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Abstract

Mortgage Backed-Securities are exposed to prepayment risk, both from prepayment and
default occurring in the underlying pool of mortgages. The probability of such events is
modelled using intensity functions: prepayment is mostly driven by the current level of
interest rates relative to the mortgage contractual rate; default is primarily driven by the
ratio of the mortgage outstanding balance relative to the housing value. Interest rates are
assumed to follow an Ornstein-Uhlenbeck process, as in Vasicek. Housing prices are
modeled using a geometric Brownian motion, correlated with the interest rate process. In
order to capture a wide range of possible states for the interest rate and housing price
variables over the long life of a mortgage, a Markov chain is used, based on two grids,
one for the interest rates and one for the housing prices. To ensure housing prices do not
fall outside the bounds of the grid in spite of the housing price long-term upward drift,
only the stochastic part of the housing price dynamics gets deployed on the grid. A
mortgage is then valued using dynamic programming. The drift part of the housing price
process is calculated off-line and added at each time step to the diffusion part. The state
variable dynamics parameters are estimated using maximum likelihood. We fit the
prepayment intensity functions parameters to the observed prepayment rates by
minimizing squared differences. The model has been stress-tested and turns out to be

robust even in extreme scenarios such as negative interest rates.

Keywords : Mortgage, MBS, valuation, prepayment, default, Vasicek, geometric

Brownian motion, interest rates, housing prices, Markov chain.
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Mortgage and Mortgage-Backed Securities Valuation

August 4, 2019

1 Literature review

About two households out of three own their home in Canada or the US.} A key factor
behind so high a homeownership rate lies in relatively low mortgage rates. Banks can offer
affordable rates to mortgagors, in part thanks to the existence of a secondary market. On
such a market, banks can quickly offload and turn into cash the mortgages they issue. Mort-
gages are split, aggregated and packaged into tradeable securities, called mortgage-backed
securities (“MBS”). Investors purchasing MBS need accurate risk-sensitive models to price
what they buy.

In practice, valuation models available to investors are either very simplified, using a
deterministic one-size-fit-all linear prepayment model;? or highly complex and linked to the
swaption market,® which may or may not be relevant to investors who do not use swaptions
to hedge their exposure to mortgage prepayment.

It may be useful to explore alternative valuation models that faithfully reflect the random
nature of interest rates, housing prices, prepayment and default events; incorporate stable
estimates of the parameters governing the probability distribution thereof; and remain rela-
tively simple numerically.

Extensive literature has been dedicated to valuing MBS. An early focus has been on the
risk of early termination. At first, the emphasis was on the risk of prepayment. A single
state variable, the interest rate, was considered (for example in Schwartz and Torous (1989)
or Stanton (1995)). Then, the risk of default was also incorporated, and a second state

For  Canada, see Statistics Canada, at  https://wwwl50.statcan.gc.ca/nl/pub/11-402-
x/2011000/chap/fam/fam-eng.htm.  For the US, see U.S. Census Bureau, Homeownership Rate for
the United States [RHORUSQ156N], retrieved from FRED, Federal Reserve Bank of St.  Louis;
https://fred.stlouisfed.org/series/ RHORUSQ156N, June 2, 2019.

2For a description of the PSA Prepayment Model developed by the Public Securities Association for the US
in 1985 and still widely in use, see https://en.wikipedia.org/wiki/PSA prepayment_model. For a Canadian
equivalent tailored to National Housing Act (“NHA”) MBS, see a description of the Linear Liquidation
Model at https://iiac.ca/wp-content/uploads/ITAC-MBS-Committee-NHA-MBS-Linear-Liquidation-Model-
v-1.1.pdf.

3For a description of the LIBOR Market Model, used for example by Bloomberg in their MBS valuation
functions, see Brigo and Mercurio (2007).



variable, the house price, was introduced (see Schwartz and Torous (1992) or Stanton et al.
(2005)).

In such papers, the interest rate is modeled using a Cox-Ingersoll-Ross mean-reverting
square-root process, and, where applicable, housing prices are assumed to follow a geometric
Brownian motion correlated with the interest-rate Brownian.

For the prepayment or default function, reduced-form models have been developed, as in
Schwartz and Torous (1992): mortgagors are assumed to be rational and to exercise their
prepayment or default option when it is optimal. Thus, they prepay their mortgage when
current rates fall below their mortgage contractual rate; and they default on their mortgage
when the mortgaged house value falls below the value of the mortgage liability. The risk of
prepayment is captured by a hazard function whereby the prepayment intensity is a direct
function of the gap between the mortgage contract rate and the current mortgage market
rate. Similarly, the risk of default is captured by a hazard function whereby the default
intensity is direct function of a mortgage outstanding balance to the value of the mortgaged
house. In reduced-form models, prepayment and default function parameters are provided
exogenously based on empirical observations (Schwartz and Torous (1992)).

Conversely, structural models have been developed by for example Stanton (1995). Stan-
ton notes that the mortgagors’ default is not necessarily rational, as they do not exercise
their prepayment or default option optimally. Friction or transaction costs are modeled and
aim at capturing different, and suboptimal, observed behaviors among different mortgagors.
Other stylized facts, such as seasoning patterns, are emphasized and modeled (Stanton).

Various numerical approaches have been implemented, from solving a partial differen-
tial equation (or a couple of partial differential equations) to Monte Carlo simulations (as
described in Hull (2012)) to combining a binomial tree with a Monte Carlo simulation (as
described in Veronesi (2010)).

More recently, alternative interest rate models have been applied to valuing MBS, espe-
cially the LIBOR-market model (LLM). The MBS is modeled as a tradable callable bond,
the prepayment option of which could be hedged using swaptions, and the aim is to capture
the volatility skew observed on the swaption market. See for example Karpishan et al. (2010)
or chapter 31 in Hull (2012).

We used a two-state-variable (interest rate and housing price) model. The interest rate
and the housing prices respectively follow a single-factor Ornstein-Uhlenbeck process, as in
Vasicek (1977), and a Geometric Brownian motion correlated therewith. We modeled the
risk of prepayment and default using two intensity functions, which express the rational be-
havior of option holders, however combined with background prepayment and default rates,
which translate non-rational observed behaviour. Also, as we adopt the perspective of a
MBS pool on the US Agency TBA market for 15-year mortgages, where pools are fungible,
mortgagor-specific transaction costs can be ignored, as the individual differences can rea-
sonably be assumed to average out from the law of larger numbers. The burnout effect is



naturally expressed by the fact that the aggregate principal of the pool is reduced by earlier
prepayments, so that the absolute prepayment amount at the pool level decreases as time
passes. The burnout effect may also be indirectly expressed by the lower intensity in the
default function as the mortgage balance decreases (see equation (27)), so that prepayment
is cross-expressed by both the prepayment and the default function.

We implemented the valuation using dynamic programming and a two-dimensional grid,
similar to the Markov-chain approach applied by Duan and Simonato (2001) to the valuation
of American equity options.

We estimated the parameters in the interest-rate and housing price dynamics using log-
likelihood and we estimated the parameters in the prepayment function using a least squared
difference approach.

2 Mortgage and Mortgage-Backed Securities (MBS)
Valuation Methodology

2.1 No prepayment
2.1.1 One mortgage

The monthly payment p of a mortgage with a face value F', a maturity of 7" months, and a
monthly interest rate (coupon) C' satisfies:

T 1 t
FZP;(l—FC) '

But ZtT:1 ( (1i0)> = 14%0 Zthl (H%)t_l, where we recognize a geometric series. Hence,
1 \T 1 \T
F=p 1 1_(14-_6’) :pl_(H-_C) (1>
1 .
Therefore, the monthly payment is
C
p= F 1 T (2>
)

Lemma 1. At month t, the balance is

B, = F(1+C) (1 _a+ O -0 C>T_t) .

1+0)7 -1 (3)

Proof. Initially, By = F. Then, Vt € {1,T}, the balance at ¢, noted By, equals the balance
at t — 1, less the payment made at t, net of the interest amount accrued over one period on
the ¢ — 1-balance. In equation:

By = Bi1 — (p - CBt—l) (4)

3



= Bt_]_(l —l— C) —P.
Using recursion over time yields

t—1
Bi=F(1+C)—p) (1+C)"
u=0

FC  1-(1+0)

=F(1+C)' + T
1-(de) ¢
t (1+O)T—(1+0)"
=F(1+0C) (1— 1107 -1 )

2.1.2 Pool of mortgages

Exact calculations Consider a pool of M mortgages. Assume they are all issued at the
same issuance date, which matches the pool origination date, and share the same maturity
date. The initial face value is y
F=) F™.
m=1

The equations for the face value as a function of C, the total fixed payment, and the unpaid
balances at any time ¢ are simple sums of the right-hand terms in equations (1), (2) and (3)
respectively. Thus,

F= ﬂp C0m) (5)
M M
. . C/(m)
P=3"pm =3 pm —7 (6)
m=1 m=1 ]_ — <W>
M M m)\T __ (m)\T—t
_ (m) _ m m (1+Ct™)T — (14 C™)
B,=Y B™ =Y Fm™(1+cm) (1— e E Dy . (7)
m m=1

In practice, for Fannie Mae Single-Family MBS, coupon information available to investors
used to be limited to the pool average coupon, and some percentiles. Since January 1, 2013,
individual loan-level information has been available.* On the to-be-announced (TBA) market,
such information is however pointless, as MBS security holders do not know which pool, from
a cohort of thousands, will be assigned to their security. Hence the need to work with cohort
averages.

4See Fannie Mae PoolTalk © FAQ’s, retrieved from http:www.fanniemae.com /resources/file/mbs /pdf/mbsfaqs.pdf
on April 26, 2018.



Average-based calculations Define the original-balance-weighted average of the mort-
gage coupons:

M
_ F(m)
C=» —qCm. 8
mzl - (8)
Then, similar to equation (1), P, an approximation to the pool aggregate fixed payment,
satisfies
_ 1\’
F=P -
> (re)
Therefore, -
_ C
P=F (9)

As a corollary, similar to equation (3),

s (1+0O)" — (1+(7)T—t)'

By =F(1+0) (1 - 1107 1 (10)

Remark The total monthly payment P, from equation (6) is different from a fixed monthly
payment calculated at the pool level using C' and a maturity of T' > ma,,(T™), as is done
in equation (9):

5 FC _ M Rmcim)

1 T T "
1 N < 7) - 1
+C 1 1+3°M, F(m’) Glm?)
m!/=1

F

In the case where all coupon rates C™ and all maturities 7™ are the same, then C™ = C,
T =T and

M
_ Fmco Fmco
m=1 1 m=11— [ 1=
]_ — (—F(ml) > <1+C>

4+C E%’:1 F

Likewise, Bt #_Bt_- B

Nevertheless, C', P, and B; are reasonable approximations for C, P, and B; when projecting
the cash flows of a pool underlying an MBS, since pooled mortgages share similar terms and
coupons.

2.1.3 Mortgage-backed security (MBS)

Principal payments are passed through integrally to MBS holders. F' and B, as defined for a
pool in equations (5) and (7), or the approximation of the latter, B;, as described in equation
(10), also apply to the related MBS.

Interest payments are passed through at a reduced rate C' < C, net of servicing fees (paid to
the mortgage servicer) and a credit risk compensation (paid to the guarantor Agency). Based



on C' as defined in equation (8), a reasonable projection for the MBS payment in month ¢ is
then, from equation (4):

P,=B,.,(1+C) - B,

=B (1+C—-C+0C) - B,
=B (1+C)— B, — B,,(C—C)
—P—-B,_,(C-0C).

Conclusion A bank who lends money to mortgagors will show them the coupon C, the
payment p and the resulting mortgage balance amortizing schedule made up of B;. Such
numbers may be “customer-friendly”, but they are not the whole story. Where does this
coupon C' come from?

2.2 Prepayment

Consider again a single mortgage.

2.2.1 Mortgage valuation

A mortgage is exposed to interest rate risk, default risk, and prepayment risk throughout its
life.

Risk-free rate The risk-free rate r; satisfies
dry = o (8 — ry) dt + odW,"", (11)
where
e [ is the interest rate long-term average;
e « is the speed of mean-reversion;

e WP is a Brownian motion under the physical probability measure P.

Housing price The housing price satisfies
dH, = ppHydt + oy HdW; ™, (12)
where
e H, is the housing price at time ¢, which can be proxied by some housing index;
e iy is the housing price log-return drift;

e oy is the housing price log-return volatility.



Moreover,
Corr <WtP’r, WF’H) =pVt>0.

Therefore, we can write WEH = pW," + /1 — p2W; ", where WP and WH are two inde-
pendent Brownian motions. The state variables r, and H; generate a filtration [F, to which
is associated a o-algebra (F)i>o.

Risk-neutral world In a risk-neutral world,
T
W =W/ + / ~ids
0
and
T
w2 — w4 / ~Hds.

0
If the Novikov condition is satisfied, there is a probability measure Q equivalent to P such

that
d ’ ! L
aQ = exp —/ ArdWET — / VAWt — _/ (75)? + (7 )ds
dP 0 0 2 0

o W and W@+ are two independent Q-Brownian motions.

Now, with respect to the Brownian associated with housing prices,
g — T
W= (13)
OH

Replacing 7, with its definition (see equation (30) in section 3.1.1 further down), and using
Jensen inequality and Fubini’s theorem,? it would be possible to show that

- [exp (% /O ' (75d3)2>

so that the Novikov condition is satisfied.

< 00, (14)

Default time In continuous time, let Ai") be the default intensity at time ¢. The default
time 1is

¢
T, = inf{t > 0: / AMds > B}
0

where E; is an exponential random variable of expectation 1 independent of WF" and WF+.
In that case, the conditional survival probability with respect to default is

T
P (’7'77 >T ‘ gt) =E* {exp (—/ Ag")ds) ‘ Qt} 07, >t (15)
t

where

5See for example https://math.stackexchange.com/questions/133691/can-i-apply-the-girsanov-theorem-
to-an-ornstein-uhlenbeck-process.



e ) is an indicator function;

e G, =FV Hin) Vv Htﬂ), with G = F v H™ v H™. Hﬁ”) is a o-algebra associated with
the filtration H(™ generated by the indicator of default. ’HEW) is a o-algebra associated
with the filtration H(™ generated by the indicator of prepayment (see below). F; is a
o-algebra associated with [, the filtration generated by the state variables r; and H,

as already defined. The objective probability measure IP is thus defined on the filtered
probability space {Q,P, G, G;>o}.

Prepayment time Similarly, let AE”) be the prepayment intensity at time ¢. The prepay-
ment time is

t
T, = inf{t > 0: / AMds > Es},
0
where E, is an exponential random variable of expectation 1 independent of WP WP+ and

E;.
The conditional survival probability with respect to prepayment

T
P (T,r >T|G,)=E" {exp (—/ Ag’r)ds> |Qt} 0r.>.(16)
¢

Risk-free discount factor Let the risk-free discount factor be

T
Dt(f;m = exp (—/ rs ds>
t

Mortgage value Let tf = iA;, with A; set to one month. A mortgage at time ¢} is worth

N
_ wQ (RF)
V;t;‘ =K Dt;,t; P5r7,>t]*. 5T7r>t;f + /‘th;_15t;_1<n,§t; 5r,r>t;

=i+1 ~~ -~
regular payment payment on default

(17)

+ B (14 C)x  <crp<tz0r5t2 0 | Gir | Orpmt:0risr,
- 7
prepayment

where N is the total number of monthly payments stipulated in the mortgage agreement, s
is the recovery rate, comprised between 0 and 1, in the event of a default, and 7 is a time
index for such payments.©

SEquation (17) makes implicitly two assumptions. First, it assigns a probability of nil to the case when
default and prepayment occur simultaneously, as both events can reasonably be considered mutually exclusive.
Second, it assumes that a mortgage can only be prepaid in full, never in part. Arguably, curtailments have
a much milder financial impact that full prepayment to a lender and can reasonably be ignored. Moreover,
our model could still handle partial prepayments: it would suffice to subdivide a given mortgage into smaller
balances and apply equation (17) to such balances separately.



Using the tower property of conditional expectations and recursion,
RF
Vi = E© [Dg* t*) {p57n>t;+157,r>t;+1 + HBt;5t;<Tn§tj+15rﬁ>t;H

+Bt;‘ (1 + C)5t%‘<rw§tf‘+15‘rn>t’f} ‘ gt;‘:| 5Tn>t;5fﬁ>t;

+E°

tff:) EY LZ D;. RF) {p57n>t Ory>tr + KBy O <r,<t0r>tr

=i+2

+B: (14 C)dt;f71<‘rw§t;f6‘n,>t;} ’ gt;‘+1:| Ory>ts, Orp>tr, |

Qt;} Oyt Orp >t

RF (18)
=E° [Dgf,tfj_l {p(s"'n>tf+157'ﬂ>tf+1 + HBtf 5tf<7n§t:+15777>t;+1
+By (1 + C)(St’!‘<7—,,rgt2‘+157—n>t;‘} ‘ gt;‘i| Oy >t Orp >t
+E° [DﬁRf Vir,, ;] Otz Ory >tz
=E° [Dt(ﬁﬁ) { (p + thﬂ) 5Tn>tf+1577r>t + KB 0 <ry < +15T">t +1
+Biz (1 4 C)ots <rp<tr,  Ory>i gt;] Oy >t Oy >t
Further,
P ‘ ]:tﬂl (RF)
dQ ‘ titiia
PRy (19)

d
t:f+1 t:—&-l 1 t;'k+1 tf—o—l

= exp (— [ e / sraw =3 [ o pas - d)
tr tr tr tr

Time discretization Lett; = A ,
(11) and (21) respectively become

so that t; =i fori € {0 A + }. In discrete time, equations

:rti—koz(ﬁ—rt)At—i—U(WPT —W”I’T) (20)

i

Tti41
and

Ht Ht + MHHt At + O'HHt (W[;i] - Ej’r) . (21)

i+l

tia 1 1
D, e = [ ras) = o -
titisr — CXP - I's @5 exp (1, &) 1T+ryd

Then,




Similarly, discretizing equation (19) yields

dP ‘ Ftiv1 ~(RF)
dQ ‘ Listita
P | 7,

Lbaf | Wel, =W | i | W, = Wt [ e+ 3 {00)? + ()2} A
—_—— —

~0 ~0
1

: .
L4+ Ay + 3 {7 + (i) A

12

TV
spread

Assume ~" and v+ are constant. We are left with the following risky discount factor under
P:

1 1
Dy, = =
T L A {2+ (PP A T T () A

where S is a constant risky spread.

(22)

Also, going back to the prepayment probabilities in equation (18), from discretizing equa-
tions (15) and (16) respectively, we get

B (0,20, |G| =P (7 > 6111 | G) = B |exp (—APA) G| brpore (28)

and

B [rir, | G| =P (7n > 10| Gur) = B [exp (—APA) [ G| br. 29)

As a result, in a discrete time version of equation (18), a mortgage at time i4\; is worth

Via, = EF [D(iAt,(i+1)At) {(P + Viis1)a, ) €xp <—AEZ)tAt) exp <_A§Z)tAt>
kB, (1 —exp (_AgglAt)) exp (—Agg{At) (25)
4 Bia, (14 C) (1 —exp (—Agg{At» exp <—A§2At>} | gmt} 5rmin O i,

Relationship between prepayment and default Recall that prepayment and default
are assumed to be mutually exclusive. The mortgage termination time is the minimum be-
tween two stopping times, 7, and 7, and is thus itself a stopping time. Default is mostly
driven by the gap between the mortgage unpaid balance and the house value: the greater the
gap, the greater the probability of default, as US mortgagors may walk away from both their
house and mortgage, thus getting rid of a liability which is larger than their asset. Prepay-
ment is mostly driven by the gap between the mortgage coupon C' and current mortgage rate

10



C;, which makes currently issued mortgages trade at par. We can therefore model default
and prepayment as two separate functions.

Such a model handles the cases when mortgagors may both want to default and prepay.
This is reflected in positive probabilities for both default and prepayment. The relative
magnitude of the default intensity rate, a function of the ratio mortgage unpaid balance to
house price, versus the prepayment intensity rate, a function of the difference between the
mortgage coupon and the current mortgage rate,” will automatically make default probability
greater than prepayment probability.®

2.2.2 Determining the fair coupon at inception

In equation (25), p, C, and B; are given to the investors, and V;, does not need to equal F.
But to a mortgage issuer, at t; = 0, i.e. on the issuance date, the fair coupon needs to be
determined by setting Vj equal to F' and solving for p (or C'). Then, using equations (2) and
(3), C (or p) and By,Vs € {1,T}, can be found.

2.3 Default intensity function

Temporarily ignore the possibility of prepayment, and focus on default.

Recall equation (21). Housing price log-returns are modelled as following a geometric
Brownian motion:

2

g
H,. = H,exp ((mt - 7H> At + oy (Wg‘f) - W;?H))) . (26)

The higher the ratio of B;, — the mortgage yet unpaid balance when mortgagors may debate
whether to default at time ¢;;; — to the house value H;,, the higher the mortgagors debt
relative to the backing asset, and the more likely a default. A time ¢y, set H;, = %, where v
is the average loan-to-value ratio at origination, as observed on the market at the time of the
mortgage issuance.” The one-period default intensity in equation (23) can thus be specified
as

B, e
A = q, +b, (min { i 1]) , (27)
i H,

(3

where

e a,+b, is a positive constant background default rate, to be estimated. Its interpretation
is that a default may occur for other reasons than a high unpaid balance relative to the
house value. Such events are captured by a,;

“For details about such functions, see sections 2.3 and 2.4 further below.

8This is different from Schwartz and Torous (1992), who model the interaction between default and
prepayment using two functions by part, both conditioned on housing prices and mortgage rates, and set the
probability of default (prepayment) to zero when prepayment (default) dominates default (prepayment). See
Section 1 for more details.

9Such a ratio typically hovers around 0.8.

11



e b,, a positive constant, may have a magnifying or reducing effect, whether it is smaller
or greater than 1;

. .. . . . . . Bt
® ¢, is a positive constant > 1, since A7 is expected to be increasing and convex in 7 L

i

e the minimum function ensures the default rate accelerates as ¢, increases.

e The interpretation of the floor set to 1 is that, when the mortgage balance is smaller
than the house value, the mortgagor has no economic incentive to default. The only
source of default is then the constant background rate a, + b, described further above.

Remark Going back to equation (23), observe how, the greater the ratio of By, to Hy,,
the greater AE?), and so the smaller the survival probability exp (—AE?) and the greater the

default rate 1 — exp (—A,E?) and the probability of defaulting at ¢;;.

2.4 Prepayment intensity function

Ignore temporarily the possibility of default. At any time ¢;,'® mortgagors may compare the
holding value of their mortgage, noted V;Eh), and the prepayment or exercise value Vtge). They

want to minimize their liability, so that, the wider the gap between V;Eh) and Vtge), the greater
the incentive to prepay.

The prepayment intensity in equation (24) is defined as

+\
A = (aﬁbﬁ([mih)—mie)} ) ) (28)

with ar, b, and ¢, respectively similar to a,, b,, and ¢, as already defined in equation (27).
Taking the positive part of the expression ensures that the intensity remains positive.

If the mortgagors hold to their mortgage, they owe p, the payment scheduled for ¢;, plus
the present value of their current mortgage remaining payments, that is V;_,,, from equation
(17), multiplied by the one-month discounting factor Dy, ;... If they refinance, they only
owe C’Btjfl,11 the interest owing for the period just ended in ¢;, plus the expected present

o
value of a new mortgage, Vti tj), the coupon of which, C;;, makes said present value equal to
par, i.e. By,_,, which is the opening balance for period ¢;."> We thus have that

h P
Vtg '=E [Vtﬁrl ‘ gtj] Dij b0 0,

V;S(E) = Btj—l (1 + C) )

J

10We assume here that default or prepayment can occur at the end of a period only.

HRecall that no prepayment penalty applies to mortgages underlying Fannie Mae conventional MBS.

2Tn equation (25), By, _, is substituted to V;; on the left-hand side, and the currently observed mortgage
rate Cy,, as well as a corresponding fixed payment p;; are substituted to C' and p, while every remaining
future balance By, , in the sum gets updated accordingly, so that the equality is satisfied.

12



so that, equation (28) becomes

Cm

A = art e ([E° [Viyo [ 90] Dyt +0 =By (14O ) (29)

where V;_,, is obtained from equation (25).'?

3 Numerical implementation

3.1 State variable dynamics and probability calculations

Such a valuation model can be implemented using a time sequence of two-dimensional grids,
with one axis for the housing price diffusion term and the other axis for the interest rate
diffusion term. The information from both housing prices and interest rates feeds into the
default and prepayment functions, as defined by equations (23) and (24). Using a Markov
chain, and moving backwards through such a sequence of grids from the mortgage matu-
rity date to the valuation date, we can thus calculate the default probability, the prepayment
probability and the continuation probability at each node. The value of the mortgage at each
node is the probability-weighted average of such three values, as described in more detail in
equations (36) further below. Moving back from time step to time step to the valuation date
ultimately yields the mortgage present value, weighted by the different path probabilities,
and discounted accordingly.

3.1.1 The interest rate dynamics

The solution to the Ornstein-Uhlenbeck equation (11) is
¢
re=8+e*(ro—B)+ O'/ e’a(t’S)dWS(Q) (30)
0

Writing the Ornstein-Uhlenbeck process as an autoregressive process of order 1, or AR(1),
yields
1 _ 6—204At

L
12°

th+1 = eiaAtth + /8 (1 — eiaAt) + o (31)

where {Zt]. }jen are ii.d standard normal random variables, and A; =

Define the diffusion term

1 _ 6—2(1At

Py =N g s = T = (N B (1= ),

which will become handy in calculating transition probabilities further down.

I3For a detailed description of the recursive implementation of the mortgage valuation, moving backwards
from Vi, to EF [V}Hl | gt].] and V;,, see Section 3.
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We now build a grid for interest rate values. We center the grid around 3, the distribution
long-term reverting mean. We set (™) the upper bound of the grid, to the maximum level
observed in US short-term interest rate empirical time series over the last 30 years, i.e. 10%,
which was reached by LIBOR 1-month in March 1989. We then observe that a 33 basis point
rate decrease would save a typical $150,000-indebted Fannie Mae 15-year mortgagor $500 in
annual interest payments, a difference that could trigger prepayment. So we determine that
physical increments should be no more than 33 basis points, and we set such increments,
noted A,, to 0.33% / 5. This yields a grid of equally spaced interest rates r™, ranging from
10% to 8 — (10% — B).1

Finally, Vn € {2, N — 1}, we partition the vector into cells (D,, D,1], with D, =
M, so that every interest rate level 7™ is the midpoint in a vector cell. Further,
set D1 = —oo and Dyyq = 00.

3.1.2 The housing price dynamics

Turning to housing price dynamics, discretizing equation (26) gives

o2
Hy ., = Hy exp ((,uH’tj — TH) Ay + o/ Ay Z,fﬁi) (32)
where pg, = p — vgoy = ry, with pff as defined in equation (26) and 7y as defined in

equation (13).

A challenge is to build a grid that is wide enough to cover every reasonable state of Hy,
over up to 15 years, subject to computer memory constraints.!®> A solution, suggested by
Duan and Simonato [5] for equity prices S, is to define an adjusted asset price S, rid of the
drift term such that

J
Sy, = Si, exp (=9 jA;) = Soexp (asx/jAt > Z,f?) : (33)
j=1

where Sy is the asset price at the asset valuation date and p%) is the drift parameter for S.

We cannot exactly replicate such a scheme since, in equation (32), the drift term ug’H)
is not a constant, but a stochastic r,. We can however build, in the same spirit, a grid for
the housing dynamic diffusion part.!

Let M, the number of elements in the housing price vector, be any odd positive integer,
only subject to computer memory constraints. We build the grid of housing prices in two

14N, the number of grid points is thus a function of 3. We estimate 3 to be 0.0174 in section 4.1. As a
result, NV equals 250.

15Using MATLAB on a Windows Intel i5-7003U system at 2.60 GHz with 16 GB memory, we could
implement, with a monthly discretization, a 250-by-180 node interest rate grid and a 49-by-180 node housing
price grid.

Denoted hy, as defined further down in section 3.1.3.
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steps: first, a temporary grid, where Hy coincides with a grid node; second, the final grid is
obtained from slightly shifting the temporary grid, so that Hj falls exactly in the middle of
the grid middle node.

(M5 =

Let’s label the temporary grid nodes C'. And let the middle node C Hy. Fur-
ther, set the grid upper and lower bounds to C'(*37) + \/ 2o/ A/t and O —

q/%(ﬁq\/ A/t respectively, where t; = T, the mortgage fixed maturity date.!” Subdi-

vide the intervall thus bounded into M — 1 subintervalls of equal size'®

\/ %UHV At\/E

AC’ ~ 2 M1
Then, ¥m € {2, M—1}, partition the vector into cells (C™), C(m+1V)] with C(™) = wv
My (M
so that, in particular, Hy = W as planned. Further, set C") = —0c0 and CM+1) =
00.

Remark Rather than simply centering the housing diffusion term tree around H, it would
make sense to center such a tree around Hy plus 3, the interest rate long-term average
parameter, or a weighted average of such variables. However, a grid simply centered around
Hy performs adequately, including in very high or very low interest rate environments, as
evidenced in our stress test.!?

3.1.3 The bivariate transition probabilities

Let pimn,uw) be, Vm,Yu € {1, M} and Vn,Vv € {1, N}, the joint transition probability under
the probability measure P that both

e the housing reference price move from state H™ at any time tj, to state H () at time
tj-i-la and

e the interest rate move from state (™, at any time t;, to state r®) at time Lyt

17Setting M = 101, for example, thus yields upper and lower bounds 7.91¢c apart from the middle node
since T is fixed and equal to 15 years, regardless of the remaining term-to-maturity at the valuation date.

18See Duan and Simonato [5] for such a choice of Ay, which helps ensure convergence.

19Gee section 5 for stress-tests.
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In equation,

Pmn,uv) = P (C’u < Hy,, <Cyprand D, <7y, < Dyyq | Hy, = H™) and T, = r("))
2

=P (Cu < Ht]. exp ((,U/Hﬂgj - 2) At +ogy Atth+1) S Cu+1

and D, < 1y, < Dv+1 | Htj = H(m) and?"tj — T(TL))

1

Cu 02 Cu+1
=PlIn W < ,U/H7tj - ? At +ogV AtZt_7‘+1 < In H(m)

and D, — (e_aAtr(") + 5 (1 — e_"‘At)> < Ty, — (e“’Atr(”) +p (1 — e_aAl"))

(34)
< Dyyq — (e*’lAtr(”) +p5 (1 — 67°‘At)) ‘ H;, = H™) andry; = r("))

Cy o? I
- (ln (H(m)) B (r(n) e 2) Bus oy Siig

Cu+1 (n) 0'2
<In (H(m)> - (r + Yoy — - A

and D, — (7030 45 (1= e ) <y = (7080 4 (1))

< Dyy1 — (e_aA’T“(”) + 5 (1 — e‘“Af)) | H;, = H™) andrg; = r(")) .

C o?
Cy, =1In (H(m)) (’I“ +YHOH 5 )At

&) = D, — (08 4 § (1 o))

Also define the housing price dynamics diffusion term

By = oD 28 = oy /A, (pthH +/1— pQZ(t)l)

t

Define

and

with Corr (th+1> z5 ) =0, and {fo)}jeNz'.i.d. N(0,1).

ti+1
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Then, substituting ¢™, d{”, hy,,., and z; , into equation (34) yields

Pimn.uv) = P <d1(;n) < Ty S dfﬁ)l and cgm) < hy, < C(m)>
(n)
—F < 7 ”"'

u+1
1
/1 7204A i+l — /1 7204At

< pZy. 1—p2z) < A
aﬂr PR TV = G VA

di"ﬁl ffi’l (35)
/ S S cb(z(”)dz(“ o(2)dz
72aAt UH\/i
1— p2
51:—)1 C<Ti>1 (m)
1— e—ZOLAt PR s o pZ i3 _ pz
/ (I) UH\/E —(I) UH\/E ¢(Z)d2,
Tooms 1—p? 1—p?

where ¢ and ® are respectively probability density and cumulative distribution functions of
a standard normal random variable. We implement such a double integral using MATLAB
muncdf function.

3.2 Mortgage valuation using dynamic programming

First, default intensity values and one-step discount factors can be calculated off-line.

For all m € {1, M}, for all j € {1,J}, and for any n € {1, N}, the (mn)-node default
intensity A(n)(m) can be calculated using equation (27). Ht(;”) in the equation can be recovered

from the statlonary grid at each time step by combining H™), 5 and t; as follows:*

2
Ht(:l) ~ Hyexp ((ﬂ— %) JA; + ((m— M;_l) Ah)> .

For all n € {1,N}, for all j € {1,J}, and for any m € {1, M}, the (mn)-node discount

factor Dt b = m, from equation (22).

Then the backward algorithm can be run, starting from the maturity date.

Consider Vt(ff?), the mortgage value at time J — 1 on node (mn), where H,, . = H(™

20The long term average parameter for the interest rate dynamic is used as a reasonable approximation to
recover the housing prices from the stochastic interest rate r;.
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and r,, , = r™. Using equation (25) with i = J — 1 yields

Vi =E° [Duyy, {0+ Ve e (<A A ) exp (-2, )
1By, (1—exp (<A, A ) ) exp (-7, A0 (36)

4B, (1+0) (1 —exp ( AgglAt)) exp ( AP t)} | gtH] Bt Oro,.

At maturity time ¢;, there is no future payment left, so V;, = 0. Also, immediately after
t;_1, prepayment becomes irrelevant, so that

EF [exp( AtJ 1At>} =1.

Moreover, knowing the mortgage is still alive at t;_1, 6, ¢, , = 1 and 0, >, , = 1. Equation
(36) thus simplifies to

V;(J”_“?) = Dgzht‘] [pexp ( AE?)(l A ) + KBy, (1 — exp <—A§?)_(T)At>>] )

Set V, le = V;(Jm? , and move one time step back, to t;_,, where, for any of the M times N

pairs (mn),
Vt(j_l;l) = EP |:DtJ—2,J—1 {p57n>tJ—1 6T7r>tJ—1 + HBtJ—z(StJ—2<Tn§tJ—1 5T7r>t.]—1

+BtJ72<1 + C)étJ—2<T7r§tJ—157n>tJ—1 + VtJ7157n>tJ 1 6T7T>tJ 1} ‘ gtJ 2] 5‘Fn>t1 267'7r>tJ72

=D [exp (A7) e (A7) (p+zzpw >)

u=1 v=1
+ KB, , (1 _exp (—A(")(m)At» exp ( A A )

tj_o tj_2
VB, ,1+0C) (1 — exp(—A™" At> exp( AP A, )]

(37)
where A ) is the prepayment intensity A , as defined by equation (29), associated with

interest rate r(™ and continuation value Zuzl Zszl D(mn,uv) Vg(, .
{1,J},

AE:)(n) =a, + b, (maX []E [VtJH ‘ G, }

From equation (29), Vj €

i

Moving further backwards until time ¢; yields the mortgage value V;,, as in equation (25), as
at the valuation date.

+p—B,_ (1+0),0DC”

t] t]+1

Z Zp(mn uv) VST; gn)thrl +p— Btj71(1 + C), 0

u=1 v=1

=a; + b, (max
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4 Parameter estimation

4.1 Housing Price and Interest Rate Dynamics Parameter Esti-
mation

Recall that a time step A; is equal to one month. Let k = #;, the index for such time steps,

and define hy = In(Hy). Recall the discretization for the interest dynamics from equation

(31) and apply a similar discretization to equation (26) with respect to the housing price
log-returns. We thus have

2

. . o
hi = hip—1 + (MH,k—1 - TH) Ay + oV A, Z,EH)
and
1 _ Q—QOLAt
rp=e “Mry + (1- e"mt) +o g Ok

where {Z,(CH)};CGN and {Z}ren are i.i.d standard normal random variable, with
Corr(ZliH), Zy) = p.

Let ¥ be the variance-covariance matrix for iy and 7. Denote ! its inverse, and ‘ by | ,
its determinant. We then have

5 _ lof77AY) PO
pov Ao 1_62_jaAt

1 —
|E‘ = (1 —p2) O']Z;IAtO'2 (
and
2 [1—e228¢
n-l 1 “ ( 2a )
‘Z ‘ —pO‘H\/AtO'\/# gAY
1 —pV2a
(1-p2)o2, Ay (1*92)0'H\/EU\/1*6_20‘At
—ﬂ\/ﬁ 2a

(1=p2)ogVvAs J\/l—e_Qo‘At
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The joint probability density function at time kA,
[y, i)

~ ~ 2
1 exp Lk = by = (e ymom) A + HEA,
re—e Bt —f (1 — e*aAf)

/

2—1

~ ~ 0.2
hie — b1 — (T—1 + YHOH) AL + LA
P —e Bt — 15} (1 — e*O‘At)

1 1 1 . o2 \’
T P 5 T 0 AL <hk — hi—1 — (Te—1 +yHOH) At + ;At>
/27 | 2] (L=p*) op A

2p\/ﬁ . R (712L1
o h —h 1 — _ A 7A
(1—92)0H\/Eam< k= ey = (Mo Hyrom) Ar+ 5 A

(rk — e Bty I5; (1 — e*aAt))

2 —al\¢ —al\¢
+(1_p2)6,2(61y_672¢m,5) (re—e g —B(1—e A))Q}'

The log-likelihood function

N
L(yg,on,, B,0,p) =In (H (f(ilk,rk

k=1

ilk—lﬂ"k—l)) = i (111 (f(ilk,rk ‘ ilk—l,hc—l))
— v (Va) - v (ma—,,ma :)

2a

1 & 1 - - o2 2
3 Z {(1—02—)0'2HA15 (hk — hi—1 — (Th—1 + yHOH) A + THAt)

2pV 2« (A . o2, )
- b — ht — (it + o)A, + ZLA
(0 P onvBioVT o ms %7 o = e Fomom) Bt 5 A
(Tk _ e—aAt,r,k_l _ 5 (1 _ e—aAt))
20 —aly —al\; 2
+(1 — 2) 02 (1 — e—20b) (re—e ™ =B (1—e )) }

Maximizing the expression above is equivalent to minimizing its negative, without the con-
stant term N In (\/ 27‘(’), that is

1 _ e—QOéAt
9(vm,0m, @, B,0,p) = Nln (\/ 1 —pPogy/Aro —)

2a

N 2
1 “ - o2
hy — hg—1 — (13— A, + —HA

+Z{2<1_p2)012th<k k=1 — (o1 + YHOH) A + 5 t)

k=1

PV 2x

(= P oDy oyl — e B

N . o2
(hk - hk;—l - (rk—l + 'VHO'H)At —+ 7HA,5> (Tlc _ e—aAtTk_l _ /B (1 o e—aAt))

a -« —a 2
+ (1— p?) o2 (1 — e2080) (rr—e B — (1—e At)) .
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Table 1: Housing log-return and interest-rate process parameter estimates

Parameter Estimation +/- Error

o 0.0226 0.0016
3 0.0174  0.0586
a 0.0745 0.1292
o 0.0104  0.0007
p 0.1999 0.0973

The parameters for the housing log-return and interest rate processes described by
equations (32) and (31) respectively have been estimated by minimizing numerically
the negative of the log-likelihood, as given by equation (4.1). The errors have been
calculated using Proposition B.5.1 in Rémillard [7]. Fisher information matrix has
been estimated using the Hessian, as returned by MATLAB fminunc function. The
data used for the estimates are the monthly Case-Shiller U.S. National Home Price
Index [CSUSHPINSA] and the monthly 1-Month London Interbank Offered Rate
(LIBOR), based on U.S. Dollar [USDIMTD156N] between January 1987 and March
2018 inclusively, both retrieved from FRED, Federal Reserve Bank of St. Louis.
The log-likelihood estimates for housing log-return dynamics and the correlation
between Z and Z®H) show relatively small estimation errors. The estimation errors
for the Ornstein-Uhlenbeck process parameters are larger, consistent with Remark
5.2.3 in Rémillard [7], but remain within a reasonable range.

The resulting parameter estimates are shown in Table 1.2

4.2 Prepayment Parameter Estimation

To estimate the parameters in the prepayment intensity equation (29), i.e. a,., b, and ¢,, we
proceed as follows:

e We run the dynamic programming algorithm described in section 3.2 and, at each time
step t;, we store, for each pair of interest rate level and housing price with index mn,
the conditional prepayment rate returned by the prepayment intensity function (29).

e Starting from the valuation date ¢y, we compute, at each time step ¢;, the cumulative
probability that the interest rate level and the housing price level reach node mn. Let
pgnn) denote the probability for the housing price and the interest rate to be jointly in
state m and n respectively at time ¢;, given they are in known market-observed states
at time ¢o. And denote py; the vector of such probabilities at time ¢;. For all j € {1, J},
we have

ptj = pzj_lp
where p is the matrix of the bivariate transition probabilities p(mn,uv), similar to the

risk-neutral probabilities q(;nn,uv) defined in section, but under a real-world probability
measure P 3.1.3.

21The reasonableness of the log-likelihood estimates has been tested using Monte Carlo simulation. See
Appendix A.
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e At each time step, we compute our model monthly conditional prepayment rate, noted
W;., as being the conditional prepayment rates returned by the prepayment intensity
function defined by equation (29) on every node mn, weighted by the probabilities pgnn)

to be on such nodes respectively. In equation:

M N
\Iftj = Z Z }_)Tp(;,uv) exp (—A%j{@) ’
u=1 v=1

where p(. 4v) is a vector column listing the transition probabilities of moving from every
pair of states mn to the state uv.

e We calculate the sum of the squared differences between each element in the vector of
our model conditional probabilities W, and the monthly conditional prepayment rate
(“CPR”) observed on the market in the corresponding month ¢;.2?

e We obtain a,, b, and ¢, estimates by minimizing such a squared difference using the
MATLAB function fmincon and the interior-point algorithm.

To illustrate, consider the Fannie Mae pool with Bloomberg ticker FN 890404.% Such a
pool was issued on May 1, 2012, with a 6.5% coupon. Trading above par, it is helpful in es-
timating prepayment parameters, as its higher-than-market undelying coupons are expected
to trigger prepayments. Its weighted average coupon (“WAC”), or C as defined by equation
(8), was 7.055% on issuance, and this is the coupon we use.

Seven years of observation are available, yielding a time series of 72 monthly conditional
prepayment rates as at April 30, 2018. Over such a period, the default rate has been nil in
the pool, based on the default rate reported by Bloomberg. This allows us to temporarily
ignore the default parameters, and estimate the prepayment parameters separately.

Recall that our model stipulates, as a simplifying assumption, a constant risky spread.
Observe figure 1 and note how such an assumption has held historically in the US since 1991
on relatively short periods of two years or so, but should be reconsidered for longer periods.
This is a limitation of our model that we acknowledge. Such an assumption is however rea-
sonable for the period May 2012-April 2018, when the 15-year mortgage spread over LIBOR
I-month, on a monthly basis, ranges from 174 basis points (“bps”) to 338 bps, with a 265
bps average and a 43 bps standard deviation.

We first estimate the constant spread S, as defined in equation (22), by taking the differ-
ence between the market average mortgage rate and the 1-month US LIBOR rates prevailing
on May 1, 2012, the beginning of our estimation period.?* We estimate S to be equal to

22The market-observed CPR is obtained from Bloomberg. It is the ratio of the aggregate amount prepaid
on a mortgage pool to B;_; — P, where B and P are as defined in equations (6) and (7), while ¢ — 1 refers
to the previous month.

23The pool CUSIP is 31410LGMS.

24The mortgage rate is obtained from the Federal Reserve Bank of St. Louis. The 1-Month London Inter-
bank Offered Rate (LIBOR), based on U.S. Dollar [USDIMTD156N], from ICE Benchmark Administration
Limited (IBA), and the US average 15-year mortgage rate were retrieved from FRED, Federal Reserve Bank
of St. Louis; https://fred.stlouisfed.org/series/USDIMTD156N, June 9, 2018.
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Figure 1: Historical spread between 15-year mortgage rate and LIBOR 1-Month (1991-2017)
2.7674%.

Then we follow the steps in the estimation procedure described further above. Minimizing
the sum of squared differences between the W, values for all j € {1,72} and the 72 monthly
CPR observed on the market ?*for the pool being valued yields the following estimates for
for a., b, and ¢, respectively: 0.000088732, 0.0011 and 1.2336.

Observe in figure 2 how the implied prepayment rates follow a much smoother trend
than the actual CPR observed for the sample pool and don’t appear to overfit. Note also
how the model prepayment rates start high and decrease slowly from about 30% to 20%
approximately, which is consistent with the historical trend, as well as the fact that much

lower interest rates than the pool coupons prevailing at the time of issuance would trigger a
lot of early payments.?

4.3 Default Parameters Estimation

Now that prepayment parameters have been estimated, it is possible to identify pools with
non-null default rates and estimate default parameters a,, b, and ¢, by minimizing the
squared difference between the monthly default rate implied by such parameters in our model
and the series of default rates observed historically.

25The CPR are obtained from Bloomberg.
26Recall we are dealing with 15-year Fannie Mae MBS, which are typically backed by refinancing mortgages.
The pattern of prepayment rates starting low and increasing for two years and a half before plateauing, which

is typical of many new mortages and reflected in the well-known Public Securities Association (PSA) model
thus do not apply.
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Figure 2: Model Prepayment Rate vs Historical CPR time series (FN 890404 Pool example)

5 Model Tests and Stress Tests

In a base case, mortgages currently issued carry a coupon that will make them trade at par.
Alternatively, they can be priced at a premium (when carrying a higher coupon) or at a
discount (when carrying a lower coupon).

To test our model, consider a mortgage carrying a 3.2% coupon. We use the parameter
estimates in table 1 as baseline parameters. In the baseline scenario, we set the current
one-month LIBOR to 3, or 1.74%, resulting in a fair spread of 146 basis points. Setting
prepayment and default intensities to 0 for this test purposes, our model yields $1,000.95, as
shown in Figure 9 in appendix. A less than 0.1% difference is deemed reasonable.?”

Now, narrow or expand the spread by 100 bps, to 46 bps and 246 bps respectively, which
results in a parallel shift in the whole term structure. The resulting increase (decrease) in
value should be approximately equal to the mortgage value times its duration, calculated to
be 6.94 years,?® yielding a 69.45 dollar-duration. Our model yields $1,073.81 and $934.82, or

27Using smaller interest rate physical increments in the grid results in values closer and closer to par, as
can be seen from table 1. A less than 0.1% difference is however considered reasonable, and we stick to a 33
bps increment for test purposes.

28Recall that the prepayment and default intensities are set to 0 in the baseline setting.
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0.4% and 0.5% from the expected approximate values, which again is reasonable.

We stress the current interest rate to a high (low, and even negative) level and verify that
the value make sense, falling to $711.23 (increasing to $1177.30).

If the term structure is flat, a mortgage trading at par should not be sensitive to prepay-
ment. We set the prepayment background intensity parameter a, to A% and verify than the
model yields a $1,000 value.

A mortgage trading at a premium (discount) should decrease (increase) in value as pre-
payments increase and early-returned capital gets to be reinvested at a lower (higher) rate.
But, assuming there is no risk of default, a mortgage value cannot fall below (rise above) par.

So we set the intensity of default to zero, and vary a, from A% to m for both a premium
1

and a discount mortgage. Note how a, = £~ is an extreme case, as it translates into a 63.21%

monthly prepayment rate. Figure 3 shows how both mortgage values are bounded between
par and the no-prepayment value, and exhibit a decreasing or increasing trend to par as the
prepayment rate increases (from right to left on the graph).?
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830

Vyin S
!
]
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—— premium V= =g= = discount V

Figure 3: Impact of increasing a, on discount and premium mortgage values.

We expect the multiplying factor in A™, b, as defined in equation (29) to have a similar

29For the exact values used to generate this graph, the various parameter precise settings, as well as further
comments about the results reasonableness, please refer to the table in figure 10 in the appendix. The same
or similar tables in the appendix back all figures in this stress-testing section.
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effect as a,. Focusing on the premium mortgage, and setting a, and the exponent ¢, to
neutral values (0 and 1 respectively), we can verify in the table labeled Figure 10 that, again,
the mortgage value decreases from the no-prepayment premium value to par as b, increases
(from bottom to top in the table).

More generally, the model returns values that are consistent with our reasonable expec-
tations as can be see in figures 9, 10, 11,12 and 13 in Appendix B.
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Appendix A. Verifying the reasonableness of the housing
and interest rate process parameter estimates

We verify whether the estimates presented in section 4.1 are reasonable and our log-likelihood
formula implementation is accurate as follows:

e Using the parameters in table 1, we simulate 100 paths of monthly housing index values
and interest rates over five years of housing prices and interest rates (resulting in 100
bivariate series of 60 time points);

e We estimate the sample parameters using the log-likelihood function and minimization
approach described above;

e We compare the parameter sample means to the theoretical parameters and test the
hypothesis that they are similar using a Student’s t-test.

e We compare the sample variance for each parameter to the corresponding mean squared
standard deviation, i.e.

_ 1 <&
Si=-2_5 (38)
=1

where S is the standard deviation of any given parameter 6 (i.e either g, o, B,
a, o, or p) across the 100 simulations performed.

As can be seen in Figure 4, the estimates appear to be reasonable at a 95% confidence
level, except for uy and a. With respect to puy however, the sample mean is arguably rea-
sonably close to the theoretical value, being 3.45% compared to 3.68%. With respect to «,
the test negative result is consistent with the large estimation error noted in Table 1. Further
work could be devoted to explore how to better estimate Vasicek dynamic parameters. This
is beyond the scope of this Master’s thesis.

As shown in Figure 5, S? looks reasonably close to the sample variance for every param-
eter, again except for a.

One can also verify visually in Figures 6, 7 and 8 that, except for alpha, for reasons already
explained, the parameter estimates resulting from the 100 simulations performed reasonably
bracket the theoretical value.

30For the purpose of this test, we used a constant housing drift parameter. Further work could be devoted
to estimating the risk premium.

28



Parameter MH Oy p a o p
Theoretical value 0.0368 0.0226 0.0174 0.0745 0.0104 0.1999
Sample mean 0.03446691| 0.0227145| -0.71849886| 1.0260152| 0.0104735 0.201835
Sample variance 0.00008428| 0.00000428| 20.81851377| 1.49245113| 0.00000099| 0.02059304
Student statistic 2.54138085| -0.5533381| 1.61284737| -7.7887122| -0.7400848| -0.1348407
Student critical value 1.984 1.984 1.984 1.984 1.984 1.984
Conclusion Fail Pass Pass Fail Pass Pass

Figure 4: Student’s t-test to assess reasonableness of housing and interest-rate parameter
estimates

Parameter ng ox B a o p
52 0.000079 0.000004 20.271496 0.577925 0.000001 0.020589
Sample variance 0.000084 0.000004 20.818514 1.492451 0.000001 0.020593

Figure 5: Simulated Housing and Interest Rate Parameter Mean Squared Standard Deviation
vs. Sample Variance
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mu_H sigma_H

Figure 6: Simulated Housing Parameter Estimates
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Figure 7: Simulated Interest Rate Parameter Estimates
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Appendix B. Stress Tests
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