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Abstract 

The emergency medical service system (EMS) refers to the provision of personnel and 

equipment in the appropriate area in an emergency case, to ensure a prompt and 

synergistic health service. Thus locations of ambulances have become a crucial 

decision. 

Ambulance facility problem is closely related to everybody’s life. The rationality of 

its location and the fairness of distribution are directly related to the efficiency and 

quality of public service supply. It plays a fundamental role in promoting social 

construction and improving people's quality of life.  

In this paper, we present a literature review of the overall facility location problem, as 

well as the emergency medical service. Then we propose optimization models based 

on both deterministic and stochastic performance measures to optimize the ambulance 

location problem and introduce a new measure—service quality. In addition, we 

present a computational comparison for these models based on simulations of different 

indicators and analyse the performance of the approaches with descriptive statistics 

analysis and data envelopment analysis (DEA). From both aspects, models based on 

stochastic measures, i.e. expected demand coverage, expected service quality, 

expected survival rate are considered as better solutions based on the results of the 

simulations.  

The new measure—service quality in the ambulance location problem and our 

extended models can be applied to a more general supply chain network design. The 

indicators we proposed can efficiently help to measure the performance at each 

demand-supply pair. 

 

Key Words: Ambulance location problem; Stochastic; Optimization; Data 

Envelopment Analysis (DEA) 

 

 



ii 

 

Sommaire 

Le système de services médicaux d'urgence fait référence à la fourniture de personnel 

et d'équipement dans la zone appropriée dans un cas d'urgence, afin d'assurer un 

service de santé rapide et synergique. Ainsi, les emplacements des ambulances sont 

devenus une décision cruciale. 

La rationalité de sa localisation et l'équité de la distribution sont directement liées à 

l'efficacité et à la qualité de l'offre de service public et jouent un rôle fondamental dans 

la promotion de la construction sociale et l'amélioration de la qualité de vie des 

populations. 

Dans ce mémoire, nous présentons une revue de la littérature sur le problème global 

de l'emplacement de l'installation, ainsi que sur le service médical d'urgence. Nous 

proposons ensuite des modèles d'optimisation basés sur des mesures de performance 

déterministes et stochastiques afin d'optimiser le problème de localisation des 

ambulances et introduisons une nouvelle mesure -- qualité de service. En outre, nous 

présentons une comparaison computationnelle pour ces modèles basés sur des 

simulations de différents indicateurs et analysons la performance des approches avec 

analyse statistique descriptive et analyse d'enveloppement de données (DEA). Sous 

ces deux aspects, les modèles basés sur des mesures stochastiques, c'est-à-dire la 

couverture de la demande prévue, la qualité de service prévue et le taux de survie prévu 

sont considérés comme de meilleures solutions basées sur les résultats des simulations. 

La nouvelle mesure -- qualité de service dans le problème de localisation d'ambulance 

et nos modèles étendus peuvent être appliqués à une conception de réseau de chaîne 

d'approvisionnement plus générale. Les indicateurs que nous avons proposés peuvent 

efficacement aider à mesurer la performance de chaque paire offre-demande. 

 

Mots Clés: Problème de localisation d'ambulance; Stochastique; Optimisation; Data 

Envelopment Analysis (DEA)  
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Chapter 1-Introduction 

1.1 Overview 

The study of facility location is a long-awaited subject. In ancient times, location 

decision-making is often based on experience, emotional intuition and even 

superstition, which lacked scientificity. Modern facility location research originated 

in 1909, the German scholar Weber's first published paper marked the facility location 

problem to enter the era of scientific research. 

The facility location problem has a long history. Most of the scholars and experts in 

the field of logistics have studied the location problem from the aspects of the creation 

and revision of the model, the design of efficient or feasible algorithms, and the 

consideration of the complexity of the algorithm. Optimization of facility location 

usually has the following important features. First, the strategic aspects of the selection 

are significant because management decisions often affect long-term economic 

benefits and corporate development trends, and their investment in decision-making 

is generally relatively large; secondly, there are so many factors that need to be 

weighed in the problem, and to find a satisfactory solution to meet the constraints of 

reality. Although the model is created and solved with many similar steps or 

representations, the models for different environments or conditional constraints are 

not generic in themselves, so the structure of the model depends on a particular 

problem or case. Furthermore, for the solution of the model algorithm, most of the 

facilities location problems are NP-hard for the current situation of the study, so it is 

not easy to obtain the exact solution or the optimal solution for some site applications. 

No matter what kind of social environment and historical conditions, people are 

inseparable from facility location problem. Facility location as an important branch of 

management science and engineering research, is often related to the strategic level of 

management decision-making and logistics optimization. Because of its relatively 

large investment and a long period of time to maintain stability, investment decision-

makers have to make rational and careful consideration of facility location decision. 



2 

 

From the point of logistics optimization, the facility location problem is always 

attached to a certain environmental background, and the corresponding services are 

provided by the number of facilities and the optimal location of the facilities is under 

the constraints of existing resources. Facility location generally requires consideration 

of : the number of facilities required; the location of the facility needs to be established; 

the size of each facility needs to be determined; the allocation of each facility's 

customer demand, etc. The decision-making factors of these facilities directly affect 

the input-output ratio, economic efficiency, social utility and social value of 

enterprises or organizations. As an important research area in management, economics, 

computational science, transportation science and other fields, facility location 

problem has been widely used in many fields such as logistics chain, public facilities, 

transportation and communication, regional and urban planning. 

Public service facilities location selection, such as fire station, ambulance station, is 

the central issue of urban planning and urban development. The rationality and fairness 

of distribution are directly related to the quality in urban construction and development, 

as well as the quality of life. 

With the development of economy, the growth of population and the progress of 

medical undertakings, the process of urbanization is accelerating. As one of the basic 

elements of public service facilities, ambulance stations play a positive role in 

promoting the improvement of health conditions in the region. They are also necessary 

conditions for guaranteeing the orderly operation of emergency medical systems. The 

location of ambulance stations is crucial for the optimal allocation of medical 

resources in the region. Reasonably optimizing ambulance station location can 

effectively save costs and ensure the rational distribution of medical resources among 

residents to make up for the deficiencies of the existing medical system and promote 

the balanced and rapid development of the emergency medical system. 
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1.2 Definition of the Problem 

The facility location problem has become the focus of the decision-making content for 

many years because of its wide range of applications. The covering problem is one of 

the three basic models in facility location problems (P-median problems, P-center 

problems, covering problems), which can be divided into set covering location 

problems (SCLP) and maximal covering location problems (MCLP). The SCLP 

requires that under the premise of full coverage, how to decrease the number of 

facilities or decrease the investment cost. The MCLP is based on the practical 

limitation of investment, within a fixed number of facilities, to cover the demand as 

far as possible. The problem of gradual coverage is extended on the basic coverage 

problems. Since there are natural defects in the practical application of the basic 

coverage problem (the breakpoints of covering radius make the coverage of the 

demand unreasonable), the concept of the gradual coverage makes up for the lack of 

basic models. Gradual coverage model is particularly applicable to consumer 

satisfaction as the goal of the location problem, radio, television, mobile phone signal 

transmission problems. The gradual covering presents a more comprehensive and 

systematic extension of the basic location problem model. In the coverage model, the 

coverage radius and the coverage level in the function can be more flexible to 

transform the coverage problem into the basic MCLP or the P-median problem, which 

provides a simplified method and idea for solving the complex gradual coverage 

model. 

In this paper, we intend to answer two research questions: 

1. What facility location models can be applied to optimize the ambulance station 

location problem? 

2. What indicators can be incorporated to measure the performance based on the 

models we apply? 

3. Based on the proposed indicators, how well do these different models perform 

based on simulation? 
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1.3 Outline and Contributions 

The first chapter of this paper has already introduced the subject and the research 

questions of this work. The second chapter will provide a literature review of the 

overall facility location problem, and then introduce basic covering models and 

gradual covering models, as well as the emergency medical service introduction. The 

third chapter will propose twelve mathematical models. Chapter Four will present a 

comparison based on different indicators between the results of the models and analyse 

the performance of the approaches with descriptive statistics analysis and Data 

Envelopment Analysis. The final chapter will conclude this paper, highlight the 

contribution and present certain limitations. 

Our contribution will be: 

1. We incorporate a new measure—service quality and add to our extended 

optimization models from both deterministic and stochastic sides. 

2. We have the indicators—expected response time, expected survival rate, expected 

service quality and expected demand coverage criteria at the same time, to measure 

the performance of each model. 

3. We apply the Data Envelopment Analysis (DEA) to evaluate the performance of 

different models. 

4. The models we have for the ambulance location problem can actually be extended 

to a general supply chain network design. 
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Chapter 2-Literature Review 

In this section, we first generally review the introduction of facility location problem. 

Then two types of models will be presented: basic covering models and the gradual 

covering models. Next, we provide a brief overview of the emergency medical service 

(EMS) from different aspects, such as: performance assessment, management 

structure and service indicators.  

 

2.1 Introduction of Facility Location Problem 

The study of the facility location theory has a history of nearly a hundred years. The 

earliest model of facility location originated from the famous Weber problem. In 1909, 

Alfred Weber established a 1-median problem model in Euclidean space (Altinel, 

2009). Then in 1929, Hotelling introduced the competitive factors into the facility 

location problem; Weiszfeld then proposed the famous Euclidean space median 

algorithm in 1937. While the above theoretical research just took the planar location 

situation into account, the actual situation is much different. The facility location 

problem is heavily concerned with the study of the network location by Hakimi (1964, 

1965), whose combination of guidance and innovative ideas and location issues is 

widely applied to the realities of factories, facilities and service industries. The facility 

location problem is divided into P-median problem, P-center problem, coverage 

problem, closure problem, Hub location problem, dynamic and uncertain location 

problem, competitive location problem, facility allocation, etc. We generally refer to 

the three models of P-median problem, P-center problem and coverage problem as 

basic location problem. On this basis, the various types of problems are collectively 

referred to as the location expansion problem. For different research background and 

angle, the subdivision of the location problem is very complicated. 

Daskin (1998) summarized and collated the facility location problem from the 

following five perspectives, as shown in Table 1. 
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Research 

Level 

From personal decision-making in daily life, to the 

company or government facility decision-making 

Research 

Perspectives 

From the point of the enterprise, to maximize corporate 

profits, the correct facility location is related to the 

enterprise profit and market competitiveness; 

from the perspective of the government and the public 

sector, the location will affect the efficiency of public 

facilities and public concern about the price and fairness. 

Involving 

Fields 

Involving the logistics industry such as the transportation, 

communications, logistics chain, urban planning, public 

facilities, and other aspects. 

Common 

Issue 

Since most of the facility location problems are NP-hard, 

it is difficult to obtain accurate solutions. Most of the 

practical applications are turned to seek suboptimal 

solutions or satisfactory solutions. 

Model 

Features 

The facility location problem is based on different realistic 

background and subject to certain constraints; different 

problems need to be solved by separate models 

Table 1- Division of the facility location problem 

Daskin (1995) also classified the facility location problem, as shown in Table 2. 

Criteria Classification 

Topology Planar, discrete, network 

Network type Tree, general graph 

Facility numbers Single, multiple 

Travel time Static, dynamic 

Certainty Deterministic, probabilistic 

Product differences Single, multiple 

Organization Nature Public, private 

Target number Single, multiple 

Demand type Elastic, inelastic 
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Facility capacity Capacitated, uncapacitated 

Demand allocation Nearest, general demand allocation 

Hierarchical structure Single, multiple 

Facility attraction Desirable, indesirable 

 Table 2- Classification of facility location problem 

ReVelle et al. (2008) provided a more succinct classification for facility location 

problem, dividing it into two branches: the median and the planar location model, the 

center and the coverage problem. With this standard, the location model can be divided 

into the following four categories, presented in Table 3. 

Analytical 

models 

Based on large-scale simple assumptions (fixed-cost 

facility location, demand consistency distribution, etc.) 

and ignore the special cases; can not be applied to the 

actual decision-making guidance. 

Continuous 

models 

Assume that the facility can be placed anywhere in the 

service area and the demand is usually considered to 

occur at some discrete points. 

Network 

models 

The topology of such sites is a network of points and 

lines. Most of the relevant literature in this field seeks to 

find a special structure to make the algorithm solvable in 

polynomial time. 

Discrete 

location 

The demand and candidate points for facility location are 

discrete, and such problems can often be described and 

expressed in integer programming or MIP. Most of these 

models are NP-hard. 

Table 3- Model categories 

Depending on the classification attributes of the location problem, there will be more 

detailed categories. The focus of this paper is to consider one of the three basic 

problems of facility location ---coverage problem, and its application, with discrete 

location models. 

 



8 

 

 

2.2 Basic Covering Models 

In the covering problem, the service is not provided by the closest facility, but within 

certain distance, where it is assumed that there is no difference between customers in 

the coverage area and the distance is the coverage radius. 

Given network 𝐺(𝑉, 𝐴), V is the set of vertices,|𝑉| = 𝑚, A is the set of edges.  I is the 

set of the demand points and  𝐽  is the set of the potential facility locations. Each 

facility, once established, can cover a predetermined set of the demand points or, in 

other words, provide the service to the patients in these demand points. This condition 

can also be represented by the parameter 𝑎𝑖𝑗 as follows: 

𝑎𝑖𝑗 = {
1, if demand point 𝑖 can be covered by facility at location 𝑗 

0, otherwise
 

In general, whether the demand point can be covered by the facilities is based on the 

distance between the two is less than or equal to the coverage radius. Within the 

coverage radius, the demand point is completely covered, while beyond this value, the 

demand point is not covered by the corresponding facilities, that is, the facility can not 

provide services for the relevant demand points or customers will not come to this 

facility. In the specific problem, the basic covering model only consider one coverage 

radius, and the settings of radius are often associated with the status and importance 

between the two. The coverage problem is one of the traditional models of network 

facility location, which can be divided into two types: set covering location model and 

maximal covering location model. 

 

2.2.1 Set Covering Location Problem 

The main content of the set covering location problem is to minimize the total cost of 

investment or the number of facilities that need to be built on the premise that the 

needs of customers at all demand points are covered by the facilities. From the 

perspective of optimization, finding a subset of the required investment costs where 
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all demand can be covered by candidate facilities. The problem is to find a minimum 

total cost on facilities under a full coverage. 

Assume 𝑓𝑗  is the fixed cost of candidate facility j, and variable 𝑋𝑗: 

𝑋𝑗 = {
1, facility built at location 𝑗,

0, otherwise
 

The set covering location model will be: 

Min∑ 𝑓𝑗 ∗
𝑗

1
𝑋𝑗                                                                                                              (2 − 1) 

Subject to:           

∑ 𝑎𝑖𝑗 ∗ 𝑋𝑗  ≥ 1
𝑗

1
, 𝑖 ∀𝐼                                                                                                 (2 − 2) 

𝑋𝑗 ∈ {0,1}, 𝑗∀𝐽                                                                                                            (2 − 3)  

The objective function (2-1) is to find the minimum total fixed cost. Constraint (2-2) 

means that all demand should be covered. Constraint (2-3) is the binary constraint. 

The set covering location model was established by Roth and Toregas, and then Garey 

and Johnson proved that the problem was NP-hard. In the set covering location models, 

the distance between the demand point and the assigned corresponding facility is 

known as the criteria for good or bad judgment. If the facility that customers select 

does not exceed a given standard value, the facility is considered to be able to meet 

the requirements, and the demand at this point can be covered by the facility, otherwise 

it is not covered. When all the demand points are covered by at least one facility, how 

to minimize the total cost, that is, to build the fewest facilities to meet all the needs, 

has become the initial idea of the set covering location problem. 

 

2.2.2 Maximal Covering Location Problem 

Considering the fairness of the demand point service, the set covering location model 

itself does not take the unevenness of the demand point distribution into account. 
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While covering all the demand points in real life tend to exceed the budget, from the 

perspective of efficiency, the solution will lead to a contradiction between capital 

budget and real cost. 

Therefore, another research direction is: under the premise of a given fee, how to 

establish limited facilities to enlarge the coverage, resulting in the maximal covering 

location problem (MCLP). The maximal covering model takes into account the fact 

that the total investment limits of the candidate facilities and the covering radius of the 

facilities are known, to maximize the total demand what can be covered. The MCLP 

was raised by Church and ReVelle in 1974, taking the layout of the facilities in the 

network into account, and the MCLP problem was also proved to be NP-hard. 

The MCLP can be modelled as: 

𝑑𝑖: demand at location i 

𝑝: number of facilities that will be built 

𝑍𝑖={
1, demand point 𝑖 can be covered,

0, otherwise
 

𝑋𝑗 = {
1, facility built at location 𝑗,

0, otherwise
 

𝑎𝑖𝑗 = {
1, if demand point 𝑖 can be covered by facility at location 𝑗 

0, otherwise
 

Objective function: 

max∑ 𝑑𝑖 ∗
𝑖

1
𝑍𝑖                                                                                                                 (2 − 4) 

    Subject to: 

∑ 𝑎𝑖𝑗 ∗ 𝑋𝑗  ≥
𝑗

1
𝑍𝑖 , 𝑖 ∀ 𝐼                                                                                                  (2 − 5) 

∑ 𝑋𝑗 = 𝑝
𝑗

1
, 𝑗 ∀ 𝐽                                                                                                             (2 − 6) 

𝑍𝑖 ∈ {0,1}, 𝑖∀𝐼                                                                                                                (2 − 7)  



11 

 

𝑋𝑗 ∈ {0,1}, 𝑗∀𝐽                                                                                                                (2 − 8)  

                                                         

Objective function (2-4) is to maximize the demand coverage; constraint (2-5) means 

that if demand i is covered, there must be at least one facility providing service to it; 

(2-6) means that the quantity of facilities must be equal to; constraints (2-7) and (2-8) 

are binary constraints. 

 

2.3 Gradual Covering Problem 

From the recent study of facility location, the assumption of basic coverage problem 

shows limitations in the practical application and operation. The basic covering 

problem defines strictly for the distance and assumes that the demand points are 

completely covered within a given distance, and beyond that distance, the demand is 

completely unfulfilled. The distance assumed by the theory becomes the breakpoint of 

the application of the actual covering problem. The expression of the absolute 

mathematic distance is not practical in many real cases. Like we can not determine 

that being at the edge of the radius, the demand point is totally unacceptable, and even 

if it exists within the coverage radius, all the points that are theoretically fully covered 

may also differ in the degree of service acceptance. Therefore, the concept of gradual 

covering comes into sight. 

The earliest concept of gradual coverage can be traced back to 1998, when Drezner 

used the Logit model for the division of market share in the context of the study of a 

facility location model under practical application, involving the purchase of 

competitiveness and full market shares, to express the purchasing power of the demand 

point more intuitively. This model shows that the purchasing power of the demand 

point within a certain range will decrease, and beyond that range, the purchasing power 

will be 0. The literature initially reflects the concept of gradual covering. Then Berman 

(2002) introduced a case where there may be a partial coverage in the maximal 

coverage problem by setting the coverage as a descending segment function of the 

distance.  
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The basic coverage problem holds that whether the demand point is covered depends 

entirely on the distance to the nearest facility, and that the coverage radius D in the 

theoretical model implies a strict assumption that the demand point is fully covered 

within the facility coverage radius D, otherwise the demand point is completely not 

covered, so the distance D has become a breakpoint of the coverage model, which is 

unrealistic in many practical applications. With the reality of the study of the coverage 

problem, the researchers have put forward different function of coverage distance and 

coverage level in practical application for the more accurate description of the 

coverage, so that the problem of gradual covering becomes a branch of the facility 

location study. 

Drezner (1998) has proposed a concept of gradual coverage, taking into account the 

customer purchasing power and market share in the competitive environment in the 

use of mathematical models. The purchasing power of demand points is gradually 

decreased by distance, reflecting the gradual coverage of the meaning. Drezner (2002) 

clearly raised the problem of gradual coverage at the meeting of the Institute of 

Decision Science, described in detail the coverage level at the coverage radius, and 

described the practical requirements with incremental coverage. There are four 

applications for the gradual covering model: (1) to meet consumer satisfaction as the 

goal of the location problem; (2) emergency facilities service; 3) the competitive 

location problem; (4) the broadcast, television, mobile phone signal transmission 

problems. 

Berman and Krass (2002) proposed a generalized large coverage location model 

(GMCLP), which refine the concept of coverage and extend the coverage hypothesis 

of [0,1] to a multiple hypothesis, and introduce the idea of “partial coverage”. They 

consider the distance between the demand points and facility as a non-increasing 

segment function, considering that there are several facilities near each demand point 

i, and that the different facilities have a different coverage for i, so each demand point 

corresponds to a multiple coverage level set, to maximize the weight of the total 

coverage over the difference in segment coverage. Berman (2003) has improved the 

theory of gradual coverage, and discussed the problem from two perspectives: P-
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median model and maximal coverage model. Eiselt et al. (2008) added the minimum 

tolerance to the setting of the gradual coverage problem, analyzed the coverage 

problem considering the quality of service, merged the different service levels into the 

target by different description of the horizontal fading function in the solution, and 

expanded the traditional set coverage problems. Berman and Drezner (2009) studied 

the coverage problem with variable radius, and linked the cost of construction to the 

coverage distance that the corresponding coverage radius and the number of facilities 

were determined by the limitation of investment cost, and presented the heuristic 

algorithm, and the model of discrete problem is discussed at the same time. 

Mestre (2006), Kalcsics (2010) and others scholars have studied and validated the 

problem of gradual coverage or variable radius coverage from different areas. The 

above studies on the coverage problem are classified or segmented from different 

aspects of the covering function, but the non-continuity problem is encountered, 

whether it is based on the plane Euclidean distance or the network distance. Drezner 

(2010) further considers the problem of random coverage in continuous state, and 

describes the linear attenuation by means of the continuous uniform distribution 

function curve. At the same time, the BTST (Big Triangle Small Triangle) method for 

the random coverage problem of plane single facility is given. Berman, Drezner and 

Krass (2010) analyzed the situation of three types of facility location models, such as 

the gradual coverage problem, the combined coverage problem and the variable radius 

problem in the location model. 

In the facility location problem, different researches are described by the objective 

function from different angles of cost or benefit, and many examples in real life just 

show that not only from the cost and benefit point of view can accurately measure the 

rationality of its location, and sometimes more emphasis on utility, fair and other 

factors. Such as signal coverage, car rental, ambulance station, fire station, post office, 

park and other convenient public service facilities location decisions have similar 

characteristics. 

Karasakal and Karasakal (2008) studied the problem of gradual covering based on 

quality of service. The concept of minimal tolerance service is introduced, taking into 
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account the different stages of the attenuation function based on distance, and the 

different levels of service into the objective function to solve. Berman and Kalcsics 

(2009) combined with the sequential median model and the gradual decline coverage 

model, the progressive decline model of the network is proposed, as well as the three 

recessive functions of linear recession, segmentation recession and linear 

segmentation regression are given. On the basis of linear recession, the single facility 

and multi-facility gradual decline coverage location problem have been studied 

respectively. Berman and Drezner (2009) studied the gradual covering problem with 

variable radius. The article assumes that the cost of the facility is a monotonically 

increased with distance. The decision maker determines the radius of the facility and 

the number of facilities according to the budget. Drezner and Drezner (2010) further 

consider the random coverage problem in continuous state. By the continuous uniform 

distribution function curve, the linear attenuation is described and proved. At the same 

time, the BTST solution of the random coverage problem of single facility is given. 

Berman, Drezner, Krass (2010) reviewed the research on the three types of facility 

location models, such as the gradual coverage problem, the combination coverage 

problem and the variable radius problem in the location model, and look ahead the 

progress of the next step. 

The gradual covering problem presents a more comprehensive and systematic 

extension of the basic location problem models. Interestingly, in the gradual covering 

model, the coverage radius and the level of coverage involved in the coverage function 

can be more flexible to transform into MCLP or P-median problems. The extension of 

gradual coverage is limited to the plane or Euclidean distance. The quantitative 

description of the gradual covering function is limited to the fact that the segmentation 

function is used to describe the actual situation, and there is still the bottleneck of 

discontinuity. Second, from the actual needs and other factors, the randomness of 

gradual coverage is not studied clearly with the practical application. For example, 

there are a large number of subjective or objective uncertainties like cost, demand, 

travel time, in many fields such as management science, engineering technology, 

military decision-making, etc. 
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2.4 Emergency Medical Service 

The original concept of the emergency medical service system (EMS) originated in 

1793, by the chief military officer Dominique-Jean Larrey from the Napoleon army. 

He found that if the injured soldiers could be quickly sent from the front to the base 

and got treated, then not only the humanitarianism could be shown but also further 

maintain the combat capability of the army. So he invented the system of flying 

ambulance, transported the wounded in accordance with the severity of the injury 

(triage). This system was later adopted by the armies of Europe and the United States, 

on which a modern emergency medical service system is based. 

But until 1966, the emergency medical ambulance system was really established. At 

that time, the US National Academy of Sciences published the "accidental death and 

disability" white paper. After that, the United States set up the National Highway 

Authority to take responsibilities for the development of EMS. 

Nowadays, the emergency medical service system refers to the provision of personnel 

and equipment in the appropriate area in an emergency case, to ensure a synergistic 

health service. Its main task is to treat patients with traumatic and acute care, as well 

as the pre-hospital care and the treatment during transition provided by the ambulance 

staff. At present, the development of emergency medical system in countries and 

regions around the world is unbalanced. We will review the current status of EMS. 
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First, the main steps of emergency medical service and the measurement of service 

performance are shown in Figure 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1- Main steps of EMS and measurement of service 

 (Source: Emergency Ambulance Service, Legislative Council of the Hong Kong Special 

Administrative region of the People’s Republic of China, 1998) 
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In summary, there are several viable quantitative criteria for assessing the performance 

of emergency medical services: 

1. Dispatch time: from the time of receiving the call to mobilize an ambulance. 

Depending on the start-up time, it is possible to measure whether the ambulance is 

available for mobility, whether the program is effective or not, and whether the person 

responsible for the transfer is working. 

2. Travel time: by moving an ambulance to the scene of the accident. 

According to the travel time, it is possible to measure the actual time on route and to 

see whether ambulance coverage network is efficient. 

3. Response time: from the time of receiving the call to the ambulance arriving at the 

scene of the accident.  

According to the response time, we can measure how long it takes for ambulances to 

provide emergency medical services. 

4. Overall service time: from the time of receiving the call to sending the injured to 

the hospital. 

According to the service time, we can measure how long it takes for an ambulance to 

complete an emergency medical service. 

 

2.4.1 Management Structure 

In several areas, ambulance services are considered one of several emergency services, 

and emergencies are usually handled by the Fire Service Department, so the 

ambulance service is under the Fire Service Department. In addition, some areas (such 

as Queensland, Australia) have State Emergency Service (SES), ambulance service is 

one of the operations, and other operations like fire services, disaster relief services. 

In other areas, however, ambulance services are under the Health Department to be 

closely monitored, since ambulance services not only provide basic life-sustaining 
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services, but also provide treatment services or advanced life-sustaining services. 

Table 4 shows the examples of management structure in certain areas. 

 EMS belongs to Fire 

Department 

EMS belongs to 

Health Department 

Hong Kong, 

China 

√  

Tokyo, Japan √  

London, UK  √ 

British Columbia, 

Canada 

 √ 

Alberta, Canada  √ 

San Francisco, 

USA 

All public ambulances All private 

ambulances 

New South 

Wales, Australia 

 √ 

Queensland, 

Australia 

SES  

Table 4- Management structure of EMS in certain areas 

(Source: Emergency Ambulance Service, Legislative Council of the Hong Kong Special 

Administrative region of the People’s Republic of China; EMS in the Calgary Zone, 

Alberta Health Services) 

 

2.4.2 Service Indicators 

The medical community around the world is deepening the view that there is a need 

to refer to more relevant clinical criteria when calculating service time indicators. For 

example, if the patient suddenly has hypoxia, brain attack or heart disease, they are 

required to be treated within a few minutes, so as to avoid irreparable trauma. 

In the case of life-threatening illnesses, if the ambulance personnel can shorten the call 

response time, then more people's lives can be saved. In most areas, call response time 
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is used as a service time indicator. Table 5 sets out the service time indicators used in 

a number of selected areas. 

 

Area Service Indicator 

Response 

time 

Travel 

time 

Asia China Beijing √  

Shanghai √  

Hong 

Kong 

 √ 

Japan Tokyo √  

Singapore  √  

Oceania Australia Canberra √  

New South 

Wales 

√  

Europe UK  √  

North 

America 

Canada British 

Columbia 

√  

 

Alberta √  

USA San 

Francisco 

√  

Houston √  

Honolulu √  

Table 5- Service indicators in certain areas 

(Source: Emergency Ambulance Service, Legislative Council of the Hong Kong Special 

Administrative region of the People’s Republic of China; EMS in the Calgary Zone, 

Alberta Health Services) 

Table 6 shows the performance of emergency ambulance services in selected areas. It 

can be seen from this data that not all regions are able to meet their service targets. 

Area Service 

Indicator 

Service 

performance 

Asia 

China Beijing N/A Response time: 

≤10 min: 

27.66% 
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10-15 min: 

24.14% 

15-20 min: 

24.05% 

20-30 min: 

17.11% 

>30 min: 7.04% 

Shanghai Urban areas 

response time: 8 

min 

Rural areas 

response time: 

30 min 

N/A 

Hong Kong Travel time < 10 

min: 95% 

89.53% 

Japan Tokyo N/A Response time < 

5 min: 42% 

Singapore Response time ≤ 

11 min 

N/A 

Oceania 

Australia Canberra Response time < 

8 min: 90% 

Response time 

<8 min: 50% 

Response time < 

14.5 min: 90% 

New South 

Wales 

Urban areas 

response time ≤ 

14 min: 95% 

Rural areas 

response time ≤ 

19 min: 95% 

Dispatch time ≤ 

3 min: 95% 

Urban areas 

response time ≤ 

8 min: 50% 

Rural areas 

response time ≤ 

9 min: 50% 

Europe 

UK Urban areas 

response time ≤ 

14 min: 95% 

Rural areas 

response time ≤ 

17 min: 95% 

Urban areas 

response time ≤ 

14 min: 84.1% 

Rural areas 

attendance time 

≤ 17 min: 96,2% 

North America 



21 

 

Canada British 

Columbia 

Response time: 8 

min 

Response time < 

6.91 min: 50% 

Response time < 

12 min: 90% 

Alberta Response time: 

12 min 

Response time < 

15 min: 90% 

USA San 

Francisco 

Urban areas 

response time: 8-

10 min 

Suburb areas 

response time: 

10-15 min 

Rural areas 

response time: 

15-20 min 

Urban areas 

response time 8-

10 min: 80% 

Other areas 

response time: 

75-80% 

Houston Response time: 

6min 

N/A 

Honolulu Response time 

8-10 min: 90% 

Response time ≤ 

10 min: 92% 

Table 6- Service performance of EMS in certain areas 

(Source: Emergency Ambulance Service, Legislative Council of the Hong Kong Special 

Administrative region of the People’s Republic of China; EMS in the Calgary Zone, 

Alberta Health Services) 

From the tables above, we can see that the most used indicators in EMS is response 

time. However, measuring the service of EMS only with response time is not enough, 

we need a more holistic approach to optimizing the operation of the ambulance station. 

In the following chapters, we will discuss different ambulance station location 

optimization models and measure the corresponding performance with more 

indicators. 

 

 

 

 

 



22 

 

 

Chapter 3-Mathematical Models 

In this chapter, we will first introduce two measures into our models—survival 

probability and service quality. Then we will discuss four known facility location 

models (MCLP, MSLP, MCLP+PR and MSLP+PR) for ambulance station location 

problem with objectives of maximizing demand coverage and maximizing expected 

survivors based on the paper from Erhan Erkut et al. (2007), and eight extended 

models which incorporate new parameters and further standards based on the models 

we have. Table 7 below shows the summary of the models. 

Problem Certainty Objective Location Assignment 

MCLP Deterministic Max. demand 

coverage 

√  

MSLP Deterministic Max. expected 

survivors 

√ √ 

MQLP Deterministic Max. service 

quality 

√ √ 

MCLP+PR Stochastic Max. demand 

coverage 

√ √ 

MSLP+PR Stochastic Max. expected 

survivors 

√ √ 

MQLP+PR Stochastic Max. service 

quality 

√ √ 

MCLP+PR+S Stochastic Max. demand 

coverage 

√ √ 

MCLP+PR+Q Stochastic Max. demand 

coverage 

√ √ 

MSLP+PR+C Stochastic Max. expected 

survivors 

√ √ 

MSLP+PR+Q Stochastic Max. expected 

survivors 

√ √ 
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MQLP+PR+C Stochastic Max. service 

quality 

√ √ 

MQLP+PR+S Stochastic Max. service 

quality 

√ √ 

Table 7-Summary of models 

 

3.1 Introduction of Parameters 

3.1.1 Survival Probability  

Most published research paper relevant to survival rates to EMS response time focuses 

on cardiac arrest. 

A total of 29 articles concerning the survival rates of out-of-hospital cardiac arrest 

(OHCA) were reviewed and analyzed by Eisenberg et al. (1990). As a result, various 

factors were involved in affecting survival rates, such as response periods, 

demographic as well as physiological variations among areas, system design (the exact 

ways of training EMS staff, as well as the precise procedures of performance), diverse 

definitions of terms, including “response time” as well as “cardiac arrest”, and the 

exact accordance of applied procedures with standards. 

In order to reduce the possibility of death in critically ill patients, whether to reach the 

scene as soon as possible to give the patient first aid, becomes the key to emergency 

medical system configuration. According to Eisenberg’s study (1993), patients who 

were OHCA were able to be given Basic Life Support (BLS) within 4 minutes of 

cardiopulmonary function, or be given Advanced Cardiac Life Support (ACLS) within 

8 minutes, the survival rate of patients is about 43%; but if the BLS for more than 8 

minutes or ACLS more than 16 minutes did not implement, the patient's survival rate 

close to zero, as shown in Figure 2. 
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Figure 2- Survival rate of OHCA patients (Source: Valenzuela et al, 1997) 

In the above-described study, assumptive survival curves from collapse time point 

were exhibited for five types of EMS system: paramedic, EMS vehicles solely 

equipped with emergency medical technicians (EMT), EMT equipped with 

defibrillation capacity (EMT-D), EMT-D accompanied by paramedic, as well as EMT 

accompanied by paramedic. It is assumed that the survival rate starts with 100% at 

collapse, while declines linearly to zero within 10 minutes without intervention in 

assumptive survival curves. After the arrival of EMTs as well as administration of 

cardiopulmonary resuscitation (CPR), a decreased but negative slope is speculated in 

the survival curve, which is speculated to decline profoundly in case of defibrillation 

application. The stabilization of the curve (slope = zero) is reached in case of the 

arrival of paramedics with the application of medication as well as intubation, or 

admission to hospital if EMS systems are not equipped with paramedics. 

The benchmark survival rates over stabilization varied from 35% of EMT-

D/paramedic systems to 10% of EMT systems, which are consistent with the findings 

in King County, WA, where evolution of EMS system has initiated from EMT, EMT-

D, EMT/Paramedic, finally to EMT-D/Paramedic. 
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The research performed in casinos (Valenzuela et al. 2000) is likely to provide the 

most persuasive support that survival rates of cardiac arrest is enhanced by short 

response periods, of which, security guards were well-trained executors of 

defibrillation as well as CPR. The precise time of collapse was calculated from videos, 

and intervals from collapse to CPR were generally less than 3 minutes. The accurate 

time period of the study distinguishes it from others, the majority of which are either 

neglected or estimated by bystanders, and are burdened with longer intervals from 

collapse to CPR. Here, survival rate of 74% was observed in patients undergoing 

defibrillation within 3 minutes after collapse, however, survival rate at only 49% was 

detected in those not receiving defibrillation in time. 

Part of the study enrolled by Eisenberg et al.  lacked response times, or averages or 

proportions were documented, while response time distributions as well as estimated 

survival speculated from response periods were presented in several studies. Hence, 

four correlated articles with survival analyses are further discussed in this study. We 

should notice that all these studies defined “survival” as “survival until discharge from 

hospital”. 

Firstly, using data of King County, Washington, US, Larsen et al. (1993) applied linear 

regression for survival rate based on it’s system of cardiac arrest surveillance. The 

equation is: 

𝑃(𝐼𝐶𝑃𝑅 , 𝐼𝐷𝑒𝑓𝑖𝑏 , 𝐼𝐴𝐶𝐿𝑆) = 0.67 − 0.023𝐼𝐶𝑃𝑅 − 0.011𝐼𝐷𝑒𝑓𝑖𝑏 − 0.021𝐼𝐴𝐶𝐿𝑆       (3-1-1)     

where 𝐼𝐶𝑃𝑅 , 𝐼𝐷𝑒𝑓𝑖𝑏 , 𝐼𝐴𝐶𝐿𝑆 denote the minutes from collapse to CPR, defibrillation and 

ACLS separately. There was a huge difference between expected and observed 

survival probability when the response time was quite long. For example, due to the 

different factors embedded in the system, the expected survival rate was supposed to 

be 0%, while the actual rates varied from 3% to 20%.  

In the second study, conducted by Valenzuela et al. (1997), data from King County 

(Washington, US) as well as Tucson (Arizona, US) were utilized to analyze survival 

function by using logistic regression. Of the above studies, a number of factors were 

enrolled, including age, time period from collapse to CPR, manual CPR performed by 
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bystanders/collapse to CPR interval interaction, time period from collapse to 

defibrillation, as well as manual CPR conducted by bystanders. Remarkably, no 

significant effect was detected in location (Tucson or King County) in terms of 

survival after balance of the above-described indicators, for example, the same 

survival function could be applied in both urban regions. Afterwards, another survival 

function was presented, which, however, only enrolled the time period from collapse 

to defibrillation as well as time period from collapse to CPR. The second function 

approximates more accurately and precisely than the first one: 

𝑃(𝐼𝐶𝑃𝑅 , 𝐼𝐷𝑒𝑓𝑖𝑏) = 1 (1 + e−0.260+0.106𝐼𝐶𝑃𝑅+0.139𝐼𝐷𝑒𝑓𝑖𝑏)⁄                                         (3-1-2) 

In this study, the authors pointed out that the survival probability is overestimated 

when there was long response time, which was in contrast with the first research. 

We refer to the third study by Waaelwijn et al. (2001), which collected statistics from 

Netherlands, Amsterdam, as well as the surrounding areas. Consequently, three 

diverse survival functions were determined by use of logistic regression, including the 

paramedic, the first responder, as well as the perceptions of the bystander. The first 

and second functions were affected by multiple factors, including the essential role of 

advanced CPR as well as initial diagnosis of heart rhythm. The last function was 

influenced by three indicators, including the witness of collapse by EMS staff, time 

periods from collapse to elementary CPR, as well as time periods from CPR to the 

application of EMS vehicle. The function is: 

𝑃(𝑋𝐸𝑀𝑆, 𝐼𝐶𝑃𝑅 , 𝐼𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒)

= 1 (1 + 𝑒0.04+0.7𝑋𝐸𝑀𝑆+0.3𝐼𝐶𝑃𝑅+0.14(𝐼𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒−𝐼𝐶𝑃𝑅))⁄                                            (3-1-3) 

where 𝑋𝐸𝑀𝑆 equals to 1 if the cardiac arrest was witnessed by an EMS staff and 0 

otherwise, and 𝐼𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 presents the response time in minutes. 

The last study we discuss here was performed by De Maio et al. (2003), in which 

statistics from different municipalities in Ontario, Canada were employed, followed 

by stepwise logistic regression in estimation of survival possibility. As a result, age, 

witness of collapse, EMS response time as well as CPR applied either by bystander or 
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by police or fire were indicators of the final model. After that, an ad-hoc procedure 

was applied to balance the influences of all explanatory factors, except response time, 

leading to a predictive function of survival possibility only relying on EMS response 

time among the studying population. The function is: 

𝑃(𝐼𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒) = 1 (1 + 𝑒0.679+0.262𝐼𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒)⁄                                                           (3-1-4) 

 

3.1.2 Service Quality  

Most of the basic covering problems are modeled with a certain coverage radius and 

scope from the view of enterprises. Based on this, the facility location model and 

decision are taken. From the point of service quality, the reference point of the facility 

location is based on the view of users, which presents a difference between 

effectiveness and efficiency. 

In the past, the coverage problem involved the binary of variable selection, that is, the 

demand point is either covered or not covered in the decision result. On the expansion 

of the binary coverage problem, the expression of the covering function is mostly a 

segmented or ladder transition, there are still non-continuous bottlenecks, so the 

performance is still not closer to reality. Commonly used coverage functions are 

shown in Figure 3. 
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Figure 3- Coverage Functions (Source: Eiselt et al, 2008) 

Figure 3(a) is a basic binary coverage function; Figure 3(b) shows a stepwise 

diminishing coverage; Figure 3(c) shows a linear decreasing function; Figure 3(d) is 

neither concave nor convex. 

In Figure 3(a), the demand point is completely covered within the coverage radius 𝐷̅, 

and if it exceeds this radius, it is not covered at all. This strict dichotomy is relatively 

simple, but most of the time the actual situation is much different. 

Based on this, when the distance exceeds the coverage radius, the scholars put forward 

a variety of coverage functions. Church and Roberts (1983) proposed a concept of 

gradual coverage, describing the coverage level as a segmentation function, that is, 

when the distance between the demand point and the facility exceeds the coverage 

radius, the coverage level will be a stepped downward trend like in Figure 3(b). 

In Figure 3(b), the function can be 𝑓𝑖(𝑡) = 𝑎𝑖
𝑘 , t ∈ (𝑟𝑖

𝑘−1, 𝑟𝑖
𝑘), 𝑘 = 1,2, … , K, 0 =

𝑎𝑖
𝐾 < ⋯ < 𝑎𝑖

2 < 1, 𝑙𝑖 = 𝑟𝑖
0 < 𝑟𝑖

1 < ⋯ < 𝑟𝑖
𝐾 = 𝑈𝑖. In the function, 𝑎𝑖

𝑘 is the coverage 

standard, 𝑟𝑖
𝑘 is the coverage radius. Apparently, when the coverage standard and the 
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coverage radius are both equal to 1, it can be converted to the Maximal Covering 

Location Problem (MCLP), like Figure 3(a). 

Although this type of functions are subdivided on the basis of the basic covering 

function, they are still discrete functions and can not describe the continuous change 

in real life. 

Pirkul and Schilling (1982) defined coverage level as a linear function with distance, 

and when the distance increases, the coverage level is linearly decreasing.  

In Figure 3(c), the function can be 𝑓𝑖(𝑡) = 1 −
1

𝑎
𝑡 , 𝑖 ∈ 𝑉 . 𝑎 = 𝑚𝑎𝑥𝑖 , 𝑑𝑖(𝑗)  is a 

parameter. For 𝑖 ∈ 𝑉, 𝑢𝑖 = 𝑎, and 𝑙𝑖 = 0, so: 

∑𝐶𝑖
𝑖

(𝑆) =∑𝑤𝑖𝑓𝑖
𝑖

(𝑑𝑖(𝑆)) =∑𝑤𝑖
𝑖

−
1

𝑎
∑𝑑𝑖
𝑖

(𝑆)𝑤𝑖                                (3-1-5) 

And the coverage function can be transformed into the traditional P-center problem. 

In this regard, this kind of function can describe the situation of continuous change, 

but this linear relationship is too simple, it is difficult to describe the complex changes 

in real life situation. 

Berman and Krass defined the coverage function as a non - convex non - concave 

function with distance, like in Figure 3(d). The function can be: 

f(𝑑𝑖𝑗) =

{
 
 

 
 

1, 𝑑𝑖𝑗 < 𝐷1̅̅ ̅

1

2
+
1

2
cos(

𝜋

𝐷2̅̅ ̅ − 𝐷1̅̅ ̅
(𝑑𝑖𝑗 −

𝐷2̅̅ ̅ + 𝐷1̅̅ ̅

2
) +

𝜋

2
)

0, 𝑑𝑖𝑗 > 𝐷2̅̅ ̅

, 𝑑𝑖𝑗 ∈ [𝐷1̅̅ ̅, 𝐷2̅̅ ̅ ]        (3-1-6) 

This kind of function is closer to the relationship between distance and coverage in 

real life, and can simulate the real situation well. 

The quantitative representation of the coverage functions is to explain the relevance 

between the basic coverage problem and the gradual coverage model. By describing 

and defining the service quality function, the understanding of the concept of "service 

quality" is more clearly expressed. 
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Figure 4- Difference between MCLP and gradual covering models based on service 

quality 

 

In the MCLP model, there is only one coverage radius, while in the gradual covering 

models, there will be various radius. The difference between MCLP and gradual 

covering models based on service quality is illustrated in Figure 4. 

If we define the service quality with the three levels of high, median and low as circles 

shown in Figure 4 from small to large circle, which are coverage radius of the facility, 

and assume that there are 11 customer demand points and two candidate facilities (X1 

and X2, respectively) in the location problem, the facility X1 will be selected as the 

service facility location based on the traditional MCLP method. Six demand points 

will have the high service quality, but will cause the other five demand points are not 

satisfied or worse; if we accord to the idea proposed by this research, then X2 will be 

chose for the service facility, although only five demand points of service quality are 

high, there will also be three points of demand for median and low service quality, 

which means that the overall service quality will be higher and help the operation of 

EMS system. 
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3.1.3 Models with Deterministic and Stochastic Measures 

We will discuss models with both deterministic and stochastic measures in the 

following section. For the deterministic measures, we apply the average response time 

to them. While for the stochastic measures, we obtain the expected response time 

based on the probabilistic distribution and put them in the simulation so that we will 

get different scenarios of the response times. For each scenario of the response time, 

the resulting service measure, which is a function of the response time, is calculated. 

The expected values of service measure parameters are then computed based on the 

results of this simulation. The model with stochastic measures are indicated by PR. 

 

3.2 Models with Deterministic Measures 

In this section, we will present three models with deterministic measures: MCLP, 

MSLP and MQLP. 

 

3.2.1 The Maximal Coverage Location Problem (MCLP) 

The MCLP is one of the most basic models when it comes to facility location problems. 

As we mentioned in Chapter 2, the MCLP aims to establish limited facilities to enlarge 

the coverage. The maximal covering model takes into account the fact that the total 

investment limits of the candidate facilities and the covering radius of the facilities are 

known, to maximize the total demand that can be covered. 

General notations for the formulations are as follows: 

Parameters: 

m: the number of demand nodes, 

n: the number of candidate locations, 

q: the maximum number of stations, 
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𝑑𝑖 : the demand of node i, 

𝑡𝑐 : the coverage radius of a station in time units, 

𝑡𝑗𝑖 : the travel time from candidate location j to demand node i, 

𝑡𝑑 : the pre-travel delay, 

𝑎𝑖𝑗 = {
1, if demand node i  is covered by candidate location 𝑗, i. e. 𝑡𝑗𝑖 + 𝑡𝑑 ≤ 𝑡𝑐  

0, otherwise
  

Variables: 

𝑥𝑗 = {
1, if candidate location 𝑗 is selected

0, otherwise
 

    𝑦𝑖 = {
1, if demand node 𝑖 is covered

0, otherwise
 

Objective function: 

max∑𝑑𝑖 ∗ 𝑦𝑖 

𝑚

𝑖=1

                                                                                                              (3 − 1) 

Subject to: 

∑𝑎𝑖𝑗 ∗ 𝑥𝑗 ≥ 𝑦𝑖 , 𝑖 = 1,2, … ,𝑚

𝑛

𝑗=1

                                                                                  (3 − 2) 

∑𝑥𝑗 ≤ 𝑞

𝑛

𝑗=1

                                                                                                                        (3 − 3) 

𝑥𝑗 ∈ {0,1}, 𝑗 = 1,2, … , 𝑛                                                                                                (3 − 4) 

𝑦𝑗 ∈ {0,1}, 𝑖 = 1,2, … ,𝑚                                                                                              (3 − 5) 

                                                                                                                                     

The objective function (3-1) maximizes total demand points that can be covered. 

Constraints (3-2) state that demand point i can only be covered if at least one candidate 
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location that covers i is selected; (3-3) limits the number of facilities to q; (3-4) and 

(3-5) are binary constraints.  

 

3.2.2 The Maximal Survival Location Problem (MSLP) 

In the MSLP, we incorporate a new parameter—survival probability. We assume that 

each demand point is served by the closest ambulance station and based on the 

function (3-1-2), so we will get the survival probability for deterministic response 

times of each demand—supply pair. 

Additional notation for this formulation is as follows: 

Parameters: 

𝑝𝑖𝑗 : probability that a patient at demand node i survives and is served by an EMS 

vehicle from station j based on the function (3-1-2) 

Variables: 

𝑥𝑗 = {
1, if candidate location 𝑗 is selected

0, otherwise
 

𝑦𝑖𝑗 = {
1, if demand node 𝑖 is served by an EMS vehicle at location 𝑗

0, otherwise
  

Objective function: 

max∑𝑑𝑖 

𝑚

𝑖=1

∑𝑝𝑖𝑗 

𝑛

𝑗=1

∗ 𝑦𝑖𝑗                                                                                                  (3 − 6) 

Subject to: 

∑𝑦𝑖𝑗 

𝑚

𝑖=1

≤ 𝑚𝑥𝑗 , 𝑗 = 1,2, … , 𝑛                                                                                        (3 − 7) 

∑𝑦𝑖𝑗 

𝑛

𝑗=1

= 1, 𝑖 = 1,2, … ,𝑚                                                                                             (3 − 8) 
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∑𝑥𝑗 ≤ 𝑞

𝑛

𝑗=1

                                                                                                                        (3 − 9) 

𝑥𝑗 ∈ {0,1}, 𝑗 = 1,2, … , 𝑛                                                                                             (3 − 10)           

𝑦𝑖𝑗 ∈ {0,1}, 𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2, … , 𝑛                                                                 (3 − 11)                  

 

The objective function (3-6) maximizes the expected number of patients who survive. 

Constraints (3-7) and (3-8) ensure that a demand node is assigned to only one open 

EMS facility. (3-9) limits the number of facilities to q. (3-10) and (3-11) are binary 

constraints. 

 

3.2.3 The Maximal Quality Location Problem (MQLP) 

In the MQLP, we incorporate another new parameter—service quality. Based on the 

function (3-1-6), we use the deterministic response time as the distance measure and 

obtain the service quality for deterministic response times of each demand—supply 

pair. More specifically, the service quality is calculated as follows: 

𝑠𝑖𝑗 =

{
 
 

 
 

1, 𝑡𝑖𝑗 < 𝑇1̅

1

2
+
1

2
cos(

𝜋

𝑇2̅ − 𝑇1̅
(𝑡𝑖𝑗 −

𝑇2̅ + 𝑇1̅
2

) +
𝜋

2
)

0, 𝑡𝑖𝑗 > 𝑇2̅

, 𝑡𝑖𝑗 ∈ [𝑇1̅, 𝑇2̅ ] 

Where 𝑇1̅ and 𝑇2̅ are the break points for the best and worst acceptable response time. 

Additional notation for this formulation is as follows: 

Parameters: 

𝑠𝑖𝑗 : service quality that a patient at demand node i served by an EMS vehicle from 

station j 

Objective function: 
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max∑𝑑𝑖 

𝑚

𝑖=1

∑𝑠𝑖𝑗 ∗ 𝑦𝑖𝑗 

𝑛

𝑗=1

                                                                                              (3 − 12) 

    Subject to: 

(3-7) – (3-11) 

The objective function (3-12) maximizes the total service quality. Constraints (3-7) 

and (3-8) ensure that a demand node is assigned to only one open EMS facility. (3-9) 

limits the number of facilities to q. (3-10) and (3-11) are binary constraints. 

 

3.3 Models with Stochastic Measures 

In this section, we will present nine models with stochastic measures: MCLP+PR, 

MSLP+PR, MQLP+PR, MCLP+PR+S, MCLP+PR+Q, MSLP+PR+C, MSLP+PR+Q, 

MQLP+PR+C and MQLP+PR+S. 

 

3.3.1 The Maximal Coverage Location Problem with Probabilistic Response 

Time (MCLP+PR) 

In real life, the response time will not be deterministic and remains uncertain. So based 

on the MCLP, we place the probabilistic response time to calculate the probability of 

arrival within the coverage time threshold so we will get a new model MCLP+PR.  

Additional notation for this formulation is as follows: 

Parameters: 

𝑅̃𝑖𝑗 : expected value of probability that an ambulance at station j can reach demand 

node i within the coverage time standard 

Objective function: 

max∑𝑑𝑖 

𝑚

𝑖=1

∑𝑅̃𝑖𝑗 ∗ 𝑦𝑖𝑗  

𝑛

𝑗=1

                                                                                            (3 − 13) 



36 

 

Subject to: 

(3-7) – (3-11) 

The Objective function (3-12) maximizes the total expected demand covered from 

each demand point, taking into account the coverage probabilities. Constraints (3-7) 

and (3-8) ensure that a demand node is assigned to only one open EMS facility. 

Constraint (3-9) limits the number of facilities to q. (3-10) and (3-11) are binary 

constraints.  

 

3.3.2 The Maximal Survival Location Problem with Probabilistic Response Time 

(MSLP+PR) 

Same as the MCLP and MCLP+PR, we place probabilistic response time, also based 

on function (3-1-2) to the MSLP to be closer to the real situation, so we have the 

MSLP+PR.  

Additional notation for this formulation is as follows: 

Parameters: 

𝑃̃𝑖𝑗 : expected value of probability that a patient at demand node i survives and is 

served by an EMS vehicle form station j 

Objective function: 

max∑𝑑𝑖 

𝑚

𝑖=1

∑𝑃̃𝑖𝑗 ∗ 𝑦𝑖𝑗  

𝑛

𝑗=1

                                                                                            (3 − 14) 

    Subject to: 

(3-7)— (3-11) 

The objective function (3-14) maximizes the expected number of patients who survive. 

Constraints (3-7) and (3-8) ensure that a demand node is assigned to only one open 

EMS facility. (3-9) limits the number of facilities to q. (3-10) and (3-11) are binary 

constraints. 
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3.3.3 The Maximal Quality Location Problem with Probabilistic Response Time 

(MQLP+PR) 

Same as the MCLP and MCLP+PR, MSLP and MSLP+PR, we place probabilistic 

response time, also based on the adjusted function of (3-1-6) to the MQLP to be closer 

to the real situation, so we have the MQLP+PR. 

Additional notation for this formulation is as follows: 

Parameters: 

𝑆̃𝑖𝑗 : excepted value of service quality that a patient at demand node i served by an 

EMS vehicle from station j based on probabilistic response time 

Objective function: 

max∑𝑑𝑖 

𝑚

𝑖=1

∑𝑆̃𝑖𝑗 ∗ 𝑦𝑖𝑗 

𝑛

𝑗=1

                                                                                             (3 − 15) 

Subject to: 

(3-7) – (3-11) 

The objective function (3-15) maximizes the service quality at all demand points. 

Constraints (3-7) and (3-8) ensure that a demand node is assigned to only one open 

EMS facility. (3-9) limits the number of facilities to q. (3-10) and (3-11) are binary 

constraints. 

 

3.3.4 The Maximal Coverage Location Problem with Probabilistic Response 

Time and Survival (MCLP+PR+S) 

Based on the MCLP+PR, we incorporate a standard of survival probability into the 

model, so we will get MCLP+PR+S. When maximizing the demand coverage, we also 

make sure to maintain the survival probability at a certain level by allowing only the 

acceptable level of survival probability to be considered in the objective function. We 
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denote by 𝑏𝑖𝑗 the survival probability from demand node i to ambulance station j and 

by 𝑏𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 the minimum acceptable survival probability. 

Additional notation for this formulation is as follows: 

Parameters: 

𝑏̂𝑖𝑗= {
𝑏𝑖𝑗 , if 𝑏𝑖𝑗 ≥ 𝑏𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

0, otherwise
 

Objective function: 

max∑𝑑𝑖 

𝑚

𝑖=1

∑(𝑅̃𝑖𝑗 

𝑛

𝑗=1

∗ 𝑏̂𝑖𝑗) 𝑦𝑖𝑗                                                                                     (3 − 16) 

Subject to: 

(3-7)— (3-11) 

The Objective function (3-16) maximizes the total expected demand covered, taking 

into account the survival probabilities. Constraints (3-7) and (3-8) ensure that a 

demand node is assigned to only one open EMS facility. Constraint (3-9) limits the 

number of facilities to q. (3-10) and (3-11) are binary constraints.  

 

3.3.5 The Maximal Coverage Location Problem with Probabilistic Response 

Time and Quality (MCLP+PR+Q) 

Based on the MCLP+PR, we incorporate a standard of service quality into the model, 

so we will get MCLP+PR+Q. When maximizing the demand coverage, we also make 

sure to maintain the service quality at a certain level by allowing only the acceptable 

level of service quality to be considered in the objective function. We denote by 𝑐𝑖𝑗 

the service quality from demand node i to ambulance station j and by 𝑐𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 the 

minimum acceptable service quality. 

General notations for the formulations are as follows: 

Parameters: 
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𝑐̂𝑖𝑗= {
𝑐𝑖𝑗, if 𝑐𝑖𝑗 ≥ 𝑐𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

0, otherwise
 

Objective function: 

max∑𝑑𝑖 

𝑚

𝑖=1

∑(𝑅̃𝑖𝑗 ∗ 𝑐̂𝑖𝑗) 𝑦𝑖𝑗 

𝑛

𝑗=1

                                                                                    (3 − 17) 

Subject to: 

(3-7)— (3-11) 

The Objective function (3-17) maximizes the total expected demand covered, taking 

into account the service quality. Constraints (3-7) and (3-8) ensure that a demand node 

is assigned to only one open EMS facility. Constraint (3-9) limits the number of 

facilities to q. (3-10) and (3-11) are binary constraints.  

 

3.3.6 The Maximal Survival Location Problem with Probabilistic Response Time 

and Coverage (MSLP+PR+C) 

Based on the MSLP+PR, we incorporate a standard of demand coverage into the 

model, so we will get MSLP+PR+C. When maximizing the survival rate, we also 

make sure to limit the response time at a certain level by allowing only the acceptable 

response time to be considered in the objective function. 

Additional notation for this formulation is as follows: 

Parameters: 

𝑎𝑖𝑗 = {
1, if demand node 𝑖 is covered be candidate location 𝑗, i. e. 𝑡𝑗𝑖 + 𝑡𝑑 ≤ 𝑡𝑐  

0, otherwise
 

Objective function: 

max∑𝑑𝑖 

𝑚

𝑖=1

∑(𝑃̃𝑖𝑗 ∗ 𝑎𝑖𝑗 ) 𝑦𝑖𝑗

𝑛

𝑗=1

                                                                                    (3 − 18) 

Subject to: 
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(3-7)— (3-11) 

The Objective function (3-18) maximizes the total survivors, taking into account the 

demand coverage. Constraints (3-7) and (3-8) ensure that a demand node is assigned 

to only one open EMS facility. Constraint (3-9) limits the number of facilities to q. (3-

10) and (3-11) are binary constraints.  

 

3.3.7 The Maximal Survival Location Problem with Probabilistic Response Time 

and Quality (MSLP+PR+Q) 

Based on the MSLP+PR, we incorporate a standard of service quality into the model, 

so we will get MSLP+PR+Q. When maximizing the survival rate, we also make sure 

to maintain the service quality at a certain level by allowing only the acceptable level 

of service quality to be considered in the objective function. 

Objective function: 

max∑𝑑𝑖 

𝑚

𝑖=1

∑(𝑃̃𝑖𝑗 ∗ 𝑐̂𝑖𝑗 )

𝑛

𝑗=1

𝑦𝑖𝑗                                                                                       (3 − 19) 

Subject to: 

(3-7)— (3-11) 

The objective function (3-19) maximizes the total survivors, taking into account the 

service quality. Constraints (3-7) and (3-8) ensure that a demand node is assigned to 

only one open EMS facility. Constraint (3-9) limits the number of facilities to q. (3-

10) and (3-11) are binary constraints. 

 

3.3.8 The Maximal Quality Location Problem with Probabilistic Response Time 

and Coverage (MQLP+PR+C) 

Based on the MQLP+PR, we incorporate a standard of demand coverage into the 

model, so we will get MQLP+PR+C. When maximizing the service quality, we also 
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make sure to maintain the demand coverage at a certain level by allowing only the 

acceptable response time to be considered in the objective function. 

Objective function: 

max∑𝑑𝑖 

𝑚

𝑖=1

∑(𝑆̃𝑖𝑗 ∗ 𝑎𝑖𝑗 ) 𝑦𝑖𝑗

𝑛

𝑗=1

                                                                                    (3 − 20) 

Subject to: 

(3-7)— (3-11) 

The objective function (3-20) maximizes the total service quality, taking into account 

the demand coverage. Constraints (3-7) and (3-8) ensure that a demand node is 

assigned to only one open EMS facility. Constraint (3-9) limits the number of facilities 

to q. (3-10) and (3-11) are binary constraints. 

 

3.3.9 The Maximal Quality Location Problem with Probabilistic Response Time 

and Survival (MQLP+PR+S) 

Based on the MQLP+PR, we incorporate a standard of survival rate into the model, so 

we will get MQLP+PR+S. When maximizing the service quality, we also make sure 

to maintain the survival rate at a certain level by allowing only the acceptable level of 

survival probability to be considered in the objective function. 

Objective function: 

max∑𝑑𝑖 

𝑚

𝑖=1

∑(𝑆̃𝑖𝑗 ∗ 𝑏̂𝑖𝑗 ) 𝑦𝑖𝑗

𝑛

𝑗=1

                                                                                    (3 − 21) 

Subject to: 

(3-7)— (3-11) 

The objective function (3-21) maximizes the total service quality, taking into account 

the survival rate. Constraints (3-7) and (3-8) ensure that a demand node is assigned to 
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only one open EMS facility. Constraint (3-9) limits the number of facilities to q. (3-

10) and (3-11) are binary constraints. 

 

Based on all the optimization models we have, in the next chapter, we will compare 

and analyze the results with four indicators using both the descriptive statistic analysis 

and the data envelopment analysis. 
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Chapter 4-Computational Comparison and Analysis 

In this section, we will analyze and compare the twelve optimization models with four 

indicators: expected response time, expected service quality, expected survival 

probability and expected demand coverage criteria, to measure the optimization 

models separately. All models will be presented in descriptive statistics analysis and 

data envelopment analysis (DEA). 

 

4.1 Methodology 

In this chapter, we will test all the models based on a public data from Calgary, Alberta, 

EMS system, 2004. The data are available at 

https://sites.ualberta.ca/~aingolfs/Data.htm.  

Alberta Health Services (AHS) is the first and largest province-wide health system in 

Canada, which is responsible to provide fully-integrated health services to the over 

four million people living in Alberta. Being one of the biggest region in Alberta, the 

Emergency Medical Services of Calgary Zone respond to over 160,000 events 

annually. Figure 5 below presents the EMS station of Calgary zone in the year 2014. 

https://sites.ualberta.ca/~aingolfs/Data.htm
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Figure 5- EMS station map of Calgary Zone 

(Source: Alberta Health Services, 2014) 

The total number of calls of the year 2004 was 45,294 and the number of urgent calls 

was 13,203, which we considered in our research. There were also 16 ambulance 

stations and 180 demand points. From the data set, we can find the fraction of calls at 

each demand point, average response times in seconds, standard deviation of response 

times in seconds, deterministic coverage for an 8-minute threshold (0 or 1), survival 

probability for deterministic response times, survival probability for probabilistic 

response times, etc.  

We will focus on situations where the number of ambulance stations equal to 4, 8, 12 

and 16. It is chosen so that the step-size is equal. The results will be further analyzed 

in the context of DEA. We assume that each ambulance station has perfect capacities, 

which means that there is no upper limit for the number of ambulances as long as we 

need one. For the new measure service quality, we get the value based on the mean 

and standard deviation of the response time from the dataset with a probabilistic 

distribution, and calculate it based on the function (3-1-6) and then run the simulation 

for 500 scenarios to get the expected service quality based on the probabilistic 
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distribution. The models are solved on a Dell Inspiration with 2.58 GHz CPU clock 

and 2GB of RAM, and the average run time is around 300 seconds, with the maximal 

run time of 321 seconds. Codes are written in Python 3.4.2 using Jupyter Notebook 

and solved by Gurobi 7.0.2. Table 8 compares the sizes and characteristics of the 

twelve optimization models. 

Problem Binary variables Constraints 

MCLP 196 181 

MSLP 2896 197 

MQLP 2896 197 

MCLP+PR 2896 197 

MSLP+PR 2896 197 

MQLP+PR 2896 197 

MCLP+PR+S 2896 197 

MCLP+PR+Q 2896 197 

MSLP+PR+C 2896 197 

MSLP+PR+Q 2896 197 

MQLP+PR+C 2896 197 

MQLP+PR+S 2896 197 

Table 8- Sizes of 12 optimization models solved 

 

4.2 Descriptive Statistics Analysis 

In this part, we will focus on the descriptive statistics analysis of the four indicators: 

expected response time, expected service quality, expected survival probability and 

expected demand coverage criteria. From the public data set, we know that the number 

of urgent calls in Calgary, Alberta, in the year of 2004 was 13,203, so it would be 

approximately 36 urgent calls per day. With the fraction of calls at each demand point, 

we can get the expected urgent call per day for each demand point.  

Basically, we calculate the values of indicators based on the result of assignment we 

have from the optimization models. With the assignment, we can get the response time, 

service quality, survival probability and demand coverage criteria at each demand 
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point. With the sum product of these indicators and the fraction call of each demand 

separately, we can get the expected response time, expected service quality, expected 

survival probability and expected demand coverage criteria (we set a binary criteria of 

480 seconds) per day.  For models with deterministic and stochastic measures, we run 

the simulation for 500 scenarios based on the average and the standard deviation of 

responses times in seconds from the public data set, to get the performance of the four 

indicators. Table 9 to 12 present the descriptive statistics, which are the average value 

of these indicators and the coefficient of variable, within the 12 models under 4, 8, 12 

and 16 ambulance stations and the best three performances for each indicator are 

marked in bold. Although when q=16, all ambulance stations will be open, the 

assignment of each model is different, so we still analyze the performance of it. 

Also here is a note that the survival probability is calculated by the number provided 

in the data set, since the parameters used in the function are not available, we are not 

able to simulate it, while the results of the rest three indicators are based on the 

simulation. 

 

 

 

q=4 Exp. 

Response 

time 

Exp. Service 

Quality 

Exp. 

Survival 

Probability 

Exp. 

Demand 

Coverage 

Criteria 

Mean MCLP 296.9279  0.9800  0.0578  0.6995  

MSLP 311.7705  0.9508  0.0630  0.6039  

MQLP 310.7406  0.9684  0.0615  0.6163  

MCLPPR 313.1400  0.9703  0.0672  0.6363  

MSLPPR 311.8986  0.9501  0.0673  0.6021  

MQLPPR 311.2900  0.9703  0.0672  0.6360  

MCLPPRS 321.8863  0.8805  0.0640  0.5787  

MCLPPRQ 313.2410  0.9692  0.0672  0.6319  

MSLPPRC 362.9193  0.8279  0.0601  0.5592  

MSLPPRQ 310.1179  0.9689  0.0672  0.6355  

MQLPPRC 338.9319  0.8586  0.0604  0.5628  

MQLPPRS 333.5891  0.8790  0.0626  0.6015  
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CV MCLP 12.17% 0.40% N/A 7.52% 

MSLP 12.41% 0.78% N/A 7.88% 

MQLP 11.97% 0.59% N/A 7.40% 

MCLPPR 12.13% 0.54% N/A 8.02% 

MSLPPR 12.66% 0.78% N/A 8.44% 

MQLPPR 12.54% 0.57% N/A 8.41% 

MCLPPRS 11.27% 1.19% N/A 8.29% 

MCLPPRQ 12.19% 0.54% N/A 8.45% 

MSLPPRC 10.53% 1.72% N/A 9.23% 

MSLPPRQ 12.52% 0.54% N/A 8.42% 

MQLPPRC 11.25% 1.42% N/A 8.90% 

MQLPPRS 11.94% 1.22% N/A 8.30% 

Table 9- Descriptive statistics of the twelve models under 4 ambulance stations 

 

q=8 Exp. 

Response 

time 

Exp. Service 

Quality 

Exp. 

Survival 

Probability 

Exp. 

Demand 

Coverage 

Criteria 

Mean MCLP 252.1995  0.9973  0.0679  0.8930  

MSLP 284.5390  0.9920  0.0744  0.7920  

MQLP 303.5978  0.9912  0.0728  0.7621  

MCLPPR 282.4585  0.9920  0.0788  0.7952  

MSLPPR 284.8084  0.9920  0.0788  0.7912  

MQLPPR 288.1348  0.9920  0.0788  0.7900  

MCLPPRS 288.4825  0.9645  0.0775  0.7798  

MCLPPRQ 285.0797  0.9916  0.0788  0.7921  

MSLPPRC 295.2048  0.9542  0.0768  0.7667  

MSLPPRQ 282.7854  0.9915  0.0788  0.7946  

MQLPPRC 296.3099  0.9567  0.0767  0.7690  

MQLPPRS 333.5891  0.9724  0.0626  0.6015  

CV MCLP 13.13% 0.08% N/A 3.33% 

MSLP 13.30% 0.22% N/A 5.69% 

MQLP 13.30% 0.29% N/A 7.47% 

MCLPPR 12.78% 0.23% N/A 5.56% 

MSLPPR 13.08% 0.21% N/A 6.12% 

MQLPPR 14.02% 0.23% N/A 6.27% 

MCLPPRS 13.84% 0.43% N/A 6.17% 

MCLPPRQ 13.16% 0.21% N/A 6.15% 

MSLPPRC 12.94% 0.67% N/A 6.42% 

MSLPPRQ 13.60% 0.22% N/A 6.47% 

MQLPPRC 12.74% 0.67% N/A 5.98% 
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MQLPPRS 11.94% 0.36% N/A 8.30% 

Table 10- Descriptive statistics of the twelve models under 8 ambulance stations 

 

q=12 Exp. 

Response 

time 

Exp. Service 

Quality 

Exp. 

Survival 

Probability 

Exp. 

Demand 

Coverage 

Criteria 

Mean MCLP 253.5882  0.9994  0.0670  0.9521  

MSLP 279.4903  0.9957  0.0793  0.8478  

MQLP 293.3907  0.9947  0.0727  0.7950  

MCLPPR 277.8134  0.9963  0.0834  0.8531  

MSLPPR 274.5099  0.9955  0.0839  0.8467  

MQLPPR 274.9171  0.9961  0.0833  0.8554  

MCLPPRS 281.7596  0.9848  0.0834  0.8383  

MCLPPRQ 275.5277  0.9961  0.0834  0.8543  

MSLPPRC 278.3587  0.9860  0.0832  0.8428  

MSLPPRQ 272.9058  0.9957  0.0839  0.8527  

MQLPPRC 286.5083  0.9857  0.0800  0.8300  

MQLPPRS 278.9222  0.9893  0.0833  0.8425  

CV MCLP 13.15% 0.03% N/A 2.79% 

MSLP 13.09% 0.14% N/A 5.43% 

MQLP 13.73% 0.19% N/A 6.53% 

MCLPPR 14.77% 0.14% N/A 5.45% 

MSLPPR 13.83% 0.15% N/A 5.34% 

MQLPPR 14.21% 0.16% N/A 5.12% 

MCLPPRS 13.35% 0.17% N/A 5.61% 

MCLPPRQ 13.59% 0.15% N/A 4.83% 

MSLPPRC 13.25% 0.19% N/A 5.35% 

MSLPPRQ 14.03% 0.14% N/A 5.12% 

MQLPPRC 13.46% 0.21% N/A 6.18% 

MQLPPRS 12.96% 0.18% N/A 5.52% 

Table 11- Descriptive statistics of the twelve models under 12 ambulance stations 

 

q=16 Exp. 

Response 

time 

Exp. Service 

Quality 

Exp. 

Survival 

Probability 

Exp. 

Demand 

Coverage 

Criteria 

Mean MCLP 225.4382  0.9997  0.0703  0.9798  

MSLP 272.3165  0.9972  0.0819  0.8777  

MQLP 292.1154  0.9946  0.0729  0.7964  

MCLPPR 271.5101  0.9970  0.0865  0.8761  
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MSLPPR 272.0710  0.9971  0.0865  0.8760  

MQLPPR 274.8080  0.9971  0.0865  0.8731  

MCLPPRS 274.0697  0.9906  0.0862  0.8703  

MCLPPRQ 274.5319  0.9971  0.0865  0.8752  

MSLPPRC 272.4142  0.9903  0.0862  0.8732  

MSLPPRQ 268.2299  0.9971  0.0865  0.8759  

MQLPPRC 276.7716  0.9902  0.0861  0.8678  

MQLPPRS 272.6788  0.9907  0.0862  0.8711  

CV MCLP 13.37% 0.02% N/A 1.23% 

MSLP 13.00% 0.10% N/A 4.63% 

MQLP 12.69% 0.18% N/A 5.98% 

MCLPPR 14.09% 0.13% N/A 4.81% 

MSLPPR 13.72% 0.12% N/A 5.02% 

MQLPPR 13.74% 0.11% N/A 5.22% 

MCLPPRS 13.81% 0.15% N/A 5.06% 

MCLPPRQ 13.73% 0.11% N/A 5.04% 

MSLPPRC 14.26% 0.14% N/A 5.08% 

MSLPPRQ 14.76% 0.13% N/A 4.89% 

MQLPPRC 13.87% 0.15% N/A 5.38% 

MQLPPRS 14.70% 0.15% N/A 5.51% 

Table 12- Descriptive statistics of the twelve models under 16 ambulance stations 

From the tables above, we can see that with the increase of ambulance stations, the 

expected response time are decreasing and expected service quality, expected survival 

probability and expected demand coverage criteria are raising.  

With ambulance station value from 4, 8, 12 and 16, models MCLP and MSLP+PR+Q 

always perform better than other models in terms of the expected response time; 

models MQLP, MQLP+PR and MCLP+PR always perform better than other models 

in terms of the expected service quality; models MCLP+PR, MSLP+PR, MQLP+PR, 

MCLP+PR+Q and MSLP+PR+Q always perform better than other models in terms of 

the expected survival rate; models MCLP and MCLP+PR always perform better than 

other models in terms of the expected demand coverage criteria.  

Additionally, we also find that there is certain linear correlation between the four 

indicators. For example, a shorter response time will lead to a higher demand coverage, 

like MCLP and MCLP+PR; also a higher quality of service will lead to a higher 

probability of survival, like MCLP+PR and MQLP+PR. We calculate the correlation 
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coefficient with the models in Table 13, and we can see that there is a moderate 

downhill linear relationship between expected response time and expected service 

quality and expected survival probability as well; a nearly perfect negative linear 

relationship between expected response time and expected demand coverage; a 

moderate uphill linear relationship between expected service quality as well as 

expected demand coverage; a moderate uphill linear relationship between expected 

survival rate and expected demand coverage. 

  Exp. 

Response 

time 

Exp. Service 

Quality 

Exp. 

Survival 

Probability 

Exp. 

Demand 

Coverage 

Criteria 

Exp. Response time 1 
   

Exp. Service 

Quality 

-0.80 1 
  

Exp. Survival 

Probability 

-0.66 0.61 1 
 

Exp. Demand 

Coverage Criteria 

-0.94 0.75 0.78 1 

Table 13- Correlation coefficient for exp. response time, exp. service quality, exp. 

survival probability and exp. demand coverage 

 

With all the four indicators and the overall performances with different numbers of 

ambulance station, we find that models MCLP, MCLP+PR, MQLP+PR, 

MCLP+PR+Q and MSLP+PR+Q perform better.  

But we should also notice that the models with deterministic measures-- MCLP, MSLP 

and MQLP have weaknesses because of ignoring the discrimination between time or 

distance that are within or outside the coverage standard, and in reality, the actual 

travel times between a demand point and an ambulance station are highly variable, so 

the models with stochastic measures are much closer to real life. 

In this regard, the optimisation models MCLP+PR, MQLP+PR and MSLP+PR+Q will 

be considered as the best solutions. To see the difference more intuitively, Figure 6 to 

9 will show the performance of these three models with models which are slightly 

underperformed—MQLP+PR+C and MQLP+PR+S. 
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Figure 6- Differences between models on the performance of expected response time 

 

Figure 7- Differences between models on the performance of expected service quality 
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Figure 8- Differences between models on the performance of expected survival rate 

 

 

Figure 9- Differences between models on the performance of expected demand 

coverage 
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performance of each model under different numbers of ambulance station, DEA is a 

good method to evaluate the efficiency of multi-input and multi-output decision 

making. Since in the DEA, the efficiency is measured as the weighted sum of the 

outputs divided by the weighted sum of the inputs, the technique is generally used 

based on the assumption that the return to scale is constant. In the context of our 

analysis, we do not attempt to make a direct comparison among the different solutions 

as in the conventional DEA application but instead provide an evidence (as shown in 

the results) that the return to scale of this ambulance location application is in fact 

decreasing. The implication of the results suggests that the investment in this area 

yields a decreasing return to scale and thus the decision maker can convey a reasonable 

expectation for the investment for the service quality improvement. 

In the DEA, first, we set all 12 models under 4 different numbers of ambulance stations 

(q=4, 8, 12 and 16) as decision making units (DMU), so there will be 48 DMUs. Then 

we adjust the expected response time into expected improvement of response time, 

because in DEA, it is assumed that the output should be increasing with input. In this 

case, the expected response time is decreasing with the increase of ambulance station, 

so we set the result of model MSLP under one ambulance station as a standard, and 

generate the expected improvement of response time, which will be raising with the 

increase of ambulance station.  

Then, we set the number of station as input, expected improvement of response time, 

expected service quality, expected survival rate and expected demand coverage as 

output. To describe the DEA model, we let: 

Parameter: 

𝑢𝑘: the input quantity (number of stations)for DMU(𝐾)                              

𝑣1𝑘: first output quantity (exp. improvememt of response time) for DMU(𝐾)  

𝑣2𝑘: second output quantity (exp. service quality) for DMU(𝐾) 

𝑣3𝑘: third output quantity (exp. survival probability) for DMU(𝐾) 

𝑣4𝑘: fourth output quantity (exp. demand coverage) for DMU(𝐾)  
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Variables: 

𝑖1: weight for the input (number of stations) 

𝑜1: weight for the first output (exp. improvememt of response time) 

𝑜2: weight for the second output (exp. service quality) 

𝑜3: weight for the third output (exp. survival probability) 

𝑜4: weight for the fourth output (exp. demand coverage) 

Objective function:  

max (∑𝑣1𝑘 ∗ 𝑜1

𝑚

1

+∑𝑣2𝑘 ∗  𝑜2

𝑚

1

 +∑𝑣3𝑘 ∗  𝑜3

𝑚

1

+∑𝑣4𝑘 ∗  𝑜4

𝑚

1

)                   (4 − 1)  

Subject to: 

∑𝑢𝑘 ∗ 𝑖𝑖

𝑚

1

= 1, 𝑖 = 1,2, … ,𝑚                                                                                       (4 − 2) 

∑𝑣1𝑘 ∗ 𝑜1

𝑚

1

+∑𝑣2𝑘 ∗  𝑜2

𝑚

1

+∑𝑣3𝑘 ∗  𝑜3

𝑚

1

+∑𝑣4𝑘 ∗  𝑜4

𝑚

1

−∑𝑢𝑘 ∗ 𝑖𝑖

𝑚

1

≤ 0, 𝑖

= 1,2, … ,𝑚                                                                                           (4 − 3) 

𝑖1, 𝑜1, 𝑜2, 𝑜3, 𝑜4 ≥ 0                                                                                                         (4 − 4) 

The objective function (4-1) is to maximize the efficiency of the output (expected 

improvement of response time, expected service quality, expected survival rate and 

expected demand coverage). Constraint (4-2) means that the weighted input value is 

constrained to 1. We assume that the efficiency of a decision-making unit (DMU) will 

not exceed 1. Constraint (4-3) means that the value of output will never be greater than 

the value of input (number of stations) for each DMU. Constraint (4-4) means that all 

weights should be non-negative.  

In this regard, we generate the 48 DMUs based on different models with different 

number of stations, and the result is shown in Table 14: 
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Results DMUs Solution Weighted 

Input (in %) 

Weighted Output (in %) Efficiency 

(in %) 

Number of 

station 

Exp. 

Improvement 

of Response 

time 

Exp. Service 

Quality 

Exp. Survival 

Probability 

Exp. Demand 

Coverage 

q=4 1 MCLP 100.00% 0.00% 73.40% 0.00% 26.60% 100.00% 

2 MSLP 100.00% 0.00% 84.45% 14.36% 0.00% 98.81% 

3 MQLP 100.00% 100.00% 0.00% 0.00% 0.00% 100.00% 

4 MCLPPR 100.00% 0.00% 84.69% 15.31% 0.00% 100.00% 

5 MSLPPR 100.00% 0.00% 8.58% 91.42% 0.00% 100.00% 

6 MQLPPR 100.00% 0.47% 82.26% 17.28% 0.00% 100.00% 

7 MCLPPRS 100.00% 0.00% 0.00% 43.39% 53.18% 96.57% 

8 MCLPPRQ 100.00% 0.00% 0.00% 45.54% 54.44% 99.98% 

9 MSLPPRC 100.00% 0.00% 0.00% 40.72% 48.67% 89.39% 

10 MSLPPRQ 100.00% 0.00% 0.00% 45.54% 54.44% 99.98% 

11 MQLPPRC 100.00% 0.00% 0.00% 40.93% 49.29% 90.21% 

12 MQLPPRS 100.00% 0.00% 0.00% 42.45% 51.49% 93.94% 

q=8 13 MCLP 100.00% 0.00% 0.00% 0.00% 71.22% 71.22% 

14 MSLP 100.00% 0.00% 0.00% 25.22% 36.43% 61.64% 

15 MQLP 100.00% 0.00% 0.00% 0.00% 68.93% 68.93% 

16 MCLPPR 100.00% 0.00% 0.00% 26.73% 36.43% 63.16% 

17 MSLPPR 100.00% 0.00% 0.00% 26.73% 36.43% 63.16% 

18 MQLPPR 100.00% 0.00% 0.00% 26.73% 36.43% 63.16% 

19 MCLPPRS 100.00% 0.00% 0.00% 26.27% 35.99% 62.26% 

20 MCLPPRQ 100.00% 0.00% 0.00% 26.73% 36.43% 63.15% 

21 MSLPPRC 100.00% 0.00% 0.00% 26.03% 35.77% 61.79% 

22 MSLPPRQ 100.00% 0.00% 0.00% 26.73% 36.43% 63.15% 
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23 MQLPPRC 100.00% 0.00% 0.00% 26.00% 35.61% 61.61% 

24 MQLPPRS 100.00% 0.00% 0.00% 26.38% 36.09% 62.47% 

q=12 25 MCLP 100.00% 0.00% 0.00% 0.00% 53.75% 53.75% 

26 MSLP 100.00% 4.75% 0.00% 17.54% 22.06% 44.35% 

27 MQLP 100.00% 0.00% 0.00% 0.00% 41.70% 41.70% 

28 MCLPPR 100.00% 0.26% 0.00% 18.83% 26.37% 45.46% 

29 MSLPPR 100.00% 0.00% 0.00% 18.96% 26.41% 45.37% 

30 MQLPPR 100.00% 0.00% 0.00% 18.84% 27.10% 45.94% 

31 MCLPPRS 100.00% 0.00% 0.00% 18.85% 26.15% 45.00% 

32 MCLPPRQ 100.00% 0.26% 0.00% 18.83% 26.37% 45.46% 

33 MSLPPRC 100.00% 0.00% 0.00% 18.80% 26.49% 45.29% 

34 MSLPPRQ 100.00% 0.00% 0.00% 18.96% 26.41% 45.37% 

35 MQLPPRC 100.00% 0.00% 0.00% 18.07% 26.00% 44.08% 

36 MQLPPRS 100.00% 0.00% 0.00% 18.84% 26.49% 45.33% 

q=16 37 MCLP 100.00% 0.00% 0.00% 0.00% 40.82% 40.82% 

38 MSLP 100.00% 0.00% 0.00% 13.88% 20.48% 34.36% 

39 MQLP 100.00% 8.85% 0.00% 0.00% 23.21% 32.06% 

40 MCLPPR 100.00% 0.00% 0.00% 14.67% 20.48% 35.15% 

41 MSLPPR 100.00% 0.00% 0.00% 14.67% 20.48% 35.15% 

42 MQLPPR 100.00% 0.00% 0.00% 14.66% 20.85% 35.51% 

43 MCLPPRS 100.00% 0.00% 0.00% 14.62% 20.35% 34.97% 

44 MCLPPRQ 100.00% 0.00% 0.00% 14.67% 20.48% 35.15% 

45 MSLPPRC 100.00% 0.00% 0.00% 14.61% 20.34% 34.95% 

46 MSLPPRQ 100.00% 0.00% 0.00% 14.67% 20.48% 35.15% 

47 MQLPPRC 100.00% 0.00% 0.00% 14.60% 20.71% 35.31% 

48 MQLPPRS 100.00% 0.00% 0.00% 14.62% 20.35% 34.97% 

Table 14- Results (weighted input and output, efficiency) of DEA 
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From the table above, we can see that the smaller the input is, the higher the DEA 

efficiency (which is measured as the ratio of the weighted output over the weighted 

input) will be. When q=4, the DEA efficiency of all twelve models are more than 90%, 

and when the number of stations increase to 16, the DEA efficiency gradually drops 

to around 35%. This results demonstrate that adding ambulance locations yields a 

decreasing return to scale in terms of improvement in the four performance indicators. 

The results also show that the Pareto frontier of the DEA is generally characterized by 

the expected survival probability and expected demand coverage. 

While under the same number of ambulance station, although most of them are not 

fully efficient, models MCLP, MCLP+PR, MQLP+PR, MCLP+PR+Q and 

MSLP+PR+Q always have a better performance than others. But we should also notice 

that the models with deterministic measures--MCLP, MSLP and MQLP have 

weaknesses because of ignoring the discrimination between time or distance that are 

within or outside the coverage standard, and in reality, the actual travel times between 

a demand point and an ambulance station are highly variable, so the models with 

stochastic measures are much closer to real life. 

In this regard, we can consider that the optimisation models MCLP+PR, MQLP+PR, 

MCLP+PR+Q and MSLP+PR+Q will be the best solutions. 

Although from Table 9 to 12, the expected service quality, expected survival rate and 

expected demand coverage are raising and the expected response time is decreasing 

according to the increase of ambulance stations, the DEA efficiency is gradually 

reducing. The reason is that with the increase of input (number of stations), the outputs 

(expected improvement of response time, expected service quality, expected survival 

rate and expected demand coverage) are not increasing with the same portion. We can 

see that with the number of ambulance station changes from 4, 8, 12 and 16, input has 

been doubled, tripled and quadrupled, while the outputs (expected improvement of 

response time, expected service quality, expected survival rate and expected demand 

coverage) are increased much slower than the input. In DEA, we assume that the inputs 

and outputs are weighted linear functions so if the outputs do not increase linearly, the 

efficiency diminishes. We take the model MQLP+PR as an example, which performs 
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better under all the different numbers of station, shown in Figure 10 to 13, we can see 

that the more the ambulance stations open, the larger difference between input and 

output. 

 

Figure 10- Increase of ambulance stations Vs. Increase of expected improvement of 

response time 

 

 

Figure 11- Increase of ambulance stations Vs. Increase of expected survival probability 
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Figure 12- Increase of ambulance stations Vs. Increase of expected service quality 

 

 

Figure 13- Increase of ambulance stations Vs. Increase of expected demand coverage 
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more staff need to be hired and trained, which takes longer time and also their 

performance may be uneven; also more staff and ambulances will lead to a more 

complex dispatching system, which can have an impact on the operations if conducted 

inefficiently; with the increase of ambulance stations, the fixed cost and operation cost 

will be higher. If the decision makers intend to control the cost unduly, the 

performance of operations will also be influenced. There is no universal standard to 

measure the service quality, survival probability and demand coverage criteria, so if 

other functions are applied in the same situation, the results may be different. 

While in this context, we employ the DEA as a method to analyze the overall 

performance of each models, the main objective is still to be able to save as many 

people as possible with certain standards, instead of having efficiency equals to 100%. 

 

4.4 Further Application 

In our design, the models and the measurement indicators in this paper are not only 

suitable for ambulance location problem, they can be extended to the supply chain 

network design, where service quality measures come into play. 

More specifically, 

• for models like MCLP, MCLP+PR with objective function of maximizing 

demand coverage, they can be viewed as the most widely used models in 

network design. How to cover more regions and/or customers is always the 

concern when it comes to sales;  

• for models like MSLP, MSLP+PR with objective function of maximizing 

survivors, they can be of great significance for the transportation of the 

relatively time-efficient items such as fresh agricultural products; 

• for models like MQLP, MQLP+PR with objective function of maximizing 

service quality, they will be applied by the companies which take customer 

satisfaction as priority thus improving the lead time management will help 

companies to win the time-based competition;  
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• for models like MCLP+PR+S, MCLP+PR+Q, MSLP+PR+C, MSLP+PR+Q, 

MQLP+PR+C and MQLP+PR+S, in which we incorporate certain standard in 

the objective function, can meet a deeper need of companies. A single objective 

may not be sufficient for the network design, when necessary, these models 

can satisfy a higher and more complex requirement of the company. 

Also, all models except MCLP will give us the assignment of each supply-demand 

pair, with the indicators we have, we can then monitor the performance at each point 

to see whether it operates efficiently. 
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Chapter 5-Conclusion 

Ambulance facility problem is closely related to everybody’s life. The rationality of 

its location and the fairness of distribution are directly related to the efficiency and 

quality of public service supply. It plays a fundamental role in promoting social 

construction and improving people's quality of life. 

In this study, we discussed ambulance location models based on both deterministic 

and stochastic indicators to maximize the demand coverage, expected survivors and 

service quality in the ambulance station location problem. Also, we incorporated four 

indicators—expected response time, expected service quality, expected survival 

probability and expected demand coverage to measure the performance of our 

optimization models. These indicators aim to help decision makers to see more deeply 

and minutely into the ambulance facility location problem, and also help them to 

monitor the performance at each demand point and ambulance station. When 

maximizing the demand coverage, expected survivors and service quality, decision 

makers can evaluate the service at each demand point to see if the expected response 

time, expected service quality, expected survival probability and expected demand 

coverage maintain at a satisfying level, and if the operation of the ambulance stations 

is efficient. 

From the paper, we also found that the DEA efficiency of models is reducing with the 

increase of ambulance stations, which can also be a warning to us that we may not 

fully deploy the resource we have. The increase of ambulance stations can lead to a 

longer process to recruit and train EMS staff; a more complex dispatching and 

scheduling system; a larger fixed and operation cost to operate an ambulance station; 

a more sophisticated management structure, etc. All these factors can have an impact 

on the efficiency of the ambulance station. So the decision makers have to find a way 

to not only focus on external, quantifiable indicators to improve the service level and 

quality of the ambulance station, but also start from the internal management to 

improve the operational efficiency of the ambulance station. But still, the main 
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objective of these models is to be able to save as many people as possible with certain 

standard, instead of an excessive pursuit in efficiency. 

The contributions of the paper are: 1) the extended models with deterministic and 

stochastic measures. We incorporate new indicators in the objective functions of the 

known models to restrain the certain coverage, survival rate and service quality 

standard. Some of the models generate a better performance based on the measurement 

we have, and would be helpful when decision makers do have the need to segment and 

differentiate demand points. 2) the indicators—expected response time, expected 

service quality, expected survival probability and expected demand coverage to 

measure the performance of optimization models. As we can see from Chapter 2 and 

4, some of the existing research have studied these indicators separately. But in this 

paper, we discussed and analyzed the four indicators at the same time. 3) applying 

Data Envelopment Analysis into ambulance station location problem. None of the 

studies on facility location problem applied DEA to analyze the performance and 

measure the efficiency of the station. 4) the extension to supply chain network. In our 

design, the ambulance facility location is just one epitome of the supply chain network. 

The response time here can derive to a more general delivery time. With the models, 

we can have the assignments of each demand and supply pair, and with the indicators, 

we can evaluate the performance at each location. So the same pattern can not only 

apply to public facility location, but also to a more commercial case like restaurant 

delivery, or location of warehouses and production plants. 

There are also limitations in the paper. First, all of our models are linear and with 

single objective function. As in our models, the objective is either to maximize demand 

coverage, to maximize expected survivors or maximize total service quality, if we 

could set multi-objective models, we would get a more precise sight on the balance of 

these factors. Second, when comparing and analyzing the results we have in Chapter 

4, we assumed that each ambulance station has sufficient capacities, which means that 

there is no upper limit for the number of ambulances as long as we need one. But this 

situation could be unrealistic when the resources or the number of ambulances are very 

limited. Third, the indicators we chose—expected response time, expected service 
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quality, expected survival probability and expected demand coverage may not be a 

comprehensive measurement to evaluate the performance of the facility. There could 

be other indicators and combinations to measure the results of the optimization. In 

addition, we deployed DEA in Chapter 4 as a method to measure the efficiency of each 

situation. But DEA itself does have some weaknesses. It’s hard to get specific 

recommendations and suggestions from DEA. Thus, we could only use it in a limited 

setting to demonstrate that the investment in ambulance locations yield decreasing 

return to scale. Also, any DEA is based on input and output, but many input and output 

data are not quantifiable. For those input and output which can not be quantified, DEA 

simply assumes that all decision-making units are not different. So that may cause an 

uncompleted comparison and analysis for our models 
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Appendix  

A1. Python code example for model MSLP+PR+Q 

import pandas as pd 

demand_pd = pd.read_csv("demand1.csv") 

survival_prob_pd = pd.read_csv("spforpr.csv", index_col="Demand") 

demand = demand_pd['Demand'].values 

survival_prob=survival_prob_pd.values 

service_quality_pd = pd.read_csv("SQ_STOC.csv", index_col="Demand") 

service_quality = service_quality_pd.values 

 

N_DEMAND = len(survival_prob_pd.index) 

N_SUPPLY = len(survival_prob_pd.columns) 

 

q_min = 1 

q_max = 16 

 

b = [] 

for i in range(N_DEMAND): 

    b.append([service_quality_pd.values[i][j] if service_quality_pd.values[i][j] >= 0.6 else 0.0 for j in 

range(N_SUPPLY)]) 

print(demand_pd['Demand'].values) 

print(survival_prob_pd) 

 

#Model 

from gurobipy import * 

m=Model() 

 

# variables 

x = [(None,None,GRB.BINARY)]*N_SUPPLY 

y = [[(None,None,GRB.BINARY)]*N_DEMAND]*N_SUPPLY 

print(y) 

 

# define variables 

m_x = [] 

for j,val in enumerate(x): 

    m_x.append(m.addVar(vtype=val[2],name="x"+str(j))) 

 

m_y = {} 
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for j in range(N_SUPPLY): 

    for i in range(N_DEMAND): 

        m_y[i,j]=m.addVar(vtype=val[2],name="y"+str(i)+str(j)) 

 

m.update() 

 

# constraints 

for j in range(N_SUPPLY): 

    s = [m_y[i,j] for i in range(N_DEMAND)] 

    m.addConstr(quicksum(s)<=N_DEMAND*m_x[j]) 

     

for i in range(N_DEMAND): 

    s = [m_y[i,j] for j in range(N_SUPPLY)] 

    m.addConstr(quicksum(s)==1) 

    m.setObjective(quicksum(quicksum(survival_prob[i][j]*m_y[i,j]*b[i][j] for j in 

range(N_SUPPLY))*demand[i] for  i in range(N_DEMAND)),GRB.MAXIMIZE) 

 

q=q_min    

constr_max_q = m.addConstr(quicksum(m_x[j] for j in range(N_SUPPLY))<=q) 

 

for q in range(q_min, q_max+1): 

    constr_max_q.setAttr(GRB.Attr.RHS, q) 

    m.update() 

    print(constr_max_q) 

    m.optimize() 

 

    if m.status == GRB.Status.OPTIMAL: 

        print('\nobjVal: %g' % m.objVal) 

        solx = m.getAttr('x', m_x) 

        print(solx) 

     

        soly = m.getAttr('x', m_y) 

        print(soly) 

 

        idx = pd.MultiIndex.from_product([range(1,N_DEMAND+1),range(1,N_SUPPLY+1)]) 

        print(idx[:N_SUPPLY]) 

 

        servestation_series = pd.Series([soly[i,j] for i in range(N_DEMAND) for j in range(N_SUPPLY)], index = 

idx, name='y') 

        amstation_series = pd.Series([solx[j] for j in range(N_SUPPLY)], index = idx[:N_SUPPLY], name='x') 
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        sol_df = pd.concat([servestation_series,amstation_series], axis = 1) 

 

        print(sol_df) 

        sol_df.to_csv("MSLPPRQ_solution_"+str(q)+".csv") 

 

    else: 

        print('No solution') 
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A2. Python code example for stochastic service quality calculation 

import numpy as np 

import pandas as pd 

 

avgrestime_pd = pd.read_csv("avgrestime.csv",index_col="Demand") 

sdrestime_pd = pd.read_csv("sdrestime.csv",index_col="Demand") 

 

print(avgrestime_pd) 

print(sdrestime_pd) 

 

stsq=pd.DataFrame(index=avgrestime_pd.index,columns=avgrestime_pd.columns) 

print(stsq) 

 

import math 

d1=480 

d2=1500 

 

i = 1 

j = 2 

 

for i in range(len(avgrestime_pd.index)): 

    for j in range(len(avgrestime_pd.columns)): 

                 

        #stochastic 

        rand_response = np.random.normal(avgrestime_pd.iloc[i,j], sdrestime_pd.iloc[i,j],1000) 

        sq_response = [1 if val < d1 else 0 if val > d2                        else 0.5+0.5*math.cos(math.pi/(d2-d1)*(val-

(d1+d2)/2)+math.pi/2) for val in rand_response] 

 

        stsq.iloc[i,j] = np.average(sq_response)        

print(stsq) 

stsq.to_csv("SQ_STOC.csv") 
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A3. Demand at the 180 demand points 

1 161  31 31  61 51  91 23  121 49  151 78  

2 427  32 76  62 235  92 156  122 17  152 59  

3 677  33 246  63 113  93 230  123 77  153 31  

4 252  34 188  64 62  94 123  124 94  154 1  

5 1300  35 295  65 27  95 165  125 92  155 23  

6 53  36 193  66 46  96 134  126 42  156 18  

7 92  37 167  67 28  97 178  127 14  157 1  

8 105  38 426  68 26  98 101  128 4  158 18  

9 152  39 100  69 24  99 39  129 1  159 34  

10 178  40 119  70 14  100 113  130 8  160 11  

11 42  41 123  71 41  101 269  131 1  161 1  

12 88  42 73  72 151  102 85  132 1  162 3  

13 138  43 5  73 127  103 24  133 0  163 4  

14 284  44 6  74 22  104 62  134 0  164 2  

15 79  45 63  75 146  105 41  135 1  165 2  

16 38  46 38  76 32  106 126  136 15  166 5  

17 82  47 22  77 148  107 6  137 8  167 21  

18 69  48 123  78 156  108 1  138 1  168 23  

19 7  49 57  79 169  109 14  139 6  169 4  

20 10  50 10  80 21  110 6  140 32  170 0  

21 17  51 8  81 25  111 33  141 35  171 1  

22 7  52 35  82 13  112 0  142 3  172 14  

23 271  53 3  83 1  113 0  143 6  173 1  

24 64  54 5  84 4  114 1  144 0  174 6  

25 23  55 60  85 3  115 122  145 28  175 2  

26 160  56 41  86 0  116 69  146 2  176 9  

27 39  57 33  87 22  117 93  147 12  177 6  

28 66  58 21  88 86  118 67  148 9  178 1  

29 282  59 92  89 18  119 21  149 8  179 1  

30 59  60 28  90 82  120 90  150 40  180 21  
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A4. Ambulance location for all models 

MCLP q=4 q=8 q=12 q=16 

1   √ √ 

2  √ √ √ 

3   √ √ 

4  √  √ 

5    √ 

6  √ √ √ 

7 √   √ 

8 √  √ √ 

9   √ √ 

10 √ √ √ √ 

11  √  √ 

12  √ √ √ 

13  √ √ √ 

14   √ √ 

15   √ √ 

16 √ √ √ √ 

 

MSLP q=4 q=8 q=12 q=16 

1      √  √ 

2   √  √  √ 

3         √ 

4   √  √  √ 

5         √ 

6   √  √  √ 

7         √ 

8      √  √ 

9      √  √ 

10 √  √  √  √ 

11 √  √  √  √ 

12   √  √  √ 

13 √  √  √  √ 

14         √ 

15      √  √ 

16 √  √  √  √ 
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MQLP q=4 q=8 q=12 q=16 

1    √  √ 

2 √ √  √  √ 

3    √  √ 

4     √ 

5 √     √ 

6  √  √  √ 

7      √ 

8 √   √  √ 

9    √  √ 

10 √ √  √  √ 

11  √   √ 

12  √  √  √ 

13  √  √  √ 

14    √  √ 

15  √  √  √ 

16  √  √  √ 

 

MCLPPR q=4 q=8 q=12 q=16 

1      √  √ 

2   √  √  √ 

3      √  √ 

4   √     √ 

5         √ 

6   √  √  √ 

7         √ 

8 √     √  √ 

9      √  √ 

10 √  √  √  √ 

11   √  √  √ 

12   √  √  √ 

13 √  √  √  √ 

14         √ 

15      √  √ 

16 √  √  √  √ 
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MSLPPR q=4 q=8 q=12 q=16 

1      √  √ 

2   √  √  √ 

3         √ 

4   √  √  √ 

5         √ 

6   √  √  √ 

7         √ 

8      √  √ 

9      √  √ 

10 √  √  √  √ 

11 √  √  √  √ 

12   √  √  √ 

13 √  √  √  √ 

14         √ 

15      √  √ 

16 √  √  √  √ 

 

MQLPPR q=4 q=8 q=12 q=16 

1    √  √ 

2  √  √  √ 

3    √  √ 

4  √   √ 

5     √ 

6  √  √  √ 

7      √ 

8 √   √  √ 

9    √  √ 

10 √ √  √  √ 

11  √  √  √ 

12  √  √  √ 

13 √ √  √  √ 

14      √ 

15    √  √ 

16 √ √  √  √ 
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MCLPPRS q=4 q=8 q=12 q=16 

1      √  √ 

2   √  √  √ 

3         √ 

4 √  √  √  √ 

5         √ 

6   √  √  √ 

7         √ 

8      √  √ 

9      √  √ 

10 √  √  √  √ 

11 √  √  √  √ 

12   √  √  √ 

13   √  √  √ 

14         √ 

15      √  √ 

16 √  √  √  √ 

 

MCLPPRQ q=4 q=8 q=12 q=16 

1    √  √ 

2  √  √  √ 

3    √  √ 

4  √   √ 

5     √ 

6  √  √  √ 

7     √ 

8 √   √  √ 

9    √  √ 

10 √ √  √  √ 

11  √  √  √ 

12  √  √  √ 

13 √ √  √  √ 

14      √ 

15    √  √ 

16 √ √  √  √ 
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MSLPPRC q=4 q=8 q=12 q=16 

1         √ 

2   √  √  √ 

3      √  √ 

4   √  √  √ 

5         √ 

6   √  √  √ 

7         √ 

8 √     √  √ 

9      √  √ 

10 √  √  √  √ 

11   √  √  √ 

12   √  √  √ 

13 √  √  √  √ 

14         √ 

15      √  √ 

16 √  √  √  √ 

 

MSLPPRQ q=4 q=8 q=12 q=16 

1    √  √ 

2  √  √  √ 

3      √ 

4  √  √  √ 

5      √ 

6  √  √  √ 

7     √ 

8 √   √  √ 

9    √  √ 

10 √ √  √  √ 

11  √  √  √ 

12  √  √  √ 

13 √ √  √  √ 

14     √ 

15    √  √ 

16 √ √  √  √ 
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MQLPPRC q=4 q=8 q=12 q=16 

1      √  √ 

2  √  √  √ 

3    √  √ 

4  √   √ 

5     √ 

6  √  √  √ 

7 √     √ 

8 √   √  √ 

9    √  √ 

10 √ √  √  √ 

11  √    √ 

12  √  √  √ 

13  √  √  √ 

14    √  √ 

15    √  √ 

16 √ √  √  √ 

 

MQLPPRS q=4 q=8 q=12 q=16 

1      √ 

2  √  √  √ 

3    √  √ 

4  √  √  √ 

5 √    √ 

6  √  √  √ 

7      √ 

8 √   √  √ 

9    √  √ 

10 √  √  √  √ 

11   √  √  √ 

12   √  √  √ 

13 √  √  √  √ 

14     √ 

15    √  √ 

16  √  √  √ 

 


