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Résumé

La théorie du jeu du champ moyen (MFG) étudie un système composé de nombreux

individus, où l’action de chaque individu a un impact négligeable sur le système dans

son ensemble. En outre, ces agents interagissent les uns avec les autres par le biais du

comportement agrégé de l’ensemble de la population (par exemple, l’état moyen). Nous

appliquons cette méthodologie au système de transactions interbancaires, où nous incor-

porons une grande banque dont l’action affecte l’état du système et chaque petite banque.

Plus précisément, nous modélisons les activités d’emprunt et de prêt interbancaires en-

tre une grande banque et de nombreuses petites banques. Les banques sont sensibles

aux risques et contrôlent leur taux d’emprunt/de prêt auprès de la banque centrale afin

de maintenir un certain niveau de réserves monétaires logarithmiques. La sensibilité au

risque est représentée par la fonction de coût exponentiel quadratique. Nous considérons

également différents types de petites banques, et l’état du marché est obtenu par une

combinaison linéaire des réserves log-monétaires de la grande banque et de la moyenne

empirique des réserves de toutes les petites banques. Les banques interagissent à travers

l’état du marché car elles souhaitent suivre une fraction de l’état du marché. Les stratégies

de transaction de meilleure réponse des grandes et des petites banques sont dérivées en

utilisant les techniques d’analyse convexe et d’analyse variationnelle. Nous obtenons en-

suite un équilibre de Nash pour le système avec les stratégies de meilleure réponse lorsque

le nombre de petites banques tend vers l’infini. Nous étudions également l’impact d’une

grande banque, la sensibilité au risque, la défaillance d’un sous-groupe de petites banques

et plusieurs autres facteurs sur la probabilité de défaillance de la banque individuelle et le



risque systémique, qui est le risque que l’état du marché tombe en dessous d’un seuil spé-

cifique. Nous menons des expériences numériques pour illustrer les comportements des

banques et du système dans différents scénarios. Nous observons que la présence d’une

grande banque averse au risque améliore sa propre stabilité, celle des petites banques et

celle du marché interbancaire. Cependant, les avantages d’une grande banque averse au

risque sont compromis par l’augmentation de sa taille. En outre, la santé financière du

système est améliorée lorsque la grande banque a un taux de croissance rapide, tandis

qu’une grande banque alignant étroitement ses réserves monétaires sur la moyenne du

marché augmente les risques de défaillance dans l’ensemble du système. En outre, un

sous-groupe de banques mineures ayant une aversion au risque augmente généralement

les probabilités de défaut sur le marché interbancaire en réduisant la liquidité. Des poli-

tiques et des réglementations peuvent être mises en œuvre en conséquence pour prévenir

les défaillances graves.

Keywords

Jeux à champ moyen majeur-mineur; Système de transactions interbancaires; Sensibilité

au risque; Risque systémique
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Abstract

The mean-field game (MFG) theory studies a system that consists of many individ-

uals, where each individual’s action has a negligible impact on the system as a whole.

Moreover, these agents interact with each other through the aggregate behaviour of the

whole population (e.g. average state). We apply this methodology to the interbank trans-

actions system, where we incorporate a large bank whose action affects the system’s state

and each small bank. Specifically, we model the interbank borrowing and lending activ-

ities between a large bank and many small banks. The banks are sensitive to risks and

control their borrowing/lending rate with the central bank to maintain a certain level of

log-monetary reserves. The risk sensitivity is featured through the exponential quadratic

cost functional. We also consider different types of small banks, and the market state is

obtained from a linear combination of the log-monetary reserves of the large bank and the

empirical average of the reserves of all the small banks. The banks interact through the

market state as they wish to follow a fraction of the market state. The best-response trans-

action strategies of the large and small banks are derived using the convex analysis and the

variational analysis techniques. We then obtain a Nash equilibrium for the system with

the best-response strategies when the number of small banks tends to infinity. We also

investigate the impact of a large bank, risk sensitivity, the default of a subgroup of small

banks, and several other factors on the individual bank’s default probability and systemic

risk, which is the risk that the market state falls below a specific threshold. We conduct

numerical experiments to illustrate the behaviours of the banks and the system under dif-

ferent scenarios. We observe that the presence of a risk-averse large bank improves the
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stability of itself, small banks, and the interbank market. However, the benefits of a risk-

averse large bank are compromised by the increase in its size. Furthermore, the financial

health of the system is improved when the large bank has a fast growth rate, while a large

bank closely aligning its monetary reserves with the market average raises default risks

throughout the system. Moreover, a subgroup of minor banks being risk-averse generally

increases the default probabilities in the interbank market by reducing liquidity. Policies

and regulations can be implemented accordingly to prevent severe default events.

Keywords

Major-minor mean-field games; Interbank transactions system; Risk sensitivity;

Systemic risk
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Introduction

The presence of banks dates back to thousands of years ago when the first currencies

were invented. In its early days, the primary function of banks was to serve as a safe

place for individuals to store their coins and valuable assets, while some banks were also

documented to lend money. As the banking system evolves to be complete, more ser-

vices are offered, such as foreign currency exchange, wealth management, and various

investment instruments. Nevertheless, the fundamental role of banks has remained con-

stant: accepting deposits and extending loans to retail customers. With the emergence

of online banking, the services banks provide are becoming more automated. Therefore,

banks must ensure that the withdrawal demands of their customers are fulfilled at any

time. When a bank fails to meet these demands, it can borrow cash from another bank

with excess funds. This is considered an interbank transaction, where banks trade directly

with each other at the interbank rate. By engaging in the interbank market, banks can

reduce their liquidity risk, which is the risk of being unable to cover their short-term debt.

Therefore, interbank transactions typically take place on an overnight basis.

Banks also have the option to borrow from central banks in cases of liquidity short-

ages. In the United States, a commercial bank can borrow from the Federal Reserve (the

Fed) through the discount window when it does not have enough cash to meet the daily re-

serves requirement. Banks also conduct transactions with the central bank through open

market operations. When the Fed implements a contractionary monetary policy to cut

the money supply in the system, it sells government securities to individual banks. If

an expansionary monetary policy is required for the current economic state, the Fed will



purchase securities from banks. In this sense, banks engage in lending and borrowing

operations with the central bank, which sets the stage for a delicate financial ecosystem.

Banks purchase these financial instruments in Canada at the Canadian overnight repo rate

average (CORRA). The interest rate charged by the central bank when lending money to

commercial banks is normally higher than the rate set by the banks when trading among

themselves. However, banks still trade with the central bank since it is always available.

The Global Financial Crisis of 2007 - 2008 was a stark reminder of banks’ vulnera-

bility. Banks worldwide were distressed and struggling to raise funds, leading to a freeze

in the interbank market. Therefore, banks had to resort to central banks to secure funds

and maintain operations. In times of crisis, central banks and governments must intervene

to ensure that the so-called "too big to fail" institutions do not collapse during a finan-

cial crisis. These banks are also labeled as systemically important financial institutions

(SIFI) by the U.S. federal regulators since their failure would be catastrophic for the entire

economy. The goal, therefore, is to establish an equilibrium in the interbank market to

maintain system stability, prevent defaults, and mitigate systemic risk.

Each bank maintains a certain level of monetary reserves for its daily activities in the

banking industry. Banks also want to utilize their cash and resources sufficiently to cap-

ture investment opportunities in the market. Therefore, banks need to keep the appropriate

amount of cash to engage in trades and investments that benefit their long-term operation

while not facing liquidity issues. To study this matter, we set up an interbank transac-

tions system, drawing motivations from (Carmona et al., 2015) and (Chang et al., 2023).

We incorporate one major bank, which can be seen as a systemically important financial

institution in the U.S banking system, and many small banks. The major bank’s action

affects the system’s state and each minor bank. We model the dynamics of monetary re-

serves and cost functionals of banks in the mean-field games (MFG) and risk-sensitive

linear-quadratic Gaussian (LQG) setting. MFG is the study of the connection between the

behaviours of a large finite population and the limiting case with an infinite population. It

explores the strategies taken by each player in a game setting and the presence of approxi-

mate Nash equilibria formed by the strategies (Lasry and Lions, 2006, 2007; Caines et al.,
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2006, 2007; Carmona and Delarue, 2018). In this setting, we assume that matching the

market average level indicates effective utilization of a bank’s monetary reserves, as mo-

tivated by Carmona et al. (2015). Therefore, banks borrow when their monetary reserves

are lower than the market average level and lend when their monetary reserve levels are

higher. Each bank also engages in transactions with the central bank at additional costs

at a borrowing/lending rate controlled by the bank itself, which is the frequency at which

an individual bank trades with the central bank based on its needs. Therefore, banks want

to find the optimal trading rate to maintain adequate funds while the costs are minimized.

We demonstrate in the later sections that by operating at this optimal borrowing/lending

rate, the interbank system reaches a Nash equilibrium in the limiting case where there is

an infinite number of minor banks and no bank benefits from deviating from its optimal

trading strategy. The set of optimal trading rates forms a e-Nash equilibrium when a finite

number of minor banks present in the interbank market.

Furthermore, banks are sensitive to liquidity risk and credit risk. Liquidity risk, as

mentioned above, is the probability that a bank cannot cover its short-term debt due to the

lack of cash, and credit risk is the risk of a borrower failing to repay its loans. There is

no significant association between credit risk and liquidity risk in terms of contemporane-

ous and time-lagged relationships. Nonetheless, these two risks affect bank stability and

might contribute to the system’s failure individually and through their interaction (Ghen-

imi et al., 2017). Therefore, the banks in our model behave in a risk-averse fashion. The

risk aversion is featured through an exponential quadratic cost functional, which also al-

lows us to include the higher moments of the integral cost function like skewness and

kurtosis. By modelling the higher moments, we can obtain a more robust framework for

sensitivity analysis and decision-making, particularly for a system with many stochastic

factor such as in this work. We also consider different types of minor banks, such as retail

banks, commercial banks, and investment banks. These different types of banks target

different groups of clients, specialize in various services, and are exposed to different

sources of risks. The average state of the system could be obtained from the empirical

distribution of the states of all the minor players. We mathematically determine the op-
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timal rates of borrowing and lending of the major and minor banks, which serve as their

best-response strategies, using the convex analysis and variational analysis approaches in

Firoozi et al. (2020) and Liu et al. (2023). The MFG theory states that when the num-

ber of players in a finite population system increases, the system’s behaviour mirrors that

of an infinite system. Therefore, we solve our problem under an infinite system since

it is often mathematically simpler while providing valuable insights into complex large-

scale finite systems. The best-response strategies derived form a Nash equilibrium under

the infinite-population system, and an approximated Nash (e-Nash) equilibrium for the

finite-population system.

Additionally, we define the default probability of the major and minor banks, which

is the likelihood of a bank’s monetary reserves falling below a certain default threshold.

We also study systemic risk, the probability that the market state, a combination of the

monetary reserves of the major bank and the average reserves of all minor banks, falls

below the defined default threshold. We conduct Monte Carlo simulations to analyze the

impact of risk sensitivity degrees of the major bank and a subgroup of minor banks, the

size of the major bank, the default of the major bank or a subgroup of minor banks, how

closely the major bank tracks the market state, and the major bank’s growth rate on banks’

default probabilities and systemic risk in the finite population. Our findings imply that the

presence of a risk-averse major bank improves the stability of itself, minor banks, and the

interbank market when the major bank’s size takes up less than or equal to half the mar-

ket size. However, a larger major bank is associated with increased default probabilities

across the system, especially when the major bank fails. The increase in the size of a

risk-sensitive major bank counteracts the benefits of its risk aversion. Furthermore, our

simulations show that a major bank closely aligning its monetary reserves with the market

average raises default risks throughout the system. In contrast, a major bank with a faster

growth rate improves the financial health of other banks and the system. This growth rate

can be seen as government support to prevent SIFIs from going bankrupt. Moreover, a

subgroup of minor banks being risk-averse generally increases the default probabilities of

the major bank, minor banks in other subgroups, and the system since their more cautious
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behaviours can lead to a less liquid and robust interbank market. The collapse of a sub-

group of small banks also impacts the stability of banks across the market. The larger the

subgroup, the more substantial the influence its default has. These evaluations emphasize

the significance of regulating the size of major financial institutions and optimizing other

features of banks to maintain the interbank market’s stability, owing to its interconnected

nature.

This thesis is greatly motivated by Chang et al. (2023) and Liu et al. (2023). Under

a similar framework, Chang et al. (2023) propose a risk-neutral interbank system with a

major bank and many minor banks. The results obtained using Monte Carlo simulations

indicate that the presence of a major bank in the market increases the total default prob-

ability of a representative minor bank and the systemic risk. A larger major bank and

a higher mean reversion rate also contribute to greater systemic risk. Therefore, having

a large bank is not necessarily good for the economy, and policymakers should impose

regulations on large banks to guarantee that they do not default. Liu et al. (2023) employ

the variational method to address general LQG risk-sensitive optimal control problems

and MFGs with one major agent and many minor agents of different types.

The contributions of our work are outlined as follows

• Building on the work of Firoozi et al. (2020) and Liu et al. (2023) in a risk-sensitive

setting, we use the convex analysis and variational technique to derive the opti-

mal trading strategies of banks, which yield a Nash equilibrium in the infinite-

population system and a e-Nash equilibrium in the finite-population system. We

then verify if the obtained optimal strategies for the major bank and a representative

minor bank simplify and admit a specific mean-reversion form for the risk-sensitive

case.

• To the best of our knowledge, this is the first time that the effect of risk sensitivity on

an interbank transactions system with one major bank and different types of minor

banks is dynamically simulated.
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• We perform Monte Carlo simulations for different scenarios to analyze how default

probabilities of the major bank, minor banks, and systemic risk are influenced by

– the degree of risk sensitivity of a major bank or a subgroup of minor banks,

– the percentage of the market state the major bank tracks,

– the growth/income rate of the major bank, and

– the collapse of the major bank or a subgroup of minor banks.

The subsequent sections of the thesis are structured as follows: We first review the

previous work on the relevant topics. Chapter 1 introduces the models used for the inter-

bank transactions system, the market clearing condition, and Nash and e-Nash equilibria.

We then formulate the models under the MFG setting in Chapter 2 and present the an-

alytical solutions and the derivation of banks’ optimal borrowing and lending rates. We

also derive a simplified version of banks’ optimal transaction rates in the form of mean

reversion rates in the risk-sensitive setting. Chapter 3 first presents the impact of banks’

degree of risk sensitivity and volatility level on their optimal trading strategies. We then

define the default probabilities we want to study and the market’s systemic risk. Numeri-

cal experiments on different scenarios are then conducted to analyze further the impact of

risk sensitivity degrees, the major bank’s size, the percentage of the market state the major

bank follows, the major bank’s growth rate, the default of the major bank or a subgroup

of minor banks on the major bank, minor banks, and the interbank market. Finally, we

conclude our work and propose recommendations accordingly.
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Literature review

Interbank lending and borrowing constitute a cornerstone of operations for most fi-

nancial institutions and are pivotal to the overall stability of the financial system. The

interbank market serves as a platform facilitating banks in managing and redistributing

their money reserves, which enhances the efficiency of financial intermediation (d’Addio

et al., 2020). Each bank can set its own interest rates, often contingent on its financial

capacity and the prevailing market structure. Hence, there has been evidence of banks

engaging in collusion and monopolistic pricing to increase lending rates, decrease deposit

rates, and enhance their overall performance (Lartey et al., 2023). Despite the global con-

sistency of interbank markets’ bilateral nature, the system’s structure might differ based

on the economic setting. In’T Veld and Van Lelyveld (2014) identify two primary mod-

els of the interbank structure: the nested split graph (NSG) and the core-periphery (CP)

model. The former model is built based on the reliability of each bank, and the latter

is a framework in which core banks act as intermediaries between peripheral banks that

rely on them. A hierarchical structure within the interbank market is proposed by Craig

and Von Peter (2014), where lower-tier banks trade with each other through intermedi-

aries acted by large money center banks. This particular structure connects the financial

network closely, implying that the actions of a single bank can affect several entities be-

yond its immediate counterparty. Furthermore, the interbank market serves as a critical

component in the transmission of monetary policy, mainly when asymmetric information

prevails in the system, positioning it at the forefront of the sequence of policy effects

(Freixas and Jorge, 2008).



The interbank transactions system has also been regarded as a platform where banks

seek protection from idiosyncratic liquidity shocks that are specific to their operations

(In’T Veld and Van Lelyveld, 2014). However, a network as connected and complicated

as the interbank market may aggravate liquidity crises and financial contagion, as the dis-

tress within one institution can spread across the balance sheets of other banks and cause

more defaults (Gai and Kapadia, 2010; Gai et al., 2011). The 2007 - 2008 Global Fi-

nancial Crisis (GFC) highlighted this vulnerability. Following BNP Paribas’ decision to

temporarily halt withdrawals from several hedge funds invested in sub-prime mortgage-

backed securities on August 9, 2007, major settlement banks increased their liquidity

holdings by an average of 30%. The inefficient use of liquidity caused a rise in the

interbank rates, ultimately leading to an interest-rate contagion in the interbank market

(Acharya and Merrouche, 2013). Moreover, when there is a liquidity shock, banks tend to

withdraw deposits from other banks rather than liquidate their long-term assets, which is

more costly. However, given the linkage pattern of interbank lending, the liquidity short-

fall may spread across the financial system, potentially leading to a freeze in the interbank

market, much like during the GFC (Upper and Worms, 2004).

The collapse of Lehman Brothers during the GFC also raises concerns about the size

of banks. The late 1990s saw a noticeable increase in the size of large banks, with more

engagement in market-based operations. Compared to their smaller counterparts, large

banks often operate with a lower capital level, less reliable funding, and a more complex

structure, which contributes to a higher level of systemic risk. Laeven et al. (2014) discuss

the challenges of regulating large banks, suggesting measures such as capital surcharges,

reducing their participation in market-based activities, and simplifying their organiza-

tional structures. The authors also note that there is no one-size-fits-all approach to bank

size since large banks offer economies of scale and scope that smaller banks cannot match.

We will study the effect of the presence of a large bank in our model in the later sections.

There has been a substantial amount of research on the systemic risk of interbank

markets since the failure of the market can be disastrous to the entire financial system.

In addition to factors such as market power, asymmetric information, and the incom-

8



pleteness of markets, Lucchetta (2010) also studies the impact of higher concentration of

risks, often resulting from a concentrated market structure, on the breakdowns of the in-

terbank market. Furthermore, the risk sensitivity of banks has a strong correlation with the

presence of robust financial markets. Pausch (2012) reveals that in the absence of an in-

terbank market and liquidity regulation, risk-neutral banks display risk-averse behaviour.

Therefore, the presence of a robust interbank market has the effect of eliminating endoge-

nous risk aversion, enabling banks to independently manage credit risk and liquidity risk.

Policymakers and regulators have implemented various measures to mitigate systemic

risk, including implicit insurance for interbank claims, discounted loans, purchase-and-

assumption arrangements, and nationalizations. Another approach to reducing systemic

risk is the centralization of liquidity management inside banks. In this case, the central

bank takes on the role of a counterparty for each transaction, prevents the spread of credit

risks through the market, even in the event of a bank’s default (Rochet and Tirole, 1996).

To analyze systemic risk mathematically, Carmona et al. (2015) introduce a frame-

work where the dynamics of the logarithmic monetary reserves of banks are simulated by

diffusion processes coupled through the control in the drift terms. The system stability is

contingent upon this control, which is the rate at which one bank conducts transactions

with other banks. A game feature is integrated in which individual banks decide their

borrowing and lending rates with the central bank to optimize its reserves level while

minimizing costs. The central bank in this model is also shown to function as a clearing

house. The study suggests that banks engaging in interbank borrowing and lending, as

well as trading with the central bank, contribute to the overall stability of the financial

system. Moreover, the likelihood of systemic risk, defined as the event of a significant

number of banks surpassing a certain default threshold, is quantified using the large devi-

ation theory. Sun (2017) presents a similar model that includes a growth rate/income rate

and does not have a common noise component in the Brownian motions of the monetary

reserves dynamics, unlike in Carmona et al. (2015). The liquidity created by the Markov-

Nash equilibrium for a finite number of banks results in a flocking effect, leading to either

market stability or systemic risk, contingent on the growth rate. Furthermore, the deposit

9



rate incorporated in the model can hinder the growth of the overall monetary reserve, thus

increasing the likelihood of bank defaults. Huang and Jaimungal (2017) restructure the

model in Carmona et al. (2015) as a robust stochastic game and accounts for ambiguity

aversion, meaning that each bank evaluates alternative models and has its own version of

the log-reserves dynamics. The authors demonstrate that ambiguity-averse players might

have lower default probabilities than ambiguity-neutral players. The existence of a e-

Nash equilibrium and the validity of a verification theorem for convex-concave cost func-

tions are also proven. Interestingly, Zhou (1997) presents a method to analytically value

securities that are exposed to risks and their default probabilities. The proposed tech-

nique involves modeling the dynamics of firm value as a jump-diffusion process, which

combines the empirical flexibility of the reduced-form method with the ability to offer

theoretical insights into the market mechanisms, as provided by the Merton-Black-Cox-

Longstaff-Schwartz’s structural approach.

To obtain decentralized control strategies in a noncooperative game setting, Huang

(2010) presents a model involving a major agent and a large population of minor agents

under the LQG framework. Mean-field game (MFG) is introduced as the influence of each

individual player in the model is negligible on the whole system, and all players interact

through the average state of the system. Since each player typically only has complete

information on its own situation in a large population, the Nash certainty equivalence

(NCE) approach is employed. The optimal strategies of agents obtained from this method

form an asymptotic Nash equilibrium, where the strategy of each agent is determined only

by its own state and some deterministic variables. Many other literatures on MFG account

for the presence of a major agent since there is often a relatively dominant participant in

the game in many practical scenarios (Nourian and Caines, 2013; Carmona and Zhu, 2016;

Bensoussan et al., 2016; Carmona and Wang, 2016, 2017; Lasry and Lions, 2018; Firoozi

et al., 2020). Carmona and Wang (2016) and Lasry and Lions (2018) study the MFG

theory with one major agent and many small agents in a finite game setting, while Nourian

and Caines (2013) consider a system with a nonlinear stochastic dynamic formulation.

The alternative method of searching for fixed points for the optimal response functions
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proposed by Carmona and Wang (2017) underlines the importance of McKean-Vlasov

(MV) dynamics. Nguyen and Huang (2012) focus on the continuum case where the mean

field is calculated using a random process solely dependent on the major agent’s initial

state and Brownian motion. Another interesting case under the major-minor (MM) setting

is the Stackelberg game setup, where individual follower’s evolution is subject to delay

effects from the leader and their own state and control variables (Bensoussan et al., 2017).

The result establishes the existence and uniqueness of solutions for different forward-

backward stochastic differential equations (FBSDE).

Furthermore, Firoozi et al. (2020) propose a convex analysis method to obtain the

best-response strategies for all agents without any assumptions on the evolution of the

mean-field for the MM LQG MFG system. Building on this method, Liu et al. (2023)

use a variational technique and a change of measure to address the risk-sensitive optimal

control problems with exponential cost functionals. We will approach the optimal control

problem in our setting using these methods. An interesting case of the MM LQG MFG

systems is when minor agents have partial observation of the state of the major agent,

while the major agent has full knowledge of its own state (Şen and Caines, 2014, 2016;

Caines and Kizilkale, 2017). Firoozi and Caines (2021) also examine the case where all

agents have partial observations, meaning the major agent possesses partial information

of its own state, and each minor agent partially observes both its own state and the major

agent’s state. Therefore, each minor agent recursively estimates the major agent’s assess-

ment of its own state. The presence of e-Nash equilibria and the controls leading to the

equilibria are established by the separation principle in the context of partially observed

(PO) MM LQG MFG systems. Finally, while there are several methodologies devised

to address the MM MFG problems, literature has shown that the obtained solutions are

consistent using different approaches (Firoozi et al., 2020; Huang, 2021; Firoozi, 2022).

The concept of MFG is also used in many other topics. Firoozi and Caines (2017)

adapt the PO MM LQG MFG system to the optimal execution problems in the finance

field. When a major institutional investor liquidates a predetermined number of shares,

the minor high-frequency traders in the market seek to either sell or purchase a specific
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quantity of shares within the period. Each trader only possesses partial information about

its own state and the major investor’s state. Hence, each agent aims to find the optimal

trading rate to maximize its portfolio and performance function. Furthermore, market

participants have different perspectives on the models and dynamics followed by financial

instruments despite being presented with the same data. Based on this fact, Casgrain

and Jaimungal (2020) turn the trading world into a stochastic game where each player

aims to optimize their trading strategies under different probability measures. The Nash

equilibrium under the MFG limit can be obtained by solving a nonstandard vector-valued

FBSDE. The solar renewable energy certificate (SREC) market can also be conceptual-

ized as a stochastic game in which companies strategically maximize their rates of SREC

generation and trade to achieve optimal outcomes. All the players in the system interact

through the SREC price, which is determined through the market clearing condition. The

optimal controls derived are the solution to a MV FBSDE (Shrivats et al., 2022). Other

applications of the MFG theory include optimal consumption and investment (Lacker and

Zariphopoulou, 2019; Lacker and Soret, 2020; Min and Hu, 2021), financial engineering

such as blockchain and cryptocurrency mining (Djehiche et al., 2019; Bertucci et al.,

2020; Carmona, 2020; Li et al., 2022), trade crowding (Cardaliaguet and Lehalle, 2018;

Carmona and Laurière, 2021), and moral hazard in an economic setting (Carmona, 2020;

Elie et al., 2021; Fabrice, 2023).
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Chapter 1

Interbank Transactions Model

In this chapter, we introduce the model used for the monetary transactions in an in-

terbank system containing one major bank and N minor banks. This model is greatly

inspired by the works of Carmona et al. (2015) and Chang et al. (2023). Each bank lends

to or borrows from one another as well as the central bank when its log-monetary reserves

surpass or fall below the average level of the market. The individual bank also controls its

rate of transactions with the central bank to minimize the corresponding cost functional.

We also discuss the market clearing condition that needs to be satisfied for the system to

be a closed environment. Last but not least, we introduce the best-response strategies of

banks and the Nash and e-Nash equilibria that the strategies form in the interbank market.

1.1 Major Bank Model

A major bank is an institution whose decisions and actions impact the entire banking

system due to its relatively large size. In Canada, we can identify institutes like Toronto-

Dominion Bank and Royal Bank of Canada as major banks since their decisions can affect

the Canadian economy.

For our model, we denote the major bank’s log-monetary reserves at time t with x0
t .

The following stochastic differential equation (SDE) illustrates the dynamic of the log-



monetary reserves

dx0
t = a0

h
q0
�
lx0

t +(1�l )x(N)
t

�
� x0

t

i
dt +u0

t dt + g0(t)dt +s0 dw0
t . (1.1)

In this setting, x(N)
t indicates the average log-monetary reserves level of all minor banks,

where x(N)
t = 1

N ÂN
i=1 xi

t , and xi
t is the log-monetary reserves a representative minor bank

i possesses at time t. The parameter l denotes the weight the major bank takes in the

market, and (1�l ) represents the weight of the average reserves of all minor banks in

the system. The market state, lx0
t +(1� l )x(N)

t , is defined as a linear combination of

the log-monetary reserves of the large bank and the average reserves level of all small

banks with the corresponding weights. In the interbank transactions market, banks are

incentivized to maintain their monetary reserves close to the market state to minimize

liquidity risk and efficiently utilize their funds. Therefore, the major bank borrows funds

if its reserves are below the market state and lends money if the reserves are above it.

Moreover, we use the parameter q0  1 to indicate the proportion of the market state the

major bank follows. If q0 = 1, the major bank tries to stay close to the market state,

whereas if q0 < 1, the bank would match part of the market state. A bank might not

want to follow the market trend entirely due to the fear that if the system’s state decreases

significantly, the bank’s monetary reserves will be drained quickly as well.

We then denote the mean reversion rate of the major bank by a0, which explains

how fast the major bank’s monetary reserves revert to the market state. A higher mean

reversion rate indicates that the major bank lends to or borrows from other banks more

frequently to stay close to the market state. Furthermore, the variable u0
t stands for the

frequency of monetary transactions incurred outside the major-minor bank network at

time t, i.e., the lending and borrowing activities between the major agent and the central

bank. Through open market operations, a commercial bank lends to the central bank

by buying government bonds when a contractionary monetary policy is implemented to

reduce the money supply in the economy. For our model, this is the control input we want

to optimize to minimize the cost functional mentioned in the later section. We also denote

g0(t) as the growth rate of the major bank, where g0(t) is a deterministic process. This can
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be the bank’s income from its daily financial activities other than interbank transactions.

Moreover, s0 defines the volatility of the bank’s log-monetary reserves, which is affected

by the daily activities of its retail customers. The level of volatility is driven by a Brownian

motion, which is a continuous random process where the increments of the process are

independent. The Brownian motion w0
t for the major player is defined on the filtered

probability space (W,F ,{F 0
t },P0), where F 0 := (F 0

t )t2[0,T ] is the filtration generated

by the major agent’s state.

As indicated earlier, banks also conduct monetary transactions with the central bank

apart from each other. However, it does cost more than borrowing from another commer-

cial bank. In the United States, the discount rate charged by the Fed during the discount

window is normally 50 basis points higher than the federal funds rate, which is the in-

terest rate that banks charge one another. Therefore, the major bank wants to control the

number of transactions with the central bank to minimize the cost functional expressed as

follows

J0(u) =
1
d0

E


exp
✓

d0

2

⇣
c0
⇥
q0(lx0

T +(1�l )x(N)
T )� x0

T
⇤2

+
Z T

0

n
e0
⇥
q0(lx0

t +(1�l )x(N)
t )� x0

t
⇤2

�2q0 u0
t
⇥
q0(lx0

t +(1�l )x(N)
t )� x0

t
⇤
+(u0

t )
2
o

dt
⌘◆

�1
�
. (1.2)

The major bank is averse to risk factors such as liquidity and customer credit. Using

exponential functions of quadratic costs to solve the optimal control problem under a

risk-sensitive setting has been studied extensively (Jacobson, 1973; Pan and Basar, 1994;

Moon and Basar, 2017; Liu et al., 2023). The exponentiated quadratic cost allows us to

capture an agent’s risk-averse or risk-seeking behaviours and the higher-order moments

of the integral function, such as skewness and kurtosis. These higher-order moments of

the cost functional provide more insights on a stochastic linear system like our model. To

our knowledge, the exponential cost functional has not been considered in the interbank

transactions market context in the literature. The degree of risk sensitivity of the major

bank is represented by the constant d0. The bank behaves in a risk-neutral fashion if d0
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tends to zero. The cost functional consists of both the running cost and the terminal cost.

The positive constants c0 and e0 impose the terminal and running penalty, respectively.

If a bank keeps too much extra cash, it is not using its income efficiently for financial

activities, and hence costs are incurred. It is also risky for a bank to keep the level of

its reserves too low. Therefore, the bank wants to maintain its log-monetary reserves

close to a fraction of the market state, i.e., the target level. This target level depicts

the overall interbank market’s current condition and financial health. It also signals to

banks if funds in the interbank system are growing or draining so banks can adjust their

operating strategies accordingly. The parameters c0 and e0 increase trading costs if the

major bank fails to keep its reserves close to the target level. Moreover, we denote q0 > 0

as the incentive for borrowing and lending. If the major bank’s monetary reserves are

lower than the target level, it intends to borrow from the central bank, leading to u0
t being

positive, and vice versa, which reduces the costs. Hence, the bank is encouraged to trade

more with the central bank to maintain liquidity. We also assume q2
0  e0 to guarantee

that the cost functional is convex to be able to find the minimum value.

1.2 Minor Bank Model

We now introduce the model used to describe the dynamic of a representative minor

agent’s log-monetary reserves. In contrast with the Canadian banking system, where

only a few big banks dominate the industry, there are many small banks in the United

States for retail customers. As of 2021, there are 4,238 commercial banks insured by the

Federal Deposit Insurance Corporation (FDIC). With this large amount of banks in the

system, only a few banks have the size and ability to be influential in the entire American

financial industry. Our minor bank model can be applied to a banking system like this or

the Chinese interbank market, where there are 4,561 banking institutions as of 2023. Each

minor bank i has a negligible impact on the system as N increases, where i 2 {1, ...,N}

and N represents the number of minor banks in the system. We also categorize banks into

different sectors, and define K < N as distinct types of minor banks. The index set of each
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subpopulation is denoted as

Ik = {i : ri = r(k), i 2N}, k 2 K := {1, ...,K} (1.3)

where r(k) is the set of parameters of subpopulation k that we will define later in the

section. The number of banks of each type is Nk = |Ik|, which is the cardinality of Ik.

Furthermore, we denote the empirical distribution of different types of agents as pN =

(pN
1 , ...,pN

K ), where pN
k = Nk

N . Therefore, the average level of the log-monetary reserves

of all minor banks in the system may be formulated as the weighted average of the average

reserves under each subpopulation. The average monetary reserve of type k banks is given

by: x(N),k
t = 1

Nk
Âi2Ik xi

t .

We now define the dynamic of the log-monetary reserves of minor bank i as the fol-

lowing

dxi
t = ak

h
qk
�
lx0

t +(1�l )x(N)
t

�
� xi

t

i
dt +ui

tdt + gk(t)dt +sk dwi
t . (1.4)

Banks in the interbank market aim to track the market state to keep an appropriate amount

of funds and to have a clearer picture of the system’s overall condition. Hence, a minor

bank will borrow if its monetary reserves are less than the market state and lend if they are

above that level. Minor banks of each type share the same mean reversion rate ak, growth

rate gk(t), and volatility level sk. Each minor bank also trades with the central bank and

controls its rate of borrowing and lending, ui
t . We denote the information set generated by

a minor bank’s state as: F i := (F i
t )t2[0,T ]. The Brownian motion wi

t driving the volatility

level of the bank is defined on the filtered probability space (W,F ,{F i
t },Pi).

The cost functional of a minor agent follows a similar structure as that of a major

agent, which is expressed as

Ji(u) =
1
dk
E


exp
✓
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2
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�1
�
. (1.5)
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The minor bank gets penalized if it deviates too much from the fraction of the market

state that it targets and is incentivized to trade more with the central bank. Banks under

the same type are assigned the same parameters denoting the running penalty ek, terminal

penalty ck, and incentive for trading qk. dk is the risk sensitivity degree of the kth-type

minor banks. Each bank controls its borrowing/lending rate with the central bank to

minimize the cost functional. A larger qk implies a lower cost for transactions with the

central bank and vice versa. We again assume q2
k  ek to ensure that the cost functional is

convex.

1.3 Market Clearing Condition

In an economic setting, market clearing is defined as matching the quantity of supply

to the exact amount of demand so that there is no excess demand or supply in the market.

For the interbank transactions system, the banks only trade with each other or with the

central bank. In other words, this is a closed network where if one bank is lending some

money, another bank must be receiving this same amount of money. Therefore, the supply

equals the demand, and the net activities of all interbank transactions should be zero.

Mathematically, the sum of all borrowing and lending of the log-monetary reserves done

by the major and minor agents at time t should equal zero, which is expressed as

1
N Â

i=1
ak

h
qk
�
lx0

t +(1�l )x(N)
t

�
� xi

t

i
+a0

h
q0
�
lx0

t +(1�l )x(N)
t

�
� x0

t

i
= 0. (1.6)

As mentioned in the last section, the average log-monetary reserves of all minor banks

is calculated by the weighted average reserves of each subpopulation, which can be shown

mathematically by

x(N)
t =

1
N

N

Â
i=1

xi
t = Â

k2K

1
Nk

Nk

N Â
i2Ik

xi
t = Â

k2K

Nk

N
1

Nk
Â
i2Ik

xi
t = Â

k2K
pN

k x(N),k
t . (1.7)

By using this property and the empirical distribution of minor banks defined before, we

18



can rewrite equation (1.6) as the following

�
l Â

k2K
pN

k akqk +a0q0l �a0
�
x0

t

+ Â
k2K

pN
k
⇥
(1�l ) Â

k2K
pN

k akqk �ak +a0q0(1�l )
⇤
x(N),k

t = 0. (1.8)

In order for this equation to be valid for every value of the processes x0
t and x(N),k

t , we

need

a0 =
l

1�q0l Â
k2K

pN
k akqk, (1.9a)

ak = (1�l ) Â
k2K

pN
k akqk +a0q0(1�l ). (1.9b)

Substituting (1.9a) in (1.9b) we have

ak = (1�l )a0(1�q0l )
l

+a0q0(1�l ) = (1�l )
l

(a0 �a0q0l +a0q0l ). (1.10)

Finally, we obtain an expression for ak in terms of a0, given by

ak =
(1�l )

l
a0, (1.11)

which is a constant. This indicates that regardless of which subpopulation the bank be-

longs to, all minor banks share the same mean-reversion rate. They trade at the same

frequency to prevent themselves from deviating too far from the market state. We also

notice that when the relative size of the major bank is larger than that of all the minor

banks combined, its mean-reversion rate is greater than a generic minor banks’ rate, and

vice versa. If the major bank’s size takes up a large portion of the interbank system, it will

likely have a higher level of required reserves set by the governors to sustain its opera-

tions or have more excess money to lend. Therefore, the large bank needs to conduct more

transactions to keep its monetary reserves above the required reserves level and close to

the market state since each small bank can only fulfill part of the required funds. From

now on, we denote the mean-reversion rate of a minor bank as a for all ak, k 2 K.

It is also worth discussing the role of the central bank in our model. Numerous trans-

actions occur daily among different parties in the interbank system, which imposes great
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operational and settlement risks. Therefore, it is beneficial to have a third party between

the two banks to facilitate the transactions, which is the central bank in this case. This

is known as the clearing house function of a central bank (Carmona et al., 2015). The

central bank acts as an intermediary and keeps records of all the transactions for each

bank throughout the day. At the end of a trading day, the central bank organizes all the

payments in one account, and each bank only needs to pay or receive the net amount,

i.e., to clear the accounts. This process greatly reduces the mistakes made during finan-

cial interactions, saves costs with fewer payments, and guarantees a transparent interbank

transactions system.

1.4 Interbank Market Equilibrium and Best-Response

Transaction Rates

After introducing the models that represent the dynamics of log-monetary reserves

and the cost functionals of major and minor banks in the interbank market, we aim to

find the optimal rate of borrowing and lending with the central bank for each bank, such

that their cost functionals are minimized. This optimal trading rate is known as the best-

response transaction rate of the bank. If all major and minor banks follow their respective

best-response functions simultaneously, the cost functional of each bank is minimized,

and no bank will benefit from changing its strategy while all other players remain the

same. In this case, the interbank system reaches a Nash equilibrium in the setting with

an infinite population. We now introduce the concept of Nash equilibrium. A Nash equi-

librium is achieved when no player can gain any extra benefit by changing its current

strategy unilaterally in a non-cooperative game. Therefore, given that other agents follow

the equilibrium strategies in the system, the player has no incentive to deviate from its

strategy. The strategy taken by each player in a Nash equilibrium is considered a best-

response strategy in interactions with other agents. Mathematically, we define a Nash

equilibrium as follows
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Definition 1 (Nash Equilibrium) For a set of N-tuple strategies (u1, . . . ,uN) 2 U N, it is

said to be a Nash equilibrium if for every i 2 {1, . . . ,N} and u 2 U , U and U N are the

admissible sets of strategies of agent i,

Ji(u1, . . . ,ui, . . . ,uN) Ji(u1, . . . ,ui�1,u,ui+1, . . . ,uN), (1.12)

or

Ji(ui,u�i) Ji(u,u�i), (1.13)

where

Ji(u,u�i) = Ji(u1, . . . ,ui�1,u,ui+1, . . . ,uN). (1.14)

We then define the best-response strategy of agent i as:

ui = argmin
u2U i

Ji(u,u�i). (1.15)

We also introduce the notion of an e-Nash equilibrium for when there is a finite popu-

lation in the interbank system. In a Nash equilibrium, players do not have the motivation

to change their strategies, whereas, in an e-Nash equilibrium, an agent may have some

amount of incentive, e , to change its behaviour, where e is a small positive value. Further-

more, the e-Nash approximation property states that when agents in a finite-population

system use the infinite-population equilibrium strategies, they achieve an approximation

of the infinite population equilibrium. An e-Nash equilibrium is defined as

Definition 2 (e-Nash Equilibrium) A set of strategies (u1, . . . ,uN) 2 U N is said to be

an e-Nash equilibrium for an N-player game if there exists e > 0, such that for every

i 2 {1, . . . ,N} and u 2 U ,

Ji(ui,u�i)� e  Ji(u,u�i) = inf
u2U i

Ji(u,u�i). (1.16)

However, obtaining an exact e-Nash equilibrium is very challenging, given that we

are working with a model that consists of many agents. Therefore, we want to simplify
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the problem by considering a system with infinitely many banks for which N !•, hoping

to obtain some asymptotic properties in this limiting case (Carmona and Delarue, 2018),

which could lead to an approximate Nash equilibrium. Hence, we employ the theory of

mean-field games (MFG), which is the study of the asymptotic behaviour of games with

a large number of players. We will introduce the theory in details in the next chapter.
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Chapter 2

Optimal Control and Best-Response

Strategies

In this chapter, we aim to obtain the optimal transaction strategy of each bank, which

is the optimal rate of borrowing/lending between an individual bank and the central bank

such that the cost functional of the bank is minimized. We first introduce the mean-field

games (MFGs) concept and transit our model to the MFG setting. We then approach the

problem with an infinite number of minor banks, using the dynamics and cost function-

als under the mean-field setting derived in Section 2.1. This leads to a Nash equilibrium

for the infinite-population system, where each bank is subject to its optimal strategy and

interacts through the overall effect of the system. In this limiting case, we notice from

equations (2.5) and (2.7) that the state of the major bank’s log-monetary reserves is im-

pacted by the state mean-field, and the minor bank’s reserves are impacted by the state

mean-field as well as the major bank’s state. Therefore, we extend the major bank’s dy-

namic to include the mean-field dynamics and extend each minor bank’s dynamics to

include the monetary reserves dynamics of both the major bank and the mean-field of the

system. The stochastic game we initially have to solve for the system becomes a stochas-

tic control problem for each bank. We will explain each step in detail in the following

sections.



2.1 Mean-Field Game Formulation

In our model, each minor bank controls its lending/borrowing rate with the central

bank and only has information on its own log-monetary reserves dynamic and cost func-

tional. Therefore, it does not make decisions based on other banks’ activities. However,

to obtain an equilibrium or the optimal state for the whole system, banks need to consider

their interactions with one another. Hence, we define the state mean-field and control

mean-field of the system respectively as

x̄t = E[x.t |F 0
t ], (2.1)

ūt = E[u.t |F 0
t ]. (2.2)

where x̄>t = [(x̄1
t )

>, ...,(x̄K
t )

>] and ū>t = [(ū1
t )

>, ...,(ūK
t )

>] are vectors of mean-fields of

the monetary reserves and control of each subpopulation k 2 K. The mean-field of the

log-monetary reserves of each type of minor banks is equivalently expressed as

x̄k
t = lim

Nk!•
x(N),k

t = lim
Nk!•

1
Nk

Â
i2Ik

xi
t , (2.3)

which equals the market average state of the subgroup when the number of banks in this

group goes to infinity if the limit exists. Similarly, the mean field of the borrowing/lending

rate with the central bank of each subpopulation is equivalently written as

ūk
t = lim

Nk!•
u(N),k

t = lim
Nk!•

1
Nk

Â
i2Ik

ui
t . (2.4)

Consequently, the major bank and minor banks interact with the system through the

mean-field. We can then rewrite the dynamic of monetary reserves and cost functional of

a major bank defined before in the limiting case

dx0
t =

h
a0(q0l �1)x0

t +(a0q0(1�l )⌦p)x̄t +u0
t + g0(t)

i
dt +s0 dw0

t , (2.5)

J0(u) =
1
d0

E


exp
✓

d0

2

⇣
c0
⇥
q0(lx0

T +((1�l )⌦p)x̄T )� x0
T
⇤2

+
Z T

0

n
e0
⇥
q0(lx0

t +((1�l )⌦p)x̄t)� x0
t
⇤2

�2q0 u0
t
⇥
q0(lx0

t +((1�l )⌦p)x̄t)� x0
t
⇤
+(u0

t )
2
o

dt
⌘◆

�1
�
, (2.6)
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where (1�l )⌦p := [p1(1�l ), ...,pK(1�l )] is the Kronecker product, and we assume

pk = limN!• pN
k . The mean-field of the interbank system x̄t is then the weighted average

of the mean-field monetary reserves of all subgroups of the minor banks.

The expressions for the log-monetary reserves and cost functional of a small bank

when there is an infinite number of minor players in the system are

dxi
t =

h
�axi

t +(aqk(1�l )⌦p)x̄t +aqklx0
t +ui

t + gk(t)
i
dt +sk dwi

t , (2.7)

Ji(u) =
1
dk
E


exp
✓

dk

2

⇣
ck
⇥
qk(lx0

T +(1�l )⌦p)x̄T )� xi
T
⇤2

+
Z T

0

n
ek
⇥
qk(lx0

t +(1�l )⌦p)x̄t)� xi
t
⇤2

�2qk ui
t
⇥
qk(lx0

t +(1�l )⌦p)x̄t)� xi
t
⇤
+(ui

t)
2
o

dt
⌘◆

�1
�
. (2.8)

We can then derive the dynamic of the mean-field. The dynamic (2.7) subject to the

control ui
t has a solution xi,k

t for type-k agent i as the following

xi,k
t = e�atxi

0 +
Z t

0
e�a(t�t)

h
aqk

�
lx0

t +((1�l )⌦p)x̄t
�i

dt

+
Z t

0
e�a(t�t)(ui,k

t + gk(t))dt +
Z t

0
e�a(t�t)s kdwi

t . (2.9)

To calculate the mean-field of subpopulation k, we take the conditional expectation of xi,k
t

with respect to the filtration F 0
t , which yields

x̄k
t = x̄0 +

Z t

0
e�a(t�t)

h
aqk

�
lx0

t +((1�l )⌦p)x̄t
�i

dt

+
Z t

0
e�a(t�t)(ūk

t + gk(t))dt. (2.10)

The diffusion term vanishes since the expectation of Brownian motions is zero due to

its independence property. We then calculate the infinitesimal variation of x̄k
t according

to (2.10) and finally obtain the mean-field of the log-monetary reserves of the interbank

system as

dx̄t = [Ăx̄t + Ğx0
t + ūt + m̆(t)]dt, (2.11)
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where

Ă =

2

6664

�ae1 +aq1(1�l )⌦p
...

�aeK +aqK(1�l )⌦p

3

7775
, Ğ =

2

6664

aq1l
...

aqKl

3

7775
, m̆(t) =

2

6664

g1(t)
...

gK(t)

3

7775
, (2.12)

and ek = [0nxn, ...,In, ...,0nxn], with In being an identity matrix of size n at the k-th block.

2.2 Nash and e-Nash Equilibria for the Interbank

Market

We first present the optimal transaction strategies of the major bank and a represen-

tative minor bank in the interbank market that form a Nash equilibrium in the infinite-

population system. The obtain optimal controls also admit an e-Nash property in the

finite-population system as shown in Huang (2010) and Carmona and Zhu (2016). We

will show the detailed methodology in Section 2.3.

Theorem 1 (Best-Response Strategies) For the interbank transactions system defined

by equations (2.5) - (2.8), the optimal borrowing and lending rates with the central bank

for the major bank and a representative minor bank i are, respectively, given by

u0,⇤
t = (q0 �f 0

t )
⇥
(q0(1�l )⌦p)x̄t +(q0l �1)x0

t
⇤
�B>

0 s0(t), (2.13)

ui,⇤
t =�

h
N>

k Xi
t +B>

k
�
Pk(t)Xi

t + sk(t)
�i
. (2.14)

The deterministic processes f0(t), s0(t), Pk(t) and sk(t) in the optimal strategies satisfy

the following sets of ordinary differential equations (ODEs) given by
8
>>>>>>><

>>>>>>>:

�ḟ 0
t = 2f 0

t
�
a0(q0l �1)+Hp

0 Ḡ
�
� (f 0

t �q0)
2(q0l �1)+ e0(q0l �1)

+d0(f 0
t )

2(s0)
2(q0l �1), f 0

T = c0(q0l �1);

�ṡ0(t) =
�
(A0 �B0N>

0 )
>�P0(t)B0B>

0
�
s0(t)+P0(t)M0

+d0P0(t)S0S>
0 s0(t), s0(T ) = 0.

(2.15)
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8
>>>>>>><

>>>>>>>:

�Ṗk(t) = Pk(t)Ak +A>
k Pk(t)� (Pk(t)Bk +Nk)(B>

k Pk(t)+N>
k )+Qk

+dkPk(t)SkS>
k Pk(t), Pk(T ) =Gk;

�ṡk(t) =
�
(Ak �BkN>

k )
>�Pk(t)BkB>

k
�
sk(t)+Pk(t)Mk

+dkPk(t)SkS>
k sk(t), sk(T ) = 0,

(2.16)

where
N0 = � [1,Hp

0 ]
>q0(q0l �1), Nk = [1,�Hk,�Ĥp

k ]
>qk,

Qk = [1,�Hk,�Ĥp
k ]

>ek[1,�Hk,�Ĥp
k ],

Gk = [1,�Hk,�Ĥp
k ]

>ck[1,�Hk,�Ĥp
k ],

H0 =
q0(1�l )
q0l �1

, Hp
0 = [p1H0, ...,pKH0],

Hk = qkl , Ĥk = qk(1�l ), Ĥp
k = [p1Ĥk, ...,pKĤk]

(2.17)

A0 =

2

4 a0(q0l �1) a0q0(1�l )⌦p

Ḡ Ā

3

5, M0 =

2

4 g0(t)

m̄

3

5, (2.18)

Ak =

2

4 �a [aqkl ,aqk(1�l )⌦p]

0 A0 �B0
�
N>

0 +[f 0
t (q0l �1),f 0

t q0(1�l )⌦p]
�

3

5, (2.19)

Mk =

2

4 gk(t)

M0 �B0B>
0 s0(t)

3

5,B0 =

2

4 1

0

3

5, S0 =

2

4 s0 0

0 0

3

5, (2.20)

Bk =

2

6664

1

0

0

3

7775
, Sk =

2

4 sk 0

0 S0

3

5. (2.21)

Furthermore, the corresponding mean-field equation is given by

dx̄t = (Āx̄t + Ḡx0
t + m̄)dt, (2.22)

where

Āk = (�a�qk �Pk
11)ek +aqk(1�l )⌦p +qkqk(1�l )⌦p �Pk

13,

Ḡk = aqkl +qkqkl �Pk
12,

m̄k = gk �B>
k sk,

(2.23)
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Ā =

2

6664

Ā1
...

ĀK

3

7775
, Ḡ =

2

6664

Ḡ1
...

ḠK

3

7775
, m̄ =

2

6664

m̄1
...

m̄K

3

7775
. (2.24)

We represent Pk(t), and sk(t) as

Pk(t) =

2

6664

Pk
11 Pk

12 Pk
13

Pk
21 Pk

22 Pk
23

Pk
31 Pk

32 Pk
33

3

7775
, sk(t) =

2

6664

sk
1

sk
2

sk
3

3

7775
, (2.25)

with Pk
11,Pk

22 2 R, Pk
33 2 RK⇥K, sk

1(t),s
k
2(t) 2 R, and sk

3(t) 2 RK.

Proof. See the methodology section.

Corollary 1 The closed-loop dynamics of log-monetary reserves of the major bank and

a representative minor bank i are respectively, given by

dx0
t =

n
(a0 +q0 �f 0

t )
⇥
q0
�
lx0

t +((1�l )⌦p)x̄t
�
� x0

t
⇤
�B>

0 s0(t)+ g0(t)
o

dt (2.26)

+s0 dw0
t ,

dxi
t =

n
(a+qk)

⇥
qk(lx0

t +((1�l )⌦p)x̄t � xi
t
⇤
� (Pk

11xi
t +Pk

12x0
t +Pk

13x̄t) (2.27)

� sk
1 + gk(t)

o
dt +sk dwi

t .

Proof. The closed-loop dynamics are obtained by direct substitution of the optimal strate-

gies (2.13) and (2.14) in the associated dynamics.

2.3 Methodology

This section is devoted to deriving the optimal rates of transactions of the major bank

and a representative minor bank under a subgroup k in the risk-sensitive setting. We

follow the convex analysis approach developed by Firoozi et al. (2020) and the variatinal

approach in Liu et al. (2023) to solve this problem.
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We first perturb the control action of the major bank by a small value x0 in the direction

w0 2 U 0, where U 0 is the admissible set of control actions of the major bank, generated

by the filtration F 0. Then we observe the effect this shock has on the major agent itself,

other minor banks in the system, and the interbank system as a whole. The dynamics of

the major bank’s monetary reserves in the infinite population setting with the perturbed

control, u0
t +x0w0

t , is given by

dx0,x0
t =

h
a0(q0l �1)x0,x0

t +(a0q0(1�l )⌦p)x̄x0
t +(u0

t +x0w0
t )+ g0(t)

i
dt +s0 dw0

t .

(2.28)

We can see from the equation that a shock in the major bank’s control action will affect

the bank’s log-monetary reserves level since there is a change in its trading rate with the

central bank. In an economic setting, this can be seen as the central bank adjusting the

interest rate following the current monetary policies, leading to banks borrowing less or

more from the federal reserves. The mean-field state x̄t is also affected since the decisions

made by the major bank influence the entire system due to its large size. Therefore, the

major agent’s state and mean-field in a minor bank’s dynamics are adjusted accordingly.

This results in the following minor bank’s monetary reserves dynamics subject to the

perturbed control of the major bank

dxi,x0
t =

h
�axi,x0

t +(aqk(1�l )⌦p)x̄x0
t +aqklx0,x0

t +ui,x0
t + gk(t)

i
dt +sk dwi

t . (2.29)

The perturbed state mean-field is then expressed as

dx̄x0
t = [Ăx̄x0

t + Ğx0,x0
t + ūt + m̆(t)]dt, (2.30)

where the control mean-field stays the same since the perturbed factor is only directed at

the major bank’s control action.

After defining the new dynamics of the agents and the mean-field subject to the per-

turbation of the major bank’s control, we extend the major bank’s monetary reserves state

by including mean-field as in

X0,x0
t =

2

4 x0,x0
t

x̄0,x0
t

3

5 . (2.31)

29



Subsequently, the perturbed joint dynamics of the major bank and mean-field’s mon-

etary reserves satisfy the following stochastic differential equation (SDE)

dX0,x0
t = (Ã0X0,x0

t +B0u0
t + B̃0ūt +x0B0w0

t + M̃0(t))dt +S0dW 0
t , (2.32)

where

Ã0 =

2

4 a0(q0l �1) a0q0(1�l )⌦p

Ğ Ă

3

5, B0 =

2

4 1

0

3

5, B̃0 =

2

4 0

Ik

3

5, (2.33a)

M̃0 =

2

4 g0(t)

m̆(t)

3

5, S0 =

2

4 s0 0

0 0

3

5, W 0
t =

2

4 w0
t

0

3

5. (2.33b)

This provides us a better understanding of how the major bank’s reserves level interacts

with the mean-field level. The cost functional of the major bank subject to the perturbed

control action in terms of the extended state (2.31) is given by

J0(u0 +x0w0) =
1
d0

E
"

exp
⇣d0

2

⇣
(X0,x0

T )>G0X0,x0
T

+
Z T

0

�
(X0,x0

s )>Q0X0,x0
s +2(X0,x0

s )>N0(u0
s +x0w0

s )+(u0
s +x0w0

s )
2 ds

⌘⌘
�1

#
, (2.34)

where

G0 = [1,Hp
0 ]

>c0(q0l �1)2[1,Hp
0 ], (2.35a)

Q0 = [1,Hp
0 ]

>e0(q0l �1)2[1,Hp
0 ], (2.35b)

N0 =�[1,Hp
0 ]

>q0(q0l �1), (2.35c)

H0 =
q0(1�l )
q0l �1

. (2.35d)

Following Theorem 1 in Liu et al. (2023), we can write the Gâteaux derivative of the

major bank’s perturbed cost functional (2.34) in the direction w0 as

hDJ•
0 (u),w0i= d0E

"Z T

0
(w0

t )
>
n
B>

0 e�Ã>
0 tM0

2,t

+M0
1,t
�
u0

t +N>
0 X0

t +B>
0

Z t

0
eÃ>

0 (s�t)(Q0X0
s +N0u0

s )ds
�o

dt

#
, (2.36)
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where M0
1,t and M0

2,t are martingales on the filtration F 0
t given by

M0
1,t = E[eG(u0)|F 0

t ], (2.37a)

M0
2,t = E

h
eG(u0)�eÃ>

0 TG0X0
T +

Z T

0
eÃ>

0 s(Q0X0
s +N0u0

s )ds
�
|F 0

t

i
. (2.37b)

In equations (2.37a) and (2.37b), G(u0) is defined as

G(u0) =
d0

2

⇣
(X0

T )
>G0X0

T +
Z T

0

�
(X0

s )
>Q0X0

s +2(X0
s )

>N0(u0
s )+(u0

s )
2 ds

⌘
. (2.38)

The major agent’s unperturbed cost functional is expressed as

J0(u0) =
1
d0

E[exp(G(u0))�1], (2.39)

and the respective unperturbed extended dynamics of the major bank is given as

dX0
t = (Ã0X0

t +B0u0
t + B̃0ūt + M̃0(t))dt +S0dW 0

t , (2.40)

where we set the shock x0 in equation (2.32) to zero.

By applying Theorem 3 in Firoozi et al. (2020) and Theorem 1 in Liu et al. (2023),

which give the control action under a risk-sensitive LQG setting with a convex cost func-

tional, we can derive the control action u0
t of the major bank for the LQG system (2.39) -

(2.40)

u0
t =�

h
N>

0 X0
t +B>

0
�
e�Ã>

0 t M0
2,t

M0
1,t

�
Z t

0
eÃ>

0 (s�t)(Q0X0
s +N0u0

s )ds
�i
. (2.41)

However, this is not an explicit representation of the major bank’s control action. We aim

to obtain the explicit optimal solution in the remainder of this section.

Furthermore, following Lemma 2 in Liu et al. (2023), we adopt the ansatz

p0
t = P0(t)X0

t + s0(t), (2.42)

where

P0(t) =

2

4 P0
11 P0

12

P0
21 P0

22

3

5, s0(t) =

2

4 s0
1

s0
2

3

5, (2.43)
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with P0
11 2 R, P0

22 2 RK⇥K , s0
1(t) 2 R, and s0

2(t) 2 RK . Therefore, we can express the

major agent’s control action as

u0
t =�

h
N>

0 X0
t +B>

0
�
P0(t)X0

t + s0(t)
�i
. (2.44)

However, we need to obtain ūt to calculate P0(t) and s0(t). To address this problem, we

proceed to define the control action for a generic minor agent.

For a representative minor bank i under the k-th subgroup in the infinite population,

we apply a similar approach where we perturb the bank’s control action ui
t with a small

value xi in the direction w i 2 U i, where U i is the admissible set of control actions of the

minor bank. This leads to the perturbed state of the minor bank’s log-monetary reserves

satisfying

dxi,xi
t =

h
�axi,xi

t +(aqk(1�l )⌦p)x̄+aqklx0
t +(ui

t +xiw i
t )+gk(t)

i
dt+sk dwi

t . (2.45)

We notice that since only the minor bank i’s dynamic is perturbed, there are no changes

in the dynamics of the monetary reserves of the major bank or the mean-field. This is

because a single minor agent’s size is so small in the large population that the impact of

its actions is negligible, as defined previously for our setting. Therefore, a minor bank

changing its rate of borrowing/lending with the central bank does not affect the states of

the major bank or the whole system. We can then write the mean-field state when a minor

bank’s control is perturbed as

dx̄xi
t = [Ăx̄t + Ğx0

t + ūt + m̆(t)]dt, (2.46)

which is the same as the mean-field defined in Section 2.1.

Since a minor bank’s state interacts with the system through both the state of the major

bank and the mean-field, we extend its dynamics to include both processes as

Xi,xi
t =

2

6664

xi,xi
t

x0
t

x̄t

3

7775
, (2.47)
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which satisfies the following SDE

dXi,xi
t = (ÃkXi,xi

t +Bkui
t + B̃kūt +xiBkw i

t + M̃k(t))dt +SkdW i
t , (2.48)

where

Ãk =

2

4 �a [aqkl , aqk(1�l )⌦p]

0 Ã0 �B0N0 �B0B>
0 P0(t)

3

5, Bk =

2

6664

1

0

0

3

7775
, B̃k =

2

4 0

B̃0

3

5, (2.49a)

M̃k(t) =

2

4 gk(t)

M̃0(t)�B0B>
0 s0(t)

3

5, Sk =

2

4 sk 0

0 S0

3

5, W i
t =

2

4 wi
t

W 0
t

3

5, (2.49b)

and P0(t) and s0(t) are defined as in the ansatz of the major bank. The cost functional

of the minor bank subject to the perturbed control action, in terms of the extended state

(2.47), is expressed as

Ji(ui +xiw i) =
1
dk
E
"

exp
⇣dk

2

⇣
(Xi,xi

T )>GkXi,xi
T

+
Z T

0

�
(Xi,xi

s )>QkXi,xi
s +2(Xi,xi

s )>Nk(ui
s +xiw i

s)+(ui
s +xiw i

s)
2 ds

⌘⌘
�1

#
, (2.50)

where

Gk = [1,�Hk,�Ĥp
k ]

>ck[1,�Hk,�Ĥp
k ], (2.51a)

Qk = [1,�Hk,�Ĥp
k ]

>ek[1,�Hk,�Ĥp
k ], (2.51b)

Nk = [1,�Hk,�Ĥp
k ]

>qk, (2.51c)

Hk = qkl , Ĥk = qk(1�l ). (2.51d)

After defining the dynamics and cost functional of a minor agent subject to the per-

turbed control action in the direction w i, we can derive the Gâteaux derivative of the minor

bank’s cost functional following Theorem 1 in Liu et al. (2023)

(DJ•
i (u),w i) = dkE

"Z T

0
(w i

t )
>
n
B>

k e�Ã>
k tMi

2,t

+Mi
1,t
�
ui

t +N>
k Xi

t +B>
k

Z t

0
eÃ>

k (s�t)(QkXi
s +Nkui

s)ds
�o

dt

#
, (2.52)
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where Mi
1,t and Mi

2,t are martingales on the filtration F i
t given by

Mi
1,t = E[eG(ui)|F i

t ], (2.53a)

Mi
2,t = E

h
eG(ui)�eÃ>

k TGkXi
T +

Z T

0
eÃ>

k s(QkXi
s +Nkuk

s)ds
�
|F i

t

i
, (2.53b)

Furthermore, G(ui) in above equations is defined as

G(ui) =
dk

2

⇣
(Xi

T )
>GkXi

T +
Z T

0

�
(Xi

s)
>QkXi

s +2(Xi
s)

>Nk(ui
s)+(ui

s)
2 ds

⌘
. (2.54)

The minor agent i’s unperturbed cost functional is then expressed as

Ji(ui) =
1
dk
E[expG(ui)�1], (2.55)

and the corresponding unperturbed extended dynamic of the minor bank is given as

dXi
t = (ÃkXi

t +Bkui
t + B̃kūt + M̃k(t))dt +SkdW i

t . (2.56)

Similar to the derivation of the major bank’s control, we can obtain the control action

of the minor bank ui
t in the infinite-population limit using Theorem 3 in Firoozi et al.

(2020) and Theorem 1 in Liu et al. (2023) which allow us to obtain control actions in the

risk-sensitive LQG system (2.55) - (2.56)

ui
t =�

h
N>

k Xi
t +B>

k
�
e�Ã>

k t Mi
2,t

Mi
1,t

�
Z t

0
eÃ>

k (s�t)(QkXi
s +Nkui

s)ds
�i
. (2.57)

We then adopt the ansatz following Lemma 2 in Liu et al. (2023)

pi
t = Pk(t)Xi

t + sk(t), (2.58)

where

Pk(t) =

2

6664

Pk
11 Pk

12 Pk
13

Pk
21 Pk

22 Pk
23

Pk
31 Pk

32 Pk
33

3

7775
, sk(t) =

2

6664

sk
1

sk
2

sk
3

3

7775
, (2.59)

with Pk
11,Pk

22 2 R, Pk
33 2 RK⇥K , sk

1(t),s
k
2(t) 2 R, and sk

3(t) 2 RK . The control action of

the minor agent can then be written as

ui
t =�

h
N>

k Xi
t +B>

k
�
Pk(t)Xi

t + sk(t)
�i
. (2.60)
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By taking the average of (2.60) over all i 2 Ik, we obtain

u(Nk)
t =�

h�
N>

k +
h

Pk
11 Pk

12 Pk
13

i�

2

6664

x(Nk)
t

x0
t

x̄t

3

7775
+B>

k sk(t)
i
. (2.61)

Since we have an infinite number of minor banks in each subpopulation, as Nk ! •, the

control mean-field of subgroup k is given by

ūk
t =�

h�
N>

k +
h

Pk
11 Pk

12 Pk
13

i�

2

6664

x̄k
t

x0
t

x̄t

3

7775
+B>

k sk(t)
i
. (2.62)

We then substitute the control mean-field into the dynamic of the mean-field of log-

monetary reserves (2.11) and obtain

dx̄t = (Āx̄t + Ḡx0
t + m̄)dt (2.63)

where

Ā =

2

6664

Ā1
...

ĀK

3

7775
, Ḡ =

2

6664

Ḡ1
...

ḠK

3

7775
, m̄ =

2

6664

m̄1
...

m̄K

3

7775
, (2.64)

and

Āk = (�a�qk �Pk
11)ek +aqk(1�l )⌦p +qkqk(1�l )⌦p �Pk

13, (2.65a)

Ḡk = aqkl +qkqkl �Pk
12, (2.65b)

m̄k = gk �B>
k sk. (2.65c)

We notice that the control mean-field term ūt is gone, and the dynamic of the mean-field

is denoted by a combination of the state mean-field, the major bank’s monetary reserves,

and an offset term m̄.

We then replace the control mean-field in the major bank’s unperturbed extended dy-

namics (2.40), which leads to the dynamics

dX0
t = (A0X0

t +B0u0
t +M0)dt +S0dW 0

t , (2.66)
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where

A0 =

2

4 a0(q0l �1) a0q0(1�l )⌦p

Ḡ Ā

3

5, M0 =

2

4 g0(t)

m̄

3

5, (2.67)

and matrices B0 and S0 are as defined in (2.33). Lastly, we perform the same procedures

to the minor bank’s extended monetary reserves dynamics (2.56) and obtain

dXi
t = (AkXi

t +Bkui
t +Mk)dt +SkdW i

t , (2.68)

where

Ak =

2

4 �a [aqkl ,aqk(1�l )⌦p]

0 A0 �B0(N>
0 +B>

0 P0(t))

3

5, Mk =

2

4 gk(t)

M0 �B0B>
0 s0(t)

3

5, (2.69)

and matrices Bk and Sk are as defined in (2.49).

Now in order to completely characterize the control actions of the major agent and

a representative minor agent, we proceed to obtain the ODEs that P0(t),s0(t),Pk(t) and

sk(t) satisfy. We first start with the major agent. In equation (2.41) of the major bank’s

control, we have the term
M0

2,t
M0

1,t
, which is the quotient of two martingales under the measure

P0. For this term to also behave like a martingale under a new measure, we follow Lemma

2 in Liu et al. (2023) and apply the change of measure technique, where we show that a

random variable exp(G(u0)�C⇤
0(T )) can define a Radon-Nikodym derivative and G(u0)

is represented by following function

G(u0) =�
d 2

0
2

Z T

0
(n0

t )
2dt +d0

Z T

0
n0

t dW 0
t +C⇤

0(T )+F0
T , (2.70)

where n0
t , C⇤

0(T ), and F0
T are functions that we will define later on.

To approach this problem, following the methodology in Liu et al. (2023), we first

define the process

Vt =
d0

2
⇥
(X0

t )
>P0(t)X0

t +2(s0(t))>X0
t
⇤
. (2.71)
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We then apply Itô’s lemma to the process above, and substitute dX0
t with equation (2.66),

which leads to

dVt =
d0

2

⇣
2(X0

t )
>P0(t)dX0

t +P0(t)d
⌦
X0,X0↵

t +(X0
t )

>dP0(t)X0
t

+2(s0(t))>dX0
t +2(ds0(t))>X0

t

⌘

=
d0

2

⇣
2(X0

t )
>P0(t)

⇥
(A0X0

t +B0u0
t +M0)dt +S0dW 0

t
⇤

+ tr

(
[s0dw0

t ,0]P0(t)

2

4 s0dw0
t

0

3

5
)
+(X0

t )
>Ṗ0(t)X0

t dt

+2(s0(t))>
⇥
(A0X0

t +B0u0
t +M0)dt +S0dW 0

t
⇤
+2(ṡ0(t))>X0

t dt
⌘
,

(2.72)

where tr

(
[s0dw0

t ,0]P0(t)

2

4 s0dw0
t

0

3

5
)

defines the trace of the square matrix, which

calculates the sum of entries on the main diagonal of the matrix. From the fundamental

theorem of calculus, we integrate both sides from 0 to T

Z T

0
dVt =VT �V0

=
d0

2

Z T

0

⇥
(X0

t )
>Ṗ0(t)X0

t +2(X0
t )

>P0(t)A0X0
t +2(X0

t )
>P0(t)B0u0

t

+2(X0
t )

>P0(t)M0 +2(ṡ0(t))>X0
t

+2(s0(t))>(A0X0
t +B0u0

t +M0)+P0
11s2

0 )
⇤
dt

+d0

Z T

0

⇥
(X0

t )
>P0(t)+(s0(t))>

⇤
S0dW 0

t ,

(2.73)

where P0
11 is an entry of the matrix P0(t), defined in (2.43).

We then add G(u0) to both side of (2.73). With some algebraic manipulations we

obtain G(u0) = G(u0)�VT +V0 +
R T

0 dVt . We substitute G(u0) with (2.38) and u0
t with
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the control action in (2.44), leading to

G(u0) =
d0

2
(X0

T )
>G0X0

T +
d0

2

Z T

0

n
(X0

t )
>Q0X0

t

�2(X0
t )

>N0
�
N>

0 X0
t +B>

0 P0(t)X0
t +B>

0 s0(t)
�
+
�
N>

0 X0
t +B>

0 P0(t)X0
t

+B>
0 s0(t)

�2
o

dt � d0

2
(X0

T )
>P0(T )X0

T �d0(s0(T ))>X0
T +

d0

2
(X0

0 )
>P0(0)X0

0

+d0(s0(0))>X0
0 +

d0

2

Z T

0

n
(X0

t )
>Ṗ0(t)X0

t +2(X0
t )

>P0(t)A0X0
t

�2(X0
t )

>P0(t)B0
�
N>

0 X0
t +B>

0 P0(t)X0
t +B>

0 s0(t)
�
+2(X0

t )
>P0(t)M0

+2(ṡ0(t))>X0
t +2(s0(t))>A0X0

t �2(s0(t))>B0
�
N>

0 X0
t +B>

0 P0(t)X0
t

+B>
0 s0(t)

�
+2(s0(t))>M0 +P0

11s2
0

o
dt +d0

Z T

0

⇥
(X0

t )
>P0(t)

+(s0(t))>
⇤
S0dW 0

t .
(2.74)

After some simplifications we obtain

G(u0) =
d0

2
(X0

0 )
>P0(0)X0

0 +d0(s0(0))>X0
0 +

d0

2
(X0

T )
>G0X0

T

� d0

2
(X0

T )
>P0(T )X0

T �d0(s0(T ))>X0
T

+
d0

2

Z T

0

n
(X0

t )
>Q0X0

t � (X0
t )

>N0N>
0 X0

t � (X0
t )

>P0(t)B0B>
0 P0(t)X0

t

� (s0(t))>B0B>
0 s0(t)+(X0

t )
>Ṗ0(t)X0

t +2(X0
t )

>P0(t)A0X0
t

�2(X0
t )

>P0(t)B0N>
0 X0

t +2(X0
t )

>P0(t)M0 +2(ṡ0(t))>X0
t +2(s0(t))>A0X0

t

�2(s0(t))>B0N>
0 X0

t �2(s0(t))>B0B>
0 P0(t)X0

t +2(s0(t))>M0

+P0
11s2

0

o
dt +d0

Z T

0

⇥
(X0

t )
>P0(t)+(s0(t))>

⇤
S0dW 0

t

�
d 2

0
2

Z T

0

⇣⇥
(X0

t )
>P0(t)+(s0(t))>

⇤
S0

⌘2
dt

+
d 2

0
2

Z T

0

⇣⇥
(X0

t )
>P0(t)+(s0(t))>

⇤
S0

⌘2
dt.

(2.75)

For G(u0) to admit the form of (2.70), we need

n0
t =

⇥
(X0

t )
>P0(t)+(s0(t))>

⇤
S0, (2.76)
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and

C⇤
0(T ) =

d0

2
(X0

0 )
>P0(0)X0

0 +d0(s0(t))>X0
0 +

d0

2

Z T

0

n
� (s0(t))>B0B>

0 s0(t)

+2(s0(t))>M0 +P0
11s2

0 +d0S>
0 s0(t)(s0(t))>S0

o
dt,

(2.77)

which is a function that contains all the terms that do not depend on the state X0
t . We also

have F0
T , which is a random variable given by

F0
T =

d0

2
(X0

T )
>G0X0

T � d0

2
(X0

T )
>P0(T )X0

T �d0(s0(T ))>X0
T

+
d0

2

Z T

0

n
(X0

t )
>Q0X0

t � (X0
t )

>N0N>
0 X0

t � (X0
t )

>P0(t)B0B>
0 P0(t)X0

t

+(X0
t )

>Ṗ0(t)X0
t +2(X0

t )
>P0(t)A0X0

t �2(X0
t )

>P0(t)B0N>
0 X0

t

+2(X0
t )

>P0(t)M0 +2(ṡ0(t))>X0
t +2(s0(t))>A0X0

t �2(s0(t))>B0N>
0 X0

t

�2(s0(t))>B0B>
0 P0(t)X0

t +d0P0(t)S0S>
0 P0(t)X0

t

+2d0P0(t)S0S>
0 s0(t)X0

t

o
dt.

(2.78)

In order to define exp(G(u0)�C⇤
0(T )) as a Radon-Nikodym derivative, we need F0

T = 0

according to Lemma 2 in Liu et al. (2023). This leads to

Ṗ0(t)+P0(t)A0 +A>
0 P0(t)� (P0(t)B0 +N0)(B>

0 P0(t)+N>
0 )+Q0

+d0P0(t)S0S>
0 P0(t) = 0, (2.79)

ṡ0(t)+
�
(A0�B0N>

0 )
>�P0(t)B0B>

0
�
s0(t)+P0(t)M0+d0P0(t)S0S>

0 s0(t) = 0, (2.80)

as well as the terminal conditions

P0(T ) =G0, (2.81a)

s0(T ) = 0. (2.81b)

Therefore, G(u0) satisfies the condition (2.70). We can then define the random vari-

able exp(G(u0)�C⇤
0(T )) as a Radon-Nikodym derivative that defines a probability mea-

sure P̂0 equivalent to P0 based on Lemma 2 in Liu et al. (2023), where

dP̂0

dP0 = exp(G(u0)�C⇤
0(T ))

= exp
⇣
�

d 2
0
2

Z T

0
(n0

t )
2dt +d0

Z T

0
n0

t dWt

⌘
.

(2.82)
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We can then define M̂0
t as

M̂0
t =

M0
2,t

M0
1,t

=
E[L 0(T )exp(�d 2

0
2
R T

0 (n0
t )

2dt +d0
R T

0 n0
t dWt)|F 0

t ]

E[exp(�d 2
0
2
R T

0 (n0
t )2dt +d0

R T
0 n0

t dWt)|F 0
t ]

,

(2.83)

which is a martingale under the new measure P̂0 where

L 0(T ) = eA
>
0 TG0X0

T +
Z T

0
eA

>
0 s(Q0X0

s +N0u0
s )ds, (2.84)

and

M̂0
t = Ê[L (T )|F 0

t ]. (2.85)

Furthermore, based on the martingale representation theorem, we can express M̂0
t as

M̂0
t = M̂0

0 +
Z t

0
Z0

s dŴ 0
s , dM̂0

t = Z0
t dŴ 0

t , (2.86)

where dŴ 0
t =�d0

�
[(X0

t )
>P0(t)+(s0(t))>

⇤
S0
�
dt +dW 0

t under the new measure P̂0. We

can then rewrite the major agent’s control action in (2.41) as

u0
t =�

h
N>

0 X0
t +B>

0
�
e�A>

0 tM̂0
t �

Z t

0
eA

>
0 (s�t)(Q0X0

s +N0u0
s )ds

�i
. (2.87)

We define the adjoint process under measure P̂0 as

p0
t = e�A>

0 tM̂0
t �

Z t

0
eA

>
0 (s�t)(Q0X0

s +N0u0
s )ds. (2.88)

Applying Itô’s lemma on this process and we get

d p0
t =

⇥
�A>

0 p0
t � (Q0X0

t +N0u0
t )
⇤
dt + e�A>

0 tZ0
t dŴ 0

t

=
h
�A>

0 (P0(t)X0
t + s0(t))�

�
Q0X0

t �N0(N>
0 X0

t +B>
0 P0(t)X0

t +B>
0 s0(t))

�i
dt

+ e�A>
0 tZ0

t dŴ 0
t

=
⇥
(�Q0 �A>

0 P0(t)+N0N>
0 +N0B>

0 P0(t))X0
t �A>

0 s0(t)+N0B>
0 s0(t)

⇤
dt

+ e�A>
0 tZ0

t dŴ 0
t .

(2.89)
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We also apply Ito’s lemma to the ansatz (2.42) which leads to

d p0
t = d(P0(t)X0

t + s0(t)) = (Ṗ0(t)X0
t +P0(t)dX0

t + ṡ0(t))dt

=
⇣

Ṗ0(t)X0
t +P0(t)A0X0

t �P0(t)B0
�
N>

0 X0
t +B>

0 P0(t)X0
t +B>

0 s0(t)
�

+P0(t)M0 +d0P0(t)S0(X0
t )

>P0(t)S0 +d0P0(t)S0(s0(t))>S0 + ṡ0(t)
⌘

dt

+P0(t)S0dŴ 0
t .

(2.90)

Since we have previously obtained the conditions (2.79) - (2.80), the drift and diffusion

coefficients of both SDEs (2.89) and (2.90) are equal at each time t. Therefore, according

to Theorem 3 in Liu et al. (2023), we have

P0(t)X0
t + s0(t) = e�A>

0 tM̂0
t �

Z t

0
eA

>
0 (s�t)(Q0X0

s +N0u0
s )ds, (2.91)

under measure P̂0.

Finally, following Theorem 3 in Firoozi et al. (2020) and Corollary 4 in Liu et al.

(2023), we obtain that u0,⇤
t given by the form of (2.44) where P0(t) and s0(t) satisfying

the conditions (2.79) - (2.80) is the optimal trading strategy under the original measure P0

for the major bank in a risk-sensitive interbank transactions system defined by (1.1) and

(1.2).

We now apply a similar method to obtain the optimal trading strategy for a represen-

tative minor bank and the ODEs that Pk(t) and sk(t) satisfy. Following Lemma 2 in Liu

et al. (2023), for the random variable exp(G(ui)�C⇤
i (T )) to define a Radon-Nikodym

derivative, we aim to obtain the representation

G(ui) =�
d 2

k
2

Z T

0
(n i

t )
2dt +dk

Z T

0
n i

t dWt +C⇤
i (T )+Fi

T . (2.92)

To this purpose, we apply Itô’s lemma to the following process

Qt =
dk

2
⇥
(Xi

t )
>Pk(t)Xi

t +2(sk(t))>Xi
t
⇤
, (2.93)
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which leads to

dQt =
dk

2

⇣
2(Xi

t )
>Pk(t)

⇥
(AkXi

t +Bkui
t +Mk)dt +SkdW i

t
⇤

+ tr

(
⇥
skdwi

t ,s0dw0
t ,0

⇤
Pk(t)

2

6664

skdwi
t

s0dw0
t

0

3

7775

)
+(Xi

t )
>Ṗk(t)Xi

t dt

+2(sk(t))>
⇥
(AkXi

t +Bkui
t +Mk)dt +SkdW i

t
⇤
+2(ṡk(t))>Xi

t dt
⌘
.

(2.94)

Then, from the fundamental theorem of calculus we have
Z T

0
dQt = QT �Q0

=
dk

2

Z T

0

⇥
(Xi

t )
>Ṗk(t)Xi

t +2(Xi
t )

>Pk(t)AkXi
t +2(Xi

t )
>Pk(t)Bkui

t

+2(Xi
t )

>Pk(t)Mk +2(ṡk(t))>Xi
t +2(sk(t))>(AkXi

t +Bkui
t +Mk)

+Pk
11s2

k +Pk
22s2

0 )
⇤
dt +dk

Z T

0

⇥
(Xi

t )
>Pk(t)+(sk(t))>

⇤
SkdW i

t .

(2.95)

We then add G(ui) to both side of (2.95) and obtain G(ui) = G(ui)�QT +Q0 +
R T

0 dQt .

We substitute G(ui) with (2.54) and ui
t with the control action in (2.60). With some

simplifications, we express G(ui) as

G(ui) =
dk

2
(Xi

T )
>GkXi

T � dk

2
(Xi

T )
>Pk(T )Xi

T �dk(sk(T ))>Xi
T +

dk

2
(Xi

0)
>Pk(0)Xi

0

+dk(sk(0))>Xi
0 +

dk

2

Z T

0

n
(Xi

t )
>QkXi

t � (Xi
t )

>NkN>
k Xi

t

� (Xi
t )

>Pk(t)BkB>
k Pk(t)Xi

t � (sk(t))>BkB>
k sk(t)+(Xi

t )
>Ṗk(t)Xi

t

+2(Xi
t )

>Pk(t)AkXi
t �2(Xi

t )
>Pk(t)BkN>

k Xi
t +2(Xi

t )
>Pk(t)Mk +2(ṡk(t))>Xi

t

+2(sk(t))>AkXi
t �2(sk(t))>BkN>

k Xi
t �2(sk(t))>BkB>

k Pk(t)Xi
t +2(sk(t))>Mk

+Pk
11s2

k +Pk
22s2

0

o
dt +dk

Z T

0

⇥
(Xi

t )
>Pk(t)+(sk(t))>

⇤
SkdW i

t

�
d 2

k
2

Z T

0

⇣⇥
(Xi

t )
>Pk(t)+(sk(t))>

⇤
Sk

⌘2
dt

+
d 2

k
2

Z T

0

⇣⇥
(Xi

t )
>Pk(t)+(sk(t))>

⇤
Sk

⌘2
dt.

(2.96)
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For G(ui) to follow the form of (2.92), we need

n i
t =

⇥
(Xi

t )
>Pk(t)+(sk(t))>

⇤
Sk, (2.97)

which is integrant of the stochastic integral. We also need

C⇤
i (T ) =

dk

2
(Xi

0)
>Pk(0)Xi

0 +dk(sk(0))>Xi
0 +

dk

2

Z T

0

�
� (sk(t))>BkB>

k sk(t)

+2(sk(t))>Mk +Pk
11s2

k +Pk
22s2

0 +dkS>
k sk(t)(sk(t))>Sk

 
dt.

(2.98)

Furthermore, we have the random variable Fi
T given by

Fi
T =

dk

2
(Xi

T )
>GkXi

T � dk

2
(Xi

T )
>Pk(T )Xi

T �dk(sk(T ))>Xi
T

+
dk

2

Z T

0

n
(Xi

t )
>QkXi

t � (Xi
t )

>NkN>
k Xi

t � (Xi
t )

>Pk(t)BkB>
k Pk(t)Xi

t

+(Xi
t )

>Ṗk(t)Xi
t +2(Xi

t )
>Pk(t)AkXi

t �2(Xi
t )

>Pk(t)BkN>
k Xi

t

+2(Xi
t )

>Pk(t)Mk +2(ṡk(t))>Xi
t +2(sk(t))>AkXi

t �2(sk(t))>BkN>
k Xi

t

�2(sk(t))>BkB>
k Pk(t)Xi

t

o
+dkPk(t)SkS>

k Pk(t)Xi
t

+2dkPk(t)SkS>
k sk(t)Xi

t

o
dt.

(2.99)

Following Lemma 2 in Liu et al. (2023), we need Fi
T = 0 for exp(G(ui)�C⇤

i (T )) to define

a Radon-Nikodym derivative. To fulfill this requirement, we need the terminal conditions

Pk(T ) =Gk, (2.100a)

sk(T ) = 0. (2.100b)

and

Ṗk(t)+Pk(t)Ak +A>
k Pk(t)� (Pk(t)Bk +Nk)(B>

k Pk(t)+N>
k )+Qk

+dkPk(t)SkS>
k Pk(t) = 0 (2.101)

ṡk(t)+
�
(Ak �BkN>

k )
>�Pk(t)BkB>

k
�
sk(t)+PkMk +dkPk(t)SkS>

k sk(t) = 0 (2.102)
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Therefore, G(ui) satisfies (2.92) and exp(G(ui)�C⇤
i (T )) is a Radon-Nikodym derivative

that defines a probability measure P̂i equivalent to Pi according to Lemma 2 in Liu et al.

(2023).

We can then define

M̂i
t =

Mi
2,t

Mi
1,t

=
E[L i(T )exp(�d 2

k
2
R T

0 (n i
t )

2dt +dk
R T

0 n i
t dWt)|F i

t ]

E[exp(�d 2
k
2
R T

0 (n i
t )2dt +dk

R T
0 n i

t dWt)|F i
t ]

,

(2.103)

where

L i(T ) = eA
>
k TGkXi

T +
Z T

0
eA

>
k s(QkXi

s +Nkui
s)ds, (2.104)

and M̂i
t = Ê[L i(T )|F i

t ] behaves like a martingale under the new measure P̂i. Moreover,

we can express M̂i
t as

M̂i
t = M̂i

0 +
Z t

0
Zi

sdŴ i
s , dM̂i

t = Zi
t dŴ i

t , (2.105)

using the martingale representation theorem where

dŴ i
t =�dk

�
[(Xi

t )
>Pk(t)+(sk(t))>

⇤
Sk
�
dt +dW i

t (2.106)

is a Brownian motion under the new measure P̂i. Therefore, we can rewrite the control

action in (2.57) as

ui
t =�

h
N>

k Xi
t +B>

k
�
e�A>

k tM̂i
t �

Z t

0
eA

>
k (s�t)(QkXi

s +Nkui
s)ds

�i
. (2.107)

We then define the adjoint process under measure P̂i as

pi
t = e�A>

k tM̂i
t �

Z t

0
eA

>
k (s�t)(QkXi

s +Nkui
s)ds. (2.108)

Applying Itô’s lemma to the adjoint process and we obtain

d pi
t =

⇥
(�Qk �A>

k Pk(t)+NkN>
k +NkB>

k Pk(t))Xi
t �A>

k sk(t)+NkB>
k sk(t)

⇤
dt

+ e�A>
k tZi

t dŴ i
t .

(2.109)
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We also apply Ito’s lemma on the ansatz (2.58) which leads to

d pi
t = d(Pk(t)Xi

t + sk(t))

=
�
Ṗk(t)Xi

t +Pk(t)AkXi
t �Pk(t)Bk

�
N>

k Xi
t +B>

k Pk(t)Xi
t +B>

k sk(t)
�

+Pk(t)Mk +dkPk(t)Sk(Xi
t )

>Pk(t)Sk +dkPk(t)Sk(sk(t))>Sk + ṡk(t)
�
dt

+Pk(t)SkdŴ i
t .

(2.110)

The drift and diffusion coefficients of both SDEs (2.109) and (2.110) are equal at each

time t following the conditions (2.101) and (2.102). Hence, based on Theorem 3 in Liu

et al. (2023), we have

Pk(t)Xi
t + sk(t) = e�A>

k tM̂i
t �

Z t

0
eA

>
k (s�t)(QkXi

s +Nkui
s)ds, (2.111)

under measure P̂i.

Again, following Theorem 3 in Firoozi et al. (2020) and Corollary 4 in Liu et al.

(2023), we have that ui,⇤
t given by (2.60) with Pk(t) and sk(t) satisfying the conditions

(2.101) - (2.102) is the optimal transaction strategy for a representative minor bank under

measure Pi in a risk-sensitive interbank setting defined by (1.4) and (1.5).

2.3.1 Simplification of Best-Response Strategies

In this section, we want to obtain a reduced expression of the optimal strategies of the

major bank and a representative minor bank given by u0,⇤
t and ui,⇤

t , following the forms

(2.44) and (2.60) respectively. In the works of Carmona et al. (2015) and Chang et al.

(2023), a reduction of the optimal strategy in the form of mean reversion can be achieved

in the risk-neutral setting. By obtaining the reduced form, it is more straightforward

to observe the effect each variable has on the optimal trading rate and dynamic of an

agent. In the following subsections, we attempt to derive the simplified forms of the best-

response strategies of the major bank and a minor bank for our model, and verify their

validity in the risk-sensitive case.
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2.3.1.1 Simplification for the Major Agent

Building upon prior studies in Chang et al. (2023), we adopt the following ansatz for

the major bank’s optimal transaction strategy u0,⇤
t

u0,⇤
t =�

⇥
N>

0 X0
t � 1

q0
B>

0 F0
t N>

0 X0
t +B>

0 s0(t)
⇤
, (2.112)

and obtain

u0,⇤
t = [1, Hp

0 ]q0(q0l �1)

2

4x0
t

x̄t

3

5(1� 1
q0

[1, 0]

2

4f 0
t

y0
t

3

5)�B>
0 s0(t)

= (q0 �f 0
t )
⇥
(q0(1�l )⌦p)x̄t +(q0l �1)x0

t
⇤
�B>

0 s0(t),

(2.113)

which is a reduced representation of major bank’s optimal borrowing/lending rate. This

dictates that P0(t) follows the form

P0(t) = F0
t [q0l �1, q0(1�l )⌦p], F0

t = [f 0
t , y0

t ]
>. (2.114)

We can then write (2.42) as

p0
t = F0

t (�
1
q0

)N>
0 X0

t + s0(t). (2.115)

Moreover, we want to simplify the matrix form of the Riccati equation (2.79) and

obtain an ODE for the components in P0(t) that explicitly appear in the reduced control

action (2.113). With the ansatz (2.114) we have

P0(t) =

2

4 P0
11 P0

12

P0
21 P0

22

3

5=

2

4 f 0
t (q0l �1) f 0

t q0(1�l )⌦p

f 0
t q0(1�l )⌦p y0

t q0(1�l )⌦p

3

5 (2.116)

which is a symmetric matrix. We then expand all the matrices in equation (2.79), leading

to the following expression of entry P0
11

� Ṗ0
11 = 2(P0

11a0(q0l �1)+P0
12Ḡ)� (P0

11 �q0(q0l �1))2 + e0(q0l �1)2

+d0(P0
11)

2(s0)
2, (2.117)
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where P0
12 is also characterized by f 0

t as defined in (2.116). Multiplying the matrices in

the term that includes the degree of risk sensitivity in (2.79) leads to

d0P0(t)S0S>
0 P0(t) = d0

2

4 (P0
11)

2(s0)2 P0
11P0

12(s0)2

P0
21P0

11(s0)2 P0
21P0

12(s0)2

3

5 . (2.118)

We can see that f 0
t is the only variable in the ansatz that is included in the term

d0P0(t)S0S>
0 P0(t). Therefore, we can reduce (2.117) to an ODE that contains f 0

t for

the risk-sensitive case. Substituting P0
11 and P0

12 with f 0
t (q0l �1) and f 0

t q0(1�l )⌦p

respectively in (2.117) and we have

� ḟ 0
t = 2f 0

t
�
a0(q0l �1)+Hp

0 Ḡ
�
� (f 0

t �q0)
2(q0l �1)+ e0(q0l �1)

+d0(f 0
t )

2(s0)
2(q0l �1), (2.119)

with the terminal condition

f 0
T = c0(q0l �1). (2.120)

Figure 2.1: Comparison of f 0(t) and P0(t)
variables for d0 = dk = 0.

Figure 2.2: Comparison of f 0(t) and P0(t)
variables for d0 = 4,dk = 0.

We also verify the ansatz by plotting the entries of P0(t) in both the original form

and ansatz form in (2.116). From Fig. 2.1 and Fig. 2.2 we can see that the values of

entries (1, 1), (1, 2), and (1, 3) under both forms overlap perfectly at each time t when the

major bank is risk-neutral and when it is risk-sensitive, while minor banks remain risk-

neutral. This indicates that the ansatz in (2.112) is valid for the risk-sensitive setting and
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we proceed to express the major bank’s optimal trading strategy as in (2.113) where f 0
t

satisfies the ODE (2.119).

2.3.1.2 Simplification for a Representative Minor Agent

We now proceed to obtain the reduced form of the optimal trading strategy for a rep-

resentative minor bank. We adopt the ansatz

ui,⇤
t =�[N>

k Xi
t �

1
qk
B>

k Fk
t N>

k Xi
t +B>

k sk(t)]. (2.121)

With some simplifications, we obtain

ui,⇤
t = � [In,�Hk,�Ĥp

k ]qk

2

6664

xi
t

x0
t

x̄t

3

7775
(1� 1

qk
[1, 0, 0]

2

6664

f k
t

yk
t

hk
t

3

7775
)�B>

k sk(t)

= (qk �f k
t )
⇥
(qk(1�l )⌦p)x̄t +qklx0

t � xi
t
⇤
�B>

k sk(t),

(2.122)

which implies that Pk(t) follows the expression

Pk(t) = Fk
t [�1, qkl , qk(1�l )⌦p], Fk

t = [f k
t , yk

t , hk
t ]

>. (2.123)

With some algebraic manipulation, we can rewrite ansatz (2.58) as

pi
t = Fk

t (�
1
qk
)N>

k Xi
t + sk(t). (2.124)

Furthermore, as the number of minor banks in a representative subgroup k goes to

infinity, the control mean-field of the subgroup is given by

ūk
t = (qk �f k

t )
⇥
(qk(1�l )⌦p)x̄t +qklx0

t � x̄k
t
⇤
�B>

k sk(t). (2.125)

Substituting this control mean-field into the log-monetary reserves mean-field dynamics

(2.11) leads to

dx̄t = (Āx̄t + Ḡx0
t + m̄)dt (2.126)
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where

Ā =

2

6664

Ā1
...

ĀK

3

7775
, Ḡ =

2

6664

Ḡ1
...

ḠK

3

7775
, m̄ =

2

6664

m̄1
...

m̄K

3

7775
, (2.127)

and

Āk = (qk(1�l )⌦p � ek)(a+qk �f k
t ), (2.128a)

Ḡk = qkl (a+qk �f k
t ), (2.128b)

m̄k = gk(t)�B>
k sk(t). (2.128c)

We then proceed to simplify the ODE (2.101) and obtain an expression for the element

Pk
11, where Pk(t) admits the following structure according to the adopted anasatz

Pk(t)=

2

6664

Pk
11 Pk

12 Pk
13

Pk
21 Pk

22 Pk
23

Pk
31 Pk

32 Pk
33

3

7775
=

2

6664

�f k
t f k

t qkl f k
t qk(1�l )⌦p

f k
t qkl yk

t qkl yk
t qk(1�l )⌦p

f k
t qk(1�l )⌦p yk

t qk(1�l )⌦p hk
t qk(1�l )⌦p

3

7775
.

(2.129)

With some calculations, we derive

ḟ k
t = 2(a+qk)f k

t +(dk(sk)
2 +dk(s0)

2(qk)
2l 2 �1)(f k

t )
2 + ek � (qk)

2. (2.130)

If we expand the matrices in the term that includes the degree of risk sensitivity in (2.101),

we obtain

dkPk(t)SkS>
k Pk(t)

= dk

2

6664

(Pk
11)

2(sk)2 +(Pk
12)

2(s0)2 Pk
11Pk

12(sk)2 +Pk
12Pk

22(s0)2 Pk
11Pk

13(sk)2 +Pk
12Pk

23(s0)2

Pk
21Pk

11(sk)2 +Pk
22Pk

21(s0)2 (Pk
21)

2(sk)2 +(Pk
22)

2(s0)2 Pk
21Pk

13(sk)2 +Pk
22Pk

23(s0)2

Pk
31Pk

11(sk)2 +Pk
32Pk

21(s0)2 Pk
31Pk

12(sk)2 +Pk
32Pk

22(s0)2 (Pk
31)

2(sk)2 +(Pk
32)

2(s0)2

3

7775
.

(2.131)

From (2.131) we can see that the ODE for entry Pk
12 contains Pk

22 when the minor

agent is risk-sensitive, i.e., when dk 6= 0, as it is impacted by the term Pk
11Pk

12(sk)
2 +
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Pk
12Pk

22(s0)2. However, for the structure (2.123) resulting from the ansatz (2.122), entry

(1, 2), f k
t qkl , does not capture entry (2, 2), yk

t qkl . Therefore, this ansatz is not valid for

simplifying the Riccati equation (2.101) when the minor agent is risk-sensitive.

Figure 2.3: Comparison of f k(t) and Pk(t)
variables for d0 = dk = 0.

Figure 2.4: Comparison of f k(t) and Pk(t)
variables for d0 = 0,dk = 4.

Fig. 2.3 and Fig. 2.4 further confirm this conclusion. We plot the values of the entries

(1, 1), (1, 2), and (1, 3) at each time t under both the original form and ansatz form in

(2.129) for a generic minor bank. As we can see from the graphs when the minor bank is

risk-neutral, the values of Pk
11 and �f k

t match perfectly. However, there are discrepancies

between the values of Pk
11 Pk

12 and Pk
13 and their respective expressions using the ansatz

when the minor bank behaves in a risk-sensitive fashion, as shown in Fig. 2.4. Therefore,

the ansatz in (2.121) is not valid in the risk-sensitive setting, and we use the general form

of the optimal trading rate (2.60), as well as the general solutions (2.101) and (2.102) for

all minor agents in our model.

Other forms of ansatz may be used to capture the interaction explained above. How-

ever, several ODEs would be involved to characterize the optimal trading strategies of

banks. Therefore, this would not lead to a useful simplification that we desire.
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Chapter 3

Numerical Experiments

As previously discussed in the literature review, due to the connected nature of the

interbank market, the effect of the failure of one large institute may quickly spread across

the system and lead to more bank defaults. Hence, it is crucial to analyze and understand

the factors causing banks to default so that the disastrous aftermath might be prevented.

In this chapter, we first investigate the impact of volatility and risk sensitivity of the major

and minor banks on their mean reversion rates and optimal transaction rates. We then

define mathematically the total and conditional probabilities of default for each bank.

We also study the probability of the systemic event, which occurs when the market state

of monetary reserves falls below a certain default threshold (Carmona et al., 2015). To

observe the effect of specific components more directly, such as the major bank’s size and

the degree of risk sensitivity of banks we then perform Monte Carlo simulations on banks’

log-monetary reserves dynamics and optimal transaction rates and acquire probabilities

of default and systemic risk in different scenarios.



3.1 Impact of Volatility and Risk Sensitivity on Optimal

Transaction Rates

In this section, we study the effect of changes in the major bank and minor banks’

volatility level and degree of risk sensitivity on the mean reversion rates and optimal

transaction rates of banks, inspired by Chang et al. (2023). We assume there is one type

of minor banks for this purpose, where the same parameters characterize all minor banks.

As shown in Section 2.3.1, the major bank’s optimal transaction rate admits a reduced

expression given by (2.13) in the form of mean reversion where f 0
t follows the ordinary

differential equation (ODE) given by (2.15). The mean reversion rate of the major bank

can be expressed as a0+q0�f 0
t as seen in the closed-loop dynamics (2.26) in Corollary 1.

Therefore, the magnitude of f 0
t describes the major bank’s mean reversion rate to the

market state, where a greater magnitude of f 0
t indicates a higher mean reversion rate. For

the following simulations, we plot the trajectories of f 0
t and set l = 0.5,a0 = a = 5,c0 =

ck = 0,e0 = ek = 10,q0 = qk = 1,g0 = gk = 0.3 and q0 = qk = 1.

Figure 3.1: f 0
t for various values of s0

when d0 = dk = 0,sk = 1.
Figure 3.2: f 0

t for various values of s0
when d0 = dk = sk = 1.

The parameter s0 describes the volatility of the major bank’s log-monetary reserves,

which stems from the daily transactions of the bank’s retail customers. A higher value of

s0 indicates more changes in the bank’s monetary reserves, whether positive or negative.

As seen in Fig. 3.1, when all banks in the interbank system are risk-neutral, changes in the

52



major bank’s volatility level, s0, do not impact the trajectory of f 0
t . However, when we

perform our simulations in a risk-sensitive setting, we observe a more significant impact.

As shown in Fig. 3.2, a risk-sensitive major bank’s mean reversion rate would increase

as its volatility level increases, while the minor banks’ volatility level remains constant.

This indicates that as there are more uncertainties in the major bank’s monetary reserves,

the bank adjusts its strategies by trading more frequently with other banks to return to its

target reserves.

Figure 3.3: f 0
t for various values of d0

when dk = s0 = sk = 1.

Figure 3.4: f 0
t for various values of sk

when d0 = dk = s0 = 1.
Figure 3.5: f 0

t for various values of dk
when d0 = s0 = sk = 1.

Moreover, Fig. 3.3 illustrates that as the risk sensitivity degree of the major bank in-

creases, meaning that it is more risk-averse, the bank reverts to its target reserves level
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more quickly. Since the major bank is more cautious about the uncertainties in the in-

terbank market, it aims to stay close to the target level to avoid risk. We can also see

from Fig. 3.4 and Fig. 3.5 that the magnitude of f 0
t decreases slightly as the volatility

level, sk, and degree of risk sensitivity, dk, of minor banks increase, while the volatility

and risk sensitivity level of the major bank remain the same. In an interbank system, mi-

nor banks are more conservative with their lending/borrowing activities as they become

more risk-averse, which could lead to a healthier market. Since the major bank’s risk

sensitivity degree remains constant, it can reduce its mean reversion rate in a more stable

environment. Additionally, as indicated by the ODE in (2.15), f 0
t depends on the variable

Ḡ, which is defined in (2.23) and includes the term Pk
12. More precisely, from (2.131),

we know that Pk
12 depends on the parameters sk and dk. Therefore, the changes in these

parameters of the minor banks have a slight effect on the mean reversion rate of the major

bank.

Figure 3.6: Value of Pk
11 for various values

of sk when d0 = dk = s0 = 1.
Figure 3.7: Value of Pk

11 for various values
of dk when d0 = s0 = sk = 1.

Furthermore, we can see in Corollary 1 that the variables Pk
11, Pk

12 and Pk
13 appear in

a minor bank’s dynamics and affect its optimal transaction rate. Therefore, we proceed to

analyze the effect sk, dk, s0 and d0 have on Pk
11, Pk

12, and Pk
13 for a minor bank. Similar

to the major bank’s case, we do not observe any impacts of the changes in the parameters

in a risk-neutral setting. Hence, we conduct the simulations with risk-sensitive banks.

As shown in Fig. 3.6 and Fig. 3.7, Pk
11 of a generic minor bank increases as its volatility

54



Figure 3.8: Value of Pk
11 for various values

of s0 when d0 = dk = sk = 1.
Figure 3.9: Value of Pk

11 for various values
of d0 when dk = s0 = sk = 1.

level of monetary reserves and degree of risk sensitivity increase, which exhibits a similar

trend as that of the major bank’s mean reversion rate in Fig. 3.2 and Fig. 3.3. However,

Fig. 3.8 illustrates that the major bank’s volatility level has a more significant impact on

Pk
11 compared to the effect sk has on major bank’s mean reversion rate, a0 +q0 �f 0

t , in

Fig. 3.4. This can be explained by the setting of our model, which states that the major

bank’s actions affect each minor bank, whereas an individual minor bank’s effect on the

major bank is negligible. Furthermore, the changes in the major bank’s risk sensitivity

degree have almost no effect on Pk
11 as shown in Fig. 3.9, since d0 does not explicitly

show up in the expression for Pk
11 as outlined by (2.131).

Figure 3.10: Value of Pk
12 for various val-

ues of sk when d0 = dk = s0 = 1.
Figure 3.11: Value of Pk

12 for various val-
ues of dk when d0 = s0 = sk = 1.
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Figure 3.12: Value of Pk
12 for various val-

ues of s0 when d0 = dk = sk = 1.
Figure 3.13: Value of Pk

12 for various val-
ues of d0 when dk = s0 = sk = 1.

Figure 3.14: Value of Pk
13 for various val-

ues of sk when d0 = dk = s0 = 1.
Figure 3.15: Value of Pk

13 for various val-
ues of dk when d0 = s0 = sk = 1.

The effects of a minor bank’s volatility level and risk sensitivity degree on the values

of Pk
12 and Pk

13 show similar patterns as observed in Fig. 3.10 - Fig. 3.11 and Fig. 3.14 -

Fig. 3.15. The magnitudes of both variables increase as a minor bank’s monetary reserves

face more uncertainty and as the bank becomes more risk-averse. Furthermore, we do not

see a clear trend in the change of the value of Pk
12 as the major bank’s volatility level,

s0, rises as shown in Fig. 3.12, whereas an increase in the major bank’s risk sensitivity

degree has opposite effects on the magnitudes of Pk
12 and Pk

13, as illustrated in Fig. 3.13

and Fig. 3.17 respectively.
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Figure 3.16: Value of Pk
13 for various val-

ues of s0 when d0 = dk = sk = 1.
Figure 3.17: Value of Pk

13 for various val-
ues of d0 when dk = s0 = sk = 1.

3.2 Default Probability and Systemic Risk

We now introduce the mathematical expression for the default probability of the major

bank, which is the likelihood that the major bank’s monetary reserves level, x0
t , hits and

falls below a certain threshold D within a specific time period

P(MD) = P(default of major bank on [0,T ]) = P
⇣

min
t2[0,T ]

(x0
t )  D

⌘
. (3.1)

For a representative minor bank i in subgroup k, the probability of default is defined as

P(ikD) = P(default of minor bank i in type k on [0,T ]) = P
⇣

min
t2[0,T ]

(xi,k
t )  D

⌘
, (3.2)

where xi,k
t is the log-monetary reserves of the minor bank. Furthermore, inspired by Car-

mona et al. (2015) and Chang et al. (2023), we assume that systemic risk occurs when the

market average state of the log-monetary reserves, lx0
t +(1�l )x(N)

t , reaches the default

threshold before time T , i.e.

P(SR) = P(systemic risk on [0,T ]) = P
⇣

min
t2[0,T ]

�
lx0

t +(1�l )x(N)
t

�
 D

⌘
. (3.3)

Apart from analyzing how different parameters in the dynamics and cost functionals

contribute to the failure of banks and the system, we also want to study the effect of

the default of a large bank on the interbank market. Therefore, we define the default

57



probability of a representative minor bank i and systemic risk conditioned on whether the

major bank defaults or not within the time period

P(ikD|MD) = P
⇣

min
t2[0,T ]

(xi,k
t )  D|major bank defaults on [0,T ]

⌘
, (3.4)

P(ikD|MS) = P
⇣

min
t2[0,T ]

(xi,k
t )  D|major bank survives on [0,T ]

⌘
, (3.5)

P(SR|MD) = P
⇣

min
t2[0,T ]

�
lx0

t +(1�l )x(N)
t

�
 D|major bank defaults on [0,T ]

⌘
,

(3.6)

P(SR|MS) = P
⇣

min
t2[0,T ]

�
lx0

t +(1�l )x(N)
t

�
 D|major bank survives on [0,T ]

⌘
,

(3.7)

where MD stands for "major bank defaults" and MS stands for "major bank survives".

According to the law of total probability, we obtain

P(ikD) = P(ikD\MD)+P(ikD\MS) = P(ikD|MD)⇥P(MD)+P(ikD|MS)⇥P(MS)

=P(ikD|MD)⇥P(MD)+P(ikD|MS)⇥
�
1�P(MD)

�

=
�
P(ikD|MD)�P(ikD|MS)

�
⇥P(MD)+P(ikD|MS).

(3.8)

Similarly, we have

P(SR) =
�
P(SR|MD)�P(SR|MS)

�
⇥P(MD)+P(SR|MS). (3.9)

Additionally, minor banks in the same subgroup share the same features, and their

dynamics and optimal transaction strategies differ only by the Brownian motions. While

the impact of an individual minor bank on the interbank system is minimal, that of all

small banks in a subgroup together may be significant. Hence, the size of a subgroup

of minor banks together can be similar to that of a major bank. Therefore, it would also

be interesting to examine the consequence when a subgroup k defaults. This is the case

where the average level of the subpopulation’s reserves, x(N),k
t = 1

Nk
Âi2Ik xi

t , falls below the

default threshold. We hereby define some conditional probabilities depending on whether
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a subgroup of minor banks defaults or not

P(MD|T kD) = P
⇣

min
t2[0,T ]

�
major bank defaults on [0,T ]

�
|subgroup k defaults on [0,T ]

⌘
,

(3.10)

P(MD|T kS) = P
⇣

min
t2[0,T ]

�
major bank defaults on [0,T ]

�
|subgroup k survives on [0,T ]

⌘
,

(3.11)

P(i jD|T kD) = P
⇣

min
t2[0,T ]

(xi, j
t )  D|subgroup k defaults on [0,T ]

⌘
, (3.12)

P(i jD|T kS) = P
⇣

min
t2[0,T ]

(xi, j
t )  D|subgroup k survives on [0,T ]

⌘
, (3.13)

P(SR|T kD) = P
⇣

min
t2[0,T ]

�
lx0

t +(1�l )x(N)
t

�
 D|subgroup k defaults on [0,T ]

⌘
,

(3.14)

P(SR|T kS) = P
⇣

min
t2[0,T ]

�
lx0

t +(1�l )x(N)
t

�
 D|subgroup k survives on [0,T ]

⌘
,

(3.15)

where T kD stands for when subgroup k defaults and T kS stands for when subgroup k

survives. We study the probability of a minor bank xi, j
t defaulting in scenarios when it

belongs to a non-defaulting subgroup j that is different from the defaulting subgroup k

and when it belongs to the defaulting subgroup k.

In the following sections, we implement some numerical experiments to better un-

derstand and analyze the different default probabilities defined earlier under various sce-

narios. In Chapter 2, we present the optimal transaction strategies of the major bank

and a representative minor bank in the infinite population in which the system achieves

a Nash equilibrium. Previous studies have shown that in a Monte Carlo simulation set-

ting, the system’s behaviour with an infinite population is a reliable approximation of the

behaviour observed in a finite population with a small number of minor banks (Chang

et al., 2023). Therefore, we apply the dynamics (1.1) and (1.4) to simulate an interbank

market with one major bank and 20 minor banks. We also apply the optimal transaction

rates (2.13) and (2.14) obtained in Chapter 2 in a finite population, where we use x(N)
t

as the average reserves of all minor banks instead of the state mean-field, x̄t . We then
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employ the ODEs in (2.15) and (2.16) to solve the optimal transaction strategies of the

major bank and a generic minor bank. The interbank system defaults when the market

state, lx0
t +(1�l )x(N)

t , falls below the default threshold. The parameter values used in

the simulations are chosen according to research that has been done on similar subjects

so we can compare our results with existing studies.

3.2.1 Impact of Major Bank’s Risk Sensitivity Degree

As discussed in the literature review, a large bank may contribute more to systemic risk

due to its complex structure (Laeven et al., 2014). Therefore, it is essential to study how

different factors impact the dynamics of the major bank so we can construct an interbank

system that is less likely to fail. We first examine how different degrees of risk sensitivity

of the major bank affect its stability, a representative minor bank i, and the system. We

assume all 20 minor banks are homogeneous and share the same parameters. Therefore,

there is one type of minor banks in the system and K = 1. We select a range of values for

d0 from 0 to 4, with 0 meaning the bank is risk-neutral and non-zero values indicating the

bank is risk-averse; the larger the value of risk sensitivity degree, the more risk-averse the

bank is. A risk-averse bank demonstrates a conservative approach in its decision-making

process and is willing to tolerate a lower level of profitability in order to mitigate potential

risks.

We first simulate the system assuming the major bank’s size l is 0.4, meaning it takes

up 40% of the interbank market. We also assume that all minor banks are risk-averse,

with a risk sensitivity degree dk of 1. As shown in Table 3.1, the default probability

of the major bank, P(MD), decreases from 0.2664 to 0.2440 as d0 increases from 0 to

4. This suggests that as the major bank becomes more risk-averse, its likelihood of de-

fault decreases. Furthermore, the total default probability of a representative minor bank,

P(ikD), decreases as the major bank’s risk sensitivity degree increases, indicating that a

risk-averse major bank improves the stability of minor banks. However, P(ikD|MS), the

probability of a minor bank defaulting conditioned on the major bank surviving, shows a
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slightly increasing trend from 0.0837 to 0.0895, while the default probability of a minor

bank conditioned on the major bank defaulting, P(ikD|MD), decreases from 0.4985 to

0.4831 as d0 increases. These results indicate that if the major bank is successful, its risk

aversion does not necessarily benefit the minor banks. However, when the major bank

defaults, its being risk-averse reduces the severity of a minor bank defaulting. As the ma-

jor bank becomes less inclined to take risks, it may adopt more careful lending practices.

This could lead to less liquidity in the market, especially when the major bank survives.

Smaller banks, which often rely on the liquidity provided by the large bank, may find it

harder to obtain the necessary funds, increasing their default risks. Moreover, P(ikD|MD)

values are much higher than P(ikD|MS). This indicates that the default of a major bank

can trigger a domino effect, impacting the liquidity and solvency of minor banks and,

therefore, leading to a higher probability of minor banks defaulting.

d0 P(MD) P(ikD) P(ikD|MS) P(ikD|MD) P(SR) P(SR|MS) P(SR|MD)

0 0.2664 0.1942 0.0837 0.4985 0.0490 0 0.1839

2 0.2608 0.1911 0.0842 0.4940 0.0458 0 0.1757

4 0.2440 0.1855 0.0895 0.4831 0.0386 0 0.1581

Table 3.1: Default probabilities of the major bank, a representative minor bank, and sys-
temic risk for different values of d0 (l = 0.4;a0 = 3.33;a = 5;e0 = 30;ek = 15;g0(t) =
gk(t) = 0.3;q0 = qk = 1;dk = 1).

Furthermore, the probability of systemic risk reflects the interbank market’s overall

health. As shown in Table 3.1, the total probability of systemic risk, P(SR), decreases

from 0.0490 to 0.0386 as d0 increases. This implies that a more risk-averse major bank

reduces systemic risk, leading to more prudent financial practices. Additionally, the con-

ditional probabilities illustrate the system’s vulnerability to the status of the major bank.

The fact that P(SR|MS), the conditional probability of systemic risk when the major bank

survives, is zero for all values of d0 suggests that the system is relatively stable when the

major bank does not default. However, the significantly higher systemic risk conditioned

on major bank defaulting, P(SR|MD), indicates that the system is very vulnerable to the

major bank’s default. Nonetheless, as the major bank becomes more risk-averse, it re-
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(a) when d0 = 0 (b) when d0 = 2

(c) when d0 = 4

Figure 3.18: Trajectories of log-monetary reserves for the major bank, 10 representative
minor banks, the major bank and the market state for different values of d0.

sults in a less severe market default, as seen in the decrease of the P(SR|MD) values from

0.1839 to 0.1581. This suggests that a risk-sensitive major bank improves the financial

stability of the interbank transactions market.

Fig. 3.18 further illustrates the effect of a major bank’s risk sensitivity degree. We plot

the trajectories of monetary reserves of the major bank, the market, and ten minor banks

with the same parameters as in Table 3.1. As we can see from the plots, the major bank

and several minor banks default when the major bank is risk-neutral. The levels of log-

monetary reserves of banks and the market state increase slightly when d0 = 2. However,

the monetary reserves of the major bank and one minor bank reach the default threshold.

When the degree of risk sensitivity is 4, meaning the major bank is more risk-averse, we
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can see a significant improvement in the stability of banks and the market as shown in

Fig. 3.18c. All trajectories show an upward trend, while only one minor bank’s monetary

reserves touch the default threshold. The monetary reserves of the major bank also stay

closer to the market state. Therefore, having a risk-averse major bank in the interbank

market enhances the financial health of itself, other small banks and the entire system.

We now analyze the effect of the major bank’s risk sensitivity degree when its size

takes up a more significant portion of the interbank market. Although a large bank op-

erates more efficiently due to economies of scale and scope, other issues emerge with its

size. With the same setup, we first simulate the system with l = 0.5, indicating that the

major bank’s size is half the market size. The mean reversion rate of the major bank equals

that of the minor banks according to the market clearing condition (1.11) we defined in

Section 1.3, without considering the optimal transaction rate of banks.

d0 P(MD) P(ikD) P(ikD|MS) P(ikD|MD) P(SR) P(SR|MS) P(SR|MD)

0 0.2738 0.2236 0.0857 0.5895 0.0878 0 0.3207

2 0.2694 0.2184 0.0881 0.5716 0.0826 0 0.3066

4 0.2634 0.2091 0.0900 0.5421 0.0767 0 0.2977

Table 3.2: Default probabilities of the major bank, a representative minor bank, and sys-
temic risk for different values of d0 (l = 0.5;a0 = a = 5;e0 = 30;ek = 15;g0(t) = gk(t) =
0.3;q0 = qk = 1;dk = 1).

The results are presented in Table 3.2. We can see that the probability trends are con-

sistent with those in Table 3.1 when l = 0.4. The default probabilities of the major bank,

a generic minor bank, and systemic risk decrease as the major bank becomes more averse

to risks, confirming that a risk-sensitive major bank enhances the interbank system’s sta-

bility. However, the magnitudes of these probabilities increase as the size of major bank

grows. The substantial increase in P(SR|MD) across different risk sensitivity degrees is

consistent with the notion that larger banks are more integral to the financial system’s

stability, and their problems can lead to more significant systemic issues.

Next, we consider the scenario where the major bank’s size, l , is 0.7 while keeping

the other parameters constant. As shown in Table 3.3, the results do not show a linear
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trend when the major bank’s risk sensitivity increases. The major bank’s default proba-

bility varies around 0.2720, while the total default probability of a representative minor

bank fluctuates around 0.2490. However, we see a significant increase in the values of

P(ikD|MD) and the total and conditional probabilities of systemic risk compared to when

the major bank’s size is smaller. The zero values for P(SR|MS) across all sizes again sug-

gest that the system remains stable as long as the major bank does not default. However,

the massive jump in the systemic risk indicates that the system is incredibly fragile when

the major bank possesses too much power in the market, particularly in scenarios where

the major bank defaults. Therefore, depending on how minor banks interact with the al-

tered market dynamics, the large size of the major bank can offset the positive impact of

its risk aversion.

d0 P(MD) P(ikD) P(ikD|MS) P(ikD|MD) P(SR) P(SR|MS) P(SR|MD)

0 0.2721 0.2490 0.0980 0.6539 0.1576 0 0.5791

2 0.2708 0.2496 0.0981 0.6575 0.1597 0 0.5895

4 0.2720 0.2488 0.0980 0.6524 0.1574 0 0.5787

Table 3.3: Default probabilities of the major bank, a representative minor bank, and sys-
temic risk for different values of d0 (l = 0.7;a0 = 11.67;a = 5;e0 = 30;ek = 15;g0(t) =
gk(t) = 0.3;q0 = qk = 1;dk = 1).

Overall, our results indicate that a risk-averse major bank’s presence decreases the

default probabilities of itself, a generic minor bank, and systemic risk when its size is less

than or equal to half of the market size. A more risk-averse stance by the major bank

can lead to stabilizing effects as it employs more cautious lending approaches and liq-

uidity conditions. The severity of default events when they occur is also reduced when

the major bank becomes more risk-averse. However, the benefits of a risk-averse major

bank may diminish when the bank’s size gets too large. A larger major bank is associated

with higher default probabilities across the interbank system. Comparing the three sce-

narios underscores the importance of monitoring and managing the size of large financial

institutions due to their significant impact on overall financial stability.
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3.2.2 Impact of Percentage of the Market State that Major Bank

Follows

In this section, we study the effect of q0, which is the parameter representing the

extent to which the major bank aligns its monetary reserves with the market state, lx0
t +

(1�l )x(N)
t . It is an essential factor since it reflects the major bank’s strategies regarding

reserves management in response to market conditions. The value of q0 ranges from 0.2

to 1, with 0.2 meaning that the major bank will only track 20% of the market state and

1 meaning that the major bank intends to completely match its reserves with the market

state. We assume all banks are risk-neutral, and minor banks try to track the market state

fully.

q0 P(MD) P(ikD) P(ikD|MS) P(ikD|MD) P(SR) P(SR|MS) P(SR|MD)

0.2 0.2038 0.1746 0.1354 0.3278 0.0034 0 0.0167

0.4 0.2218 0.1754 0.1298 0.3354 0.0065 0 0.0293

0.6 0.2428 0.1769 0.1072 0.3943 0.0114 0 0.0470

0.8 0.2468 0.1794 0.0943 0.4392 0.0236 0 0.0956

1 0.2684 0.1988 0.0908 0.4933 0.0462 0 0.1721

Table 3.4: Default probabilities of the major bank, a representative minor bank, and sys-
temic risk for different values of q0 (l = 0.4;a0 = 3.33;a = 5;e0 = 30;ek = 15;g0(t) =
gk(t) = 0.3;qk = 1;d0 = dk = 0).

As summarized in Table 3.4, the default probability of the major bank, P(MD), in-

creases steadily from 0.2038 to 0.2684 as q0 increases. This suggests that closely align-

ing its reserves with the market reserves increases the major bank’s default risk, which

can be explained by the higher exposure to market fluctuations. The default probability

of a representative minor bank i also shows an upward pattern as q0 rises, although the

increase is not as pronounced as in the major bank’s case. We also see a flocking effect

in the conditional probabilities of default of the minor bank. Since the major bank has

more impact on the market than individual minor banks, they transmit the market trend

and policies to minor banks through their actions, and minor banks make decisions ac-
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cordingly. Therefore, the decrease in values of P(ikD|MS) as q0 increases suggests that if

the major bank is stable, strictly following the market state improves the stability of mi-

nor banks. In contrast, the default of a major bank that closely tracks the market average

reserves negatively impacts minor banks, given the notable increase in P(ikD|MD). The

more significant increase in P(ikD|MD) values compared to the decrease in P(ikD|MS)

leads to an increase in the minor bank’s total default probability.

Furthermore, P(SR) shows a notable increase with higher values of q0, indicating

that the system’s stability is increasingly compromised as the major bank’s reserves align

more with the market state. The conditional probability P(SR|MS) remains constant at

0, suggesting that as long as the major bank does not default, the system remains stable

regardless of its reserve strategy. However, P(SR|MD) increases significantly from 0.0167

to 0.1721 with q0. Suppose there is negative news shocking the market. In that case, the

major banks will react poorly by completely and recklessly following the market reserves

level, which in turn causes more chaos in the market and ultimately leads to a vicious

cycle. Therefore, the more pronounced negative impact in P(SR|MD) with no additional

positive impact from P(SR|MS) leads to higher values of P(SR) as q0 becomes larger.

In summary, the parameter q0 plays a significant role in influencing the default proba-

bilities of the major and minor banks and the overall system. Higher values of q0, indicat-

ing a closer alignment of the major bank’s reserves with the market state, tend to increase

the default risks across the market, especially when the major bank crashes. This high-

lights the potential risks associated with reserve management strategies, particularly for

large banks with significant market influence, and the crucial role they play in maintaining

financial stability.

3.2.3 Impact of Growth Rate of Major Bank

Our model also incorporates a growth rate, g0, which is the extra income added to

the bank’s monetary reserves from customer deposits and other banking activities. This

parameter can also be interpreted as an intervention from the central bank for the major

66



bank. As mentioned in the introduction, we can consider a major bank as a systemically

important financial institution that is "too big to fail". Therefore, governments and central

banks take extra precautions to ensure the major bank does not default during a crisis by

bringing in extra liquidity. Hence, it is worth studying the effect of this factor on banks’

default probabilities and systemic risk.

g0 P(MD) P(ikD) P(ikD|MS) P(ikD|MD) P(SR) P(SR|MS) P(SR|MD)

0.2 0.3380 0.2988 0.1281 0.6331 0.1270 0 0.3757

0.4 0.2718 0.2620 0.1200 0.6424 0.0990 0 0.3642

0.6 0.2272 0.2282 0.1102 0.6294 0.0642 0 0.2826

0.8 0.1830 0.1902 0.0940 0.6197 0.0512 0 0.2798

1 0.1462 0.1628 0.0874 0.6033 0.0396 0 0.2709

Table 3.5: Default probabilities of the major bank, a representative minor bank, and sys-
temic risk for different values of g0 (l = 0.4;a0 = 3.33;a = 5;e0 = 30;ek = 15;gk(t) =
0.1;q0 = qk = 1;d0 = dk = 0).

As seen from the results presented in Table 3.5, as g0 increases from 0 to 1, there is

a marked decrease in the major bank’s default probability, from 0.3380 to 0.1462. This

suggests that a higher stream of additional income significantly enhances the major bank’s

financial stability, reducing its default risk. We also see a declining trend in the default

probability of a generic minor bank from 0.2988 to 0.1628 as g0 increases. This decrease

indicates that the major bank’s financial health positively influences minor banks’ stability

due to improved lending conditions and more available funds. Moreover, the conditional

probabilities of a minor bank defaulting all show a downward trend, whether the major

bank defaults or not. The decrease in P(ikD|MD) with higher g0 shows that the negative

impact of the major bank’s default on minor banks is less severe when the major bank

is financially more robust. Additionally, the systemic risk decreases substantially as g0

increases, with P(SR|MS) remains 0 with different values of growth rate. This trend

again confirms the critical role of the major bank’s financial performance in the overall

stability of the financial system.

Overall, the income/growth rate of the major bank, g0, profoundly impacts the default
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probabilities of the major bank itself, the minor banks, and the whole system. The analysis

highlights the interconnected nature of financial institutions and the ripple effects that the

financial performance of a major bank can have on the broader financial system.

dk P(MD) P(MD|T kS) P(MD|T kD) P(ikD) P(ikD|T kS) P(ikD|T kD)

0 0.2633 0.2486 1 0.1963 0.1813 0.9475

2 0.2648 0.2477 1 0.1975 0.1796 0.9659

3 0.2662 0.2472 1 0.1979 0.1764 0.9667

Table 3.6: Default probabilities of the major bank and a minor bank for different values
of dk (l = 0.4;a0 = 3.33;a = 5;e0 = 30;ek = 15;qk = 1;g0(t) = gk(t) = 0.3;q0 = qk =
1;d0 = 1).

3.2.4 Impact of Risk Sensitivity Degree of a Subgroup of Minor

Banks

We have introduced different types of minor banks in our system. In this section, we

first assume there are 20 minor banks in the interbank market, where all banks belong to

the same subgroup. Minor banks of the same type operate in similar sectors in the banking

industry and, therefore, are exposed to similar risks and share the same parameters in their

dynamics and cost functionals. While an individual minor bank has a negligible impact,

the collective impact of a subgroup of minor banks is significant on the interbank market.

It is interesting to study the effects of the degree of risk sensitivity and the default of

a subgroup on the major bank, minor banks, and the interbank system as a whole. As

mentioned previously in the section, we define the default of a subgroup of minor banks

as the event of the average monetary reserves of the group fall below a certain threshold.

We assume the major bank’s size, l , is 0.4, and it has a risk sensitivity degree of 1.

Therefore, the size of the subgroup of minor banks is 0.6, which is larger than the major

bank. As we can see in Table 3.6, the total default probability of the major bank increases

from 0.2633 to 0.2662 as the minor banks become more risk-averse. However, the prob-

ability of the major bank defaulting conditioned on the subgroup surviving, P(MD|T kS),
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shows a slight decreasing trend from 0.2486 to 0.2474, while the default probability of the

major bank conditioned on the subgroup defaulting remains at 1 across different values

of dk. The effect of the distress of a large subgroup exceeds the benefits a stable subgroup

has on the major bank, leading to an increasing total default probability of the major bank.

Furthermore, we observe similar trends in the total and conditional default probabilities

of a representative minor bank in the subgroup. There is a decrease in the default proba-

bility of the minor bank when the subgroup survives, P(ikD|T kS), from 0.1813 to 0.1764.

However, the more significant increase in the conditional default probability when the

subgroup defaults, P(ikD|T kD), leads to an increase in the total probability of default of

the minor bank.

dk P(SR) P(SR|T kS) P(SR|T kD)

0 0.0463 0.0274 0.9949

2 0.0506 0.0287 0.9934

3 0.0559 0.0309 0.9914

Table 3.7: Default probabilities of systemic risk for different values of dk (l = 0.4;a0 =
3.33;a = 5;e0 = 30;ek = 15;qk = 1;g0(t) = gk(t) = 0.3;q0 = qk = 1;d0 = 1).

Last but not least, Table 3.7 shows that the total probability of a systemic event, P(SR),

increases from 0.0463 to 0.0559 as the risk sensitivity degree of the subgroup increases

from 0 to 3. We can see from the values of P(SR|T kS) that the success of a more risk-

averse subgroup might not necessarily benefit the stability of the interbank market. Risk-

averse minor banks are less likely to take risks and tend to adopt stricter lending policies.

Therefore, being risk-averse, minor banks in the interbank market could lead to less liq-

uidity in the system, increasing systemic risk. However, an increase in dk reduces the

extremity of systemic default events, as shown by the slight decrease in the conditional

probability, P(SR|T kD).

Additionally, we plot the loss distribution of minor banks in Fig. 3.19, illustrating

the frequency distribution of different numbers of defaults. We can see that all curves

have a downward trend regardless of the subgroup’s degree of risk sensitivity, with the

69



Figure 3.19: Loss distribution for minor banks for various values of dk.

probability of all 20 minor banks defaulting close to 0. The probability of no banks

defaulting is the highest when dk = 3, compared to when the subgroup of minor banks is

risk-neutral. The loss distribution for when dk = 3 then falls below those for when dk = 0

and dk = 2, indicating that it is less likely for minor banks in the subgroup to default when

the entire subgroup behaves in a more risk-averse fashion. However, the loss distribution

of a risk-sensitive subgroup becomes higher when more than 13 minor banks default. The

probability of all banks going into default is lowest when the subgroup is risk-neutral.

This indicates that even though having a risk-averse subgroup of minor banks increases

the stability of banks, it also increases the probability of extreme events. When banks

are in distress in a risk-sensitive setting, being cautious with their trading policies might

lead to less liquidity in the interbank market, resulting in more banks’ monetary reserves

reaching the default threshold.

We then analyze the case when two subgroups exist in the interbank market. We again

assume there are 20 minor banks, 14 of which belong to subgroup one and 6 of which

belong to subgroup two. We first study the risk sensitivity of subgroup one with 14 minor

banks, which accounts for 70% of all the minor banks in the market. We also assume the

major bank and minor banks under subgroup two all have risk sensitivity degrees of 1, and
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d1 P(MD) P(MD|T 1S) P(MD|T 1D) P(SR) P(SR|T 1S) P(SR|T 1D)

0 0.2614 0.2472 1 0.0461 0.0279 0.9947

2 0.2646 0.2477 1 0.0500 0.0284 0.9933

3 0.2670 0.2480 1 0.0537 0.0293 0.9901

Table 3.8: Default probabilities of the major bank and systemic risk for different values
of d1 (l = 0.4;a0 = 3.33;a = 5;e0 = 30;ek = 15;g0(t) = gk(t) = 0.3;q0 = qk = 1;d0 =
d2 = 1).

the major bank’s size is 0.4. As presented in Table 3.8 and Table 3.9, we can see an overall

increasing trend in the default probabilities as type one minor banks become more risk-

sensitive, except for P(SR|T 1D). The total default probability of the major bank increases

from 0.2614 to 0.2670 as d1 increases. Furthermore, the probability of the major bank

defaulting conditioned on subgroup one defaulting remains at 1 across all values of d1,

indicating that the crash of the more significant subgroup almost ensures the failure of the

major bank. Systemic risk also rises as d1 increases from 0 to 3. We see a slight decreasing

trend in the conditional probability of systemic risk when subgroup one defaults, from

0.9947 to 0.9901, suggesting that a large risk-sensitive subgroup reduces the severity of

systemic events. However, these high values indicate that the entire system would collapse

with almost certainty if subgroup one defaults, regardless of the risk sensitivity.

d1 P(i1D) P(i2D) P(i2D|T 1S) P(i2D|T 1D)

0 0.1927 0.1936 0.1791 0.9469

2 0.1954 0.1988 0.1813 0.9615

3 0.1976 0.2029 0.1831 0.9621

Table 3.9: Default probabilities representative minor banks in different subgroups for
different values of d1 (l = 0.4;a0 = 3.33;a= 5;e0 = 30;ek = 15;g0(t) = gk(t) = 0.3;q0 =
qk = 1;d0 = d2 = 1).

The default probabilities of representative minor banks from both subgroups show an

increasing trend as subgroup one minor banks become more risk-averse, where the prob-

ability of default of a type one minor bank is overall lower than that of a type two minor
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bank for the same degree of risk sensitivity. The values of P(i2D|T 1D) remain above

0.9, indicating a high probability that a minor bank in the other subgroup would default

if subgroup one collapses. An increase in d1 indicates that minor banks in subgroup one

are more averse to risks and are less likely to issue loans as they want to maintain their

liquidity in case of emergencies. Since there are 14 banks in subgroup one for our model,

their being risk-averse makes it much harder for the major bank and other minor banks

in subgroup two to conduct monetary transactions, explaining the increase in the default

probabilities of banks.

The above observations are important indicators of the connectivity of the interbank

market structure. The crash of an entire subgroup indicates that most minor banks in that

subgroup go to default. This sequentially affects the stability of the major bank as many

small banks fail to pay their debt. These events further trigger the defaults of more minor

banks in other subgroups, ultimately leading to the entire system’s collapse.

d2 P(MD) P(MD|T 2S) P(MD|T 2D) P(SR) P(SR|T 2S) P(SR|T 2D)

0 0.2639 0.2421 0.9991 0.0473 0.0218 0.9054

2 0.2646 0.2418 0.9992 0.0500 0.0214 0.9033

3 0.2650 0.2390 1 0.0505 0.0203 0.9034

Table 3.10: Default probabilities of the major bank and systemic risk for different values
of d2 (l = 0.4;a0 = 3.33;a = 5;e0 = 30;ek = 15;g0(t) = gk(t) = 0.3;q0 = qk = 1;d0 =
d1 = 1).

We now study the impact of the degree of risk sensitivity of subgroup two, which is

smaller than subgroup one (30% vs. 70%) and contains 6 minor banks in our setting.

As we can see in Table 3.10 and Table 3.11, there is again a general increasing pattern

in the default probabilities as minor banks in subgroup two become more risk-averse,

except for a decrease in the values of P(MD|T 2S), P(SR|T 2S) and the default probability

of a subgroup two minor bank. Even though a more risk-averse subgroup two leads

to tighter lending policies and more reserved investment strategies by the minor banks

in the group, the major bank can rely on other minor banks in subgroup one to raise

funds since subgroup two only takes up a small portion of the market. Therefore, the
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success of subgroup two improves the stability of major bank as it becomes more risk-

sensitive since the minor banks trade less recklessly and enhance their financial health.

Although increasing, the probabilities of major bank defaults conditioned on subgroup

two defaulting are lower than the values in Table 3.8 as d2 increases, ranging from 0.9991

to 1. The default probabilities of a generic type one minor bank conditioned on type two

minor banks defaulting are also lower than those under the opposite scenario.

d2 P(i2D) P(i1D) P(i1D|T 2S) P(i1D|T 2D)

0 0.1971 0.1924 0.1710 0.9158

2 0.1943 0.1937 0.1712 0.9165

3 0.1926 0.1984 0.1730 0.9178

Table 3.11: Default probabilities representative minor banks in different subgroups for
different values of d2 (l = 0.4;a0 = 3.33;a= 5;e0 = 30;ek = 15;g0(t) = gk(t) = 0.3;q0 =
qk = 1;d0 = d1 = 1).

Furthermore, an increase in the degree of risk sensitivity of the smaller subgroup pos-

itively impacts the conditional probabilities of the market state falling below the default

threshold. By comparing the results in Table 3.8, Table 3.9 and Table 3.10, Table 3.11,

we can see that while the risk sensitivity degrees of both subgroups influence the default

probabilities of the major bank, the other subgroup of minor banks and the overall sys-

tem, the impact of the larger subgroup one is generally more pronounced. This is likely a

result of its more significant market share, leading to a more substantial influence on the

interbank market dynamics and systemic risk.

d1 P(MD) P(MD|T 1S) P(MD|T 1D) P(SR) P(SR|T 1S) P(SR|T 1D)

0 0.2648 0.2518 1 0.0410 0.0260 1

2 0.2700 0.2533 1 0.0496 0.0303 0.9919

3 0.2743 0.2562 1 0.0540 0.0318 0.9892

Table 3.12: Default probabilities of the major bank and systemic risk for different values
of d1 (l = 0.4;a0 = 3.33;a= 5;e0 = 30;e1 = 15;e2 = 10;q1 = 0.8;q2 = 1;g0(t) = gk(t) =
0.3;q0 = qk = 1;d0 = 1;d2 = 3).
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d1 P(i1D) P(i2D) P(i2D|T 1S) P(i2D|T 1D)

0 0.1914 0.1858 0.1739 0.9481

2 0.1980 0.2096 0.1909 0.9512

3 0.2000 0.2122 0.1979 0.9677

Table 3.13: Default probabilities representative minor banks in different subgroups for
different values of d1 (l = 0.4;a0 = 3.33;a = 5;e0 = 30;e1 = 15;e2 = 10;q1 = 0.8;q2 =
1;g0(t) = gk(t) = 0.3;q0 = qk = 1;d0 = 1;d2 = 3).

Additionally, we conduct simulations on the interbank lending market when the two

subgroups have different parameters, such as different values for running cost and trading

incentive coefficients, ek and qk. In our setting, a higher value of ek and a lower value

of qk indicate that the cost of borrowing/lending with the central bank is higher for a

minor bank. Therefore, it is more difficult for type one minor banks to trade with the

central bank than type two minor banks with the parameters in Table 3.12 and Table 3.13.

Comparing to the default probabilities in Table 3.8 and Table 3.9, the values are generally

higher in Table 3.12 and Table 3.13 across different degrees of risk sensitivity of subgroup

one minor banks. However, we observe the same trends in these values where there is an

increasing pattern in the default probabilities across the system as type one minor banks

become more risk-averse, except for the values of P(SR|T 1D). These simulation results

indicate that it is not necessarily beneficial when most banks in the interbank system

become more risk-averse, especially when conducting transactions with the central bank

is harder. Carmona et al. (2015) conclude that lending/borrowing activities in an interbank

market create stability. However, banks being more risk-averse means they will be more

cautious about borrowing/lending with other banks, leading to fewer trading opportunities

and a less robust interbank market, as indicated by the results presented in this section.
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Conclusion

In this thesis, we present a comprehensive study of interbank transactions in a major-

minor mean-field game (MFG) framework. The primary objective is to understand how

risk sensitivity and the presence of a large bank influence the interbank market, particu-

larly in terms of banks’ default probabilities and systemic risk.

Our study begins by developing models for major and minor banks, incorporating the

dynamics of log-monetary reserves and cost functionals in a risk-sensitive setting. We

then derive optimal transaction strategies and establish Nash equilibria for these inter-

actions in an infinite-population setting, leveraging the convex analysis and variational

analysis techniques. Through extensive numerical experiments, we analyze various sce-

narios in a finite-population setting to assess the impact of different parameters on the

interbank market. We observe that the presence of a major bank whose size is less than

or equal to half of the market size decreases the default probabilities of itself, a repre-

sentative minor bank, and the interbank system as it becomes more risk-averse. When

a major bank is distressed, its being risk-sensitive reduces the severity of minor banks’

defaults and the systemic event. However, when the major bank takes up more than half

of the market, the benefits of it being risk averse are compromised by its large size. We

also conclude that an increase in the percentage of the market state that the major bank

follows has a flocking effect on the default probabilities conditioned on whether the major

bank defaults or not, whereas an increase in the major bank’s growth rate decreases the

likelihood of defaults across the interbank market.

Furthermore, we conduct simulations to analyze the effects of the risk sensitivity de-



gree of a subgroup of minor banks. When there is only one subgroup of minor banks in

the market whose size is larger than the major bank, its being risk-averse increases the sta-

bility of banks and the market when it survives. However, the total probabilities of default

across the system increase as the subgroup of minor banks becomes more risk-averse due

to the significant rise in the default probabilities conditioned on the subgroup defaulting.

Similar increasing trends can be observed in the default probabilities when there are two

subgroups of minor banks. Since higher degrees of risk sensitivity of banks generally

lead to increased caution in borrowing and lending activities, a subgroup of minor banks

being risk-averse can lead to fewer transactions and less liquidity in the interbank market.

Therefore, it is more likely for the monetary reserves of banks and the market state to go

below the default threshold due to the interconnectedness of the system.

Overall, this thesis contributes to a deeper understanding of the interactions among

major and minor banks in a risk-sensitive interbank market. The findings emphasize

the critical role of risk sensitivity, the major bank, and a large subgroup of minor banks

in shaping market dynamics and provide valuable insights for policymakers aiming to

enhance financial stability. However, a larger amount of simulations and real-world data

can be employed for the numerical experiments to better calibrate the parameters for

more perceptive results. Future research can extend the models by exploring the effects

of additional factors such as regulatory changes and technological advancements in the

interbank market.
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