate major shifts in the target

networks upon update,  the problem should be well  suited for these types of powerful

algorithms. Regardless, it was interesting to see just how quickly the model could adapt in

the event of a Martingale price process.

Hypothesis 2: In the second experiment, the TD3 algorithm outperforms the

DDPG algorithm and consistently surpasses the baseline TWAP returns.
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The second experiment was to test whether the model would be able to identify the

different degrees of bias across 3 different price processes when compared to TWAP and

DDPG. The results proved to be very interesting, as they tended to highlight where TD3

shines over DDPG and where both algorithms struggle to identify and exploit the bias.

Both algorithms are quite similar except for 3 modifications used in TD3 to help stifle

overly aggressive target network updates. For more details, please refer to Figure 8 for an

explanation  of  the  pseudo-code.  Unsurprisingly,  the  degree  of  bias  was  positively

correlated with both algorithm’s returns over the baseline TWAP schedule. In instances

where the bias was faintest, both algorithms were sub-optimal,  although the difference

between TWAP and TD3 could be negligible. As the bias increases slightly, DDPG still

struggles to be profitable, although it still clearly benefits from a more pronounced bias

signal, while TD3 manages to start becoming profitable. Where the results become very

interesting is when bias is at its highest and the algorithms perform nearly identically. The

results  diverge,  however,  when  both  are  faced  with  a  risk  of  high-volatility  in  target

updates  when  the  actor-critic  networks  are  suddenly  very  different  from  their  target

networks.  When analyzing  these  results,  it  appears  that  TD3 has  greater  resilience  to

volatility in its value estimate. Given that there are only 3 differences between TD3 and

DDPG, it seems as though the modifications intended to stabilize TD3 could be serving

their purpose. Naturally, DDPG and TD3 move very similarly when stable, it is when their

on-line and off-line networks are highly divergent that their differences become apparent.

The  results  on  the  skew experiments  are  compelling:  they  show TD3 nearly  matches

TWAP in no bias and extremely faint bias (suffering very little loss over TWAP) and

greatly surpasses TWAP when the skew parameter is set to as low as 10%. Further, TD3

appears to consistently outperform DDPG, particularly when both networks are faced with

large discrepancies between their target networks and their action and value networks.
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Limitations

Although the results are intriguing, there are a few limitations that should be outlined.

The chief limitation being that Brownian motion with bias is not a perfect predictor of

future  earning  potential  in  a  real-world  setting,  however,  few  if  any  back-testing

methodologies  are  ever  sufficient  on  their  own  (López  de  Prado,  2018).  Indeed,  this

approach can be used as an important facet of a holistic back-testing process, where a

combination of both simulated and historical data can be used to effectively gauge the

performance of an algorithm.

Contribution

This thesis is the first known example of applying the TD3 or DDPG algorithm to the

optimal order execution problem. It is also the first  known work where RL is used to

exploit  the  bias  in  a  skew-normal  Brownian  motion  price  process  in  trading.  We

demonstrate that relatively quick convergence can be achieved when using a continuous

action-space. It is the first example of the TD3 agent successfully identifying the known

optimal policy in a Brownian motion price process with zero skew or drift. Further, we

demonstrate how TD3 significantly outperforms the baseline TWAP schedule and proves

to be more stable than the DDPG algorithm in a skew-normal  Brownian motion price

process with the skew parameter set to only 10%.  
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Future Research 

It would be fascinating to see if the agent’s performance is maintained when run in a

market  simulator,  such  as  the  ABIDES  (Agent-Based  Interactive  Discrete  Event

Simulation) Market Simulator for AI Research (Byrd et al., 2019). The ABIDES market

simulator uses the full limit order book and can simulate thousands of different agents that

interact with the market via limit orders or market orders. These interactions can help us

model the price impact of strategies, rather than using an approximate method like our

quadratic penalty. Other future research could compare the agent’s performance if it were

to submit limit orders as opposed to market orders, or a combination of the two.     
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Conclusion

This work is the first known example of applying the TD3 or DDPG algorithm to the

optimal order execution problem. Much of our approach to constructing the OOE problem

was borrowed from Ning at al. (2018), where we differ in the algorithm selection, action-

space and reward design. First we discuss the order execution problem as well as order

book dynamics.  We then summarize key concepts in RL and model approximation to

showcase RL as a viable option for solving the OOE problem. Next, a literary review is

done on historical applications of RL in OOE. We also start to explain why DRL could

help circumvent some issues encountered by more traditional RL methods. Next, an in

depth  review  of  major  algorithmic  innovations  in  the  DRL  space  is  provided.  This

discussion naturally leads to our reasoning behind selecting TD3 as the central model in

this thesis. Once the foundation laid, the experimentation methodology and hypotheses

were outlined. 

For the first experiment, the TD3 agent converged to the baseline TWAP, the optimal

policy in the case of a Martingale price process. The skew experiments demonstrated the

TD3’s ability to detect varying degrees of faint bias in the presence of a skew-normal

Brownian  motion  price  process.  We  compared  these  results  to  that  of  the  DDPG

algorithm, where the TD3 algorithm consistently outperformed DDPG. Bias was created

by skewing the normal distribution from which the errors were drawn to generate the price

processes. It is evident that, although faint, larger degrees of bias lead to larger returns

over  the TWAP baseline execution strategy.  This  also  demonstrates  that  the TD3 can

converge to a profitable policy after only a thousand observations on a simulated price
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process, despite the bias being very faint. It is important to note, if the bias is too faint, the

TD3 considers the TWAP strategy to be the optimal policy, which intuitively seems to

make sense. In conclusion, these results are promising for DRL applications in OOE and

are notable given the paucity of research in the continuous action space for this particular

problem. Future research demonstrating the viability of DRL in trading will be relevant to

any firm looking to optimize order flows.    
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