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Abstract

The objective of this thesis is to use the dynamic programming method, coupled with
spectral interpolation, to evaluate corporate bonds with discrete coupons in the presence
of credit risk and under a stochastic interest rate environment. Our evaluation approach
considers the optionality of coupon payments, which [EHHO04] confirms is a more accurate
methodology than [LS95] because it does not overestimate the probability of default. Our
approach is simple and robust, and our results show convergence of the model.
Additionally, we tested the [LS95] linear regression on credit spreads using a new database
derived from Trace with data from July 2002 to November 2014. We found correlation
between the asset returns of the firm and interest rates; however, this correlation was not
significant in predicting credit spreads. We find that the impact of this correlation on the

value of the debt is dependent on the capital structure.



Résumé

L’objectif du projet est d’évaluer les obligations corporatives avec coupons discrets en
présence de risque de crédit lorsque le taux d’intérét est stochastique. L’approche utilisée
est la programmation dynamique couplée a l'interpolation spectrale de la fonction valeur.
Notre approche d'évaluation tient compte de I'optionalité des paiements de coupons, selon
[EHHO4] qui estime que cette méthodologie est plus précise parce que, par rapport a
[LS95], elle ne surestime pas la probabilité de défaut. Notre approche est simple et robuste
et nos résultats montrent la convergence du modele. En plus, nous avons estimé, comme
dans [LS95], une relation linéaire expliquant les écarts de crédit de la firme en utilisant la
base de données Trace pour la période allant de juillet 2002 a novembre 2014. Nous avons
trouvé une corrélation entre les rendements des actifs et le taux d'intérét, mais cette
corrélation n’était cependant pas significative pour prédire les écarts de crédit. Nous
observons que l'impact de cette corrélation sur la valeur de la dette dépend de la structure

du capital.
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Introduction

A bond is a financing tool used by companies to raise capital. It can be interpreted as a loan,
where the firm commits to paying interests (more commonly known as coupons) and the
face value (or principal) at a known future date, called the maturity. The firm that borrows
the money is known as the issuer of the bond; the issuer signs an indenture, containing the
terms of the contract, with the investor. The investor is then subject to credit risk, that is,
the probability of the issuer defaulting on its loan and not being able to meet its contractual
obligations. Investors then face the challenge of evaluating corporate bonds, which consists
of accurately determining future cash flows, their probability, and finally their present

value.

A branch of evaluation methods for corporate bonds is based on the structural model,
which uses contingent-claim analysis (application of option pricing theory to the valuation
of assets) to determine the proper credit spreads of corporate bonds. Since there are no
analytical formulas for valuing American derivatives, most models are based on numerical
methods [BBKLO7]. Traditional approaches of evaluation include binomial trees, finite
difference methods and Monte-Carlo simulation. The drawbacks of some approaches can
be, among others, numerical instability [SIL16-a], bias [F14], or increased programming
complexity. Dynamic Programming (DP) is a flexible and efficient method that solves
recursively, via the no-arbitrage principle of asset pricing, a Markovian decision processes,
that is, a stochastic dynamic programming (SDP) problem [BBKLO7]. This approach is

straightforward and simple to implement in problems with low dimensions.

Additionally, DP allows us to evaluate corporate bonds whilst considering stochastic
interest rates, which many existing models assume constant. [LS95] explain that there is a

correlation between the firm’s asset value and the interest rates, which can help explain



why there are differences in credit spreads for companies with the same credit rating. We
reproduce the empirical analysis of [LS95] with current market data (from June 2002 to
November 2014) to evaluate the impact of changes in interest rates on credit spreads. We
find that correlation is important and that bond prices are sensitive to changes in interest

rates.

Even though [LS95] propose a model that corrects for the assumption of constant interest
rates, they ignore the pattern of coupon payments, which was shown [EHHO04] to be an

important determinant for average spread prediction.

In the spirit of contributing to the development of more effective methods for evaluating
corporate debt, in this thesis we propose an evaluation approach based on dynamic
programming (DP), coupled with spectral interpolation, to evaluate corporate bonds with
discrete coupons. Our evaluation method allows us to: price at any point in time during the
life of the bond; relax the assumption of constant interest rates; consider both default and
interest rate risk; and, most importantly, it allows us to consider the importance of the
pattern of cash flow payments (and their compounding effect). The compounding effect of
coupons is reflected in the recursive computation of the forward holding value of the stock
option. The stockholders at every coupon date decide whether it is profitable to pay the
coupon and continue, or default. This dependence of coupons reduces the default

probabilities with respect to those implied by the [LS95] model [EHHO04].

This thesis is organized as follows: Chapter one presents a literature review of the different
numerical methods proposed for evaluating default risk and interest rate risk,
independently or jointly, most of which are derived from the Merton [M74] model. Chapter
2 briefly introduces our approach, and how it overcomes limitations of other models
presented in the literature review. It also motivates our use of the Vasicek dynamics as our
interest rate model. Chapter 3 contains the basic notions necessary for the evaluation of
corporate debt under our model, including the mathematics behind the joint distribution
between the value of the assets of the firm and the interest rates observed in the market
(which are stochastic by nature), interpolation techniques and integration methods.

Chapter 4 is a detailed exposition of our algorithm. Chapter 5 analyses the performance of



our model, its convergence and the implications of the exogenous constant barrier of
default of the [LS95] model. Chapter 6 analyzes the sources of the data used to construct
the database that feeds our empirical analysis. Chapter 7 presents our empirical results and
addresses the importance of considering stochastic interest rates for corporate debt
evaluation. Finally, Chapter 8 briefly tests our model’s predictions using historic market

prices under the risk-neutral probability measure.
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Notation

Z: Normally distributed V'(0,1) random variable
R;: Stochastic interest rate diffusion process
V,: Firm asset process
Yi:log (Vi)
y: log asset value state variable
r: Interest rate state variable
W;: Equity process
W: Equity value
W™": Equity holding or continuation value
We: Equity exercise value
D;: Debt process
D: Debt value
D": Debt holding or continuation value
De®: Debt exercise value
Q: Risk-neutral probability measure
Qr: T-Forward risk-neutral probability measure
T: Maturity of the debt
P: Principal of the debt
C: Coupon of the debt
: Number of coupons of the debt
eta: Recovery rate of the debt
delta: Coupon recurrence (e.g. delta=1 is a yearly coupon)

delta0: Lag between pricing date and next coupon date.
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Chapter 1

Literature review

Over the past years, several scholars have attempted to resolve the complex problem of
valuing corporate debt. Models in the literature that attempt to resolve this matter can be
categorized into structural models, which use contingent-claim analysis (application of
option pricing theory to the valuation of assets) to determine the proper credit spreads of
corporate bonds, or reduced-form models, which use market credit spreads as well as an
exogenous stochastic default process to value corporate bonds. In this thesis, we focus on
structural models, which can be further classified into one-factor (for instance [M74] and

[G77]) or multi-factor models (for instance [LS95] and [CDGO01]).

In the Merton model [M74], a simple capital structure for the firm is assumed [BEN15]: A
zero-coupon bond and a stock, whose values sum up to the asset value of the firm. [M74]
considers a perfect market in which these two assets (stock and bond) are traded in

continuous time during the period [0; T].

Capital Structure:

Zero-coupon bond

{D}

Assets

v}

Equity
{v}
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The stock {v} is interpreted as a European call option on the firm'’s assets {I'}, where the
strike of the option is the face value of the debt. The [BS73] model is then used to evaluate
the stock under a closed-form.

Even though this was a breakthrough model, Merton had to impose restraining and
unrealistic hypotheses to facilitate the mathematics behind the evaluation. One of the main
critiques of this model is the assumption that equity is valued like a European option, and
that default can only occur at the maturity of the debt. [[MR84] and [FT89] showed that this

assumption results in smaller credit spreads than the ones observed in the market [LS95].

In order to allow default before maturity of the bond, Geske [G77] developed a
methodology for evaluating the stock of a firm with coupon bonds as a compound option
(giving its holder the possibility to acquire another option at each coupon date). For
instance, at {t = 1}, the first coupon date, the stockholders have the option to pay the
coupon, and as a reward receive another option that expires on the next coupon date, with
strike price equalling the second coupon payment; or they can decide to default on the
payment and liquidate all assets. At the final coupon date, the stockholders have the option
to pay the coupon plus the principal and repurchase the claims of the firm from

bondholders, or again, default on the debt.

[G77] operates under the assumptions that there are only coupon bonds and common
stock outstanding, that the firm issues new equity to refinance the coupon payments, that
default can only occur at the coupon payment dates, and that there are no dividends. The
risk free rate is assumed constant, and the cash flows and the discount factor are jointly
lognormal meaning we have known joint density function. Additionally, there is one single-
price for all assets traded in the market (no arbitrage allowed) and non-satiation is present
(a set of random variables {Z} exists), meaning there must be positive discount rates in the
market so that any security can be priced [G77]. The evaluation of corporate debt in [G77]
consists of solving an -variate normal integral, being the number of coupon dates. This
approach is very computer intensive and its programming is complex because of the

several numerical integrations involved [DEC93].
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For constant interest rates, the empirical evidence presented in [EHH04] shows that
considering the optionality of coupons is certainly important, and an improvement over the
simple portfolio of zeroes approach (where each coupon is evaluated as an individual
[M74] model). This is because the compound option takes into account the conditional
probabilities of default [EHHO04]; indeed, in the simple portfolio of zeroes approach, the
value of each coupon is computed irrespective of whether the previous coupon was paid or
not. This overestimates the probability of default. Therefore, the higher the probability of
default the higher the variability and therefore the larger the overestimation of credit

spreads [EHHO04].

To part from the constant interest rates assumption in [M74] and [G77], [LS95] propose a
closed-form evaluation method for coupon paying bonds that considers stochastic interest
rates and their correlation to the value of the firm. Their main conclusion is that credit
spreads are not only driven by the asset factor and the current level of interest rates, but
are also driven by the correlation between these two variables. This implies that besides
default risk, interest rate risk (changes in interest rate) also explains the variation in credit
spreads. They argue that this correlation can explain why bonds with similar credit rating

can exhibit different credit spreads.

[t is worthwhile noting that [LS95] do not consider some exogenous variables that have
been proven in the literature to be relevant to the valuation of corporate bonds, for
example the bargaining power of bondholders, the existence of an equity committee, and
the strength of ties between managers and shareholders. Most importantly, [LS95] suffers

from the same problem as [M74] in that it ignores the compound option nature of equity.

When determining the credit spread for a corporate bond, [CDGO1] states that it is
important to consider the current liability structure of the firm, and primarily the fact that
this structure can be altered through time. [CDG01] argue that there is a mean-reversion in
the leverage, because companies that have an increasing asset value tend to issue more
debt. Their paper consists of comparing the effectiveness of considering a mean-reverting

leverage ratio when calculating bond prices and bond spreads versus the constant
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boundary approach from [LS95]. They highlight that the [LS95] formula approximates the
value of the debt based on the Fortet 1943 formula, which is only valid for one-dimensional
Markov processes. [CDGO01] main conclusion is that considering the firm'’s ability to modify
its capital structure leads to higher credit spreads than the [LS95] model, by a substantial
amount. The [CDGO1] spreads are more consistent with empirical findings for both zero

coupon and coupon paying bonds.

To the best of our knowledge, a compound option on equity model has not been used yet to
evaluate corporate debt with discrete coupons under a stochastic interest rate
environment. This approach would be interesting because it would account for both the
impact of stochastic interest rates, which according to [LS95] is important because of its
correlation to the firm’s asset value, and the optionality of the coupon, which is shown in

[EHHO4] to entail major improvements in credit spreads prediction.
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Chapter 2

Valuation Model

Given that most models in the literature either assume constant interest rates or ignore

coupon payment patterns by using an exogenous barrier of default, in this thesis we

propose an evaluation method that considers not only stochastic interest rates, but also the

stream of coupon payments and potential default before maturity.

2.1 Model hypothesis

The key assumptions taken in our model are the following:

(1)
(2)
(3)

(4)

(5)

(6)

(7)

(8)
%)

the asset value of the firm V follows a standard Wiener process [LS95],

the short-term riskless rate R follows a Vasicek dynamic [LS95],

there is a perfect frictionless market, in which securities are traded in
continuous time [M74],

the value of the firm is independent of its capital structure, therefore coupon
payments are financed by issuing new equity (this assumption is essential for
the Modigliani-Miller theorem to hold) [G77],

default can occur at coupon payment dates only [G77],

the volatility of the underlying asset as well as of the interest rate are constant
and known [BS73],

there is a known and constant recovery rate w [LS95],

there are no problems with indivisibility of assets [BS73],

the market is always liquid [BS73],

(10) the stock does not pay dividends [G77],
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(11) there are no limits to borrowing at the risk free rate[BS73], and

(12) there are no restrictions to shortselling [BS73].

2.2 Model Construction

Let V; denote the process of the value of the assets of the firm and R; denote the process of
the short-term interest rate. According to our assumptions, the dynamics of V and R are

given by

1
v, = (Rt - 5052) dt + 0,V,dZ, (2.0)

where oy, 0,, k and 6 are constants, Z; and Z, are standard Wiener processes and where
the instantaneous correlation between Z;and Z, is denoted by p. The debt of the firm

consists of a bond maturing at a future date T.

Denote by

W, (y,r): the equity value at date t if the log of the asset value is y and the short interest
rateisr,

D;(y,r): the debt value at date t if the log of the asset value is y and the short interest rate
isr,

c: the coupon rate of the bond,

P: the principal of the bond,

4: the time interval between coupon payments,

P:(r,T): the price at date t of a zero coupon bond maturing at T if the short interest rate is
T,

w: the recovery rate in case of default.

At maturity, the equity value is the payoff of a European call option.
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Wr(y,r) = max((exp(y) — (P + cP); 0) (2.2)

At maturity, the value of the debt depends on the value of the assets. If V < (P + cP), then
the firm will not be able to make the final coupon and principal payment and therefore

must default.

P +cP if Vi >P+cP
mi (Vy; wP) otherwise.

Dr(vr) = | (23)

Assume that the value of the debt and equity at date t are known. Their holding or
continuation value att — § is expressed as the expected discounted value of their datet

value.

t

Dht—5(y’ r) — EtQ—(S [e_ft—é‘TsdsDt(Yt’Rt)] (24)
h Q —ft reds

Wh_s(.7) = EL 5 |e oW, (., R,)| (2.5)

where E,?[.] denotes the expected value under the risk-neutral measure Q, conditional to

the available information in the filtration F; (the observable state variables).

As it is demonstrated further in Section (3.1.), under the T-forward risk-neutral
measure QT we can extract the zero coupon bond price from the expected value. Formula
2.6 shows the resulting expression for the debt value. The procedure is equivalent for the

equity.

Dht—&()’; r) = P_s (T, t)Et—SQT [D:(Y:, R,)] (2.6)

At each coupon date, equity holders have the option to pay the coupon c and detain the
holding value W", (y,7) or to default and receive nothing. Thus, the equity value at each

coupon date t is the maximum between the holding value, minus the coupon paid, and zero.
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We_s(y, 1) = max(Wth_(;(y, r) — cP; 0) (2.7)

After computing the forward holding value of the equity, we proceed to compute the value

of the debt as

Di_s(y,7) = H(Wth_s—cPSO)min( W._s(y,7); wP) + H(Wth—5_cp 0) (D",_s(y,7) + cP)
(2.8)

Chapter 4 will develop on the algorithm and its solution. Before that, we explore key

concepts needed for the evaluation.

2.3 Vasicek Interest Rate Model

As mentioned in the literature review, most [M74] derived models assume that the short-
term interest rate is constant. One main essential argument in favour of the use of
stochastic interest rates is given in [LS95] where the authors ascertain that the correlation
between the firm’s assets value and the current level of interest rates has a significant
impact on the value of risky fixed income securities and, therefore, a high impact on credit
spreads. There are numerous models for the stochastic dynamics of interest rates. [LSD10]
analyze the pros and cons of several of them and highlight their main strengths and

weaknesses.

One of the most common, and currently utilized, models is the Vasicek model, due to its
mean reverting affine form, Gaussian solution and tractability [VER10]. The Gaussian
solution of this model is a key feature because it allows for a closed-form in the joint

density [SIL12], Chapter 5, Section 5.2.3.
The dynamics or stochastic differential equation of the Vasicek model is
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where k, 8, and 0,, are know positive constants; k represents the speed at which the

process returns to the historical mean; 8 is the historical mean; g, is the volatility.

The drift of this SDE captures the mean-reverting behaviour of interest rates. When rates
are below the historical mean, R; < 6, their difference will be positive, pushing the process
towards higher interest rate values. When R; > 6, their difference will be negative,
bringing down the level of interest rates. This is most commonly referred to as an Ornstein-

Uhlenbeck process.

A possible solution to the Vasicek model is found by applying Ito’s lemma with the

information until date , < t, and applying the change of variable y, = R.e*. We get:
RF =0+e = )R()=0)+0 [ e*t-mqz,. (2.10)

From the previous equation, we can see how R; follows a Gaussian law where the first two

moments are:

E[R, F1=R( )e ™= )+ 9(1 — et )) (2.11)

Var[R, F]=-(1—e 2t ), (2.12)

T2

Additionally, the Vasicek model allows for a closed-form solution for the evaluation of a

zero coupon bond P, (r, T)

P.(r,T) = (t,T)e” &Dr (2.13)

where

t,T) = e( —%)( (ET)-(T-1)-% ()

B(t,T) = %(1 — emr(T-0),
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The Vasicek model is the most analytically tractable model in the market, with simple
estimation parameters, but the use of a Gaussian law in the solution of R; allows for
negative interest rates, which is generally not an acceptable assumption for investors
[SIL12]. Additionally, the Vasicek model can generate only monotonically increasing or
decreasing yield curves, or curves that have a small hump, when in reality yield curves that
are more complex are observed in the market. However, as argued by [LS95], the
occurrence of negative interest rates can be controlled through the effective calibration of
parameters and, furthermore, the primary effect of interest rates on credit risk models is

through its expected future value, which is mainly positive.

2.4 Dynamic Programming (DP)

There are many different solution approaches in the literature for the evaluation of
derivative products, but some of them may not be reliable because they are numerically
instable. For example, the binomial tree approach proposed in [CRR79] is a simple and
flexible valuation method based on the martingale property and the risk-neutral
probability measure. However, even though the binomial method is simple to implement
and converges towards the BMS model when At 0, the convergence is slow, oscillatory

and has generally a bias.

Other approaches like Explicit and Implicit Finite Difference approaches solve the partial
differential equations satisfied by derivative products when there is no explicit solution.
Respectively, the Explicit method although characterized by its simple programming,
requires a lot of time for convergence and has a high risk of instability, whereas the Implicit

method reduces this instability but increases the programming complexity.

Monte Carlo Simulation has also proven to be a popular method in derivatives evaluation
because it can handle problems with high dimension. However, Monte Carlo simulation

requires a relatively large computational effort and is subject to statistical error.

Dynamic programming (DP) is the methodology of choice for our evaluation approach. We

have chosen to use DP because it allows us to price debt under two stochastic factors; it is
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analytically tractable; and can easily allow for the correlation between interest rates and
asset value [SIL16-a]. DP is a current methodology used in the pricing of American options
under a Markovian decision process, which captures the trade-off between low present
costs and the undesirability of high future costs. This approach consists in breaking down
an optimization problem into smaller, and more manageable, problems using the Bellman's
optimality principle [BER95]. This approach always assumes optimal decision making for
subsequent stages with two main conventions; (1) Decisions are made at discrete times,

and (2) there is a cost function that is additive through time.

A Dynamic Programming approach to evaluate a derivative product where decisions are to
be taken over the life of the product consists in expressing the value recursively, as the sum
of an immediate reward and a future value, which often corresponds to a holding value, as
in Equations (2.4)-(2.8). In the following paragraphs, we highlight the general approach

using the simple example of a Bermudan option.

For debt evaluation while using dynamic programming, we rely on [G77] structural method
as an illustrative example. Notice [G77] is applicable to the evaluation of American options,
but since we are working with a discrete time dynamic system, evaluating an American
option at each discretization of time At is equivalent to evaluating a Bermudian option.
Additionally, as the discretization becomes smaller and smaller we can say that the price of

a Bermudian option is converging into that of an American option.

Consider a vector X; € R" containing all the information at t of the value of the different

variables affecting the option. We then define

ve(x):R* R

as the value of the option at date t when the observed state vector is x. We suppose as well

thatt =t, < <t, < <ty=T, are the decision dates. At all dates (except at

maturity), the holder of the option can decide between exercising the option or holding it
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for at least one supplementary period, i.e. from t,, to t,, ;. Because the holder of any option

wishes to maximize his gain, we can define the value of the option as:
ve (0) = max (", (0),v% (X)) (2.14)
where v" and v® are the holding and exercise value of the stock option, respectively.

Assuming that the value function v, _ is known on R", the numerical implementation of a

Dynamic Program consists of evaluating the holding value of the stock option on a finite

grid of evaluation points a;,i = 0, ..., p, at each decision date:

_(t +1
Bt (a) = B¢ Ty, (X, L)) ap b, (2.15)

and of determining an interpolation function ¥ using the grid as interpolation nodes to

obtain an evaluation at any x € R™.

Step-by-Step solution:

Step 1: Trace a grid where the x — axis represents the discretization of time At and follows
the index t,,, and the y — axis represents the state variables (log asset value) indexed by
a;. (Note that we focus on a one dimension dynamic program to simplify the notation,

where the only state variable is the underlying asset level.)

to ty

The boundaries of the grid have to be chosen such that the probability of the value of the

assets being outside of the grid are small enough:
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P(X<ay,) ~ 0 and P(X > ap) ~ 0.

Step 2: Since DP uses analysis by recursion, we begin the analysis at the last date, or in

other words the maturity t,,. The option value at ¢, is given by:
vtM(al) = vetM (al) = max (al - K’ 0) ) l E [O’ p]

Step 3: Using the known values on the grid v; (a;), compute the interpolation function

U ().

There are several interpolation methods, among which piecewise constant, piecewise

linear, polynomial, piecewise polynomial.
Step 4: Go back in time to t,,_;. Find the holding value at each node.
o (@) = ECle 0 (Xe ) ayl.
Step 5: Calculate the exercise value at each node a;.
v® _ (a;) = max (a; — K, 0).

Step 6: Find the value of the option at t,,,_; for each node by comparing the exercise to the

holding value.
Uy _1(ai) = max (5ht _1(ai),vet _1(ai))-

Step 7: Repeat this recursive process until ¢, to find the value of the option at inception.
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Chapter 3

Tool Box

In this chapter, we explain the importance of the T-Forward risk-neutral measure for
evaluating corporate debt under a stochastic interest rate environment. We then derive the
joint distribution of the asset value and the interest rate under the T-Forward risk-neutral
probability measure. Finally, we explain the Chebyshev polynomials, their use in two
dimensions and the Clenshaw-Curtis integration method used to approximate the density

function.

3.1 Passage to the Forward-Neutral measure

In this paragraph, to simplify notation, we consider the evaluation of a derivative at t when
the next decision date is T. Since we are evaluating a derivative product D, written on the
underlying assets of the company, where interest rates are stochastic, we can express the

price of a zero-coupon bond as:
P,(r,T) = E} [exp (— ftTr(s)ds) r] (3.1)

The holding value of the debt is:
D".(r,y) = EQ [exp (— ftTr(s)ds) Dy Tt] (3.2)

Since the interest rate and the debt value are correlated, we cannot state that the expected

value of the product is the product of the expected values. Therefore, we proceed into a
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change of probability measure where all forward prices are martingales, and this
correlation disappears [F14]. In this new probability measure, we can evaluate any
contingent claim as the product between the discount factor and the excepted value of the

debt under the measure Q;, named forward risk-neutral measure.
D, = P,(r,T)E¥[Dr F,] (3.3)

To pass to the forward risk-neutral measure we apply the following transformation to the

geometric Brownian motion Z} [CLE13]:

dZl = dZ} —Z (1 — e*(T-D) (34)

K

3.2 Construction of the Joint Distribution

As per [CLE13] we consider the following generalized model:
dR, = u(t,R,)dt + n(t,R)dZ} (3.5)
dV, = (R)V,dt + o, V,dZ} (3.6)

where R, is the interest rate, V, is the asset value, Z} and Z? are two correlated Brownian

motions with E(dZ}dZ?) = pdt; u(t, R,) and n(t, R,) are continuous on R; o, the volatility.
Under the risk-neutral probability measure Q, it is more practical to work with
independent Brownian movements (Z% a d Z2). To obtain the SDE we use the Cholesky

decomposition:

dR, = u(t,R,)dt + n(t,R)dZ} (3.7)



26

For modeling purposes, it is simpler to use ¥; = log (V;) than V;, because it allows us to find
a Gaussian solution instead of a lognormal one. By applying [td’s lemma, we can find the

stochastic differential equation of the underlying asset:

1
Y, = dl g(V,) = (Rt - Eaf) dt + oy (pdz} + T p2dW?)  (3.9)

After using T-Forward risk-neutral passage, we are left with the dynamic for the interest

rate and asset value as:

0.2
dR, = (9 ~ T (1~ gmerD) - rth> dt + o, AW} (310)

o2 po,o
dy, = <Rt -5 - P —(1- e—KCT-ﬂ)) dt + o (det1 +y1- pZdWE) (3.11)

3.2.1 Solution of R,

The solution of R;, where <t < T, under the T-Forward Risk-neutral measure is

0 o? o~ K(T=t) _ o=k(T t-2 )
R.=R e *t=) ;121 —pkt=)y_ZT (1 g-k(t=) _
: ~( - :

t
+ arf e K= gt

(3.12)

Distribution

6
EY[R|F]=R et ) — —(1- e (= )y

- U_r2<1 ke _ e K(T=t) _ g—k(T t-2 )>
2

(3.13)



27

t
Var?[R, F ] = arzf e~2K(t=9) gg

(3.14)
(See [CLE13] for mathematical development)

3.2.2 Solution of ¥,

The solution of Y; under the T-Forward Risk-neutral measure T is

=Y +n( ,t)+— f(l—e"‘(t ™) dW;k — (2 paraX)( - )+p”‘(-K(T—t>

t t
— KT ))+0pr dW1+aX\/1—p2f dw?

(3.15)

where

-k( — ) 2 _ ,—k(t— )
e B e -

( —k(T-t) _Ze—ic(T— )_l_e—K(T t—2 ))

2K3

(3.16)

Distribution

0,0 0,0
ET[Y |Fl=Y + n( ,t)- (2 42 ; X) (t - )+p+x(e"‘“—t) — e =) (3.17)

o’ 2po,0
VarT[YtliF]=<K—r2+ Porox | >(t—

—k(T- )_l_e—ZK(t— ))

B 2po,.ox (1 — e~xC= )y

K2

(3.18)
(See [CLE13] for mathematical development)
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3.2.3 Joint Density

Given that both our variablesY; F and R; F have a Gaussian distribution, to construct
their join density we have to find the variance/covariance matrix. For this, it is sufficient to
find the quadratic variation between both dynamics (this comes back to multiplying the
stochastic terms of our solutions (3.12) an (3.15)).

To do so we use [CLE13] notation.

Pose a vector y; of dimension 2X1 that contains the values of Y; and R, respectively.

Y = ;tt]

Given our previous solutions, and the information at date and¢, where <t, we can

state that our joint distribution is bivariate normal with expected value of

w0 =268

And a variance-covariance matrix of

oy( ,t) oyr( ,t)

or( ) 02 D) (3:19)

le( 't) :l

where oy ( ,t) and ox( ,t) are equal to (3.13) and (3.17) and of( ,t)and g3 ( ,t) are
defined by (3.14) and (3.18) respectively.

The quadratic variation oy g ( ,t) is given by

t t
(Y,R), = (f <ayp + (%(1 — e"‘(t‘m))>> dw,; arf e K= gty

t t
+ (oy+/1 —pzf d W, arf e~ =9 qu2)
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t t
— (f <ayp + (% (1- e"‘(t‘m))>> aw,l; arf e <=9 gty

t
= f (%(1 —eTr(t=m)) ayp) (o,e7*E=))dm
2 2 2
— %(1 LGB 2”;2 (1—e~26= ) 4 @(1 — emK(t))

(3.20)

3.3 Chebyshev Polynomials

The chosen evaluation methodology for this thesis paper is dynamic programming. This
method, due to the discretization of the state variables, computes the value function at the
given grid nodes only. To be able to calculate the value function for asset and interest rate
values that are in between the grid nodes, we must perform an interpolation, and we have

chosen the spectral interpolation.

While doing polynomial interpolation, some approaches, like the Lagrange interpolation,
can result in the Runge phenomenon (oscillation in the edges of the interval). Chebyshev
polynomials are widely used in approximation theory because they can be coupled with the
Gauss-Lobatto points (to avoid the Runge phenomenon and increase the convergence of

the error) and the Fast Fourier Transform (to increase the speed of the algorithm).
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Remark 1 (First Tchebychev Polynomials) The first Tchebychev polyno-
mitals are

Tp(X) = 1

Ti(X) = X

T:(X) = 2Xx%-1

T3(X) = 4X7-3%

T,(X) = 8x*—-8x’+1
T;(X) = 16X° —20X7 +5X

Figure 5.1: First Tchebytchev Polynomials graphical representation

Remark 2 (Particular values)

Yk € NTu(1)=1. (5.7)
Yk € NT,(—1)=(-1)".

Graph taken from [SIL12].

3.3.1 One dimension polynomial

When handling a one variable interpolation problem, the Chebyshev polynomial must be
defined over the interval [—1,1], and it can be evaluated by either recursion or
trigonometry. Using [CLE13] notation, let T (x) be a polynomial of degree k, where x €
[—1,1].

When evaluation by recursion:
To(x) = 1.
T;(x) = «x.
Ti(x) = 2xT_1 (%) — Tr—2(%).

When evaluating by trigonometry:

T (x) = cos (karc s(x)).
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3.3.2 One dimension Interpolation
Consider a function g(x) which we know only atm+1 points, x;,i = 0, ..., m. Chebyshev
Interpolation of the function g(x) consists of approximating the function by a polynomial

qm(x) of degree m such that

m

90 =g = ) T @  vre[-11] (3.21)

k=0

This equation represents the Chebyshev decomposition where T, represents the different
polynomials and c; the spectral coefficients. To be able to use equation (3.21) we must find

the value of all the spectral coefficients, and we do this by resolving a system of linear

equations
y=Tc
where
V(xo)
v(x
y (: 1)
v(Xm)
Co
C1
c=1.
Cm
To(xo) Tl (xo) Tm(xo)
T = : : : (3.22)
To(xy) To(xy) T (Xm)

The solution of this linear system can be done by the inversion of matrix T but the cost of
inversing a matrix is elevated in terms of computing time or by LU decomposition.

Choosing Chebyshev or Gauss-Lobatto nodes allows the inversion of T by Fast Fourier
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Transform (FFT), which is the most efficient (it reduces the number of operations from

0(m?) to O(ml g(m))).

3.3.3 Gauss-Lobatto

As mentioned previously the Runge’s phenomenon can be avoided with the use of the
Gauss Lobbatto points, which has as a main feature that the points in the optimal grid are
not equidistant. They are closer together at the edges of the interval and more spaced in the
center. Additionally, the Gauss-Lobatto points, unlike the Chebyshev nodes, do include the
extreme values of the grid (-1 and 1). The Gauss-Lobatto points are defined asx; €

[Xmin» Xma ]1and i € {0,1, ..., m}:

1 TT;
X = 5 Xma F Xmin ¥ (Cma  — Xmin)COS (E) ) (3.23)

3.3.4 Two dimensions Interpolation

Since our model includes two different variables (stochastic log asset value and stochastic
interest rates), we need a polynomial with two variables for the interpolation.

Like before, we consider that there is a function g(y,r) (this time with two variables in its
argument), which we interpolate over (m; + 1)xX(m, + 1) points. To simplify notation, we
assume that m; = m, = m and that m is an even number, but clearly this need not be the
case. When doing interpolation we use a polynomial of degree = m?, q,,,(v,r), using the

points{y; : i =0,1,..,m}and {r; : j = 0,1, ..., m} where (y,r) € [-1,1]x[-1,1].

m m
9O = au.1) = ) Tl + diyTi(hy + do) (3.28)
k=0 1=0

where we applied a linear transformation to have our boundaries be [—1,1] and the result
is:
i Yma 1 Ymin

Yma — Ymin

h1:
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2
d1 ==
Yma — Ymin
Tma +Tmin
h, = —-na __ min
Tma — Tmin
2
d2 -
Tma — Tmin

To apply the FFT in our spectral interpolation we must proceed in two stages. The first one
consists of rearranging the terms and calculating the internal sum and then external sums

as follows.

g(r) =) <Z CaTilhy + dzyi)) Ti(hn + dy7;) (3.25)

k=0 \l=0

We can define as per [CLE13]

m

Fed = ) cerTulhy +day) (3.26)

=0

After calculating F (y;) we can proceed to calculate

g(yiry) = Z Fe ) Ti(hy + dy7y). (3.27)
k=0

The general idea is to perform a Chebyshev one-dimensional interpolation on dimension 7;

for some known points y,,y;, ..., ¥y to find Fk(y]-), which then represents the spectral
coefficients in a new one-dimensional interpolation on dimension y; for some known

points 1, 14, ..., Ty
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3.4 Clenshaw-Curtis Integration

The Clenshaw-Curtis quadrature is a numerical method for calculating the integral of the
function f(x) via a change of variable x = cos (6). However, the cosine series that we use
to implement this approximation is given by the Chebyshev polynomials. The quadrature is
calculated at the Chebyshev nodes. This method weights the value of the function at each
node, and uses the fast Fourier transform algorithm to reduce computational time to

O(mlogm).

Define the set of even indices L = {0,2,4, ..., m} (recall thatmis an even number). The
transition density function from (x;, t) to (Ur, T) is denoted by f (U, T). The holding value
of a derivative product D; is defined as its discounted expected value, which in turn is
expressed as the integral of the value of the derivative at the next evaluation date weighted

by transition density function.

EYS [D,(U)] = j D, f 45 ,0)d

ch Xma — Xmin
=~ X 3.28
ZleL 1 - lZ 2 ( )
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Chapter 4

Model Solution

In Chapter 2, we did a brief introduction of our model. However, since the expected value of
equation (2.6) is unknown we proceed to use the numerical approximation method
proposed in Chapter 5. The procedure used for this approximation is based on the
construction of an observation grid that contains the log of asset price and risk-free
interest rate. The first step consists on choosing the boundaries of the grid such that the
probability of the log asset value or the interest rate being outside of the grid [V,nin, Vima 1%

["min» Tma | 1S zero or close to zero.

We can now write the expected holding value of the debt as the double integral over the y

and x domain, of the future value multiplied by the transition density function.

Y ax 7T ax
D" _s(yu1;) = Pe_s(r,t) ( f f D:(y,")f v, r)dydr> (4.1)
y T

Since we are working with gaussian variables, we know that their joint density will be a bi-
variate normal distribution with the moments defined in Section 3.2.3. Since we are
working with the Vasicek model for interest rates we have a closed form for Pt_g(?}', t) and
we only need to work on the double integrals. Following the notation and methodology of
[SIL16-a] the double integrals are recursively calculated using the Clenshaw-Curtis
integration (Section 3.4), approximating the integrand by its truncated Chebyshev series of

order m?, where m is even.
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We then use the Chebyshev coefficients to evaluate the integral in a closed-form. The steps
needed to approximate the debt holding value are shown below. The methodology for

approximating the holding value of the equity is equivalent.

1: Initialization.
a) Define the boundaries of the grid for all i,i = 0, ..., m for {y} variable that will follow
for the log value of the assets and j,j = 1, ..., m for {r} variable that will follow for
the interest rate. Define the set L of even indices.

b) Create the grid using the Gauss-Lobatto nodes, explained in Chapter 3, equation

(3.23)
1 i .
Vi = E Yma T Ymint+ (yma - Ymin)cos (E) ’ i=01..,m
1 j .
7}' = E Tma + Tmin + (rma - Tmin)COS (E) , ] = 0'1’ M

c) DenoteY; as the set of Gauss-Lobatto points for factori,i =1,2. The set of
interpolation points is then defined as Y = Y; XV,.
d) For every maturity node inY, calculate the value of the debt D (yl-, rj) using formula

(2.3)

2: Approximation. Once the value of the debt is known on Y at ¢, we step back in time so
thatt =t — §, and proceed to approximate the holding value.
a) The holding value of the debt is equal to its discounted expected future value. The

expected value can be calculated using its transition density function f; ; . _5(y,7)

b) For each coordinate (y;, 1;) of Y, calculate the function

9ijt-s Vi) = fijt-s V1) XDe(Vi, 1) (4.2)
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c) Using the Fast Fourier Transform (FFT), find the multidimensional truncated
Chebyshev series of order m interpolating the values g; ; :_s(yx, 1) onY.
d) For every combination of nodes in the setY evaluate the holding value (Formula

4.1), using the Clenshaw-Curtis integration for the forward expectation.

Y ax 7 ax
D" _s(yu1;) = Pe_g(r;,t) ( f f Dy, ") fije-s 0, r)dydr>

Y in T in

Y ax (7 ax
=~ f f 9ijt-s ¥, r)dydr

Y in YT in

. (yma - ymin) (rma - rmin) 4'Ck,l
B 2 2 Z Z (1-k2)(1-12) (43)

k€L leL

3: Final step. Once we have calculated the expected holding value of the debt and the
equity, in the T-forward risk-neutral measure, at t = t — 6, we calculate the value of the

debt using formula (2.8).

De-s(yix;) = Uwn,_s(y,, ;)-cp=oymin( We-s(vi %;) ; 0P)

+ H(Wht—S(Yi. j)—cP 0)(Dht—6(3’i»xj) +CP).

4: Recursion. Repeat 2 and 3, until ¢ = 0.
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Chapter 5

Theoretical analysis of the model

In this section we present the tests we performed to check the accuracy of our model and
solution algorithm. First, we compare our results to [M74], second, we replicate the plain
vanilla formula for coupon paying bonds and discuss the impact of the capital structure on
correlation, next we perform an analysis of each parameter on our model and finally we
visualize our endogenous barrier of default through the exogenous boundary of [LS95] and

analyse its behaviour.

5.1 Merton Model

We adjust some parameters (no coupons and very small interest rate volatility) to compare
the results obtained using our algorithm to the closed-form for debt evaluation of the
Merton model, in this case there is only one step in our DP approach and the difference in
value for m = 100 is attributed to interpolation error. Tables 1 and 2 present the
convergence of our Dynamic Program to the [M74] closed-form solution for various asset
values and interest rate levels. These tables show that the DP algorithm closely replicates

the closed-form price.
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Table 1: Convergence of our solution method to the closed-form of the Merton model as

interpolation points m increase, for various asset values.

\

m=20

m=30

m=40

m=50

m=60

m=70

m=80

m=90

m=100

m=200

Closed
Form

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

0.6819
0.7621
0.7912
0.8026
0.8073
0.8094
0.8103
0.8105
0.8103

0.6782
0.7593
0.7894
0.8015
0.8067
0.8090
0.8101
0.8104
0.8102

0.6770
0.7583
0.7888
0.8011
0.8065
0.8089
0.8100
0.8103
0.8102

0.6764
0.7579
0.7885
0.8010
0.8064
0.8088
0.8099
0.8103
0.8102

0.6761
0.7577
0.7884
0.8009
0.8063
0.8088
0.8099
0.8103
0.8101

0.6760
0.7575
0.7883
0.8008
0.8063
0.8088
0.8099
0.8103
0.8101

0.6759
0.7574
0.7882
0.8008
0.8063
0.8088
0.8099
0.8103
0.8101

0.6758
0.7574
0.7882
0.8008
0.8063
0.8088
0.8099
0.8103
0.8101

0.6757
0.7573
0.7882
0.8008
0.8063
0.8088
0.8099
0.8103
0.8101

0.6756
0.7572
0.7881
0.8007
0.8062
0.8088
0.8099
0.8102
0.8101

0.6758
0.7573
0.7881
0.8007
0.8063
0.8089
0.8102
0.8108
0.8112

Parameters :

rbar =0.05, a=0.4, sigma_r=0.0001, sigma_V=0.3, rho=0, T=4.172, n=1, delta=1,
delta0=T, C=0, P=1, eta=1

Table 2: Convergence of our solution method to the closed-form of the Merton model as
interpolation points m increase, for various interest rate levels.

r

m=20

m=30

m=40

m=50

m=60

m=70

m=80

m=90

m=100

m=200

Closed
Form

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.9126
0.8807
0.8478
0.8162
0.7860
0.7569
0.7290
0.7022
0.6746
0.6482

0.9117
0.8797
0.8474
0.8164
0.7867
0.7579
0.7289
0.7010
0.6743
0.6486

0.9115
0.8793
0.8474
0.8167
0.7870
0.7573
0.7288
0.7015
0.6743
0.6483

09114
0.8792
0.8475
0.8170
0.7867
0.7574
0.7290
0.7012
0.6745
0.6483

0.9113
0.8792
0.8476
0.8169
0.7867
0.7575
0.7289
0.7013
0.6743
0.6484

0.9113
0.8791
0.8476
0.8168
0.7868
0.7574
0.7290
0.7012
0.6744
0.6483

0.9113
0.8791
0.8477
0.8168
0.7868
0.7574
0.7289
0.7013
0.6744
0.6483

0.9113
0.8791
0.8477
0.8168
0.7867
0.7575
0.7289
0.7012
0.6744
0.6483

0.9113
0.8791
0.8477
0.8169
0.7867
0.7574
0.7289
0.7013
0.6744
0.6483

09114
0.8792
0.8476
0.8168
0.7867
0.7575
0.7289
0.7012
0.6744
0.6483

0.9129
0.8807
0.8491
0.8182
0.7881
0.7588
0.7302
0.7025
0.6756
0.6495

Parameters : a=0.4, sigma_r=0.0001, sigma_V=0.3, rho=0, V=2, T=4.172, n=1, delta=1, delta0=T,
C=0,P=10, eta=1

Table 3 below shows the impact of various parameters on the results of the dynamic

program and the solution of the [M74] model. Since both results are obtained under the

assumption of constant interest rates, we observe constant prices whilst modifying interest

rate parameters. (C.F = Closed-form, O.A = Our Approach).
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Table 3: Impact of parametrization of stochastic interest rates in the Merton model.

Parameter Method r=0.01 r=0.02 r=0.03 r=0.04 r=0.05 r=0.06 r=0.07 r=0.08 r=0.09 r=0.1

Default C.F 09113 0.8791 0.8477 0.8169 0.7867 0.7574 0.7289 0.7013 0.6744 0.6483
Default 0.A 0.8680 0.8410 0.8142 0.7877 0.7614 0.7356 0.7102 0.6853 0.6608 0.6369
alo0.1 C.F 0.8680 0.8410 0.8142 0.7877 0.7614 0.7356 0.7102 0.6853 0.6608 0.6369
alo0.1 0.A 09113 0.8791 0.8477 0.8169 0.7867 0.7574 0.7289 0.7013 0.6744 0.6483
eta 0.5 C.F 0.8680 0.8410 0.8142 0.7877 0.7614 0.7356 0.7102 0.6853 0.6608 0.6369
eta 0.5 0.A 0.8653 0.8409 0.8161 0.7830 0.7588 0.7345 0.7102 0.6860 0.6580 0.6350
rho 0.5 C.F 0.8680 0.8410 0.8142 0.7877 0.7614 0.7356 0.7102 0.6853 0.6608 0.6369
rho 0.5 0.A 09113 0.8791 0.8476 0.8168 0.7867 0.7574 0.7289 0.7013 0.6744 0.6483

Default : rbar =0.05, a=0.4, sigma_r=0.0001, sigma_V=0.3, rho=0, V=2, T=4.172, n=1, delta=1, delta0=T,
C=0, P=1, eta=1, m=100

5.2 Plain Vanilla Formulation

In addition to comparing our model performance to the [M74], we compared it to the plain
vanilla bond price, which is known in closed-form, when default risk is negligible. To
eliminate default risk, it suffices to make the value of the firm very large (i.e. V=200)
relative to the principal of the debt, so that the probability of the value of the assets being
below the exogenous barrier of default can be assumed to be close to zero. Results are
presented in Table 4. We observe convergence of our model to the plain vainilla formula
when default risk is negligible. The analysis of parameterization is consistent with the

analysis done below in Section 5.3.

Table 4: Impact of parametrization of stochastic interest rates for a scenario without
default risk.

Parameter Method r=0.01 r=0.02 r=0.03 r=0.04 r=0.05 r=0.06 r=0.07 r=0.08 r=0.09 r=0.1

Default CF 1.1497 1.1282 1.1071 1.0864 1.0661 1.0462 1.0267 1.0076 0.9888 0.9704
Default 0.A 1.1498 1.1282 1.1071 1.0864 1.0661 1.0462 1.0267 1.0076 0.9888 0.9705
rbar ! 0.01 CF 1.1720 1.1501 1.1285 1.1074 1.0867 1.0664 1.0465 1.0269 1.0078 0.9890
rbar ! 0.01 0.A 1.1720 1.1500 1.1285 1.1074 1.0866 1.0663 1.0464 1.0269 1.0078 0.9890
alo1l CF 1.1837 1.1579 1.1326 1.1079 1.0837 1.0601 1.0371 1.0145 0.9925 0.9710
alo1l 0.A 1.1839 1.1581 1.1328 1.1080 1.0839 1.0603 1.0372 1.0147 0.9927 0.9712
ort0.1 CF 1.3124 1.2876 1.2633 1.2395 1.2162 1.1933 1.1708 1.1488 1.1273 1.1061
ort0.1 0.A 1.3287 13040 1.2796 1.2557 1.2323 1.2093 1.1867 1.1645 1.1427 1.1213
rho -0.5 CF 1.1497 1.1282 1.1071 1.0864 1.0661 1.0462 1.0267 1.0076 0.9888 0.9704
rho -0.5 0.A 1.1498 1.1283 1.1072 1.0865 1.0662 1.0463 1.0268 1.0076 0.9889 0.9705
o V101 CF 1.1497 1.1282 1.1071 1.0864 1.0661 1.0462 1.0267 1.0076 0.9888 0.9704
o V101 0.A 1.1497 1.1282 1.1071 1.0864 1.0661 1.0462 1.0267 1.0076 0.9888 0.9704

Default : rbar =0.05, a=0.4, sigma_r=0.13, sigma_V=0.3, rho=0.5, V=200, T=4.172, n=5, delta=1, delta0=0.172,
C=0.0425,P=1, eta=1, m=100
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5.3 Convergence and Parametrization tests

After ensuring our approach could replicate existing models in the literature, we proceeded
to evaluate the convergence of the dynamic program and the impact of parameterization.
As shown in Tables 5 and 6, for a principal of 1, and asset value of 2 and 4 respectively,
convergence is achieved for m = 100. In Table 6, the relative increase in accuracy achieved

by increasing m from 100 to 200 is 0.02%.

Now we proceed to analyzing the effects of the key parameters in our model. Each

parameter will be analyzed through its effect on short and long maturity bonds.

Parameters:

-The effect of maturity {T}: The value of the bond is positively correlated to maturity in
general terms: As maturity increases there is more time for the variability of the assets to
dissipate, more coupon payments to discount and more time for the interests rates to come
back to their long-run mean. Since expected value of the company increases exponentially
through time, the value of the bond increases with maturity. However, the effect of
maturity depends on the other parameters. We explore its impact coupled with the others

parameters below.

-The effect of asset value {V'}: As the asset value of the company increases from 2 to 4, in
Tables 5 and 6, we can see an increase in the value of the debt. The reason behind this
effect is straightforward, the higher the value of the assets, the further away the company is

from a potential default, and the debt becomes more secure and therefore more valuable.

-The effect of interest rates {r}: When we increase the long run interest rate average, the
value of the debt decreases. According to [LS95] there are two effects that drive the price of
bonds, the discounting effect (as interest rates increase, the price of the zero coupon bond
decreases) and the decrease in the risk-neutral probability (as interest rates increase there
is less volatility and the debt value increases). For the parameters in Figure 1 the

discounting effect is dominant.
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-The effect of speed of mean-reversion{a}: As the speed of mean-reversion decreases, the
interests rates in the Vasicek dynamic are more volatile; they can stay away from the long-
run mean for longer periods of time (Figure 2). For shorter maturities, this additional
volatility decreases the debt value. For longer maturities, the interest rate has more time to
eventually return to the long-run average and therefore value increases, as prices are
positively related to maturity. The current level of interest rate also plays an important
role. When r, > 1, for shorter maturities the tendency is for r, to decrease, creating a
downward shift in the risk-neutral probability of default, making the investment a riskier
one, and hence with less value. When 1y < 7, for shorter maturities the tendency is for r,
to increase, creating an upward shift in the risk-neutral probability of default, making the

investment less risky, and hence more valuable.

-The effect of interest rate volatility {o,.}: For the parameters in Figure 3 as the volatility of
interest rates decreases, the value of the corporate bond decreases. This can be because the

for these specific parameters the discounting effect is dominant.

-The effect of asset value volatility {o}, }: As the volatility of asset value increases, the price
of the coporate debt decreases. This is explained through the additional risk the investor
undertakes. This effect is amplified with maturity because the value of the firm (with high

volatility) has more time to fall underneath the default threshold (Figure 4).

-The effect of correlation {p}: We can observe that as correlation increases from 0 to 0.5,
the debt value decreases because there is an added covariance term to the total variance of
the coporate bond [LS95]. The reverse effect is present when correlation decreases from 0
to -0.5, therefore reducing volatility and increasing the value of the bond (Figure 5).
However, it is important to highlight here that this effect can be attenuated through the
level of leverage of the firm. As we can observe in Figure 6, we have increased the asset
value to 40, and the variability in the price for various correlation values is substantially
reduced, specially for shorter maturities. This leaves us with one key conclusion: There are

capital structure effects to consider when evaluating corporate bonds.
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-The effect of the recovery rate {w}: as the recovery rate decreases, the value of the debt

decreases, because a lower recovery rate implies a riskier investment (Figure 7). However,

when maturity increases, leaving everything else constant, the value of the debt increases

because the risk can be attenuated through time and the probability of default decreases.

Figure 1. Value of the corporate debt for various values of 7, the long run interest rate

average, for a debt principal of 1 and an asset value of the company of 2.
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Figure 2. Value of the corporate debt for various values of a, the mean-speed reversion, for

a debt principal of 1 and an asset value of the company of 2.
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Figure 3. Value of the corporate debt for various values of g,, volatility of interest rates, for

a debt principal of 1 and an asset value of the company of 2.
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Figure 4. Value of the corporate debt for various values of gy, volatility of assets, for a debt

principal of 1 and an asset value of the company of 2.
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Figure 5. Value of the corporate debt for various values of p, correlation, for a debt

principal of 1 and an asset value of the company of 2.
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Figure 6. Value of the corporate debt for various values of p, correlation, for a debt

principal of 1 and an asset value of the company of 40.
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Figure 7. Value of the corporate debt for various values of w, recovery rate, for a debt

principal of 1 and an asset value of the company of 2.
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5.4 The LS95 Exogenous Barrier Replication

Our DP approach uses an endogenous barrier of default; before maturity the barrier is the
coupon payment and at maturity the coupon payment plus the principal of the debt. On the
other hand, [LS95] uses an exogenous constant barrier of default which is not disclosed in
the paper. To understand the behaviour of the exogenous barrier we replicate the price of a
risky discount bond of [LS95] and then varied certain parameters and analyzed their
impact on the barrier. Table 7 shows our price replication results. These are representative

of the price of the discount bond in [LS95] page 799.

Table 7: Price of a risky discount bond of [LS95] with the same parameters as page 799.

Maturity
rate lyear 2year 3year 4year
0.04 0.28 0.23 0.20 0.18
0.07 0.30 0.24 0.21 0.19
0.10 0.32 0.26 0.22 0.20

After confirming the accuracy of our replication code, we proceed to calculate the value of
the debt under our DP approach with the default parameters presented in Table 8. We then
proceed to solve for the exogenous barrier of default that matches the [LS95] debt value to
our calculated debt value (using fsolve). This allows us to visualize what would have been
the exogenous barrier of default of the [LS95] model and analyse it. We proceed to do this
analysis in two separate categories. In the first section we analyse the barrier for Zero
Coupon bonds and in the second section for Coupon paying bonds (which according to
[LS95] can be considered as a portfolio of zero coupon bonds, where at each coupon date
we have a zero coupon bond with the face value equaling the coupon payment, and at

maturity the face value equal to the principal plus the coupon).

Zero Coupon Bonds:
For Zero Coupon bonds, we can observe that the default barrier is, for all maturities,
smaller than the face value of the debt and it is decreasing in maturity. This occurs because

in our model default can only occur at coupon dates and assumes that coupon payments
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are dependent of one another. These two effects combined reduce the probability of default
in our model. When probability of default is smaller, we see that the [LS95] exogenous
barrier decreases in time, to compensate for the reduction of risk. On the other hand, as
interest rates increase the price of the debt increases because of the upward drift in the
risk-neutral probability of default. This causes an increase in the barrier of default because
even though the barrier does not necessarily have to equal the face value of the debt, they

are both related [CDGO1].

Table 8: The constant barrier of default for different maturities and spot rates for a zero

coupon bond.

r\T lyr 2yr 3yr 4yr Syr 6yr 7yr 8yr 9yr 10yr
0.03 0.9388 0.8973 0.8771 0.8370 0.8170 0.7697 0.7733 0.7390 0.7084 0.7325
0.04 0.9389 0.8976 0.8778 0.8379 0.8182 0.7710 0.7748 0.7405 0.7098 0.7342
0.07 0.9396 0.8987 0.8800 0.8409 0.8218 0.7747 0.7792 0.7449 0.7141 0.7393
0.08 0.9400 0.8990 0.8807 0.8418 0.8230 0.7760 0.7806 0.7463 0.7156 0.7410
0.1 0.9411 0.8997 0.8821 0.8438 0.8254 0.7784 0.7835 0.7492 0.7184 0.7443

Default : rbar =0.06, a=1, sigma_r=0.0316, sigma_V=0.2, rho=-0.25, V=1.5, n=1, delta=1, delta0=T, C=0,
P=1, eta=0.9, m=100, w=0.5

Coupon Bonds:

The first difference to the zero coupon bond evaluation is that here the value of the
boundary is no longer smaller than the principal, in this case our boundary seems to be
below the asset value of the firm; V = 1.5. Another difference is that the constant default
boundary of [LS95] is increasing in maturity. This is because as maturity increases the
number of coupons payments the compnay must honor increases. Therefore there is an
accumulation of all the contractual obligations the firm has to make, increasing default
boundary. As interest rates increase the default barrier increases and the reasoning is

consistant with the explanation provided for zero coupon bonds.
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Table 9: The constant barrier of default for different maturities and spot rates for an eight

percent (8%) coupon bond.

r\T 1yr 2yr 3yr 4yr Syr 6yr 7yr 8yr 9yr 10yr
0.03 1.0262 1.1209 1.1664 1.2163 1.2668 1.3127 1.3567 1.3968 1.4383 1.4753
0.04 1.0262 1.1252 1.1715 1.2216 1.2719 1.3175 1.3608 1.4001 1.4402 1.4759
0.07 1.0262 1.1390 1.1873 1.2379 1.2876 1.3317 1.3730 1.4097 1.4462 1.4781
0.08 1.0262 1.1440 1.1928 1.2434 1.2928 1.3365 1.3770 1.4128 1.4481 1.4790
0.1 1.0264 1.1542 1.2040 1.2546 1.3032 1.3458 1.3849 1.4189 1.4520 1.4807

Default : rbar =0.06, a=1, sigma_r=0.0316, sigma_V=0.2, rho=-0.25, V=1.5, n=1, delta=1, delta0=T, C=0.08,

P=1, eta=0.5, m=100, w=0.5
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Chapter 6

Data Description

Like [LS95] we perform an empirical test of the relevance of stochastic interest rates and
their impact through correlation. To build the dataset we used the Trace, Compustat, Crsp
and Fisd databases from the Wharton Research Data Services (WRDS) research platform.
These databases are built with daily trading data, which can contain reporting errors and
therefore may misleadingly represent a more liquid market. This is why we have used the
Jens Dick-Nielsen algorithm to clean our data. To compile the information, we have chosen
to use SAS software due to its efficiency at sequential data access, processing power and
database access through SQL. For data analysis, data manipulation and summary graphics
and tables we have chosen to use Matlab software because its basic data element is the
matrix which facilitates data manipulation, its user-friendly graphical interactive tools, its

detailed documentation, and the numerous built in algorithms.

6.1 Jens Dick- Nielsen Algorithm

According to Jens Dick-Nielsen [DIC09] in his paper “Liquidity Biases in Trace”, there is an
overestimation of the liquidity of the corporate bond markets because close to 7.7% of the
records in the Trade Reporting and Compliance Engine (Trace) are reporting errors. The
reported errors are mainly: a record that has been input twice, identified by the same
message sequence number; a correction of a previous record done in the same day, it can
be either a cancellation or a correction (if we have a cancellation both records should be
deleted, if we have a correction only the original should be deleted); or a full reversal of the
record done at a later date, both the reversal and the original should be deleted. If we fail to

account for these errors, this will lead to double counting and hence higher liquidity.
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Even though this algorithm attempts to reduce reporting errors, some limitations endure.
For instance, it is not always possible to match the same-day corrections or the reversals to
the original report. In addition, it is possible that a broker breaks down a large trade into
smaller trades, all for the same client, where the negotiated price was done on the larger
package rather than on the small trades. Finally, manual and human error can occur, where
traders can, by mistake, input the wrong date, rate, time record, etc. However, the
performance of this algorithm remains significant; the algorithm is capable of eliminating

7.5% of the total 7.7% error rate. Note that the algorithm is available to the public.!

6.2 The SAS Library

Using SAS, we have managed to merge all the WRDS data sources mentioned above. We
began with all corporate bonds transactions since July 2002 recorded in Trace. Our
database contained over 99 million observations to date (November 2014) excluding
agency (144a) trades. The exclusion of agency transactions is a measure taken to avoid an
overstatement of the liquidity in the bond market [DIC0O9]. When an agent facilitates the
transaction between a customer and another broker, he usually charges a commission,
which is not always visible in Trace, and therefore the system ends up with two
consecutive records with the same price. After implementing the Dick-Nielsen cleaning
algorithm to our database, we have implemented other filters to retain only the data
relevant to our analysis. Table 10 describes the evolution of our data as we implemented

each filter.

1 How to Clean Trace data, Department of Finance Copenhagen Business School, URL:
http://sf.cbs.dk/jdnielsen/how_to_clean_trace_data
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Table 10. Data observations at each filter step.

Step | Category or Filter No. Obs

0 Trace initial data (since July 2002) 99,465,669
1 Eliminate true duplicates 99,461,324
2 Eliminate transactions that where reversed 98,095,852
3 Eliminate same day corrections 94,072,285
4 Leave only closing price & average daily price 15,092,763
5 Fixed coupon, non-callable, non-redeemable & positive debt

658,464
principal

6 Bonds with available quarterly accounting data & S&P credit rating 229,302

7 Bonds with available asset value and volatility (parameters

obtained from [SIL16-b]) 88,099
8 Bonds with available credit spread change and interest rate

change. Deleted all first entries where we could calculate the 88,738

change from one period to the next

Our final daily sample consists of 88,738 filings from July 2002 to November 2014, which is
our sample period. Our final monthly sample consists of 11,157 filings. These entries are
the averages of our dataset per Cusip9, per month. From these filings, we proceed to
compute the monthly average of prices, asset returns, asset volatility, etc., per industry and
credit rating to be able to replicate the regression from [LS95], which is done with monthly
credit spread changes, monthly interest rate changes and monthly stock return. The size of
the final sample is 2,446. Table 11 presents the summary statistics of our final sample data
on a daily basis, and Table 12 presents the summary statistics of our final sample data on

an average monthly basis.

We can observe in these tables that there is a larger variability in the data for daily filings.
For example, we observe for the Transportation and Communications industry, credit
rating CC, a 45.72% increase in standard deviation of credit spreads for daily data with
respect to monthly data. For the Manufacturing industry, daily data, credit rating BBB, we

observe skewness in the credit spreads of 106.08 implying that the data is asymmetric and
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a kurtosis in the spreads of 11,642.13, implying that the data is heavily tailed relative to a
normal distribution. The average monthly data on the other hand, weighted according to
the traded monthly volume of each security, reflects lower variation in spreads relative to

daily data (with the exception of Transportation and Communications, credit rating D).

There are some anomalies in our dataset for credit ratings CC and D. Our credit spreads and
their standard deviation are unrealistically high. This is explained because the records we
have for these two credit ratings go only until 2005. However, in our regressions, both of
these credit ratings were not statistically significant, and therefore were not considered in

our analysis.



Table 11. Summary statistics for the daily filings from July 2002 to November 2014.

Skewness Kurtosis

Rating Indsutry N  AvgPrice StdPrice AvgYield StdYield AvgSpr StdSpr Spr Spr
BBB Construction 149 107.15 4.35 4.77 1.72 0.01 1.67 -0.15 1.50
BB Construction 212 105.68 11.33 6.05 2.52 2.81 2.23 0.45 2.13
A Financials 134 128.00 4.14 4.47 0.39 1.53 0.37 -0.71 4.98
BBB Financials 2805  110.37 11.64 6.32 1.51 2.29 1.64 1.03 5.16
AAA Manufacturing 3302 118.89 11.62 4.55 1.02 0.28 0.91 -0.79 3.68
AA Manufacturing 6194  108.80 7.00 3.58 1.66 -0.83 1.29 0.00 2.16
A Manufacturing 23323 117.24 13.10 4.88 141 0.56 1.38 3.33 143.79
BBB Manufacturing 12463 108.33 10.99 5.56 9.29 1.54 9.27 106.08 11642.13
BB Manufacturing 5701  102.19 9.75 6.97 1.88 3.28 1.99 0.75 4.23
B Manufacturing 1158 98.66 11.17 8.00 2.33 3.86 2.31 1.49 6.41
ccc Manufacturing 1073 98.18 8.62 7.98 2.48 3.25 2.49 1.29 4.12
cC Manufacturing 4 93.68 2.52 10.30 0.57 6.25 0.57 -0.30 1.70
A Mining 1839  121.11 11.90 4.99 1.14 0.80 0.95 -0.26 5.28
BBB Mining 1858  112.67 12.66 6.02 1.45 2.10 1.48 -0.05 3.54
BB Mining 6 86.16 1.97 8.55 0.27 4.83 0.24 -1.37 3.55
AA Retail Trade 983 112.13 10.03 5.19 0.77 0.64 0.77 0.69 4.62
A Retail Trade 6686  110.04 8.19 4.72 1.58 0.30 1.69 -0.24 2.93
BBB Retail Trade 3298  107.82 8.09 5.04 1.81 0.52 1.87 1.07 7.24
BB Retail Trade 1920 99.76 8.65 6.26 2.29 1.93 2.22 0.86 5.77
B Retail Trade 881 97.95 11.41 8.74 4.25 4.39 4.45 2.93 13.66
ccc Retail Trade 1428 86.74 13.23 9.71 3.18 5.52 3.17 1.92 10.51
cC Retail Trade 694 60.52 16.60 16.06 9.66 12.52 9.61 3.45 15.71
AA Services 1270  125.17 7.53 4.56 1.27 0.10 0.82 -1.84 6.18
A Services 2181  119.06 8.70 4.58 1.33 0.28 1.15 -0.73 4.32
BBB Services 43 101.97 117 4.75 0.69 0.13 0.64 1.04 4.14
BB Services 317 97.23 6.40 6.32 1.40 1.87 1.43 0.55 2.69
B Services 781 95.21 7.73 6.38 1.40 1.59 1.33 -0.15 1.90
AAA  Transportation & Comm. 169 106.85 7.33 5.34 0.77 0.56 0.76 -1.14 9.56
AA  Transportation & Comm. 20 101.60 2.66 5.46 1.53 0.87 1.51 -0.39 173
A Transportation & Comm. 1475  105.42 4.69 4.54 1.35 -0.17 1.40 0.27 5.17
BBB Transportation & Comm. 2050  104.73 4.90 4.35 1.23 -0.25 1.25 0.53 5.41
BB  Transportation & Comm. 125 102.21 1.68 5.96 0.42 0.99 0.40 2.19 14.11
B  Transportation & Comm. 1 99.00 - 8.05 - 3.07 - - -
CCC Transportation & Comm. 864 77.91 15.65 20.13 8.96 15.51 9.00 0.59 3.34
CC Transportation & Comm. 53 50.41 15.72 97.41 122.89 92.67 122.89 3.24 12.75
D  Transportation & Comm. 220 78.32 14.85 58.84 88.13 54.25 88.12 5.68 39.59
A Wholesale Trade 698 106.67 3.61 2.33 0.61 -2.45 0.59 1.49 10.30
BBB Wholesale Trade 1080  106.59 10.04 6.33 1.79 2.55 1.98 1.09 18.79
BB Wholesale Trade 427 106.31 3.14 5.42 1.18 0.68 1.27 0.07 1.61
B Wholesale Trade 25 99.87 1.13 6.85 0.71 1.96 0.74 1.05 3.45
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Table 12. Summary statistics for the average monthly filings from July 2002 to November

2014.

Skewness Kurtosis

Rating Indsutry N  AvgPrice StdPrice AvgYield StdYield AvgSpr StdSpr Spr Spr
BBB Construction 44 107.86 2.82 4.97 171 1.47 0.53 0.02 2.25
BB Construction 46 102.65 12.13 6.74 2.65 4.53 1.86 1.19 433
A Financials 7 126.82 6.96 4.45 0.26 1.99 0.21 -0.24 1.78
BBB Financials 112 111.81 11.78 6.42 1.48 2.75 1.48 1.59 5.71
AAA Manufacturing 122 120.33 10.11 4.63 0.87 0.71 0.39 173 6.04
AA Manufacturing 107 108.37 5.49 3.99 1.80 0.70 0.46 1.37 3.72
A Manufacturing 137 120.26 9.17 5.05 0.92 1.42 0.58 1.10 4.49
BBB Manufacturing 137 108.89 8.01 5.39 1.49 2.20 1.25 1.71 6.33
BB Manufacturing 119 101.89 9.11 7.01 1.47 3.75 1.74 1.24 5.09
B Manufacturing 82 97.00 12.78 8.44 2.42 4.95 2.19 1.73 5.89
ccc Manufacturing 45 95.37 7.47 9.10 2.05 493 2.16 0.65 3.18
cC Manufacturing 1 93.89 0.00 10.37 0.00 6.90 0.00 - -
A Mining 129 121.82 10.60 4.92 1.08 1.40 0.61 1.51 5.44
BBB Mining 128 108.45 11.76 6.18 1.24 2.42 1.28 1.24 4.56
BB Mining 1 91.48 0.00 7.87 0.00 3.92 0.00 - -
AA Retail Trade 30 114.03 5.99 5.23 0.44 0.93 0.54 1.64 421
A Retail Trade 133 113.13 9.32 4.87 0.82 1.45 0.78 1.46 6.73
BBB Retail Trade 105 109.07 7.30 5.04 1.53 2.02 1.55 2.03 7.23
BB Retail Trade 113 94.80 14.12 7.17 2.73 3.90 2.36 1.73 6.26
B Retail Trade 76 97.79 14.38 8.89 4.97 5.75 5.43 2.40 8.53
Cccc Retail Trade 81 84.14 13.80 10.15 3.17 6.42 3.22 1.76 5.72
cC Retail Trade 43 55.84 19.59 18.70 12.09 15.21 11.98 1.88 4.97
AA Services 41 125.25 3.65 4.56 1.13 0.76 0.17 271 13.25
A Services 69 117.40 7.18 4.44 1.13 111 0.67 1.75 5.67
BBB Services 9 101.93 0.92 5.10 0.85 1.18 0.61 0.62 2.33
BB Services 34 99.93 3.61 7.29 1.48 4.32 2.15 0.28 1.75
B Services 24 96.96 4.97 6.55 0.99 2.44 1.14 3.68 16.71
AAA Transportation & Comm. 38 106.42 6.14 5.46 0.50 0.97 0.52 1.42 4.56
AA  Transportation & Comm. 5 101.33 0.89 5.13 1.26 2.68 0.58 1.07 2.68
A Transportation & Comm. 84 104.33 6.78 5.15 117 1.32 0.78 1.12 3.56
BBB Transportation & Comm. 114 107.75 6.93 4.73 1.27 1.66 1.02 0.41 1.92
BB  Transportation & Comm. 9 101.50 1.58 5.91 0.20 1.07 0.27 0.36 2.16
B  Transportation & Comm. 1 99.00 0.00 8.05 0.00 5.20 0.00 - -
CCC Transportation & Comm. 27 87.15 11.79 15.48 9.59 11.71 10.17 1.74 7.42
CC Transportation & Comm. 2 37.39 6.49 114.81 77.09 11047  77.17 0.00 1.00
D  Transportation & Comm. 14 69.15 20.51 117.27 166.69 11436  166.35 1.94 4.97
A Wholesale Trade 18 106.83 2.66 2.30 0.48 0.47 0.27 2.01 5.81
BBB Wholesale Trade 109 104.64 11.25 6.62 1.65 3.00 1.49 1.35 5.93
BB Wholesale Trade 36 106.27 2.03 5.15 0.92 1.68 0.73 2.10 6.87
B Wholesale Trade 14 100.06 1.17 6.83 0.77 2.34 0.68 0.69 3.39

To be able to further validate the quality of our monthly dataset, we have plotted the time
series of credit spreads for each S&P rating category and we observe consistent data. For
example, the credit spreads for the S&P credit rating BBB increased drastically during the
2008 crisis and was in fact close to 7% during that period. Figures 8-16 highlight the direct
effects of changes in credit quality on the prices of corporate bonds, and can signal changes

in the market prices of OTC derivative positions [DS03].
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Figures 8-16. Time series of monthly Credit Spreads per Standard and Poor’s credit rating.
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Chapter 7

Empirical Results and Analysis

We attempt to replicate, using the data described in Chapter 6, the results from [LS95]
(page 808), which state that there is an important correlation to consider, between asset
returns and interest rates, when evaluating corporate debt. According to [LS95], this
correlation can explain why companies in different industries may have different spreads
whilst having the same credit rating. The correlation was calculated between the average
asset return per industry per month and the average interest rate change, per industry per

month. The results are presented in Table 13.

We then proceed to perform the [LS95] regression (7.1) on the changes of credit spreads

with respect to changes in interest rates and stock returns with a 95% confidence interval.
AS =a+ bAY +cl + ¢ (7.1)

where AS is the change in credit spreads (taken from the Trace database built in chapter 6),
AY is the change in interest rates (in our case the 20-year Treasury Bond) and [ is the
return on the stock (taken from the Trace database built in chapter 6). This regression
provides us with coefficients b and c. Coefficient b measures the sensitivity of the change of
credit spreads to changes in interest rates. Results are presented in Table 14. We can
observe that all coefficients are negative; this means that as interest rates increase, credit
spreads decrease, as predicted by our model and that of [LS95]. Additionally, c coefficients

are also negative; as the return on the stock increases, the credit spreads decrease.
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Another implication of our model (Chapter 4) and that of [LS95] is that, as correlation
increases, the sensitivity of the credit spreads towards changes in interest rates must also
increase. The explanation behind this relationship is that as when correlation is negative,
changes in the interest rate should be reversed by changes in the asset value, therefore a
change inr, has less of an effect on the credit spreads than when correlation is zero or

positive [LS95].

We have mirrored their methodology beginning with the following hypothesis:

Hy:b =0vs.H;: b # 0ata = 0.05

Considering only those regressions that were statistically significant we did not observed
the same pattern (as p increases sensitivity, b, increases) in our dataset. Performing the
regression with daily data did not coincide with [LS95] either, most likely because of the
additional noise in daily trades. Other tests where implemented, on both daily and monthly
data. For instance, we calculated both the correlation and the [LS95] regression for bonds
that had been traded sequentially on a daily basis, allowing for a maximum gap of 4 days in
the data (to avoid deleting entries because of long weekends where no trade occurs). A
similar reasoning was done on a monthly basis: We performed regression considering only
those bonds that had been traded every month during their lifetime. In all scenarios, we did
not observe the results presented by [LS95]. One possible explanation for this discrepancy
could be the drastic movements in the markets during the 2008 financial crisis. As an
attempt to rationalize this difference, regressions dividing the dataset into ‘before’ and
‘after’ the crisis were performed. However, this substantially reduced the number of data

points in the regression and our results were not statistically significant.

We can observe that the confidence interval is very large for all entries on Table 14. This
allows us to conclude that even though we considered only those industries and credit

ratings that had statistically significant results, their difference is not.
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[t is still important to highlight that we do observe a relation between credit spreads and

the correlation between interest rates and asset value. The analysis of the how sensitive

each industry is to correlation is a future research project.

Table 13: Results of the calculation of correlation between the return on the assets, and the

monthly changes in the 20-year Treasury Bond Yield

Mean of Credit  Std. Dev. of
Rating  Industry N Rho
Spread Credit Spread

A Services 69 0.09100 1.11340 0.67416
A Mining 129 0.14717 1.40187 0.61176
A Retail Trade 133 0.19449 1.44619 0.78149
B Retail Trade 76 0.03451 5.75019 5.43219
B Manufacturing 82 0.29514 4.94620 2.19236
BB Construction 46 0.07224 452795 1.85785
BB Services 34 0.77598 432032 2.14694
BB Retail Trade 113 0.18296 3.90131 2.36054
BB Manufacturing 119 0.30017 3.74715 1.73581
BBB Retail Trade 105 0.35186 2.02382 1.54555
BBB Finance, Insurance, And Real Estate 112 0.49865 2.74820 1.48311

Table 14: Results from regressing monthly changes in Credit Spreads on monthly changes

in the 20-year Treasury Bond Yield and the return on the equity.

The term AS is the change in the credit spread, the term AY is the change

Treasury bond yield, and the term [ is the return on the equity.

in the 20-year

lower upper
Rating Industry Rho a b c ty ty [ R? N  95% 95%

bound bound
A Services 0.09100 -0.0152 -0.4471 -0.0105 -0.4794 -3.1472 -2.0582 0.1828 68  -0.7308 -0.1634
A Mining 0.14717 0.0201 -0.1639 -0.0089 0.8858 -2.0512 -3.5011 0.1243 128 -0.3221  -0.0058
A Retail Trade 0.19449 0.0005 -0.5164 -0.0076 0.0183 -3.6372 -1.9419 0.1275 132  -0.7973  -0.2355
B Retail Trade 0.03451 -0.0510 -2.9304 -0.0160 -0.1650 -2.1359 -0.8236 0.0709 75  -0.3546  -0.1991
B Manufacturing 0.29514 0.0378 -1.3797 -0.0438 0.4636 -3.7918 -7.1840 0.5400 81  -0.2560 0.1207
BB Construction  0.07224 -0.2223 -1.8840 -0.0178 -1.5118 -4.4889 -2.5297 0.3791 45  -2.7309 -1.0370
BB Services 0.77598 -0.0833 -1.1607 0.0027 -0.5591 -2.6397 0.1875 0.3077 33  -2.0587 -0.2627
BB Retail Trade 0.18296 0.0252 -1.1549 -0.0081 0.2552 -2.1820 -1.2479 0.0675 112  -2.2039  -0.1059
BB Manufacturing 0.30017 -0.0155 -0.8764 -0.0078 -0.2625 -2.6216 -1.4744 0.0919 118 -1.5386 -0.2142
BBB Retail Trade 0.35186 -0.0039 -0.7207 -0.0156 -0.0695 -2.4061 -2.2798 0.1312 104 -1.3149 -0.1265
BBB Finance 0.49865 0.0188 -0.4595 -0.0174 0.4930 -2.0355 -5.1500 0.3077 111  -0.9070 -0.0120
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Chapter 8

Replicating Historical Prices

To be able to compare our approach to real life scenarios we parameterized our model
using maximum Likelihood estimation for the 20-year Treasury bond under the Vasicek
dynamic. The details of the Vasicek dynamic are presented in Chapter 2, Section 2.3. Figure
17 depicts the evolution of this security from 2002 until 2014 (period under which we
focus our analysis).

Figure 17. 20-Year Treasury bond historical evolution
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The parameterization of the Vasicek model is done using the historical data collected
(Chapter 6) and MLE (maximum likelihood estimation). Here below find the parameters of
formula (2.1), and the results of both daily and monthly parameterizations are presented in

Table 15.
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Table 15: Results from the parametrization of the Vasicek model using the dataset built

(description on Chapter 6)

20-year yield 20-year yield
(Monthly Data) (Daily Data)
K 0.3532 0.6788
o 0.007463 0.009419
T 0.038214 0.040059

Using the calculated parameters for the Vasicek model and parametrization for the asset
value and asset volatility provided by [SIL12], we price nine different bonds at various
dates. We observe relative errors of the order of 16%. Part of this error is certainly
attributable to the fact that we do not apply any risk adjustment to the physical interest
rate dynamics. This can be considered for future research. Additionally, we could not find
on WRDS or Bloomberg the time series of the amount of the debt outstanding for each
bond, we were only able to obtain the original size of the issue. This obstructed us from
proceeding to a more in-depth analysis. Table 16 presents our results.

Table 16: Pricing with our DP model compared to actual bond prices and the plain vanilla

formula.
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Cusip_ID Company Name Bond Price Our approach Vanilla Formula
110122AB4 BRISTOL-MYERS SQUIBB CO 1,084.16 908.99 921.96
134429AG4 CAMPBELL SOUP CO 1,398.95 1,142.92 1,185.99
382388AK2 GOODRICH CORP 1,017.77 959.04 994.37
418056AH0 HASBRO INC 1,074.79 884.73 904.16
478160AJ3 JOHNSON & JOHNSON 1,454.55 962.94 983.23
500255AC8 KOHL'S CORP 1,017.02 985.78 1,054.43
655664AH3 NORDSTROM INC 775.39 994.20 958.45
902494AD5 TYSON FOODSINC -CL A 967.30 866.96 954.31
963320AH9 WHIRLPOOL CORP 1,155.08 1,003.32 1,073.50
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Conclusion

In this thesis, we propose a robust methodology for evaluating corporate bonds under a
stochastic interest rate environment and with discrete fixed rate coupons. This dynamic
programming approach, coupled with spectral interpolation, has the benefit of being a
more tractable and manageable approach than the N-dimensional integral proposed by
[G77] and comprises the compounding effect of coupons through time, unlike the [LS95]
model. [EHHO04] have demonstrated that the optionality feature of the [G77] model results
in a more accurate prediction of credit spreads and that an endogenous barrier of default
like the one observed in the [G77] model is more effective in increasing the precision of

pricing of corporate debt over an exogenous barrier of default like that of [LS95].

We have shown that our approach not only replicates others already existing models in the
literature (under appropriate parameterization), but it also converges with only one
hundred interpolation points on the grid. This model can account for the price of the debt
at any point in time, and considers the lag between the pricing date and the first coupon

date, if any.

We have been able to observe in our dataset that there is a relationship between current
interest rates and the value of the company. From our regression of interest rate changes
on credit spreads we found a negative relation between these two variables represented by
b < 0. This implies that an increase in interest rate will decrease the credit spread of the

corporate bond. However, we did not observe the [LS95] implication of a positive relation
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between correlation and interest rate sensitivity. We attribute this to the spikes in prices
and credit spreads during the 2008 financial crisis, and a more in-depth analysis can be

considered for further research.

There are some important concepts that were not considered in this thesis. To begin with,
we have decided to use the one factor Vasicek model, as it is the simplest model and the
most tractable one. We could have used the two factor model, now that the inclusion of the
second factor explains an additional 10.3% of the variability in interest rates (from 85% to
95.3%) [SIL12]. Additionally, our methodology can be adapted to other interest rates
models for which the joint density is known, it does not necessarily have to be one with a
Gaussian solution [CLE13]. This implies that jump diffusion model or CIR could be used to
model corporate debt under our valuation approach. Finally, we did not analyze the impact
of parameterization on our endogenous barrier of default. This can be done through the
[LS95] exogenous barrier, using fsolve in Matlab to match the bond prices. This would be
interesting to better visualize the analysis of the impact of the parameters, done on Section

5.3, on the exogenous barrier of default.
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Appendix

Table A: Industry classification according to the United Stated department of Labour.?

Sanitary Services

Division | Industry Name SIC 2 Codes

A Agriculture, Forestry, And Fishing 01, 02,07,08, 09
B Mining 10,12,13,14

C Construction 15,16,17

D Manufacturing 20-39

E Transportation, Communications, Electric, Gas, And 40-49

F Wholesale Trade 50, 51

G Retail Trade 52-59

H Finance, Insurance, And Real Estate 60-65,67

I Services 70,72-73,75-76, 78-
84, 86-89

| Public Administration 91-97,99

Table B: Database elements and description

Database Code Name

Description

rating_dt_end date_of rating

Day the rating of the bond was made

issue_id issue_id A Mergent-generated number unique to
each issue.
3 | rating StdPoors_rating S&P bond issue rating as per trading date
cusip_id cusip_id The 9 digit cusip identifier of the issue.

Issuer CUSIP + Issue CUSIP

5 | bond_sym_id TRACE_bond_symbol

Unique NASD identifier assigned to each
bond issue. This identifier was was
constructed by appending a unique issue
code to the company's common stock
ticker symbol. For example, "IBM.GT" is
the TRACE Bond Symbol for a particular

2 SIC Division Structure, US Department of Labour, URL: https://www.osha.gov/pls/imis/sic_manual.html
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IBM debenture.

trd_exctn_dt

trade_execution_date

Date the bond was traded

trd_exctn_tm

trade_execution_time

Time the bond was traded

msg_seq_nb

msg_seq_nb

Message sequence number

O| 0| 3| O

cmsn_trd

commission_indicator

Indicates if the reported price is inclusive
of dealer commission (Y=yes, N=no)

10

ascii_rptd_vol_tx

reported_volume

Par value volume of the reported trade

11

rptd_pr

daily_closing_price

Originally reported price. For this
database we chose closing day price

12

Avg RPTD_PR

daily_average_price

Average daily price

13

yld_pt

security_yield

This field indicates the effective rate of
return earned on a security, expressed as
a percentage. The field will be blank if no
yield is available.

14

diss_rptg_side_cd

reporting_side

Identifies the trade as either a customer
buy or sell trade, or an inter-dealer (sell)
trade. (B=bought, S=sold, D=Intra-
dealer from sellers perspective)

15

chng_cd

price_change

Change Indicator High/Low/Last. This
field describes the price change(s) that
the transaction 16caused for the issue

traded.

16

rptd_high_pr

daily_high_price

Th17is field represents the high price
reported for th2e specific bond for the
day. If the High Price is not available for a
bond, this field will contain all zeroes
(0000.000000)

17

rptd_low_pr

daily_low_price

This field represents the low price
reported for the specific bond for the day.
If the Low Price is not available for a
bond, this field will contain all zeroes
(0000.000000).

18

rptd_last_pr

last_selling_price

This field represents the last sale price
reported for the specific bond for the day.
If the Last Sale Price is not available for a
bond, this field will contain all zeroes
(0000.000000).

19

total_vol

total_vol

It is expressed in units of one share, for
daily data, and on hundred shares for
monthly data. Our data source for
NYSE/AMEX reports the number
rounded to the nearest hundred. For
example, 12,345 shares traded will be
reported on the Nasdaq Stock Exchange
as 12,345 and on the NYSE or AMEX
exchanges as 12,300. Volume is set to -99
if the value is missing. A volume of zero
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usually indicates that there were no
trades during the time period and is
usually paired with bid/ask quotes in
price fields.

20

issuer_id

issuer_id

For FISD data, ID of the company that
does the issue of both bonds and stocks

21

principal_amt

principal_amount

Principal of the corporate bond in
question

22 | dated_date issue_date Date the corporate bond was issued. Not
the same as the transaction day.
23 | first_interest_date first_coupon_date First coupon since the issuance of the

bond

24

next_interest_date

next_coupon_date

Next coupon date with respect to the
current trading day

25

last_interest_date

last_coupon_date

Last coupon until maturity of the bond

26

interest_frequency

coupon_frequency

How many times per year is the coupon
payed

27

coupon (%)

coupon_rate_percentage

What is the coupon rate (%)

28

day_count_basis

day_count_basis

All are “30/360”

29

TT™M

Maturity

Maturity of the bond in days

30

CUSIP_ID_6

CUSIP_ID_6

First 6 digits of the CUSIP pertain to the
company which issued the obligation.
The last 3 digits are particular to the
obligation

31

ISSUNO

Nasdaqg_issue_number

ISSUNO is a unique integer assigned by
the National Association of Securities
Dealers (NASD) to each listed security on
the Nasdaq Stock Market(SM). It is this
issue-specific identifier which
differentiates securities issued by the
same company. If the issue number is
unknown, ISSUNO is set to zero. If an
NYSE/AMEX security was ever traded on
Nasdagq, this number is set to the latest
issue number assigned when it was
trading on Nasdaq. The ISSUNO in the
CRSP file may change if Nasdaq assigns a
new number to an issue CRSP considers
to be a continuation of an existing issue.

32

PRC

stock_price

Prc is the closing price or the negative
bid/ask average for a trading day. If the
closing price is not available on any given
trading day, the number in the price field
has a negative sign to indicate thatitis a
bid/ask average and not an actual closing
price. Please note that in this field the
negative sign is a symbol and that the
value of the bid/ask average is not
negative.
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33

RET

holding_period_return

A return is the change in the total value of
an investment in a common stock over
some period of time per dollar of initial
investment. RET(I) is the return for a sale
on day I. It is based on a purchase on the
most recent time previous to [ when the
security had a valid price.

34

BID

closing_bid

The bid price from the last representative
quote before the markets close for each
trading date.

35

ASK

closing_ask

The ask price from the last representative
quote before the markets close for each
trading date.

36

SHROUT

shares_outstanding

SHROUT is the number of publicly held
shares, recorded in thousands

37

RETX

return_without_dividends

RETX contains returns without dividends.
Ordinary dividends and certain other
regularly taxable dividends are excluded
from the returns calculation. The formula
is the same as for RET except d(t) is
usually 0.

38

NewFiscal QTR

lagged_QTR

Since Financial statements are done
quarterly we have corrected for the lag in
financial reporting to match the trading
date to the date where the revenues and
expenses where actually accounted for.

39

NewFiscalYr

lagged_YR

Since Financial statements are done
quarterly we have corrected for the lag in
financial reporting to match the trading
date to the date where the revenues and
expenses where actually accounted for.

40

AccountingDate

accounting_date

Since Financial statements are done
quarterly we have corrected for the lag in
financial reporting to match the trading
date to the date where the revenues and
expenses where actually accounted for.

41

LOC

country_code

LOC -- Current ISO Country Code -
Headquarters. This item contains the
code that identifies the country where the
company headquarters is located. The
country codes are established by the
International Standards Organization
(ISO).

42

STATE

STATE

STATE - US State/Province

43

NAICS

North American Industry
Class System

North American Industry Classification
System Code (NAICS) is an 6-character
code used to group companies with
similar products or services. It was
adopted in 1997 and implemented in
1999, by the Office of Management and
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Budget (OMB), to replace the U.S.
Standard Industrial Classification(SIC)
system.

44 | SIC SIC -- Standard Industry Standard Industrial Classification Code
Classification Code

45 | CONM company_name Company Name

46 | ACTQ total_current_assets ACTQ -- Current Assets - Total.
(Quartely)

47 | ATQ total_assets ATQ -- Assets - Total. (Quarterly)

48 | CEQQ total_common_equity CEQQ -- Common/Ordinary Equity -
Total. (Quarterly)

49 | CSHOQ common_shares_outstanding | CSHOQ -- Common Shares Outstanding.
Quarterly

50 | DLTTQ total LT debt DLTTQ -- Long-Term Debt - Total.
Quarterly

51 | DVPSPQ dividends_per_share DVPSPQ -- Dividends per Share - Pay Date
- Quarter. Quarterly

52 | INTACCQ interest_accrued INTACCQ -- Interest Accrued. This is for
utility companies only. This item
represents the amount of interest
accrued but not matured on all liabilities
of the Utility. However, this does not
include interest, which is added to the
principal of the debt on which incurred.

53 | LCTQ total_current_liabilities LCTQ -- Current Liabilities — Total.
Quarterly

54 | LLTQ total_LT_liabilities LLTQ -- Long-Term Liabilities (Total).
Quarterly

55 | LTQ total_liabilities LTQ -- Liabilities - Total. Quarterly

56 | OPTDRQ dividend_rate_percentage OPTDRQ -- Dividend Rate - Assumption
(%). Quarterly

57 | id_cnum id_cnum Used to merge Axels database with the
asset value and asset volatility of each
company

58 | obs obs Used to merge Axels database with the
asset value and asset volatility of each
company

59 | asset_value asset_value Asset value following a standard

Brownian motion, usually higher than the
fundamental/accounting asset value

60 | asset_vol asset_vol Asset volatility needed to calculate the
standard Brownian motion

61 | FF.O fed_fund_rate Interest rate needed to calculate
correlation

62 | TCMNOM_M3 tbill 3month Treasury constant maturities 3 months

63 | TCMNOM_YZ20 tbill_20yr Treasury constant maturities 20 years

64 | TCMIL Y20 tbill_20yr_inflation_indexed | Treasury constant maturities 20 years,

inflation indexed
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65 | sic2 Sic2 First two digits of the SIC. It is used to
narrow down the industry categories

66 | Industry_Name Industry_Name Industry_Name

67 | Division Industry_Division Industry_Division

68 | Days_TM days_to_maturity days_to_maturity

69 | Calendar_Days_TM | calendar_days_to_maturity calendar_days_to_maturity
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