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Résumé

Dans cet article, nous explorons des possibles améliorations aux prévisions de la volatilité

réalisée quotidienne, calculée à partir de rendements à haute fréquence, en faisant usage

de l’information contenue dans certaines mesures de liquidité et d’activité du marché.

Plus particulièrement, nous insérons les écarts d’offre et demande et les volumes trans-

actionnels en dollars ou en actions comme termes additionnels dans un modèle autoré-

gressif linéaire de volatilité réalisée quotidienne à mémoire approximativement longue,

que nous nommons HAR-RV-LIQ. Nous construisons un échantillon de 10 actions améri-

caines composantes du S&P500 durant la période 2005-2013 et analysons pour chacune

des actions individuellement la performance de notre modèle. En utilisant une méthode

d’estimation de type moindres carrés pour les diverses spécifications de notre modèle,

nous comparons la qualité de l’ajustement en échantillon et la performance des prédic-

tions hors échantillon en termes de RMSE, suivi des quelques diagnostiques des erreurs

de prédictions. Malgré que les gains de l’ajout des termes d’écart d’offre et demande

ou de volume dans notre spécification du modèle de volatilité sont selon nos résultats

marginalement faibles, nous trouvons qu’il existe une certaine quantité d’information

dans les mesures de liquidité et d’activité qui peut bel et bien améliorer les prédictions

de volatilité. De plus, même si nous observons que les écarts d’offre et demande ou le

volume peuvent améliorer dans la plupart des cas les prédictions de volatilité pour une ac-

tion particulière, nous n’identifions pas de choix unique évident applicable à l’ensemble

de l’échantillon.
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Abstract

In this paper, we investigate possible improvements in the forecasting of daily realized

volatility computed from high frequency returns by using information in market liquidity

and activity measures. In particular, we look at the proportional and effective bid-ask

spreads as well as the trading volumes in dollars and in shares as additional terms in

a linear autoregressive approximate long memory model of realized volatility, dubbed

HAR-RV-LIQ. To this end, we construct a sample of 10 U.S. stocks that were components

of the S&P500 during the 2005-2013 periods and analyse the performance of our model

for each individually. Using least square estimation for the various specifications of our

model, we compare in-sample fits and out-of-sample prediction performance in terms

RMSE and various diagnostic of prediction errors. Despite the gains of including spread

and volume in our current daily realized volatility specification are small at the margin

according to our results, we do find that there exist some information in measures of

activity and liquidity that can be harnessed to improve volatility forecast performance.

Furthermore, even though we find that a choice of volume or spread term in most cases

can improve volatility forecasting performance, we do not identify an obvious unique

choice applicable to the entire sample.
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Chapter 1

Introduction

Volatility is at the heart of the ever ongoing quest of more accurately predicting the dis-

tribution of future stock prices. It is in a simplistic way the expected magnitude of an

average surprise beyond the expected return. It is a rough frame around the elements of

the market that we fail to measure or understand. The smaller the volatility, the more we

anticipate the market to pursue its current trend undisturbed, while a high volatility makes

it impossible to pinpoint future returns with small bounds of confidence. A better under-

standing of this key component of returns models has a wide array of applications, such

as a more accurate pricing of derivative instruments and more informed risk management

decisions, all of which can have a significant impact on the bottom line of a financial firm.

In more recent years, the use of intraday high frequency returns to obtain a non-

parametric estimator of stock returns volatility has gained attention, as it was demon-

strated to asymptotically converge to the implied volatility of the returns underlying

stochastic process (Barndorff-Nielsen and Shephard, 2002; Andersen et al., 2001, 2003).

It is well known that volatility tends to persist and is a strongly autocorrelated process.

Corsi (2009) shows that a simple linear model using lagged values of realized volatility

can take advantage of the autocorrelated nature of volatility to yield decent predictions of

future volatility. This alternative to GARCH models has the advantage to exhibit appar-

ent long memory, i.e. long term persistence of shocks in volatility and a very slow decay



of their autocorrelation function. Absolute returns and volatility have been documented

to show evidence of long memory (Ding et al., 1993; Granger and Ding, 1995). To in-

corporate a semblance of long memory, Corsi’s model simply defines the daily realized

volatility as the sum of the past day, the past week’s average and past month’s average

realized volatility. These last forcibly introduce long lasting autocorrelation in daily re-

turns.

Beyond trying to predict the trend of volatility using its own past values and in returns

themselves, we seek to find whether there exist other time series that can shed additional

light on the current trend of volatility. Other market time series informative on the be-

haviour of agents in the market could also be informative on volatility, which is in essence

itself connected to what we cannot measure about this very mass of market agents.

In the context of the study of stock returns dynamics, the market liquidity and intensity

of activity are often overlooked. The concept of liquidity refers to the depth of the market,

in other words the ease at which one agent can readily find another to transact with.

Activity refers to the frequency of transactions for a particular asset. Should we know

more about the current behaviour of market agents and include this factors into a correctly

specified model, the remaining unknown and noise should be lessened and volatility better

estimated. Both concepts of liquidity and activity have readily observable and available

market time series that measure their effect. We thus turn our attention to the bid-ask

spread as a proxy for liquidity and to trading volume as a natural proxy for activity. We

hope to show evidence that the consideration of such time series can improve volatility

forecasting.

In the next section, we delve a bit deeper in the ongoing literature surrounding long

memory realized volatility models, as well as the connection between liquidity and volatil-

ity. In section 3.1, we present the construction of our sample of 10 US companies used

in this study of volatility as well as our selected measures of liquidity and activity. In

section 3.2, we investigate stylized facts and summary statistics of realized volatility, bid-

ask spread and volume time series, mainly in terms of moments, cross-correlations and

autocorrelations. In section 3.3, we present our selected HAR-RV-LIQ linear forecasting

2



model of realized volatility, which is itself an extension of Corsi’s HAR-RV model that

includes spread and volume terms and which is estimated by least square techniques. We

opt to present the literature surrounding realized volatility itself alongside the formulation

of our model, as it is better explained in the context of their equations. In section 4.1, we

estimate our models for all 10 selected stocks over the 2005-2013 period and present the

results and their analysis. In section 4.2, we analyse the forecasting performance of the

HAR-RV-LIQ model out-of-sample. Finally, in section 4.3, we do further analysis of the

distribution of residuals and of the fit for each firm’s model with the best out-of-sample

performance.
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Chapter 2

Literature review

2.1 Long Memory Realized Volatility Models

"Long memory" in stock returns generally refers to the persistence of positive autocorre-

lations in absolute returns over very long lags and similarity in returns distribution when

aggregating over various time intervals (Ding et al., 1993). More formally, this refers to

apparent long memory, while true long memory refers to a specific class of time series

model with hyperbolic autocorrelation decay and self-similarity obtained from using a

fractional differencing operator on a white noise (Granger, 1980; Baillie, 1996). It has

been documented that absolute returns, which are closely related to volatility, exhibit a

slow decay in their autocorrelation function (Granger and Ding, 1995), which implies

that a large shock in volatility at a given point in time will tend to leave slowly fainting

echoes throughout returns for very long periods of times. In a model with long memory,

an extremely volatile day would cause subsequent days to also be highly volatile, which in

absence of new large exogenous shocks would only very slowly over the course of weeks

or months stabilize back to normal levels. Such property can mimic well the behaviour of

persistently turbulent markets following a financial crash.

It has also been shown that the implied volatility of a stochastic model can be non-

parametrically approximated using discretely sampled high frequency squared returns



(Andersen et al., 2001; Barndorff-Nielsen and Shephard, 2002), which has opened the

door to an ever growing field of high frequency realized volatility models. Such realized

volatility time series exhibit long-run persistence in autocorrelation, which has led au-

thors to advocate for true long-memory models using fractionally-integrated models (see

for example Baillie et al. (1996)). The analytical complexity of such models has led re-

searches to seek simpler alternatives that can still produce long-run dependencies within

realized volatility time series.

Corsi (2009) proposed the linear HAR-RV model, a constrained AR model of real-

ized volatility with daily, weekly and monthly lag components. Corsi shows that the

HAR(3)-RV not only exhibits approximate long-memory, but also outperforms the corre-

sponding unconstrained AR(22) model in goodness-of-fit tests and provides similar out-

of-sample volatility forecast performance to the fractionally integrated ARFIMA(5,d,0)

on the S&P500. Realized volatility, which literature and pitfalls we cover in more details

in section 3.1.4, is in essence a non-parametric estimate of the volatility of returns over a

short period of time (e.g. a day) obtained using only higher frequency returns observed

within that period of time. As a result, it reacts extremely quickly to changing market

conditions and is not constrained by a choice of parametric distribution. Realized volatil-

ity estimates have been shown to converge to the time-dependent implied volatility of

a supposed stochastic dynamic of stock returns (Barndorff-Nielsen and Shephard, 2002;

Andersen et al., 2001, 2003).

2.2 Liquidity and Volatility

The idea that a stock liquidity might contains useful information for predicting stock re-

turns or stock volatility has long been studied. For example, Karpoff (1987) reviews the

early research in the price-volume relationship for individual stocks, covering notably

some evidences of an existing relationship between higher moments of returns and trad-

ing activity. Schwert (1989) finds that unexpected aggregate stock market volume and

volatility shocks tend to occur together on the NYSE, but finds little evidence of corre-
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lation between volatility and lagged values of volume. Among possible factors linking

volume and volatility, Schwert mentions new information flow, causing both trading and

price changes through heterogeneous beliefs of investors, and trading noise, as market

agents follow on a price shift and thus further increase trading activity and volatility both.

Copeland and Galai (1983) proposed a theory, at the time verified by empirical literature,

that conceptualizes the bid-ask spread as a straddle on the stock, thus a positive function

of the volatility expected by market makers.

It is through the intricate web of transactions that the price is allowed to fluctuate.

The volatility of price returns is a measure of the intensity of this fluctuation, while the

liquidity is a measure of the frequency and ease at which transactions happen. To ob-

serve a change in price, there must be transactions. Thus, when we measure volatility

and liquidity, we are in fact measuring two linked consequences of the very same set of

complex market mechanisms. Campbell et al. (1993), in their study of market transac-

tions and information, argue that high trading volume occurs jointly with large shifts in

demand from noninformational traders. In the landmark article from Black (1986) about

the nature of noise, he similarly states that there cannot be liquidity without the noise of

noninformational traders, as those who trade on more complete information may gener-

ally not desire to trade with one another. We therefore adopt the view that the activity of

noninformational traders may give rise to both high volume and high price volatility.

We do not suppose volatility to be the cause of liquidity or vice-versa, but that they

are both related by the same underlying forces. In particular, we wish to test the exis-

tence of persistent information within recent past values of liquidity measures that is not

already carried by recent past values of volatility, which can in turn be used to infer on

the direction of future volatility. The main hypothesis of our preliminary research is for

this relationship to be positive and suited to a linear representation. It is however entirely

possible that the complex mechanisms underlying the relation between volatility and liq-

uidity cannot be approximated by a linear form, that the relationship is entirely concurrent

or that the information set is fully overlapped, in which case an autoregressive predictive

model of volatility cannot be improved by the linear addition of liquidity factors.
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We opt to investigate the potential of bid-ask spread and trading volume to improve

predictions of realized volatility. Alternate measures of liquidity and activity that we did

not select for our study are numerous in the literature. For example, Dufour and Engle

(2000) suggests a measure of price impact based on a vector autoregression model of trade

sign and price change following a trade. Amihud (2002) suggests a measure of illiquidity

based on the ratio of absolute returns and trading volume in dollars averaged over time

and shows that this measure explains part of the variance of excess stock returns. In

theory investors demand higher expected returns when they anticipate higher risk. Should

liquidity relate to the ex-ante risk premium, then it should also relate to the ex-ante risk,

which itself is conceptually connected to ex-ante volatility. Chordia et al. (2000) also find

evidence of common drivers underlying the dynamics of various measures of liquidity and

activity, but leave open the questions as to what those drivers are. We must thus take care

not to arbitrarily include too many measures of liquidity or activity in our linear models,

for it increases the possibilities of inflated variance estimator due to multicollinearity. As

such, we are motivated to open our study with the simplest and most common measures

of liquidity, the bid-ask spread and the trading volume.
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Chapter 3

Data and Methodology

3.1 High Frequency Stock Price and Liquidity Data

We study the relationship between volatility and measures of liquidity and trading activity

for 10 companies that were components of the S&P500 from the beginning of 2005 to the

end of 2013.

3.1.1 Sample Description

The time series discussed in this section are sampled at the one minute interval from the

NYSE Daily TAQ database, for each trading day from the beginning of 2005 to the end

of 2013, excluding half-days due to U.S. holidays. We sampled data for each company

recognized within the database as a component of the S&P500. We plot in figure 3.1 the

number of stocks for each day that the Daily TAQ database includes within the S&P500.

As expected, our sample consists of roughly 500 companies per day, with the notable

exception of August 1st, 2012, with only 459 stocks available. However, this date corre-

sponds to a market day plagued by a trading glitch, caused by the brokerage firm Knight

Capital Group, which resulted in abnormal trading volume and price volatility levels for

close to 150 stocks (Scaggs, 2012). As such, it is not warranted to exclude this abnormal

trading day from our sample, as its data possibly includes information on the price-volume



relationship.

For each stock of the S&P500 with available data and each day, we sampled from the

NYSE Daily TAQ 5 time series. First, the series of midquotes were extracted and serve

as the observed market price of our stocks. Second, we selected the measures of liquidity

quoted spread (QSPR) and effective spread (ESPR), as well as the measures of trading

activity volume in number of shares (VLMN) and volume in US dollars (VLMD). We

present in equations (3.1) to 3.3 the standard methods to compute these measures from

bid, ask and transaction price quotes.

Midi,t = (Bidi,t +Aski,t)/2 (3.1)

QSPRi,t = Aski,t−Bidi,t (3.2)

ESPRi,t = |Pi,t−Midi,t |×2 (3.3)

where i and t are indices along the company and time dimensions respectively, and Pi,t

is the last transaction price. The quoted spread is the transaction cost of immediately

buying and selling a share and represents the immediate liquidity of a stock, absent price

impact. The effective spread measures the same cost using instead the difference be-

tween midquote Midi,t and transaction price Pi,t as the true (symmetric) spread paid by an

investor in an hypothetical instantaneous transaction.

We choose to express those costs relative to price, on a scale akin to returns. We cal-

culate the proportional quoted spread (PQSPR) and proportional effective spread (PESPR)

from the preceding two measures by dividing every observation by the prevailing midquote.

PQSPRi,t = QSPRi,t/Midi,t (3.4)

PESPRi,t = ESPRi,t/Midi,t (3.5)

3.1.2 Company Selection

To reduce the dimensionality of our study, we select what we consider to be 10 represen-

tative companies within the index. Since we desire uninterrupted time series throughout
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Figure 3.1: S&P500 stocks and the Daily TAQ data availability
Quantity of stocks per day in our dataset, following a query on the daily TAQ database for stocks
flagged as components of the S&P500. Our dataset roughly includes 500 firms per day as being
part of the index, with very little variation in the count from day to day, except notably for August
1st , 2012, with a count of 459 stocks.

our sample, some survivorship bias cannot be avoided. To each day t corresponds a set Ct

of approximately 500 company tickers. As a first cut, we have excluded from our analysis

any ticker not member of the set ∩T
t=1Ct , meaning that we exclude any company that for

any given day within the full sample period were not a component of the S&P500 or for

which there were one or more days without a single minute of data.

We identified 237 such companies with uninterrupted data presence within the index.

We then separated these into 10 deciles, according to their market capitalization in January

2005 at the beginning of the sample period, obtained from the WRDS database. We

randomly picked one company from each decile, allowing us to potentially observe how

our models perform for firms of different size. We present the selected companies in

table 3.1 and all stocks are hereafter referred to by their ticker symbol. In figure 3.2, we

plot for each of these firms the log of the monthly average market capitalization, which

allows us to see the evolution of the firm size ordering through time. The 2005 ranking in

market capitalization was not preserved throughout the sample period, which will make
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inferences on the impact of firm size on the performance of our models difficult.

Decile Mkt Cap. (2005-01) Ticker Name Industry
1 $2,023,203,140 CMS CMS Energy Corp. Utilities
2 $5,603,878,680 X United States Steel Corp. Steel
3 $8,026,140,950 NUE Nucor Corp. Steel
4 $8,641,699,560 WMB The Williams Cos., Inc. Energy
5 $11,701,370,620 LLTC Linear Technology Corp. Technology
6 $14,525,120,250 MON Monsanto Co. Biochems
7 $16,912,052,580 NKE NIKE, Inc. Cons. goods
8 $28,957,116,330 BSX Boston Scientific Corp. Healthcare
9 $63,568,873,950 HPQ HP, Inc. Technology

10 $107,837,350,800 CVX Chevron Corp. Energy

Table 3.1: Selected companies
Set of selected stocks for our study. Selected companies have continuous daily presence within
the S&P500 index from January 2005 to December 2013. The set of stocks with continuous daily
data availability within the Daily TAQ database were ranked by their beginning of January 2005
market capitalization and 1 firm was randomly selected from each resulting decile.

3.1.3 Treatment of Missing Data, Outliers and Daily Aggregation

We have structured the data into daily blocks of 390 minutes. Missing data for any given

minutes were filled by interpolation. Missing values for volume in shares and dollars

were set to 0, under our assumption that the majority of missing data corresponded to an

absence of transactions. Price or spread time series were interpolated piece-wise constant

with limit to the left or exceptionally limit to the right for any block of missing values that

included the first minute of the day. Negative values for spread measures were treated

the same as if missing. In total 0.31% of all data was interpolated. We break down the

proportion of data interpolated by company and by measure in table 3.2. Notice that

CMS has both the highest amount of missing data interpolated and the lowest average

trading volume in dollars throughout the sample period (roughly 3 times lower than the

2nd lowest, see figure 3.9 and table A.1.5), which is consistent with our hypothesis that

the observed gaps in the database correspond to a lack of transactions.
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Figure 3.2: Log market capitalisation, 2005-2012
Log of the monthly average market capitalisation for each stock, for the purpose of viewing firm
size ordering through time.

Missing Data (%) Neg. Spread (%)
Ticker Midquote QSPR ESPR VLMN VLMD QSPR ESPR
CMS 2.39 2.39 2.39 2.38 2.39 0.10 0.43
X 0.26 0.26 0.26 0.25 0.26 0.20 0.03
NUE 0.36 0.36 0.36 0.36 0.36 0.16 0.07
WMB 0.28 0.28 0.28 0.28 0.28 0.13 0.06
LLTC 0.64 0.64 0.64 0.64 0.64 0.67 0.16
MON 0.40 0.40 0.40 0.39 0.40 0.10 0.09
NKE 0.64 0.64 0.64 0.63 0.64 0.11 0.11
BSX 0.11 0.11 0.11 0.11 0.11 0.15 0.10
HPQ 0.02 0.02 0.02 0.02 0.02 0.16 0.01
CVX 0.08 0.08 0.08 0.07 0.08 0.18 0.00

Table 3.2: Proportion of data interpolated
Percentage of data interpolated per stock for their midquote, quoted (QSPR) and effective spread
(ESPR) as well as volume in number of shares (VLMN) and in dollars (VLMD) time series.
Interpolation was performed on a time series for any given minute with missing data or for non-
positive elements of spread time series. Refer to section 3.1.3 for the methodology.

To prevent bias induced by outliers in our regression sample, we have applied a win-

sorization at the 0.01th and 99.99th percentiles to the interpolated time series, after ag-
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Figure 3.3: Time distribution of tail values
Distribution by year of tail values (0.01th and 99.99th percentiles in black and gray respectively)
that were winsorized for the price, spread and volume time series. The counts are summed up
for the proportional quoted (PQSPR) and effective spread (PESPR), as well as for the volume in
number of shares (VLMN) and in dollars (VLMD).

gregation over all trading days. We show in figure 3.3 the time distribution of tail values

affected by the winsorization, with the counts summed across all 10 companies. Different

measures of spread and volume have been grouped. Intraday volume values of zero have

not been adjusted by winsorization, as it consisted of more than 0.01% of the sample. The

period of the financial Crisis (or pre-Crisis for spread measures) has been more impacted

by the winsorization than other time periods, but not in proportions and quantities that we

judge unacceptable for inference. Consider the price time series for illustration: in total,

only less than 300 minutes in each tail over the entirety of 2008 were adjusted.

Intraday prices are aggregated into daily realized volatility time series. Spread and

volume intraday time series are transformed into daily series by taking the daily average.

All 10 companies had trading activity for at least 1 minute per day in sample, as per our

company selection filter, which results in no single daily value of 0 for the volume series.
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3.1.4 Realized Volatility

For a given stock, its continuous unobserved true log-price process is assumed to follow

an Itô process,

dXt = µt dt +σt dWt (3.6)

where µt and σt are respectively the predictable drift and volatility stochastic processes,

and {Wt}t≥0 is a Wiener process, such that we can approximate the cumulated volatility

(
∫ t

t−1 σ2(s)ds)
1
2 , over a time period of unit of interest such as a trading day, by an estima-

tor known as the realized volatility (Andersen et al., 2001). For simplicity, we omit for

this section only any indices relating to the stock itself, but it can be understood that every

single stock has its own drift µt , volatility σt and noise Wt process.

For what follows, we use the notation rt = Xt −Xt− j for the discrete intraday log-

returns, for some arbitrary time increment j. A basic estimator of daily realized volatility

is the square root of the the sum of intraday squared log-returns,

RVBasic
t =

√√√√ M

∑
j=1

r2
j (3.7)

where r1, . . . ,rM is a sequence of intraday log-returns corresponding to a fine time par-

tition of the trading day. However, as M grows larger, this estimator is only convergent

to the intraday volatility in the absence of microstructure noise. The larger M is, i.e. the

higher the available data sampling frequency is, then more biased upward RVBasic
t will

be. This is because a more significant share of total observed price variance is due to

microstructure noise effects, for example bid-ask bounces, rather than due to the variance

of the unobserved theoretical continuous price process (Hansen and Lunde, 2006).

We can correct for this bias by sampling at a lower frequency than available, which

gives us the naive RV estimator,

RVNaive
t (K,a) =

√√√√MK

∑
j=1

r2
jK−a (3.8)

where K relates to the sampling frequency and MK = bM/Kc, such that every Kth return

is sampled, starting from the (K−a)th intraday return, a ∈ {0, ...,K−1}. This approach
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divides the available intraday sample into K non-overlapping grids {G0,G1, . . . ,GK−1} of

daily returns, where only the grid Ga is used for the approximation, and the other K− 1

grids are discarded. This naive estimator is well documented to be flawed, where on one

hand at fast frequencies it is biased upwards by ignoring the effect of microstructure noise

and on the other hand at slow frequencies it inefficiently discards significant portion of

the collected data sample (Zhang et al., 2005; Aït-Sahalia et al., 2005).

Several methods are used in the literature to correct for the deficiencies of the esti-

mator. Hansen and Lunde (2006), for example, investigate the use of various covariance

kernel estimators of RV. Aït-Sahalia et al. (2005) show that if we explicitly model the

observed log-price process {X∗t }t≥0 as a measurement with error of the efficient log-price

process {Xt}t≥0, i.e. X∗t = Xt + εt , and derive an estimator robust to noise, then it be-

comes optimal to sample at the highest frequency possible and make use of all available

data. Jacod et al. (2009) suggest the pre-averaging method, which attempts to approx-

imate the latent efficient price process by averaging out successive noise terms in the

observed price process. Barndorff-Nielsen et al. (2011) propose the realized kernel ap-

proach, which can also be used to estimate the covariance term between difference stock

price processes. Zhang et al. (2005) show that it is also possible to reduce the variance of

the estimator and avoid cumulating microstructure noise by computing the subsampling

estimator, which is done very simply by taking the average of the sparsely sampled naive

estimator over all K grids,

RVSub
t (K) =

√√√√ 1
K

K−1

∑
k=0

( MK

∑
j=1

r2
jK−k

)

=

√√√√ 1
K

K−1

∑
k=0

RVNaive
t (K,k)2

(3.9)

where K is the number of subsampling grids. Note that RVSub
t (1) = RVNaive

t (1,1) =

RVBasic
t .

This simple to implement estimator of RV can approximate robust results without the

added complexity of explicitly modelling the microstructure noise effects, by averaging
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out its impact over multiple grids. It is popular in the litterature and, for example, is the

approach used in Corsi (2009). We thus select the subsampling estimator for its simplic-

ity and for continuity in methodology with our benchmark model’s author. We however

wish our readers to be aware of the multiple competing approaches to measuring realized

volatility and of possible refinements to our methodology. Nevertheless, Amaya et al.

(2017), in the case of options on the S&P500 index, show that the K = 5 minutes subsam-

pling estimator of realized variance offers superior robustness relative to the naive method

and similar results to kernel-based or pre-average methods. Moreover, Liu et al. (2015)

compare 400 different estimators of RV for 31 assets over 5 asset classes and conclude

that there is little evidence that any robust approach significantly outperforms the naive

5-minutes estimator. Still, we consider it prudent to make use of all available data and use

the more robust 5-minutes subsampling estimator rather than the 5 minutes naive one.

We use our sample to investigate the impact of the choice of the subsampling window

K on the daily RVSub . Given K, for every day t in our sample and for every company, we

compute RVSub
t (K). For fixed K and company, we then calculate for the {RVSub

t (K)}T
t=1

time series its sample mean, standard deviation, median and quantiles 25% and 75%. The

results are plotted in figure 3.4. Note that as K goes to 1 minute, the subsampling estimator

approaches the naive estimator, because our data is limited to 1 observation per minute.

As expected, for all 10 companies, the sample mean and quartiles of {RVSub
t (K)}T

t=1

steadily increases as K decreases, because longer windows fail to capture the volatility

underlying any price change that reverts itself within a period of length K and because

shorter windows increasingly capture market microstructure noise. The sample standard

deviation also rises inversely with K, steadily in some cases (e.g. BSX), or very sharply

at low levels of K. For example, X and LLTC from K = 10 to K = 1 see a large increase

in standard deviation of 0.1, while none of the company with a more steady curve see a

range of standard deviation larger than 0.035 for the entire curve. In the cases of X and

LLTC, this seems indicative of large spikes in the second moment of the estimator at low

very frequencies (i.e. lower than K = 5) and thus undesirable. This provides evidence

that in the case of individual liquid stocks and per-minute data, a subsampling window
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lower than K = 5 may yields an estimator that is both biased upward and inefficient. In

view of the literature and of our analysis, we find the 5 minutes subsampling window to

be adequate for our data.

3.2 Stylized Facts

Before implementing our predictive models, we first do a summary analysis of stylized

facts exhibited by our sampled realized volatility and liquidity series. The period studied

for this section is from January 2005 to December 2013. The daily RV is calculated using

the 5 minutes subsampling estimator.

3.2.1 Graphical Investigation and Summary Statistics

For each of the 10 companies, the daily log-realized volatility time series in figure 3.5

visibly exhibit strong persistence of shocks. For example, we observe for each company

a slow reversion to long term levels between the 4th quarter of 2008 and the end of 2010.

The increase in volatility throughout the later half of 2008 takes the major part of the year

2009 to stabilize back to the lower levels observed during the following years. Several

clusters of higher volatility are synchronized across all firms, among them notably the fi-

nancial Crisis period, the 2010 Flash Crash and the 2011 Black Monday. LLTC and HPQ,

both in the electronics industry, exhibit a severe and very brief volatility spike during the

2010 Flash Crash. These phenomenons suggests the existence of systemic and industry

related factors driving regimes of volatility across all asset classes, as well as volatility

jumps across industries or asset clusters. From the summary statistics in table A.1.1,

we can observe that the unconditional empirical distribution of log-RV only moderately

varies from one firm to the next, and indeed leptokurtic (sample kurtosis ranging between

3.89 and 5.37) and slightly right-skewed across all of them.

Measures of spread, such as the daily close proportional quoted spread (figure 3.6,

equations (3.2) and (3.4)) or proportional effective spread (figure 3.7, equations (3.3) and
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Figure 3.4: Distribution of realized volatility by subsampling window, 2005-2013
For each stock, we plot the mean, quartiles and standard deviation of annualized daily RVSub over
the 2005-2013 sample period with respect to change in the subsampling window, as defined in
equation (3.9).

19



(3.5)), also clearly display shock persistence, suggesting that they could be integrated pro-

cesses. The market wide factors driving volume seem at times dwarfed by idiosyncratic

factors, as the commonality in each plotted spread time series is less apparent than in

realized volatility figures. Yet again, the financial Crisis of 2008-2009 stands out clearly

as a period of lower liquidity across all firms. The main visually identifiable difference

between quoted and effective spread series appears to be the occasional presence of strong

outliers in the later, reflecting outliers in the transaction price processes themselves, which

for stocks are well documented to show evidence of high kurtosis and jumps (Eraker et al.,

2003; Andersen et al., 2007; Lee and Mykland, 2008). Looking at the descriptive statis-

tics in tables A.1.2 and A.1.3, we indeed observe for all firms a higher sample kurtosis

for PESPR time series than that of PQSPR. The most extreme case being LLTC, with a

PESPR kurtosis of 1663.58, as opposed to 10.05 for PQSPR, mostly due to the dispropor-

tionate impact of the 2010 Flash Crash. With the notable exception of BSX, we can also

perceive a loose downward trend in the mean spread as the market capitalization ranking

increases (ranked in 2005). Firms with a relatively low average quoted spread tend to

have leptokurtic and right-skewed unconditional distribution, while those of two firms in

our sample with the highest average quoted spread (BSX and CMS) instead appear to be

platykurtic, with a sample kurtosis of 1.75 and 2.71 respectively.

Daily volume series in number of shares and in dollars, in figures 3.8 and 3.9, not un-

like the spread series, also appear autocorrelated with some systemic dependence struc-

ture. For most firms, the intraday counting process underlying the volume dynamic seems

to have frequent isolated extreme values.

3.2.2 Autocorrelations and Cross-Correlations

In the graphical analysis, the persistence of shocks was already evident for all time series

studied. We now look at the autocorrelation functions (ACF) to further quantify this

earlier observation. Figures A.1.1 to A.1.5 show the sample ACFs up to a full year (252

days).
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Figure 3.5: Timeplot of log(RV), 2005-2013
Timeplot of the daily log of the 5 minutes sumbsampling realized volatility estimator (equation
(3.9) with K = 5) for the years 2005 to 2013 inclusively and for each of the selected stocks, after
winsorization and interpolation.
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Figure 3.6: Timeplot of PQSPR, 2005-2013
Timeplot of the daily proportional quoted spread (equations (3.2) and (3.4)) for the years 2005 to
2013 inclusively and for each of the selected stocks, after winsorization and interpolation.
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Figure 3.7: Timeplot of PESPR, 2005-2013
Timeplot of the daily proportional effective spread (equations (3.3) and (3.5)) for the years 2005
to 2013 inclusively and for each of the selected stocks, after winsorization and interpolation.
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Figure 3.8: Timeplot of VLMN, 2005-2013
Timeplot of the daily trade volume in number of shares for the years 2005 to 2013 inclusively and
for each of the selected stocks, after winsorization and interpolation.
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Figure 3.9: Timeplot of VLMD, 2005-2013
Timeplot of the daily trade volume in US dollars for the years 2005 to 2013 inclusively and for
each of the selected stocks, after winsorization and interpolation.
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For daily log-RV, PQSPR and PESPR, we observe evidence of long memory, as shocks

persist through each time series generally up to 100 lags or more of statistically significant

autocorrelations. For volume measures, firms generally have a slow ACF decay rate,

yet not quite as consistently reach 100 lags of statistically significant autocorrelations at

the 95% level1. Furthermore, some cases exhibit clear quarterly patterns of seasonality,

in particular LLTC and HPQ from the electronics technology industry and NKE from

consumer cyclical.

Looking at cross-correlations between these 5 variables for each of the 10 firms in

figures A.1.6 to A.1.15, we first observe strong correlations across all first 21 lags between

the two spread measures, PQSPR and PESPR. The cross-correlations are positive and

decreasing as the lag increase, while still higher than 0.6 for all firms at the 21th lag,

except for LLTC, due to the impact on PESPR of the May 2010 Flash Crash. Apart from

LLTC at 0.43 and CVX at 0.84, the contemporary cross-correlation between PQSPR and

PESPR is above 90% for each other firm. Similarly for measures of activity, with the

exceptions of X at 0.60 and BSX at 0.75, the contemporary cross-correlations between

VLMN and VLMD are above 0.80 for all other firms. We thus expect that including both

measures of spread or activity in a linear model will induce strong multicollinearity and

degrade the variance of the estimator.

We summarize contemporary and one-day lagged correlations over the full sample

period between log-RV and the four measures of liquidity and activity in table 3.3. All

measures of spread and volume have a positive contemporary correlation with log-RV,

the lowest being 12% for CMS between log-RV and VLMD and highest 81% for CVX

between log-RV and VLMN. For spread or activity measures with a one-day lag, the

cross-correlations for each company between log-RV and these lagged measures are all

positive and statistically significant at the 95% level assuming asymptotic normality2,

1For a time series with T observations, we test the statistical significance of autocorrelations using the

asymptotic standard error

√
1+2∑

lag−1
t=1 ρ̂t
T (Tsay, 2005), from which is derived the upper confidence bound

for each lag presented in figures A.1.1 to A.1.5.
2For a time series of T observations, we test the statistical significance of cross-correlations using the

asymptotic standard error 1√
T

(Tsay, 2005)
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with only one correlation bordering its critical value (VLMDt and log-RVt+1 for CMS at

2%).

Correlation with log-RVi,t Correlation with log-RVi,t+1
Ticker PQSPRi,t PESPRi,t VLMNi,t VLMDi,t PQSPRi,t PESPRi,t VLMNi,t VLMDi,t
CMS 0.65 0.68 0.48 0.12 0.63 0.65 0.38 0.02
X 0.51 0.59 0.48 0.37 0.45 0.52 0.39 0.30
NUE 0.73 0.72 0.77 0.70 0.69 0.66 0.69 0.63
WMB 0.63 0.67 0.49 0.17 0.59 0.60 0.36 0.05
LLTC 0.51 0.36 0.70 0.53 0.50 0.21 0.58 0.41
MON 0.59 0.68 0.61 0.65 0.53 0.61 0.50 0.56
KNE 0.77 0.79 0.54 0.36 0.73 0.72 0.43 0.24
BSX 0.23 0.42 0.43 0.30 0.23 0.39 0.22 0.07
HPQ 0.19 0.34 0.50 0.36 0.19 0.29 0.32 0.21
CVX 0.56 0.67 0.81 0.65 0.51 0.60 0.72 0.57

Table 3.3: Contemporary and one-day lagged correlations with log-RV
Correlations over the 2005-2013 period between daily log-RV and selected daily measures of liq-
uidity (proportional quoted, PQSPR, and effective spread, PESPR) and activity (volume in num-
ber of shares, VLMN, or dollars, VLMD). All correlations are statistically significant assuming
asymptotic normality, with a sample size of 2246 observations for contemporary correlations and
2245 for one-day lagged ones.

3.3 Realized Volatility Model

Corsi (2009) proposed the simple Heterogeneous Autoregressive model of Realized

Volatility (HAR-RV) for forecasting the implied stock volatility. He shows that this model

is able to mimic long memory and fat tails properties apparent in stock returns time series

as well as to provide good forecasting performance. Its advantageous linear form allows

considerable flexibility in incorporating additional predictors. As such, our aim is to start

with the HAR-RV as our benchmark model and investigate whether volume or bid-ask

spread time series can improve volatility forecasting.

3.3.1 Benchmark Model

The linear HAR-RV model can be written as constrained autoregressive (AR) model of

realized volatility, such that several lag terms are grouped into fewer moving average
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terms. Our aim is to use this model to forecast future implied volatility with past values

of implied volatilities. However, since implied volatility is unobservable, we substitute

their past values by their estimator, the realized volatility, which has some degree of mea-

surement error.

Corsi (2009) suggests the use of daily, weekly and monthly lag components, although

the model can flexibly be adapted to any time scales of interest. Using a year convention

of 252 days with 21 days months, we construct the weekly and monthly lag components

by averaging the daily subsampling RV estimator over 5 and 21 days respectively. Unlike

in Corsi (2009) and like other authors (Bee et al. (2016), for example), we use the log-

specification of the model to maintain volatility positive:

log(RV(d)
i,t+1) = α +β

(d)
RV log(RV(d)

i,t )+β
(w)
RV log(RV(w)

i,t )+β
(m)
RV log(RV(m)

i,t )+ εi,t , (3.10)

where εi,t is a white noise and:

RV(d)
i,t = RVSub

i,t (K)

RV(w)
i,t =

1
5

(
RV(d)

i,t + ...+RV(d)
i,t−4

)
RV(m)

i,t =
1

21

(
RV(d)

i,t + ...+RV(d)
i,t−20

) (3.11)

for some subsampling window K and any given stock i and day t.

3.3.2 HAR-RV-LIQ Model

We expand the benchmark model in the HAR-RV-LIQ to include measures of liquid-

ity and activity as additional predictors. Our measures of liquidity are the proportional

quoted bid-ask spread (PQSPR) and the proportional effective bid-ask spread (PESPR);

our measures of activity are the volume in number of shares (VLMN) and volume in dol-

lars (VLMD). Our motivations for these additional predictors are presented in section

2.2. Our hypothesis is that measures of liquidity or activity provide useful information for

1-day ahead predictions of volatility, however we are unsure as to the appropriate speci-

fication of this relationship. Our study is limited to linear autoregressive and differenced

specifications. We thus include these measures both in level and in difference, as well as
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their weekly and monthly lags.

log(RV(d)
i,t+1) = αi +β

(d)
i,RV log(RV(d)

i,t )+β
(w)
i,RV log(RV(w)

i,t )+β
(m)
i,RV log(RV(m)

i,t )

+β
(d)
i,PQSPR PQSPR(d)

i,t +β
(w)
i,PQSPR PQSPR(w)

i,t +β
(m)
i,PQSPR PQSPR(m)

i,t

+β
(d)
i,PESPR PESPR(d)

i,t +β
(w)
i,PESPR PESPR(w)

i,t +β
(m)
i,PESPR PESPR(m)

i,t

+β
(d)
i,VLMN VLMN(d)

i,t +β
(w)
i,VLMN VLMN(w)

i,t +β
(m)
i,VLMN VLMN(m)

i,t

+β
(d)
i,VLMD VLMD(d)

i,t +β
(w)
i,VLMD VLMD(w)

i,t +β
(m)
i,VLMD VLMD(m)

i,t

+β
(d)
i,∆PQSPR ∆PQSPR(d)

i,t +β
(w)
i,∆PQSPR ∆PQSPR(w)

i,t +β
(m)
i,∆PQSPR ∆PQSPR(m)

i,t

+β
(d)
i,∆PESPR ∆PESPR(d)

i,t +β
(w)
i,∆PESPR ∆PESPR(w)

i,t +β
(m)
i,∆PESPR ∆PESPR(m)

i,t

+β
(d)
i,∆VLMN ∆VLMN(d)

i,t +β
(w)
i,∆VLMN ∆VLMN(w)

i,t +β
(m)
i,∆VLMN ∆VLMN(m)

i,t

+β
(d)
i,∆VLMD ∆VLMD(d)

i,t +β
(w)
i,∆VLMD ∆VLMD(w)

i,t +β
(m)
i,∆VLMD ∆VLMD(m)

i,t

+ εi,t ,

(3.12)

where εi,t is a white noise and:

Y(w)
i,t =

1
5

(
Y(d)

i,t + ...+Y(d)
i,t−4

)
Y(m)

i,t =
1

21

(
Y(d)

i,t + ...+Y(d)
i,t−20

)
∆Y(h)

i,t = Y(h)
i,t −Y(h)

i,t−1,

(3.13)

for h in {d,w,m}, any given stock i and day t and for {Y(h)
i,t }t≥0 in{

{PQSPR(h)
i,t }t≥0, {PESPR(h)

i,t }t≥0, {VLMN(h)
i,t }t≥0, {VLMD(h)

i,t }t≥0

}
.

While the full model specification includes all components of interest, we will con-

sider only proper subsets of these factors when estimating and evaluating the model. In

particular, we include only either PQSPR or PESPR and only either VLMN or VLMD

in any given nested model, due to their strong collinearity. We will thus estimate and

evaluate the performance of various models nested within the general HAR-RV-LIQ. The

benchmark model is also obviously nested within the HAR-RV-LIQ.

Let Mi be the set of models nested within the HAR-RV-LIQ model that we select for

our study of a given company i. In order to investigate only a limited amount of models
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built from combinations of the spread or volume measures, we impose that for any given

company i, models in Mi must follow the following rules:

1. Every model considered is an extension of the benchmark;

2. Quoted and effective spread are never both included in a model (multicollinearity);

3. Volume in shares or dollars are never both included in a model (multicollinearity);

4. A given spread or volume measure is included in level or in differences, not both;

5. Shorter explanatory lags have precedence over longer lags, e.g. the weekly lag of a

liquidity measure is only included if its daily lag already is;

6. Variables a priori seemingly uncorrelated with the dependent variable are excluded.

Any selected predictor must have an absolute correlation over the 2005-2013 period

of at least 20% with the dependent variable log(RV(d)
i,t+1);

7. For a given company, we may retain only one of the two spread measures (or vol-

ume) if its correlation with the dependent variable is much larger than the other

one’s correlation.

8. Variables with high marginal multicollinearity are excluded, using the usual vari-

ance inflation factor (VIF)3 cut-off of 10.

The rule 1 imposes that the benchmark model is nested in every model, in accor-

dance with our initial objective of verifying whether this benchmark can be improved by

additional terms. Rules 2 to 5 impose a hierarchical structure to our factors. We estab-

lished our hypothesis that measures of liquidity (PQSPR, PESPR) or measures of activity

(VLMN, VLMD) may help better predict volatility, but we do not know whether they do
3Let Xt = [X1,t , . . . , Xp,t ] be a multivariate stochastic process and M be the linear model defined by

the equation Yt = α +β1 X1,t + · · ·+βp Xp,t + εt . For k ∈ {1, . . . , p}, the variance inflation factor (VIF)

corresponding to factor {Xk,t}t≥0 in model M, written VIF
(

M, {Xk,t}t≥0

)
, can be obtained from the kth

element of the diagonal of ρ(Xt)
−1, where ρ(Xt) is the correlation matrix of the random vector Xt , i.e.

VIF
(

M, {Xk,t}t≥0

)
=
(

ρ(Xt)
−1
)

kk
(Belsley et al., 2004).
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so when included in level or in difference, yet we refrain from included both levels and

differences within the same model (rule 4). We recognized in our correlation analysis

that different spread (or volume) measures were highly collinear and could degrade the

variance of the estimator if both included (rules 2 and 3), which is not surprising when

we consider that they essentially estimate more or less the same thing. The time lag

structure imposed by rule 5 may weed out a few interesting models, but it prevents their

unnecessary multiplication and prioritizes fresh information over lagged information.

While predictors that are uncorrelated with the dependent variables may be used as

control variables or may become correlated after correcting for the variation of control

variables, we have however not developed or employed an economic theory supporting the

inclusion of such variables in our model. We thus consider variables Y(d)
i,t to be unlikely

to be good linear predictors if their correlation with log(RV(d)
i,t+1) over the entire sample

period is too low. In rule 6, we use an absolute correlation |ρ| of 0.2 as an arbitrary yet

reasonable cut-off for low correlations. Rule 7 is our most subjective decision rule, but it

allows us to eliminate a large amount of models that a priori are unlikely to be the best

performing in predictions, which also reduces the chances of in-sample overfitting. For

this decision criteria, we evaluate the correlations for the entire sample period as well as

sub-periods. If one of the dual variables (PQSPR & PESPR, VLMN & VLMD) appear to

clearly dominate its counterpart with respect to their linear correlation with log(RV(d)
i,t+1),

then the variable with the weaker relationship will simply be eliminated from the analysis

for this company. We do not precisely define "dominate" and we will instead make a

judgement call based on the observed sample correlations. The correlations analysis for

rules 6 and 7 will be presented prior to estimation results in the next section.

With rule 8, we take care to eliminate models with excess multicollinearity between

factors. For every model that conform to the first 7 criteria and for every factor within that

model, we calculate the variance inflation factor (VIF), which (asymptotically) measures

how the collinearity affects the variance of the estimator. As is common in the literature,

we exclude from our analysis any model for which one of its factors has a VIF larger than

10, with the exception of RV time series, for it would go against our rule 1. Coefficients of
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models characterized by a high degrees of multicollinearity between factors are difficult

to estimate even with large samples. Such models are a priori less likely to provide good

predictive performance, unless backed by sound economic theory. In consideration of the

vast amount of tables already present in this paper, we opt not to report VIF values in the

next section and present only the estimation results for models which have passed this

final filter.

3.3.3 Estimation Procedure

The HAR-RV-LIQ model can be estimated via ordinary least squares (OLS). However,

due to measurement errors (unobservable true volatility) and lagged values of the depen-

dent variable as predictors, we cannot assume the error terms {εi,t}t≥0 to be independent

and Gaussian. It is thus necessary to correct the covariance matrix of the estimator to

account for heteroscedasticity and serial autocorrelation (HAC effects) in the error terms.

As done in Corsi (2009), we choose to compute the Newey-West robust standard errors.

We use the automatic bandwidth h selection h = 4(T/100)2/9 (Newey and West, 1994;

Tsay, 2005), where T is the time series regression sample size. Furthermore, to avoid

scaling issues causing numerically singular matrices, we individually center and normal-

ize to unit length all non-RV predictors with respect to their own values over the whole

sample period. Following our discussion in section 3.1.4, we choose K = 5 minutes as our

subsampling window for the computation of the subsampling estimator of RV, presented

in equation (3.9).
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Chapter 4

Results

4.1 In-Sample Analysis

In this section, we estimate for our data a subset of models nested within the HAR-RV-

LIQ previously presented. We first analyse in 4.1.1 the correlations between the depen-

dent variable and the chosen set of potential predictors. Following this correlation study

and our decisions rules presented in section 3.3.2, we define in 4.1.2 for each of the 10

company a set of models to be estimated and evaluated, for which the regression results

analysis can be found in 4.1.3.

4.1.1 Correlation Analysis

For each stock i in our sample, we compute the correlation between the dependent variable

log(RV(d)
i,t+1) and each of the HAR-RV-LIQ factors in equation (3.12). The correlations

for 2005-2013 period are presented in table 4.1. We partitioned our sample into three sub-

periods, the pre-Crisis (2005-2006), the Financial Crisis (2007-2009) and the post-Crisis

(2010-2013), for which we also compute the correlations, which are found in appendix

tables A.1.6, A.1.7 and A.1.8.

For the 2005-2006 period, which is the one that in most part preserves the 2005 market

capitalisation ordering between companies presented in table 3.1 and as seen in 3.2, we



observe no clear trends in correlations as market capitalisation increase for any of the

factors. The strength of the linear relationships between the next day’s realized volatility

and our various daily measures of liquidity and activity does not seem to depend on the

size of the firm in a trivially identifiable manner. The correlations between log(RV(d)
i,t+1)

and the various factors of the HAR-RV-LIQ model, including lagged measures of realized

volatility, are generally weakest during this 2005-2006 period and strongest during the

2007-2010 Financial Crisis period. Refer to equation (3.13) for how lagged measures of

realized volatility, spread or volume are constructed.

For the full sample period as well as every subperiod, we observe no daily and al-

most no weekly differenced series with an absolute correlation of 0.2 or larger. For all 10

companies, the correlation with log(RV(d)
i,t+1) of differenced series, ∆PQSPR, ∆PESPR,

∆VLMN and ∆VLMD, increases as their time interval increases (from daily (d) to

monthly (m)). Since a daily time series of monthly differences is expected to show some

collinearity with the daily time series taken in level, it is not surprising that we observe this

increasing pattern in correlations as the differencing interval increases. According to our

model selection rules established in section 3.3.2, we therefore exclude for all companies

all differenced time series from further analysis, due to their weaker linear relationship

with log(RV(d)
i,t+1) as opposed to the series taken in level.

For CMS, NUE, WMB and NKE, the quoted and effective spreads have similar levels

of correlation with the dependent variable, varying from 0.5 to 0.75 depending on the lag

and firm (table 4.1). For HPQ and CVX, while their effective spread shows a correlation

almost 10% superior compared to their quoted spread’s for the 2005-2013 full sample

period, they however have a correlation 15% and 20% inferior respectively to that of their

quoted spread during the Financial Crisis (table A.1.7). Consequently, for these 6 firms,

we choose to include both measures of spread in our sets of models to be estimated and

analysed. For X, MON and BSX, the effective spread shows a larger (by 7%, 8% and

16% respectively) correlation than the quoted spread in the full sample period, which is

not reversed in any subperiod. We choose to only investigate the predictive performance

of PESPR for these three firms. For LLTC, we observe instead a stronger correlation for
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the quoted spread. The daily effective spread’s correlation during the 2010-2013 period

is at a low 0.11 (only occurrence among all firms below 20%), likely due to the impact of

the large 2010 Flash Crash outlier (see figure 3.7). However, it is not quite obvious that

such outliers should be excluded from the PESPR time series. While the main difference

between PESPR and PQSPR is in PESPR’s more frequent extreme values, we still observe

strong correlations between PESPR(d)
i,t and log(RV(d)

i,t+1) for most firms.

The volume in dollars appear uncorrelated for with the next day’s realized volatility

for CMS, WMB and BSX and more weakly correlated than the volume in number of

shares for X, NUE, LLTC, NKE, HPQ and CVX. We therefore include the volume in

dollars only within MON’s model set.

4.1.2 Model Sets

We now are able to construct for each firm a set of models to be further investigated with

in-sample and out-of-sample analysis. In the previous section, we have used our decision

rule 6 and 7 (see section 3.3.2) to determine which measures were going to be included

in our model sets. Considering the large amount of possible factor combinations and

the necessity to compute variance inflation factors (VIF) for every factor of every model

having satisfying rules 1 to 7 for every firm, we opt not to report their specific value.

There was not a single occurrence in which combining a daily measure of spread and a

daily measure of volume alongside daily, weekly and monthly realized volatilities resulted

in a VIF larger than 10 for the daily spread or volume. However note that in some cases

weekly or monthly lags are excluded from a firm’s model set due to a VIF larger than 10,

indicating excess multicollinearity and a potentially high variance estimator. Specifically,

for all firms, monthly lags of spread measures failed to pass the VIF cut-off whenever

included in a model alongside daily and weekly measures of spread.

For each firm i, we next present the general model equation for which every model

in Mi is also nested within. The specific models within each set are easily identifiable

within regression results tables 4.2 to 4.11.
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For CMS, the 1th firm, there are 12 models in M1 and all are nested within:

log(RV(d)
1,t+1) = α1 +β

(d)
1,RV log(RV(d)

1,t )+β
(w)
1,RV log(RV(w)

1,t )+β
(m)
1,RV log(RV(m)

1,t )

+β
(d)
1,PQSPR PQSPR(d)

1,t +β
(d)
1,PESPR PESPR(d)

1,t

+β
(d)
1,VLMN VLMN(d)

1,t +β
(w)
1,VLMN VLMN(w)

1,t +β
(m)
1,VLMN VLMN(m)

1,t

+ ε1,t

(4.1)

For X, the 2nd firm, there are 9 models in M2 and all are nested within:

log(RV(d)
2,t+1) = α2 +β

(d)
2,RV log(RV(d)

2,t )+β
(w)
2,RV log(RV(w)

2,t )+β
(m)
2,RV log(RV(m)

2,t )

+β
(d)
2,PESPR PESPR(d)

2,t +β
(w)
2,PESPR PESPR(w)

2,t

+β
(d)
2,VLMN VLMN(d)

2,t +β
(w)
2,VLMN VLMN(w)

2,t +β
(m)
2,VLMN VLMN(m)

2,t

+ ε2,t

(4.2)

For NUE, the 3rd firm, there are 12 models in M3 and all are nested within:

log(RV(d)
3,t+1) = α3 +β

(d)
3,RV log(RV(d)

3,t )+β
(w)
3,RV log(RV(w)

3,t )+β
(m)
3,RV log(RV(m)

3,t )

+β
(d)
3,PQSPR PQSPR(d)

3,t +β
(d)
3,PESPR PESPR(d)

3,t +β
(w)
3,PESPR PESPR(w)

3,t

+β
(d)
3,VLMN VLMN(d)

3,t +β
(w)
3,VLMN VLMN(w)

3,t + ε3,t

(4.3)

For WMB, the 4th firm, there are 16 models in M4 and all are nested within:

log(RV(d)
4,t+1) = α4 +β

(d)
4,RV log(RV(d)

4,t )+β
(w)
4,RV log(RV(w)

4,t )+β
(m)
4,RV log(RV(m)

4,t )

+β
(d)
4,PQSPR PQSPR(d)

4,t +β
(d)
4,PESPR PESPR(d)

4,t +β
(w)
4,PESPR PESPR(w)

4,t

+β
(d)
4,VLMN VLMN(d)

4,t +β
(w)
4,VLMN VLMN(w)

4,t +β
(m)
4,VLMN VLMN(m)

4,t

+ ε4,t

(4.4)

For LLTC, the 5th firm, there are 8 models in M5 and all are nested within:

log(RV(d)
5,t+1) = α5 +β

(d)
5,RV log(RV(d)

5,t )+β
(w)
5,RV log(RV(w)

5,t )+β
(m)
5,RV log(RV(m)

5,t )

+β
(d)
5,PQSPR PQSPR(d)

5,t

+β
(d)
5,VLMN VLMN(d)

5,t +β
(w)
5,VLMN VLMN(w)

5,t +β
(m)
5,VLMN VLMN(m)

5,t

+ ε5,t

(4.5)
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For MON, the 6th firm, there are 18 models in M6 and all are nested within:

log(RV(d)
6,t+1) = α6 +β

(d)
6,RV log(RV(d)

6,t )+β
(w)
6,RV log(RV(w)

6,t )+β
(m)
6,RV log(RV(m)

6,t )

+β
(d)
6,PESPR PESPR(d)

6,t +β
(w)
6,PESPR PESPR(w)

6,t

+β
(d)
6,VLMN VLMN(d)

6,t +β
(w)
6,VLMN VLMN(w)

6,t +β
(m)
6,VLMN VLMN(m)

6,t

+β
(d)
6,VLMD VLMD(d)

6,t +β
(w)
6,VLMD VLMD(w)

6,t + ε6,t

(4.6)

For NKE, the 7th firm, there are 12 models in M7 and all are nested within:

log(RV(d)
7,t+1) = α7 +β

(d)
7,RV log(RV(d)

7,t )+β
(w)
7,RV log(RV(w)

7,t )+β
(m)
7,RV log(RV(m)

7,t )

+β
(d)
7,PQSPR PQSPR(d)

7,t +β
(d)
7,PESPR PESPR(d)

7,t

+β
(d)
7,VLMN VLMN(d)

7,t +β
(w)
7,VLMN VLMN(w)

7,t +β
(m)
7,VLMN VLMN(m)

7,t

+ ε7,t

(4.7)

For BSX, the 8th firm, there are 6 models in M8 and all are nested within:

log(RV(d)
8,t+1) = α8 +β

(d)
8,RV log(RV(d)

8,t )+β
(w)
8,RV log(RV(w)

8,t )+β
(m)
8,RV log(RV(m)

8,t )

+β
(d)
8,PESPR PESPR(d)

8,t

+β
(d)
8,VLMN VLMN(d)

8,t +β
(w)
8,VLMN VLMN(w)

8,t + ε8,t

(4.8)

For HPQ, the 9th firm, there are 16 models in M9 and all are nested within:

log(RV(d)
9,t+1) = α9 +β

(d)
9,RV log(RV(d)

9,t )+β
(w)
9,RV log(RV(w)

9,t )+β
(m)
9,RV log(RV(m)

9,t )

+β
(d)
9,PQSPR PQSPR(d)

9,t +β
(d)
9,PESPR PESPR(d)

9,t +β
(w)
9,PESPR PESPR(w)

9,t

+β
(d)
9,VLMN VLMN(d)

9,t +β
(w)
9,VLMN VLMN(w)

9,t +β
(m)
9,VLMN VLMN(m)

9,t

+ ε9,t

(4.9)

For CVX, the 10th firm, there are 12 models in M10 and all are nested within:

log(RV(d)
10,t+1) = α10 +β

(d)
10,RV log(RV(d)

10,t)+β
(w)
10,RV log(RV(w)

10,t)+β
(m)
10,RV log(RV(m)

10,t)

+β
(d)
10,PQSPR PQSPR(d)

10,t +β
(d)
10,PESPR PESPR(d)

10,t +β
(w)
10,PESPR PESPR(w)

10,t

+β
(d)
10,VLMN VLMN(d)

10,t +β
(w)
10,VLMN VLMN(w)

10,t + ε10,t

(4.10)

NUE and CVX have the same model set, so do CMS and NKE and so do WMB and

HPQ. None of these pairs are from the same industry sector. However, WMB and CVX
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are both in the energy industry and only differ in model set by the inclusion of the monthly

volume in number of shares for WMB. LLTC’s model set is a subset of HPQ’s, both in the

electronics technology industry. Similarly for the two firms in the steel industry sector,

X’s model set is also a subset of NUE’s. While our firm sample isn’t large enough to draw

any meaningful generalization, we do observe some degree of consistency in correlations

between next day’s RV and daily spread or volume measures within the same industry,

considering correlations was an important criteria in building model sets.
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Factor CMS X NUE WMB LLTC MON NKE BSX HPQ CVX
log(RV(d)

i,t ) 0.82 0.77 0.86 0.81 0.79 0.81 0.82 0.68 0.74 0.84

log(RV(w)
i,t ) 0.83 0.78 0.87 0.82 0.80 0.82 0.82 0.68 0.75 0.85

log(RV(m)
i,t ) 0.79 0.72 0.83 0.79 0.75 0.81 0.79 0.67 0.70 0.78

PQSPR(d)
i,t 0.63 0.45 0.69 0.59 0.50 0.53 0.73 0.23 0.19 0.51

PQSPR(w)
i,t 0.63 0.46 0.70 0.58 0.50 0.54 0.73 0.22 0.18 0.50

PQSPR(m)
i,t 0.61 0.44 0.68 0.53 0.47 0.53 0.70 0.20 0.16 0.45

PESPR(d)
i,t 0.65 0.52 0.66 0.60 0.21 0.61 0.72 0.39 0.29 0.60

PESPR(w)
i,t 0.65 0.53 0.71 0.62 0.40 0.62 0.74 0.38 0.28 0.63

PESPR(m)
i,t 0.63 0.49 0.69 0.58 0.56 0.60 0.71 0.35 0.25 0.58

VLMN(d)
i,t 0.38 0.39 0.69 0.36 0.58 0.50 0.43 0.22 0.32 0.72

VLMN(w)
i,t 0.42 0.37 0.73 0.41 0.62 0.53 0.49 0.20 0.33 0.76

VLMN(m)
i,t 0.41 0.30 0.71 0.42 0.62 0.55 0.55 0.18 0.34 0.72

VLMD(d)
i,t 0.02 0.30 0.63 0.05 0.41 0.56 0.24 0.07 0.21 0.57

VLMD(w)
i,t -0.04 0.28 0.66 0.02 0.44 0.59 0.25 0.00 0.19 0.59

VLMD(m)
i,t -0.14 0.27 0.67 0.00 0.44 0.60 0.28 -0.08 0.16 0.57

∆PQSPR(d)
i,t 0.03 0.02 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.07

∆PQSPR(w)
i,t 0.07 0.06 0.09 0.11 0.09 0.08 0.12 0.11 0.09 0.13

∆PQSPR(m)
i,t 0.15 0.14 0.17 0.24 0.18 0.13 0.18 0.23 0.16 0.24

∆PESPR(d)
i,t 0.02 0.04 0.04 0.04 0.00 0.04 0.05 0.06 0.02 0.04

∆PESPR(w)
i,t 0.07 0.10 0.09 0.08 0.00 0.09 0.13 0.10 0.08 0.10

∆PESPR(m)
i,t 0.16 0.18 0.16 0.19 0.02 0.15 0.18 0.21 0.16 0.21

∆VLMN(d)
i,t 0.04 0.08 0.05 0.04 0.07 0.06 0.05 0.06 0.07 0.07

∆VLMN(w)
i,t 0.09 0.14 0.11 0.07 0.09 0.07 0.07 0.09 0.11 0.13

∆VLMN(m)
i,t 0.14 0.24 0.16 0.11 0.18 0.12 0.10 0.10 0.13 0.25

∆VLMD(d)
i,t 0.04 0.06 0.05 0.04 0.06 0.06 0.05 0.06 0.06 0.06

∆VLMD(w)
i,t 0.07 0.09 0.08 0.05 0.07 0.07 0.07 0.09 0.09 0.11

∆VLMD(m)
i,t 0.11 0.09 0.09 0.05 0.15 0.11 0.08 0.08 0.11 0.19

Table 4.1: Factor correlations with dependent variable, 2005-2013
Correlation between the dependent variable log(RV(d)

i,t+1) and the various factors of the HAR-RV-
LIQ model for each company (see table 3.1), evaluated for the 2005-2013 full sample period (2224
observations). The upper blocks showcase correlations for realized volatility (RV), proportional
quoted or effective spread (PQSPR and PESPR) and for volume in number of shares (VLMN) or
in dollars (VLMD) in level, while the bottom blocks are for the same factors taken in difference
(∆). Each daily (d) factor is also included in lagged weekly (w) or monthly(m) moving averages.
Realized volatility is calculated using the 5 minutes subsampling estimator.
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4.1.3 Estimation Results

For the 2005-2013 sample period, we run a set of regressions with 2224 observations

for each firm in accordance to the previously defined model sets with dependent vari-

able log(RV(d)
i,t+1). Again, all realized volatility are estimated with the 5 minutes sub-

sampling estimator using per-minute intraday data. We present the resulting coefficients,

Newey-West t-statistics and adjusted R2 in tables 4.2 to 4.11. Coefficients with absolute

t-statistics larger than 1.96 (95% confidence level critical value) are in bold and starred.

Any model’s adjusted R2 that is superior to the benchmark’s is also in bold characters.

One immediately striking global result is that all components of the benchmark model,

i.e. the daily, weekly and monthly realized volatility terms, all have significant t-statistics

for every company and every model. Since the standard deviation of daily RV ranges

from 0.40 to 0.47 between companies (see table A.1.1), if we were to normalize to unit

length RV time series to bring their coefficients on a scale comparable to the normalized

spread and volume series, the RV coefficients would still generally dwarf the spread or

volume coefficients. Indeed, normalizing the RV time series is equivalent to multiplying

the coefficients by the standard deviation. The coefficients for normalized daily RV thus

range between 0.11 and 0.19 across all models and firms; those for weekly RV between

0.07 and 0.18 and those for monthly RV between 0.05 and 0.17. In contrast, the highest

absolute volume or spread coefficient across all firms and models is a daily volume coef-

ficient of 0.06 in one of United States Steel Corp’s (X) models (see model 8 in table 4.3).

Furthermore, across all companies and models combined, the highest increase in adjusted

R2 with respect to the benchmark’s is only 0.0054 (also X’s model 8, table 4.3). As pre-

viously observed in the autocorrelation functions in figure A.1.1, realized volatility is a

strongly autocorrelated process. As such, it is not too surprising to see spread and volume

time series only increase in very small margins the fit beyond the contribution of daily,

weekly and monthly lags of RV. Since the various models for a given firm are mostly

indistinguishable in terms of adjusted R2, we will focus most of our attention on the sig-

nificance of t-statistics. Consequently, we exclusively and exhaustively judge models with
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a full set of significant coefficients worthy of out-of-sample performance analysis.

For CMS (table 4.2), the daily volume in shares (VLMN) is only significant whenever

at least 1 measure of spread or the weekly VLMN is included within the model. This is

the case for most other firms, including the daily volume in dollars (VLMD) for MON,

with the exception of WMB, BSX and HPQ. The addition of monthly VLMN seems un-

necessary for a good fit, as its coefficient is never significant and in some cases degrades

the significance of the weekly term. In the case of CMS, the daily and weekly VLMN co-

efficients, when both significant, have similar magnitudes but opposing signs. We observe

a similar pattern for most other firms, although only CMS has an estimated model with

both daily and weekly volume coefficients significant. This indicates that excess daily

volume with respect to the past 5 days’s average could potentially be used as a predictor

rather than separate daily and weekly terms to predict the next day’s volatility.

Across all firms and models, there is not a single occurrence of a statistically signif-

icant weekly effective spread (PESPR) coefficient. For CMS, WMB, LLTC, NKE and

BSX, whenever the daily quoted (PQSPR) or effective spread is included, its coefficient

is significant. For X and MON, the daily spread coefficient is always significant provided

the weekly spread is not included within the model.

WMB and HPQ (tables 4.5 and 4.10), on the other hand, have no single model with

all significant t-statistics other than the benchmark model. It does not seem that a linear

specification incorporating spread or volume terms in level provides a better fit than the

simple HAR-RV model. Microscopic adjusted R2 gains do no seem to justify the inclusion

of non-significant terms. We will therefore not analyse the out-of-sample performance for

these firms, as no investigated model appears to be a better fit than the benchmark. We

cannot conclude that liquidity and activity bear no information of predictive usefulness

for these firms’ volatility, but more so that the measures of liquidity and activity that we

have sampled, in their current form, are not well suited for a static linear specification. It

is worth investigating in the future whether a transformation of these measures or alternate

proxies for liquidity and activity can produce better results.
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4.2 Out-of-Sample Analysis

For every model estimated in the previous section for which all coefficients have their t-

statistics individually significant at the 95% confidence level, we pursue an out-of-sample

performance analysis. We do not report results of WMB and HPQ, for which only the

benchmark remains in the model set after the t-statistics filter, because our focus is on the

relative performance of HAR-RV-LIQ models that appear to be good a fit, with respect to

the benchmark’s. Our measure of performance is the root mean square prediction error

(RMSE)1 of the annualized daily realized volatility,
√

252RV(d)
i,t+1 using the HAR-RV-

LIQ model for predicting the logarithm of the daily realized volatility, log(RV(d)
i,t+1). All

remaining models, all firms combined, are nested within the following one:

log(RV(d)
i,t+1) = αi +β

(d)
i,RV log(RV(d)

i,t )+β
(w)
i,RV log(RV(w)

i,t )+β
(m)
i,RV log(RV(m)

i,t )

+β
(d)
i,PQSPR PQSPR(d)

i,t +β
(d)
i,PESPR PESPR(d)

i,t

+β
(d)
i,VLMN VLMN(d)

i,t +β
(w)
i,VLMN VLMN(w)

i,t +β
(d)
i,VLMD VLMD(d)

i,t

+ εi,t .

(4.11)

We are interested to see how the model performs in different recent historical periods.

From our original sample, we construct three overlapping subsamples of 1250 consecutive

daily observations of log(RV(d)
i,t+1), for which the first 3 years (750 days) are used for in-

sample estimation and for which the remaining 2 years (500 days) are used to compute

the prediction errors. The three 2-years prediction periods are mostly non-overlapping

and corresponds roughly to the 2008-2009, 2010-2011 and 2012-2013 pairs of years, as

presented in table 4.12. The first period corresponds to the depth of the Financial Crisis

and the other periods are part of the aftermath.

We use two different method to gather a time series of coefficient estimates for our

daily predictions. For the first method, which we refer to as static, we only estimate the

model once, using the 3 years of historical data prior to the first prediction, and keep the

coefficients constant for all future predictions. For the second method, dynamic, we re-

estimate the model every 25 days and keep the coefficients constant for the next 24 days.
1Given a time series of T prediction errors {et}T

t=1 from a linear model with p estimated parameters,
RMSE = ∑

T
t=1 e2

t /(T − p).
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The most recent 750 observations are used every time the model is estimated. As a con-

sequence, the daily implied volatility during the Financial Crisis will mostly be predicted

using coefficients estimated during a period low volatility and high growth. Assuming a

linear autoregressive model with constant coefficients is not a correct specification of the

real underlying volatility process, we should observe a higher RMSE for the benchmark

during this period for the majority of firms. Following the results, we will be able to ob-

serve whether incorporating volume or spread terms can help reduce the RMSE in periods

when it is the highest. The out-of-sample prediction results are presented in tables 4.13 to

4.20 (RMSE) and A.2.1 to A.2.8 (RMSPE). The RMSE for models with additional spread

or volume terms is presented as a percentage change from the RMSE of the benchmark

model, i.e. for the model j,

Performance j = 100%× (RMSE j−RMSEbm)/RMSEbm, (4.12)

where RMSEbm is the RMSE of the benchmark. We follow the same presentation format

for the root mean square percentage prediction error (RMSPE)2 in appendix, i.e. for the

model j,

Relative Performance j = 100%× (RMSPE j−RMSPEbm)/RMSPEbm, (4.13)

where RMSPEbm is the RMSE of the benchmark.

Period 2008 - 2009 2010 - 2011 2012 - 2013
First prediction date February 6, 2008 January 7, 2010 December 27, 2011
Last prediction date February 5, 2010 January 3, 2012 December 31, 2013
Number of observations 500 500 500

Table 4.12: Out-of-sample analysis periods
The out-of-sample performance analysis is performed for three subsample periods each covering
roughly 2 years of observations.

We first observe as expected a higher RMSE for the benchmark in the 2008-2009 pe-

riod with static estimation. Across all firms, LLTC excluded, the 2008-2009 RMSE with
2Given a time series of T prediction errors {et}T

t=1 from a linear model with p estimated parameters
and T observed true values of the predicted time series {yt}T

t=1, RMSPE = ∑
T
t=1(

et
yt
)2/(T − p).
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static estimation ranges from 20% (BSX, table 4.19) to 150% (NUE, table 4.15) higher

than the 2010-2011 RMSE and ranges from 130% (NKE, table 4.18) to 280% (CVX, ta-

ble 4.20) higher than the 2012-2013 RMSE, LLTC included. The benchmark’s root mean

square percentage errors (RMSPE), with either static or dynamic estimation, are however

surprisingly stable across all firms and periods, ranging only between 20% to 25%, with

the exception of LLTC and BSX both spiking to 30% and 34% respectively during the

2010-2011 period. The simple autoregressive model thus yields higher absolute errors

in periods of spiking volatility, which begs for improvements. The 2010-2011 period in-

cludes the 2010 Flash Clash, which most affected LLTC and was a one-off volatility spike

(see figure 3.5) The autocorrelated and jump-less structure of the model likely caused se-

vere estimation and prediction biases throughout the entire period.

Re-estimating the coefficients every month (dynamic) rather than once prior to 2 years

of daily predictions (static) shows some reduction in RMSE during the 2008-2009 period

for all firms, from−1.3% (MON, table 4.17) to−12.1% (X, table 4.14). However, during

the same period, we generally observe small increases in RMSPE. For the other two peri-

ods, the variations in RMSE and RMSPE are both negligible between static and dynamic

estimation. The RMSE puts an equal weight on square errors, while the RMSPE puts a

weight inversely proportional to the volatility level. Therefore, a decrease in RMSE at the

cost of a comparable increase in RMSPE is overall beneficial, as it suggests lower kurtosis

of prediction errors, due to some reduction in large absolute errors when the volatility is

high and some increases in small absolute errors when the volatility is low.

We now wish to identify the best predictive model for each firm for which we will

further analyse estimation residuals and prediction errors. To analyse which model offers

the best performance for a given firm, we will mostly focus on the RMSE reduction

in periods of high RMSE for the benchmark. In our opinion, a model better than the

benchmark would be one that reduces the RMSE in periods when it is the highest, while

maintaining or improving it in other periods. A better model should result in consistently

better performance in across different periods. Since small absolute errors in period of low

volatility can inflate the RMSPE, we will only use the RMSPE performance to distinguish
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between two models with comparable RMSE performance. For each firm, we collect a

pair of model to further analyse in the next section: the benchmark and one HAR-RV-LIQ

model that displays the best predictive performance in terms of RMSE.

For CMS, tables 4.13 and A.2.1, all models with two or more terms in addition to

the benchmark show an increase of at least 1% for RMSE and 2% for RMSPE for some

period and some estimation method. They also offer next to no improvements under

static estimation for any period. The models with either only quoted spread or effective

spread have similar performance both in terms of RMSE and RMSPE. Between PQSPR

and PESPR, the latter (model 2), appears to yield a slightly more consistent performance,

since it does better with dynamic estimation during the 2008-2009 period. In fact, the

daily PQSPR and PESPR time series for CMS are near perfectly cross-correlated as can

be observed in figure A.1.6, so which one is selected should have little impact as their

overlap in information appears to be near complete. We select model 2, with the daily

PQSPR term, as our model for CMS to further investigate in the next section.

For X, tables 4.14 and A.2.2, the models that offer the best good improvements dur-

ing the 2008-2009 period with static estimation all offer modest or severe degradation

with dynamic improvements. The lack of consistency when the coefficients are more fre-

quently estimated lets us believe that the 2008-2009 performance with static estimation

was a one-off product of chance. All models with the volume term show this distortion.

We therefore opt for model 2, with only the effective spread and the most consistent per-

formance, despite its generally poorer performance than the benchmark.

For NUE, tables 4.15 and A.2.3, the model 2 with the quoted spread, mostly maintains

the benchmark’s performance, with minor 2008-2009 improvements of 0.05% with static

estimation and 0.32% with dynamic estimation, while all other models generally degrade

the benchmark’s performance.

For LLTC, tables 4.16 and A.2.4, the model 4 with the quoted spread and volume

in number of shares terms, shows the best improvements during the 2010-2011 period,

LLTC’s worst performance for the benchmark, with 1.0% and 1.2% reductions in RMSE

with static and dynamic estimation respectively, with improvements elsewhere except

55



static 2008-2009, with an increase in RMSE of 0.63%. However, no model with static

estimation improves upon the benchmark’s performance during the 2008-2009 period.

For MON, tables 4.17 and A.2.5, no model offers a better performance than the bench-

mark. Model 2 with the effective spread seems to more consistently and closely replicate

the benchmark’s performance, with no decrease in RMSE larger than 1% for either static

or dynamic estimation.

For NKE, tables 4.18 and A.2.6, the inclusion of the volume term in addition to either

the quoted or effective spread significantly degrades the predictive performance during

the 2008-2009 period, with increases in static RMSE 3.2% and 2.4% respectively. This

performance is however slightly improved when the coefficients are re-estimated every

month, yet still inferior to models without the volume term. Furthermore, no model im-

proves upon the benchmark during the period when it performs the worst. Similarly to

the case of CMS, the performance of the models with either the PQSPR or PESPR term

are hardly distinguishable in terms of either RMSE or RMSPE. The concurrent cross-

correlation between these two time series is near unity, as seen in figure A.1.12. We select

model 3, with PESPR, for its (barely) lowest RMSE during 2008-2009 period.

There is only one model to compare with the benchmark for BSX, tables 4.19 and

A.2.7, which includes a proportional effective spread term. This model improves upon the

benchmark during the 2008-2009 period, its worst in terms of RMSE, by 2.9% and 1.1%

for the static and dynamic estimation respectively, while only slightly underperforming in

other periods of lower benchmark RMSE, with increases in RMSE varying from 0.02%

to 0.25%.

Finally, for CVX, tables 4.20 and A.2.8, the models 4 and 5 with volume or quoted

spread and volume respectively improve upon the benchmark in all periods for both meth-

ods of estimation. Model 4, with only the volume, also improves upon the benchmark in

terms of RMSPE for all periods and for both methods, while also showing the best dy-

namic RMSE performance for 2008-2009. We thus select it for further analysis in the

next section.

We have eliminated models with volume terms for all firms but 2, LLTC and CVX,
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and a model with a spread component has passed the various stages of our analysis for 7

out of 10 firms.

RMSE of annualized daily RV predictions – CMS
Static Dynamic

Model 2008-2009 2010-2011 2012-2013 2008-2009 2010-2011 2012-2013
[1] Benchmark 0.0962 0.0527 0.0293 0.0938 0.0531 0.0293
[2] PQSPR(d) +0.22% -0.17% -0.42% +0.01% -0.19% +0.69%
[3] PESPR(d) -0.26% -0.12% -0.32% +0.19% -0.30% +0.69%
[5] PQSPR(d) , VLMN(d) -0.17% +0.09% +0.27% +0.91% -0.04% +1.22%
[6] PESPR(d) , VLMN(d) -0.87% +0.22% +0.40% +0.96% -0.17% +1.27%
[7] VLMN(d) , VLMN(w) +0.33% +0.24% +0.59% +1.24% +0.09% +0.51%
[8] PQSPR(d) , VLMN(d) , VLMN(w) +0.44% +0.08% +0.22% +1.29% -0.10% +1.06%
[9] PESPR(d) , VLMN(d) , VLMN(w) +0.10% +0.18% +0.32% +1.40% -0.24% +1.11%

Table 4.13: Out-of-sample performance results for CMS
Root mean square prediction errors (RMSE) for the annualized daily realized volatility of CMS,√

252RV(d)
CMS, t+1. Non-benchmark models are referred to by their estimation results index from

table 4.2, followed by the list of their additional terms. Their RMSE is expressed in percentage
(%) change with respect to the benchmark’s RMSE, with improvements in bold. Refer to section
4.2 and equation (4.12) for details on the period samples and prediction methodology (static vs.
dynamic).

RMSE of annualized daily RV predictions – X
Static Dynamic

Model 2008-2009 2010-2011 2012-2013 2008-2009 2010-2011 2012-2013
[1] Benchmark 0.1986 0.0903 0.0820 0.1745 0.0907 0.0815
[2] PESPR(d) +0.51% -0.32% +3.49% +0.67% -0.38% -0.03%
[3] VLMN(d) -4.77% -0.08% -0.13% +0.89% +0.04% -0.28%
[5] PESPR(d) , VLMN(d) -2.49% -0.86% +6.26% +8.00% -0.90% -0.56%
[6] VLMN(d) , VLMN(w) -1.00% -0.65% -0.39% +2.73% -0.43% -0.43%
[8] PESPR(d) , VLMN(d) , VLMN(w) -1.01% -1.17% +5.69% +6.64% -1.09% -0.51%

Table 4.14: Out-of-sample performance results for X
Root mean square prediction errors (RMSE) for the annualized daily realized volatility of X,√

252RV(d)
X, t+1. Non-benchmark models are referred to by their estimation results index from table

4.3, followed by the list of their additional terms. Their RMSE is expressed in percentage (%)
change with respect to the benchmark’s RMSE, with improvements in bold. Refer to section
4.2 and equation (4.12) for details on the period samples and prediction methodology (static vs.
dynamic).
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RMSE of annualized daily RV predictions – NUE
Static Dynamic

Model 2008-2009 2010-2011 2012-2013 2008-2009 2010-2011 2012-2013
[1] Benchmark 0.1629 0.0657 0.0389 0.1582 0.0660 0.0388
[2] PQSPR(d) -0.05% +0.05% +0.57% -0.32% +0.09% -0.04%
[3] PESPR(d) +1.05% -0.21% +2.82% +0.24% -0.21% +0.33%
[4] VLMN(d) +2.65% -0.24% -0.40% +1.41% -0.09% -0.65%
[5] PQSPR(d) , VLMN(d) +3.52% -0.15% +0.10% +1.32% +0.13% -0.69%
[7] PESPR(d) , VLMN(d) +4.41% -0.46% +1.99% +2.75% -0.28% -0.41%

Table 4.15: Out-of-sample performance results for NUE
Root mean square prediction errors (RMSE) for the annualized daily realized volatility of NUE,√

252RV(d)
NUE, t+1. Non-benchmark models are referred to by their estimation results index from

table 4.4, followed by the list of their additional terms. Their RMSE is expressed in percentage
(%) change with respect to the benchmark’s RMSE, with improvements in bold. Refer to section
4.2 and equation (4.12) for details on the period samples and prediction methodology (static vs.
dynamic).

RMSE of annualized daily RV predictions – LLTC
Static Dynamic

Model 2008-2009 2010-2011 2012-2013 2008-2009 2010-2011 2012-2013
[1] Benchmark 0.0917 0.1734 0.0380 0.0900 0.1735 0.0378
[2] PQSPR(d) +0.28% -0.56% -0.62% +0.14% -0.59% -0.33%
[3] VLMN(d) +0.53% -0.26% +0.30% -0.59% -0.42% +0.07%
[4] PQSPR(d) , VLMN(d) +0.63% -0.97% -0.77% -0.35% -1.19% -0.42%

Table 4.16: Out-of-sample performance results for LLTC
Root mean square prediction errors (RMSE) for the annualized daily realized volatility of LLTC,√

252RV(d)
LLTC, t+1. Non-benchmark models are referred to by their estimation results index from

table 4.6, followed by the list of their additional terms. Their RMSE is expressed in percentage
(%) change with respect to the benchmark’s RMSE, with improvements in bold. Refer to section
4.2 and equation (4.12) for details on the period samples and prediction methodology (static vs.
dynamic).
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RMSE of annualized daily RV predictions – MON
Static Dynamic

Model 2008-2009 2010-2011 2012-2013 2008-2009 2010-2011 2012-2013
[1] Benchmark 0.1420 0.0710 0.0374 0.1402 0.0718 0.0373
[2] PESPR(d) +0.41% -0.22% +0.47% +0.27% -0.84% +0.43%
[3] VLMN(d) -0.22% +0.44% -0.06% +1.07% +0.43% -0.10%
[4] VLMD(d) +5.10% +0.45% -0.03% +1.64% +0.66% -0.03%
[6] PESPR(d) , VLMN(d) +1.07% +0.15% +0.48% +3.05% -0.48% +0.29%
[7] PESPR(d) , VLMD(d) +5.37% -0.04% +0.56% +2.53% -0.40% +0.30%

Table 4.17: Out-of-sample performance results for MON
Root mean square prediction errors (RMSE) for the annualized daily realized volatility of MON,√

252RV(d)
MON, t+1. Non-benchmark models are referred to by their estimation results index from

table 4.7, followed by the list of their additional terms. Their RMSE is expressed in percentage
(%) change with respect to the benchmark’s RMSE, with improvements in bold. Refer to section
4.2 and equation (4.12) for details on the period samples and prediction methodology (static vs.
dynamic).

RMSE of annualized daily RV predictions – NKE
Static Dynamic

Model 2008-2009 2010-2011 2012-2013 2008-2009 2010-2011 2012-2013
[1] Benchmark 0.0833 0.0574 0.0387 0.0806 0.0579 0.0386
[2] PQSPR(d) +0.57% -0.61% -1.01% +0.50% -0.70% -1.00%
[3] PESPR(d) +0.30% -0.21% -1.42% +0.49% -0.54% -1.23%
[5] PQSPR(d) , VLMN(d) +3.21% -0.65% -0.66% +0.69% -0.71% -0.62%
[6] PESPR(d) , VLMN(d) +2.37% -0.15% -1.25% +1.10% -0.49% -0.93%

Table 4.18: Out-of-sample performance results for NKE
Root mean square prediction errors (RMSE) for the annualized daily realized volatility of NKE,√

252RV(d)
NKE, t+1. Non-benchmark models are referred to by their estimation results index from

table 4.8, followed by the list of their additional terms. Their RMSE is expressed in percentage
(%) change with respect to the benchmark’s RMSE, with improvements in bold. Refer to section
4.2 and equation (4.12) for details on the period samples and prediction methodology (static vs.
dynamic).
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RMSE of annualized daily RV predictions – BSX
Static Dynamic

Model 2008-2009 2010-2011 2012-2013 2008-2009 2010-2011 2012-2013
[1] Benchmark 0.1425 0.1159 0.0626 0.1314 0.1158 0.0623
[2] PESPR(d) -2.86% +0.25% +0.02% -1.10% +0.18% +0.04%

Table 4.19: Out-of-sample performance results for BSX
Root mean square prediction errors (RMSE) for the annualized daily realized volatility of BSX,√

252RV(d)
BSX, t+1. Non-benchmark models are referred to by their estimation results index from

table 4.9, followed by the list of their additional terms. Their RMSE is expressed in percentage
(%) change with respect to the benchmark’s RMSE, with improvements in bold. Refer to section
4.2 and equation (4.12) for details on the period samples and prediction methodology (static vs.
dynamic).

RMSE of annualized daily RV predictions – CVX
Static Dynamic

Model 2008-2009 2010-2011 2012-2013 2008-2009 2010-2011 2012-2013
[1] Benchmark 0.1106 0.0588 0.0290 0.1030 0.0592 0.0288
[3] PESPR(d) +0.28% -0.00% -0.14% +0.07% -0.01% -0.27%
[4] VLMN(d) -1.86% -0.20% -0.31% -0.89% -0.02% -0.51%
[5] PQSPR(d) , VLMN(d) -2.02% -0.33% -0.26% -0.28% -0.02% -0.53%
[7] PESPR(d) , VLMN(d) -1.13% -0.20% -0.40% +0.62% -0.02% -0.71%

Table 4.20: Out-of-sample performance results for CVX
Root mean square prediction errors (RMSE) for the annualized daily realized volatility of CVX,√

252RV(d)
CVX, t+1. Non-benchmark models are referred to by their estimation results index from

table 4.11, followed by the list of their additional terms. Their RMSE is expressed in percentage
(%) change with respect to the benchmark’s RMSE, with improvements in bold. Refer to section
4.2 and equation (4.12) for details on the period samples and prediction methodology (static vs.
dynamic).
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4.3 Further Analysis of Selected Models

Throughout our out-of-sample analysis, we have identified for each firm a seemingly

better performing HAR-RV-LIQ model for further analysis of estimated coefficients and

residuals distribution. We summarize in table 4.21 which predictors of daily log-realized

volatility were selected for each firm, in addition to the three HAR-RV predictors, i.e. the

log of the daily, weekly and monthly lagged 5-minutes subsampling estimators of realized

volatility.

Ticker Additional Predictors
CMS PQSPR(d)

X PESPR(d)

NUE PQSPR(d)

LLTC PQSPR(d), VLMN(d)

MON PESPR(d)

NKE PESPR(d)

BSX PESPR(d)

CVX VLMN(d)

Table 4.21: Selected predictors for each stock
Predictors included within the linear prediction models of log-realized volatility, in addition to
the 1 day, 5 days and 21 days lagged log-realized volatility estimators. The only predictors with
sufficient in and out-of-sample performance to be retained for further analysis for at least one firm
are the daily proportional (PQSPR) or effective (PESPR) spreads and the daily volume in number
of shares (VLMN). All models are thus nested within:
log(RV(d)

i,t+1) = αi+β
(d)
i,RV log(RV(d)

i,t )+β
(w)
i,RV log(RV(w)

i,t )+β
(m)
i,RV log(RV(m)

i,t )+β
(d)
i,PQSPR PQSPR(d)

i,t +

β
(d)
i,PESPR PESPR(d)

i,t +β
(d)
i,VLMN VLMN(d)

i,t + εi,t .

For each of these models, we look at the out-of-sample errors and coefficients from

our dynamic estimation scheme over the 2008-2013 period. We recall that for the dy-

namic scheme, the model is re-estimated every 25 days using the most recent 750 daily

observations.

We plot in figure 4.1 the evolution of the t-statistics of autoregressive RV terms for

the benchmark and for the selected model. The coefficient of daily log-RV lag is always

statistically significant at the 95% level for the entire sample period and for all 8 stocks.

61



The weekly lag is generally significant for all firms and the monthly lag is generally

significant or close to significant for most firms. The selected models do not differ much

in terms of the statistical significance of the coefficients of autoregressive log-RV terms.

For most stocks, there are periods where the inclusion of an additional liquidity term is

sufficient to bring the weekly or monthly log-RV lag below its critical value (e.g. CMS

from the middle of 2010 to the of 2013). The severe bucket-shaped drop in the level of

weekly log-RV t-statistic for LLTC corresponds to the period where the May 2010 outlier

is included within the 750 days rolling window sample.

In figure 4.2, we plot the evolution of the t-statistic of the coefficients of additional

terms of selected models with respect to the benchmark. For firms with at least one period

of time where the t-statistic of the spread or volume term is above its 95% critical value,

we see that this period is not often shorter than the width of the estimation rolling window.

Thus, the significance of the t-statistic may be in large part due to a better fit against a few

very large outliers close-by in time.

To assess how the inclusion of liquidity terms affects prediction errors through time,

we plot in figure 4.3 the partial sum of squared prediction errors (partial SSE)3 of daily

log-RV for the selected models and the benchmark, as well as their difference. When the

latter is negatively sloped, it implies that the selected model is performing worse than the

benchmark in terms of prediction errors. The partial SSE at the end of the period is also

equal to the usual prediction SSE. Thus, a partial SSE difference curve ending below the

zero red dotted line at the end of 2013 indicate that the selected model’s cumulative per-

formance was superior to the benchmark’s. We also plot the squared prediction errors of

log-RV themselves in figure 4.5. It can be seen that jumps in the selected model’s partial

SSE corresponds to an extremely large squared error and increases in slope corresponds

to a cluster of above average squared errors. For CMS, LLTC, NKE, BSX and CVX,

the selected model is overall performing better out-of-sample, with a negative SSE dif-

ference at the end of the period. We notably observe that in periods where the t-statistics

of the spread or volume is large often coincides with periods of favorable jumps in rel-

3Given a time series of prediction errors {et}T
t=1, partial SSEt = ∑

t
j=1 e2

j for t = 1, . . . ,T .
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ative performance for selected models, e.g. end of 2008 for BSX and CVX or the May

2010 flash Crash for LLTC. In fact, only for X is there a steady degradation of predictive

performance through time during a period where the t-statistic of the spread coefficient

is significant. This is evidence that our model in its current form does help to improve

performance, however only at small marginal levels. However, the performance for X is

also evidence that spread measures can also decrease performance for specific firms. The

addition of industry or firm-specific control variates could potentially resolve degradation

in performance for specific firms. Nonetheless, the cumulative difference in performance

is overall small, with both partial SSE curves mostly indistinguishable. This is reflective

of the very minor differences for in-sample R-squared and out-of-sample RMSE between

most studied linear models.

We also include for each stock in figure 4.4 the prediction error plots of log-RV for

selected models and in figure 4.6 the plot of the difference between the absolute errors of

selected models and the absolute errors of the benchmark. The latter shows as expected

clusters of high absolute error difference volatility synchronously to when the t-statistics

of additional spread or volume terms are significant (figure 4.2). Those clusters are how-

ever fairly symmetric around the zero axis, which is consistent with the previous obser-

vation that for a given firm the partial SSE curves of the selected models and benchmarks

are near indistinguishable from each others.

To further comment on the general fit of the model, we test for conditional het-

eroscedasticity of residuals using the Engel ARCH test, for normality of residuals us-

ing the Kolmogorov-Smirnov test and for autocorrelation of residuals using the Durbin-

Watson test4. The statistics of these tests are summarized in table 4.22. The Angel ARCH

test only rejects the null hypothesis of conditional homoscedasticity in residuals for NUE,

LLTC, NKE and BSX stocks, although other stocks may also display what appears to

be occasional clusters of slightly higher volatility in their squared error plots (e.g CVX

in 2008). The Durbin-Watson test for autocorrelation in residuals is generally inconclu-

4Refer to Durbin and Watson (1950) for the Durbin-Watson test of residual autocorrelation, to Engle
(1982) for the Engle ARCH test and to Massey (1951) for the Kolmogorov-Smirnov test of normality.
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sive, because the value of the test statistics is very close to 2.0 for all stocks. Finally,

the Kolmogorov-Smirnov test rejects the null hypothesis of normally distribution residu-

als for all stocks. Also in table 4.22, we present the skewness and kurtosis of residuals as

well as the proportion of positive and negative errors. In agreement with the Kolmogorov-

Smirnov test, the residuals exhibit positive skewness and excess kurtosis for all stocks. For

all stocks, the predictive model has a tendency to more often overestimate the next day’s

log-RV, as show with the proportion of positive errors between 44 and 48% for all stocks.

This observation combined with the positive skewness, which is indicative of a higher

likelihood of large underestimations than large overestimations, and the autoregressive

nature of the model specification, we can easily deduct that the model tends to occasion-

ally undershoot extremely high but short bursts of volatility in the market, which is then

turned into consecutive overshooting due to the autoregressive specification. We show-

case an example of such behaviour in figure 4.7. During the Flash Crash of May 2010,

the model obviously failed to predict the large spike in volatility and then proceeded to

overshoot the next few days volatility.

Engel ARCH Test Kolmogorov-Smirnov Test Durbin-Watson Test Central Moments Proportion
Ticker p-Value Statistic p-Value Statistic Statistic Skewness Kurtosis Positive Negative
CMS 0.126 2.347 0.000 0.327 2.047 0.63 5.26 0.47 0.53
X 0.202 1.628 0.000 0.323 1.922 0.41 3.83 0.46 0.54
NUE 0.009 6.918 0.000 0.321 1.987 0.37 3.79 0.46 0.54
LLTC 0.000 292.2 0.000 0.327 1.994 0.48 11.37 0.48 0.52
MON 0.325 0.970 0.000 0.313 1.968 0.66 4.48 0.44 0.56
NKE 0.002 9.646 0.000 0.322 1.991 0.35 4.87 0.48 0.52
BSX 0.045 4.027 0.000 0.297 2.006 0.66 6.09 0.46 0.54
CVX 0.780 0.078 0.000 0.318 2.030 0.48 4.99 0.46 0.54

Table 4.22: Residuals diagnostic
The table first presents various tests on the residuals of the log-RV regression for each stock’s
selected model. Each test uses a sample size of 1474 daily prediction errors from the dynamic
estimation method. The 95% confidence level critical values of the Engle ARCH Test for condi-
tional heteroscedasticity and of the Kolmogorov-Smirnov test for the normality of residuals are
3.841 and 0.035 respectively. For the Durbin-Watson test for autocorrelation, which test statistic
is bounded between 0 and 4, a value not close to 2 generally indicates evidence of autocorrelation
in residuals. Following those test results, we present the sample skewness and kurtosis of residuals
as well as the proportion of positive and negative errors.
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Figure 4.1: Plot of t-statistics of RV terms
Plot of the t-statistics from dynamic estimation of lagged log-RV coefficients for selected models
and benchmark model and for each stock. Dynamic estimation is done by re-estimating the model
every 25 days with the 750 observations. The blue dotted line is at the level of the 95% asymptotic
critical value (1.96).
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Figure 4.2: Plot of t-statistics of liquidity terms
Plot of the t-statistics from dynamic estimation of spread or volume coefficients for selected mod-
els and for each stock. Dynamic estimation is done by re-estimating the model every 25 days
with the 750 observations. The blue dotted line is at the level of the 95% asymptotic critical value
(1.96).
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Figure 4.3: Partial sum of squared errors
Plot of partial sum of squared prediction errors (partiel SSE) of the daily log-RV from dynamic
estimation. Given a time series of prediction errors {et}T

t=1, partial SSEt =∑
t
j=1 e2

j for t = 1, . . . ,T .
Dynamic estimation is done by re-estimating the model every 25 days with the 750 observations.
The red curve (right axis) is the difference between the selected model’s partial SSE (full line) and
the benchmark’s partial SSE (dotted line). A red curve at the end of 2013 below the red dotted line
indicates a better cumulative performance from the selected model over the benchmark.
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Figure 4.4: Prediction errors plot
Plot of log-RV prediction errors from dynamic estimation of selected models for each stock. Dy-
namic estimation is done by re-estimating the model every 25 days with the 750 observations.
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Figure 4.5: Prediction squared errors plot
Plot of log-RV prediction squared errors from dynamic estimation of selected models for each
stock. Dynamic estimation is done by re-estimating the model every 25 days with the 750 obser-
vations.
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Figure 4.6: Prediction absolute errors in excess benchmark’s
Plot of log-RV prediction absolute errors from dynamic estimation of selected models minus that
of benchmark, for each stock. Dynamic estimation is done by re-estimating the model every 25
days with the 750 observations.
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Behaviour of prediction errors for LLTC's selected model during the May 2010 Flash Crash

Figure 4.7: Showcase of undershooting-overshooting
The LLTC stocks during the May 2010 Flash Crash is an example of model behaviour described
in section 4.3. The model residuals exhibit positive skewness yet a slightly higher proportion of
negative errors. It can be interpreted as the model occasionally undershoots tail events of extremely
high log-RV and then proceeding to overshoot predictions of log-RV for several following days
due to the autoregressive specification.
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Conclusion

We set out with the objective to verify whether information present in the daily volume

of transactions and the daily spread between ask and bid prices for a given stock could

improve predictions of the next day’s realized volatility, in margin to whatever predictive

capacity is already carried by previous values of realized volatility. In other words, does

the timing of the relationship between measures liquidity and realized volatility goes be-

yond concurrent? If it does indeed, properly understanding it and then estimating a model

that approximates well their relationship could help us better forecast stock volatility. As

a start to model and measure this relationship, we have used the popular autoregressive

HAR-RV model (Corsi, 2009) as our benchmark, to which we have added various mea-

sures of volume or spread to form our HAR-RV-LIQ model. We have also found the

spread or volume of a given stock to be in general significantly positively correlated with

its daily log-realized volatility at various lags.

For the 10 stocks, we have measured the predictive performance of several variants of

HAR-RV-LIQ models and have found for half the select stocks at least one such model

yielding improvements, although fairly small. These minute reductions in prediction

RMSE are evidence that exist some quantity of information within past days’ volume

and spread not already carried by past days’ realized volatility that can be used to infer

on the next day’s realized volatility. In particular, we have found the measures of propor-

tional spread to more consistently yield improved or at the very least non-degraded perfor-

mance, compared to volume in number of shares only occasionally improving predictive

performance and volume in dollars performing the worse as an additional predictor. Most



recent values of spread or volume in level, rather than weekly or monthly moving aver-

age of several recent values or rather than their differenced values, have showed the best

performance. Our research could also be expanded to include other measures of liquidity

and activity, such as the Amihud measure (Amihud, 2002), which is a transformation of

daily absolute returns and dollar volume, or price impact (see Dufour and Engle (2000)

for an example of measure of the impact on price of a large trade).

We have started with Corsi’s simple yet well performing linear autoregressive spec-

ification, but it begs the question as to whether the proper relationship between realized

volatility and the selected measures of activity and liquidity is best approximated by a lin-

ear form. Furthermore, using OLS with Newey-West error covariance prevents us from

having any sort of proper theoretical prediction interval bounds. Our predictive model

as presented in section 3.3.2 did not include any industry or market factors (e.g. the

VIX), nor leverage effects that can capture the asymetric response of volatility to negative

and positive returns. Some other authors have extended the HAR-RV model to include

such market, jumps or leverage components (see for example Corsi and Reno (2009),

Wang et al. (2012), Huang et al. (2013) and Patton and Sheppard (2015)). It could be

worthwhile to consider in future research the inclusion of liquidity and activity factors

alongside leverage, market and industry factors. Additional significant factors could pro-

vide a more complete specification and help correct biased estimation of spread or volume

coefficients.
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Appendix A – Additional tables and

figures

A.1 Descriptive statistics and correlations

Moments Quantiles
Ticker Mean Std. Skew. Kurt. 1% 5% 10% 25% Med. 75% 90% 95% 99%
CMS -4.47 0.45 0.82 4.45 -5.32 -5.10 -4.99 -4.78 -4.50 -4.22 -3.92 -3.66 -3.01
X -3.73 0.40 1.12 5.37 -4.44 -4.26 -4.16 -4.00 -3.79 -3.54 -3.19 -2.95 -2.48
NUE -4.01 0.47 0.70 3.92 -4.89 -4.68 -4.57 -4.36 -4.05 -3.73 -3.42 -3.17 -2.63
WMB -4.11 0.47 0.93 4.43 -4.96 -4.76 -4.64 -4.44 -4.17 -3.88 -3.52 -3.24 -2.66
LLTC -4.29 0.40 0.64 4.80 -5.07 -4.89 -4.77 -4.56 -4.31 -4.06 -3.79 -3.60 -3.20
MON -4.18 0.47 0.78 3.92 -5.05 -4.84 -4.72 -4.50 -4.24 -3.91 -3.54 -3.31 -2.75
NKE -4.43 0.43 0.93 3.89 -5.17 -4.99 -4.90 -4.74 -4.51 -4.21 -3.82 -3.57 -3.16
BSX -4.12 0.41 0.75 4.43 -4.94 -4.71 -4.59 -4.40 -4.16 -3.91 -3.59 -3.33 -2.85
HPQ -4.31 0.40 0.83 4.93 -5.14 -4.89 -4.78 -4.58 -4.35 -4.12 -3.79 -3.57 -3.06
CVX -4.46 0.44 0.83 4.67 -5.31 -5.10 -4.99 -4.76 -4.50 -4.23 -3.91 -3.68 -3.06

Table A.1.1: Summary statistics of log(RV), 2005-2013
Summary statistics of the daily 5 minutes subsampling realized volatility estimator (equation (3.9)
with K = 5) for the beginning of 2005 to the end of 2013 period and for each of the selected stocks,
after winsorization and interpolation.
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Moments Quantiles
Ticker Mean Std. Skew. Kurt. 1% 5% 10% 25% Med. 75% 90% 95% 99%
CMS 6.62 2.09 0.44 2.71 3.53 3.70 3.94 4.78 6.47 8.21 9.33 10.16 11.76
X 4.03 1.31 0.67 4.29 1.81 2.15 2.32 3.02 3.99 4.84 5.59 6.18 7.90
NUE 3.48 1.06 1.56 6.79 2.24 2.36 2.44 2.69 3.15 4.08 4.84 5.44 7.13
WMB 4.61 1.64 0.98 3.82 2.66 2.77 2.88 3.22 4.19 5.72 7.00 7.69 9.21
LLTC 3.04 0.64 1.04 4.79 1.90 2.10 2.27 2.65 2.97 3.28 3.76 4.53 5.01
MON 3.11 1.00 0.80 3.24 1.63 1.85 2.01 2.32 2.88 3.80 4.53 4.97 5.84
NKE 2.74 0.98 1.34 4.95 1.48 1.64 1.74 2.01 2.49 3.21 4.05 4.88 5.84
BSX 10.55 4.39 0.32 1.75 4.45 4.91 5.30 6.37 9.74 14.00 17.12 17.81 18.98
HPQ 3.24 1.27 1.05 3.59 1.72 1.83 1.99 2.18 2.89 3.93 5.12 5.73 6.93
CVX 1.71 0.57 1.11 3.62 1.02 1.10 1.15 1.27 1.54 2.03 2.60 2.88 3.31
Scale ×104 ×1 ×104

Table A.1.2: Summary statistics of PQSPR, 2005-2013
Summary statistics of the daily proportional quoted spread (equations (3.2) and (3.4)) for the
beginning of 2005 to the end of 2013 period and for each of the selected stocks, after winsorization
and interpolation.

Moments Quantiles
Ticker Mean Std. Skew. Kurt. 1% 5% 10% 25% Med. 75% 90% 95% 99%
CMS 6.01 1.94 0.26 2.75 2.94 3.18 3.37 4.27 6.13 7.41 8.48 9.12 10.27
X 3.83 1.29 2.07 17.90 1.86 2.11 2.27 2.92 3.75 4.52 5.15 5.84 7.71
NUE 3.17 1.14 3.51 30.13 1.92 2.09 2.19 2.45 2.86 3.63 4.39 5.07 7.35
WMB 4.35 1.71 2.08 18.01 2.25 2.42 2.61 3.04 3.91 5.40 6.58 7.44 9.38
LLTC 3.18 2.01 38.12 1663.58 2.20 2.40 2.53 2.75 2.99 3.32 4.00 4.57 5.31
MON 2.71 1.04 1.71 10.08 1.24 1.45 1.62 1.97 2.48 3.31 3.98 4.46 5.93
NKE 2.34 0.85 1.89 9.32 1.26 1.43 1.50 1.73 2.17 2.68 3.38 4.02 5.24
BSX 8.84 3.01 0.15 1.88 3.85 4.43 4.90 6.19 8.53 11.37 12.87 13.55 15.04
HPQ 3.14 1.08 1.46 8.78 1.72 1.87 2.03 2.25 2.97 3.69 4.65 5.22 6.01
CVX 1.75 0.76 3.21 28.33 0.87 0.95 1.04 1.23 1.58 2.11 2.66 2.98 4.18
Scale ×104 ×1 ×104

Table A.1.3: Summary statistics of PESPR, 2005-2013
Summary statistics of the daily proportional effective spread (equations (3.3) and (3.5)) for the
beginning of 2005 to the end of 2013 period and for each of the selected stocks, after winsorization
and interpolation.
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Moments Quantiles
Ticker Mean Std. Skew. Kurt. 1% 5% 10% 25% Med. 75% 90% 95% 99%
CMS 0.67 0.36 2.03 10.22 0.21 0.27 0.32 0.43 0.58 0.80 1.10 1.34 1.98
X 2.16 1.37 1.46 6.52 0.50 0.64 0.76 1.10 1.83 2.84 3.98 4.78 6.56
NUE 1.02 0.61 1.97 9.58 0.27 0.36 0.44 0.60 0.88 1.26 1.76 2.15 3.30
WMB 1.50 0.84 2.81 19.44 0.46 0.61 0.74 0.96 1.31 1.80 2.43 2.95 4.71
LLTC 0.97 0.53 1.79 10.05 0.26 0.34 0.42 0.60 0.88 1.22 1.62 1.91 2.75
MON 1.12 0.90 3.42 25.54 0.23 0.32 0.38 0.54 0.88 1.41 2.08 2.72 4.56
NKE 0.70 0.42 3.34 24.69 0.20 0.26 0.32 0.45 0.62 0.85 1.13 1.40 2.18
BSX 3.54 2.90 6.24 83.03 0.58 0.89 1.28 2.02 2.95 4.28 6.05 7.93 13.52
HPQ 4.28 2.84 5.44 53.33 1.53 1.96 2.24 2.81 3.67 4.81 6.68 8.20 15.35
CVX 2.22 0.99 1.68 8.77 0.85 1.04 1.17 1.54 2.04 2.66 3.48 4.16 5.54
Scale ×10−4 ×1 ×10−4

Table A.1.4: Summary statistics of VLMN, 2005-2013
Summary statistics of the daily trade volume in number of shares for the beginning of 2005 to the
end of 2013 period and for each of the selected stocks, after winsorization and interpolation.

Moments Quantiles
Ticker Mean Std. Skew. Kurt. 1% 5% 10% 25% Med. 75% 90% 95% 99%
CMS 1.14 0.62 2.09 12.70 0.30 0.41 0.50 0.71 1.01 1.43 1.87 2.29 3.21
X 10.17 7.50 2.14 10.56 2.18 2.83 3.37 4.97 8.07 12.82 19.53 25.47 35.21
NUE 5.08 3.15 2.18 13.35 1.29 1.64 2.01 2.83 4.35 6.57 8.91 10.68 15.31
WMB 3.90 2.37 2.98 23.85 0.89 1.37 1.70 2.33 3.40 4.93 6.51 7.88 11.66
LLTC 3.07 1.60 2.23 15.97 0.91 1.20 1.41 1.98 2.78 3.76 5.02 5.83 8.22
MON 8.90 7.57 2.77 15.94 1.52 2.13 2.60 4.11 6.71 11.07 17.76 23.05 37.03
NKE 5.05 2.84 4.16 37.66 1.66 2.23 2.63 3.43 4.52 5.87 7.74 9.27 16.04
BSX 3.62 2.56 4.27 37.53 0.89 1.32 1.57 2.18 3.01 4.31 6.16 7.79 13.01
HPQ 14.41 9.56 5.86 82.44 3.71 5.18 6.23 8.75 12.92 17.66 23.15 27.61 47.44
CVX 18.07 7.49 1.44 6.11 6.59 9.01 10.52 13.02 16.39 21.27 28.02 33.00 43.01
Scale ×10−5 ×1 ×10−5

Table A.1.5: Summary statistics of VLMD, 2005-2013
Summary statistics of the daily trade volume in US dollars for the beginning of 2005 to the end of
2013 period and for each of the selected stocks, after winsorization and interpolation.
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Figure A.1.1: ACF of log-realized volatility
Sample autocorrelation function of daily log-realized volatility for each firm with 1 year worth
of lags. The 95% critical value is computed assuming asymptotic normality. The standard error
estimator is presented in footnote 1.
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Figure A.1.2: ACF of PQSPR
Sample autocorrelation function of proportional quoted spread for each firm with 1 year worth
of lags. The 95% critical value is computed assuming asymptotic normality. The standard error
estimator is presented in footnote 1.
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Figure A.1.3: ACF of PESPR
Sample autocorrelation function of proportional effective spread for each firm with 1 year worth
of lags. The 95% critical value is computed assuming asymptotic normality. The standard error
estimator is presented in footnote 1.
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Figure A.1.4: ACF of VLMN
Sample autocorrelation function of volume in number of shares for each firm with 1 year worth
of lags. The 95% critical value is computed assuming asymptotic normality. The standard error
estimator is presented in footnote 1.
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Figure A.1.5: ACF of VLMD
Sample autocorrelation function of volume in dollars for each firm with 1 year worth of lags. The
95% critical value is computed assuming asymptotic normality. The standard error estimator is
presented in footnote 1.
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Figure A.1.6: Cross-correlations for CMS, 2005-2013
Sample cross correlations for the firm CMS between its daily log-RV, daily proportional quoted
(PQSPR) or effective spread (PESPR) and daily volume in number of shares (VLMN) or dollars
(VLMD), for up to one month worth of lags forward and backward.
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Figure A.1.7: Cross-correlations for X, 2005-2013
Sample cross correlations for the firm X between its daily log-RV, daily proportional quoted
(PQSPR) or effective spread (PESPR) and daily volume in number of shares (VLMN) or dollars
(VLMD), for up to one month worth of lags forward and backward.
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Figure A.1.8: Cross-correlations for NUE, 2005-2013
Sample cross correlations for the firm NUE between its daily log-RV, daily proportional quoted
(PQSPR) or effective spread (PESPR) and daily volume in number of shares (VLMN) or dollars
(VLMD), for up to one month worth of lags forward and backward.
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Figure A.1.9: Cross-correlations for WMB, 2005-2013
Sample cross correlations for the firm WMB between its daily log-RV, daily proportional quoted
(PQSPR) or effective spread (PESPR) and daily volume in number of shares (VLMN) or dollars
(VLMD), for up to one month worth of lags forward and backward.
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Figure A.1.10: Cross-correlations for LLTC, 2005-2013
Sample cross correlations for the firm LLTC between its daily log-RV, daily proportional quoted
(PQSPR) or effective spread (PESPR) and daily volume in number of shares (VLMN) or dollars
(VLMD), for up to one month worth of lags forward and backward.
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Figure A.1.11: Cross-correlations for MON, 2005-2013
Sample cross correlations for the firm MON between its daily log-RV, daily proportional quoted
(PQSPR) or effective spread (PESPR) and daily volume in number of shares (VLMN) or dollars
(VLMD), for up to one month worth of lags forward and backward.

xiv



-1

0

1

lo
g

R
V

(t
)

logRV(t+h)

-20 0 20
-1

0

1
PQSPR(t+h)

-20 0 20
-1

0

1
PESPR(t+h)

-20 0 20
-1

0

1
VLMN(t+h)

-20 0 20
-1

0

1
VLMD(t+h)

-20 0 20

-1

0

1

P
Q

S
P

R
(t

)

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20

-1

0

1

P
E

S
P

R
(t

)

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20

-1

0

1

V
L

M
N

(t
)

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20

-1

0

1

V
L

M
D

(t
)

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20
lag h

-1

0

1

-20 0 20
-1

0

1

-20 0 20

Cross-correlations - NKE

Figure A.1.12: Cross-correlations for NKE, 2005-2013
Sample cross correlations for the firm NKE between its daily log-RV, daily proportional quoted
(PQSPR) or effective spread (PESPR) and daily volume in number of shares (VLMN) or dollars
(VLMD), for up to one month worth of lags forward and backward.

xv



-1

0

1

lo
g

R
V

(t
)

logRV(t+h)

-20 0 20
-1

0

1
PQSPR(t+h)

-20 0 20
-1

0

1
PESPR(t+h)

-20 0 20
-1

0

1
VLMN(t+h)

-20 0 20
-1

0

1
VLMD(t+h)

-20 0 20

-1

0

1

P
Q

S
P

R
(t

)

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20

-1

0

1

P
E

S
P

R
(t

)

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20

-1

0

1

V
L

M
N

(t
)

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20

-1

0

1

V
L

M
D

(t
)

-20 0 20
-1

0

1

-20 0 20
-1

0

1

-20 0 20
lag h

-1

0

1

-20 0 20
-1

0

1

-20 0 20

Cross-correlations - BSX

Figure A.1.13: Cross-correlations for BSX, 2005-2013
Sample cross correlations for the firm BSX between its daily log-RV, daily proportional quoted
(PQSPR) or effective spread (PESPR) and daily volume in number of shares (VLMN) or dollars
(VLMD), for up to one month worth of lags forward and backward.
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Figure A.1.14: Cross-correlations for HPQ, 2005-2013
Sample cross correlations for the firm HPQ between its daily log-RV, daily proportional quoted
(PQSPR) or effective spread (PESPR) and daily volume in number of shares (VLMN) or dollars
(VLMD), for up to one month worth of lags forward and backward.
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Figure A.1.15: Cross-correlations for CVX, 2005-2013
Sample cross correlations for the firm CVX between its daily log-RV, daily proportional quoted
(PQSPR) or effective spread (PESPR) and daily volume in number of shares (VLMN) or dollars
(VLMD), for up to one month worth of lags forward and backward.
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Factor CMS X NUE WMB LLTC MON NKE BSX HPQ CVX
log(RV(d)

i,t ) 0.66 0.41 0.58 0.43 0.51 0.35 0.38 0.37 0.50 0.56

log(RV(w)
i,t ) 0.69 0.40 0.64 0.42 0.55 0.29 0.26 0.25 0.49 0.56

log(RV(m)
i,t ) 0.67 0.20 0.52 0.39 0.44 0.27 0.24 0.16 0.35 0.40

PQSPR(d)
i,t 0.61 0.17 0.33 0.30 0.12 0.18 0.17 0.15 0.25 0.30

PQSPR(w)
i,t 0.62 0.19 0.34 0.32 0.16 0.15 0.20 0.08 0.24 0.28

PQSPR(m)
i,t 0.59 0.11 0.26 0.23 0.18 0.16 0.17 0.05 0.21 0.16

PESPR(d)
i,t 0.48 0.29 0.43 0.30 0.15 0.27 0.21 0.22 0.30 0.36

PESPR(w)
i,t 0.49 0.29 0.44 0.33 0.27 0.24 0.20 0.15 0.28 0.35

PESPR(m)
i,t 0.45 0.17 0.37 0.25 0.23 0.22 0.16 0.11 0.24 0.21

VLMN(d)
i,t 0.27 0.41 0.50 0.23 0.28 0.20 0.24 0.20 0.11 0.33

VLMN(w)
i,t 0.23 0.33 0.51 0.26 0.30 0.12 0.14 0.14 0.03 0.35

VLMN(m)
i,t 0.28 0.19 0.39 0.27 0.19 0.04 0.11 0.18 -0.07 0.20

VLMD(d)
i,t 0.22 0.35 0.47 0.15 0.21 0.22 0.22 0.21 0.02 0.27

VLMD(w)
i,t 0.15 0.28 0.48 0.17 0.20 0.15 0.12 0.14 -0.10 0.28

VLMD(m)
i,t 0.16 0.17 0.46 0.17 0.03 0.10 0.09 0.16 -0.21 0.15

∆PQSPR(d)
i,t 0.04 0.01 0.09 0.03 -0.04 0.06 -0.03 0.09 0.04 0.09

∆PQSPR(w)
i,t 0.08 0.08 0.09 0.06 0.02 0.09 0.05 0.12 0.08 0.17

∆PQSPR(m)
i,t 0.11 0.12 0.19 0.21 0.03 0.10 0.09 0.14 0.24 0.31

∆PESPR(d)
i,t 0.01 0.06 0.09 0.03 0.01 0.07 0.02 0.11 0.06 0.10

∆PESPR(w)
i,t 0.09 0.17 0.13 0.08 0.03 0.14 0.13 0.14 0.14 0.21

∆PESPR(m)
i,t 0.13 0.20 0.21 0.19 0.06 0.17 0.15 0.20 0.28 0.36

∆VLMN(d)
i,t 0.10 0.16 0.10 0.02 0.09 0.12 0.12 0.05 0.07 0.13

∆VLMN(w)
i,t 0.13 0.24 0.19 0.05 0.08 0.11 0.18 0.10 0.07 0.13

∆VLMN(m)
i,t 0.10 0.30 0.28 0.11 0.25 0.18 0.15 0.04 0.08 0.32

∆VLMD(d)
i,t 0.10 0.13 0.09 0.01 0.08 0.12 0.12 0.06 0.06 0.12

∆VLMD(w)
i,t 0.13 0.21 0.12 0.03 0.07 0.11 0.17 0.11 0.07 0.11

∆VLMD(m)
i,t 0.10 0.27 0.18 0.07 0.24 0.19 0.14 0.06 0.06 0.28

Table A.1.6: Factor correlations with dependent variable, 2005-2006
Correlation between the dependent variable log(RV(d)

i,t+1) and the various factors of the HAR-RV-
LIQ model for each company (see table 3.1), evaluated for the 2005-2006 subsample period (478
observations). The upper blocks showcase correlations for realized volatility (RV), proportional
quoted or effective spread (PQSPR and PESPR) and for volume in number of shares (VLMN) or
in dollars (VLMD) in level, while the bottom blocks are for the same factors taken in difference
(∆). Each daily (d) factor is also included in lagged weekly (w) or monthly(m) moving averages.
Realized volatility is calculated using the 5 minutes subsampling estimator.
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Factor CMS X NUE WMB LLTC MON NKE BSX HPQ CVX
log(RV(d)

i,t ) 0.84 0.88 0.86 0.87 0.81 0.84 0.86 0.81 0.85 0.86

log(RV(w)
i,t ) 0.83 0.88 0.86 0.88 0.83 0.85 0.87 0.82 0.86 0.86

log(RV(m)
i,t ) 0.77 0.83 0.78 0.82 0.77 0.80 0.82 0.79 0.81 0.77

PQSPR(d)
i,t 0.66 0.68 0.73 0.66 0.68 0.65 0.77 0.66 0.67 0.72

PQSPR(w)
i,t 0.68 0.71 0.74 0.65 0.68 0.67 0.78 0.66 0.66 0.72

PQSPR(m)
i,t 0.63 0.70 0.68 0.58 0.63 0.66 0.74 0.62 0.57 0.63

PESPR(d)
i,t 0.66 0.69 0.63 0.61 0.53 0.62 0.74 0.69 0.47 0.56

PESPR(w)
i,t 0.70 0.76 0.69 0.65 0.65 0.66 0.79 0.69 0.61 0.65

PESPR(m)
i,t 0.65 0.74 0.64 0.59 0.64 0.64 0.76 0.65 0.61 0.60

VLMN(d)
i,t 0.52 0.54 0.68 0.66 0.44 0.56 0.46 0.25 0.47 0.75

VLMN(w)
i,t 0.58 0.54 0.73 0.75 0.49 0.61 0.58 0.27 0.57 0.78

VLMN(m)
i,t 0.58 0.48 0.72 0.76 0.49 0.62 0.67 0.23 0.63 0.72

VLMD(d)
i,t 0.31 0.26 0.40 0.24 0.15 0.61 0.30 -0.01 0.33 0.67

VLMD(w)
i,t 0.35 0.26 0.43 0.27 0.12 0.66 0.38 -0.08 0.40 0.70

VLMD(m)
i,t 0.36 0.28 0.43 0.30 0.02 0.66 0.49 -0.24 0.48 0.68

∆PQSPR(d)
i,t 0.03 0.02 0.04 0.05 0.03 0.03 0.04 0.05 0.06 0.07

∆PQSPR(w)
i,t 0.10 0.06 0.14 0.16 0.12 0.11 0.14 0.10 0.18 0.15

∆PQSPR(m)
i,t 0.24 0.14 0.27 0.34 0.27 0.17 0.19 0.27 0.37 0.32

∆PESPR(d)
i,t 0.02 0.03 0.05 0.04 0.00 0.03 0.05 0.06 0.00 0.03

∆PESPR(w)
i,t 0.09 0.08 0.11 0.09 0.01 0.11 0.12 0.11 0.07 0.10

∆PESPR(m)
i,t 0.23 0.17 0.23 0.22 0.11 0.18 0.17 0.27 0.15 0.25

∆VLMN(d)
i,t 0.03 0.06 0.05 0.03 0.08 0.06 0.03 0.03 0.05 0.07

∆VLMN(w)
i,t 0.09 0.12 0.11 0.07 0.10 0.11 0.03 0.09 0.07 0.15

∆VLMN(m)
i,t 0.18 0.24 0.18 0.12 0.21 0.20 0.07 0.16 0.15 0.30

∆VLMD(d)
i,t 0.03 0.05 0.05 0.02 0.07 0.06 0.03 0.02 0.05 0.05

∆VLMD(w)
i,t 0.08 0.06 0.09 0.02 0.07 0.09 0.02 0.08 0.05 0.11

∆VLMD(m)
i,t 0.13 -0.01 0.10 0.00 0.15 0.16 0.04 0.13 0.09 0.21

Table A.1.7: Factor correlations with dependent variable, 2007-2009
Correlation between the dependent variable log(RV(d)

i,t+1) and the various factors of the HAR-RV-
LIQ model for each company (see table 3.1), evaluated for the 2007-2009 subsample period (747
observations). The upper blocks showcase correlations for realized volatility (RV), proportional
quoted or effective spread (PQSPR and PESPR) and for volume in number of shares (VLMN) or
in dollars (VLMD) in level, while the bottom blocks are for the same factors taken in difference
(∆). Each daily (d) factor is also included in lagged weekly (w) or monthly(m) moving averages.
Realized volatility is calculated using the 5 minutes subsampling estimator.
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Factor CMS X NUE WMB LLTC MON NKE BSX HPQ CVX
log(RV(d)

i,t ) 0.68 0.65 0.72 0.72 0.71 0.71 0.69 0.47 0.64 0.75

log(RV(w)
i,t ) 0.70 0.64 0.71 0.73 0.70 0.71 0.68 0.44 0.63 0.75

log(RV(m)
i,t ) 0.63 0.56 0.65 0.68 0.65 0.69 0.60 0.42 0.57 0.67

PQSPR(d)
i,t 0.45 0.13 0.36 0.45 0.52 0.47 0.61 0.16 0.39 0.49

PQSPR(w)
i,t 0.45 0.11 0.36 0.43 0.52 0.49 0.58 0.16 0.38 0.46

PQSPR(m)
i,t 0.44 0.08 0.31 0.39 0.50 0.47 0.52 0.13 0.38 0.40

PESPR(d)
i,t 0.49 0.20 0.56 0.52 0.11 0.61 0.64 0.25 0.44 0.65

PESPR(w)
i,t 0.48 0.17 0.53 0.49 0.22 0.62 0.61 0.23 0.43 0.62

PESPR(m)
i,t 0.47 0.12 0.48 0.45 0.41 0.60 0.55 0.20 0.41 0.56

VLMN(d)
i,t 0.38 0.44 0.57 0.38 0.55 0.40 0.24 0.23 0.32 0.60

VLMN(w)
i,t 0.44 0.41 0.57 0.44 0.59 0.40 0.18 0.19 0.29 0.62

VLMN(m)
i,t 0.41 0.32 0.54 0.51 0.59 0.45 0.09 0.15 0.28 0.57

VLMD(d)
i,t 0.22 0.21 0.49 0.21 0.46 0.30 0.27 0.16 0.06 0.57

VLMD(w)
i,t 0.21 0.16 0.49 0.19 0.50 0.28 0.24 0.08 -0.04 0.63

VLMD(m)
i,t 0.11 0.12 0.47 0.18 0.51 0.34 0.20 0.02 -0.16 0.64

∆PQSPR(d)
i,t 0.05 0.08 0.03 0.08 0.08 0.06 0.11 0.02 0.03 0.11

∆PQSPR(w)
i,t 0.03 0.09 0.12 0.16 0.13 0.09 0.19 0.11 0.03 0.15

∆PQSPR(m)
i,t 0.05 0.27 0.20 0.17 0.14 0.18 0.24 0.22 0.02 0.23

∆PESPR(d)
i,t 0.05 0.10 0.08 0.12 0.00 0.08 0.13 0.05 0.10 0.13

∆PESPR(w)
i,t 0.05 0.12 0.18 0.18 -0.01 0.11 0.20 0.09 0.10 0.17

∆PESPR(m)
i,t 0.10 0.30 0.26 0.23 0.01 0.20 0.26 0.16 0.14 0.29

∆VLMN(d)
i,t 0.05 0.10 0.06 0.07 0.07 0.09 0.08 0.10 0.09 0.07

∆VLMN(w)
i,t 0.10 0.18 0.16 0.10 0.11 0.06 0.13 0.12 0.16 0.15

∆VLMN(m)
i,t 0.16 0.29 0.19 0.15 0.19 0.06 0.16 0.10 0.16 0.26

∆VLMD(d)
i,t 0.05 0.07 0.06 0.07 0.07 0.09 0.08 0.10 0.08 0.07

∆VLMD(w)
i,t 0.09 0.14 0.15 0.08 0.10 0.08 0.12 0.12 0.13 0.14

∆VLMD(m)
i,t 0.15 0.18 0.14 0.11 0.17 0.05 0.15 0.08 0.15 0.22

Table A.1.8: Factor correlations with dependent variable, 2010-2013
Correlation between the dependent variable log(RV(d)

i,t+1) and the various factors of the HAR-RV-
LIQ model for each company (see table 3.1), evaluated for the 2010-2013 subsample period (997
observations). The upper blocks showcase correlations for realized volatility (RV), proportional
quoted or effective spread (PQSPR and PESPR) and for volume in number of shares (VLMN) or
in dollars (VLMD) in level, while the bottom blocks are for the same factors taken in difference
(∆). Each daily (d) factor is also included in lagged weekly (w) or monthly(m) moving averages.
Realized volatility is calculated using the 5 minutes subsampling estimator.
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A.2 Relative prediction performance

RMSPE of annualized daily RV predictions – CMS
Static Dynamic

Model 2008-2009 2010-2011 2012-2013 2008-2009 2010-2011 2012-2013
[1] Benchmark 0.2038 0.2491 0.2046 0.2073 0.2476 0.2028
[2] PQSPR(d) +0.18% -0.48% -1.72% -0.18% -1.25% -1.51%
[3] PESPR(d) +0.12% -0.36% -1.44% -0.11% -1.53% -1.46%
[5] PQSPR(d) , VLMN(d) +1.14% +0.35% -1.40% +2.39% -1.38% -1.42%
[6] PESPR(d) , VLMN(d) +0.94% +0.66% -1.14% +2.29% -1.70% -1.40%
[7] VLMN(d) , VLMN(w) -0.40% +0.45% +0.27% +1.99% -0.04% +0.04%
[8] PQSPR(d) , VLMN(d) , VLMN(w) -0.05% +0.05% -1.46% +2.04% -1.31% -1.52%
[9] PESPR(d) , VLMN(d) , VLMN(w) -0.22% +0.30% -1.23% +1.96% -1.64% -1.51%

Table A.2.1: Out-of-sample relative performance results for CMS
Root mean square prediction percentage errors (RMSPE) for the annualized daily realized volatil-
ity of CMS,

√
252RV(d)

CMS, t+1. Non-benchmark models are referred to by their estimation results
index from table 4.2, followed by the list of their additional terms. Their RMSPE is expressed in
percentage (%) change with respect to the benchmark’s RMSPE, with improvements in bold. Re-
fer to section 4.2 and equation (4.13) for details on the period samples and prediction methodology
(static vs. dynamic).

RMSPE of annualized daily RV predictions – X
Static Dynamic

Model 2008-2009 2010-2011 2012-2013 2008-2009 2010-2011 2012-2013
[1] Benchmark 0.2040 0.2166 0.2098 0.2080 0.2178 0.2082
[2] PESPR(d) -2.42% -1.06% +16.71% -0.48% -0.58% +3.53%
[3] VLMN(d) +0.30% +0.16% -0.48% +5.02% +0.23% -1.21%
[5] PESPR(d) , VLMN(d) -1.81% -1.04% +22.58% +7.21% -0.69% +3.46%
[6] VLMN(d) , VLMN(w) -0.25% -0.54% -0.09% +3.84% -0.17% -0.61%
[8] PESPR(d) , VLMN(d) , VLMN(w) -2.92% -1.37% +21.66% +5.26% -0.69% +3.39%

Table A.2.2: Out-of-sample relative performance results for X
Root mean square prediction percentage errors (RMSPE) for the annualized daily realized volatil-
ity of X,

√
252RV(d)

X, t+1. Non-benchmark models are referred to by their estimation results index
from table 4.3, followed by the list of their additional terms. Their RMSPE is expressed in per-
centage (%) change with respect to the benchmark’s RMSPE, with improvements in bold. Refer
to section 4.2 and equation (4.13) for details on the period samples and prediction methodology
(static vs. dynamic).
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RMSE of annualized daily RV predictions – NUE
Static Dynamic

Model 2008-2009 2010-2011 2012-2013 2008-2009 2010-2011 2012-2013
[1] Benchmark 0.2106 0.2302 0.2053 0.2133 0.2297 0.2050
[2] PQSPR(d) -1.61% +0.08% +2.05% -0.66% -0.34% +0.02%
[3] PESPR(d) -1.54% -0.27% +5.09% -0.72% -0.40% +0.81%
[4] VLMN(d) +3.42% -0.28% -0.40% +2.69% -0.55% -1.29%
[5] PQSPR(d) , VLMN(d) +2.11% -0.10% +1.76% +2.55% -1.05% -1.22%
[7] PESPR(d) , VLMN(d) +2.11% -0.56% +4.26% +2.24% -0.90% -0.82%

Table A.2.3: Out-of-sample relative performance results for NUE
Root mean square prediction percentage errors (RMSPE) for the annualized daily realized volatil-
ity of NUE,

√
252RV(d)

NUE, t+1. Non-benchmark models are referred to by their estimation results
index from table 4.4, followed by the list of their additional terms. Their RMSPE is expressed in
percentage (%) change with respect to the benchmark’s RMSPE, with improvements in bold. Re-
fer to section 4.2 and equation (4.13) for details on the period samples and prediction methodology
(static vs. dynamic).

RMSPE of annualized daily RV predictions – LLTC
Static Dynamic

Model 2008-2009 2010-2011 2012-2013 2008-2009 2010-2011 2012-2013
[1] Benchmark 0.2271 0.3041 0.2292 0.2405 0.3090 0.2244
[2] PQSPR(d) -0.24% -3.83% +0.78% +1.48% -3.92% -1.04%
[3] VLMN(d) +0.20% -2.03% +1.69% -0.55% -3.22% +0.09%
[4] PQSPR(d) , VLMN(d) +0.08% -7.28% +1.54% +0.64% -8.90% -1.26%

Table A.2.4: Out-of-sample relative performance results for LLTC
Root mean square prediction percentage errors (RMSPE) for the annualized daily realized volatil-
ity of LLTC,

√
252RV(d)

LLTC, t+1. Non-benchmark models are referred to by their estimation results
index from table 4.6, followed by the list of their additional terms. Their RMSPE is expressed in
percentage (%) change with respect to the benchmark’s RMSPE, with improvements in bold. Re-
fer to section 4.2 and equation (4.13) for details on the period samples and prediction methodology
(static vs. dynamic).
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RMSPE of annualized daily RV predictions – MON
Static Dynamic

Model 2008-2009 2010-2011 2012-2013 2008-2009 2010-2011 2012-2013
[1] Benchmark 0.2195 0.2486 0.2248 0.2257 0.2483 0.2220
[2] PESPR(d) -1.93% -0.21% +2.25% +0.13% -0.35% +0.69%
[3] VLMN(d) +1.08% +0.53% -0.21% +2.48% +0.15% -0.26%
[4] VLMD(d) +2.73% +0.02% -0.01% +2.67% -0.09% -0.05%
[6] PESPR(d) , VLMN(d) -1.05% +0.27% +2.09% +3.03% -0.30% +0.17%
[7] PESPR(d) , VLMD(d) +0.02% -0.51% +3.05% +2.11% -0.74% +0.45%

Table A.2.5: Out-of-sample relative performance results for MON
Root mean square prediction percentage errors (RMSPE) for the annualized daily realized volatil-
ity of MON,

√
252RV(d)

MON, t+1. Non-benchmark models are referred to by their estimation results
index from table 4.7, followed by the list of their additional terms. Their RMSPE is expressed in
percentage (%) change with respect to the benchmark’s RMSPE, with improvements in bold. Re-
fer to section 4.2 and equation (4.13) for details on the period samples and prediction methodology
(static vs. dynamic).

RMSPE of annualized daily RV predictions – NKE
Static Dynamic

Model 2008-2009 2010-2011 2012-2013 2008-2009 2010-2011 2012-2013
[1] Benchmark 0.1975 0.2159 0.2286 0.2024 0.2166 0.2273
[2] PQSPR(d) -2.25% -0.79% +1.47% +0.10% -1.22% -1.13%
[3] PESPR(d) -1.27% -0.55% +0.16% +0.32% -1.01% -1.80%
[5] PQSPR(d) , VLMN(d) -4.00% -0.83% +2.08% +0.69% -1.62% -0.87%
[6] PESPR(d) , VLMN(d) -1.92% -0.56% +0.48% +1.04% -1.12% -1.56%

Table A.2.6: Out-of-sample relative performance results for NKE
Root mean square prediction percentage errors (RMSPE) for the annualized daily realized volatil-
ity of NKE,

√
252RV(d)

NKE, t+1. Non-benchmark models are referred to by their estimation results
index from table 4.8, followed by the list of their additional terms. Their RMSPE is expressed in
percentage (%) change with respect to the benchmark’s RMSPE, with improvements in bold. Re-
fer to section 4.2 and equation (4.13) for details on the period samples and prediction methodology
(static vs. dynamic).
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RMSPE of annualized daily RV predictions – BSX
Static Dynamic

Model 2008-2009 2010-2011 2012-2013 2008-2009 2010-2011 2012-2013
[1] Benchmark 0.2297 0.3357 0.2444 0.2435 0.3347 0.2442
[2] PESPR(d) -0.18% +2.85% -0.35% +3.07% +0.87% -0.36%

Table A.2.7: Out-of-sample relative performance results for BSX
Root mean square prediction percentage errors (RMSPE) for the annualized daily realized volatil-
ity of BSX,

√
252RV(d)

BSX, t+1. Non-benchmark models are referred to by their estimation results
index from table 4.9, followed by the list of their additional terms. Their RMSPE is expressed in
percentage (%) change with respect to the benchmark’s RMSPE, with improvements in bold. Re-
fer to section 4.2 and equation (4.13) for details on the period samples and prediction methodology
(static vs. dynamic).

RMSPE of annualized daily RV predictions – CVX
Static Dynamic

Model 2008-2009 2010-2011 2012-2013 2008-2009 2010-2011 2012-2013
[1] Benchmark 0.1982 0.2339 0.2357 0.1971 0.2332 0.2326
[3] PESPR(d) -0.17% -0.02% +0.27% +0.06% -0.34% -0.72%
[4] VLMN(d) -1.10% -0.10% -0.14% -0.18% -0.45% -0.78%
[5] PQSPR(d) , VLMN(d) -1.67% -0.61% +0.25% +0.33% -0.71% -0.67%
[7] PESPR(d) , VLMN(d) -1.22% -0.09% +0.11% +0.28% -0.57% -1.33%

Table A.2.8: Out-of-sample relative performance results for CVX
Root mean square prediction percentage errors (RMSPE) for the annualized daily realized volatil-
ity of CVX,

√
252RV(d)

CVX, t+1. Non-benchmark models are referred to by their estimation results
index from table 4.11, followed by the list of their additional terms. Their RMSPE is expressed in
percentage (%) change with respect to the benchmark’s RMSPE, with improvements in bold. Re-
fer to section 4.2 and equation (4.13) for details on the period samples and prediction methodology
(static vs. dynamic).
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