HEC MONTREAL

“Have you seen the Scrum Master?”: Agile Scrum Deviations and
Project Success
par
Salma Hassani Alaoui

Sciences de la gestion
(Analyse d’affaires — Technologies de I’information)

Meémoire présenté en vue de I’obtention
du grade de maitrise és sciences en gestion
(M. Sc.)

Juin 2019
© Salma Hassani Alaoui, 2019

SOMMAIRE

Gréace a leur processus itératif et a leur approche collaborative, les méthodes Agiles ont
révolutionné l'industrie du logiciel. Au cours des derniéres années, I’adoption en industrie
des méthodes Agiles a connu une forte progression, privilégiant Scrum comme méthode
de choix. Bien que la méthode Scrum ait des directives spécifiques, celles-ci sont souvent

modifiees par les praticiens.

Cette recherche exploratoire a été réalisée dans le but de mieux comprendre comment la
méthode Scrum est adaptée en industrie, ainsi que les liens potentiels entre les écarts par
rapport a la méthode et le succés du projet. Cette recherche vise donc a apporter des
éléments de réponses aux questions suivantes: Comment le cadre Agile Scrum est-il
appliqué en industrie? Y a-t-il un fossé entre la théorie et la pratique ? Ety a-t-il un

lien entre les déviations par rapport au cadre Scrum et le succes du projet?

Afin de répondre aux questions de recherche, une approche qualitative a été entreprise au
moyen d’onze entrevues semi-structurées. Les résultats de cette étude indiquent une
variabilité en termes de conformité aux directives de la méthode. En effet, seul un nombre
restreint de directives sont systématiquement adoptées. Par ailleurs, I’association des
écarts par rapport a la méthode a des dimensions de succes du projet a permis de relever
quatre tendances. En outre, cette étude a permis de soulever d’autres pratiques qui ne
figure pas dans les directives Scrum, tel qu’une institutionnalisation de cérémonies de

« Grooming» ainsi qu’une mise a échelle des équipes Scrum.

Ces observations sur la maniere dont la méthode Agile Scrum est adaptée dans la pratique
peuvent aider les professionnels a mieux adapter la méthode Scrum dans des projets de
développement de logiciel. De plus, ces résultats s’inscrivent comme une contribution au

courant prometteur de recherche sur lI'adaptation de la méthode Scrum et ses effets.

Mots Clés : Scrum; Scrum adapté; Scrum en pratique; Adaptation des méthodes Agile;

Méthodes Agiles en pratique; Gestion de projet Agile; Succes du projet Agile.

ABSTRACT

Agile methods have revolutionized the modern software development industry through
their iterative process and collaborative approach. In the last decades, the adoption of
Agile methods has gained momentum in industry, with Scrum being the favored method.

While the Scrum method has specific guidelines, these are often changed by practitioners.

This exploratory research was carried out to understand how the Scrum method is tailored
in practice and how deviations from the method link to project success. Subsequently this
research aims to provide answers to the following questions: How is the Agile Scrum
framework applied in industry? Is there a gap between theory and practice? And

how are deviations from the Scrum framework in industry affecting project success?

In order to answer these research questions, a qualitative approach was undertaken using
eleven semi-structured interviews with representatives from organizations who use
Scrum in software development projects. The findings of this study indicate variability in
the application of the Scrum guidelines, namely, that only a few guidelines are
systematically followed, and that some guidelines are rarely followed consistently.
Moreover, examining these method deviations and mapping them to specific dimensions
of project success led to the emergence of four patterns. Further, this study uncovered
practices that are often used in industry but were not part of the original Scrum guidelines,

including a formal Grooming ceremony and scaled organization of Scrum teams.

These insights into how the Agile Scrum method is tailored in practice can help industry
professionals determine how to best adapt the Scrum method in software development
projects. Furthermore, these findings offer a promising agenda for research on Scrum
tailoring and its effects.

Key words: Scrum; Scrum tailoring; Scrum in practice; Agile methods tailoring; Agile

methods in practice; Agile project management; Agile project success.

TABLE OF CONTENTS

SOIMMMALIREiiieuiiiiiuiiiriiirreis et rsae s rraasstraasstsreasssstrsssssstessssstrasssssmsnsssssesssssstensssssnnssssssnnnsnss |
LY 2 I 1 X |
TABLE OF CONTENTSuiiieeiiiiieiiiiiiiiiitiisiieeiisreeessresae e eae et reaassssssassssrenassstesssssssensssssesnssssmennssssenns
LIST OF FIGURES.ccuuuiiiimiiiiiniiiiinniiiiieniiiiieneiniieniiiteesssittssssistessssstesssissessssssesssssstesssssseasssesssnsssssennes |
LIST OF TABLES......cottuuiiitiiiiitniiitieeiitieniiitteneisttessiittesssistesesstesssssstesssisssssssestsssssstessssssessssesssnsssssennes |
LIST OF ABBREVIATIONS........coittittttnuuiiiiiiiiiieentiiiiiiiiieessssiiiiiiitteesssssiiistiemmssssssisitmmssssssssstmesssnes |
ACKNOWLEDGIMENTSiiiiiiiuuiiiiiiiiiiennntiiiiiiiiiiiessesiiiiiiiimmmssssiiiimessssssiiittitessssssitttmemssssssssssee |
CHAPTER 1 : INTRODUCTIONcciiiiiitmnnnniiiiniineessssssssssiismmmssssssssssssmssnns 1

B A 60N 15 ST PO P PP UPUPPPPPROt 1

1.2 RESEARCH QUESTIONS AND OBJECTIVES ..cuvvteuveerreeereesreesreessteesiresssesessaessseesreesseesaneesseessssessnesssesessaessneess 3

1.3 THESIS STRUCTURE «..eeutteiurteeteesuttesiseessetessaesneseseesabeesabeesmseesanessseeesbe e e seesabe e s bt e sareesabeessaeesmneebasenrnesaneesas 3
CHAPTER 2 : LITERATURE REVIEWcouuuuiiiiiiiiiiineiiiiiiiiiiesnneiiiiiinssssssssssseiinssssssssssssssessssssssssssssnnes 5

2.1 PROJECT MANAGEMENT
2.2 PROJECT SUCCESS .ceeuuverernnne
2.2.1 The Iron Triangle (1960s - 1980s)
2.2.2 Critical Success Factors: Lists and Frameworks (1980s- 2000s)
2.2.3 Holistic View Of SUCCESS- 21St CENTUIY ..ccvvervueeesieesiiesieesieesieesissesseesiesssisesssessssesssssessessneenns
2.3 SOFTWARE DEVELOPMENT METHODOLOGIES ..ceeeuuvtrerurteeenureeesausteessuseeessureeesaseeesaseessssseeessssseessnseeessnsenesann
2.3.1 Traditional SOftware develOPmMENnt.............c...ueeeeueeeeeeieeeeeee et e e e e ctea s e e e staaeseneeas
2.3.1.1 The heavyweight software development process
2.3.1.2 The Waterfall methodology
2.3.2 Agile software development
2321 AGIlIY e
2.3.2.2 The Agile Manifesto
2.3.2.3 AGIIE VAIUES ...ttt e e et ettt e e et e e e e eab e e e eabe e e e taee e abeeeebaeesarteaeanaaes
2.3.2.4 Agile principles.....
2.3.2.5 Agile methods
2.4 SCRUM ittt
2.4.1 Definition...........ccceceveeveecrvnnnn.
2.4.2 Componentsccccevvvvveeeenn.
2.4.2.1 The Scrum Team......ccccveerueene
2.4.2.1.1 The product Owner....
2.4.2.1.2 THE SCIUM IVIASTEI c...uveetieeeieeteeste et e steeteessae e bt essteeeaesseeenseesseesnseesseessseesseeanseenseesnseenseesnseenses
0 A T N g T DTNV o o Y=Y o =T o
2.4.2.2 The Scrum events
2.8.2.2.0 TN SPIINT.ciiiiiiiiiiiie ettt e e e e et e e et e e e s ba e e s bbeeeaataeeesbeeesabaeaansaeeeanseeesbaeesantaeaansseens
2.4.2.2.2 SPIINE PlaNNING..ccveiiiieeiieeiie ettt ettt sttt s bt e sb e e sabe e beesabe e beesab e e beesateeneeenneeaees
B A T 0 11 1YYl 1 o TP
A A Y o T g L 2= 1Y 1= SRR PPPP
2.4.2.2.5 Sprint Retrospective
DN B Y o 41 =11 £ PSTROPIPTT
2 0 e T R 1 g T o e Yo [0 Tt = - 1ol [-

2.4.2.3.2 The Sprint Backlog
2.4.2.3.3 The increment
2.4.3 Scrum flowcccvveevvesrnann.
2.4.3.1 The pregame phase
2.4.3.2 The development phase
2.4.3.3 The POSt-ZAME PRASEeeiiiiiii ittt e et e et e e e be e e e etb e e e eabe e e sbbeeeastaeesasaeeeenseeeensaeeensseeas
2.5 COMPARISON OF AGILE AND TRADITIONAL SOFTWARE DEVELOPMENTvvteeeeeeruerrreeeseenanreeeeesssssunsneeeesssnsnnees 39
2.5 AGILE AND PROJECT SUCCESS .teeeeauuuterteeeeaaautenteeeesasanseneeessaaansseeeeessasassseeeeessaaaunseteeeessaaassseeeesessansnneeeeens 42
2.6.1 Agile and project MANGGEMENT SUCCESS..........cceecueeeesieeeeiieseeeiieeesiieeeesiesessieeessiieeessieaessases 44
T 0 R Yoo 1= OSSP PPTTROP
2.6.1.2 Quality...........
2.6.1.3 Budget...........
2.6.1.4 Schedule
2.6.2 Agile aNd StAKENOIAEIS’ SUCCESScccuveeeieesiieeiieiiieeie et e stesstesstteestee s e e staestaasssaesssaessseeans
2.6.3 Agile and organizationQl SUCCESScccuercueeecueeiiiiesiieesiiiesiessieeessessieesstaesseessteesssesssessanesns
2.6.4 Agile and strategic success
2.7 AGILE IN PRACTICE.cceeureeeeeereeenneeeesneeenns
2.8 SCRUM IN PRACTICE

CHAPTER 3 : METHODOLOGYcccoiiuumiiiiiinininnniiieiiiisinnsseesiissssssssssesisssssssssessssssssssssesssssssssssssssses

3.1 QUALITATIVE RESEARCHuuutieiieeeeesittateeeseeasastssseasesasasssassesssesasssssseessesasssassssssenssstssssesssasssssesesessensnsnns
3.2 DATA COLLECTION ...ttttteeeeeeeuttreeeeeeesausraseeeeeaaastaseeassaaassssssasssasasssasssesseasassssssasssasssssesesesssnssssesessssnnsssnees
3.2.1 SeMi-StrUCLUIEd INTEIVIBWSccccueeeeeeieeeeecieeeeeee e ettt e et ee e et tta e et e e e ataaaesssaeesssasaeetssaeeaneeas
3.2. 0.1 INTEIVIEW BUIAE ettt ettt ettt e sttt e s at e e e s bt e e e bt e e e sabeeesbbeeesabeeesanbeesanbaeeensaeens
3.2.1.2 Interview process....
3.2.1.3 Sample....ccoueeecineannns
3.3 DATA ANALYSIS «.eeeiirieeeeeeeecireeeeeeeeecnrreeeeeeeesnnreeeaeeeas
2R 70t B A I = g Yol 4 T T o I PP P PP PPPRPOP
R0 701 A e T | = PP RPOPUPRP
3.3.1.3 Pattern FINAING.....ccoueeeiiieeciee ettt et
3.3.1.3.1 Project Management Success (Iron Triangle)
3.3.1.3.2 Customer satisfactionccccveeeeeeccinieeee e
3.4 ETHICAL CONSIDERATIONS ...uuuvvvreeeeeesaussureeesesasansssseesesasassssssesesssassssssesssesasssssssssssnsssssssesssesssssessessssnsssnes

CHAPTER 4 : RESULTS ...ttt sssssse s ssss s s s e s s aas s s s e e s an s s s e e se s annnn e e neas 67

4.1 PROJECTS AND RESPONDENTSceeeiurereraunreeesuneeessreeesasnneeesanseesssseesasnseeesanssesssnsesssnnsesesannsesssnsesessnsesessnnees 67
4.1.1 MEDICARE
BLIL2Z FINANGCE ...ttt atea st aeaeaeaeaaaaaaasasaaasaaasasasaaaaaaaaaatataaaaataeatetesaeeseeeeeeeeeeeeees
0.3 SPORTRETAIL oottt e e e et a e e e e ettt a e e e e e e sttt aaaeeesastsaeaaaesassssssaaaseeasanssenns
4.1.4 REGISTRATION ...ttt ettt e e e e ettt e e e e e et s e e e e e s atsas e e e e eessssssssaaseeasnssenes
ALIE STREAMING. ...ttt e ettt e e e e e ettt e e e e e s e et ae e e e e e asstsaeeaeaeesssssnsaaseanssnsanees
O 3 1y PSSR
O = 0 = S
O S LA 11 1 Y = S
G. 1.9 AUTHENTICATION ...ttt aeseaesasesasasasasassssasssasasssssansssasaaaaaeaaatataeaeeeaeeeens
B. 1,10 VIDEOGAMIEeeeeeieeseaeeetetasatsssasssssasasasssasesesasessssssssssssssassssatatatatatetatetetetatetateteeeseeeeees
G100 FOODRETAIL ottt e et ettt e e e e ettt a e e e e ettt a e e e e e s tsasaaaeeessassssaaaaeaasnssnneas

4.2 CONSISTENTLY FOLLOWED SCRUM GUIDELINES
4.2.1 The Product Owner as one person and not a committee

4.2.2 The Scrum Master in charge of enforcing the SCrum ProCessccccueecvuveeecvveesivveeeesieeeninns 78
4.2.3 Sprints are four weeks or less, carried out one after the other............ccccocueeecvveeecceeeecienennn, 79
4.2.4 Sprint Reviews are carried out at the end of €ach SPrint............cccceeeveevoeenceesieeesieeieeeeene 80
4.3 RARELY FOLLOWED SCRUM GUIDELINESuuuevvtteeeseseiirreeeeesssunneteeeesssasssreesesssassssseesesssassssseesssssnssssseessssnnn 81
4.3.1 Deciding the number of elements to include in G SPrintcceeevveeciveeseesiiesciiesiresiieesieeens 81

4.,3.2 Distractions during G SPriNt.........cec.eeevueeeeieesieesieesiie et ettt sit st ste st esiteesiteesaeessbnessseenans 83

4.3.3 Daily Scrums that are not internal to the development team...............cccccvevveeevcvvesceveseeeseenne 85
4.3.4 Product Backlog as the only source of reqUir€mMentscccoecueeevueencieenseeesieenieesieeseeeieeas 86
4.3.5 The Product Owner’s responsibility over the Product BAcCKIOg...........ccceveveecvescrvesireesivesnannns 87
4.3.6 Monitoring and sharing progress

4.4 INDUSTRY-DRIVEN PRACTICES ...eeeerereeerreeenns
4.4.1 Other events: Grooming and Triage.................
4.4.2 Scaled Scrum T€AMS.........ceevvvevceeesireiienieanns
4.4.3 Continuous Scrum in software companies

4.5 PARTICIPANTS’ PERCEPTIONS OF SUCCESS..veeeuveeeveesureesseeessseessessssessssessssessssesssssssssssssesansessnsesssssssssessssesnsesan
4.5.1 Project Management SUCCESS (IFON TrIANGIE).........cueeceeeceeeieesiieeieesiseeieesiseseeesreeeseesiseaans 94
E A a0 | =] 1o [0 [T O Y Lol ol =X X SRS 99
4.5.3 Organizational and StrategiC SUCCESSccuerevervieesiiesiieesisesieesieessieessieesteesissessssssessseees 103
4.5.4 5uccess: @ SUDJECEIVE @VAIUALIONcc.eeeveeeieesiieiiiesisesie et st st ste s seesite e steesiesssisessee s 104
4.5.5 Patterns in Scrum guidelines application anNd SUCCESSccccevueeceercivesseesiiesieesiisesieeins 105

4.6 SCRUM DEVIATIONS' LINK TO PROJECT SUCCESS ..uvveeuvreeruresreeesseesseesseessseessseessseessesesseesssesssseesssesssseessseesas 105

4.6.1 The development team’s control over Sprint workload and project management success...106
4.6.2 Product Owner’s responsibility for the Product Backlog and project management success .108
4.6.3 Conducting retrospective meetings and both project management success and customer

R ool =X X SRRt
4.6.4 Sprint Backlogs for work forecasting and project management success

CHAPTER 5 : DISCUSSION AND CONCLUSIONccccctttiiiiimmimmmiimniiiiiiiiiiiiemiiesiiesimssimsssmsssssssssssssssssssssss 117
5.1 REMINDER OF RESEARCH OBJECTIVES AND METHODOLOGY ..uvvevuverenreerureeereesreesueesseeessessseessseessseesssesssseesane 117
5.2 IMIAJOR RESULTS 1.ueetttteeesseriettteeesseataseeeeesssastseaaeeessasssssaaeessssanssasaeesssssanssnseesssesasseseeesssssssseesesssnsssnnens 118
5.2.1 Variability in Agile Scrum guidelines applicationoccccovvueevoeeesieesieeeiiieseesieeeeeeen 118
5.2.2 Emergent industry-driVen PractiCescuueeeiueiesiuiieeesiieeeeiieseesieeessiieeessieeessieeessiiesennans 119
5.2.3.5Uccess as G SUDJECLIVE @IEMENT..........cc..eeeeeiiieeiie ettt ettt e stee s e e s siiee e 120
5.2.4 Scrum deviations and Project SUCCESSccuerivervivesiiiesieesisesiieesieessieessieessesssssessssssssssseses 121

5.3 RESEARCH CONTRIBUTIONS «...vteeeuttteseueteeesuuteessseeessseeeesueeassssseesssnseeesasssessnssesssssseesanssesssnseeessnseeessnsees 122
5.3.1 Contributions t0 KNOWIEAGEueeeeeueeeeeeieieeeceeesee et e e et e ettt e e st aeetaa e s snaaaeessseaeenes 122
5.3.2 Contributions to practice............

5.4 LIMITATIONS AND FUTURE RESEARCH .

5.5 CONCLUSION ettt ee e e ettt e e e e ettt e e e e e s ubaet e e e e e e s abab e e eee e e s asbaeeeeesesaanbabeaeaeeeansseaeaeeeesannbaneeeeeesaanses

APPENDICES......ccitttiiitiiiiiiieiiieeeiieesieeseessssesssnssnnns |
APPENDIX At INTERVIEW GUIDE.......etteieieiiteteeeeeeeeteteeee e e e sttt e e s sesunbeeeeeeeseannteeeeeeseannnraneeeesaannnsseeeesesannnnreneeas I
APPENDIX B 1 44 SCRUM GUIDELINES ...t euuutttteeeeaeruerteeeesaasusreeeeessaaunssteeesssaanssseeesesssansseseeessesannseneeesesannnseeees 1l
APPENDIX C : SAMPLE RECRUITMENT EIMAIL...ctuutteiuieeniieeniteeiteesieesieesibeesaseesiteesseessseessseesabeessseesaseesssesssssessnesnsens I
APPENDIX D : HIERARCHY CHART OF NODES (4 LEVELS) .veeruveerureesireenueeeieesseesteesseesaseesseesssesssseesseesnseessessnsesssees I

REFERENCES........ceiiiiiiiiiiiiiiiiiisinssuessesssessssesseesssseeseeeseeessmeessesseessneesnnenns]

LIST OF FIGURES

FIGURE 1 THE IRON TRIANGLEtttteeeieiuereeeeeseaaiureeeeeessaaneteeeeeesaannnreeeeesesanneneeeesaaannsaeeeeeeaesannneneeessesnnnsnneeesssannns 10
FIGURE 2 SQUARE-ROUTE MODEL FOR PROJECT SUCCESS (ATKINSON, 1999) ...ciiiviieiieriiesieesieesieesieeesieeeveeeseee e 14
FIGURE 3 TIME FRAME OF SUCCESS DIMENSIONS (SHENHAR ET AL., 2001) ...ccueiiiiiiiienieenieeniieeseeeieeesieesieeseeesaeee s 16
FIGURE 4 RELATIVE IMPORTANCE OF SUCCESS DIMENSIONS ACCORDING TO PROJECT TYPE (SHENHAR ET AL., 2001)............ 17
FIGURE 5 SCRUM PROCESS REPRESENTATION (ABRAHAMSSON ET AL., 2017) weeieuiiiieiiee ettt ettt e 37

FIGURE 6 THE DEVELOPMENT TEAM’S CONTROL OVER ITEMS TO INCLUDE IN A SPRINT VS PROJECT MANAGEMENT SUCCESS 106
FIGURE 7 PRODUCT OWNER'’S SOLE RESPONSIBILITY FOR THE PRODUCT BACKLOG VS PROJECT MANAGEMENT SUCCESS108
FIGURE 8 CONDUCTING RETROSPECTIVE MEETINGS WITH THE OBJECTIVE OF INSPECTION AND IMPROVEMENT VS PROJECT
MANAGEMENT SUCCESS +vvteuvteeeiurreeesuresesseeeesasseesssssesesasssessnssesssssseessssssessnssessssssssssssseesasssesssssssesssseessns 110
FIGURE 9 CONDUCTING RETROSPECTIVE MEETINGS WITH THE OBJECTIVE OF INSPECTION AND IMPROVEMENT VS CUSTOMER
SUCCESS -ttttteeeeesaunetteeeeeeauuee et e e esesasse bt e eeeeaansa e et eeeeesmsbe e e e ee e e s nnse e e eeeeee s nsbe et e eeeeaannbaneeeee e e e nsreeeeeeeeaannree 111
FIGURE 10 TEAM CREATING A SPRINT BACKLOG TO FORECAST THE WORK NEEDED TO ACHIEVE THE SPRINT GOAL VS PROJECT

MANAGEMENT SUCCESS ..euiuitiiiiiiiitiiiiiirie ettt e s et sa et eae s saantasasassrassnsaesasansnsansnsassnrans 113

LIST OF TABLES

TABLE 1 DEFINITIONS OF PROJECT MANAGEMENT IN THE LITERATURE «..uuutittteeeeeniiteeeeeeeesinreeeeeeesesmnreneeessesnnnneeeeesssannns 7
TABLE 2 PROJECT SUCCESS FRAMEWORK (MORRIS & HOUGH, 1987) ...cceiuiiiieiiieecieeeettee ettt 13
TABLE 3 SYNTHESIS OF THE DIFFERENT ASPECTS OF PROJECT SUCCESS....veeuvveeureesueeenueessseesseesseesseesseeessseesseesssessnseesane 19
TABLE 4 AGILE SCRUM FRAMEWORK COMPONENTS (SCHWABER & SUTHERLAND., 2013)ooviiiiiiiieciieeeeiiee e 30
TABLE 5 COMPARING AGILE AND TRADITIONAL SOFTWARE DEVELOPMENT ...etteteeeiutereeeaeeesurerteeeesesanreneeeesessnnnneeeeens 41
TABLE 6 AGILE PROJECT MANAGEMENT AND SUCCESS ASPECTS 1..uvveeesurreeesuresessueeessssseeesssseeesssseesesssessssssesessssensssssenes 49
TABLE 7 COMPARISON BETWEEN QUALITATIVE AND QUANTITATIVE RESEARCH (SILVERMAN 2005)eovvveeniierniieenireniieenns 56
TABLE 8 THE INTERVIEW PROCESS (GALETTA, 2013) ...uiiiiiiiiiiiiee et e ettt e et e e et e e eete e e eeaaeeeetaeeeesaeeeeneeaeesreaaan 58
TABLE 9 LENGTH AND NUMBER OF PAGES PER INTERVIEW ...uuuteiteeteseseiieieeeeessssiaseeesesssnssnsseaeesssasnsnseeaesssssssssneesessnns 62
TABLE 10 GUIDELINES WITH MOST VARIABILITY IN TERMS OF ADOPTIONveeuuveeureeteeesteesseesseesreesseeessseesseesssesssseennne 64

TABLE 11 OVERVIEW OF PROJECTS AND RESPONDENTS ...eevvvutuuneeseeerersssnnnaseeeessssssnnnesesesssssssmnnseesessssssssnesesessssssssnnnnns 68

LIST OF ABBREVIATIONS

Abbreviation Original Term

IT Information Technology

CSR Critical Success Factors

ACKNOWLEDGMENTS

To my eternal cheerleaders, Hasnaa and Ali, because | owe everything | am to you.

First and foremost, my deepest appreciation goes to professor Ann-Frances Cameron,
whom | was spoiled to have as a supervisor. | am extremely grateful to you for assisting
me into growing an interest into an idea and later a master’s thesis. Thank you for your
generous support, your kind-hearted guidance, and for initiating a system that worked for
both of us.

Again, | am beyond grateful to my forever loving, enthusiastic, and supportive parents,
Hasnaa and Ali, without whom this achievement would have never been possible. Your

love is my superpower. Thank you for your silent sacrifices and kind words.

A very special gratitude goes out to my good friends who have provided me with moral
and emotional support throughout this journey. Thank you Nisrine and Soukayna for
assisting me through my worst days, even across the Atlantic. Many thanks to Antoine,
Theophile and Marianne for the best lunch break conversations one could ask for. Thanks
should also go to Valérie and Alicia for the last-minute, improvised, yet very helpful,

writing retreats.

I am also very grateful to the faculty of the Information Technology department at HEC.
Your knowledge, insights, and proximity expanded my vision of this field and made me

appreciate it even more.

Finally, last but by no means least, | would like to thank all the participants who have
generously agreed to share their experience. Our encounters opened my eyes to the reality
of a field I am interested in. Thank you for keeping up with my endless questions. Your

contribution is invaluable.

Thank you all!

CHAPTER 1 : INTRODUCTION

1.1 Context

The world in which we live runs on software. From workstations and servers to Internet-
of-Things powered sensors and embedded devices, software is present in all forms and
shapes in our daily lives (Driver & Klinect, 2018). In addition to products and services,
business processes are becoming increasingly dependent on software (Ullah & Lai, 2013,
McKinsey & Company, 2015). Software already supports 80% of automobile innovation
(McKinsey & Company, 2015). Consequently, embracing information technology, with
software projects at its core, is essential to value creation and competition across various
industries (McKinsey & Company, 2015). Indeed, a performance gap exists between
companies that do leverage technology and those that do not, leaving organizations no
choice but to take the leap (Brynjolfsson, 2010). Following this paradigm shift in
industries, global information technology spending has increased steadily in the past
years, and companies are increasingly investing in their software (Driver & Klinect, 2018;
Deloitte, 2017). Indeed, global IT spending is projected to reach $3.8 trillion in 2019
(Garfinkel, 2018), and Gartner estimates that, every year, companies allocate between
20% and 40% of their IT budget to new initiatives (Smith & Proctor, 2013).

Despite significant investments and efforts towards information technology initiatives,
success remains a major challenge (Charette, 2005; Smith & Proctor, 2013; Standish
Group, 2013; Alami, 2016). In its 2015 CHAOS report, the Standish Group, a primary
research advisory organization with a focus on software project performance, studied the
performance of 50,000 software projects around the world. Its report revealed that
software projects are more likely to fail than succeed based on both project management
process (time, budget, target) and the end results of the project itself, with nearly 70% of
projects either failing or being challenged (Standish Group, 2015). The report highlights
that, in addition to being hard to achieve, success in software development projects is also
hard to define (Standish Group, 2015). In fact, although an important theme in project

management literature, project success holds no widely agreed upon definition (Jugdev

& Miiller, 2005; Lavagon, 2009; McLeod et al., 2012).

To cope with software project challenges, practitioners resort to project management
methodologies. In fact, using the appropriate project management methodology in
software development is a critical issue and one of the major reasons behind project
failure (Alami, 2016; Joslin & Miller, 2015; Shahrbanoo et al., 2012). Agile project
management emerged in the 1990s as a set of practices developed by experienced
practitioners as an alternative to traditional plan-based methods (Dyba & Dingsgyr, 2008;
Birkinshaw, 2018). This values-based approach which emphasizes interactions, customer
collaboration, responding to change, and rapid continuous delivery, gained momentum in
the software industry following the publication of the Agile Manifesto in 2001
(Birkinshaw, 2018; Dyba & Dingsgyr, 2008; Beck et al., 2001). Owing to the fact that
Agile methodologies are more responsive and collaborative than traditional ones,
companies adopting them experienced higher productivity within software development
teams, faster delivery, and better costumer experiences (McKinsey & Company, 2015;
Birkinshaw, 2018). Moreover, several researchers have also established that Agile
methodologies contribute to more successful projects (Santos et al., 2013; Dyba and
Dingsgyr, 2008; Mann & Maurer, 2005).

Agile is presently entrenched as the most popular project management approach in
software development (Reifer, 2017; Rigby et al., 2016). According to the cross-industry
State of Agile survey, 97% of the 1,319 organizations surveyed reported practicing Agile
development methods (Versionone, 2019). In addition to having revolutionized the
software industry, Agile principles have extended into mainstream management thinking
and are set to transform work practices in several industries (Rigby et al., 2016). Among
companies using Agile, 72% reported using Scrum or a variation of Scrum, making it by
far the most popular framework and applied form of Agile in software development
(Versionone, 2019).

While the Scrum framework comes with a set of rules and guidelines to follow, these are
often modified in practice (West & Grant, 2010; West, 2011). In recent years, a growing

body of literature has examined the tailoring of general Agile practices. However, few
studies have been published regarding the tailoring of the Scrum framework and its
impact on project outcomes such as project success (Ashraf & Aftab, 2017; Hron and
Obwegeser 2018). This literature gap is even more relevant given that most organizations
choose to adopt the guidelines of a specific methodology rather than general Agile
practices (Kiv et al., 2018). Moreover, research has not yet looked into the relationship
between Scrum tailoring and project success. In an effort to improve Scrum tailoring in
practice, more research is needed regarding how the framework is tailored and how
changes to the guidelines link to project outcomes. Several questions remain unanswered
such as: What are the practices adopted in Agile Scrum practice, and which ones are most
likely to be ignored or modified and why? Are there any additional practices initiated by
the teams? Can these changes impact project outcomes? Is there a link between the Agile

Scrum framework guidelines and project outcomes?

1.2 Research questions and objectives

To address the research gap outlined above, the objective of this research is to understand
how the Scrum framework is tailored in practice, and whether specific modifications
made to the Scrum guidelines impact project success. This research also contributes to
the discussion regarding how Agile frameworks can be best tailored to accommodate
organizational constraints while embracing Agile values and contributing to project
success. In so doing, our research questions are: How is the Agile Scrum framework
applied in industry? Is there a gap between theory and practice? And how are

deviations from the Scrum framework in industry affecting project success?

1.3 Thesis structure

This research is structured in five chapters. This first chapter introduces the context,
research questions and research objectives. The second chapter consists of a literature
review that provides a global overview of the main topics relevant to the research

questions. Therefore, the literature review helps lay the foundations of project

management with Agile Scrum and project success. The third chapter describes the
research methodology adopted, namely the data collection and analysis. The fourth
chapter presents the respondents’ profiles in addition to the detailed results following data
analysis. Finally, the last chapter concludes this research by providing a synthesis of the
main results and the contributions made to the scientific literature and practice.
Furthermore, the last chapter discusses the research limits and future research

opportunities

CHAPTER 2 : LITERATURE REVIEW

The literature review chapter lays the necessary theoretical foundations regarding the
most important concepts related to the research questions stated above. Accordingly, this
chapter will start by covering a brief history and definition of project management, before
diving into the concept of project success and how it has evolved in the scientific
literature. Further, this chapter will provide a detailed breakdown of the agile project
management approach, its values, principles, and how it compares to the traditional
approach. More specifically, the agile Scrum framework will be demystified and
clarified. Finally, this chapter will also give detail of the literature on agile and success,

as well as agile on practice.

This literature review was elaborated through researching several databases such as
ABI/INFORM, IEEE Xplore, ScienceDirect and SpringerLink. Following an iterative
process, key words were formed and fed into the search engines. Key words included but
were not constrained to: “Information Technology project management”, “Project
success”, “Agile project management”, “Scrum software development”, “Tailored agile”,
“Agile in practice”, “Scrum in practice”, “Tailored Scrum”. Additionally, forward and
backward searches were conducted through search engines like Google Scholar to
identify related themes and keywords. The findings were organized, synthesized by

themes and presented in this chapter.

2.1 Project Management

While examples of project management go back as far as Ancient Egyptian times and the
construction of pyramids, researchers seem to agree that the term “Project Management”
only emerged in the latter half of the 20" century with the Manhattan Project (Weaver,
2007; Lenfle & Loch, 2010). With its principles of planning, organization and direction,
the Manhattan Project, which goal was to build an atomic bomb in the 1940s, is
considered the first “project” and the origin of modern project management standards
(Weaver, 2007; Lenfle & Loch, 2010). It was not until 40 years after the Manhattan

Project, in the 1980’s, that project management started being applied to the field of
software development (Kwak, 2005). Currently, project management is an essential way
of organizing work in most organizations (Bakker, 2010). It is a recognized discipline

applied across different sectors and industries on a global level (Turner & al., 2010).

The project management institute, which is considered the most influential association
governing the project management discipline, defines project management as the
“application of knowledge, skills, tools, and techniques to project activities in order to
meet the triple constraints of scope, time, and cost” (Project management institute, 2018).
With that being said, several variations of the definition of project management exist in

literature. The table below assembles key definitions found in literature:

Researcher(s) Definition of Project Management

“Project Management is the application of
a collection of tools and techniques [...] to
direct the use of diverse resources toward
the accomplishment of a unique, complex,
one-time task within time, cost and quality
constraints. Each task requires a particular
mix of these tools and techniques
structured to fit the task environment and
life cycle (from conception to completion)
of the task.”

Oisen (1971) in Atkinson (1999)

“The art and science of converting vision

Turner (1996) into reality.”

“Project management is a learning
profession. Based upon past mistakes and
Atkinson (1999) believed best practice, standards such as
BS 60794 and the UK Body of
Knowledge continue to be developed.”

“Project management is an iterative
process that can be considered as “a lock-
step sequence of activities with the

Ur Rehman & Hussain (2007) application of knowledge, skills, tools,
and techniques to project activities in
order to meet or exceed stakeholders
needs and expectations.””

Table 1 Definitions of project management in the literature

Several contributions have been made to the definition of project management. Early
definitions focus mainly on the iron triangle: the constraints of time, cost, and scope
(Atkinsson, 1999). In that regard, project management is used as a tool to achieve project
efficiencies and focused on aspects of executability, temporality, linearity, controllability
and instrumentality (Svejvig & Andersen, 2015). More recent definitions introduce “soft
skills” encompassing stakeholders, communication, and leadership (Weaver, 2007).
Project management thus evolved from being a set of tools and techniques to being
considered a holistic discipline to attain organizational effectiveness, efficiency and

innovation involving cultural and interpersonal aspects (Jugdev & Al., 2001).

2.2 Project Success

While all projects aim to be successful, the meaning of success varies in the scientific
literature. Indeed, although project success makes for an important and frequently
mentioned topic in both the IS and project management literatures, researchers have yet
to reach a consensus on its definition (Ika, 2009). The definition of project success has
evolved over time, progressively widening its scope as a result of being refined through
several researchers’ contributions (McLeod et al., 2012). While project success has for a
long time only been concerned by the ability to respect time, cost, and quality constraints,
examples abound of projects that have been successful in meeting these constraints and
still considered to be failures (Ika, 2009). In this regard, Collyer and colleagues (2010)
give the example of Iridium, a multibillion-dollar project to build and launch a satellite
infrastructure that succeeded in regard to time, cost and quality, only to be considered an

utter failure from a business perspective. On the other hand, several projects exceeded
budget and time constraints, but were still considered successful, or as the literature
sometimes call them, “successful failures” (Nelson et al., 2014). Project success is
therefore linked to broader objectives than simply time, budget or cost. This has led to a
notable contribution to project management literature on project success: the distinction
between project management success and project success, the latter encompassing the
former. Accordingly, Cooke-Davies (2002) distinguishes between the two terms as

follows:

Project management success: measured against traditional performance
measures such as time, cost, and quality.
Project success: measured against the overall objectives of the project.

This means that project management success can contribute to the project’s success but
does not guarantee avoiding failure (Davies, 2002). It also means that achieving project
success is more demanding than achieving project management success (Davies, 2002).
This could be illustrated by the saying, “The operation was a success, but the patient
died.”

Despite this distinction, project success remains a challenging concept to define. Ika
(2009, p. 8) affirms that while project success is a vague concept, it does encompass two

definite notions; efficiency and effectiveness:

The concept of project success remains vague, to the point that the literature on
project management does not reach a broader consensus on its definition and
measurement than to say that it involves efficiency and effectiveness.

Efficiency and effectiveness are both considered goal-oriented practices related to
achieving success (Belout, 1998). Efficiency means maximizing output for a certain level
of input, whereas effectiveness looks at reaching goals and objectives. More broadly,
effectiveness is known as doing the right thing, and efficiency as doing things right.
(O’Shaugnessy, 1992).

Overall, project success has evolved throughout the years from definitions being solely
concerned about the implementation phase of the project life cycle to more holistic ones
that reflect the whole project and product life cycle (Jugdev & Miiller, 2005). Therefore,
project success, like project management, has gone from an operational view with the
three factors making up the Iron Triangle to a strategic concept (Shenhar et al., 2001).
The rest of this section explores the evolution of the definition of project success through
three major time periods (inspired by the work of Jugdev & Muller, 2005; Ika, 2009;
Mcleod et al., 2012; Davis 2014, 2018; and Albert et al., 2017).

2.2.1 The Iron Triangle (1960s - 1980s)

The Iron Triangle, which is widely known for the three constraints of time, cost and
quality (see figure below), represents the early views on project success (Atkinson, 1999;
Jugdev & Muller, 2005; Ika, 2009; Albert et al., 2017). These three constraints are also
known as the “Triple Constraint”, “Golden Triangle”, “Triangle of virtue”, “Holy trinity”,
or simply “time/cost/quality triangle” and focus on process success at the implementation
phase (Ika, 2009).

Despite the fact that, according to the definition of Cooke-Davies (2002) presented earlier
in this chapter, the three constraints of the triangle are only concerned with project
management success, these constraints were used to assess overall project success. The
Iron Triangle is therefore considered as a foundation in project management (Atkinson,
1999). Wateridge (1998) justifies the emphasis on time, cost, and quality due to the nature
of the work of project managers, who are evaluated on their ability to deliver to these
short-term variables. Out of the three constituents of the Triangle, Tukel & Rom (2001)
claim that quality is project managers’ primary success measure. Quality, according to
Tukel & Rom (2001) “is found to be associated with not only customer focus and rework
reduction but also with conformance to technical specifications” (Tukel & Rom, 2001, p.
412).

It is worth mentioning that, while there is a general consensus about the time and cost
aspects of the Triangle, the quality vertex of the Triangle has been contested by several

9

researchers (Pollack et al., 2018). While quality is the most used designation for the third
vertex, some researchers believe it should be termed *“Scope”, *“Performance”, or
“Requirements” instead (Pollack et al., 2018). In their exploration of the evolution of the
concept of the Iron Triangle, Pollack and colleagues (2018), find that the concepts of
quality, cost and time were highly correlated in the scientific literature and that the level
of interconnection between them is significantly greater than that of the other term used

to replace quality.
Cost

/

-Qunliiy Time

Figure 1 The Iron Triangle

Although a central concept to project management literature, the Iron Triangle receives a
lot of criticism (Pollack et al., 2018). Firstly, limiting success to time, cost and quality
while overlooking product or service value gives project management a tactical
operational value rather than a strategic one (Jugdev & Mauller, 2005). Shenhar and
colleagues raise the same issue, asserting that the assessment of time, budget and
performance in early project management literature reflects an operational mindset.
Moreover, Atkinson (1999) considers the Iron Triangle to be incomplete and a type 1l
error in that we are omitting other criteria of success and thus wrongly evaluating project
success. He argues that time and budget are nothing more than guesses at the early stages
of the project, while quality is a phenomenon that changes across the project life cycle
based on people attitudes and beliefs (Atkinson, 1999). In their study, Nelson and
colleagues (2014) illustrate the claim by Atkinson (1999) by showing that most IT

10

projects were late (61%), and 40% were over budget. However, for the same projects, the
overall stakeholder satisfaction was rated at 91%, making 9 out of 10 projects “successful
failures” as they eventually meet the requirements and add value to the organization.
Nelson and colleagues (2014, p. 25) conclude that the main reason that these projects fail
on process criteria is poor estimation. Indeed, results suggest that “classic mistakes” are
made in 64% of projects, causing poor estimations for reasons such as poor problem/
requirement definition, scope creep, lack of requisite knowledge and skills, inadequate
estimation methodologies, lack of historical data, lack of visibility or control, and
pressure from stakeholders. These results validate the claim of Atkinson (1999) that we
cannot rely on time and budget, as they are two guesses made at early stages. A different
angle of criticism is offered by Van der Hoorn and Whitty (2015), who declare that the
Iron Triangle creates an overly-simplified picture of project work and project managers’
responsibilities. This oversimplification reinforces a thinking that is not aligned with the
reality of project practice, causing anxiety among practitioners over unrealistic project
control expectations (Van der Hoorn & Whitty, 2015). In spite of the criticism, the Iron
Triangle is still considered a preeminent approach to evaluating project success and an
essential building block for the definitions that followed (Pollack et al., 2018; Jugdev &
Miiller, 2005).

2.2.2 Critical Success Factors: Lists and Frameworks (1980s- 2000s)

This second period is characterized by a shift in the focus of the project success literature
from trying to assess whether a project is successful to trying to determine the precursors
of successful projects (Jugdev & Miller, 2005; Ika, 2009). Accordingly, researchers
attempt to answer the question: “What do we need in order for a project to be successful?”
Moreover, stakeholders’ satisfaction emerges as a significant indicator of project success,
particularly client satisfaction (Jugdev & Muller, 2005). Indeed, the competitive
marketplace and the focus on service and satisfaction highlights the importance of client’s
satisfaction (Jugdev & Muller, 2005). Therefore, in addition to the criteria of time, cost,
scope, and quality, the literature starts focusing on product use, client satisfaction and
client and organizational benefits (Mcleod et al., 2012; Ika 2009).

11

This period can be further divided into two sub-periods as Critical Success Factors lists
emerge first, followed by Critical Success Factors frameworks. In the period from the
1980s to 1990s, several Critical Success Factors are identified and described (Jugdev &
Miiller, 2005). However, Critical Success Factors’ lists are produced unmethodically, and
are not organized or grouped in a coherent manner, but are rather divided intuitively
(Davis, 2014). Pinto and Slevin (1987) are widely recognized for their list of ten Critical
Success Factors (Jugdev & Miller, 2005) comprising of: clear project mission, top
management support, schedule and plans, client consultation, personnel, technical tasks,

client acceptance, monitoring and feedback, communication, and troubleshooting.

Several contributions are made in terms of Critical Success Factors lists, mainly focusing
on ensuring operational (Iron Triangle) and stakeholders’ success (Jugdev & Miller,
2005). However, researchers later agree that it is impossible to come up with an
exhaustive list of success criteria that could work for the needs of all projects (Jugdev &
Miiller, 2005; Ika, 2009). According to Ika (2009, p. 9), that is due to the fact that CSFs

change according to the variables of each project:

This stems directly from the fact that success criteria and CSFs can differ so
much from one project to another due to variables such as project scope,
uniqueness, and complexity.

In addition, Pinto and colleagues (1988) argue that even within the same project, critical
success factors are not equal, as they vary across the different stages of the project life

cycle.

In the 1990s, significant contributions are made to project success literature with the
emergence of Critical Success Factors frameworks, and the recognized importance of
success as being dependent on internal and external stakeholders (Davis, 2012). Morris
and Hough (1987) are considered pioneers in the development of a comprehensive
framework of project success determinants, based on eight case studies (Jugdev & Miller,
2005). Accordingly, they divide project success into four categories, answering four

questions, as presented in the following table:

12

Project Success Category Question

. . . Does the project meet financial and
Project functionality : .
technical requirements?
Did the project meet the budget,
schedule, and specifications?
Contractors’ commercial | Did the contractors benefit

Project management

performance commercially?
In the event that the project had to be
Project termination cancelled, was this decision made

reasonably and efficiently?
Table 2 Project Success framework (Morris & Hough, 1987)

In a similar effort to provide more structure to the concept of project success, Belassi and
Tukel (1996) categorize the individual success factors found across literature. In addition
to providing a categorization of critical success factors, Belassi and Tukel (1996) also
attempt to represent the interaction between these factors. Accordingly, their
classification comprises four categories of factors: factors related to the project, factors
related to the project manager and team, factors related to the organization, and factors
related to the external environment (Belassi and Tukel, 1996). Atkinson (1999) takes
categorization of CSF a step further, and suggested the Square-Route as a more balanced
and realistic way to look at project success. Ensuing from a literature review and analysis,
Atkinson (1999) forms his Square-Route model, which starts with the Iron Triangle as a

base and adds three other success criteria groups.

13

The Iron Triangle The Information System

The Square
Route

Benefits Benefits
(Organisational) (Stakeholder Community)

Figure 2 Square-Route model for project success (Atkinson, 1999)

In the Square-Route model, Atkinson (1999) attempts to group and categorize criteria of
project success proposed by other authors, namely: Turner (1993), Morris and Hough
(1987), Wateridge (1998), deWit (1988), McCoy (1987), Pinto and Slevin (1988),
Saarinen (1990) and Ballantine (1996). He suggests three new categories to classify these
criteria: the technical strengths of the resulting system, the benefits to the resulting
company, and the benefits to a wider stakeholder community (Atkinson, 1999). Benefits
to the resulting company are also called direct benefits, while the benefits to the
stakeholders are considered indirect (Atkinson, 1999). The information system category
includes criteria such as maintainability, reliability, validity, information quality and use
of the system (Atkinson, 1999). Benefits to the organization, on the other hand, include
criteria such as improved efficiency and/ or effectiveness, increased profits, and reduced
waste (Atkinson, 1999). Finally, the category concerning benefits to the stakeholder
community carries criteria such as satisfied users, social and environmental impact,

personal development, and professional learning (Atkinson, 1999).

In essence, between the 1980s and the 2000s, several researchers contribute to the project
success literature, first through the development of CSF lists, and later with CSF

frameworks. This has widened the scope of project success from the then-dominant triple

14

constraints view of the Iron Triangle. Indeed, CSF lists and frameworks enable the
introduction of stakeholders and the external environment, providing a more

comprehensive, less technical, and more realistic view of project success.

2.2.3 Holistic View of Success- 21st Century

The literature of the 21% century expands the definition of project success even further,
considering project management as a strategic asset to the organization (Jugdev & Miller,
2005). Thus, the dimensions of project success transcend the benefits to the organization
and become concerned with strategically “preparing for the future” through contributing

to future innovations and development of core competencies (Jugdev & Miiller, 2005).

Accordingly, several researchers enrich the existing views on project success with an
additional strategic aspect that goes beyond the project’s implementation phase. For
instance, Shenhar and colleagues (2001) emphasize on the importance of projects as
strategic assets in a company, labeling them as “powerful strategic weapons”. In
developing their multidimensional framework for assessing project success, they identify
four dimensions to success, namely project efficiency, impact on the customer, direct
business and organizational success, and preparing for the future. Shenhar and colleagues
(2001) add that success dimensions vary according to time and technological uncertainty
within the project. Project efficiency is concerned with meeting schedule and budget
goals, which are two vertices of the Iron Triangle (Shenhar et al., 2001). The impact of
the customer dimension includes meeting the needs of the customer, as in the technical
and functional requirements. It is concerned with satisfying the customer, solving the
customer’s problem and having them use the final product. Business success regards the
benefits of the performing organization which can range from additional profits to
increasing market share and launching new product lines (Shenhar et al., 2001). Finally,
preparing for the future addresses the question: “How does the current project help the
organization face future challenges?” (Shenhar et al., 2001). Their framework illustrates

how these dimensions vary according to time and technological uncertainty:

15

Success Project
Dimension , Success

Prepare
the Future

Business
Success

3

Impact on
Customer 2

Project
Efficiency

Very Short Long Very -
Short Long Time Frame

Figure 3 Time frame of success dimensions (Shenhar et al., 2001)

Their framework displays the relative importance of these success dimensions as
contingent on time. Shenhar and colleagues (2001, p. 717) assert that “different
dimensions are more important at different times with respect to the moment of project
completion”. For example, while the first dimension, project efficiency, is highly
relevant in the very short term, meaning during the project’s execution and right after it
is done, the fourth dimension can only be assessed in the long run. Shenhar and colleagues
(2001) estimate that to be two, three, or even five years after the project has been
completed.

While their first framework presented relevant project success dimensions as time-
dependent, Shenhar and colleagues (2001) presented another framework according to
which the importance of project success dimensions varies depending on the type of
project. To determine the typology of projects, Shenhar and colleagues (2001) use
technological uncertainty as a way to differentiate between projects and demonstrate that
technological uncertainty affects the relevance of the four project success dimensions
previously discussed. Shenhar and colleagues (2001) thus argue that for projects with
lower technological uncertainty, the efficiency dimension is highly relevant, since their
expected benefits can be predicted in advance, and their immediate success relies on

16

meeting the schedule and budget goals. For projects with higher technological
uncertainty, on the other hand, long-term benefits make up for short-term poor

performance (Shenhar et al., 2001).

A

4
Prepare the
Future

3
Business
Success

Relative Importance

2
Impact on
Customer
1
Project
Efficiency
| I
! 1 >
Low Medium High Super Technological
Tech Tech Tech High Uncertainty

Tech

Figure 4 Relative importance of success dimensions according to project type (Shenhar et al., 2001)

Similarly, Nelson and colleagues (2014) also highlight the element of preparation for the
future in their framework by encompassing groups of factors that go beyond the project
management process and also assess the outcome of the project. Starting with the Iron
Triangle as a way to measure process success, Nelson and colleagues (2014) add another
triangle to assess the project outcome. These outcome criteria include the use of the
system by the targeted users, the impact on stakeholder knowledge, the impact on the
organization’s readiness for future challenges, and the impact on effectiveness and

efficiency.

Recent project success literature is also characterized by the growing recognition of the
importance and responsibility of other stakeholders, particularly project owners, in
project success (Jugdev & Miiller, 2005; Davis, 2014). It is worth mentioning that while
the terms “project owner” and “project sponsor” are sometimes used interchangeably,

17

Tuner and Zolin (2012) distinguish between the two roles: project owners are investors
with whom the main point of contact is at the beginning of the project. The contact with
project sponsors, on the other hand, is throughout the whole project, meaning before,
during, and after the project. Moreover, given that senior management is responsible for
linking organizational plans with project goals, their commitment is established as
essential throughout the whole project and not just at the start (Jugdev & Miiller, 2005;
Davis, 2012).

This century has therefore seen the literature moving away from focusing entirely on the
project manager, to focusing on stakeholders’ satisfaction and how to reconcile different
stakeholders’ perspectives. This opens up a new area of research interest focusing on
stakeholders and their different expectations and definitions of project success. Jugdev
and Muller (2005) suggest this opens an area of research on stakeholders’ perspectives.
In line with Jugdev and Miiller (2005), Davis (2018) presents a new model that comprises
critical attributes in measuring project success across different stakeholder groups. His
research supports the claim that stakeholders’ views must be taken into account at
different stages of the project. The objective of this stakeholders’ approach to success is
to establish that stakeholders’ opinions are valued and taken into consideration, therefore
enhancing motivation and creating a more productive environment, the ultimate objective

being an agreed upon successful project delivery (Davis, 2018).

While there still exists no common definition of project success (Davis, 2014; Albert et
al. 2017), Jugdev & Muller (2005) claim that most recent literature outlines four
conditions for project success. While essential to project success, these conditions do not
guarantee successful project outcome. These project success conditions are stated by
Turner (2004, p. 350) as follows:

1. Success criteria should be agreed on with the stakeholders before the start of
the project, and repeatedly at configuration review points throughout the project
2. A collaborative working relationship should be maintained between the project
owner (or sponsor) and project manager, with both viewing the project as a
partnership

3. The project manager should be empowered with flexibility to deal with
unforeseen circumstances as they see best, and with the owner giving guidance

18

as to how they think the project should be best achieved
4. The owner should take an interest in the performance of the project.

These conditions reflect the liability of the project owner in the overall project success.
Moreover, they also show a more flexible perspective on project success criteria, as these
can be renegotiated with the project owner and other stakeholders throughout the project
life cycle (Jugdev & Miller, 2005). These findings support the perspective-based view of
project success of McLeod and colleagues (2012), according to which stakeholder
perspectives impact the perceived outcome of a project and that project success is
evaluated both according to stakeholders and across time. Furthermore, these findings
also encourage the reconciliation of different stakeholders’ perspectives as stressed by
Davis (2018).

In conclusion, the concept of project success is considerably discussed in project
management literature. While there is still no consensus on its definition, project success
has gradually widened in scope as a result of several research contributions to the topic.
While the Iron Triangle remains a fundamental basis for evaluating project success in
both research and practice, additional criteria have become increasingly relevant to the
understanding of project success. This latter has therefore evolved from a sum of three
technical, process-oriented measures, to a more comprehensive and strategically relevant
construct. The table below synthesizes the different aspects of project success that have

been discussed:

Success Aspect Elements

Project Management Success Quality

Budget

Scope

Schedule
Stakeholders Success Customer satisfaction

Senior Management/Sponsor satisfaction
Team satisfaction
Direct Organizational Success Benefits to the organization

Strategic Success/Value Long-term advantages
Table 3 Synthesis of the different aspects of project success

19

2.3 Software development methodologies

Ur Rehman and Hussain (2007, p. 1) define software development methodologies as

follows:

A methodology provides a strategic level plan for managing and controlling IT
project. It is a combination of interrelated processes which tells us "what should
be done?" but not how it has to be done?” Therefore, it is the methodology that
is adapted to work. It is serves as a template to initiate planning and development
and implementation phases of projects.

In recent decades, new software development methodologies referred to as Agile have
been put forth as an alternative to traditional waterfall methodologies (Thummadi et al.,
2011). Although often considered opposites, the traditional approach and the Agile one
share the same goal: delivering good quality software in an efficient way (Palmquist et
al., 2013). Essentially, they are two different ways of doing the same things: defining,
gathering, analyzing, designing, coding, testing, releasing, and maintaining (Palmquist et
al., 2013). The following sections present the two approaches, their characteristics, and
how they compare to each other.

2.3.1 Traditional software development

The traditional approach of developing software encompasses several methodologies
such as the waterfall method, VV-Model and RUP. Methodologies classified as traditional
are based on a series of steps that are carried out in a sequential way, such as requirements
definition, solution development, testing and deployment (Leau et al., 2012). Because of
the heavy aspect of the plan-driven approach of these methodologies, they became known
as “heavyweight methodologies” (Awad, 2005). This sequential lifecycle is commonly
referred to as “waterfall”; however, several variations exist, and there are different
traditional methodologies like the Spiral Model, Rational Unified Process, and the V-
model (Deemer et al., 2010; Leau et al., 2012).

20

2.3.1.1 The heavyweight software development process

Heavyweight software methodologies rely on predefined processes and extensive
documentation throughout the project (Leau et al., 2012). Such methodologies are
managed in a phase-by-phase manner, as every predefined process needs to be fully
completed before moving to the next one. The first step of any heavyweight methodology
consists of a comprehensive requirements elicitation, in addition to the elaboration of a
plan regarding the length of time of the project as a whole and that of each phase. In this
first step, the team also tries to forecast any problems they might run into throughout the
project. After the requirements are set up, the next step is the design and architecture. In
this step, the team formulates a design and architecture plan by producing a technical
infrastructure using models and/or diagrams. The design and architecture serves as a road
map for the implementation phase. Next, the team moves into the development phase, in
which the software is coded. The testing phase may overlap with the development in order
to fix software issues early on and avoid future complications. Then, towards the end of
the project, when the code produced is close to meeting the specified plan, the customer
is included in the tests and prompted for feedback. Once the customer is satisfied with

the tests, the project is deemed ready and can be delivered.

Heavyweight methodologies share four similar characteristics (Awad, 2005):

1) Predictive Approach
Heavyweight methodologies tend to plan out significant portions of the software
process at early stages. The plans are generally in great detail and cover a long
period of time. Accordingly, this approach focuses on planning how to efficiently
solve the needs of the system before moving to implementation.

2) Comprehensive Documentation
Traditional software development gives importance to documentation and
gathering requirements. It relies on the assumption that all customers’
requirements can be gathered prior to the development phase.

3) Process Oriented
Heavyweight methodologies rely on their process. It is therefore crucial for them

to define well-working processes consisting of tasks to be performed by the

21

different team members according to their role and responsibilities. Moreover, for
each task, a detailed procedure is outlined.

4) Tool Oriented
Heavyweight software development methodologies rely on different project
management tools for the completion of tasks. Examples of these tools include
Gantt charts and applications such as Microsoft Project (Deemer et al., 2010).

As previously mentioned, traditional software development methodologies include an
umbrella of different methods. This review will, however, only focus on the waterfall
methodology.

2.3.1.2 The Waterfall methodology

In the 1960s, the general approach to software development was described as “code and
fix” (Awad, 2005). Accordingly, the process of software development would consist of
only two steps: the first step would be coding, and the second one would consist of fixing
all the bugs and problems. Nonetheless, as software grew in size and complexity, this
method was no longer efficient or sustainable (Awad, 2005). In 1970, the computer
scientist Winston Royce proposed the waterfall methodology in his paper called
“Managing the Development of Large Software Systems” (Marchewka, 2014). The term
“waterfall” is used as a metaphor to represent cascading activities moving from one phase
to the other, where one phase should be completed before beginning the next one
(Marchewka, 2014).

The waterfall model, like other heavyweight methodologies, is a sequential logical flow
of software development activities comprised of phases (Marchewka, 2014). Each phase
has a set of activities and deliverables that must be completed before moving to the next
phase. For example, design activities can only begin once the requirements are elicited
and defined. In practice, there may be some iteration in which the developers have to
return to previous stages, but these iterations are neither wanted nor easy. The waterfall
model, just like other traditional models, assigns a lot of time and effort to the early stages

of requirements’ elicitation and design in order to get them right and avoid expensive

22

modifications at future stages of the project (Marchewka, 2014). The waterfall model is
still used nowadays, especially for large governments systems (Marchewka, 2014).

It is worth mentioning that Winston Royce, considered the father of the waterfall
approach, asserts the need for iterations in his model, suggesting a more iterative version
of the waterfall model (Larman & Basili, 2003; Palmquist et al., 2013). He even describes
his model, if used as is, as being risky and an invitation for failure (Royce, 1970). Hence,
Royce (1970) advises running the model at least twice before delivering the software to
the customer, especially in terms of design and operations areas, to ensure success.
Palmquist and colleagues (2013) explain that the first run of the model is meant for
prototyping and understanding the customer’s requirements and the technologies

involved in order to deliver the most appropriate software to the customer.

2.3.2 Agile software development

Agile methods are a set of practices in software development created by experienced
practitioners in an effort to make better, faster and cheaper software (Dyba & Dingsayr,
2008). Indeed, as the market raised expectations for highly innovative software delivered
in short time spans while embracing ever-changing environments, Agile methods came
about as a response to these market expectations when traditional methods were not
performing as required (Highsmith & Cockburn, 2001). As discussed in the previous
section, traditional methods assume that rigorous work during the early stages is needed
to anticipate all the requirements and reduce cost by developing a plan, sticking to it, and
reducing changes. However, development teams realized that major changes in
requirements, technology and scope could arise outside of their control (Highsmith &
Cockburn, 2001). Moreover, as discussed in the section addressing success in project
management literature, the emphasis shifted from conforming to plan, i.e. respecting
scope time and budget, to satisfying the customer at the time of delivery. For these
reasons, the need for methodologies that proactively embrace change while focusing on

customer value emerged, resulting in Agile methodologies.

23

2.3.2.1 Agility

Before outlining Agile methodologies, it is important to clarify the concept of “Agility”
in the context of software development. The Cambridge Dictionary defines agility as “the
ability to move about quickly and easily” (Agility, n.d.). In project management, this
ability to move quickly and easily has to do with implementing project management
frameworks that allow for the embracing of change and constant readiness to face it
during the project. The concept of agility in ISD has no unified or widely accepted
definition (Abrahamsson et al., 2002; Hummel, 2014).

According to Hummel (2009), the most commonly used research-based definitions are
those of Conboy (2009) and Abrahamsson and colleagues (2002). Abrahamsson and
colleagues (2002, p. 19) review several definitions in literature before proposing this

comprehensive definition:

What makes a development method an agile one? This is the case when software
development is incremental (small software releases, with rapid cycles),
cooperative (customer and developers working constantly together with close
communication), straightforward (the method itself is easy to learn and to
modify, well documented), and adaptive (able to make last moment changes).

Conboy (2009), on the other hand, explores facets of agility based on definitions from
related fields before proposing a definition. He describes the difference between agility,
flexibility and leanness. While leanness is the about the perceived value provided to the
customer, and flexibility is about being rapidly adaptive to change, Conboy (2009, p. 340)

says that both flexibility and leanness are parts of agility, which he defines as:

The continual readiness of an 1ISD method to rapidly or inherently create change,
proactively or reactively embrace change, and learn from change while
contributing to perceived customer value (economy, quality, and simplicity),
through its collective components and relationships with its environment.

While Conboy’s (2009) definition presents more of the social and technical aspects of
Agile methodologies, both definitions stress the importance of adaptability that comes
with agility in project management. Other authors also draw on flexibility and reactivity
to change in their definition of agility. Boehm and Turner (2004) claim that agility is the

24

opposite of discipline. As with an artist that improvises during their performance, Boehm
and Turner (2004, p. 1) put forth that agility lets engineers adjust to new technologies and

changing needs. Accordingly, their definition of agility is as follows:

Agility applies memory and history to adjust to new environments, react and
adapt, take advantage of unexpected opportunities, and update the experience
base for the future.

Finally, Qumer and Henderson-Sellers (2006, p. 505), like Boehm and Turner (2004),
also note using past experience and learning to accommodate new challenges in their
definition of agility:

A persistent behavior or ability of a sensitive entity that exhibits flexibility to

accommodate expected or unexpected changes rapidly, follows the shortest time

span, uses economical, simple and quality instruments in a dynamic environment

and applies updated prior knowledge and experience to learn from the internal
and external environment.

In the four definitions presented, the concepts of cooperation, flexibility, speed, leanness,
learning and responsiveness seem to emerge as constituent of agility. In an effort to
capture the different dimensions that make up agility in ISD, Vial and Rivard (2015)
review the literature and come up with four facets of agility in information system
development: flexibility, cooperation, learning, and leanness. Responsiveness and speed
are also sometimes mentioned as part of agility, although Vial and Rivard (2015) consider

them to be included in the flexibility dimension.

2.3.2.2 The Agile Manifesto

In 2001, a group of software practitioners published the Agile Manifesto, a document
comprising four core values and twelve principles that govern the Agile information
systems development process. The objective was to move away from heavyweight,
documentation-driven methodologies and come up with alternative ways to develop
software (Beck et al., 2001). The group included representatives, who labeled themselves
“The Agile Alliance” and stressed the importance of individuals as the most important
asset (Beck et al., 2001). Moreover, they stated that Agile is not anti-methodology.

25

Rather, Agile ISD principles want to restore credibility to methodologies as they
recognize the importance of documentation and planning, but also recognize their limits
in turbulent environments (Beck et al., 2001). In essence, the Agile Manifesto invites one
to think of methodology in a practical way. Therefore, steps are undertaken for their
usefulness and are not overdone (Beck et al., 2001). For example, they state that
documentation shall be embraced, but not “hundreds of pages of never-maintained and
rarely-used tomes” (Beck et al., 2001, p. 5). The publication of the Agile Manifesto
resulted in increasing popularity and interest regarding Agile methodologies and initiated
unprecedented changes to the field of software development (Vial & Rivard, 2015; Dyba
& Dingsayr, 2008).

2.3.2.3 Agile values

There are four central values to Agile presented in the Manifesto (Beck et al., 2001, p.1):

Individuals and interactions over processes and tools.
Working software over comprehensive documentation.
Customer collaboration over contract negotiation.
Responding to change over following a plan.

pPOONME

The first value in the Manifesto for Agile Software Development is valuing people and
interaction over processes and tools. Agile methods have been known to put great
emphasis on the people factor. Cockburn and Highsmith (2001) affirm that putting great
emphasis on the people factor, that is, amicability, talent, skill, and communication, is the
most important implication for Agile managers. While processes and tools are important,
Agile considers real value to come from individuals and how well they work together. In
Agile methodologies, this emphasis is reflected in close team relationships, working
environment arrangements, and other procedures boosting team spirit (Abrahamsson et
al., 2017).

The second value in the Manifesto is to privilege working software over documentation,

as the objective of Agile methodologies is to continuously deliver tested working

software (Abrahamsson et al., 2017). While documentation is important, Agile’s main
26

advantage is speed. Accordingly, there are frequent new releases and developers are urged
to deliver working code while keeping the documentation to an appropriate level
(Abrahamsson et al., 2017). One of the biggest misconceptions regarding Agile is that
this second value means “no documentation” (Dyba & Dingsgyr, 2008). Rather, it means
to only document what is useful and necessary. The aim is to minimize wasteful
documentation, which is considered unnecessary work (Dyba & Dingsgyr, 2008).
Moreover, the frequent interactions between people compensate for the smaller amount
of documentation (Cockburn & Highsmith, 2001).

Next is valuing customer collaboration over contract negotiation. Here again, contracts
are certainly important, and their importance is correlated with the size and complexity
of the software (Abrahamsson et al., 2017). However, contracts do not replace
communication. This Agile value is about ensuring delivery of value to the customer by
continuously cooperating with them and making sure they guide the evolution of the end
product (Dyba & Dingsgyr, 2008). This way, we significantly reduce the risks of non-
fulfillment of the contract. For Cockburn and Highsmith (2001), it is about having all key
players on the same team (the sponsor, customer, user, and developer) so they can go in
the same direction.

Finally, Agile acknowledges changing realities and embraces uncertainty during IS
development, which is why the fourth value is about responding to change over following
a plan. Changes can come from various sources: changing customer priorities, business
environment, technology evolution, and so on. That makes change almost inevitable
during the process of software development. While some planning is essential in every
project, most plans are out of date within a few days, which is why the team should be
ready to make changes (Cockburn & Highsmith, 2001). Moreover, because Agile
development teams are made of both competent software developers and well-informed
customer representatives, they are better prepared to face changes. Furthermore, contracts
in Agile development should also be designed to support and accommodate such changes
(Abrahamsson et al., 2017).

27

Last but not least, it is important to note that the Agile Manifesto stresses that there is
value in both items of the right and those on the left; however the Agile Alliance values
the items on the right more (Beck et al., 2001).

2.3.2.4 Agile principles

The Agile Manifesto also comes with a set of 12 principles to follow (Beck & al, 2001,

p.1):

= Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

= Welcome changing requirements, even late in development. Agile processes
harness change for the customer's competitive advantage.

= Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

= Business people and developers must work together daily throughout the
project.

= Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

= The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

= Working software is the primary measure of progress.

= Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace indefinitely.

= Continuous attention to technical excellence and good design enhances
agility.

= Simplicity--the art of maximizing the amount of work not done--is essential.

= The best architectures, requirements, and designs emerge from self-
organizing teams.

= Atregular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

2.3.2.5 Agile methods

With its core values and principles, Agile is considered a philosophy or a development
approach (Palmquist, 2013; Lapham 2010). One definition of Agile by Lapham (2010, p.
5) is:

An iterative and incremental (evolutionary) approach to software development
which is performed in a highly collaborative manner by self-organizing teams
within an effective governance framework with “just enough” ceremony that
produces high quality software in a cost effective and timely manner which meets
the changing needs of its stakeholders.

28

Agile encompasses several methods that act as frameworks in the management of
software development. Agile methods are a modern project management family of
development methods and processes known for their lightweight activities (ur Rehman &
Hussain, 2007). Larman and Basili (2003) identify the Dynamic Systems Development
Method (DSDM) to be the earliest developed Agile method, followed by Extreme
Programming. Several other Agile methods have followed, such as Feature Driven

Development, the Rational Unified Process, Crystal family of methodologies and Scrum.

Considered the most widely used Agile method in software development, Scrum is of
particular interest to researchers and practitioners (West et al., 2010; Anwer et al., 2017,

Versionone, 2019). The following section discusses this method in further details.

2.4 Scrum

2.4.1 Definition

Scrum is a term that initially referred to a strategy in rugby consisting of getting an out-
of-play ball back in (Abrahamsson et al., 2017). Schwaber and Sutherland (2013, p.3)
considered to be the creators of Scrum, define it as:

A framework within which people can address complex adaptive problems, while
productively and creatively delivering products of the highest possible value.

Being a member of the Agile family, this iterative incremental process framework which
is considered lightweight, simple to understand yet difficult to master, emerged in the
early 1990s to help manage complex product development (Schwaber & Sutherland,
2013; Ashraf & Shabib, 2018). The framework is based on empirical process control
theory, also known as empiricism, which claims that knowledge is derived from practical
experience (Schwaber and Sutherland, 2013). Empiricism relies on three pillars:
transparency, inspection, and adaptation (Schwaber and Sutherland, 2013). Transparency
requires every aspect of the project to be visible to anyone considered responsible for the
outcome. Observers should share a common understanding of what is being seen thanks

to definitions by common standards. An illustration of the transparency pillar can be all

29

participants sharing the same language when referring to the process (Schwaber and
Sutherland, 2013). The inspection pillar promotes frequent inspection of Scrum artifacts
in the progression toward a Sprint Goal. That being said, the inspection should not hamper
the work process (Schwaber & Sutherland, 2013). The adaptation pillar supports the
claim that the process or the material being processed may be changed or adjusted in case
of deviations from the acceptable limits (Schwaber and Sutherland, 2013). Therefore,
Scrum advocates for continuous, frequent inspection and adaptation through a disciplined
management process (Ashraf & Shabib, 2018).

Scrum is not a technique or a process itself, but rather a framework (or method) within
which techniques and processes can be used. The framework consists of components
serving specific purposes and a set of rules binding them together and governing their
relationships and interactions (Schwaber and Sutherland, 2013). The fact that Scrum
lacks an explicit guide for product engineering is considered a challenge among
practitioners (Ashraf & Shabib, 2018). The Scrum framework consists of a Scrum team
and their related roles, events and artifacts. The table below summarizes the components

of the Scrum framework:

Scrum Components \

The Product Owner

Scrum Roles The Development Team
The Scrum Master
The Sprint
Sprint Planning

Scrum Events Daily Scrum

Sprint Review
Sprint Retrospective
Product Backlog
Scrum Artifacts Sprint Backlog

Increment
Table 4 Agile Scrum framework components (Schwaber & Sutherland., 2013)

30

2.4.2 Components

2.4.2.1 The Scrum Team

The Scrum team is made up of the Development Team, the Project Owner and the
Scrum Master. Scrum teams are cross-functional and self-organizing. This means the
team has all the competencies needed to work on the project, making them independent
from others outside the team. Moreover, it is up to the team to choose how to
accomplish their work. This team model is designed to maximize flexibility, creativity
and productivity (Schwaber and Sutherland, 2013).

2.4.2.1.1 The product Owner

This role represents the interests of the stakeholders, mainly the customer’s viewpoint.
The Product Owner is responsible for pushing the team in the right direction to maximize
ROI (Hayata & Han, 2011; Ashraf & Shabib, 2018). S/he therefore summarizes the user
requirements and is the only one in charge of prioritizing in the Product Backlog
(Schwaber and Sutherland, 2013). Product Owner tasks include: formulating Product
Backlog items, ordering them in a way to best achieve goals and missions, making sure
that the development team fully understands the items in the Product Backlog (Schwaber
and Sutherland, 2013).

2.4.2.1.2 The Scrum Master

This role is responsible for making sure the Scrum is understood and applied according
to the Scrum theory practices and rules. The Scrum Master is often considered to be a
“servant leader” for the Scrum team (Schwaber and Sutherland, 2013). The Scrum Master
maintains the process and makes sure to remove impediments in the way of delivering
Sprint goals. On a practical level, the SM can be viewed as a facilitator working towards
keeping the team focused on solving problems in the Sprint Backlog while enforcing the
Scrum principles (Hayata & Han, 2011; Ashraf & Shabib, 2018). The Scrum Master
responsibilities include: training and leading the organization in its Scrum adoption,

31

coaching the Development Team in self-organization, and facilitating Scrum events
(Schwaber and Sutherland, 2013).

2.4.2.1.3 The Development Team

Comprising between 3 and 9 highly skilled individuals for optimal interaction level and
productivity, the Development Team is in charge of delivering “done” increments of the
product at the end of each Sprint. The Development team is self-organized, meaning it is
completely up to them to decide how to turn Product Backlog items into increments of
releasable functionalities (Schwaber and Sutherland, 2013). As previously mentioned, the
team is cross-functional, meaning it gathers people with all the skills needed to create a
product increment. Even though the individuals of the team may have specialized skills
of a specific area of study, accountability applies to the team as a whole. Moreover, no
sub teams are allowed within the Development Team, with no exception to this rule.
Furthermore, regardless of the nature of the work performed by the individual, Scrum

recognizes no title other than Developer (Schwaber and Sutherland, 2013).

2.4.2.2 The Scrum events

Scrum prescribes a set of events to follow to ensure inspection and adaptation without
wasting of time in the process. All the events are time-boxed, meaning they have a
maximum duration. The Scrum guide claims that omission of any of these events would

result in a reduction of transparency and opportunity to inspect and adapt.

2.4.2.2.1 The Sprint

At the heart of Scrum, Sprints are time-boxed iteration cycles of development during
which a potentially releasable product increment is built. Accordingly, each Sprint has a
definition of what should be built, its design, and a flexible plan to create it. A Sprint lasts
no more than one month. This way, Scrum ensures adaptability and inspection, and limits
risk to one calendar month of cost. Immediately after a Sprint is completed, another one
starts. All the other events are comprised within the Sprint. A Sprint includes a Sprint

Planning, Daily Scrums, Sprint Review, Sprint Retrospective, and the development work

32

(Schwaber & Sutherland, 2013). The following rules should be respected during the
Sprint (Schwaber & Sutherland, 2013, p.9):

= No changes are made that would endanger the Sprint goal;

= Quality goals do not decrease; and,

= Scope may be clarified and re-negotiated between the Product Owner
and Development as more is learned.

Although considered traumatic to the Scrum team and very uncommon, Sprint
cancellations may occur. The Product Owner is the only one able to decide to cancel a
Sprint. Once a Sprint is cancelled, all completed items of the Product Backlog are
reviewed and can either be accepted by the Product Owner for being potentially releasable
or re-estimated and put back in the Product Backlog (Schwaber and Sutherland, 2013).

2.4.2.2.2 Sprint Planning

During this event, the whole Scrum team collaborates to understand the Sprint.
Accordingly, the meeting has for input the Product Backlog, the most recent product
increment in addition to the projected and past performance of the Development Team.
The Product Owner discusses the objectives that the Sprint should reach and the Product
Backlog items that need to be worked on. The Development team decides how many
items from the Product Backlog can go in the Sprint, as it the only one capable of
assessing how much it can accomplish in the Sprint. The Scrum team then agrees on a
Sprint goal, which is the objective to be met by the Sprint implementation. By the end of
the meeting, the Development Team must be able to explain to the Product Owner and
the Scrum Master how it intends to work in a self-organized manner towards the
accomplishment of the Sprint goal. These are time-boxed to a maximum of eight hours,

which the Scrum Master is responsible for enforcing (Schwaber and Sutherland, 2013).

2.4.2.2.3 Daily Scrum

Daily Scrums are daily meetings exclusive to the Development Team, time-boxed to a
maximum of 15 minutes. This meeting serves the purpose of synchronizing activities and

planning the next 24 hours of work, and is held at the same time and place each day.

33

During the meeting, the team members can help achieve the meeting’s purpose by
answering three questions: what they did the day before, what they are planning on doing
this day, and if they faced any obstacles or challenges in their work (Schwaber &
Sutherland, 2013).The objective behind Daily Scrums is to track progress towards the
Sprint Goal and to help the team understand how it intends to work towards creating the

anticipated increment as a self-organized team (Schwaber and Sutherland, 2013).

2.4.2.2.4 Sprint Review

At the end of each Sprint, a meeting is held to demonstrate the release to the stakeholders
and management in order to capture their feedback (Hayata & Han, 2011; Ashraf &
Shabib, 2018). These meetings are time-boxed to 4 hours and serve to adjust the Product
Backlog if needed after inspecting the increment. During the meeting, the Product Owner
is in charge of explaining which items of the Product Backlog were completed and which
ones were not. The Development team discusses the things that went well and those with
which they encountered challenges. The entire group is encouraged to collaborate on what
needs to be done next, the changes occurring to the marketplace and/ or anticipated
product use. The group may also discuss the next anticipated release of the product. The

meeting ends with a revised Product Backlog.

2.4.2.2.5 Sprint Retrospective

While the Sprint Review’s goal is to inspect and adapt with regard to the product, the
Sprint Retrospective’s goal is in regard to the process (Cervonne, 2011). Accordingly, the
team assesses what worked and what did not, and gathers suggestions that are later
reviewed and implemented to improve the process (Ashraf & Shabib, 2018) The meeting
is time-boxed to three hours, and the team discusses how the last Sprint went with regards
to people, process, tools and relationships. After prioritizing the main potential

improvements, the team creates a plan to implement them in their next Sprint.

34

2.4.2.3 Artifacts

Scrum artifacts are used to ensure transparency of key information within the project team
(Schwaber and Sutherland, 2013). The Scrum guide counts three artifacts, namely the
Product Backlog, the Sprint Backlog, and the Increment. While some authors like
Cervone (2011) might consider Burndown charts to also be an artifact, the Scrum guide
considers it to be one way among others to track progress within the Product Backlog

artifact.

2.4.2.3.1 The Product Backlog

Simply put, the Product Backlog represents a list of prioritized items (Ashraf & Shabib,
2018). It gathers everything that might be needed to produce the product and is the only
source of requirements. The Product Backlog also gathers everything about the future
changes to be implemented in future releases:

The Product Backlog lists all features, functions, requirements, enhancements,
and fixes that constitute the changes to be made to the product in future releases.
Product Backlog items have the attributes of a description, order, estimate and
value (Schwaber and Sutherland, 2013, p.13).

Concretely, several tools or software management tools can be used to create and manage
a Product Backlog; Cervone (2011) mentions MS-Project and Spreadsheets as examples.
The Product Owner is the only person responsible for managing the Product Backlog.
S/he manages the content, order, and availability of the items in the Backlog. It is
dynamic, which means that it is constantly changing to accommodate shifts in the
environment and to make sure the product developed is appropriate, competitive, and
useful. That also means that at the early stages of the project, the Product Backlog is not
complete and includes only the best-known requirements. Throughout the releases and as
the product is being developed and used, the Product Backlog is modified based on
feedback from the marketplace, technological changes, and the evolution of business
requirements. Because the Product Backlog keeps changing, expanding, and getting more
exhaustive with time, it is called a living artifact. Product Backlog refinement is the action
of adding details, estimates and order to the Product Backlog items. The Product Owner

35

collaborates with the development team to decide on these details. Accordingly, the
higher in the list, the more detailed the item.

2.4.2.3.2 The Sprint Backlog

The Sprint Backlog is a list of tasks to be completed in a particular Sprint (Ashraf &
Shabib, 2018). It is created and managed solely by the development team and is a subset
of Product Backlog items that are defined as part of the work for a particular Sprint.
However, unlike the Project Backlog, the Sprint Backlog is created only by the Scrum
team members. Ideally the Sprint Backlog is updated every day and contains no more
than 300 tasks. The team may need to break down a task if it is determined that it will
take more than 16 hours. Furthermore, the team may determine that items may need to be
added or subtracted from the Sprint, but this is the team’s decision and not something that
is directed by the Product Owner (Cervone, 2011). All in all, the Backlog makes for a
real-time picture of the work to be accomplished by the development team in the Sprint
(Schwaber and Sutherland, 2013).

2.4.2.3.3 The increment

The Scrum guide defines an increment as the sum of the Product Backlog items
accomplished in the Sprint above what was already produced in previous Sprints
(Schwaber and Sutherland, 2013). An increment must be in useable condition, as it is a
potentially shippable software or one that is of use to the stakeholders (Ashraf & Shabib,
2018).

It is worth mentioning that the Scrum guide warns that its artifacts, roles, events and rules
are “immutables” and that changing or implementing only a few of these does not result
in Scrum, as “Scrum exists only in its entirety” (Schwaber and Sutherland, 2013, p.19).

2.4.3 Scrum flow

The Scrum process consists of three phases: the pre-game phase, development phase and

post-game phase (Abrahamsson et al., 2017):

36

PHASE | PHASE | PHASE
I |
N Reguiar
I J‘ updstes | |
________ System
Froduct | 7 | Gosisor list [testing Findl release
Planning | — — hn;;bg | Sprint | = J
. | __){_x | Integration
irements Cocumentaton
\ f# | \ras | 7
|
\‘\ Priorities Eﬁ:rte;timhsl | /
| Aralysis | /
\\ » | Evolion |/
AN Testing
A N [SPRINT | | peivery |/
High level design/| | ~ /
Architectire \\.\ 4«\ - |,

“\ | Comentions /-J"/\ 'P

Techndogy | \ _ f."|

EEIE.“ES | \ / |

| \'-».. Hew product / |

I |

I |

1 |

Figure 5 Scrum process representation (Abrahamsson et al., 2017)

2.4.3.1 The pregame phase

This phase includes two parts: The planning and the architecture of the system, also
referred to as high-level design. In the planning phase, the team defines the system to be
developed and sets the ground for the work to come. For that, a first version of the Product
Backlog is created, combining all the requirements known at the time of creation. These
requirements can be supplied from the customer and the developers but can also originate
from other departments such as sales or marketing (Abrahamsson et al., 2017).
Accordingly, the Product Backlog items can be customer features such as enabling
premium users to benefit from free shipping, or functional/ engineering goals such as
scalability or security matters. Some may also be about exploratory work, or bugs
encountered later in the project (Deemer et al., 2010). This Product Backlog will

constantly change through the iterations of the project as new items get added or initial

37

elements become more detailed. It will also be updated according to what has been done,
how ordering of priorities evolve, and will accommodate any changes in the environment
of the project. Moreover, the planning phase also involves defining the team, tools and
resources to be used in the project. Based on the elements identified in the Product
Backlog, the architecture is designed for the system. A design review meeting is later
held to discuss implementation decisions (Abrahamsson et al., 2017).

2.4.3.2 The development phase

Sometimes called the game phase, this phase is where functionalities are developed in
Sprints. As described above, these are iterative cycles of less than 4 weeks in which
functionalities are developed and the output is an increment of a potentially shippable
product or product part. Abrahamsson and colleagues (2017) describe this phase as being
the Agile part in the Scrum approach because the project is treated as a “blackbox,” since
many elements are unpredictable. That means that environmental and technical factors
are taken into consideration and observed throughout all the sprints, not only at the
beginning of the project. Indeed, quality, changing customer requirements, project
resources, implementation tools and technologies, and development methods are
constantly controlled through the various Scrum practices discussed earlier. Every sprint
includes the usual software development phases of requirements analysis, design,
evolution testing and delivery. As Sprints are carried out, the overall architecture and
design of the system are reviewed and the Product Backlog is updated (Abrahamsson et
al., 2017). Team members also update the estimates of remaining work in their Scrum
Backlog on a daily basis. Following this update, the hours of work remaining for the
whole team are computed and plotted on a Sprint Burndown Chart (Deemer et al., 2010).
This chart is a graphical representation of how much work remains in terms of person
hours until all the tasks are completed and should be downward sloping to reach zero by
the last day of the Sprint if all goes as planned. Analogous to the Sprint Burndown Chart,
the Release Burndown chart used is based on the same concept and shows progress
towards the release date of the product. It is updated by the Product Owner, who is

assisted by the Scrum Master (Deemer et al., 2010).

38

2.4.3.3 The post-game phase

This phase is reached when the items of the Product Backlog are finished, and no other

items or issues can be found. This phase prepares the product release and includes tasks

such as documentation, integration and system testing.

2.5 Comparison of Agile and Traditional software development

Drawing on the work of Boehm (2002), Awad (2005), Leau and colleagues (2012), and

Stoica and colleagues (2013), the following table presents a comprehensive comparison

of the main elements of the two software development approaches.

Element Traditional Agile
. High-quality adaptive systems are
Syst(_ams are fully predictable and developed by small teams, thanks
specifiable. They can be S X
Fundamental . to the principle of continuous
i developed through extensive and | . .
hypothesis . . : improvement of design and
detailed planning (Stoica et al., ina based on fast feedback and
2013) testing based on fast feedback an
' change (Stoica et al., 2013).
Developers are plan-oriented, .
they have adequate skills and Developer_s are agile. They are
collaborative, knowledgeable,
have access to external I d. and collaborati
Developers knowledge collocated, and collaborative
s (Boehm 2002; Stoica et al., 2013;
(Boehm, 2002; Stoica et al., Awad, 2005)
2013; Awad 2005). ’ '
Additional Interpersonal abilities and basic
Abilities Nothing in particular (Stoica et business knowledge (Stoica et al.,
Required from | al., 2013; Leau et al., 2012). 2013; Leau et al., 2012).
Developers
Customers are knowledgeable,
cooperative, representative, and | Customers are dedicated, present
empowered (Boehm, 2002). onsite, knowledgeable and
Their level of involvement in the | cooperative. They are
Customers process is low (Leau et al., representative, and empowered

2012). The interactions with
customers are on a need basis,
and are contract-focused (Awad,
2005).

(Boehm, 2002). They are highly
involved in the process (Leau et
al., 2012).

39

Documentation

Heavy (Awad, 2005)

Low (Awad, 2005)

Requirements

Requirements are known early,
and remain stable in general
(Boehm, 2002; Awad, 2005).
They are detailed and defined
before coding and
implementation (Stoica et al.,
2013; Leau et al., 2012).

Requirements are mostly
unknown, emergent, and change
rapidly (Leau et al., 2012, Award,
2005). They are acquired
iteratively (Stoica et al., 2013).

Architecture

Designed for current and
foreseeable requirements
(Boehm, 2002; Stoica et al.,
2013; Awad, 2005).

Designed for current
requirements (Boehm, 2002;
Stoica et al., 2013; Awad, 2005).

Development

Fixed (Leau et al., 2012 ; Stoica

Easily changeable (Leau et al.,

Direction etal., 2013). 2012 ; Stoica et al., 2013).
Planning and Documented plans, quantitative | Internalized plans, qualitative
g control (Awad, 2005). control (Awad, 2005).

Control

Success Conformation to plan (Awad, .

Measurement | 2005). Business Value (Awad, 2005).
High Assurance and safety . _

Objective (Boehm, 2002; Stoica et al., g&) ﬁ'ci\é?:le g%i%hrkﬁggzz’oos)
2013; Awad, 2005). B ’ ' '
Large teams and projects
(Boehm, 2002; Stoica et al., Small teams and projects

Size 2013; Awad, 2005; Leau et al., (Boehm, 2002; Stoica et al., 2013;
2012). Awad, 2005; Leau et al., 2012).

Approach Predictive (Awad, 2005). Adaptive (Awad, 2005).

Refactoring

Expensive (Boehm, 2002 ;
Stoica et al., 2013 ; Awad,
2005 ; Leau et al., 2012).

Inexpensive (Boehm, 2002 ;
Stoica et al., 2013 ; Awad, 2005,
Leau et al., 2012).

Testing

After coding phase is completed
(Leau et al., 2012; Stoica et al.,
2013).

On every iteration (Leau et al.,
2012; Stoica et al., 2013).

Rework Cost

High (Stoica et al., 2013 ; Leau
etal.,, 2012).

Low (Stoica et al., 2013 ; Leau et
al., 2012).

Communicatio
n

Formal (Stoica et al., 2013).

Informal (Stoica et al., 2013).

Knowledge
Management

Explicit (Stoica et al., 2013).

Tacit (Stoica et al., 2013).

Development
Model

Life cycle model
(waterfall, spiral or modified
models) (Stoica et al., 2013).

Evolutionary-delivery model
(Stoica et al., 2013).

40

e . : Continuous control of
. Difficult planning and strict . :

Quality e . requirements, design and

control. Difficult and late testing . .
Control (Stoica et al., 2013) solutions. Permanent testing

B ' (Stoica et al., 2013).
Leadership and collaboration
Command and control . .
. o Organic (flexible and

Mechanic (bureaucratic, high C N .
Management L . participative, encourages social

formalization), targeting large) .
Style / L . cooperation), targeting small and

N organization (Stoica et al., . o2 .

Organizational 2013) medium organizations (Stoica et
Structure - al., 2013)

Autocratic management style D lized |

(Awad, 2005) ecentralized management style

' ' (Awad, 2005).
Cycles Limited (Awad, 2005). Numerous (Awad, 2005).
. . Unpredictable/Exploratory

Domain Predictable (Awad, 2005). (Awad, 2005)
Emphasis Process oriented (Awad, 2005). | People oriented (Awad, 2005).
Return on At the end of the project (Awad, | Early in the project (Awad,
Investment 2005). 2005).

Table 5 Comparing Agile and traditional software development

The Culture dimension presented by Awad (2005) was omitted from the list of elements
presented in the table above. The Culture dimension of Awad (2005) described culture as
“leadership-collaborative” in the Agile environment and “command-control” for the plan-
driven approach. The reason behind this omission is the assumption that culture is
included in the management style of the organization and that organizational structure is
linked to the culture of the organization. Because these elements are aligned and overlap,
the Culture component was omitted in an effort to reduce redundancy. Likewise, the
elements Management Style and Organizational Structure were put together as they
comprised overlapping aspects that were therefore redundant. Similarly, the Upfront
Planning element by Awad (2005) is encompassed in planning and control. Furthermore,
while Stoica and colleagues (2013) separated Client from Client involvement, these were
merged in the above table. Finally, the Remodeling element by Stoica and colleagues
(2013) was considered equivalent to the Refactoring element by the other authors.

Despite the fact that the two methodologies aim for the same end goal, that is, delivering

good quality software in an efficient matter, their fundamental hypotheses are very

41

distinct (Palmquist et al., 2013; Stoica et al., 2013). Indeed, while the traditional approach
assumes a predictable system, Agile assumes a fast-paced and continuously changing
environment in which systems ought to be adaptive (Stoica et al., 2013). From these two
distinct hypotheses stem distinct assumptions and practices governing the two
approaches. For instance, in traditional development methods, unlike Agile ones,
extensive documentation is followed, and all requirements should be known early. This
makes traditional approaches more suitable for larger, riskier projects. On the other hand,
the minimum-documentation policy and emergent requirements of Agile methods are
more suitable for exploratory and unpredictable development. Moreover, the
collaborative nature of Agile methods requires developers with interpersonal skills and a

collaborative culture.

2.6 Agile and project success

Given the limited number of studies focusing on the Scrum framework and project
success and the fact that Agile methods derive from the same values and principles, this
section will explore Agile methods in general (including Scrum) in relation to project
success. Agile project management methodologies have been introduced to address the
weaknesses of traditional methods (Serrador & Pinto, 2015). Indeed, traditional models
for planning and execution are often no longer optimal for the dynamic environments in
which software projects are being developed. The traditional methodology makes it hard
to accommaodate changes during the project because of their excessive planning at early
stages. Serrador and Pinto (2015, p.1041) summarize the issues and criticism that made

researchers and practitioners seek an alternative to these methods:

Evidence continues to accumulate suggesting that a rigid development process
can result in significant downstream pathologies, including excessive rework,
lack of flexibility, customer dissatisfaction, and the potential for a project to be
fully developed, only to discover that technological advances have eclipsed the
need for it.

42

In their research, Serrador and Pinto (2015) demonstrate the efficacy of Agile
methodologies by establishing a correlation between using Agile methodologies and
higher reported success in three different categories namely: overall project success,
efficiency, and stakeholder success. Accordingly, they show that the greater the reported
use of agile and iterative methodologies the greater the project success reported. Their
large-scale empirical analysis show that Agile project management is more likely to
deliver successful projects regardless of the team experience or the perceived project’s
complexity. It is worth mentioning that the quality of the vision and goals for the project
are significant moderators of the relationship between the use of Agile methodologies and
project success (Serrador & Pinto, 2015). Furthermore, Lee and Xia (2010) also provide
empirical evidence that software development agility contributes to better software
development performance in terms of time, budget and functionality. In their model, Lee
and Xia (2010) conceptualize software development agility as response extensiveness
(scope and variety of changes) and response efficiency (time and cost associated with
changes). Their study suggests that response efficiency, which is supported by team
autonomy, positively affects the three aspects of software development performance,
namely time, cost, and functionality. Response extensiveness, on the other hand,
positively affects only the functionality aspect of software development performance and
is positively affected by team diversity but negatively affected by team autonomy. Their
study therefore suggests a trade-off relationship between the two fundamental elements
of software development agility: response extensiveness and response efficiency. In their
2015 CHAOS report, the Standish Group illustrate the superiority of Agile methods in

delivering successful projects. The report studies 50,000 projects from around the world,

43

and results show that Agile approaches lead to more successful projects and fewer failures
regardless of the project size. Subsequently, the group includes “Agile Process” in their
list of CHAOS factors of success, a list of factors they have been analyzing and ranking

for over 20 years.

Agile methodologies have therefore been introduced to improve project implementation
as they contrast with traditional project management approaches for being incremental
and iterative, and emphasize principles such as customer flexible scope, continuous
design and embracing uncertainty (Serrador & Pinto, 2015). Ever since, Agile
methodologies have been continuously spreading and gaining in popularity (Dyba and
Dingsayr, 2008). Following is a summary of the main contributions of the scientific

literature to assessing how agile methods impacted different aspects of project success.

2.6.1 Agile and project management success

2.6.1.1 Scope

Agile is designed to allow cheap and easy changes to the scope, which is considered an
opportunity in software projects. Accordingly, the scope is variable in order to handle any
unpredictable requirements or continuously evolving ones. Changes to the scope are
supported by mechanisms such as a flexible, continuously reviewed Product Backlog that
is changed throughout the project (Walczak and Kuchta, 2013). Santos and colleagues
(2013) have established that, thanks to their multifunctional teams led by experienced
facilitators, Agile practices improve scope management. Lee and Xia (2010) support the
same claim by establishing that diverse Agile teams positively affect response
extensiveness in software development which in turn positively impacts software
performance in terms of functionality. This setting, combined with continuous
communication through practices such as stand-up meetings, helps determine the
requirements along with their priority and make sense of deadlines. Other researchers
warn that Agile methods present a risk of scope creep, meaning uncontrollably growing
project scope (Aitken & llango, 2013).

44

2.6.1.2 Quality

Several studies recognize the effectiveness of Agile methodologies in achieving quality
software. Masood and Farooqi (2017, p.26) attest that “Agile methods have stressed the
need to define quality from the customers’ perspective”. Assuming that the customer is
also the end user, agile methods focus on satisfying customers’ needs and preferences
throughout the entire product development process (Masood & Faroogi, 2017). Bhasin
(2012) also claims that Agile contributes to better quality software, but credits that to the
quality assurance mechanisms that are built into Agile activities. Such mechanisms
include daily meetings and test-driven development (Bhasin, 2012). More specifically in
regard to the Scrum framework, Permana (2015) asserts that using Sprints helps the
development team align the quality of the software developed to the determined business
needs. Nonetheless, Masood and Farooqi (2017) warn that Agile methods may lack
guidance in evaluating the team’s performance due to the lack of a complete project scope
to be used as a reference. Hence, the lack of plans and predetermined specifications makes
it harder to control quality and judge whether the project is going in the right direction.

2.6.1.3 Budget

Several researchers attest to the positive influence of Agile methods on budget. Santos
and Colleagues (2013) consider Agile practices to have established their reputation as a
better alternative for cost control in software development projects. Because of their
ability to accommodate changes through iterations, Agile approaches avoid costly rework
that results from changes in the project specifications. Moreover, Masoosd and Farooqi
(2017) make the same claim, asserting that this approach provides time savings through
the use of short-term scope, plans, and design. This in turn allows for better budget
performance. Similarly, Kurup and Sidhardhan (2015) affirm that a significant benefit of
Agile is that it reduces project cost by eliminating costly changes and rework.
Futhermore, the research model by Lee and Xia (2010) establishes that response
efficiency of Agile methods has a positive effect on the budget dimension of project

SUcCcess.

45

However, many researchers offer an opposing perspective. Cao and colleagues (2013)
assert that determining the upfront cost of an Agile development project is a challenge,
making Agile budgeting a major issue. Accordingly, there is a major need to develop a
funding process for Agile projects (Cao et al., 2013). In this case, Cao and colleagues
(2013) give recommendations such as making the Agile process more visible to
customers, establishing the risk-management process and layering project scheduling.
Furthermore, Cao and colleagues (2013) advise that funding decisions should be based

on feedback within the team and negotiations based on changing customer values.

2.6.1.4 Schedule

Researchers’ opinions on the schedule performance of Agile methods are divided as some
believe in the positive contribution of Agile methods while other claim the opposite. Raith
and colleagues (2013) believe that group estimations yield better estimates and that Agile
processes such as Planning Poker result in more accurate estimates if the teams are
experienced. Moreover, Lee and Xia (2010) demonstrate that response efficiency, an
important element of software development Agility, has a positive effect on delivering
according to schedule. In contrast, other researchers believe that scheduling is a major
challenge in the Agile approach to software development. Because plans and estimates
are specific to each cycle rather than to the project as a whole, Masood and Farooqi (2017)
suggest Agile methods make it difficult for the team to make estimates for the entire
project, leading to scheduling issues. Moreover, Masood and Farooqi (2017) argue that
this lack of exactitude in scheduling hinders the team’s visibility in the project, exposing
the project to risk. Furthermore, Masood and Farooqi (2017) claim that scheduling in
Agile methods makes it difficult for organizations to manage other projects as a result of
this lack of schedule clarity. Consequently, Masood and Farooqi (2017) assert that agile
methods are structured as though there were several smaller projects in one project, which
can lead to increases in the overall project cost. Leybourne (2009) also criticizes the
scheduling issues in Agile methods, declaring that such methods encourage excessive

changes to the project requirements, which can cause significant delays.

46

2.6.2 Agile and stakeholders’ success

Agile is known to be people-focused, and for that reason, many researchers associate it
with stakeholders’ success. According to Nerur and collegues (2013), the success of this
project management approach applied to software development is heavily dependent on
collaboration, communication, and cooperation between project teams and other
stakeholders. Dyba and Dingsgyr (2008) attest to the greater focus on customers’
perspective provided by Agile methods, allowing a greater sense of control, involvement
and communication. In the context of the Scrum framework, practices such as daily
Scrum meetings were demonstrated to