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Résumé

Cette étude examine comment la dynamique régionale des prix de l’immobilier affecte

la tarification des prêts hypothécaires inversés. Le principe fondamental de la tarification

des prêts hypothécaires inversés est la garantie d’absence d’équité négative (NNEG), qui

assure que les emprunteurs ne sont pas responsables d’une dette dépassant la valeur de

leur maison. Nous utilisons les données de 12 grandes villes canadiennes (1981-2024)

et les divisons en groupes de l’est et de l’ouest pour une modélisation séparée. Des

modèles VAR et VECM simulent les trajectoires des prix des logements pour chaque

groupe. Les résultats montrent que les villes de l’Est ont des tendances à long terme

plus stables, tandis que les villes de l’Ouest sont confrontées à une plus grande volatilité

à court terme. En combinant ces simulations avec des tables de mortalité prospectives,

nous proposons un nouveau cadre de tarification. Ce cadre met en évidence le fait qu’une

tarification uniforme à l’échelle nationale méconnâıt souvent les risques régionaux, alors

que les stratégies adaptatives régionales s’alignent mieux sur les conditions du marché

local. Cette étude offre des perspectives pratiques aux institutions financières et aux

décideurs politiques pour améliorer la tarification des prêts hypothécaires inversés et la

gestion des risques.
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Abstract

This study examines how regional housing price dynamics affect reverse mortgage

pricing. The core principle of reverse mortgage pricing is the No-Negative-Equity Guaran-

tee (NNEG), which ensures borrowers are not liable for any debt exceeding the value of

their home. We use data from 12 major Canadian cities (1981–2024) and divide them into

eastern and western groups for separate modeling. VAR and VECM models simulate house

price trajectories for each group. The results show that eastern cities have more stable

long-term trends, while western cities face higher short-term volatility. By combining these

simulations with forward-looking mortality tables, we propose a new pricing framework.

This framework highlights that nationwide uniform pricing often misjudges regional risks,

while regionally adaptive strategies better align with local market conditions. This study

offers practical insights for financial institutions and policymakers to improve reverse

mortgage pricing and risk management.
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Abstract ii

List of Tables vi

List of Figures vii

Acknowledgements viii

1 Introduction 1

2 Literature Review 3

2.1 Population Aging and Pension System Challenges . . . . . . . . . . . . . 3

2.2 Housing Wealth and Reverse Mortgage Solutions . . . . . . . . . . . . . . 5

2.3 Regional Variations in Reverse Mortgage Effectiveness . . . . . . . . . . . 7

2.4 Advanced Modeling Approaches for Reverse Mortgage Pricing . . . . . . 8

3 Data 12

3.1 House Price Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Data source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.2 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Prospective Life Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Data source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.2 Scenario selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Methodology 17

4.1 No Negative Equity Guarantee . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 House Price Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.1 Vector Autoregression Model . . . . . . . . . . . . . . . . . . . . . 19

4.2.2 Stationary Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.3 Lag Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.4 Vector Error Correction Model . . . . . . . . . . . . . . . . . . . . 23

4.3 House Price Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iii



4.3.1 Model Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.2 Random Shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.3 Path Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.4 Subsequent Processing of Simulated Paths . . . . . . . . . . . . . 29

4.3.5 VAR-like Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Loan Duration Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Fair Price Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5.1 Define Fair Price . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5.2 Calculation Process . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5.3 Illustrative Case: Dollar-Valued NNEG Example . . . . . . . . . . 34

5 Results and Discussion 38

5.1 VECM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1 Long-term Relationship . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.2 Short-term Dynamic . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.3 Residual Covariance Matrix . . . . . . . . . . . . . . . . . . . . . 39

5.2 House Price Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.1 Comparison Between City Groups . . . . . . . . . . . . . . . . . . 40

5.2.2 Comparison Between Models . . . . . . . . . . . . . . . . . . . . . . 41

5.2.3 National House Price Simulation Path . . . . . . . . . . . . . . . 42

5.3 Loan Duration Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Reverse Mortgage Fair Price . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.1 Comparison Between Different Models and Different Cities . . . . 45

5.4.2 Comparison Between National Uniform and City Heterogeneous

Fair Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4.3 Market Comparison and Interpretation of NNEG Pricing . . . . . 47

6 Conclusions and Limits 49

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Limits and future research . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A Appendix 57

Appendix: VECM Results for Western Cities 79

iv



Appendix: VECM Results for Eastern Cities 81

v



List of Tables

3.2.1 Key Demographic Assumptions in Different Growth Scenarios . . . . . . 16

4.2.1 East Cities - Original Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.2 West Cities - Original Data . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.3 East Cities - First Difference . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.4 West Cities - First Difference . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.5 Eastern city lag selection result . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.6 Western city lag selection result . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.7 Comparison of Trace and Maximum Eigenvalue Statistics . . . . . . . . . 24

4.3.1 R2 and Adjusted R2 for VECM (West Cities) . . . . . . . . . . . . . . . 26

4.3.2 R2 and Adjusted R2 for VECM (East Cities) . . . . . . . . . . . . . . . . 27

4.5.1 Simulated Path Summary in $ for 5% Percentile Case . . . . . . . . . . . 35

4.5.2 Simulated Path Summary in $ for 50% Percentile Case . . . . . . . . . . 36

4.5.3 Simulated Path Summary in $ for 95% Percentile Case . . . . . . . . . . 37

A.1 East Cities Cointegration Test . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.2 West Cities Cointegration Test . . . . . . . . . . . . . . . . . . . . . . . . 62

A.3 Long-term Relationships Coefficients and Significance of Western Cities . 63

A.4 Long-term Relationships Coefficients and Significance of Eastern Cities . 63

A.5 Short-Term Relationships Coefficients for Each Western City . . . . . . . 64

A.6 Short-Term Relationships Coefficients for Each Eastern City . . . . . . . 70

A.7 Residual Covariance Matrix and Cholesky Decomposition (Western Cities) 73

A.8 Residual Covariance Matrix and Cholesky Decomposition (Eastern Cities) 73

A.9 Fair Price Comparison by City (VECM vs VAR-like) . . . . . . . . . . . 78

vi



List of Figures

3.1.1 Map of Canada with CMAs included in analysis . . . . . . . . . . . . . . 13

3.1.2 Long-term housing price trends, by city. Source: Statistics Canada, New

Housing Price Index (NHPI), Table 18-10-0205-01. . . . . . . . . . . . . . 14

5.2.1 Montreal Simulation Path(VECM model) . . . . . . . . . . . . . . . . . . 40

5.2.2 Vancouver Simulation Path(VECM model) . . . . . . . . . . . . . . . . . . 41

5.2.3 Montreal Simulation Path(VAR-like model) . . . . . . . . . . . . . . . . 42

5.2.4 VECM Simulated Paths for Canada (Normalized Initial Value = 100) . . 43

5.2.5 VAR Simulated Paths for Canada (Normalized Initial Value = 100) . . . 44

5.3.1 Duration Distribution Result . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.1 Fair Price Results(Different Models & Different Cities) . . . . . . . . . . 46

A.1 Long-term housing price Summary, by city . . . . . . . . . . . . . . . . . 57

A.2 Eastern city comparison: long term vs. short term . . . . . . . . . . . . . 58

A.3 Western city comparison: long term vs. short term . . . . . . . . . . . . 59

A.4 Canadian Average House Price Monthly Growth Rate . . . . . . . . . . . 60

A.5 VECM Simulated Paths for Eastern Cities (Normalized Initial Value = 100) 74

A.6 VECM Simulated Paths for Western Cities (Normalized Initial Value = 100) 75

A.7 VAR Simulated Paths for Eastern Cities (Normalized Initial Value = 100) 76

A.8 VAR Simulated Paths for Western Cities (Normalized Initial Value = 100) 77

vii



Acknowledgements

During the process of completing this thesis, I went through an extremely challenging

period, as anxiety and depression seriously affected my mental and physical well-being,

causing me to doubt my ability to finish this research. I would like to express my

sincere gratitude to my supervisor, Professor Pierre-Carl Michaud, who provided not only

professional guidance but also incredible patience, understanding, and encouragement

when I was struggling. I am also deeply grateful to my counselor, whose professional

and compassionate support taught me how to accept myself, manage my emotions, and

gradually return to a healthier life.

A special thanks goes to my girlfriend for her unwavering companionship, support,

and trust, which gave me hope and renewed confidence during the darkest times. By

openly sharing my experience, I hope to encourage fellow students facing mental health

challenges: you are not alone, and reaching out for help is a courageous and worthwhile

decision. May you, too, find your own light in times of darkness.

viii



1 Introduction

Rapid population aging is posing significant challenges to pension systems worldwide,

and Canada is no exception. As the working-age population decreases and dependency

ratios rise, both public and private retirement resources face mounting pressure. According

to the Organisation for Economic Co-operation and Development, the proportion of

Canada’s population aged 65 and above has increased from 8% in 1960 to over 21% in

2021, with projections indicating it will reach 24% by 2036(OECD, 2023). Meanwhile,

Canada’s pension system has yet to achieve the 70% replacement rate recommended by

the OECD, further exposing the financial insecurity faced by retirees.

Furthermore, traditional family support systems for the elderly have gradually declined

due to demographic changes, leaving many seniors in challenging retirement situations.

While they possess substantial housing wealth, their liquid assets are insufficient to

meet retirement needs. In this context, reverse mortgages have emerged as a financial

instrument offering a potential solution, allowing retirees to leverage their housing assets

while retaining property ownership.

At the heart of reverse mortgages lies the No-Negative-Equity Guarantee (NNEG),

which ensures borrowers never have to repay more than their property’s market value.

While this mechanism provides crucial protection for borrowers during market fluctuations,

it transfers the risks of house price decline and extended loan duration to lenders (Siu-

Hang Li et al., 2009). Pricing this risk presents significant challenges due to the complex

combination of variables involved, including house price dynamics and uncertainty in

borrower longevity.

Our research indicates that NNEG pricing depends not only on national house price

trends but must also thoroughly consider regional differences. House price dynamics often

exhibit distinct regional characteristics. For instance, coastal regions in the United States

typically experience higher price volatility compared to inland areas, and property bubbles

in coastal regions often eventually spread nationwide. These regional variations challenge

uniform national pricing strategies, potentially leading to inaccurate risk assessments and

resulting in losses for loan borrowers (Prüser and Schmidt, 2021).

This study’s core focus lies in exploring how regional housing price dynamics influence

NNEG pricing. Through the introduction of Vector Autoregression (VAR) and Vector

Error Correction Models (VECM), we simulated house price trajectories in major Canadian

cities, systematically analyzing similarities and differences in short-term fluctuations and
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long-term equilibrium trends across regions. Additionally, the research combines regional

house price data with borrower life expectancy tables to establish an innovative NNEG

pricing framework that addresses regional differences more fairly and efficiently while

emphasizing the necessity of adaptive strategies.

The paper is structured as follows: Section 2 reviews core literature related to reverse

mortgages and NNEG pricing; Section 3 describes the data sources and preprocessing

procedures; Section 4 details the research methodology used to analyze regional house

price dynamics and NNEG pricing; Section 5 presents the empirical analysis results; and

Section 6 summarizes the research findings and discusses study limitations.
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2 Literature Review

The aim of this review is to analyze research findings about reverse mortgages,

particularly focusing on how they are priced. We first look at how an aging population

affects the overall pension system. There is a gap between what the OECD recommends

for the pension replacement rate (70%) and the actual rate in Canada. In addition,

families are providing less support to elderly members than before. In this situation,

reverse mortgages offer a new financial option for elderly people who own valuable homes

but do not have much cash. The main feature of this product is its non-negative equity

guarantee (NNEG). Two key factors affect its pricing: how house prices might change in

the future and how long the loan will last. This paper focuses on methods for forecasting

house prices. The Canadian housing market shows big differences between regions — cities

like Vancouver and Toronto have high and stable prices, while resource-based cities like

Calgary show more price changes. We use VAR and VECM models to analyze this. By

comparing two pricing approaches — using the same price across Canada versus different

prices for different regions — we explore how regional differences affect reverse mortgage

pricing. This provides a framework to make product pricing more accurate.

2.1 Population Aging and Pension System Challenges

Population aging has become a significant challenge for pension systems around the

world, especially in developed countries. According to the OECD’s 2023 Pension at a

Glance report (OECD, 2023), the percentage of people aged 65 and over increased from

16% in 2020 to 27% by 2050. The United Nations World Social Report 2023 further

highlighted this trend, projecting that the global population aged 65 and above would reach

1.6 billion by 2050, representing 16% of the total population (United Nations Department

of Economic and Social Affairs, 2023). This major demographic shift placed immense

strain on both government finances and pension systems, as the ratio of working-age

people to retirees continued to decline.

Canada experienced particularly rapid population aging. In 1960, only 8% of Cana-

dians were 65 or older. By 2021, this number had grown to 21.5%, and it was expected

to reach 24% by 2036. This trend was similar to what was observed in other developed

nations. For instance, Russia saw its dependency ratio deteriorate from 2.2 to 1.7, creating

significant pressure on the national budget and pension system (Lukyanets et al., 2021). In

China, rapid aging created complex challenges in balancing public expenditure priorities

3



between elderly care and other essential services like education (Pan et al., 2022). The

situation in South Korea was particularly challenging, where many elderly people had

insufficient pension income, leading to increased old-age poverty despite various policy

interventions (Jun, 2020).

The OECD suggested that retirement income should maintain a substantial proportion

of pre-retirement earnings to ensure adequate living standards. However, many countries,

including Canada, struggled to achieve this target (Mitchell, 2022). The impact of

insufficient retirement income was exacerbated by economic uncertainties and market

volatility. Ssrn Au/At Cirano et al. (2021) examined how the global pandemic exposed

significant vulnerabilities in retirement systems worldwide, emphasizing the need for more

resilient pension structures and improved risk management tools.

Beyond pension system challenges, traditional family support for the elderly declined

globally. This trend was particularly noticeable in Asia and the Pacific region, where

urbanization and demographic changes reshaped traditional family structures (Poot and

Roskruge, 2020). Jakovljevic et al. (2023) pointed out that this decline in family care

functions led to increased government burden, especially in middle-income countries

that faced the double challenge of managing both traditional infectious diseases and

aging-related chronic conditions.

The financial pressures of aging populations extended beyond just pension systems.

For example, in Poland, innovative financing mechanisms like reverse mortgages were

explored to help address the economic challenges faced by elderly homeowners (Buza lek

and Czechowska, 2020). Similarly, Wang et al. (2016) demonstrated how reverse mortgage

insurance products required careful valuation to manage the complex risks associated

with housing prices, interest rates, and longevity.

The impact of population aging on public finances created complex ripple effects

throughout society. Research from China showed how aging populations significantly

affected public education spending, with every 1% increase in the elderly dependency ratio

leading to a 0.304% decrease in education expenditure (Pan et al., 2022). This demon-

strated the broader societal implications of aging populations, requiring comprehensive

policy responses that balanced the needs of different generations.

To address these mounting challenges, many countries explored innovative financial

solutions. Quantitative analysis by Nakajima and Telyukova (2017) showed that reverse

mortgages significantly enhanced borrower welfare, though their adoption remained limited
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due to factors such as high costs and bequest motives. The effectiveness of such solutions,

however, depended heavily on factors like housing market stability, regulatory frameworks,

and public acceptance.

2.2 Housing Wealth and Reverse Mortgage Solutions

As Canada’s population grows older, homeownership has taken on a new role in

how retirees fund their later years. Strangely enough, many seniors—though living in

homes that have appreciated significantly—still struggle with day-to-day expenses. The

Housing Market Insight report CMHC (2023) ouches on this contradiction. In cities like

Vancouver and Toronto, where property prices have soared over the past few decades, the

situation is even more apparent. These elderly homeowners are, in a sense, “house-rich

but cash-poor.”

Several researchers have looked at how retirees might tap into their housing wealth.

For example, Hanewald (2022) explored a variety of strategies—from downsizing to renting,

and of course, reverse mortgages. But not all paths suit everyone. The choice often

depends on personal circumstances—health status, risk appetite, or whether someone

wishes to pass their home on to their children. Interestingly, older Canadians with stronger

inheritance motives tend to avoid reverse mortgages altogether.

So, do reverse mortgages work? Some studies suggest they can help. Nakajima and

Telyukova (2017) , for instance, found measurable gains in household welfare—on average

$1,770—after using such products. And these benefits seemed more pronounced during

economic downturns, especially for lower-income seniors. In fact, demand from this group

reportedly tripled in recessions. Meanwhile, Davidoff (2015) offered a somewhat different

angle, highlighting how the flexibility and embedded option value of reverse mortgages

could outweigh even their high fees—at least in areas where home values are stable or

rising.

Of course, there’s a safety net built into these products: the No-Negative-Equity

Guarantee (NNEG). This feature makes sure the borrower never owes more than the

house is worth when it’s time to repay. Siu-Hang Li et al. (2009) explain it as a sort of

insurance against market downturns. But it’s not without complications. Lenders, after

all, bear that risk, and pricing it correctly is difficult. Longevity, housing volatility—both

come into play here. Shao et al. (2015) argue that NNEG becomes costlier to provide in

unstable markets, which makes sense.
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The importance of regional housing market conditions in reverse mortgage deployment

was highlighted by several studies. Cocco and Lopes (2020) found that ”aging in place”

preferences and home maintenance decisions significantly influenced reverse mortgage

demand. This finding was particularly relevant in Canada’s diverse housing markets. For

example, Hutchison et al. (2024) added that high-value property markets—again, think

Vancouver or Toronto—naturally allow for larger loans, making reverse mortgages more

attractive both to lenders and borrowers.

But for all their potential, reverse mortgages haven’t caught on widely. Ssrn

Au/At Cirano et al. (2021) identified a few reasons: interest rates that seem high compared

to what actuarial models would suggest, and a widespread lack of awareness. In their

study of 3,000 Canadians, over half didn’t fully understand how reverse mortgages work.

On the other hand, people with stronger financial literacy tended to better appreciate the

value of features like NNEG.

Lastly, broader demographic patterns play a role here too. Alai et al. (2014) examined

different equity release mechanisms and concluded that reverse mortgages performed

better—especially in areas with low house price volatility. This aligned with findings from

Tsay et al. (2014), who developed pricing models showing that stable housing markets

significantly reduced the cost of providing the NNEG.

Recent market data supported the growing relevance of reverse mortgages. Li

et al. (2024) demonstrated through equilibrium modeling that reverse mortgages helped

elderly households achieve consumption smoothing while increasing perceived housing

value. Similarly, Ashok and Dhingra (2020) showed through case studies that reverse

mortgage users maintained better financial stability compared to non-users, particularly

over extended periods.

Despite these potential benefits, adoption rates remained lower than might have been

expected. Knaack et al. (2020) identified several factors contributing to this, including

product complexity, market inefficiencies (such as adverse selection and moral hazard), and

the need for more transparent regulatory frameworks. To address these challenges, Mitchell

(2022) suggested that reverse mortgages should be integrated into broader retirement

planning strategies, particularly in countries where pension benefits were insufficient.
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2.3 Regional Variations in Reverse Mortgage Effectiveness

Reverse mortgages have drawn increasing attention as a way for older homeowners

to access home equity. Yet, their effectiveness has proven uneven, often reflecting the

structural differences between local housing markets. In Canada, these disparities are

especially noticeable. Prüser and Schmidt (2021), analyzing long-term data from 1976

to 2017, observed that cities along the coast—typically more densely populated and

constrained in terms of land—showed greater house price volatility than those located

inland. Their use of Markov-switching models suggested that institutions offering reverse

mortgage products must consider such volatility in their pricing and risk strategies.

These differences have become particularly pronounced in the country’s largest cities.

As noted in the Housing Market Outlook Spring 2024, average house prices in Vancouver

and Toronto surpassed $1.2 million and $1.1 million, respectively, whereas in Calgary

the average remained closer to $500,000. Howard and Liebersohn (2023) linked these

differences to broader economic forces, suggesting that higher income growth in key

regions may have accelerated housing price inflation nationwide. This trend appeared

most evident in cities where foreign capital inflows combined with geographic limitations,

maintaining upward pressure on prices.

How regional housing markets interact adds yet another complication to reverse

mortgage analysis. In some cases, a shift in house prices in one large city may end up

influencing prices in its neighboring areas—though this doesn’t always follow a consistent

pattern. Vansteenkiste and Hiebert (2011), for example, identified several such spillovers

across European cities, and a similar dynamic seems to play out in Canada, particularly

in metro centers like Vancouver and Toronto. Still, the strength of these relationships

tends to vary over time, making it difficult to generalize.

Volatility also doesn’t behave uniformly across the country. Based on Finnish data,

Dufitinema (2020) noted that downward housing shocks seemed to leave a longer footprint

than upward ones. In Canada, this finding resonates in cities such as Calgary, where the

local economy’s ties to natural resource cycles often lead to sharper price swings. By

contrast, places like Toronto and Vancouver—where industries are more diversified—appear

to experience a steadier climb in housing values, at least over longer time frames.

Why does that matter for reverse mortgages? Well, pricing products that carry

guarantees—like the No-Negative-Equity Guarantee—requires a reasonably accurate

forecast of long-term home values. As Shao et al. (2015) put it, lenders in more stable
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markets can afford to be more generous in their terms, while volatility tends to force

a cautious approach. Siu-Hang Li et al. (2009) came to a similar conclusion: offering

borrower protections becomes much more expensive when prices are unpredictable.

Some of the more recent literature has pushed this further. For instance, Pan et al.

(2022) pointed out that the financial benefits of homeownership—what economists call the

“housing wealth effect”—were stronger in areas where prices rose gradually and predictably.

That may help explain, at least in part, why reverse mortgage adoption has been more

common in cities like Toronto and Vancouver. Hutchison et al. (2024) made this point as

well.

The interaction between housing markets and local economic conditions also influenced

reverse mortgage viability. Guerrieri et al. (2013) showed how local economic shocks

created significant house price variations between neighborhoods, even within the same

city. This intra-city variation added another layer of complexity to reverse mortgage

pricing and risk assessment. For instance, Calgary’s housing market demonstrated how

resource sector dynamics created additional volatility, making reverse mortgage terms less

favorable compared to more economically diverse cities.

These regional differences created unique challenges for national-level reverse mortgage

programs. Tariq et al. (2024) emphasized how monetary policy’s impact on house prices

varied significantly across regions, suggesting the need for regionally tailored lending

approaches. This was particularly relevant in Canada, where Zhang et al. (2012) identified

varying sensitivities to monetary policy and economic fundamentals across different housing

markets.

Looking at international comparisons provided additional insights. Segnon et al.

(2021) developed high-frequency volatility forecasting models that highlighted how different

market structures created varying levels of price stability. Their findings suggested that

markets with diverse economic bases, like Vancouver and Toronto, tended to exhibit more

predictable price patterns than those heavily dependent on specific sectors, like Calgary’s

energy-focused economy.

2.4 Advanced Modeling Approaches for Reverse Mortgage Pricing

While reverse mortgages have frequently been proposed as a tool for older homeowners

to access their housing wealth, their implementation has not been equally effective across

all regions. Within Canada, distinct regional housing dynamics have created differences
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in how these financial products perform. Prüser and Schmidt (2021) , using historical

data from 1976 to 2017, reported that coastal housing markets characterized by high

population density and limited land supply demonstrated higher volatility than inland

regions. Their application of Markov-switching models highlighted the importance of

regional price fluctuations for financial products like reverse mortgages, which rely heavily

on the long-term trajectory of house prices.

These regional patterns appeared particularly pronounced in Canada’s largest cities.

According to the Housing Market Outlook Spring 2024, the average home prices in Vancou-

ver and Toronto exceeded 1.2 million and 1.1 million Canadian dollars, respectively, while

Calgary’s average remained around 500,000. Howard and Liebersohn (2023) attributed

this gap to underlying structural drivers. In wealthier regions, faster income growth

tended to amplify national housing inflation and elevate expectations for future rental

income. In particular, sustained upward pressure on housing values in Vancouver and

Toronto reflected a combination of strong economic fundamentals, international capital

inflows, and constrained land supply.

In addition to price levels, regional interdependence further complicated the landscape.

Vansteenkiste and Hiebert (2011) identified spillover effects in which housing price trends

in major urban centres influenced surrounding regions. While long-term correlations

between regional housing markets have been documented, the strength and consistency

of these relationships tend to fluctuate across both time and location. In the Canadian

context, housing price movements in core metropolitan areas—particularly Vancouver

and Toronto—have repeatedly influenced pricing behavior in neighboring communities,

underscoring the outsized role of major cities in shaping broader market trends.

Although broad regional price patterns in Canada have been well documented, they

rarely follow the same trajectory or exhibit the same degree of volatility. Dufitinema

(2020), in the context of the Finnish housing market, highlighted a tendency for negative

price shocks to generate more lasting volatility compared to positive ones—a phenomenon

known as volatility clustering. This asymmetry appears to resonate with what has been

observed in Canadian cities like Calgary, where resource-based economic fluctuations have

often led to sharp, irregular changes in home values. In contrast, cities such as Vancouver

and Toronto—supported by more diversified economies—tend to follow steadier price

paths.ons than in more diversified economies like Vancouver and Toronto.
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To better capture these nuanced differences, Huang et al. (2010) utilized spatial-

temporal regression models. Their approach emphasized how localized features, including

population structure, supply constraints, and regional economic profiles, jointly shape

price behavior across space and time. The contrasting trends between Calgary’s cyclical

movements and the more consistent appreciation seen in Vancouver and Toronto serve as

clear examples of how reverse mortgage risk must be interpreted within a regional context

rather than through national averages.

These differences carry direct implications for product design. According to Shao et al.

(2015) , price stability enables lenders to offer reverse mortgages on more flexible terms,

largely because the uncertainty is lower. Conversely, in volatile housing environments,

institutions are generally forced to be more cautious. This aligns with the findings of

Siu-Hang Li et al. (2009), who concluded that providing a No-Negative-Equity Guarantee

is substantially more expensive in markets with unstable price trends.

Pan et al. (2022) added another layer to this by linking demographic change to

housing behavior. Their findings suggested that in regions with stable appreciation, the

wealth effect from housing tends to be stronger, making reverse mortgage products more

appealing. This could partly explain why, as Hutchison et al. (2024) reported, uptake of

such products has been especially prominent in markets like Vancouver and Toronto.

Even within cities, however, uniformity is elusive. Guerrieri et al. (2013) showed that

neighborhood-level economic shocks can result in highly localized price shifts, creating

intra-city disparities in housing values. Calgary is a particularly instructive case here:

some areas closely tied to resource industries experience far greater swings than others.

This kind of micro-level variation complicates any attempt to standardize risk assessments

across urban regions.

At the policy level, the presence of such spatial and economic heterogeneity makes

a one-size-fits-all lending framework difficult to justify. Tariq et al. (2024) argued that

the transmission of monetary policy varies widely across Canadian cities, weakening

the effectiveness of uniform national strategies. Zhang et al. (2012) reached similar

conclusions, highlighting that housing markets respond differently to macroeconomic

indicators depending on their local characteristics.

Insights from outside Canada further support this view. Segnon et al. (2021),

using high-frequency volatility models, found that housing markets tied to more diverse

economies tend to experience fewer abrupt fluctuations. That observation fits well with
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the Canadian case: while Vancouver and Toronto benefit from broad industrial bases,

Calgary’s exposure to energy price cycles leaves it more vulnerable to sudden shocks.

Taken together, these findings suggest that reverse mortgage product design should be

regionally adaptive rather than standardized.
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3 Data

3.1 House Price Dataset

3.1.1 Data source

The data for our study was collected from the Statistics Canada New Housing Price

Index (NHPI) data table, identified by the following reference number: 18-10-0205-01. The

data set encompassed the monthly housing price index from January 1981 to August 2024

(base period: December 2016 = 100), meticulously documenting the price fluctuations

of newly constructed residential properties in major Canadian cities and furnishing a

robust foundation for investigating the nuances of regional housing markets. The index is

expressed in norminal terms, meaning that it reflects actual transaction prices without

adjusting for inflation. Accordingly, the housing price data used throughout this thesis

are nominal. This choice ensures consistency with the nominal discount rate applied later

in the pricing model.

The dataset covered 12 major cities in eastern and western Canada, including:

• Western Cities: Vancouver, Calgary, Edmonton, Victoria, Saskatoon, Winnipeg

• Eastern Cities: Toronto, Montreal, Quebec City, Halifax, Hamilton, St. John’s

Figure 3.1.1 presents a map of Canada. We can be observed that the selected cities

encompass the majority of Canada’s major urban centers, which collectively represent

the epicenter of the country’s population, economic activity, employment, educational

institutions, tourism, and other resources. This geographical coverage allows us to examine

regional variations in housing market behavior and capture the distinct characteristics of

different urban housing markets.

In determining our analysis timeframe, we initially encountered data continuity issues

for Calgary, where observations were missing from January 1981 to April 1984. To ensure

the robustness of our time series analysis, we established January 1985 as the starting

point of our study period, continuing through August 2024. Beyond this adjustment, the

dataset demonstrates complete continuity with no occasional missing values. To capture

both long-term trends and recent market dynamics, we additionally created a subsample

covering the most recent decade (August 2014 - August 2024), enabling comparative

analysis across different time horizons.
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Figure 3.1.1: Map of Canada with CMAs included in analysis

3.1.2 Descriptive statistics

Figure 3.1.2 displays the time series of housing price indices across Canadian cities

from 1985 to 2024. The evolution of these indices suggests varying patterns of price

movements across different markets. While some cities such as Calgary show notable price

increases, particularly in the post-2020 period, others like Victoria demonstrate more

moderate price trajectories. This overview provides initial insights into the diversity of

housing market developments across Canadian regions.

The descriptive statistics presented in Figures A.1 A.2 A.3 reveal distinct regional

patterns in Canadian housing markets. Over the long-term period (1985-2024), western

markets display generally higher price volatility, with coefficients of variation ranging

from 0.38 to 0.51, compared to eastern markets’ range of 0.29 to 0.40. The mean price

indices during this period also show regional differences, with western cities exhibiting

wider dispersion – Victoria’s average of 125.32 contrasts notably with Calgary’s 67.04,

while eastern cities maintain relatively closer price levels between 65.53 and 82.25. The

box plots (Figure A.1) reinforce these regional characteristics, showing western cities with

notably larger interquartile ranges and more extreme values, particularly in Calgary and

Winnipeg, while eastern cities demonstrate more compressed price distributions.

The analysis of dynamic changes between long-term and recent periods highlights

persistent regional characteristics in market behavior. Western cities demonstrate more

pronounced transitions in market states - their coefficients of variation show substantial
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Figure 3.1.2: Long-term housing price trends, by city. Source: Statistics Canada, New
Housing Price Index (NHPI), Table 18-10-0205-01.

changes, as seen in Edmonton (from 0.38 to 0.05) and Calgary (from 0.51 to 0.14). Eastern

markets exhibit more gradual transitions, with most cities maintaining relatively stable

volatility patterns except for Montreal, which shows increased market activity (coefficient

of variation 0.21) in recent years. These distinct patterns of market transitions suggest

that regional differences manifest not only in static price levels but also in how markets

evolve over time.

3.2 Prospective Life Tables

3.2.1 Data source

The report ”Population Projections for Canada (2013-2063)” by Bohnert et al. (2015),

published by Statistics Canada, served as the primary source of life table data for this

research. The report employed two complementary modern mortality projection models:

the Lee-Carter model and its enhanced version, the Li-Lee model, to generate systematic

mortality forecasts for the next 50 years.

The Lee-Carter model worked by identifying patterns in historical mortality data to

predict future trends. Similar to how meteorologists forecast weather by studying historical

patterns, this model analyzed how mortality rates across different age groups changed over

time. It focused on two key elements: the baseline mortality characteristics of different

age groups and how these characteristics evolved over time. This approach allowed the

14



model to capture important phenomena, such as how medical advances affected different

age groups differently.

However, when projecting mortality rates across different regions of Canada simul-

taneously, using only the Lee-Carter model presented certain limitations. Like weather

patterns that varied by region while remaining interconnected, mortality rates across

different regions often showed both local characteristics and common trends. To address

this, the Li-Lee model built upon the original framework by incorporating regional rela-

tionships. It separated mortality changes into two components: one reflecting national

trends shared across regions, and another capturing region-specific characteristics. This

approach maintained regional distinctiveness in projections while ensuring reasonable

correlation between forecasts for different areas.

3.2.2 Scenario selection

The report by Bohnert et al. (2015) presented three potential scenarios for future

demographic change: low growth, medium growth, and high growth. When selecting an

appropriate scenario, we concentrated on several pivotal indicators that could be validated

in the near term at the 2024 juncture, rather than relying excessively on long-term forecast

indicators that are challenging to verify.

Table 3.2.1 presents key demographic assumptions for different growth scenarios,

including Total Fertility Rate (TFR), Immigration Rate (IR), and Non-permanent Resident

Population (NPR) projections, which were used to validate our scenario selection.

In particular, three key indicators were selected for examination:

• Total Fertility Rate (TFR): The actual total fertility rate in 2022 was 1.33, a

figure that was significantly lower than the 1.67 assumed in the medium growth

scenario and even lower than the 1.53 assumed in the low growth scenario.

• Migration Rate (MR): The migration rate in 2022 was 6.188 per thousand people,

which fell between the figures projected for the medium growth scenario (7.5 ‰)

and the low growth scenario (5.0 ‰).

• Non-permanent Resident Population (NPR) : The actual number of non-

permanent residents in 2022 (1,729,037) was significantly higher than the projections

in the medium growth scenario (864,600) and the low growth scenario (733,600).
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Table 3.2.1: Key Demographic Assumptions in Different Growth Scenarios

Assumption Low Growth (L) Medium Growth (M) High Growth (H)

TFR
(2021/2022)

1.53 1.67 1.88

LE-M
(2062/2063)

86.0 years 87.6 years 89.9 years

LE-F
(2062/2063)

87.3 years 89.2 years 91.9 years

IR
(2022/2023)

5.0 7.5 9.0

NPR
(2022/2023)

733,600 864,600 1,144,300

NER
(2062/2063)

1.9 2.2 2.5

RER
(2062/2063)

1.0 1.0 1.0

NTER
(2062/2063)

0.7 0.7 0.7

IPM 1991/1992 - 2010/2011 1991/1992 - 2010/2011 1991/1992 - 2010/2011

Note: TFR: Total Fertility Rate; LE-M: Male Life Expectancy; LE-F: Female Life Expectancy;
IR: Immigration Rate; NPR: Non-permanent Resident Population; NER: Net Emigration Rate;
RER: Return Emigration Rate; NTER: Net Temporary Emigration Rate; IPM: Interprovincial
Migration Pattern.

A comparison of the actual values of these short-term indicators with the forecast

values provided a reliable basis for assessment. However, the report also contained a

number of long-term indicators extending to 2063, which were subject to a number of

uncertainties, including advances in medical technology and social change. As a result,

these indicators had limited predictive value.

After weighing these factors, and especially considering the significant underestimation

of the most critical fertility indicator among the verifiable indicators, we elected to utilize

the low-growth scenario life table data. This selection strategy, based on short-term

verifiable indicators, was more reliable and prudent than attempting to assess population

development decades in the future.
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4 Methodology

4.1 No Negative Equity Guarantee

Michaud and St. Amour (2023) uses empirical data on consumption, housing assets,

and medical expenditures of the elderly population to calibrate a utility model in reverse.

The results show that the elderly have a high level of risk aversion and prefer to retain

wealth rather than take risks by taking out a reverse mortgage to liquidate it in the face

of uncertainty (such as housing price fluctuations, longevity risk, and medical expenses).

In order to increase the attractiveness of reverse mortgages, the No-Negative-Equity

Guarantee mechanism, hereafter referred to as NNEG, was introduced. It ensures that

borrowers do not need to repay more than the market value of their home before the loan

matures. This mechanism shifts the risk of falling house prices and long loan durations to

the lender. We discuss this mechanism in more detail below.

Szymanoski (1994) believes that the structure of NNEG is similar to a put option,

which can be described at a single point in time as the formula 4.1.1

VNNEG = E [max (LT −HT , 0)] (4.1.1)

• LT : The outstanding loan balance

• HT : The value of the house.

However, in real life, the loan maturity time T is definitely not a single point in time,

but is determined by the borrower’s life expectancy. Therefore, we need to extend the

model to calculate the cumulative risk over multiple time points. The specific formula is

shown in Equation 4.1.2:

VNNEG = E

[
T∑
t=1

qa,a+t · max(La+t −Ha+t, 0)

]
(4.1.2)

• qa,a+t: The probability that the borrower survives from age a to a+t.

To convert future risks into a current value, Michaud then introduced a discount

factor and transaction costs (fees such as intermediary fees and taxes), while for the loan

balance he introduced the loan interest rate and the premium interest rate for reverse

loans. The following formula 4.1.3 was obtained:
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VNNEG = E

[
T∑
t=1

qa,a+t · max
(
La · (1 + rLC + π)t − (1 − c)Ha+t, 0

)
· 1

(1 + i)t

]
(4.1.3)

• La: The initial loan amount at age a.

• rLC : The loan interest rate.

• π: The insurance premium rate, used to cover loan risks.

• c: The transaction cost ratio.

• i: The discount rate.

4.2 House Price Simulation Model

In recent years, Vector Autoregression (VAR) and Vector Error Correction Mod-

els (VECM) have achieved remarkable success in housing price forecasting research.

Vansteenkiste and Hiebert (2011), when studying the real estate market in the eurozone,

not only revealed the spillover effect of housing prices between countries through the VAR

model, but also captured how housing prices in different regions are linked to varying

degrees according to economic weight and geographical location. This provides important

ideas for analysing the mutual influence of regional housing prices. As the research

deepened, scholars found that when there is a long-term equilibrium relationship in the

house price series, the VECM model can provide a more comprehensive perspective. In

a study of house prices in 12 cities in New Zealand, Shi et al. (2010) found that the

VECM model not only accurately captured the long-term equilibrium relationship between

house prices in different cities, but also performed well in predicting long-term trends.

This finding was further confirmed in a study of the Sydney real estate market – by

combining the Johansen cointegration test with the VECM model, Al-Masum and Lee

(2019) successfully identified the long-term equilibrium relationship between house prices

and market fundamentals such as disposable income and housing supply, highlighting the

unique advantages of the VECM model in explaining the dynamic changes in house prices.

The methodological advantages of these models are particularly relevant for our

study. While VAR provides insight into short-term dynamics among multiple variables,

VECM—through the integration of correction terms—offers a clearer view of how de-

viations from long-term trends are gradually adjusted. Given the pronounced regional
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heterogeneity of the Canadian housing market, and our interest in simulating extended

price paths, we adopt both models to construct forward-looking trajectories. In doing

so, we aim to develop a more nuanced understanding of the forces shaping house price

evolution across major Canadian cities.

4.2.1 Vector Autoregression Model

The VAR (Vector Autoregression) model is a multivariate time series analysis tool

that captures the dynamic interactions between variables. Its general form for VAR(p) is

as follows:

Yt = A1Yt−1 + A2Yt−2 + · · · + ApYt−p + εt (4.2.1)

• Yt is a vector containing multiple time-series variables.

• A1, A2, . . . , Ap are the parameter matrices to be estimated.

• εt is a white noise error term, representing unpredictable random shocks.

In addition to the residual term necessarily exhibiting characteristics of white noise,

VAR models are contingent upon two fundamental assumptions: firstly, that the data

must be stationary, and secondly, that the relationship between the variable and its lagged

values must be linear.

4.2.2 Stationary Test

In the context of VAR models, the stationarity of the time series is of paramount

importance. The concept of stationarity guarantees that the statistical properties of the

time series (mean, variance, autocorrelation) remain constant over time, thereby providing

a robust foundation for the estimation and inference of the model.

In the event that the input data is not stationary, this may result in a spurious

regression problem, whereby the relationship between variables is attributed to a common

trend rather than an actual dynamic relationship.

However, housing price data often exhibit significant trends or random walk charac-

teristics, which means that the data may not meet the stability requirement. For example,

housing prices generally tend to increase over time, and the fluctuation range may increase

over time. This non-stationary property will affect the reliability of subsequent models.
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Zhang et al. (2013) highlight that the conclusions drawn from the characteristics of

house price time series in different empirical studies are not consistent. This inconsistency

is primarily attributed to the choice of sample period. For instance, in some short-term

samples, house prices may appear to be stable, whereas in long-term samples, they may

exhibit trend or non-stationary characteristics. This discrepancy underscores the necessity

for a meticulous examination of the data characteristics prior to modelling.

We employs two widely utilized statistical techniques, the augmented Dickey-Fuller

(ADF) test and the Phillips-Perron (PP) test, to assess the stationary of time series. These

methods are frequently utilized to ascertain whether a time series possesses a unit root,

thereby determining its non-stationary nature.

The ADF test is an extended version of the traditional Dickey-Fuller test, which

corrects for the self-correlation of residuals by adding a lag term to the difference. Its

model form is as follows:

∆Yt = α + βt + γYt−1 +

p∑
i=1

δi∆Yt−i + εt (4.2.2)

• ∆Yt: The first difference of the time series.

• α: Constant term, βt: Trend component, γ: Coefficient of Yt−1.

• δi: Coefficients of lagged differences.

• H0 : γ = 0: The series has a unit root (non-stationary).

The PP test is a non-parametric extension of the ADF test that accounts for het-

eroskedasticity and autocorrelation by modifying the covariance matrix of the error term.

Its model form is as follows:

Yt = α + βt + γYt−1 + εt (4.2.3)

• The PP test evaluates the same null hypothesis as the ADF test (H0 : γ = 0),

indicating the presence of a unit root.

We apply the ADF and PP tests to the housing price index of 12 major cities in

Canada. Tables 4.2.1 and 4.2.2 show the results of the stationarity tests on the original

housing price data. We can see that the p-values of all 12 cities exceed the significance
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level of 0.05, and none of them pass the ADF and PP tests. This indicates that the

housing price series in these cities have unit root

Table 4.2.1: East Cities - Original Data

City ADF Statistic ADF p-value PP Statistic PP p-value ADF Results PP Results

St. Johns -0.3555 0.9173 -0.0894 0.9505 Non-Stationary Non-Stationary

Halifax 1.0318 0.9946 1.3438 0.9968 Non-Stationary Non-Stationary

Québec 0.0432 0.962 1.1425 0.9956 Non-Stationary Non-Stationary

Montréal 0.5759 0.987 1.6088 0.9979 Non-Stationary Non-Stationary

Toronto -0.2304 0.9348 -0.0035 0.9582 Non-Stationary Non-Stationary

Hamilton -0.1733 0.9416 0.0844 0.965 Non-Stationary Non-Stationary

Table 4.2.2: West Cities - Original Data

City ADF Statistic ADF p-value PP Statistic PP p-value ADF Results PP Results

Winnipeg 1.3943 0.9971 1.6853 0.9981 Non-Stationary Non-Stationary

Saskatoon -0.1185 0.9476 -0.3798 0.9134 Non-Stationary Non-Stationary

Calgary -0.0869 0.9507 0.5305 0.9858 Non-Stationary Non-Stationary

Edmonton -0.679 0.8521 -0.8669 0.7987 Non-Stationary Non-Stationary

Vancouver -0.5319 0.8856 -0.3362 0.9202 Non-Stationary Non-Stationary

Victoria -1.7674 0.3968 -2.0474 0.2662 Non-Stationary Non-Stationary

Given that all the city time series have unit roots, we differenced the raw data and

then performed ADF and PP tests on the differenced data. Tables 4.2.3 and 4.2.4 show

that after the first-order differencing, the test statistics of all cities are far below the critical

values. This confirms that the housing price data become stationary after differencing.

Table 4.2.3: East Cities - First Difference
City ADF Statistic ADF p-value PP Statistic PP p-value ADF Results PP Results

St. Johns -5.0465 0.0 -20.5252 0.0 Stationary Stationary

Halifax -6.3512 0.0 -19.5428 0.0 Stationary Stationary

Québec -3.1409 0.0237 -16.2779 0.0 Stationary Stationary

Montréal -3.4126 0.0105 -19.3624 0.0 Stationary Stationary

Toronto -4.9564 0.0 -16.2597 0.0 Stationary Stationary

Hamilton -5.4741 0.0 -21.5861 0.0 Stationary Stationary
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Table 4.2.4: West Cities - First Difference
City ADF Statistic ADF p-value PP Statistic PP p-value ADF Results PP Results

Winnipeg -4.8858 0.0 -14.9652 0.0 Stationary Stationary

Saskatoon -6.0842 0.0 -16.3531 0.0 Stationary Stationary

Calgary -4.49 0.0002 -9.3789 0.0 Stationary Stationary

Edmonton -5.5205 0.0 -16.7156 0.0 Stationary Stationary

Vancouver -7.7034 0.0 -18.0317 0.0 Stationary Stationary

Victoria -3.8709 0.0023 -18.7548 0.0 Stationary Stationary

4.2.3 Lag Selection

In order to guarantee the veracity and precision of the results produced by the vector

autoregression (VAR) model, it is necessary to determine the lag order of the model. The

lag order determines the number of previous observations of the variable in the VAR

model that are used to predict the current variable’s dynamics. A lag order that is too

small will result in the model failing to capture some of the dynamic information and key

interrelationships, thereby reducing its explanatory power. Conversely, a lag order that is

too large will lead to overfitting and multicollinearity issues, both of which will impair

the model’s accuracy.

Table 4.2.5 and Table 4.2.6 show the results of lag selection for the Eastern and

Western city groups. Given that our model is primarily employed for forecasting the

prospective trajectory of real estate market prices, we have elected to utilise the AIC and

FPE criteria, which encompass a greater number of lag orders and are better equipped

to capture the nuances of dynamic information. Following a meticulous evaluation, we

have determined that the optimal lag order for the Eastern city group is 3, while for the

Western city group, it is 5.

Table 4.2.5: Eastern city lag selection result

Lag AIC BIC FPE HQIC

0 −8.021 −7.597 0.000 328 4 −7.855

1 −8.589 −7.847* 0.000 186 2 −8.297

2 −8.660 −7.600 0.000 173 4 −8.243

3 −8.890* −7.512 0.000 137 9* −8.348*

4 −8.857 −7.160 0.000 142 6 −8.189

5 −8.870 −6.856 0.000 140 8 −8.078
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Table 4.2.6: Western city lag selection result

Lag AIC BIC FPE HQIC

0 −2.541 −2.117 0.078 81 −2.374

1 −3.520 −2.777* 0.029 61 −3.228

2 −3.675 −2.615 0.025 35 −3.258*

3 −3.785 −2.406 0.022 73 −3.243

4 −3.832 −2.136 0.021 69 −3.165

5 −3.863* −1.849 0.021 05* −3.071

4.2.4 Vector Error Correction Model

We confirm that all city housing price time series contain a unit root, while the

difference series are stationary, by passing two stability tests. However, this does not mean

that there is no potential long-term equilibrium relationship between these series. The

definition of cointegration: If multiple time series Yt = [y1t, y2t, . . . , ynt] are non-stationary,

but there exists a linear combination that makes the combination stationary, then these

series are said to be cointegrated.

β′Yt = ut, ut ∼ Stationary

A cointegration relationship not only reveals long-term linkages between different

variables, but also reflects the existence of short-term equilibrium between variables. For

example, if there is a cointegration relationship between cities in the east and west of

Canada, it indicates that housing prices in cities within a certain region are driven by

common long-term trends. Identifying these cointegration relationships will provide an

important basis for our subsequent forecast of housing price paths.

Johansen’s test is based on the following form of the VECM model (Vector Error

Correction Model):

∆Yt = ΠYt−1 +
k−1∑
i=1

Γi∆Yt−i + εt (4.2.4)

• ∆Yt: The differences of the time series.

• Yt−1: The lagged first-order time series.

• Π = αβ′: The cointegration matrix, where:
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– α: The adjustment coefficient matrix, reflecting how short-term dynamics

adjust to the long-term equilibrium.

– β: The cointegration vector matrix, describing the long-term equilibrium

relationship.

• Γi: The short-term dynamic coefficient matrix, describing the impact of lagged

differences.

• εt: Random error terms.

The error correction term, ΠYt−1, indicates how the long-term equilibrium relationship

impacts current adjustments. Similarly, the short-term dynamics component, Γi∆Yt−i,

illustrates the effect of lagged differences on current changes.

• rank(Π): The rank of the cointegration matrix, which determines the number of

cointegration relationships:

– If rank(Π) = 0, there is no cointegration relationship, and the time series have

no long-term equilibrium.

– If 0 < rank(Π) < n, there exist r cointegration vectors.

– If rank(Π) = n, all variables are stationary time series.

There are two statistics that can be used to determine the number of cointegration

relationships. Table 4.2.7 shows the differences between them.

Table 4.2.7: Comparison of Trace and Maximum Eigenvalue Statistics

Criteria Trace Statistic Max Eigenvalue Statistic

Formula −T
∑n

i=r+1 ln(1 − λi) −T ln(1 − λr+1)

Meaning of λ λi: Eigenvalues λr+1: The largest eigenvalue of the
next rank

Null Hypothe-
sis (H0)

The number of cointegration is r. The number of cointegration is r.

Alternative
Hypothesis
(H1)

The number of cointegration is
greater than r.

The number of cointegration in-
creases to r + 1.
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Table A.1 and A.2 demonstrate that there are five cointegration relationships

(statistics > critical values) in both eastern and western cities, indicating that hous-

ing prices in Canadian cities in different regions are affected by a common long-term trend.

This provides a theoretical basis for the construction of a VECM model for the Canadian

housing price market. The discrepancies in the Trace and Max Eigenvalue statistics of the

eastern and western city groups also indicate the regional heterogeneity of the Canadian

housing price market.

4.3 House Price Simulation

4.3.1 Model Construction

According to the formula 4.1.3 we obtained above, it is crucial to know how to get

the value of the house Ht at any time. We choose to construct a VECM model to simulate

the house value path.

Based on the previous lag selection and Johansen test results, we construct the

following VECM models for the eastern and western city groups:

∆Yt = αwestβ
′
westYt−1 + Γwest

1 ∆Yt−1 + Γwest
2 ∆Yt−2 + Γwest

3 ∆Yt−3

+ Γwest
4 ∆Yt−4 + ϵwestt (4.3.1)

• Yt: A vector of housing prices in western cities (e.g., Vancouver, Calgary, etc.), with

dimensions 6 × 1.

• αwest: Adjustment speed matrix, describing how housing prices adjust when deviating

from the long-term equilibrium.

• βwest: Cointegration vector matrix, describing the long-term equilibrium relationship.

• Γwest
i : Short-term adjustment matrix, describing the effect of lagged terms on current

housing price changes, for a total of 4 terms.

• ϵwestt : Random shocks, assumed to follow a normal distribution N(0,Σwest).

∆Yt = αeastβ
′
eastYt−1 + Γeast

1 ∆Yt−1 + Γeast
2 ∆Yt−2 + ϵeastt

(4.3.2)
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• Yt: Includes the vector of housing prices for Eastern cities (e.g., Toronto, Montreal,

etc.), with dimensions 6 × 1.

• αeast: Adjustment speed matrix.

• βeast: Cointegration vector matrix.

• Γeast
i : Short-term dynamics adjustment matrices, i = 1, 2.

• ϵeastt : Random shock term, assumed to follow a normal distribution N(0,Σeast).

For the western cities, R2 values range from 0.9975 (Victoria) to 0.9997 (Winnipeg and

Calgary), with similarly high adjusted R2. For the eastern cities, R2 values are consistently

above 0.9995, with Montréal and Toronto achieving 0.9997. These exceptionally high

goodness-of-fit statistics indicate that the estimated VECM models capture a substantial

proportion of the variance in regional house price dynamics.

The high explanatory power can be attributed to the strong co-movement of housing

prices across cities and the persistent nature of the housing market. Given that the

variables are specified in first differences and cointegration terms are included, the VECM

structure is well-suited to identify both short-term adjustments and long-run equilibrium

trends. While this suggests the model fits historical data well, it may also reflect limited

exposure to structural breaks or rare events within the sample period. Consequently,

caution is warranted when interpreting the simulation-based results: although the high

R2 improves the stability of simulated paths used in NNEG pricing, it may understate

tail risk if future shocks deviate significantly from historical dynamics.

Table 4.3.1: R2 and Adjusted R2 for VECM (West Cities)

City R2 Adjusted R2

Winnipeg 0.9997 0.9997
Saskatoon 0.9991 0.9990
Calgary 0.9997 0.9997
Edmonton 0.9996 0.9996
Vancouver 0.9977 0.9975
Victoria 0.9975 0.9974
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Table 4.3.2: R2 and Adjusted R2 for VECM (East Cities)

City R2 Adjusted R2

St. Johns 0.9996 0.9996
Halifax 0.9996 0.9996
Québec 0.9996 0.9996
Montréal 0.9997 0.9997
Toronto 0.9997 0.9997
Hamilton 0.9996 0.9995

4.3.2 Random Shock

Before we formally begin the simulation of housing price paths, we would like to gain

a better understanding of the potential impact of external market fluctuations on our

model. It is assumed that each city’s random shock comes from a multivariate normal

distribution, which could be seen as the residual term in our VECM model,

ϵt ∼ N(0,Σ)

where the covariance matrix Σ describes the correlation and volatility of housing price

changes in each city.

The covariance matrix is obtained by extracting the residual term from the VECM

model. In order to ensure that the generated random shocks satisfy the structure of this

covariance matrix,

Σ = Cov(ϵt)

we propose performing a Cholesky decomposition of the covariance matrix to obtain the

lower triangular matrix L:

Σ = LL⊤

Then, random shocks are generated using the following equation:

ϵt = Lzt

where zt ∼ N(0, I) represents samples from a standard multivariate normal distribution.

The generated ϵt not only satisfies the normal distribution assumption but also adheres to

the covariance structure among cities.
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4.3.3 Path Simulation

After obtaining the results of the VECM model for the eastern and western cities, we

take the following steps to simulate the future path of house prices:

Initialization

We use the historical house price data of the last period Yt as the starting point to

ensure that the simulated trajectory starts consistently with the actual market conditions.

Long-term Equilibrium Adjustment

Based on the cointegration relationship β and the adjustment speed matrix α, we

calculate the long-term correction term:

Long-term Correction = α(β′Yt−1)

Short-term Dynamics Adjustment

We combine the lagged values of changes ∆Yt−1,∆Yt−2, . . . and the short-term

adjustment matrices Γi, to calculate the short-term impact:

Short-term Adjustment =
k∑

i=1

Γi∆Yt−i

Add Random Shock

We use the covariance matrix Σ and random sampling methods to generate a random

shock term ϵt:

ϵt ∼ N(0,Σ)

We use the Monte Carlo simulation method to generate 500 different simulated price

paths by randomly selecting 500 sets of normally distributed disturbance terms.

Path Update

We combine the long-term adjustment, short-term adjustment, and random shocks

to calculate the house price change for the next period:

∆Yt = Long-term Correction + Short-term Adjustment + ϵt
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Then we can update the house price vector Yt and proceed to the next period.

In our simulation, we set the simulation step for each path to 600 steps, corresponding

to a time span of 50 years (each step is 1 month).

Long-term Growth Rate

The graph A.4 shows the monthly growth rate of the average house price in Canada

from January 2005 to October 2024, as provided by the Canadian Real Estate Association

(CREA). As can be seen from the graph, the average house price in Canada has shown a

high degree of volatility, with an annual growth rate of over 1% in the vast majority of years.

However, in order to reduce the uncertainty of the future market in the simulation and

avoid underestimating the mortgage value due to overly optimistic market expectations,

we have chosen 1% as the long-term annual growth rate.

4.3.4 Subsequent Processing of Simulated Paths

After generating the simulated paths, a series of subsequent processes are applied to

adapt the data to the analytical needs of the model and reverse mortgage calculations.

These processes include path validity checks, normalization, and the conversion of monthly

data to annual data.

Path Validity Check

To ensure the reasonableness of the simulated paths, a validity check is first performed.

Specifically, to avoid the unrealistic scenario where random shocks cause housing prices to

become negative, we examine the simulated paths for any negative values. If negative

values are found in a path, the path is deemed invalid and removed. After invalid paths

are removed, new paths are generated to maintain the total number of paths.

Path Normalization

Once all invalid paths have been removed, the starting points of the simulated paths

for different cities are unified to 100 for better comparability of housing price simulations

across cities. The normalization eliminates the influence of different cities’ absolute price

levels, making the paths more comparable. The normalization formula is as follows:

Normalized Pathi,t =
Simulated Pathi,t

Simulated Pathi,0

× 100
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where i represents the path index, t represents the time step, and Simulated Pathi,0 is

the starting value of the path. After normalization, all paths start at 100 when t = 0,

highlighting the relative price trends across cities.

Monthly to Annual Data Conversion

Since the forward-looking life table provides survival rates as annual data, we convert

the normalized monthly simulated housing price paths into annual paths to maintain

consistency. Specifically, values are extracted every 12 months, with January of each year

chosen as the annual data point. The conversion formula is as follows:

Annual Pathi,t = Normalized Pathi,t·12+1

where t represents the year and i represents the path index.

Nationally Harmonized Path Simulation

In order to examine the uniformity of national house price dynamics and to analyze them

in comparison with regional house pricing models, we generated nationwide house price

simulation paths based on the East-West regional house paths. This provides the basis for

exploring the differences between individual city and national pricing in our subsequent

inverse house pricing.

We firstly use the normalized annual house price paths and randomly select the same

number of paths from the normalized annual paths for each city, with the same total

number of paths as simulated for each city. If the total number of simulated paths cannot

be distributed evenly across all cities, the random selection can be continued from the

remaining paths to replenish to the required total.

4.3.5 VAR-like Model

Based on the VECM model, we introduce a VAR-like model by removing the constraint

of long-term cointegration. We set the long-term equilibrium adjustment coefficient α in

the VECM model to zero, completely retaining the short-term dynamic adjustment part,

so that the path generation is only affected by short-term fluctuations.

For the generation and processing of simulated price paths, VAR-like models are the

same as VECM models.
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4.4 Loan Duration Simulation

For reverse mortgage, the loan duration is the time it takes from loan origination to

the borrower’s death or moving out of the home (resulting in loan maturity).

Firstly, we set the corresponding simulation parameters (year of birth, gender)

according to the different structure of the borrower’s family (single or married), the main

differences being:

• Single Borrower: Only the survival time of the borrower is considered.

• Married Borrowers: The survival times of both spouses are simulated, and the

longer survival time of the two is used as the loan duration.

Then, we will use the prospective life table data obtained in Section 3.2 to calculate the

annual survival probability sa and cumulative survival probability S(a + t) for borrowers

at different ages. These probabilities respectively represent the probability of surviving

from age a to a+ 1 and the probability of surviving from the current age a to a future age

a + t. For married households, the annual survival probability and cumulative survival

probability of the borrower’s spouse also need to be calculated.

Finally, we use Monte Carlo simulations to generate a random number u ∈ [0, 1] each

year and compare it with the survival probability. When the random number exceeds

the survival probability, the current age difference is recorded as the loan duration. For

married households, the longer age difference is used as the loan duration. We simulate

500 times to match the number of simulations of the house price simulation path.

It is worth noting that to simplify the analysis process and focus on the impact of house

price paths on reverse mortgage pricing, we uniformly adopted data from Quebec province

in the prospective life tables for simulating loan duration. Although life expectancy

assumptions may vary across provinces, we do not delve into these regional differences in

detail. Instead, we chose to concentrate on how regional characteristics of house price

paths influence the pricing model.

4.5 Fair Price Calculation

The fair value of the No–Negative–Equity Guarantee (NNEG) is calculated using

simulated future house prices derived from the VAR or VECM models estimated in

Section 4.2. These models capture regional housing price dynamics and generate stochastic
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price paths {Ht} through Monte Carlo simulation (Section 4.3). Each simulated path

is used to compute the terminal house value at the time of loan termination HT , which

directly enters the NNEG payoff structure. By combining these simulated house prices

with the projected loan balance, the expected discounted losses due to the guarantee can

be estimated.

4.5.1 Define Fair Price

Fair Value (FV) is the rate at which the net profit of the reverse mortgage program

is zero by optimizing the insurance surcharge rate π.

The core idea of fair value is to balance the income and cost of the loan project. For

each simulated path, the net profit is determined by the difference between the Minimum

Initial Payment (MIP) and the NNEG cost:

Profit = MIP − NNEG

where:

• Minimum Initial Payment (MIP): The insurance premium paid by the borrower

during the loan term, which is proportional to the insurance loading rate π.

• NNEG Cost: The potential loss incurred by the lender when the loan balance

exceeds the house price.

By adjusting the insurance loading rate π, the rate that makes the net profit zero is

found, i.e.,

π = arg min|MIP − NNEG|

4.5.2 Calculation Process

Data Input

To calculate the fair value, we need to input the simulated housing price paths, the

duration of the loan, and the basic parameters of the loan. The housing price paths and

loan duration are derived from Sections 4.3 and 4.4. The basic parameters of the loan

include the following four parameters:
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• L0: The initial loan amount, calculated based on the borrower’s house value and

the LTV ratio. We set it as 50%. 1

• rrmr: The loan interest rate, which includes the base loan rate and the insurance

premium rate:

rrmr = rheloc + π

We assume rheloc as 4%, which is the average rate that was offered on the Canadian

market in 2017. 2

• r: The discount rate, used to calculate the present value of future cash flows.

• c: The transaction cost ratio, representing the cost deduction during house sales. It

is calibrated at 2% of the selling price.

NNEG Cost Calculation

NNEG cost is calculated using the following formula:

NNEG =
1

n

n∑
i=1

exp(−r · Ti) · max(LTi
− STi

, 0)

where:

• n: Number of simulated paths (typically 500).

• LTi
= L0 · exp(rrmr · Ti): Loan balance, representing the cumulative loan principal

and interest during the borrower’s tenure.

• STi
= (1 − c) ·HTi

: House value after deducting transaction costs.

– HTi
: The house price at the end of the i-th simulated path.

It is worth noting that although the valuation is performed under a risk-neutral

framework, simulation of full house price paths is essential due to the non-linear payoff

structure of the NNEG. Since the guarantee only triggers in adverse tail scenarios—when

the loan balance exceeds the property value—higher-order moments of the price distribution

(such as variance and skewness) significantly influence the expected cost. The use of

1In 2017, the CHIP program allowed people to borrow between 10% and 55% of the estimated equity
of the residence.

2https://www.ratehub.ca
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simulation allows us to capture this tail risk, which would otherwise be understated if

only expected values were considered.

Minimum Initial Payment (MIP) Calculation

MIP measures the insurance premium paid by borrowers during the loan tenure.

The calculation formula is as follows:

MIP =
1

n

n∑
i=1

Ti−1∑
t=0

exp(−r · t) · π · L0 · exp(rrmr · t)

where:

• Ti: Loan tenure of the i-th simulated path.

• t: The year within the loan tenure.

• exp(−r · t): Discount factor for each year.

Find Fair Price π

We set the initial search range of π to [0, 0.02]. For each candidate value πj , calculate:

Profit(πj) = MIP(πj) − NNEG(πj)

Interpolation is used to gradually approach the zero solution. If no zero solution is found

within this range, the range of π is expanded.

4.5.3 Illustrative Case: Dollar-Valued NNEG Example

To clarify the pricing mechanism and demonstrate the monetary implications of

the No-Negative-Equity Guarantee (NNEG), we construct a representative case using

simulated housing price paths. These paths are generated via the city-specific Vector

Error Correction Models (VECMs) described in Section 4.2, which incorporate both

long-term cointegration and short-term dynamics based on historical data from twelve

major Canadian cities.

We focus on a representative household composed of a heterosexual married couple,

with the male born in 1957 and the female in 1960. The simulation begins in 2024,

implying that the couple is aged 67 and 64 at loan origination—an age range typical for

reverse mortgage applicants. The initial house price is set at $500,000. The duration

of the reverse mortgage is determined by the couple’s joint survival, following mortality
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assumptions detailed in Section 4.5.2. All future cash flows—including NNEG payouts

and Mortgage Insurance Premiums (MIP)—are discounted at a continuous annual rate of

2%.

From the full simulation output, we select the city of Montréal as a case study.

Among the 500 Monte Carlo paths generated for Montréal, we extract three representative

trajectories that correspond to the 5th, 50th, and 95th percentiles of the terminal house

price distribution. These paths allow us to compare reverse mortgage outcomes under

bearish, median, and bullish housing market scenarios.

This illustrative analysis includes the projected evolution of house value, loan balance,

and the resulting NNEG and MIP values along each selected path, providing insight

into how market dynamics affect the cost of guarantees embedded in reverse mortgage

contracts.

Table 4.5.1: Simulated Path Summary in $ for 5% Percentile Case

Year House Price Loan Balance NNEG MIP Duration

0 500000.000 250000.000 0.000 5000.000
1 496029.052 265459.137 0.000 5309.182
2 478548.544 281874.213 0.000 5637.484
5 470624.480 337464.702 0.000 6749.294

10 419292.392 455529.700 44623.156 9110.594
15 452874.122 614900.778 171084.138 12298.016
20 449635.333 830029.231 389386.607 16600.584
25 407309.874 1120422.270 721258.591 22408.445
30 402313.993 0.000 0.000 0.000
35 353920.228 0.000 0.000 0.000

End 27

Tables 4.5.1 to 4.5.3 present a representative example that illustrates the monetary

implications of reverse mortgage guarantees under varying housing market conditions.

Each table corresponds to a specific simulated trajectory for the Montréal housing market,

selected from the 5th, 50th, and 95th percentiles of the terminal house price distribution.

Together, these cases provide a transparent and intuitive view of how the No-Negative-

Equity Guarantee (NNEG) and Mortgage Insurance Premiums (MIP) evolve across

different scenarios, offering a practical interpretation of reverse mortgage risk-sharing.

In Table 4.5.1 (5% percentile), the house price declines steadily over time, eventually

falling to around $354,000 after 35 years. Meanwhile, the loan balance grows consistently

due to compounding interest, surpassing the house value by year 10 and resulting in a large
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NNEG liability by year 25 (over $720,000). The corresponding MIP increases accordingly,

reaching more than $22,000. This scenario highlights the core insurance function of the

NNEG: it protects the borrower from downside housing risk while shifting the residual

loss to the lender or insurer. In this context, the guarantee becomes especially valuable

for retirees facing a prolonged decline in home equity.

Table 4.5.2 (50% percentile) shows a median case, where house prices initially fall but

partially recover in later years. Nonetheless, the home value remains insufficient to cover

the accumulated debt for most of the loan duration. The NNEG peaks around $875,000

by year 25, and the associated MIP climbs in parallel. This intermediate scenario reflects

a typical market outcome where moderate volatility and longevity still result in negative

equity exposure, reinforcing the importance of proper premium calibration.

Table 4.5.2: Simulated Path Summary in $ for 50% Percentile Case

Year House Price Loan Balance NNEG MIP Duration

0 500000.000 250000.000 0.000 5000.000
1 485622.894 265459.137 0.000 5309.183
2 490700.688 281874.213 0.000 5637.484
5 475063.933 337464.702 0.000 6749.294

10 382288.210 455529.700 80358.054 9110.594
15 280620.128 614900.778 339893.052 12298.016
20 197632.698 830029.231 636349.199 16600.584
25 249888.585 1120422.270 875537.334 22408.445
30 402313.993 0.000 0.000 0.000
35 486393.972 0.000 0.000 0.000

End 29

By contrast, Table 4.5.3 (95% percentile) features a strong housing market recovery.

Home values rise significantly—reaching nearly $1.4 million by year 35—and comfortably

exceed the loan balance throughout most of the projection. In this case, the NNEG is only

marginally triggered at isolated points (e.g., year 20 or 30), and the final insurance liability

is negligible. Despite this, the MIP continues to accumulate based on modelled risk at

origination, illustrating the ex-ante pricing logic of the insurance design. The borrower

benefits fully from home price appreciation, while the insurer bears no cost—underscoring

the asymmetric structure of the NNEG.

These examples make clear that the NNEG provides substantial protection in adverse

housing markets and long-tenure scenarios, but may remain unused in strong markets.

They also show how pricing this guarantee ex-ante through the MIP requires careful
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Table 4.5.3: Simulated Path Summary in $ for 95% Percentile Case

Year House Price Loan Balance NNEG MIP Duration

0 500000.000 250000.000 0.000 5000.000
1 506660.615 265459.137 0.000 5309.183
2 496566.017 281874.213 0.000 5637.484
5 502893.440 337464.702 0.000 6749.294

10 542992.636 455529.700 0.000 9110.594
15 624114.205 614900.778 3268.857 12298.016
20 812166.836 830029.231 34105.731 16600.584
25 935163.686 1120422.270 203961.855 22408.445
30 1135164.071 1142251.912 399957.073 30248.237
35 1388603.980 0.000 0.000 0.000

End 34

modeling of regional price dynamics and mortality risk. Ultimately, these tables serve not

only to visualize the internal mechanics of the model but also to emphasize the policy

relevance of geographically tailored and actuarially sound reverse mortgage pricing.
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5 Results and Discussion

5.1 VECM Model

The results of the VECM model are presented in Appendix Tables A.3-A.8, which show

the short-term dynamics, long-term equilibrium relationship, and the random fluctuation

part that the model fails to explain in the urban housing price forecasting model in the

eastern and western regions.

5.1.1 Long-term Relationship

Table A.3 and A.4 show the results of the long-term cointegration relationship (beta

coefficient) and the speed of adjustment when deviating from the long-term relationship

(alpha) between the eastern and western city groups. The results of the long-term

cointegration relationship show that these cities, except Halifax, have a statistically

significant long-term cointegration relationship. Although the direction and magnitude

are different from city to city relative to the benchmark city (Winnipeg in the west and

St. Johns in the east), these cities are closely linked at the long-term equilibrium level

and together form a relatively stable housing price system.

Moreover, most cities have significant statistical adjustment coefficients, indicating

that when real estate prices deviate from the long-term equilibrium, these cities will have

a certain degree of price equilibrium recovery mechanism.

5.1.2 Short-term Dynamic

The short-term dynamic correlation coefficients of cities in the west (Table A.5) and

the east (Table A.6) reflect the sensitivity of real estate prices in each city to price changes

in other cities in the short term (a few months, depending on the lag period of the model).

They show the transmission path and speed of price changes between cities beyond the

long-term equilibrium.

We find that the autoregressive term of cities has a significant positive impact, which

is statistically significant, whether it is an eastern or western city. This shows that there

is a certain inertia and continuity in the price changes of urban real estate, which often

continue the price change trend of the previous period.

However, there is significant complexity and heterogeneity in terms of short-term

price interactions between cities. Neither in the western city group nor in the eastern
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city group is there a dominant city, and the direction and magnitude of short-term price

transmission changes with the lag period and the city. This shows that, unlike long-term

cointegration relationships, short-term dynamics are more dispersed and unstable, and

more susceptible to temporary shocks.

5.1.3 Residual Covariance Matrix

The residual covariance matrix reflects the correlation between the residuals of the

price prediction equation for each city. The results are shown in Table A.7 and A.8.

• Diagonal Elements: Represent the variance of the residuals for each city. This

indicates the unexplained volatility of a city’s price changes after accounting for

the cointegration relationship and short-term dynamics. Larger diagonal elements

suggest greater randomness or unaccounted volatility in the city’s price changes.

• Off-Diagonal Elements: Represent the covariance between the residuals of different

cities. A positive and larger covariance value indicates that, even after controlling for

long-term relationships and short-term dynamics, the two cities exhibit synchronized

residual movements (i.e., unexplained common movements). Conversely, a negative

value indicates a negative correlation between the residual volatilities of the two

cities.

Comparing cities in the east and west, the residual variance of cities in the west

is significantly higher than that of other cities (Victoria, 1.4752), while the residual

variance of cities in the east is more evenly distributed, indicating that the market residual

uncertainty of the eastern model is more balanced. In addition, the majority of inter-city

covariances in both the eastern and western cities are positive, which means that even

after removing long-term relationships and short-term dynamics, there is still positive

co-movement in the ‘unexpected fluctuations’ between cities. However, unlike the western

cities, the overall covariance in the eastern cities is smaller, which indicates that there is

no strong consistent residual shock at the residual level in the eastern cities.
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5.2 House Price Simulation Results

5.2.1 Comparison Between City Groups

Figure 5.2.1 and 5.2.2 present the simulated house price paths for Montreal and

Vancouver based on the VECM model. The simulated paths for all cities are in the

Appendix A.5 and A.6.

Comparing the simulated paths of the eastern and western city groups, we can see

that the house price paths of both eastern and western cities show an upward trend, but

the volatility of the western city group is significantly higher than that of the eastern cities,

which is also consistent with the results of the Cholesky decomposition of the residual

covariance matrix.

Figure 5.2.1: Montreal Simulation Path(VECM model)
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Figure 5.2.2: Vancouver Simulation Path(VECM model)

5.2.2 Comparison Between Models

Figure 5.2.3 demonstrates the simulated house price paths for Montreal based on

the VAR-like model. The results for all cities of the house price simulation based on the

VAR-like model are presented in the Appendix A.7 and A.8.
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Figure 5.2.3: Montreal Simulation Path(VAR-like model)

Comparing the results of the house price simulations obtained in Montreal after

simulations using different models, we see that the paths lack the pull-back effect of the

long-run equilibrium when the long-run equilibrium relationship is removed, and that the

trends in the cities are more influenced by the short-run trend, showing a more linear

growth trend and a reduction in the overall degree of dispersion.

5.2.3 National House Price Simulation Path

Figure 5.2.4 and 5.2.5 demonstrates the simulated house price paths for Montreal

based on the VAR-like model.
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Figure 5.2.4: VECM Simulated Paths for Canada (Normalized Initial Value = 100)

Since the national house price simulation paths are randomly selected from the

integration of the regional simulation paths, their basic properties are similar to those of

the regional simulation paths. For example, the VAR-like path for national house prices

is more volatile, reflecting the high level of short-term market uncertainty. However, by

integrating house price dynamics across multiple regions, the national path smoothes

out the volatility of the regional paths, resulting in a less volatile path overall than the

regional paths and fewer extreme upward and downward paths than for individual cities.
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Figure 5.2.5: VAR Simulated Paths for Canada (Normalized Initial Value = 100)

5.3 Loan Duration Simulation

In order to simulate the loan duration, we use the following base setup:

Borrower Characteristics:

• Primary Borrower (Head): Born in 1959, gender: Male.

• Spouse: Born in 1960, gender: Female.

• This setup ensures that the life table data for the borrower and their spouse reflect

differences in life expectancy based on gender, thereby improving the accuracy of

the simulation results.

Simulation Settings:

• Life Table Scenario: Assumed as Scenario L, which corresponds to prospective

life table data.

• Province: The simulation uses life table data for Quebec (QC).

• Starting Year: The simulation begins in 2024, serving as the baseline year for

calculating loan durations.
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Figure 5.3.1 displays the modelled loan duration distribution and its probability

density function (PDF). The results suggest that there is a clear concentration of loan

duration: the mean is 27.54 years, the median is 28 years, and the standard deviation is

about 6 years. Most of the paths are concentrated in the 20-35 year range, reflecting the

general trend of the individual life table simulations.

Figure 5.3.1: Duration Distribution Result

5.4 Reverse Mortgage Fair Price

Figure 5.4.1 compares the fair prices of reverse loans across cities that we calculated

after simulating the future paths of house prices and the duration of loans in each city.

The detailed values are in Appendix Table A.9.

5.4.1 Comparison Between Different Models and Different Cities

Under the VECM model, fair prices are in the range of 0.3 % to 0.5 % in most cities,

and are relatively somewhat higher in eastern cities, especially Toronto and Montréal,

which represents a greater downside risk to house prices in eastern cities. Under the VAR-

like model, the vast majority of cities experience declines in fair prices, with extremely

pronounced declines in the East. two western cities, Vancouver and Victoria, have different
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variations from the others, as they increase by 0.01 % and 0.03 %, respectively, compared

to the VECM model.

Figure 5.4.1: Fair Price Results(Different Models & Different Cities)

The reason for this result is that for the eastern group of cities, the α matrix (short-run

adjustment coefficients) of the VECM model is negative, which means that the model’s

retraction effect on the city’s deviation from the long-run covariance is reversed, which

increases the downside risk of house prices and raises the fair price. In the VAR-like

model, we remove the short-term adjustment coefficients so that the path of house prices

is mainly driven by short-term dynamics, which are currently mostly on an upward trend

(the positive effect of the Γ matrix), the downside risk of house prices is reduced, and the

fair price falls significantly.

For the Western group of cities, the strength of the relationship between the short-run

adjustment coefficients and the long-run equilibrium of their VECM model is smaller,

allowing the house price path to be driven mainly by short-run dynamics. The strength of

the cointegration relationship (β value) for Vancouver and Victoria is very small compared

to the other cities, and is even negative for Victoria. Under the VAR-like model, the effect

of the short-term adjustment coefficients on the house price path is removed, corresponding

to an increased downside risk to house prices and a slight increase in fair prices.
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5.4.2 Comparison Between National Uniform and City Heterogeneous Fair

Prices

In addition to the above, Figure 5.4.1 reveals significant differences between the

uniform and regional models in assessing fair price.

Under the VECM model, the fair price of the national path lies between the eastern

and western city groups and slightly below the level of the eastern city group. We can see

that the national path, by integrating the eastern and western city paths, dilutes regional

differences to some extent, resulting in an overall performance in between. This smoothing

effect masks the differences in long-run equilibrium constraints that exist in the regional

paths, resulting in the fair price of the national path failing to reflect the heterogeneous

characteristics in the regional paths. While overall the national path performance is stable

it overestimates the downside risk of house prices in western cities and also overestimates

the downside risk of house prices in eastern cities.

Under the VAR-like model, the fair price of the national path also falls sharply with

the regional path, reflecting the dominance of short-term dynamics. However, due to

differences in the strength of the short-term dynamics between the eastern and western

regional models, the trend of the national path is more in line with that of the eastern

group of cities, which leads us to underestimate the risk of the western cities in the results.

5.4.3 Market Comparison and Interpretation of NNEG Pricing

To better understand the fair prices derived from our model, we compare these prices

with the interest rates observed in the actual reverse mortgage market in Canada. As of

2024, HomeEquity Bank—the dominant provider in Canada’s reverse mortgage market

(through its CHIP programme)—offers fixed 5-year interest rates ranging from 8.74% to

9.24%, depending on factors such as loan-to-value ratio, property location, and product

type.3 This is significantly higher than the actuarial fair value of the No Negative Equity

Guarantee (NNEG) estimated by our model, which is based solely on house price dynamics,

borrower survival rates, and a fixed 2% discount rate (0.11% to 0.92%).

The significant gap between the interest rates derived from the model and market

rates stems from the fact that lenders must consider a range of real-world risks not

accounted for in the model when pricing reverse mortgages. Borrowers exhibit significant

heterogeneity in terms of financial status, health, life expectancy, and property usage

3https://www.homeequitybank.ca/rates/chiprates/
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preferences. These differences influence loan duration, redemption behaviour, and cash

flow patterns, thereby increasing the uncertainty of future cash flows.

Credit risks and operational risks are also present in the market. Even though reverse

mortgages are secured by property, they may still face issues such as property disputes,

default disputes, or appraisal discrepancies. The compliance, service, and management

costs associated with these risks are not included in the model’s NNEG valuation but

must be compensated for through spreads in reality.

Our model relies on city-level house price indices, which are helpful for capturing

general trends. However, they don’t always reflect what’s going on at a more granular

level. The actual price of a home can depend on many things—location, upkeep, even

how well it was built. Because of this, there’s always some variation between what models

estimate and what a property might sell for, especially when the market is down. That

variation can put more pressure on lenders when it comes to fulfilling NNEG guarantees.

Another issue is liquidity. Not all housing markets behave the same. In some areas, it

might take longer to sell a home, or the final price might fall short of what lenders expect.

These kinds of delays can make it harder to recover funds quickly, particularly after a

borrower defaults or passes away. For lenders, that’s a real operational risk.

Even though our model provides sound actuarial estimates under risk-neutral as-

sumptions, there’s still a gap when it comes to real-world pricing. The fact that market

interest rates are typically higher than our model suggests probably reflects how lenders

are reacting to uncertainty—things like market volatility, property-specific risks, and

payout timing. It’s not just a technical detail. In a way, this gap shows that lenders are

building in buffers to stay protected in practice.
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6 Conclusions and Limits

6.1 Conclusions

In recent years, Canada has faced increasingly severe challenges related to population

aging, placing mounting financial pressure on its traditional pension system. As public

pension coverage declines and private savings prove insufficient, housing wealth has

emerged as a crucial means of addressing retirement financial challenges. However, despite

reverse mortgages offering retired households a flexible way to monetize their housing

wealth, market acceptance remains constrained by complex pricing mechanisms and risk

management challenges.

This research uses housing price data from major Canadian cities as its foundation,

integrating VAR and VECM models to conduct dynamic simulations of house price

trajectories and thoroughly examine how regional price variations influence the fair pricing

of No-Negative-Equity Guarantee (NNEG). The findings reveal significant heterogeneity

across regions in both short-term fluctuations and long-term equilibrium trends. While

the VECM model captures long-term equilibrium relationships between variables while

revealing how short-term adjustment paths respond to external shocks, the VAR model

focuses on dynamic changes in short-term fluctuations. These model results suggest

that while nationwide uniform pricing can smooth risk assessment, it may overlook

regional characteristics - potentially overestimating risk in high-volatility regions while

underestimating it in low-volatility areas.

Further analysis indicates that pricing strategies incorporating regional path simula-

tions can more effectively address housing price heterogeneity. By integrating regional

house price dynamics with mortality table data, this paper presents an innovative reverse

mortgage pricing framework that not only theoretically enhances NNEG pricing mecha-

nisms but also provides financial institutions with practical solutions for optimizing risk

management. This approach helps enhance the market appeal of loan products while

promoting efficient utilization of housing wealth within Canada’s pension system, thereby

supporting the financial security of the aging population.

This research carries significant policy implications. Firstly, policymakers should

support risk mitigation strategies based on regional differences to improve product pricing

accuracy. Secondly, enhancing public awareness of NNEG insurance mechanisms can

reduce consumer misunderstandings, thereby promoting healthy development of the reverse
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mortgage market. Finally, encouraging financial institutions to incorporate regional pricing

flexibility in loan design helps improve market adaptability.

Nevertheless, this research has certain limitations. Firstly, when computing forward-

looking mortality tables, the model applied uniform treatment to nationwide mortality data,

failing to differentiate regional variations in mortality tables, potentially underestimating

the pricing impact of longevity risk in certain regions. Secondly, the capture of house price

dynamics primarily relies on historical property price data from different cities, without

incorporating other external variables that might significantly influence house prices, such

as regional economic growth, population mobility, and interest rate changes. Moreover,

the model assumes historical characteristics of house price paths will persist in the future

but doesn’t fully account for potential market impacts from extreme economic events.

Future research could enhance model applicability and predictive capability by integrating

broader data variables, introducing scenario simulation techniques, and refining mortality

table analysis.

In conclusion, this research reveals the importance of regional house price dynamics in

reverse mortgage pricing through theoretical and empirical analysis. The findings provide

a basis for financial institutions and policymakers to optimize strategies, offering valuable

reference for Canadian pension financial product design and policy innovation, while

proposing potential solutions to address the economic challenges posed by population

aging.

6.2 Limits and future research

While the study proposes a tractable pricing framework for no-negative-equity guar-

antees (NNEG) in the Canadian reverse mortgage market, several modeling assumptions

and simplifications may affect the broader applicability of its findings.

One key limitation lies in the model’s exclusive focus on the supply side of the market.

The pricing logic is based entirely on risk-neutral valuation from the lender’s perspective,

without incorporating the borrower’s decision-making process. Factors such as liquidity

needs, utility from housing services, bequest motives, or behavioral biases are omitted.

As a result, the derived premiums reflect purely technical risk-adjusted prices and cannot

capture actual market-clearing rates or explain low take-up rates. This limits the model’s

relevance in evaluating product adoption, behavioral barriers, and demand-driven policy

incentives.
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Moreover, the model assumes that regional house price indices are the dominant risk

drivers, while individual property-level heterogeneity is excluded. Risks stemming from

location-specific depreciation, maintenance conditions, or micro-market shocks are not

represented in the simulation. This simplification may lead to an underestimation of tail

risk embedded in the guarantee and could bias the fair premium downward. Consequently,

conclusions regarding insurer exposure and fair value benchmarks may understate the

need for capital buffers or regulatory safeguards.

Although the empirical section estimates a vector error correction model (VECM) to

capture long–run cointegration across regional housing markets, the simulation process

deliberately uses both the full VECM and a simplified VAR–like model. In the VAR–like

model, the cointegration adjustment term αβ′xt−1 is set to zero. This dual–model approach

is designed to contrast house price dynamics and NNEG outcomes under scenarios with

and without long–run equilibrium reversion. While the VAR–like model improves path

stability and isolates short–run fluctuations, omitting the error–correction mechanism

may distort long–run tail behavior and bias the estimation of NNEG losses, particularly

over longer horizons.

In addition, the model includes only regional house prices as endogenous variables in

the VECM, without incorporating macroeconomic fundamentals such as interest rates,

household income, or unemployment. This omission hinders structural interpretation of

housing price dynamics and prevents counterfactual simulations of monetary or fiscal

policy shocks. As a result, the framework cannot inform how systemic changes—like

interest rate hikes or income subsidies—would affect NNEG pricing across regions.

Moreover, while the use of nominal house prices aligns with real-world settlement

values and ensures internal consistency with nominal discounting, it introduces an addi-

tional layer of complexity. Specifically, nominal price paths embed inflation-driven drift

that may not reflect underlying real housing market risk. Over long horizons, cumulative

inflation effects can reduce the probability of simulated negative equity events, thereby

understating the value of the guarantee. This is particularly relevant when comparing

regional results, as differences in local inflation trends may obscure true variation in

housing market volatility.

Finally, the model assumes a constant discount rate for the entire valuation horizon.

While this assumption facilitates closed-form pricing, it neglects interest rate volatility

and term structure risks. In reality, market rates evolve in response to monetary policy
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and macroeconomic conditions. The use of a fixed rate could misstate the present value

of future losses or premiums, particularly for long-duration contracts, and may affect the

calibration of solvency margins.
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A Appendix

Figure A.1: Long-term housing price Summary, by city
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Figure A.2: Eastern city comparison: long term vs. short term
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Figure A.3: Western city comparison: long term vs. short term
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Figure A.4: Canadian Average House Price Monthly Growth Rate
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Table A.1: East Cities Cointegration Test

Test Statistic Critical Value
(1%)

Critical Value
(5%)

Critical Value
(10%)

Trace r = 0 709.8613 102.4674 107.3429 116.9829

Trace r = 1 455.0610 75.1027 79.3422 87.7748

Trace r = 2 314.2446 51.6492 55.2459 62.5202

Trace r = 3 181.6358 32.0645 35.0116 41.0815

Trace r = 4 88.4399 16.1619 18.3985 23.1485

Trace r = 5 29.7084 2.7055 3.8415 6.6349

Max Eigenvalue r = 0 254.8003 40.5244 43.4183 49.4095

Max Eigenvalue r = 1 140.8164 34.4202 37.1646 42.8612

Max Eigenvalue r = 2 132.6087 28.2398 30.8151 36.1930

Max Eigenvalue r = 3 93.1959 21.8731 24.2522 29.2631

Max Eigenvalue r = 4 58.7316 15.0006 17.1481 21.7465

Max Eigenvalue r = 5 29.7084 2.7055 3.8415 6.6349
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Table A.2: West Cities Cointegration Test

Test Statistic Critical Value
(1%)

Critical Value
(5%)

Critical Value
(10%)

Trace r = 0 380.1488 102.4674 107.3429 116.9829

Trace r = 1 251.4834 75.1027 79.3422 87.7748

Trace r = 2 171.8126 51.6492 55.2459 62.5202

Trace r = 3 110.6368 32.0645 35.0116 41.0815

Trace r = 4 56.0375 16.1619 18.3985 23.1485

Trace r = 5 27.3923 2.7055 3.8415 6.6349

Max Eigenvalue r = 0 128.6649 40.5244 43.4183 49.4095

Max Eigenvalue r = 1 79.6720 34.4202 37.1646 42.8612

Max Eigenvalue r = 2 61.1759 28.2398 30.8151 36.1930

Max Eigenvalue r = 3 54.5996 21.8731 24.2522 29.2631

Max Eigenvalue r = 4 28.6449 15.0006 17.1481 21.7465

Max Eigenvalue r = 5 27.3923 2.7055 3.8415 6.6349

62



Table A.3: Long-term Relationships Coefficients and Significance of Western Cities

(a) Cointegration Vector (Beta Coefficients)

City Coef Std Err Z P-Value

Winnipeg 1.0000 - - -
Saskatoon -1.0912 0.245 -4.457 0.000***
Calgary -1.1350 0.186 -6.105 0.000***
Edmonton 1.9141 0.227 8.426 0.000***
Vancouver -0.6432 0.173 -3.707 0.000***
Victoria 0.3440 0.092 3.752 0.000***
Constant -39.7938 11.350 -3.506 0.000***

(b) Adjustment Coefficients (Alpha Values)

City Coef Std Err Z P-Value

Winnipeg 0.0106 0.004 2.831 0.005**
Saskatoon 0.0264 0.006 4.395 0.000***
Calgary 0.0177 0.004 4.565 0.000***
Edmonton 0.0078 0.004 2.134 0.033*
Vancouver 0.0022 0.005 0.421 0.674
Victoria -0.0074 0.008 -0.879 0.379

Note: Significance levels are denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1.

Table A.4: Long-term Relationships Coefficients and Significance of Eastern Cities

(a) Cointegration Vector (Beta Coefficients)

City Coef Std Err Z P-Value

St. Johns 1.0000 - - -
Halifax -1.8255 1.756 -1.039 0.299
Québec 9.8884 1.619 6.108 0.000***
Montréal -2.7482 1.008 -2.726 0.006**
Toronto 9.2341 1.527 6.049 0.000***
Hamilton -14.7755 2.206 -6.699 0.000***
Constant -85.3694 34.973 -2.441 0.015*

(b) Adjustment Coefficients (Alpha Values)

City Coef Std Err Z P-Value

St. Johns -0.0018 0.001 -3.397 0.001***
Halifax -0.0016 0.000 -3.169 0.002**
Québec -0.0029 0.000 -5.993 0.000***
Montréal -0.0034 0.001 -5.971 0.000***
Toronto -0.0006 0.000 -1.262 0.207
Hamilton -0.0010 0.001 -1.695 0.090

Note: Significance levels are denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.5: Short-Term Relationships Coefficients for Each

Western City

Lag Variable Coef Std Err P-Value

(a) Winnipeg: Gamma Coefficients

L1 Winnipeg 0.291 0.049 0.000***

Saskatoon -0.0008 0.028 0.978

Calgary 0.152 0.047 0.001**

Edmonton 0.109 0.050 0.028*

Vancouver -0.0563 0.034 0.096

Victoria 0.0110 0.020 0.590

L2 Winnipeg 0.2189 0.050 0.000***

Saskatoon -0.0309 0.028 0.270

Calgary -0.0858 0.052 0.101

Edmonton -0.0484 0.047 0.303

Vancouver 0.0671 0.035 0.056

Victoria 0.0465 0.021 0.025*

L3 Winnipeg 0.1627 0.050 0.001**

Saskatoon 0.0526 0.028 0.064

Calgary -0.1741 0.053 0.001**

Edmonton -0.0003 0.046 0.995

Vancouver 0.0518 0.035 0.141

Victoria -0.0472 0.021 0.024*

L4 Winnipeg -0.0186 0.050 0.710

Saskatoon 0.0072 0.028 0.801

Calgary 0.1004 0.048 0.037*

Edmonton -0.1538 0.047 0.001**

Vancouver 0.0706 0.035 0.042*

Victoria -0.0171 0.020 0.404

Note: Significance levels are denoted as follows: *** p < 0.01, ** p < 0.05, *

p < 0.1.
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Lag Variable Coef Std Err P-Value

(b) Saskatoon: Gamma Coefficients

L1 Winnipeg 0.312 0.051 0.000***

Saskatoon -0.0105 0.029 0.825

Calgary 0.122 0.048 0.012*

Edmonton 0.115 0.051 0.027*

Vancouver -0.0461 0.035 0.190

Victoria 0.0225 0.022 0.318

L2 Winnipeg 0.2015 0.051 0.000***

Saskatoon -0.0459 0.029 0.136

Calgary -0.0653 0.053 0.215

Edmonton -0.0375 0.048 0.435

Vancouver 0.0772 0.036 0.031*

Victoria 0.0568 0.022 0.012*

L3 Winnipeg 0.1854 0.042 0.000***

Saskatoon -0.0321 0.030 0.278

Calgary -0.0739 0.045 0.118

Edmonton -0.0402 0.037 0.285

Vancouver 0.0593 0.027 0.030*

Victoria 0.0481 0.020 0.015*

L4 Winnipeg -0.1287 0.055 0.019*

Saskatoon 0.0172 0.038 0.651

Calgary 0.0876 0.049 0.076

Edmonton -0.1174 0.045 0.010**

Vancouver 0.0641 0.033 0.052

Victoria -0.0293 0.021 0.162

Note: Significance levels are denoted as follows: *** p < 0.01, ** p < 0.05, *

p < 0.1.
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Lag Variable Coef Std Err P-Value

(c) Calgary: Gamma Coefficients

L1 Winnipeg 0.179 0.051 0.000***

Saskatoon 0.0154 0.029 0.592

Calgary 0.5203 0.049 0.000***

Edmonton 0.1376 0.052 0.008**

Vancouver 0.0401 0.035 0.255

Victoria 0.0007 0.021 0.973

L2 Winnipeg -0.0937 0.052 0.070

Saskatoon -0.0254 0.029 0.385

Calgary 0.1461 0.054 0.007**

Edmonton 0.0446 0.049 0.362

Vancouver 0.0361 0.036 0.323

Victoria 0.0370 0.022 0.086

L3 Winnipeg -0.0740 0.052 0.157

Saskatoon -0.0002 0.030 0.932

Calgary -0.0440 0.055 0.421

Edmonton 0.0147 0.048 0.758

Vancouver -0.0217 0.037 0.554

Victoria -0.0156 0.022 0.473

L4 Winnipeg 0.0015 0.052 0.977

Saskatoon 0.0209 0.030 0.481

Calgary 0.0290 0.050 0.576

Edmonton -0.2858 0.049 0.000***

Vancouver 0.0467 0.036 0.196

Victoria -0.0126 0.021 0.553

Note: Significance levels are denoted as follows: *** p < 0.01, ** p < 0.05, *

p < 0.1.
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Lag Variable Coef Std Err P-Value

(d) Edmonton: Gamma Coefficients

L1 Winnipeg 0.0570 0.048 0.237

Saskatoon 0.0596 0.027 0.028*

Calgary 0.2822 0.046 0.000***

Edmonton 0.1249 0.049 0.011*

Vancouver 0.0628 0.033 0.058

Victoria -0.0023 0.020 0.908

L2 Winnipeg -0.1352 0.049 0.006**

Saskatoon 0.0965 0.027 0.000***

Calgary 0.0253 0.051 0.622

Edmonton 0.0863 0.046 0.061

Vancouver 0.0283 0.034 0.410

Victoria 0.0014 0.020 0.946

L3 Winnipeg -0.0525 0.049 0.285

Saskatoon -0.0268 0.028 0.000***

Calgary 0.0352 0.051 0.494

Edmonton 0.2532 0.045 0.000***

Vancouver 0.0095 0.034 0.783

Victoria -0.0629 0.020 0.002**

L4 Winnipeg -0.0448 0.049 0.360

Saskatoon 0.0551 0.028 0.048*

Calgary -0.1264 0.047 0.008**

Edmonton 0.0703 0.046 0.124

Vancouver 0.0556 0.034 0.101

Victoria 0.0162 0.020 0.419

Note: Significance levels are denoted as follows: *** p < 0.01, ** p < 0.05, *

p < 0.1.
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Lag Variable Coef Std Err P-Value

(e) Vancouver: Gamma Coefficients

L1 Winnipeg 0.1464 0.068 0.032*

Saskatoon 0.0414 0.038 0.281

Calgary 0.1024 0.065 0.115

Edmonton -0.0232 0.069 0.738

Vancouver 0.1942 0.047 0.000***

Victoria 0.0673 0.028 0.018*

L2 Winnipeg -0.1247 0.069 0.071

Saskatoon 0.0238 0.039 0.611

Calgary -0.0018 0.073 0.980

Edmonton -0.0988 0.065 0.130

Vancouver 0.1730 0.049 0.000***

Victoria -0.0224 0.029 0.437

L3 Winnipeg -0.0277 0.070 0.691

Saskatoon -0.0450 0.040 0.255

Calgary -0.0053 0.073 0.942

Edmonton 0.0039 0.064 0.951

Vancouver 0.1065 0.049 0.030*

Victoria 0.0202 0.029 0.486

L4 Winnipeg 0.0105 0.069 0.880

Saskatoon 0.0144 0.040 0.715

Calgary 0.0378 0.067 0.573

Edmonton 0.1141 0.065 0.078

Vancouver 0.0164 0.048 0.733

Victoria -0.0276 0.028 0.332

Note: Significance levels are denoted as follows: *** p < 0.01, ** p < 0.05, *

p < 0.1.

68



Lag Variable Coef Std Err P-Value

(f) Victoria: Gamma Coefficients

L1 Winnipeg 0.0093 0.112 0.934

Saskatoon -0.0517 0.063 0.409

Calgary -0.1012 0.106 0.339

Edmonton 0.1588 0.113 0.160

Vancouver 0.3311 0.077 0.000***

Victoria 0.1877 0.046 0.000***

L2 Winnipeg 0.1056 0.113 0.349

Saskatoon -0.0969 0.064 0.127

Calgary -0.0145 0.119 0.903

Edmonton -0.1063 0.106 0.318

Vancouver 0.0641 0.079 0.420

Victoria 0.0692 0.047 0.140

L3 Winnipeg 0.0559 0.114 0.491

Saskatoon 0.0586 0.064 0.363

Calgary -0.0719 0.119 0.546

Edmonton -0.0604 0.104 0.561

Vancouver 0.0011 0.080 0.989

Victoria 0.1219 0.047 0.010*

L4 Winnipeg -0.0322 0.113 0.776

Saskatoon 0.1052 0.064 0.103

Calgary 0.1311 0.109 0.231

Edmonton -0.0601 0.106 0.569

Vancouver 0.0114 0.079 0.884

Victoria -0.0260 0.046 0.574

Note: Significance levels are denoted as follows: *** p < 0.01, ** p < 0.05, *

p < 0.1.
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Table A.6: Short-Term Relationships Coefficients for Each

Eastern City

Lag Variable Coef Std Err P-Value

(a) St. Johns: Gamma Coefficients

L1 St. Johns 0.1621 0.045 0.000***

Halifax 0.0897 0.050 0.074

Québec 0.0627 0.048 0.193

Montréal -0.1346 0.044 0.002**

Toronto -0.0137 0.055 0.803

Hamilton -0.0072 0.045 0.873

L2 St. Johns 0.1157 0.045 0.010*

Halifax 0.0417 0.050 0.401

Québec 0.0264 0.052 0.614

Montréal 0.0200 0.041 0.626

Toronto 0.0248 0.055 0.448

Hamilton 0.0528 0.046 0.251

(b) Halifax: Gamma Coefficients

L1 St. Johns 0.0250 0.042 0.555

Halifax 0.1071 0.047 0.022*

Québec 0.1163 0.045 0.010*

Montréal -0.0678 0.041 0.095

Toronto -0.0509 0.051 0.323

Hamilton 0.1613 0.042 0.000***

L2 St. Johns -0.0393 0.042 0.350

Halifax 0.0349 0.051 0.496

Québec 0.1309 0.049 0.007**

Montréal 0.0477 0.038 0.212

Toronto 0.0970 0.052 0.059

Hamilton -0.0024 0.043 0.956

Note: Significance levels are denoted as follows: *** p < 0.01, ** p < 0.05, *

p < 0.1.
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Lag Variable Coef Std Err P-Value

(c) Québec: Gamma Coefficients

L1 St. Johns 0.0358 0.042 0.393

Halifax -0.0023 0.046 0.961

Québec 0.3356 0.044 0.000***

Montréal -0.1468 0.040 0.000***

Toronto -0.0405 0.051 0.426

Hamilton 0.0843 0.041 0.042*

L2 St. Johns -0.0178 0.042 0.668

Halifax -0.0620 0.042 0.148

Québec 0.0594 0.048 0.218

Montréal 0.0490 0.038 0.195

Toronto 0.0883 0.051 0.084

Hamilton 0.1310 0.042 0.002**

(d) Montréal: Gamma Coefficients

L1 St. Johns 0.0624 0.049 0.201

Halifax -0.0417 0.054 0.439

Québec 0.4245 0.052 0.000***

Montréal 0.0510 0.047 0.275

Toronto 0.1205 0.049 0.028*

Hamilton -0.0748 0.048 0.121

L2 St. Johns -0.1049 0.048 0.030*

Halifax 0.2945 0.071 0.000***

Québec 0.1310 0.056 0.020*

Montréal 0.0113 0.044 0.258

Toronto 0.1350 0.049 0.004**

Hamilton -0.0097 0.049 0.840

Note: Significance levels are denoted as follows: *** p < 0.01, ** p < 0.05, *

p < 0.1.
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Lag Variable Coef Std Err P-Value

(e) Toronto: Gamma Coefficients

L1 St. Johns 0.0276 0.039 0.477

Halifax -0.0063 0.043 0.883

Québec 0.1361 0.041 0.001**

Montréal -0.0339 0.037 0.361

Toronto 0.3614 0.047 0.000***

Hamilton 0.0222 0.038 0.563

L2 St. Johns 0.0050 0.038 0.897

Halifax 0.0047 0.042 0.912

Québec -0.0207 0.045 0.643

Montréal 0.0110 0.035 0.754

Toronto 0.2230 0.047 0.000***

Hamilton 0.0216 0.039 0.582

(f) Hamilton: Gamma Coefficients

L1 St. Johns 0.0343 0.050 0.491

Halifax -0.0116 0.055 0.833

Québec 0.0844 0.053 0.110

Montréal -0.0712 0.048 0.135

Toronto 0.1497 0.060 0.013*

Hamilton 0.0569 0.049 0.249

L2 St. Johns -0.0054 0.049 0.912

Halifax 0.0702 0.063 0.237

Québec 0.0277 0.057 0.643

Montréal 0.0441 0.045 0.325

Toronto 0.1350 0.050 0.013*

Hamilton 0.0066 0.050 0.892

Note: Significance levels are denoted as follows: *** p < 0.01, ** p < 0.05, *

p < 0.1.
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Table A.7: Residual Covariance Matrix and Cholesky Decomposition (Western Cities)

(a) Residual Covariance Matrix

Winnipeg Saskatoon Calgary Edmonton Vancouver Victoria

Winnipeg 0.2872 0.0505 0.0912 0.0605 0.0261 0.0675
Saskatoon 0.0505 0.7456 0.0021 0.0074 0.0351 -0.0204
Calgary 0.0912 0.0021 0.3127 0.0948 0.0242 0.0441
Edmonton 0.0605 0.0074 0.0948 0.2769 0.0711 0.0491
Vancouver 0.0261 0.0351 0.0242 0.0711 0.5576 0.1422
Victoria 0.0675 -0.0204 0.0441 0.0491 0.1422 1.4752

(b) Cholesky Decomposition

Winnipeg Saskatoon Calgary Edmonton Vancouver Victoria

Winnipeg 0.5359
Saskatoon 0.0942 0.8580
Calgary 0.1701 -0.0163 0.5325
Edmonton 0.1129 -0.0037 0.1418 0.4941
Vancouver 0.0468 0.0356 0.0316 0.1243 0.7332
Victoria 0.1259 -0.0376 0.0414 0.0420 0.1786 1.1926

Table A.8: Residual Covariance Matrix and Cholesky Decomposition (Eastern Cities)

(a) Residual Covariance Matrix

St. Johns Halifax Québec Montréal Toronto Hamilton

St. Johns 0.2424 0.0074 0.0012 -0.0008 0.0048 0.0051
Halifax 0.0074 0.2115 0.0099 0.0547 0.0061 -0.0121
Québec 0.0012 0.0099 0.2603 0.0130 0.0099 0.0336
Montréal -0.0008 0.0547 0.0130 0.2786 0.0201 -0.0184
Toronto 0.0048 0.0061 0.0099 0.0201 0.1761 0.0577
Hamilton 0.0051 -0.0121 0.0336 -0.0184 0.0577 0.2880

(b) Cholesky Decomposition

St. Johns Halifax Québec Montréal Toronto Hamilton

St. Johns 0.4924
Halifax 0.0151 0.4597
Québec 0.0024 0.0214 0.4537
Montréal -0.0016 0.1190 -0.0027 0.5146
Toronto 0.0098 0.0129 0.0193 0.0364 0.4174
Hamilton 0.0104 -0.0266 0.0753 -0.0292 0.1379 0.5115
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Figure A.5: VECM Simulated Paths for Eastern Cities (Normalized Initial Value = 100)
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Figure A.6: VECM Simulated Paths for Western Cities (Normalized Initial Value = 100)
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Figure A.7: VAR Simulated Paths for Eastern Cities (Normalized Initial Value = 100)
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Figure A.8: VAR Simulated Paths for Western Cities (Normalized Initial Value = 100)
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Table A.9: Fair Price Comparison by City (VECM vs VAR-like)

City Fair Price (VECM) Fair Price (VAR-like)

Winnipeg 0.00338 0.00185

Saskatoon 0.00358 0.00222

Calgary 0.00345 0.00111

Edmonton 0.00353 0.00180

Vancouver 0.00199 0.00207

Victoria 0.00395 0.00417

Halifax 0.00395 0.00043

St. Johns 0.00369 0.00063

Québec 0.00509 0.00057

Montréal 0.00915 0.00045

Toronto 0.00310 0.00124

Hamilton 0.00285 0.00068

Canada 0.00337 0.00111
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Model Results

VECM Results for Western Cities

Long-term Relationship (LTR):

LTRt−1 = Y Winnipeg
t−1 − 1.0912 · Y Saskatoon

t−1 − 1.1350 · Y Calgary
t−1

+1.9141 · Y Edmonton
t−1 − 0.6432 · Y Vancouver

t−1 + 0.3440 · Y Victoria
t−1 − 39.7938

1. Winnipeg Equation:

∆Y Winnipeg
t = 0.0106 · LTRt−1 + 0.291 · ∆Y Winnipeg

t−1 + 0.2189 · ∆Y Winnipeg
t−2 + 0.1627 · ∆Y Winnipeg

t−3

− 0.0008 · ∆Y Saskatoon
t−1 − 0.0309 · ∆Y Saskatoon

t−2 + 0.0526 · ∆Y Saskatoon
t−3

+ 0.152 · ∆Y Calgary
t−1 − 0.0858 · ∆Y Calgary

t−2 − 0.1714 · ∆Y Calgary
t−3

+ 0.109 · ∆Y Edmonton
t−1 − 0.0484 · ∆Y Edmonton

t−2 − 0.0003 · ∆Y Edmonton
t−3

− 0.0563 · ∆Y Vancouver
t−1 + 0.0671 · ∆Y Vancouver

t−2 + 0.0518 · ∆Y Vancouver
t−3

+ 0.0110 · ∆Y Victoria
t−1 + 0.0465 · ∆Y Victoria

t−2 − 0.0742 · ∆Y Victoria
t−3 + ϵWinnipeg

t

2. Saskatoon Equation:

∆Y Saskatoon
t = 0.0264 · LTRt−1 + 0.312 · ∆Y Winnipeg

t−1 + 0.2015 · ∆Y Winnipeg
t−2 + 0.1854 · ∆Y Winnipeg

t−3

− 0.0105 · ∆Y Saskatoon
t−1 − 0.0459 · ∆Y Saskatoon

t−2 − 0.0321 · ∆Y Saskatoon
t−3

+ 0.122 · ∆Y Calgary
t−1 − 0.0653 · ∆Y Calgary

t−2 − 0.0739 · ∆Y Calgary
t−3

+ 0.115 · ∆Y Edmonton
t−1 − 0.0375 · ∆Y Edmonton

t−2 − 0.0402 · ∆Y Edmonton
t−3

− 0.0461 · ∆Y Vancouver
t−1 + 0.0772 · ∆Y Vancouver

t−2 + 0.0593 · ∆Y Vancouver
t−3

+ 0.0225 · ∆Y Victoria
t−1 + 0.0568 · ∆Y Victoria

t−2 + 0.0481 · ∆Y Victoria
t−3 + ϵSaskatoont
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3. Calgary Equation:

∆Y Calgary
t = 0.0157 · LTRt−1 + 0.198 · ∆Y Winnipeg

t−1 + 0.1415 · ∆Y Winnipeg
t−2 + 0.1127 · ∆Y Winnipeg

t−3

+ 0.0425 · ∆Y Saskatoon
t−1 − 0.0312 · ∆Y Saskatoon

t−2 + 0.0563 · ∆Y Saskatoon
t−3

− 0.1210 · ∆Y Calgary
t−1 + 0.0437 · ∆Y Calgary

t−2 − 0.0509 · ∆Y Calgary
t−3

+ 0.0958 · ∆Y Edmonton
t−1 − 0.0284 · ∆Y Edmonton

t−2 + 0.0323 · ∆Y Edmonton
t−3

− 0.0345 · ∆Y Vancouver
t−1 + 0.0721 · ∆Y Vancouver

t−2 − 0.0617 · ∆Y Vancouver
t−3

+ 0.0092 · ∆Y Victoria
t−1 − 0.0376 · ∆Y Victoria

t−2 + 0.0185 · ∆Y Victoria
t−3 + ϵCalgary

t

4. Edmonton Equation:

∆Y Edmonton
t = 0.0203 · LTRt−1 + 0.104 · ∆Y Winnipeg

t−1 + 0.0824 · ∆Y Winnipeg
t−2 − 0.0953 · ∆Y Winnipeg

t−3

+ 0.0517 · ∆Y Saskatoon
t−1 − 0.0168 · ∆Y Saskatoon

t−2 + 0.0295 · ∆Y Saskatoon
t−3

+ 0.0824 · ∆Y Calgary
t−1 − 0.0431 · ∆Y Calgary

t−2 + 0.0178 · ∆Y Calgary
t−3

− 0.1342 · ∆Y Edmonton
t−1 + 0.0871 · ∆Y Edmonton

t−2 − 0.0329 · ∆Y Edmonton
t−3

− 0.0423 · ∆Y Vancouver
t−1 + 0.0387 · ∆Y Vancouver

t−2 + 0.0216 · ∆Y Vancouver
t−3

+ 0.0175 · ∆Y Victoria
t−1 − 0.0273 · ∆Y Victoria

t−2 + 0.0421 · ∆Y Victoria
t−3 + ϵEdmonton

t

5. Vancouver Equation:

∆Y Vancouver
t = 0.0185 · LTRt−1 + 0.0921 · ∆Y Winnipeg

t−1 − 0.0413 · ∆Y Winnipeg
t−2 + 0.0538 · ∆Y Winnipeg

t−3

+ 0.0274 · ∆Y Saskatoon
t−1 − 0.0171 · ∆Y Saskatoon

t−2 + 0.0312 · ∆Y Saskatoon
t−3

− 0.0813 · ∆Y Calgary
t−1 + 0.0672 · ∆Y Calgary

t−2 − 0.0451 · ∆Y Calgary
t−3

+ 0.1253 · ∆Y Edmonton
t−1 − 0.0512 · ∆Y Edmonton

t−2 + 0.0438 · ∆Y Edmonton
t−3

− 0.1120 · ∆Y Vancouver
t−1 + 0.0725 · ∆Y Vancouver

t−2 − 0.0394 · ∆Y Vancouver
t−3

+ 0.0193 · ∆Y Victoria
t−1 − 0.0284 · ∆Y Victoria

t−2 + 0.0452 · ∆Y Victoria
t−3 + ϵVancouvert
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6. Victoria Equation:

∆Y Victoria
t = 0.0231 · LTRt−1 + 0.1023 · ∆Y Winnipeg

t−1 − 0.0382 · ∆Y Winnipeg
t−2 + 0.0497 · ∆Y Winnipeg

t−3

+ 0.0297 · ∆Y Saskatoon
t−1 − 0.0123 · ∆Y Saskatoon

t−2 + 0.0335 · ∆Y Saskatoon
t−3

− 0.0917 · ∆Y Calgary
t−1 + 0.0553 · ∆Y Calgary

t−2 − 0.0512 · ∆Y Calgary
t−3

+ 0.1358 · ∆Y Edmonton
t−1 − 0.0625 · ∆Y Edmonton

t−2 + 0.0469 · ∆Y Edmonton
t−3

− 0.1215 · ∆Y Vancouver
t−1 + 0.0857 · ∆Y Vancouver

t−2 − 0.0523 · ∆Y Vancouver
t−3

+ 0.0218 · ∆Y Victoria
t−1 − 0.0293 · ∆Y Victoria

t−2 + 0.0439 · ∆Y Victoria
t−3 + ϵVictoria

t

VECM Results for Eastern Cities

Long-term Relationship (LTR):

LTRt−1 =Y St. Johns
t−1 − 1.8255 · Y Halifax

t−1 + 9.8884 · Y Québec
t−1

− 2.7482 · Y Montréal
t−1 + 9.2341 · Y Toronto

t−1 − 14.7755 · Y Hamilton
t−1

− 85.3694

1. St. Johns Equation:

∆Y St. Johns
t = − 0.0018 · LTRt−1 + 0.1621 · ∆Y St. Johns

t−1 + 0.1157 · ∆Y St. Johns
t−2

+ 0.0897 · ∆Y Halifax
t−1 + 0.0417 · ∆Y Halifax

t−2

+ 0.0627 · ∆Y Québec
t−1 + 0.0264 · ∆Y Québec

t−2

− 0.1346 · ∆Y Montréal
t−1 + 0.0200 · ∆Y Montréal

t−2

− 0.0137 · ∆Y Toronto
t−1 + 0.0248 · ∆Y Toronto

t−2

− 0.0072 · ∆Y Hamilton
t−1 + 0.0528 · ∆Y Hamilton

t−2 + ϵSt. Johns
t
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2. Halifax Equation:

∆Y Halifax
t = − 0.0016 · LTRt−1 + 0.0250 · ∆Y St. Johns

t−1 − 0.0393 · ∆Y St. Johns
t−2

+ 0.1071 · ∆Y Halifax
t−1 + 0.0349 · ∆Y Halifax

t−2

+ 0.1163 · ∆Y Québec
t−1 + 0.1309 · ∆Y Québec

t−2

− 0.0678 · ∆Y Montréal
t−1 + 0.0477 · ∆Y Montréal

t−2

− 0.0509 · ∆Y Toronto
t−1 + 0.0970 · ∆Y Toronto

t−2

+ 0.1613 · ∆Y Hamilton
t−1 − 0.0024 · ∆Y Hamilton

t−2 + ϵHalifax
t

3. Québec Equation:

∆Y Québec
t = − 0.0029 · LTRt−1 + 0.0358 · ∆Y St. Johns

t−1 − 0.0178 · ∆Y St. Johns
t−2

− 0.0023 · ∆Y Halifax
t−1 − 0.0620 · ∆Y Halifax

t−2

+ 0.3356 · ∆Y Québec
t−1 + 0.0594 · ∆Y Québec

t−2

− 0.1468 · ∆Y Montréal
t−1 + 0.0490 · ∆Y Montréal

t−2

− 0.0405 · ∆Y Toronto
t−1 + 0.0883 · ∆Y Toronto

t−2

+ 0.0843 · ∆Y Hamilton
t−1 + 0.1310 · ∆Y Hamilton

t−2 + ϵQuébec
t

4. Montréal Equation:

∆Y Montréal
t = − 0.0034 · LTRt−1 + 0.0624 · ∆Y St. Johns

t−1 − 0.1049 · ∆Y St. Johns
t−2

− 0.0417 · ∆Y Halifax
t−1 + 0.2945 · ∆Y Halifax

t−2

+ 0.4245 · ∆Y Québec
t−1 + 0.1310 · ∆Y Québec

t−2

+ 0.0510 · ∆Y Montréal
t−1 + 0.0063 · ∆Y Montréal

t−2

+ 0.1205 · ∆Y Toronto
t−1 + 0.1350 · ∆Y Toronto

t−2

− 0.0748 · ∆Y Hamilton
t−1 − 0.0097 · ∆Y Hamilton

t−2 + ϵMontréal
t
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5. Toronto Equation:

∆Y Toronto
t = − 0.0006 · LTRt−1 + 0.0276 · ∆Y St. Johns

t−1 + 0.0050 · ∆Y St. Johns
t−2

− 0.0063 · ∆Y Halifax
t−1 + 0.0047 · ∆Y Halifax

t−2

+ 0.1361 · ∆Y Québec
t−1 − 0.0207 · ∆Y Québec

t−2

− 0.0339 · ∆Y Montréal
t−1 + 0.0110 · ∆Y Montréal

t−2

+ 0.3614 · ∆Y Toronto
t−1 + 0.2230 · ∆Y Toronto

t−2

+ 0.0222 · ∆Y Hamilton
t−1 + 0.0216 · ∆Y Hamilton

t−2 + ϵTorontot

6. Hamilton Equation:

∆Y Hamilton
t = − 0.0010 · LTRt−1 + 0.0343 · ∆Y St. Johns

t−1 − 0.0054 · ∆Y St. Johns
t−2

− 0.0116 · ∆Y Halifax
t−1 + 0.0072 · ∆Y Halifax

t−2

+ 0.0844 · ∆Y Québec
t−1 + 0.0507 · ∆Y Québec

t−2

− 0.0712 · ∆Y Montréal
t−1 + 0.0441 · ∆Y Montréal

t−2

+ 0.1497 · ∆Y Toronto
t−1 + 0.1350 · ∆Y Toronto

t−2

+ 0.0659 · ∆Y Hamilton
t−1 + 0.0666 · ∆Y Hamilton

t−2 + ϵHamilton
t
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