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RÉSUMÉ 
 

La modélisation incrémentale est une méthode élégante permettant de cibler des 

individus en fonction de leur probabilité de répondre positivement à un traitement 

(ou offre promotionnelle), sachant qu'ils sont exposés au dit-traitement. Cette 

méthode implique de séparer la population en deux groupes, traitement et contrôle, 

permettant d’isoler efficacement l’effet du traitement. Cependant cette 

méthodologie implique aussi l’exclusion de mesures d’évaluation de la performance 

du modèle telles que le taux de bonnes classifications ou la courbe ROC, ne pouvant 

pas être utilisées simplement parce qu’un individu ne peut être assigné aux deux 

groupes en même temps. Bien que plusieurs critères d'évaluation du modèle aient 

été suggérés, leur performance réelle dans l’évaluation d’un modèle demeure 

inconnue. Bien que l’efficacité de la méthode incrémentale est davantage illustrée 

dans cette étude, les résultats proposés démontrent explicitement que Qini et q0, une 

mesure dérivée de Qini, demeurent robustes dans diverses conditions de simulation 

des données. Nos résultats lèvent aussi le voile sur d’autres critères moins connus, 

à savoir la mesure de répétabilité R2 et le critère de Tau, tous deux montrant une 

bonne fiabilité mais spécialement dans des conditions de simulation favorable où la 

complexité des jeux de données est diminuée. 

 

Mots-clés: uplift, qini, valeur incrémentale, true lift 
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ABSTRACT 
 

Uplift modeling is an elegant method used to target individuals based on their 

likelihood to respond positively to a treatment (i.e. promotional offer), given they 

received the treatment. However, as this methodology involves splitting the 

population into treatment and control groups, traditional metrics such as 

misclassification rate or ROC curve cannot be used to assess the model’s predictive 

efficiency as an individual can only be assigned to one of the groups. While several 

model assessment criteria have been suggested, their performance has been poorly 

discussed. While the uplift method is further illustrated in this study, the proposed 

results demonstrate that Qini’s and q0, a Qini-related metric, are robust and reliable 

under various simulated conditions. Our results additionally investigate more novel 

criteria, namely R2 and Tau, showing great results under specific favorable settings. 

 

Keywords: uplift modelling, qini, incremental model, true lift 
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INTRODUCTION 

The advent of e-commerce and internet purchasing has grown so popular in the last decades that 

it has turned the retail industry into an even more competitive landscape than ever before 

(Heinemann & Schwarzl, 2010). Often described as a seismic shift, it has turned merchants' 

budgeting into an even more difficult discipline – all while growing customer approach’s 

complexity (Hughes & al, 2009). It is now clear that direct marketing is under overwhelming 

pressure to deliver excellent results while minimizing vendor expenses and losses (Gregory, 

2015).  

The promotion of new products through email is nowadays a common marketing action for most 

retailers (Hughes & al, 2009). Such promotional campaigns usually aim to maximize the gain 

from this marketing action. While sending promotional e-mails is usually a low-cost marketing 

tool, it is in most cases proscribed to reach out to the entire customer’s base for obvious reasons, 

as it often results into spending resources on uninterested or churned customers (Hughes & al, 

2009). A wiser and more modern approach is to profile the customer base beforehand in order 

to break the targeting down to individuals who are more likely to respond positively to this 

marketing action. Following the application of business rules, the marketing action (i.e. sending 

a personalized email in this case) is carried out on a selected number of customers. A certain 

increment or benefit from this action is subsequently measured. As Rukstales & Hansotia (2002) 

pointed out, database marketing traditionally targets the optimization of said response rate. Such 

models should allow the retailer to exclusively target customers who are likely to respond 

positively to the promotion. Yet, this is almost never the case. 

CONVENTIONAL METHODOLOGY DRAWBACK 

It has been demonstrated in the literature that the application of the conventional methodology 

involves several flaws. Further continuing with the promotional e-mail example, a trendy retailer 

sends a personalized email to a potential customer interested in a stylish pair of boots. The 

customer clicks on the web link attached to the email, shows genuine interest in the product and 

considers the discounted price at display. However, the customer does not buy the product 

immediately from the website but rather goes in store a couple days later. Does this purchase 
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count as revenue measured by email, given that the purchase was not completed online? Another 

example would be promos in grocery stores. A mother of three does her grocery regularly at the 

same grocer twice a week, for convenience and proximity purposes. Every visit implies a 2-

digits bill and half a dozen articles, among which the usual bread, milk and a can of tuna. The 

grocer targets this client through a promo email announcing a sale on the tuna. Of course, as 

every other visit, this customer grabs the tuna and throws it in her basket. Is this purchase 

attributable to the email sent to the customer, even if the customer would have bought the article 

regardless of the offer? 

These two examples illustrate some of the shortcomings of the traditional method. Specifically, 

the major drawback of models optimizing the response rate is that they include in practice clients 

that are not necessarily interested in the promotional campaign. These models fail to make the 

crucial distinction between customers who: 

 

1. Make a purchase with the promotion. 

2. Make a purchase only because of the promotion. 

 

The first category of clients has no real value to the campaign. As mentioned, there are 

customers who would buy regardless of whether there is a promotion or not. Hansotia & 

Rusktales (2002) made a valid point by demonstrating that this group of customers is included 

in most campaigns, regardless of their lack of incremental profit. More precisely, all potential 

customers targeted by a marketing action can be split as follows: 

 
 

Response if treated 

Yes No 

Response if not treated Yes Spontaneous response To avoid 

No Target No effect 

Table 1. Customers distribution based on treatment and response variables (Kondareddy et al., 2016). 

 

Even if they embody optimal clients, individuals who respond regardless if they are treated or 

not have no incremental value, and thus logically do not require targeting. On the other hand, 

individuals who do not respond to targeting are of even less interest, as they decrease the lift on 



 

 

3 

the increment. Finally, individuals who respond positively when untreated but negatively when 

treated, although few in numbers, are extremely important in retention activities (Guelman et 

al., 2015). Several studies show cases where incremental value modeling has transformed 

conventional retention failing campaigns into blatant success (Kane et al., 2014; Siegel, 2013). 

It is therefore clear that the target category regroups customers who respond only when reached 

out. By avoiding other potential client categories through better targeting, it is both possible to 

improve incremental revenue while minimizing campaign costs. This is the main purpose of 

uplift modeling. 

GENERAL UPLIFT METHODOLOGY 

For more than half a century, this methodology has been used in clinical trials and drug 

development studies (Jackson et al, 2011). In the context of health sciences, this technique 

historically made possible the measurement of actual benefit from the treatment by eliminating 

most forms of methodological bias, such as the common placebo effect (Weisberg & Pontes, 

2015). The first publications describing the application of uplift processes in a business context 

appeared in late 90’s. The first method suggested by Radcliffe & Surry (1999) was to determine 

the clients who are most likely to respond positively according to their characteristics. The major 

innovation of the proposed methodology was splitting the target sample into two categories: 

treatment and control. The treatment group thus gathered targeted individuals who will receive 

the marketing action (i.e. e-mail, phone call, etc.). On the other hand, the control group will not 

receive the treatment but will nevertheless be monitored for analytical purposes. For example, 

the retailer might collect data on the individuals by measuring their generated income, the 

overall customer behavior and so on. 
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Treatment Control Increment 

Model A B A-B 

Random C D C-D 

Model - Random A-C B-D (A-B)-(C-D) 

Table 2. Incremental value measurement with treatment and control groups (Lo, 2002) 

 

The uplift method considers that a baseline incremental value can be obtained even by randomly 

targeting individuals from the database. In Table 2, A, B, C and D cells are aggregate values 

that may represent sales, response rates or other performance metrics (Lo, 2002). If the value of 

A > value of C, we presume that the model performs well in targeting the "good" clients as it 

provides better results than random targeting. It would be considered a good model according 

to conventional standards. However as mentioned earlier, this type of approach does not 

eliminate customers who would buy regardless of whether they receive the treatment or not – as 

it focuses on the broader segment of individuals who are simply more likely to buy. As Lo 

explains, this key information is obtained only when the aggregate values for the control group 

are considered. Consequently, if A tends to be very close to B, it becomes clear that even if the 

predictive model performs well (A> C) there is no real value related to the campaign. A ≈ B 

simply means that the group receiving the treatment brought the same value as the untreated 

group (Lo, 2002). The fact that the model performs better than random targeting is therefore not 

sufficient, as it’s necessary to consider the difference between the treatment group and the 

control group. Therefore, the proposed gain for uplift modeling is (A-B) - (C-D), given that all 

these values are statistically significant (Lo, 2002). Mathematically, the modeled value is as 

follows: 

𝑃𝑇(𝑌 = 1|𝑥𝑖) − 𝑃𝐶(𝑌 = 1|𝑥𝑖) 

 

where Y is the response variable. Y = 1 represents a response (purchase) and Y = 0 an absence 

of response (no purchase), Xi is a vector of independent variables while T refers to the treatment 

group and C to the control group. This measure is therefore an estimate of the net gain of the 

treatment (Soltys et al, 2014). Since real-life marketing campaigns usually have a limited 

budget, the customer database is divided into deciles, where only the highest performing deciles 
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(thus with the highest incremental values) are targeted for the future campaign. This will 

maximize the likelihood of targeting clients who are most likely to buy only because of the 

promotion, while leaving spontaneous responders or those who respond negatively out of the 

bag. 

 

THE CURRENT PRACTICAL METHODS 

Two-models approach 

The simplest method proposed in several studies involves the development of two models. 

Categorized as indirect, this approach involves fitting one model for the control group and 

another for the treatment group, independently of each other and each separating the responders 

from the non-responders. The key step of this approach is the subtraction of the control score 

from the treatment score. This difference is then interpreted as the incremental response rate at 

the individual level (Hansotia & Rukstales, 2002). It is reported that this approach performs 

efficiently in practice when limited to the best deciles involving the highest uplift (Zhao, 2012). 

However, the basic hypothesis of the model implies that even if the individuals in the control 

and treatment group are different, the individuals grouped in the best deciles of the two groups 

remain similar and thus, comparable. Based on this hypothesis, it becomes therefore possible to 

subtract the individuals scores (Hansotia & Rukstales, 2002). 

True uplift modeling approach 

On the other hand, the direct method proposed by Victor Lo (Lo, 2002) involves combining the 

two treatment and control samples while creating a dummy variable T for treatment. This binary 

variable has a value of 1 if the individual has been part of the treatment group and zero if the 

individual was in the control group, independently of other variables. Lo suggests adding 

interaction terms involving T and the independent variables. By multiplying variable T with the 

other independent variables, we thus obtain two types of interest variables: the independent 

variables for the control group and the independent variables in interaction with the treatment 

variable. It is consequently possible to develop only one model, both on the control and 
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treatment group jointly. Opposing the previous approach, this method avoided errors induced 

by fitting two separate models and calculating the scores on the difference between the two. 

Lai’s approach 

A different uplift modeling approach was to reorganize the four client groups from Table 1 into 

two sets. Lai’s method concretely allocates customers into two categories distributed as good vs 

bad segments (Lai, 2006). Customers who will not buy because of the treatment and customers 

who do not buy whether they receive a treatment or not are both referred to as "bad" customers 

(or negative uplift). On the other hand, customers who buy with or without treatment, or only 

with treatment, are referred to as "good customers" (or positive uplift). It is then a matter of 

modeling the likelihood of a client to be a good client (Lai, 2006). 

Latest suggested approaches  

A myriad of other methods was suggested in the last five years. An example would be the z-

transform model, which is based on logistic regression or a bayesian classifier to construct a 

single model (Jaskowski & Jaroszewicz, 2012). A variant of Lai’s method has also been 

proposed, generalized with added weights for standardization of predictions (Kane et al, 2014). 

Furthermore, the most recent methods combine modern techniques such as random forests 

(Guelman et al, 2015). The most recent approach to-date is based on creative reverse thinking, 

modelling the probability for an individual to be part of the treatment group knowing that there 

is a response (or non-response). The authors of this proposed model, named reflective uplift, 

claim that combining this approach to Lai’s positive/negative concepts gives models more 

robust to face noise and sources of bias (Shaar et al, 2016). 

 

CURRENT MODEL ASSESSMENT MEASURES 

1. Known observed value  

A first possible measure of model performance is to use data for which the outcome is known. 

Thus, the uplift predicted value by the model is then compared with the uplift known value, at 

the individual scale. A certain measure of precision for the model is consequently obtained. 

Studies such as Shaar et al (2016) and Lo (2002) put this method in use and evaluated the 
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robustness of their novel uplift models on simulated data sets. By controlling the components of 

the dataset and knowing the actual uplift value, several assessment criteria can be obtained: the 

correlation coefficient between the predicted mean and the actual uplift, the AUC difference 

between the predicted value curve and the actual value (Shaar et al, 2016). Nevertheless, because 

this assessment method requires knowing the actual uplift value, this method is not usable in 

practical cases. 

 

2. Uplift curve 

Uplift curves, also called incremental gain curves, have been used to visualize a model’s 

performance (Soltys et al, 2014). This curve requires the sample to be divided into training and 

validation. After modeling the uplift value on the training sample, the model is used to score the 

validation sample, both for the control and treatment group. We then sort the uplift scores 

estimates from highest to lowest. The observations are then separated into groups, often in 

deciles, once again in descending order. Consequently, the first decile regroups the top 10% of 

the estimated uplift scores. The observed uplift value for each group is then calculated: 

 

(1) 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑢𝑝𝑙𝑖𝑓𝑡 =  
𝑁𝑏 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠

𝑁𝑏 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
−

𝑁𝑏 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠

𝑁𝑏 𝐶𝑜𝑛𝑡𝑟𝑜𝑙
 

 

(2) 𝑆𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑢𝑝𝑙𝑖𝑓𝑡 = 𝑁𝑏 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 − 𝑁𝑏 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 

 

(3) 𝑅𝑒𝑎𝑙 𝑢𝑝𝑙𝑖𝑓𝑡 =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑢𝑝𝑙𝑖𝑓𝑡

𝐷𝑒𝑐𝑖𝑙𝑒
⁄  

 

The first calculation method (1) is used by Shaar et al (2016) and compares the success rate in 

the treated group vs control group. It can be isolated to specific deciles or applied to the whole 

model results, as an overall performance metric. The second method (2) instead focuses on 

absolute numbers in each group. Because it directly provides a difference in individuals and is 

more simple, this metric is generally more popular through literature (Lo, 2002; Radcliffe, 

2007). These results are subsequently plotted on a graph of observed gain for each decile. The 

net gain predicted by the model is thus visually obtained for each portion of the population, 
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ordered from the most to the least interesting deciles. Figure 1 below is an example of the uplift 

curve for 2 different models, based on subtracted uplift method.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Incremental gains chart including random targeting, as seen in Radcliffe & Surry, 2011. 

 

In practice, the incremental gain curve is extremely valuable in comparing models. Unlike 

conventional gain charts which focus on the response rate, the uplift curve is often represented 

on a graph of predicted incremental sales based on the number (or proportion) of individuals 

treated (Radcliffe 2007). The graph also often includes for comparative purposes a diagonal, 

representing the effect of random targeting on the population. This diagonal is drawn between 

the points (0,0) and (N, n), where N is the number (or proportion) of targeted from the population 

and n the gains obtained if the whole population is treated (Radcliffe, 2007). In some cases 

where costs, benefits and other ROI metrics need to be integrated, it becomes possible to include 

and measure the gain achieved by appropriate targeting. This provides an extremely useful graph 

of the profitability of the campaign for each developed uplift model. 

 

3. Area under the uplift curve 

The area under the uplift curve (AUUC) simplifies the performance of the model to a simple 

estimate (Jaskowski and Jaroszewicz, 2012). It provides a measure of the success rate of 

treatment according to the model. If the AUUC is measured between 0-100% inclusively on the 
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x-axis, it can be interpreted as a measure of the campaign’s success when 100% of the population 

is targeted. This measure is often subtracted from a random targeting curve, as described in 

detail with the next criterion. 

4. GINI 

4.1 Gini Coefficient 

The Gini coefficient is well known throughout literature. Adapted initially for classification tree 

models with algorithms such as CHAID or CART, the Gini coefficient is known as an impurity 

index of the model (Kane et al., 2014). However, Gini coefficient applied to uplift models is an 

estimate of the overall fit of the model. Several Gini calculations have been suggested over time 

(Radcliffe, 2007; Radcliffe, 2011; Kane et al., 2014). An estimate of Gini can be obtained from 

a conventional gain curve graph or ROC chart by measuring the AUC between the developed 

model and random curve. 

 

𝐺𝑖𝑛𝑖 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑀𝑜𝑑𝑒𝑙 𝐴𝑈𝐶 – 𝑅𝑎𝑛𝑑𝑜𝑚 𝐴𝑈𝐶 

 

On the other hand, Gini can also be a ratio. Optimal targeting is defined as assigning the highest 

uplift scores to all the "good" clients (responds to treatment) when compared to "bad" clients 

(not responding). To illustrate this concept and without taking negative effects into account, an 

optimal model would hence allow us for example to have 100 individuals who respond 

positively to the treatment when we treat 100 individuals. Thus, the Gini coefficient can also be 

measured as follows: 

 

𝐺𝑖𝑛𝑖 𝑅𝑎𝑡𝑖𝑜 =  
𝑀𝑜𝑑𝑒𝑙 𝐴𝑈𝐶 – 𝑅𝑎𝑛𝑑𝑜𝑚 𝐴𝑈𝐶 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐴𝑈𝐶 − 𝑅𝑎𝑛𝑑𝑜𝑚 𝐴𝑈𝐶 
 

 

This measure therefore varies between -1 and 1, where a model correctly ranks all the responders 

at 1 or erroneously targets all the non-responders at -1 with a lower performance than random 

targeting. The closer this estimate is to 1, the better the model (Radcliffe, 2007). 
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4.2 Gini Top % 

In real-life retail contexts, there is always a risk attributable to reaching clients who will be 

annoyed by the treatment, or simply will not make a purchase regardless of the circumstances. 

Targeting this group of individuals causes a negative effect, induced by a loss (i.e. related to the 

cost of the offer). Consequently, it is clear that the greater the number of individuals targeted is 

the greater the chances of inducing negative effect. Given that a campaign budget is often 

narrow, marketing promotions often have to be optimized to maximize their benefit which 

translates to better selecting the best potential responders. As a result, Gini Top % was proposed 

to provide an estimate of Gini only for a certain portion of the population, often limited to the 

first 2 or 3 deciles when sorted by predicted uplift value (Radcliffe, 2007). Based on this 

criterion it is thus possible to compare several models of uplift based on their efficiency to 

capture individuals with the highest potential within the best deciles. 

 

4.3 Gini repeatability metric 

Finally, under certain circumstances an 

uplift model might only be effective on a 

certain sample and entirely lose its 

predictive value on another. It has been 

pointed with several cases through 

literature that a model could be so 

sensitive to sampling noise or extreme 

values  that the best deciles become 

inverted (Kane et al., 2014). Therefore, a 

variant of the Gini metric has been 

proposed. By performing a linear 

regression with lift as a dependent 

variable and the deciles as independent 

(Figures 2-3), we obtain an estimate of 

the classification quality of the deciles.  

Figure 2. Gini repeatability metric on a lift chart,  

as seen in Kane et al (2014). 

 

Figure 3. Example of Gini repeatability metric demonstrating  

a low performance, as seen in Kane et al (2014). 
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This calculation method has been proposed as the Gini measure of repeatability (Kane et al, 

2014). Furthermore, the authors interpret it as a coefficient of determination (R2) measured on 

a lift chart and based on the predictions on the validation sample. This measure essentially 

ensures that the best deciles suggested by the model maintain their robustness. In general, the 

closer R2 is to 1 the better the model. However, it is suggested in practice that a model is 

considered "good" when its R2 is between 0.3 and 0.5 (Kane et al., 2014). 

 

5. QINI 

5.1 Qini Coefficient 

  

 

 

 

 

 

 

 

 

 

Figure 4. Qini Curve demonstrating an optimum curve versus random, as seen in Radcliffe (2007). 

 

The general measure of Qini is a variant of the Gini coefficient applied specifically to uplift 

models. While an estimate of Gini is obtained on a graph of a conventional gain curve (Y = 

number of responses), the Qini coefficient is measured on the uplift curve (Y = incremental 

gain). Qini remains simply a variation of Gini, the main difference being Qini is a specialized 

measure of the AUUC (area under uplift curve) while Gini is a broader measurement of AUC. 

Qini measures are therefore calculated very similarly to the latter: 

 

(1) 𝑄𝑖𝑛𝑖 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑀𝑜𝑑𝑒𝑙 𝐴𝑈𝑈𝐶 – 𝑅𝑎𝑛𝑑𝑜𝑚 𝐴𝑈𝑈𝐶 
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(2) 𝑄𝑖𝑛𝑖 𝑅𝑎𝑡𝑖𝑜 =  
𝑀𝑜𝑑𝑒𝑙 𝐴𝑈𝑈𝐶 – 𝑅𝑎𝑛𝑑𝑜𝑚 𝐴𝑈𝑈𝐶 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐴𝑈𝑈𝐶 − 𝑅𝑎𝑛𝑑𝑜𝑚 𝐴𝑈𝑈𝐶
 

 

Q can therefore be a ratio (2) or a difference (1). As they are chiefly based on the predictive 

model’s AUC and thus set on a similar baseline, both methods are expected to provide similar 

results. Both methods however seem to be accepted and substituted through literature – as a 

result we will keep both methods to calculate this criterion. Similarly, for the Gini coefficient, 

the Q ratio varies between -1 and 1 and its interpretation is carried out in the same fashion. The 

Qini thus provides information on the performance of an uplift model summed up in an estimate 

(Guelman et al, 2015). 

 

5.2 Qini Continuous 

The Qini coefficient can also be adapted to a continuous target variable, as a variant Qc has been 

proposed for this purpose (Radcliffe, 2007). This estimate ultimately makes possible the 

measurement of a certain gain amount "per head" (Radcliffe, 2007). This is relevant information 

in a context where not all clients provide the same amounts of money. However, this criterion 

will not be used in the context of this study. 

 

5.3 q0 coefficient 

As highlighted with the Gini coefficient, it is important to consider the possibility of negative 

effects when more people are treated. The q0 coefficient has been suggested regarding this 

problem. It is calculated as follows: 

 

𝑞0 =
𝑀𝑜𝑑𝑒𝑙 𝐴𝑈𝐶 – 𝑅𝑎𝑛𝑑𝑜𝑚 𝐴𝑈𝐶 

𝑍𝑒𝑟𝑜 𝑑𝑜𝑤𝑛𝑙𝑖𝑓𝑡 𝐴𝑈𝐶
 

 

This criterion uncovers the zero-downlift curve metric, which is defined as an optimal curve 

where negative effects are not considered (Radcliffe, 2007). To note that this concept is different 

from the previously introduced optimal curve, which is obtained with a model that would only 

capture positive responders in the best deciles (as illustrated in figure 4). On the other hand, the 
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zero-downlift curve revolves around a scenario where we assume the absence in the population 

of individuals who would not respond because they are treated. As a result, and because it uses 

this theoretical scenario as baseline, q0 penalizes for a large proportion of targeted people and 

thus limits in scale (Radcliffe & Surry, 2011). Usually varying between -1 and 1, it has been 

noted that this measure may under certain circumstances exceed 100% (Radcliffe, 2007; 

Radcliffe & Surry, 2011). The q0 coefficient is a key indicator of the maximum of the population 

that can be reached without inducing negative effects. 

6. Tau criterion 

Tau is a relatively novel criterion yet elegant through its simplicity. As opposed to previously 

mentioned criteria which were mainly built on incremental gains and Qini curves, Tau is 

measured directly on the predictive estimate of uplift (Gutierrez and Gérardy, 2016). In the 

presence of a sample with the outcome Y, treatment W and covariates X, it was previously 

established that if the outcome is binary (as in our case), then the treatment effect or uplift at x 

is defined as: 

 

𝜏(𝑥) =  𝑃(𝑌 = 1|𝑊 = 1, 𝑋 = 𝑥) − 𝑃(𝑌 = 1|𝑊 = 0, 𝑋 = 𝑥) 

 

Tau however further involves the concept of propensity score. The propensity score is the 

probability that a subject receives the treatment, defined as: 

𝑝(𝑥) = 𝑃(𝑊 = 1| 𝑋 = 𝑥). 

Define the transformed response (Athey and Imbens, 2015) 

𝑌∗ = 𝑌[
𝑊

𝑝(𝑥)
−  

(1−𝑊)

(1−𝑝(𝑥))
]. 

Under the conditional independence assumption, which means that the treatment 

assignment is independent of the potential outcomes, conditional on the covariates, we 

have  

𝐸[𝑌∗|𝑋 = 𝑥] = 𝜏(𝑥). 
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This means that the treatment effect can be estimated by modeling 𝑌∗. However, in some 

applications, the propensity score is known (e.g. if the treatment/control assignments was 

done at random and then 𝑝(𝑥) =1/2 ), and in others it is not. If the propensity score is 

unknown, it can be estimated to obtain the estimated transformed response 

𝑌∗∗ = 𝑌(
𝑊

𝑝̂(𝑥)
−  

(1 − 𝑊)

(1 − 𝑝̂(𝑥))
). 

Gutierrez and Gérardy (2016) proposed using 

𝑀𝑆𝐸(𝑌𝑖
∗∗, 𝜏̂) =

1

𝑛
∑(𝑌𝑖

∗∗  − 𝜏̂𝑖)
2 

𝑛

𝑖

  

where τ̂i is the estimation of the lift, as the performance measure.  Tau is distinctive by its 

minimalism and the fact that it’s aimed directly at evaluating the lift predictions, as 

opposed to indirect methods such as AUC measurement.  

 

7. Other performance criteria 

In general, we would tend to choose the uplift model with the highest Qini, R2 coefficient and 

Qini Top %. This is what Radcliffe & Surry (2011) refers to respectively as Validated Qini, 

Monotonicity and Maximum Impact. It is also important, once again in the context of a limited 

budget for a campaign, to consider the maximum gain at the threshold imposed by the budget, 

which is often referred to as Impact at cutoff (Radcliffe & Surry, 2011). Another criterion would 

be the Range of Predictions, which measures variations in model predictions between different 

deciles (Radcliffe & Surry, 2011). 

Finally, it has been suggested to measure the Spearman correlation coefficient between real 

uplift measures of the sample and the predicted values of the model (Shaar et al, 2016). The 

underlying idea would be to measure the model precision. Another metric suggested by Shaar 

et al. was to sum all of the positive uplift curve points above the random curve. The authors 

propose this metric as an indicator for the effectiveness of the model. 
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The current problem is that despite the diversity of uplift models developed through literature, 

there is to our knowledge a lack of studies comparing the criteria and evaluating their assessment 

performance. Namely, when many uplift models are in competition, is it possible to select the 

best one with these criteria? We will investigate the performance of these criteria, as model 

selection tools, with a simulation study.   

 

PERFORMANCE CRITERIA LIMITATION 

As explained above, due to the uplift scheme, the causal inference problem makes it impossible 

to find the same individual both in the treatment and control group. To measure the gain 

difference between the treated and control groups, uplift models postulate that individuals in the 

deciles with the highest % in the treatment group remain comparable with those in the control 

group. This is a basic assumption for an uplift model, shared by all the uplift schemes. As it 

might seem like a leap of faith, this hypothesis is nonetheless reported to work well in practice 

(Rzepakowski and Jaroszewicz, 2011). However, the sample size is therefore a crucial aspect 

for a correct assessment of the models. Since several performance measures are based on the 

AUC difference between the treatment and control groups, N must be large enough per decile 

for the assumption to be valid, making the top individuals in these groups comparable. When 

modeling a binary variable (eg purchase = 1), it is reported in the literature that the number of 

individuals in each group must be higher than the product of the multiplication of the global 

uplift by total population size (Radcliffe & Surry, 2011): 

 

𝑀𝑖𝑛 𝑁 = 𝑈𝑝𝑙𝑖𝑓𝑡 ×  𝑁. 

 

In addition, adding weights is recommended when the groups have very different sizes 

(Rzepakowski and Jaroszewicz, 2011). 
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METHODOLOGY 

GENERATING THE DATA SET 

To compare the performance criteria, we settled for simulated data models. Since the true lift 

are unknown in real life contexts, performance analysis through simulation remains the most 

viable and accurate way to compare the performance of model criteria.  

 

Two data generating processes (DGP) have been used in this study. Each has 5 covariates Xi, a 

binary treatment variable (W) and a binary response variable (Y). Precisely, the data are in the 

form (Y, W, X), where: 

• Y is the outcome; Y = 1 indicates the person responded, i.e. a success and Y = 0 indicates 

the person did not respond, i.e. failure. See below got the generating process.  

• W is a treatment indicator (W = 1 indicates that the person received the treatment and W 

= 0 indicates it did not).  

• X is a vector of covariates for each individual. It has the multivariate normal distribution 

with 0 mean vector, unit variances and a correlation of 0.3 between each pair of 

variables.  

Two DGPs are considered for Y. The first one involves main effects only while the second one 

includes transformations of the covariates and interactions between them.  In all cases, the 

treatment assignment W follows a Bernoulli distribution with a success probability of 0.5. For 

each observation generated by each DGP, the probability of response 𝑝 = 𝑃(𝑌 = 1) is given by 

𝑝 = 1/(1 + exp (𝑔(𝑋, 𝑊)). The DGPS are: 

 

DGP 1:  𝑔(𝑋, 𝑊) = −0,3 × (

−4 + 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 0,5 ×  𝑊 +
3 × (−1.5 ×  𝑊 ×  𝑥1 + 𝑊 ×  𝑥2 + 𝑊 ×  𝑥3 +

𝑊 ×  𝑥4 + 𝑊 ×  𝑥5)
) 
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Figure 5. Distribution of the assigned probability of purchase when individuals are treated (right) or not 

treated (left) in a typical dataset containing 50K observations generated by the first DGP. 

 

 

Figure 6. Distribution of lift value across a dataset containing 50K observations generated by the first 

DGP.  

 

Figures 5 and 6 show key variables distribution in a sample of 50000 observations, based on 

this first DGP. Individuals who are not treated (treat=0) have a lower probability of making the 

action (P(Y=1)) versus individuals who are treated (treat=1). This can be visually seen, as a 

higher proportion of treated individuals are associated with a performed action. 
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DGP 2: 𝑔(𝑋, 𝑊) = −0,5 × (−2 + 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥12 + 𝑥2 ×  𝑥3 +
4 ×  𝑊 + 4 ×  𝑊 ×  𝑥1 + 3 ×  𝑊 ×  𝑥2 ×  𝑥3

) 

 

 

 

 

While the lift was previously more centered around 0,4, the second DGP further distributes it 

around zero, attributing a low uplift effect to the majority of the individuals in the dataset. 

Similarly, to a real-life context, a minority of observations have negative uplift which are 

traditionally classified as “individuals not to bother”. This DGP includes a higher proportion of 

individuals with negative lift, penalizing more for a bad model that would include them in the 

targeting. Finally, there is also a greater proportion of individuals attributed Y=1 when treat =1, 

as compared to the first DGP. 

 

Two probabilities have been also created in each dataset based on variable p: 

Figure 7. Distribution of probability of purchase when individuals are treated (right) 

or not treated (left) in a typical dataset containing 50K observations generated by the 2nd DGP. 

 

 

Figure 8. Distribution of lift value across a dataset containing  

50K observations generated by the 2nd DGP. 

. 
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𝑝0 = 𝑃(𝑌 = 1) 𝑤ℎ𝑒𝑛 𝑤 = 0 

𝑝1 = 𝑃(𝑌 = 1) 𝑤ℎ𝑒𝑛 𝑤 = 1 

 

where p0 is the probability of a purchase if the individual is in the control group while p1 is the 

probability of purchase if the individual is treated. These probabilities highlight the advantage 

of simulating data as it becomes possible to assign the same observation in both the control and 

treatment group. This allows each observation to be associated with an estimate of the lift, 

calculated as: 

𝑙𝑖𝑓𝑡 = 𝑝1 − 𝑝0. 

 

This is qualified as "real" uplift value, which is once again not available in a real-world 

framework. Consequently, the closer the predicted uplift estimate is to this value the better the 

model. Further breakdown of a typical dataset can be found below in Figures 5-8, through the 

distributions of 𝑝0, 𝑝1 and the lift value. As one would expect, treated individuals (treat=1) have 

a higher proportions of responders (Y=1), while non-treated individuals (treat=0) have a higher 

proportion of non-responders. 

 

To test the criteria performance, we decided to use each DGP to generate 6 different training 

sample sizes: 500, 1000, 2000, 5000, 10000 and 50000 observations. For each sample size, 100 

data sets are generated and used to build the different models. When a dataset is generated, it is 

used to build and validate each of the models. Each criterion is computed for each model, leading 

to as many different values per criterion. Through a same run, we then highlight the best model 

based on the criterion (i.e. higher or lower value depending on the criterion) and assess the 

criterion pick based on MSE/MAE metrics. This data is then compiled for each run, further 

extended to several sample sizes to assure the robustness of our study. 

 

Additionally, a single test data set is generated containing 10,000 observations and all the 

variables mentioned above, including true lift. 
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MODELING & PERFORMANCE ASSESSMENT  

Four models have been selected for testing in the context of this study: 

• LAI (uplift ccif algorithm based on Lai’s method) 

• RF (uplift random forest algorithm) 

• LOG (uplift logistic regression algorithm, with interactions based on Lo’s method) 

• 2-MODELS (two random forests, one for treated and one for control observations) 

 

The Random Forest (RF) model required using of the R Uplift package (Guelman, 2014), which 

allows us to estimate the uplift metric by specifically identifying independent variables and a 

treatment flag. The uplift RF functions are then used to build the model and group the sample 

observations in deciles based on their uplift predictions. Each random forest is based on 100 

trees with a maximum depth of 3 to assure trees variety (limiting the splitting to 8 terminal 

nodes) as well as maximize computing power through the iteration, using the KL split method. 

 

The Logistic Regression Model (LOG) uses the GLM function in R to develop generalized linear 

models, specifically binomial models in our case. Given that we are relying here on Lo’s method 

deemed to improve predictive accuracy, an interaction term between each independent variable 

and the treatment flag is added. The performance function of the uplift package is then used to 

group predictions into deciles. 

 

The LAI model is based on the randomForest package (Liaw & Wiener, 2002) to build simple 

random forests. The Lai method is applied by creating a new variable titled ‘Class’. Class takes 

a value of 1 when treat = 1 and y = 1, or treat = 0 and y = 0, otherwise 0. As previously explained, 

this method seeks to group individuals based on their cost-effectiveness in order to assign a 

probability to be part of one of the two classes. Each random forest is based on 100 trees which 

predictions are grouped in deciles with the performance function of the uplift package. 

 

The 2-model method relies on the randomForest package to build simple random forests. By 

dividing the sample according to the treatment variable, the original sample is divided into 

further treatment vs. control samples. By using the randomForest function of the package, we 
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develop a model separately for treated and untreated. The difference between the two models is 

then calculated, which translates into an estimate of uplift for each observation. Similarly, to the 

previous models, the performance function of the uplift package is finally used to group the 

deciles. 

 

Each of these models has been developed by splitting in half the sample into a training data set 

on which the model is built while the remaining second half is used to validate the model. It is 

in fact out of this validation process that the described model performance metrics are extracted 

and compiled. This method is thus representative of a real-life situation where we are exposed 

to a sample on which to build our model, a situation where we are forced to rely on approximate 

metrics and criteria. Following the validation process, a real-life context would imply picking 

the most effective model based on a specific performance criterion – to build the campaign or 

further targeting. As part of this study, this decision is pushed further – we will examine every 

model each criterion recommends and evaluate their accuracy on a test sample (10,000 

observations).  

 

As described in "generating the data-set" section, the test sample contains a true lift variable 

assigned to every observation, which is in fact the true uplift value. Thus, the closest the 

estimated lift will be to the true lift value, the better the model. We will use the validation set to 

compute the performance criteria metrics – e.g. at training sample size of 2000 that we split in 

two parts of 1000, the first part will be used to fit the model and measure the 𝜏̂𝑖 for the 

observations in the second part.  

 

On the other side, the accuracy of the lift estimation by the models will be measured with both 

the MAE and MSE criteria as: 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑃𝑖  −  𝑃̂𝑖| 

𝑛

𝑖=1

 𝑀𝑆𝐸 =  
1

𝑛
∑(𝑃𝑖  − 𝑃̂𝑖)

2 

𝑛

𝑖=1

 

Furthermore, and as explained above, each model is built on each of the datasets for a total 
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of 600 runs per model, divided into 6 sample sizes. For each run, each of the 4 models is 

therefore attributed 6 performance criteria and 2 precision measuring criteria. The 

performance criteria would then be taken individually, and each would allow us to select 

the best model for each run. To measure the predictive power of a potentially selected 

model on the test sample, MAE and MSE criteria are used, both based on the difference 

between the predicted uplift and the actual uplift in the test sample. In addition, since 

different sample sizes are used, the results will be compared across different setups to 

identify whether there is a correlation between the prediction robustness of the criteria. 

This method has the advantage of making the models comparable within the same run. 

In summary, all of the following criteria will be used in this study in order to assess their 

performance in choosing the best models, in different sample sizes and conditions. 

Criteria Calculation method Evaluated on 

Qini  

(Difference) 

• AUC trapezoidal method measured on R 

• Model AUC – Random AUC 

Validation 

sample 

Qini  

(Ratio) 

• AUC trapezoidal method measured on R 

• Measured in terms of proportion vs random AUC 

Qini Top 20  

(Difference) 

• Derived from Qini Difference 

• Applied to first 2 deciles 

 

q0 • Qini difference weighted with optimal curve 

Repeatability metric  

(R2) 
• Coefficient of determination applied to uplift curve 

Tau 
• Lift estimation based on treatment and 

response effects 
 

MAE Mean absolute error of estimated uplift vs. true lift Test sample 
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MSE Mean squared error of estimated uplift vs. true lift 

Table 3. Model performance assessment criteria and their calculation method used in this work.  

RESULTS 

 

As the objective of this study was to analyze the model performance criteria, we will be 

exclusively assessing the different criteria and not the models themselves.  

 

SIMPLE DATASET (DGP 1) 

As previously described the first data generating process (DGP) produces a relatively simple 

dataset, without any interaction between the independent variables. While simulating a minimal 

interaction between the treatment and independent variables, the samples produced therefore 

have very little noise which makes it easier to model the uplift value. 

 

SAMPLE SIZE N=2000 WITH SIMPLE FRAMEWORK 

  

Figure 9. Example of a random forest uplift model 

performance versus random at N=2000.  
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Figure 10. Example of a logistic regression uplift  

model performance versus random at N=2000.  

 

Figure 11. Example of a LAI uplift model 

performance versus random at N=2000.  
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The models remained consistent across the runs in terms of performance, whether according to 

the MAE or MSE. Figures 9 to 12 above show each model’s individual performance in a single 

run, plotting the cumulative incremental gains based on the proportion of population targeted. 

Each graph additionally illustrates the random targeting curve shown as the diagonal line. In 

this particular run all models except the two-models method seem to perform well, i.e. visually 

have a bigger AUC compared to the random curve. However, as we are operating on simulated 

data and therefore have the real uplift value for each individual, we can further rank the models 

based on their accuracy, using MAE and MSE metrics. 

 

Figure 12. Example of a 2-models method 

performance versus random at N=2000.  
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Table 4. MAE and MSE metrics results for each model at N=2000, for the first 20 runs. 

 

Table 4 demonstrates a quantified performance assessment for each model, based on MAE and 

MSE metrics results for the first 20 runs at N=2000. As each run’s best model (i.e. lowest error 

metric) is highlighted in bold, we observe that random forests model (RF) seems to be the most 

effective model within these first runs closely followed by the logistic regression (LOG), 

inverting the order only in the 13th run. 

 

Table 5. MAE and MSE metrics overall results for each model at N=2000 after 100 runs. 

 

Overall results in table 5 demonstrate that RF remains the best model in terms of accuracy (i.e. 

lowest average) followed by LOG while LAI ranks third. The two-models method (2M) remains 



 

 

27 

the least performing model, confirming the lack of effectiveness suggested by Figure 12. Since 

we can classify the models in order of precision, it is possible to quantify criterion performance 

among each other, by comparing each criterion’s selected model.  

 

 

Table 6. Classification results per performance criteria for each of the 4 models at N=2000, for the first 

20 runs.  

 

Above table 6 shows the first 20 runs using the first DGP at sample size N=2000. As previously 

described each run is associated with a different sample but produced by the same DGP (DGP1). 

Each model is ran on the same sample then classified by each of the five criteria, making it 

possible to classify each model’s performance among a sample criterion. We observe that the 

models show great reliability at N = 2000, as shown below. 
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Table 7. Extract of the first five runs and the chosen model per criteria with at N=2000. 

 

The results are very interesting when evaluated run by run. For example, for the first run at 

N=2000, the highest values for Qini difference and q0 are converging towards the random 

forests (RF) model while Qini TOP 20 tilts towards logistic regression (LOG). Solely Qini Diff 

and q0 have effectively chosen the best model in the first run as RF shows to be the best model 

based of the run, having the lowest value both for MSE and MAE. It is interesting to note that 

Qini Top 20 can take negative values despite positive Qini values as shown in the 13th run (table 

6). This observation stresses the fact that while some models may have a positive Qini curve, 

they may perform poorly within the first deciles – sometimes worse than random. While Qini 

Top 20 did not choose the best model in any of the first 5 runs shown in Table 7, it is clear that 

this criterion should be taken into account as it provides complementary information that none 

of the other criteria deliver. 

 

Table 8. Criteria performance after model classification following 100 runs at N=2000. 

 

Table 8 demonstrates the frequency for each criterion to choose each model. A model is 

considered “Best model” when it has the highest ranking of the run (i.e. the lowest error metric), 

“Good Model” when it is ranked second best, etc. Overall, the best results at this small sample 

size are attributed to Tau criterion which achieves a successful 100% chance of picking the best 

or second-best model. R2 is the second best criterion from this perspective, with a 94% chance 

of choosing a good model or better. While R2 has been reported to measure the robustness of a 
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model’s deciles ranking coherence (Kane et al., 2014), it is surprising to find it among the best 

criteria as it’s not directly based on the predictive estimate unlike Qini or Tau. Qini as well as 

q0, which is another Qini-based metric, both show 86% of likelihood to choose the best or 

second best model. While not presented in these results, it should be noted here that the type of 

calculation (difference vs ratio) doesn’t seem to affect the predictive accuracy, as the two criteria 

have reportedly the same performance. On the other hand, Qini TOP 20 shows however a 

relatively unstable performance. This criterion has the highest chance of choosing both the best 

model (21%) and the worst (10%) with an overall 72% chance of picking a good model or better.  

 

It is obvious that a model can be recommended by multiple criteria within a same run, which 

could simplify the decision-making process or on the contrary, further increase its complexity. 

An example can be found in the 4th run shown in Table 7, where three of the five criteria tilt 

towards the logistic regression – This convergence would most probably lead us into picking 

this model for further targeting on the test sample without necessarily knowing that it’s not the 

best model of the run. While it is simple in this run as most of the criteria point almost-

unanimously towards the same model, it’s possible to match weights with each criterion to 

facilitate the decision-making process. As a matter of fact, if a campaign budget is extremely 

tight it would be wise to give the Q TOP 20 more weight than the Qini criterion which takes the 

whole sample into account. These weights clearly depend on the limits and objectives of the 

real-life context, which are not taken into account in our simulated data.  

 

However, a criterion choosing a poorly ranked model in a run doesn’t necessarily indicate the 

criterion’s bad performance – the difference between 2 models ranked differently, sometimes 

even the best and worst models, can be extremely minimal. In order to provide the full picture 

here we would need to quantify the distance between each rank. Since each model is associated 

with an MSE and MAE per run, it is possible to classify the models by precision. For a given 

run, models are classified from 1-4, where 1 is the most efficient model of the run and 4 the 

least. Since each criterion chooses one model out of 4 per run, it is therefore possible to not only 

rank the models but also the criteria in terms of difference compared to the run’s best model.  

Three metrics can be elaborated here: 
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𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 % = 𝐶ℎ𝑜𝑠𝑒𝑛 𝑀𝑜𝑑𝑒𝑙′𝑠 𝑀𝑆𝐸⋆  ÷ 𝐿𝑜𝑤𝑒𝑠𝑡 𝑀𝑆𝐸⋆ 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑢𝑛 

 

𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑀𝑒𝑡𝑟𝑖𝑐 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐶ℎ𝑜𝑠𝑒𝑛 𝑚𝑜𝑑𝑒𝑙′𝑠 𝑀𝑆𝐸⋆– 𝐵𝑒𝑠𝑡 𝑚𝑜𝑑𝑒𝑙′𝑠 𝑀𝑆𝐸⋆ 

 

𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑅𝑎𝑛𝑘𝑖𝑛𝑔 = 𝐶ℎ𝑜𝑠𝑒𝑛 𝑚𝑜𝑑𝑒𝑙′𝑠 𝑟𝑎𝑛𝑘𝑖𝑛𝑔 – 𝐵𝑒𝑠𝑡 𝑚𝑜𝑑𝑒𝑙′𝑠 𝑟𝑎𝑛𝑘𝑖𝑛𝑔 

 

The further a criterion ends from the run’s most precise model (in terms of MSE or MAE), the 

higher the criteria’s rank will be. Equally, a criterion that chooses the best model of the run will 

simply have a difference of 0%. This classification is demonstrated in Table 9, where each 

criterion is associated with a degree of difference compared to the best model of the run. 

 

 

Table 9. Performance assessment metrics values per criterion after 100 runs at N=2000. 

 

Once again at N=2000, i.e. small sample size, we observe that the best criteria seem to be both 

Tau and the coefficient of determination R2, with the lowest error rate compared to the run’s 

best model respectively 36% and 35% (MAE). In other words, Tau leads us to choose a model 



 

 

31 

on average 36% less accurate in terms of MAE or 96% in terms of MSE. Qini Diff and q0 rank 

3rd with an average error % ranging between 46-47% (MAE).  

 

This enhanced perspective slightly changes the ranking of the best criterion. While R2 previously 

ranked second in terms of chances to choose a good or best model of the run as opposed to Tau, 

there doesn’t seem to be a significant difference between both criteria. We hypothesize R2 was  

previously ranked lower due to its overall 5% chance to choose a poor model (vs 1% for Tau). 

Quantifying the distance between the chosen models now proves that the difference is in fact 

minimal and both Tau and R2 have the best accuracy. Coherently, Tau and R2 seem to also be 

the best criteria when we consider absolute difference between the chosen model and the run’s 

model, both in terms of MSE (0,02) and MAE (0,04). Again the same conclusion can be drawn 

regarding the ranking of the chosen model, where both Tau and R2 seem to converge towards 

the best model of the run with the lowest model average ranking (1,9). Qini Diff and q0 are 

relatively efficient in choosing a good model (2,0-2,1), choosing on average a model closer to 

the second best model of the run.  

 

As Tau is a direct measure of accuracy comparing the model’s predictive estimate to the actual 

uplift value, it’s not a surprise to find it amongst the best criteria. However as previously 

mentioned, this is not the case for R2 as it’s the only criterion that is not directly based on an 

approximation of the lift or on the area under the curve. This criterion does better than Qini and 

its derivatives on all fronts while it’s merely based on deciles predictive coherence, at N=2000.   

 

 

 

 

VARIOUS SAMPLE SIZES WITH A SIMPLE FRAMEWORK 

 

We have exclusively based our previous results on 2000 observations-based setups, considered 

relatively small sample sizes. Both Tau criteria and the coefficient of determination R2 seem to 

be so far the best performance criterion at this level of the analysis, in terms of the MSE/MAE 
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difference and likelihood of choosing the best model. The next step is logically to validate the 

consistency of these results on different sample sizes. 

 

 

Table 10. Likelihood distribution for each criterion to choose the best or second-best model of 

a run based on sample size. 

 

As one would naturally expect, the larger the sample size the better the accuracy tends to be. 

The difference is even more spectacular for Qini criterion and its derivatives. Qini Diff jumps 

from a 53% chance to choose at least a good model (ranked second or better) at the smallest 

sample size to 100% at the highest sample size. We previously observed at N=2000 that Tau 

seemed to have the best likelihood at 100%. Tau remains in fact the best criterion at sample 

sizes lower than 2000 observations with a likelihood varying between 93 and 100%. The trend 

however changes with increased sample size where all the criteria (except Qini Top 20) have at 

least 97% chance to choose a good model or better. Additionally, while the likelihood seems to 

have reached a peak at N=50000, each additional increment in the sample size brought an 

important gain for most criteria.  
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Table 11. Gain in likelihood for each sample size N as compared to previous size for each 

criterion. 

 

Table 11 further emphasizes the gain in likelihood to choose a good model as opposed to the 

likelihood to the lower sample size. Even though most models reach a perfect score at N = 

50000, it is clear that this accuracy peaks at a certain maximum sample size between 10000 and 

50000. We however observe the greatest gain in performance when comparing from 500 to 

1000. Doubling the sample size increased the likelihood for Qini Diff and q0 by almost half. 

Moving from 5000 to 10000 observations does not however provide such a spectacular gain, as 

it’s a 13% increase or less for all criteria. While this demonstrates the critical importance of 

maximizing the sample size, 5000 observations seem to be necessary for the proper functioning 

of the named criteria, while demonstrating that it is not necessary to exceed this number. Finally, 

it is interesting to note that R2 accuracy decreases with the sample size at 10000 observations 

and higher.  

  

MORE COMPLEX DATASETS (DGP 2) 

 

As all previous results were based on a simpler data-generating process (DGP), the next step is 

to test out the same criteria on more complex datasets. With this second DGP, we are looking at 

samples with interaction between independent variables and the treatment variable as well as 

interaction between the independent variables themselves.  

 

SAMPLE SIZE N=2000 WITH A COMPLEX FRAMEWORK 
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Table 12. Criteria performance after model classification following 100 runs on more complex 

datasets at N=2000. 

 

As the datasets increased in complexity, we expect the criteria to be less effective and have a 

higher error margin. It is to note that while Tau showed the best results with DGP 1, it is in fact 

the least effective criterion when applied to DGP 2 with only a 3% chance to choose at least a 

good model. R2 on the other hand remains effective with a 60% chance to choose a second-

ranked model or better, however importantly lower than the previous 94% with the first DGP. 

Interestingly, Qini Difference and q0 have an increased chance of choosing the best model of 

the run, as opposed to previously estimated at 12%. This increase in accuracy towards the best 

model is however offset by an alarmingly increased chance of choosing a poor model (3rd ranked 

out of 4) of more than 50% for all Qini-derivated criteria.  

 

 

Table 13. Extract of the first five runs and the chosen model per criteria with a complex dataset 

at N=2000. 

 

It’s also interesting to note that Tau seems to choose more often the logistic regression than any 

other criteria, as demonstrated in Table 13. 
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Table 14. Performance assessment metrics values per criterion after 100 runs with more 

complex datasets at N=2000. 

 

Further quantifying each criterion accuracy confirms the coefficient of determination R2 

efficiency over the other criteria. With the lowest average error at this sample size, R2 leads us 

to choose a model on average 37% less accurate in terms of MAE than the best model of the 

run, almost twice better than Tau. While the average absolute distance compared to the run’s 

best model is minimal between R2 (0,06) and Qini-related criteria (0,07), Tau shows to be further 

behind with 0,10 absolute MAE difference with the best model. While LOG performed well 

with the first DGP, it is always ranked in the 3rd position in this case behind RF and LAI. Tau 

seems therefore to have a bias towards the logistic regression which it chooses almost 

systematically, leading to its bad performance to choose a good or best model of the run.  
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VARIOUS SAMPLE SIZES WITH A COMPLEX FRAMEWORK 

 

The coefficient of determination R2 seems to be the best performance criterion at N=2000, both 

in terms of the MSE/MAE difference and likelihood of choosing the best model, closely 

followed by Qini and q0. The next step is once again to validate the coherence of these 

observations on different sample sizes. 

 

Figure 13. Sample sizes effect on criteria accuracy with more complex datasets. 

 

Figure 13 makes it possible to visually apprehend the gain provided by each additional size 

increment. While the results at 50000 are as spectacular as with the simpler DGP, we observe 

here for most criteria that the gain between N = 10000 and N = 50000 is not visually as important 

as between N = 5000 and N = 10000. If we take q0 as an example, while the curve seems to 

stabilize at N=2000 as compared to N=1000, there is a significant decrease in % error at N=5000 

and higher. It is also interesting to note that while most criteria see their error peak at N=2000 

to further decrease, this is not the case for Tau. Tau criterion in fact curiously never sees its error 

% decrease lower than the level reached at the lowest sample size. As previously mentioned, 

while Qini ratio calculation will not be shown in the results it is also interesting to note that once 
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again among the two shown methods to calculate Qini, whether by measuring a difference or by 

ratio, criterion accuracy remains identical. q0 is also highly correlated with the Qini criterion, 

which is expected as its relatively similar calculation method is also based on the area under the 

uplift curve. Thus when N is greater than 5000 observations it is the criterion q0 that displays 

the best results followed closely by Qini.  

 

 

Table 15. Likelihood distribution for each criterion to choose the best or second-best model of 

a run based on sample size in a more complex framework. 

 

While Tau was the best criterion with more simple datasets at sample sizes lower than 5K, we 

now observe the opposite. Tau is the least effective criterion even at N=50K, with an alarming 

0% chance to choose a good or best model of the run. As mentioned earlier, this criterion seems 

to be correlated with the logistic regression’s less effective performance with more complex 

datasets. Tau seems to almost systematically tilt towards the LOG model which tends to be 

ranked 3rd out of 4 most of the time. This bias explains the extremely poor performance of this 

criterion. 

 

Finally, we observe an overall decrease in accuracy for all the criteria with increased complexity 

of the datasets. For example, at N=5000, q0 shows the be the best criterion with 69% chance to 

choose a good or best model, however previously set at an average of 97% with the simpler 

datasets (Table 9). For this criterion alone and at an identical sample size, we observe a 

performance loss of roughly 29% due to added noise and correlation in the samples. It is 

interesting to note that from N=10000 and beyond, most criteria almost regain the levels of 

performance previously achieved with simpler datasets (Table 9). 
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DISCUSSION AND CONCLUSION 

 

Uplift modeling is an elegant and simple method for targeting individuals who are most likely 

to respond positively to an offer or treatment. This technique has proven to be extremely 

valuable in various fields: health sciences, marketing and even politics (Eric Siegel, 2013). Up 

to this date, Uplift modelling is still adapting to the growing technology/algorithms and new 

variations are regularly proposed in the literature. Conversely as previously described, the main 

difficulty associated with this technique resides in correctly evaluating the performance of the 

uplift model before deploying it. Since an individual cannot be both in the treated and control 

group, it is simply currently not easy to assess the future performance on an uplift model based 

on a training sample.   

 

Uplift models, when properly executed, perform in most cases better than random. Models that 

performed poorly compared to random based on Qini (AUC model vs AUC random) remain 

possible but rare. It is clear that there is thus no doubt regarding the effectiveness of the uplift 

model, as this point has been made through literature in numerous occasions. Under our test 

conditions and with the described DGP, random forest models performed best, followed by Lai's 

method, logistic regression based on Lo’s interaction technique, and then the two-model 

method. Based on our findings, the following conclusions can be drawn: 

 

1. SAMPLE SIZE EFFECT 

a. Overall, the performance of the criteria greatly varies according to the sample 

size. In a simple setup (DGP 1) where there were no interactions between 

variables, sample sizes as small as 10,000 observations provided excellent results 

for R2, Qini, Tau and q0, allowing a significant gain in accuracy as opposed to 

sample sizes of 5,000 observations or less. Conversely, a sample size below 

1,000 observations drastically reduced the predictive ability of the criteria to 

unreliable levels.  
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b. The same conclusion can be drawn with more complex datasets (DGP 2) which 

include interactions between variables and a higher % of “individuals not to 

bother”, further penalizing models with poor targeting. With the exception of 

Tau which performs poorly under these conditions, increased data complexity 

increases the sample size threshold required to observe effective performance 

from the criteria when compared to simpler setups. As a result, most criteria were 

effective only starting from sample sizes of 10,000 observations and higher. 

 

2. CRITERIA RANKING 

a. In datasets where there are no interactions between variables, Tau and R2 proved 

to be effective criteria to underline the best (i.e. lowest error metric) or second-

best model of the run at smaller sample sizes (2,000 observations and lower). At 

higher sample sizes, Qini and q0 excel in choosing the best or second best model 

with nearly a 100% average accuracy across all 100 runs. Regardless if it is 

measured with the difference between AUC model and AUC random or a ratio 

between both, Qini shows to be a consistent criterion that remained coherent 

when the sample size was sufficiently large. Among the five evaluated criteria, 

this criterion ensures choosing on average the closest model to the most precise 

model of a run, the precision being expressed in terms of MSE or MAE metrics. 

Following a similar pattern, q0 shows to be a very useful criterion in providing 

results overall coherent with Qini. While both metrics derive from AUC 

measuring, q0 assesses model performance compared to the best scenario 

(optimal curve), where there is no down lift effect. A recommendation therefore 

would be possibly to use a combination of both criteria.  

b. In datasets with increased complexity, all the criteria saw their performance 

greatly decline with sample sizes smaller than 10,000 observations. R2 is no 

longer the best criterion, replaced instead by Qini and its derivates. In fact, R2 

fails to reach a 100% average accuracy with more complex datasets, which leads 

us to think that this criterion is mostly effective in simple samples but completely 

loses its interest in complex and more realistic samples. Qini-related metrics 
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remain reliable at sample sizes greater than 10,000 observations, regardless of 

the complexity of the datasets.  

c. Tau criterion gave the best results in simple setups, achieving a 99% likelihood 

to choose a good model or better from a sample size as small as 2,000 

observations. However, it is extremely difficult here to assess the reliability of 

this criterion as it has completely lost its effectiveness in more complex 

conditions. Due to its bias towards the logistic regression which performs poorly 

in the presence of interaction between variables and noise, our findings remain 

non-conclusive towards this particular criterion. 

 

3. While Qini TOP 20 performs better than the determination coefficient (R2) or Tau, it 

remains below Qini or q0 levels when N is larger than 2,000. However, Qini TOP 20 

remains a particular criterion due to its calculation derived from Qini but applied 

exclusively to the first 2 deciles of the model, i.e. isolating the AUC gain if we only 

targeted the best individuals. As observed previously, while a model’s overall Qini might 

be positive, its Qini TOP 20 might be negative. This finding stresses therefore the 

importance of the first 2 deciles in the deployment of a treatment-based campaign, as 

they are found to be crucial in evaluating model performance. 

 

Although these learnings were based on two different DGP assessing simple versus more 

complex datasets, they bring questions to a facet of uplift modeling little discussed in the 

literature. It would be interesting to undertake the same study while significantly extending the 

number of runs in order to add further robustness to the results. Creating different datasets, 

playing with noise, covariance or the number of variables for example would be extremely 

relevant in this context. 

 

Finally, it might also be interesting to consider new performance assessment methods for uplift 

models. Although most of the performance criteria known to date to our knowledge are included 

in this study, a new solution might include cloning individuals according to their profile and 

further dividing the samples into more accurate test and control samples. 
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