
[Inner endpaper]

HEC MONTRÉAL

Resource-constrained Activity Sequencing Problem
par

Xiao Li

Robert Pellerin

Polytechnique Montréal

Codirecteur de recherche

Okan Arslan

HEC Montréal

Codirecteur de recherche

Sciences de la gestion

(Spécialisation en science des données et analytique d’affaires)

Mémoire présenté en vue de l’obtention
du grade de maîtrise ès sciences en gestion

(M. Sc.)

Juillet 2024

© Xiao Li, 2024

2

Résumé

Ce mémoire étudie le problème de séquencement d’activités avec contraintes de ressources (RASP

- Resource-Constrained Activity Sequencing Problem), un problème d’optimisation combinatoire

qui implique de séquencer des activités divisibles dans un horizon de planification donné tout en

respectant les contraintes de capacité liée à l’utilisation d’une ressource commune unique. L’exé-

cution de chaque activité consomme la ressource commune et les objectifs sont de minimiser hié-

rarchiquement la durée totale d’exécution des activités (makespan), les coûts opérationnels totaux

et la ressource inutilisée au fil du temps. Le RASP se distingue des problèmes d’ordonnancement

similaires, tels que le problème d’ordonnancement de projet avec contraintes de ressources, le pro-

blème d’ordonnancement en atelier et le problème d’ordonnancement séquentiel par ses caractéris-

tiques uniques : il permet l’exécution partielle des activités, et il existe des contraintes spécifiques

sur l’utilisation et la libération de la ressource. Nous présentons un modèle mathématique et dé-

veloppons des algorithmes métaheuristiques pour résoudre efficacement le RASP. Les algorithmes

métaheuristiques incluent un algorithme glouton et un algorithme basé sur la recherche taboue,

conçu pour améliorer les résultats de l’algorithme glouton. Nous testons nos algorithmes sur des

ensembles de données de différentes tailles pour évaluer leur performance. Nos résultats compu-

tationnels montrent que l’algorithme basé sur la recherche taboue est très efficace et qu’il peut

trouver la durée optimale dans 85% des petites instances, pour lesquelles une solution optimale est

obtenue par le modèle mathématique dans une limite de temps. Nous démontrons également son

efficacité sur les grandes instances.

Mots clés : Problème de Séquencement d’Activités avec contraintes de Ressources ; Algorithme

Glouton ; Recherche taboue ; Optimisation Combinatoire ; Activités Divisibles

3

Avant-Propos

Ce mémoire est rédigé sous la forme d’un article qui sera soumis à une revue scientifique. La direc-

tion du programme de M.Sc. ainsi que les co-auteurs ont donné l’autorisation pour son utilisation.

4

Table of Contents

Résumé . 3

Avant-Propos . 4

Table of Contents . 5

List of Tables and Figures . 7

List of Abbreviations and Acronyms . 8

Acknowledgements . 9

Chapitre 1: Introduction . 10

Chapitre 2: Article . 13

Abstract . 13

Section 1: Introduction . 14

Section 2: Literature Review . 16

2.1 Resource-Constrained Project Scheduling Problem 16

2.2 Job Shop Scheduling Problem . 17

2.3 Sequential Ordering Problem . 18

2.4 Research Gap . 19

Section 3: Problem Statement . 20

3.1 Problem Definition . 20

3.2 Model Formulation . 22

Section 4: Solution Methods . 25

4.1 Greedy Algorithm . 25

5

4.2 Tabu Search Algorithm . 31

Section 5: Computational Experiments . 36

5.1 Dataset Used . 36

5.2 Comparison Framework . 38

5.3 Results . 39

Section 6: Conclusion . 46

Chapitre 3: Conclusion . 48

Bibliography . 50

6

List of Tables and Figures

List of Tables

Table 1 Nomenclature . 20

Table 2 Nomenclature for Greedy Algorithm . 27

Table 3 Categories of Tabu Search Strategies . 32

Table 4 Nomenclature for Tabu Search Algorithm . 33

Table 5 Execution Time of MILP Model with CPLEX 39

Table 6 Gap Analysis on Objective 1 for Small Instances (Cases Differing on Objective

1) . 40

Table 7 Gap Analysis on Objective 2 for Small Instances (Cases Matching on Objec-

tive 1, Differing on Objective 2) . 41

Table 8 Gap Analysis on Objective 3 for Small Instances (Cases Matching on Objec-

tives 1 & 2, Differing on Objective 3) . 42

Table 9 Gap Analysis on Objective 1 for Large Instances (Cases Differing on Objective

1) . 44

List of Figures

Figure 1 Main Structure of Greedy Algorithm . 26

Figure 2 Execution of Positive and Negative Activities in the Greedy Algorithm 28

Figure 3 Execution of Activities by Split Type in the Greedy Algorithm 30

Figure 4 Tabu Search Algorithm . 34

7

List of Abbreviations and Acronyms

JSSP Job Shop Scheduling Problem

RASP Resource-constrained Activity Sequencing Problem

RCPSP Resource-Constrained Project Scheduling Problem

SOP Sequential Ordering Problem

8

Acknowledgements

I would like to express my gratitude to all those who supported me throughout my master’s degree

and contributed to the completion of this thesis.

First, I would like to thank Professor Okan Arslan, my co-supervisor at HEC Montréal, for offering

me the opportunity to work on this project and for his significant involvement in its completion. I

would also like to thank Professor Robert Pellerin, my co-supervisor at Polytechnique Montréal,

for his valuable expert suggestions and guidance throughout this journey.

Next, I would like to extend my thanks to Maxime Dumas and Hugo Deschênes from Croesus,

whose expertise in understanding the project’s challenges and their coding suggestions were im-

portant to its successful completion.

Additionally, I am deeply grateful to the MITACS scholarship for the financial support that made

this research possible.

Finally, I would like to thank my mother and father for their constant support and encouragement

from the beginning to the end of my master’s degree.

9

Chapitre 1: Introduction

L’ordonnancement et le séquencement des activités avec une ressource commune en recherche

opérationnelle ont plusieurs applications dans des domaines allant de la fabrication aux industries

de services. Ces problèmes sont souvent caractérisés par la nécessité d’allouer efficacement des

ressources et de planifier des activités afin de minimiser les coûts ou d’améliorer la productiv-

ité. Ce mémoire introduit le problème de séquencement d’activités avec contraintes de ressources

(RASP - Resource-Constrained Activity Sequencing Problem), un problème d’optimisation com-

binatoire qui implique de séquencer des activités divisibles dans un horizon de planification donné,

où chaque activité augmente ou diminue le niveau d’une ressource commune unique.

Dans le RASP, l’horizon de planification est divisé en |T | intervalles de temps de longueur égale,

notés [t− 1, t), t = 1, ..., |T |, appelés périodes de temps. Une ressource commune unique est util-

isée, chaque activité a une durée spécifique, et elle augmente ou diminue le niveau de la ressource.

Les activités qui augmentent le niveau de la ressource sont appelées activités positives, tandis

que celles qui le diminuent sont appelées activités négatives. Toutes les activités doivent être en-

tièrement complétées dans l’horizon de planification, et des exécutions partielles sont autorisées.

Nous désignons chaque exécution d’une activité, qu’elle soit complète ou partielle, comme une

opération. Chaque opération a une date d’engagement, marquant le début de l’exécution, et une

date de règlement, signifiant la fin de l’exécution. Une opération d’activité négative consomme la

ressource à sa date d’engagement, tandis qu’une opération d’activité positive augmente la ressource

à sa date de règlement. De plus, chaque opération entraîne un coût fixe, appelé coût opérationnel,

qui diminue la ressource commune à la date d’engagement. En conséquence, les exécutions par-

tielles d’une activité entraînent des coûts opérationnels supplémentaires. Il n’y a pas de relations

de précédence entre les opérations. Par conséquent, le RASP est défini comme un problème de

séquencement plutôt qu’un problème d’ordonnancement, en se concentrant sur la séquence des

actions à décider.

Pour illustrer l’application pratique du RASP, considérons le contexte d’un système de gestion

d’entrepôt. Dans l’entreposage, les nouveaux produits envoyés d’une usine à l’entrepôt augmentent

le stock lors de leur livraison, de la même manière que les activités positives augmentent le niveau

10

d’une ressource commune lors de leur achèvement à la date de règlement. À l’inverse, lorsque

les clients passent des commandes, les produits sont expédiés immédiatement depuis l’entrepôt,

ce qui réduit instantanément les stocks, semblable aux activités négatives diminuant le niveau de

la ressource au moment de l’exécution à la date d’engagement. Le coût opérationnel peut être

comparé aux pertes subies lors de la réception ou de l’expédition des produits, chaque transaction

comporte un certain niveau de gaspillage. La durée d’une activité correspond au temps de traite-

ment, ce qui signifie qu’une expédition n’est complète que lorsque le temps de traitement spécifié

pour le produit est écoulé. Étant donné que le stockage des produits entraîne des frais de stockage,

une gestion efficace des stocks est importante. Cela nécessite de gérer soigneusement le plan de

l’offre et de la demande afin de maintenir un stock minimal sans permettre aux niveaux de stock

de tomber en dessous de zéro. Pour atteindre cet équilibre, la réception partielle de produits de

l’usine ou les livraisons partielles aux clients sont autorisées.

Le RASP présente un problème de séquencement d’activités difficile visant à optimiser trois ob-

jectifs hiérarchiques : (1) minimiser la durée totale d’exécution des activités (makespan), (2) min-

imiser les coûts opérationnels totaux et (3) minimiser la ressource inutilisée de chaque période de

temps. De plus, il est essentiel de développer un algorithme efficace capable de résoudre de grands

instances de ce problème en moins d’une minute afin de répondre à des applications complexes

du monde réel. Ce mémoire définit formellement le RASP, souligne les différences et similitudes

entre le RASP et d’autres problèmes connexes, y compris le problème d’ordonnancement de pro-

jet avec contraintes de ressources (RCPSP - Resource-Constrained Project Scheduling Problem),

le problème d’ordonnancement en atelier (JSSP - Job Shop Scheduling Problem) et le problème

d’ordonnancement séquentiel (SOP - Sequential Ordering Problem). En comparant le RASP à

ces problèmes, nous illustrons que le RASP a des aspects uniques de gestion de la ressource

et d’activités divisibles. Pour résoudre le RASP, nous présentons un modèle mathématique et

développons des algorithmes métaheuristiques. Des expériences informatiques approfondies dé-

montrent l’efficacité des algorithmes sur diverses instances de problèmes, montrant leur robustesse

et leur évolutivité.

Ce mémoire est structuré en trois chapitres principaux. Le Chapitre 1 constitue une traduction

de l’introduction de l’article scientifique. Il présente le problème de séquencement d’activités

11

avec contraintes de ressources (RASP), son application, et les principaux objectifs de la recherche.

Le Chapitre 2 correspond à l’article lui-même, rédigé en anglais pour une soumission à une re-

vue scientifique, où nous détaillons le modèle mathématique et les algorithmes métaheuristiques

développés, ainsi que les résultats obtenus. Enfin, le Chapitre 3 est une traduction de la conclusion

de l’article, en résumant les contributions principales de cette recherche et en suggérant des pistes

pour des recherches futurs, notamment concernant les améliorations potentielles des algorithmes.

L’article est organisé comme suit. La Section 2 donne un aperçu de la littérature pertinente. Dans

la Section 3, nous introduisons le problème, discutons des compromis dans le problème multi-

objectifs et présentons un modèle mathématique. La Section 4 introduit les algorithmes méta-

heuristiques utilisés pour résoudre le problème. La Section 5 discute de nos résultats expérimen-

taux, y compris la création de jeux de données, les mesures d’évaluation et les comparaisons de

performances entre les différentes méthodes. Enfin, la Section 6 résume nos principaux résultats

et discute des directions futures de la recherche.

12

Chapitre 2: Article

Abstract

This paper studies the Resource-constrained Activity Sequencing Problem (RASP), a combina-

torial optimization problem that involves sequencing divisible activities within a given planning

horizon while respecting capacity constraints related to the use of a single common resource. The

execution of each activity consumes the common resource, and the objectives are to minimize hier-

archically the makespan, the total operational costs, and the unused resource over time. The RASP

is different from related scheduling problems, such as the Resource-Constrained Project Schedul-

ing Problem, Job Shop Scheduling Problem, and Sequential Ordering Problem by its unique fea-

tures: it allows partial activity execution, and there are specific constraints on the use and release

of resource. We present a mathematical model and develop metaheuristic algorithms to solve the

RASP efficiently. Metaeuristic algorithms include a greedy algorithm and a tabu search-based

algorithm, designed to enhance the results of the greedy algorithm. We test our algorithms on

datasets of various instance sizes to evaluate their performance. Our computational results show

that the tabu search-based algorithm is highly effective and that it can find the optimal makespan in

85% of the small instances, for which an optimal solution is obtained by the mathematical model

within a time limit. We also demonstrate its efficiency on large instances.

Keywords: Resource-Constrained Activity Sequencing Problem; Greedy Algorithm; Tabu Search;

Combinatorial Optimization; Divisible Activities

13

Section 1: Introduction

The scheduling and sequencing of activities with a common resource in operations research have

several applications in domains ranging from manufacturing to service industries. These problems

are often characterized by the need to efficiently allocate resource and schedule activities in or-

der to minimize costs or to improve productivity. This paper introduces the Resource-constrained

Activity Sequencing Problem (RASP), a combinatorial problem involving the sequencing of divis-

ible activities within a planning horizon, where each activity either increases or decreases a single

common resource.

In RASP, the planning horizon is divided into |T | equal-length time intervals, denoted as [t −
1, t), t = 1, ..., |T |, referred to as time periods. A single common resource is utilized, each activity

has a specific duration and it either increases or decreases the level of the resource. Activities

that increase the resource are referred to as the positive activities, while those that decrease it are

called the negative activities. All activities must be fully completed within the planning horizon,

and partial execution is allowed. We refer to every execution of an activity, whether full or partial,

as an operation. Each operation has a commitment date, marking the start of execution, and a

settlement date, signifying the end of execution. An operation of negative activity consumes the

resource at its commitment, whereas an operation of positive activity increases the resource at its

settlement. Additionally, each operation incurs a fixed cost, referred to as the operational cost,

which decreases the common resource at the commitment date. As the result, partial executions

of an activity lead to additional operational cost. There are no precedence relationships between

operations. Hence, RASP is defined as a sequencing problem rather than a scheduling problem,

focusing on the sequence of actions to be decided.

To illustrate the practical application of RASP, consider the context of a warehouse management

system. In warehousing, newly produced items sent from a plant to the warehouse increase inven-

tory upon delivery, similar to how positive activities increase the common resource upon comple-

tion at the settlement date. Conversely, when customers place orders, items are shipped immedi-

ately from the warehouse, instantly reducing inventory, akin to negative activities decreasing the

resource at the moment of execution on the commitment date. The operational cost can be com-

14

pared to the losses incurred during the receiving or shipping of items, as each transaction carries

some level of wastage. The length of an activity corresponds to the processing time, meaning a

shipment is only complete once the specified processing time for the item has passed. Since stor-

ing items incurs storage costs, efficient inventory management is important. This requires carefully

managing the timing of both supply and demand to maintain a minimal inventory without allowing

inventory levels to fall below zero. To achieve this balance, partial receipt of items from the plant

or partial deliveries to customers are permitted.

RASP presents a challenging activity sequencing problem that aims to optimize three hierarchical

objectives: (1) minimizing the makespan of executing activities, (2) minimizing the total oper-

ational costs, and (3) minimizing the unused resource of each time period. Additionally, it is

essential to develop an efficient algorithm that is capable of solving large instances of this problem

within a minute in order to address complex real-world applications. This paper formally defines

the RASP, and underlines the differences and similarities between the RASP, and other related

problems including the Resource-Constrained Project Scheduling Problem (RCPSP), Job Shop

Scheduling Problem (JSSP), and Sequential Ordering Problem (SOP). By comparing the RASP

to these problems, we illustrate that the RASP has unique aspects of resource management and

divisible activities. To solve the RASP, we present a mathematical model and develop metaheuris-

tic algorithms. Extensive computational experiments demonstrate the efficiency of the algorithms

across various problem instances, showcasing its robustness and scalability.

This paper is organized as follows. Section 2 provides an overview of the relevant literature. In

Section 3, we introduce the problem, discuss the trade-off in the multi-objective problem, and

present a mathematical model. Section 4 introduces metaheuristic algorithms used to solve the

problem. Section 5 discusses our experimental results, including dataset creation, evaluation met-

rics, and performance comparisons between different methods. Finally, Section 6 summarizes our

main findings and discusses future research directions.

15

Section 2: Literature Review

In this section, we review the related literatures and compare the RCPSP, the JSSP, and the SOP to

RASP in Section 2.1, 2.2, and 2.3, respectively. We then present a summary of these comparisons

to highlight the research gap in Section 2.4.

2.1 Resource-Constrained Project Scheduling Problem

The RCPSP was introduced in 1969 by Pritsker et al. (1969). It is a classic problem in project

management that has been extensively studied for over two decades (Pellerin et al. 2020). RCPSP

involves scheduling a set of activities within a given time horizon, where each activity has a specific

duration and requires certain amount of resource. The primary objective is to minimize the total

project duration (makespan) while respecting resource constraints and precedence relations.

Research on RCPSP has yielded various exact and metaheuristic methods. Exact methods such as

branch-and-bound, branch-and-cut, and branch-and-price guarantee optimal solutions but are often

computationally intensive for large-scale problems (De Reyck & Herroelen 1998, Montoya et al.

2014, Shirzadeh Chaleshtarti & Shadrokh 2014). Metaheuristic approaches, including Genetic

Algorithm (Lin et al. 2020, Luo et al. 2022), Simulated Annealing (Bouleimen & Lecocq 2003,

Cho & Kim 1997, Józefowska et al. 2001), and Neural Network-based approaches (Agarwal et

al. 2011, Phuntsho & Gonsalves 2023), are commonly used to find near-optimal solutions for

larger instances. Among these approaches, hybrid metaheuristics, which combine the strengths

of different methods, offer a particularly robust approach for solving the RCPSP (Pellerin et al.

2020).

To address the complexities of real-world problems, several extensions of RCPSP have been pro-

posed. These extensions include Multi-Mode RCPSP, Preemptive Activity Splitting, and Time-

Varying Resource Availability (Hartmann & Briskorn 2022). They help model various practical

constraints and scenarios encountered in project scheduling. One notable variation is the RCPSP

with preemptive or non-preemptive activity splitting. This variation shares similarities with our

problem, RASP, where activities can be divided into non-continuous segments (Cheng et al. 2015,

16

Vanhoucke & Coelho 2019).

While RCPSP, especially RCPSP with activity preemption, and RASP share similarities in min-

imizing makespan under resource constraints, they have distinct differences. RCPSP focuses on

scheduling activities by determining feasible start times through precedence constraints. In con-

trast, RASP determines the sequence in which activities are performed, prioritizing resource alloca-

tion without incorporating any precedence constraints. Additionally, RCPSP uses activity splitting

to minimize the total makespan, whereas RASP treats splitting as a strategy to optimize resource

allocation while maintaining an optimal makespan.

2.2 Job Shop Scheduling Problem

The JSSP is a classic NP-hard combinatorial optimization problem introduced in 1954 in the field

of machine scheduling, and it has been extensively studied since then (Johnson 1954, Lenstra et

al. 1977). JSSP involves the allocation of a set of jobs that must pass through various machines in

specific sequences, with each operation requiring a specific machine for a defined processing time.

The main objective of JSSP is typically to minimize the makespan, which is the total time needed

to complete all jobs.

The complexity of JSSP arises from the need to manage machine constraints and precedence rela-

tions between operations within each job. This inherent complexity has led to the study of various

JSSP variations, including flexible job shop scheduling and dynamic job shop scheduling, both of

which have received significant research attention (Xiong et al. 2022). Solutions to JSSP include

both exact methods, such as branch-and-bound, and metaheuristics such as genetic algorithm, sim-

ulated annealing, and ant colony optimization (Çaliş & Bulkan 2013).

Among the various techniques, hybrid approaches that combine genetic algorithm with other meth-

ods have been particularly effective in developing efficient solutions for JSSP and its variations

(Amjad et al. 2018, Asadzadeh 2015, Chen et al. 2020, Zhang et al. 2020). Specific algorithms

such as the KK (Kundakcı & Kulak) heuristic (Kundakcı & Kulak 2016) and tabu search (Li &

Gao 2016, Xie et al. 2023) have also been successfully applied to solve JSSP. Additionally, Iterated

Greedy algorithm have proven effective in addressing JSSP variations, providing valuable insights

17

that could be applied to other scheduling problems (Al Aqel et al. 2019, Zhao et al. 2022).

Both JSSP and RASP involve the allocation of tasks under resource constraints. The primary

difference lies in the nature of these constraints and tasks: JSSP typically deals with jobs that need

to be processed on machines in a predefined sequence, while RASP involves activities that must

be scheduled under resource constraints without precedence relationships.

2.3 Sequential Ordering Problem

The SOP is an extension of the Asymmetric Traveling Salesman Problem, which itself is a gener-

alization of the classic Traveling Salesman Problem. It was first introduced in 1988 and has since

been extensively studied in areas such as manufacturing, transportation, and logistics (Escudero

1988). The objective is to find the shortest possible path in a weighted directed graph while re-

specting specific constraints, where each node must be visited once and the tour must respect given

precedence relations.

Exact algorithms such as the branch-and-bound method have been developed for the SOP. In-

novative lower-bound techniques, based on the dynamic Hungarian algorithm and local search

domination techniques, demonstrate the potential for precise solutions by efficiently pruning the

search space and identifying optimal solutions (Jamal et al. 2017). Given the NP-hard nature of

this problem, approximate algorithms are frequently employed to find efficient solutions in practice

(Gambardella & Dorigo 2000). Among these methods, hybrid heuristic approaches are commonly

used due to their ability to combine global and local search techniques, effectively balancing ex-

ploration and exploitation of the solution space. For instance, the Ant Colony System hybridized

with other local search techniques (Skinderowicz 2017) and the hybrid Particle Swarm Optimiza-

tion approach (Anghinolfi et al. 2011) have been developed to provide effective solutions for the

SOP.

Comparing the SOP to the RASP reveals both similarities and differences. Similar to the RASP,

the SOP focuses on sequencing tasks under constraints. However, the SOP primarily addresses the

order of tasks without considering the possibility of splitting activities or managing resource con-

straints. In contrast, the RASP involves scheduling activities with a more complex consideration

18

of resource availability and allocation, ensuring that resource levels never fall below zero and stay

as close to zero as possible.

2.4 Research Gap

We have reviewed three relevant problems: the RCPSP, the JSSP, and the SOP. Each of these

problems has distinct characteristics that differentiate them from the RASP. The RCPSP involves

precedence constraints and uses activity preemption as a technique for better makespan, the JSSP

deals with machine constraints and predefined job sequences, and the SOP emphasizes order con-

straints without resource considerations or activity splitting. The RASP, on the other hand, focuses

on sequencing activities to manage resource effectively without precedence constraints, allowing

for activity splitting to optimize resource allocation and ensuring resource levels remain positive

and as close to zero as possible for optimal resource use.

The literature review provides insights from the RCPSP, the JSSP, and the SOP to guide the de-

velopment of efficient algorithms for RASP. Specifically, the use of greedy algorithm and their

enhancement through local search has inspired our approach. These techniques offer a promising

direction for addressing the unique challenges posed by the RASP and developing solutions for

this combinatorial problem.

19

Section 3: Problem Statement

We now present a formal description of the RASP in Section 3.1, and its mathematical model in

Section 3.2.

3.1 Problem Definition

Symbol Description

Sets

I Set of all activities
I+ Set of positive activities i ∈ I where ai > 0
I− Set of negative activities i ∈ I where ai < 0
Is Set of activities for split type s ∈ {0, 1, 2, 3}
T Set of time periods

Parameters

α1, α2, α3 Objective function weights
ai Resource amount of activity i (ai > 0 for Positive activity, ai < 0

for Negative activity)
ci Operational cost of activity i
li Length of activity i
P Maximum number of splits for si = 0
qinitial Initial amount of available resource
si Split type of activity i

Variables

qt Amount of available resource at the end of time period t
xit Proportion of activity i completed at time period t
yit Binary variable indicating whether any portion of activity i takes

place at time period t
zt Binary variable indicating whether all activities are completed by

time period t

Table 1 – Nomenclature

The nomenclature is presented in Table 1. Let I be the sets of activities, I+ and I− be the set of

activities with positive and negative resource amounts, respectively. Each activity i is associated

with the total execution amount ai, where positive activities have ai > 0, and negative ones have

ai < 0. Each activity i ∈ I also has a fixed operational cost ci for every execution, it is partial

or full. The length of this activity li is a fixed period of time required after the execution for it

20

to be fully completed. Additionally, qinitial represents the initial amount of the common resource

available at the start of the planning horizon. The amount of available resource will vary over

time with the execution of activities, reflecting available resource at the end of each time period.

Finally, each activity is assigned a single split type attribute si, which indicates how the activity

can be split. The split types are defined as follows:

— Split Type 0 (si = 0): The activity can be split up to a predefined limit of P times at any

point over the time horizon. This means the activity can be divided into up to a maximum

number of P segments, allowing flexibility in resource allocation while limiting excessive

fragmentation.

— Split Type 1 (si = 1): The activity can be split at any point without limitations (i.e.,

P = ∞), providing maximum flexibility of execution.

— Split Type 2 (si = 2): The activity can be split at any point, but the next portion must wait

for a fixed time period before execution. This fixed time period is equal to the length of the

activity li. This introduces a delay between consecutive segments, representing cases when

setup times are required between activity executions.

— Split Type 3 (si = 3): The activity cannot be split, representing activities that must be

executed fully without any splitting.

The RASP sequences the execution of all activities in I , within a time horizon T , with the primary

objective of completing all activities at the earliest possible time, referred to as the makespan.

Additionally, we minimize the total operational costs and the cumulative sum of resource remain-

ing after each time period, hierarchically in the same order. We transform the three hierarchical

objectives, f1, f2, and f3, into a single objective function to use in the mathematical model by

multiplying by sufficiently large values (α1 ≫ α2 > α3). The significant difference in these

weights ensures that the minimization of makespan is prioritized. Once the set of solutions with

the shortest makespan is found, we then optimize the second and third objectives within this subset

of solutions. The single objective is therefore α1f1 + α2f2 + α3f3.

A significant challenge in RASP is balancing the trade-off between minimizing operational costs

and optimizing resource utilization across time periods. Initially, available resource is equal to

21

the initial amount, but in subsequent periods, they are adjusted based on executed positive and

negative activities, and the incurred operational costs. Since operational costs directly affect the

calculation of available resource, optimizing resource utilization often leads to higher operational

costs, creating a trade-off. Observe that, prioritizing operational cost reduction leads to solutions

that avoid activity splitting, whereas emphasizing resource utilization favors solutions that split

activities.

3.2 Model Formulation

With the above problem description, we formulate the RASP as a Mixed-Integer Linear Program-

ming (MILP) model.

22

Minimize α1

∑
t∈T

t zt + α2

∑
i∈I

∑
t∈T

ciyit + α3

∑
t∈T

qt (1)

Subject to
∑
t∈T

xit = 1 i ∈ I (2)

∑
i∈I

t−li∑
w=0

xiw ≥ |I|zt t ∈ T (3)

∑
t∈T

zt = 1 (4)

xit ≤ yit i ∈ I, t ∈ T (5)

q0 = qinitial (6)

qt = qt−1 +
∑

i∈I+:t−li≥0

aixi,t−li +
∑
i∈I−

aixit −
∑
i∈I

ciyit t ∈ T \ {0} (7)

∑
t∈T

yit ≤ P i ∈ I0 (8)

yik + yit ≤ 1 i ∈ I2, t ∈ T, k = t+ 1, . . . ,min{t+ li − 1, |T |} (9)∑
t∈T

yit = 1 i ∈ I3, t ∈ T (10)

0 ≤ xit ≤ 1 i ∈ I, t ∈ T (11)

zt ∈ {0, 1} t ∈ T (12)

yit ∈ {0, 1} i ∈ I, t ∈ T (13)

qt ≥ 0 t ∈ T. (14)

The objective function (1) is composed of three terms, each representing one of our objectives and

each term is associated with a different alpha value to reflect their hierarchical importance. The first

term minimizes the completion time, the second term selects the solution with the least operational

costs between alternative optimal solutions, and the third term minimizes the total unused resource

at the end of the time periods. The non-negativity of variable qt ensures the resource levels are

always non-negative.

Constraints (2) ensure that all activities are completed by the end of the planning horizon. Con-

23

straints (3) and (4) calculate the completion time while including the length of activity and guaran-

tee that activities will be finished before the designated period. Constraints (5) ensure that yit = 1

when xit > 0, indicating any activity execution comes with a fixed operational cost. Constraints (6)

and (7) are the resource balance equations considering the length of the activity. In the first period,

the initial resource level is given. For subsequent periods, the available resource are calculated

based on the remaining resource level from the previous period, the resource generated by positive

activities from prior periods, the resource consumed by negative activities during the current pe-

riod, and fixed operational costs (or execution losses, as illustrated in the warehouse management

example) associated with activity execution during that period. Constraints (8) guarantee activities

in type 0 splitting scenarios can be split a maximum of P times across the time period. Constraints

(9) ensure the next portion of activities in type 2 splitting scenarios must wait for a duration of li

time periods before execution. Constraints (10) ensure activities in type 3 splitting scenarios will

not be split. Constraints (11), (12) and (13) are domain restrictions, and constraints (14) ensure

that the resource is always non-negative.

The implementation details of the mathematical model are provided in Section 5. We also created

specialized datasets, discussed in detail in Section 5, to test our model at various scales. Real-life

problems often involve a large number of activities and need to be solved within a few minutes.

However, using CPLEX for solving the MILP model, we were only able to solve small instance

sizes. Therefore, we explore metaheuristic algorithms, described in the next section, to obtain

near-optimal solutions.

24

Section 4: Solution Methods

In large-scale problem instances, the mathematical model often becomes impractical due to the

combinatorial explosion of feasible solutions. Metaheuristic methods, however, are particularly

efficient for solving problems like RASP in such scenarios, as they provide feasible solutions

within a reasonable time frame.

In this section, we describe two metaheuristics for RASP. Section 4.1 presents the first metaheuris-

tic, a greedy search algorithm. Section 4.2 introduces the second metaheuristic, a search algorithm

that enhances the greedy algorithm using a tabu search strategy. All computation results will be

presented in Section 5.

4.1 Greedy Algorithm

The greedy algorithm’s ability to produce a good initial solution quickly makes it a valuable start-

ing point for more sophisticated optimization techniques. The greedy algorithm is widely utilized

due to its simplicity and efficiency in handling resource-constrained scheduling problems. Several

studies in JSSP and RCPSP highlight the role of greedy algorithm in project scheduling, empha-

sizing their effectiveness in generating initial solutions that can be further refined by local search

or metaheuristic methods (Al Aqel et al. 2019, Hartmann & Briskorn 2022, Zhao et al. 2022).

In the greedy algorithm for solving RASP, activities are sequentially matched with time periods.

The algorithm is designed to provide a good initial solution, with the primary focus being on

optimizing the makespan by prioritizing activities based on a scoring system that reflects their

strategic importance and priority. The detailed flowchart of the greedy algorithm and its dependent

components are presented below. Table 2 represents a list of terminology and symbols used in

the flowchart, Figure 1 shows the main structure of the algorithm, Figure 2 shows the detailed

structure for positive and negative activities, and Figure 3 shows the details of handling activities

of different split types. These figures are interconnected by the node with dashed line, it indicates

that the following figure provides more detailed information about the processes described in these

nodes.

25

Start
t = 0, j = 0, m = 0,

e+ = 0, e�i = 0, w�
i = 0

qr = qinitial

Assign score
to each activity

Sort I++ and I��

in descending order

Move positive activities
in I++

(See Figure 2)

Move negative activities
in I��

(See Figure 2)

|I++| > 0
&

|I��| > 0?

End

t = t + 1

w�
i = w�

i � 1
for all i

t < |T |?

Exception
Force all activities

to be executed
fully at once

e+ = 0
j = 0
m = 0

No

Yes

No

Yes

Figure 1 – Main Structure of Greedy Algorithm

26

Symbol Description

Activity

i Single activity
i+j Selected positive activity i at position j
i−m Selected negative activity i at position m

Integer

e+ Execution counter for positive activities
e−i Execution counter for negative activity i
j Position index for positive activity
m Position index for negative activity
t Time period
w−

i Wait time for negative activity i

Set

I++ Set of remaining positive activities
I−− Set of remaining negative activities
T Set of time periods

Parameter

ai Resource amount of activity i
ci Operation cost of activity i
E+ Maximum count for positive activity execution per time period
E− Maximum number of divisions for negative activities with s = 0
L Predefined length limit
li Length of activity i
qinitial Initial amount of available resource
qr Remaining amount of available resource

Table 2 – Nomenclature for Greedy Algorithm

Figure 1 illustrates the main structure of the greedy algorithm. The algorithm begins by initializing

parameters time period t, indices for the position of positive and negative activities j and m, the

execution counter for positive activities e+, specific execution counter for each negative activity e−i ,

the waiting measure for each negative activity w−i, and the initial amount of available resource qr.

A score is then assigned to each activity based on its duration and impact on resource to determine

their priority of execution. Positive activities are sorted into set I++, and negative activities are

sorted into set I−−, both arranged in descending order of scores. The algorithm attempts to move

positive and negative activities iteratively, repeating while t < T and if any set of I++ and I−−

has any activities left to execute. At each iteration, parameters such as time period t and wait

27

Figure 2 – Execution of Positive and Negative Activities in the Greedy Algorithm

time of each negative activity w−
i will be updated, and parameters such as execution count for

positive activities e+, indices for the position of positive and negative activities j and m will be

re-initialized. Within the iteration, a mechanism for handling exceptions has been employed. The

exception occurs when activities remain in a set, whether I++ or I−−, and the maximum period

has been reached t = |T |. This may be due to excessive splitting of the current solution, leaving

insufficient resource to execute all activities. To solve this error, the algorithm has a backup plan

that mandates the full execution of all activities, ensuring that the algorithm can deliver a complete

and eligible solution.

Figure 2 shows different means of moving positive and negative activities. For each positive ac-

tivity i+j selected, the algorithm checks if there is enough resource qr to consume the operational

cost ci. If so, the activity is executed, the resource level qr is updated, and the executed activity is

removed from I++. Otherwise, the algorithm moves on to the next positive activity. In the process,

a predefined threshold E+ and the execution count e+ are used to limit the maximum number of

positive activities per period. The execution count e+ is updated after each execution, aiming to

prevent all positive activities from being executed in the first period and ensuring a relatively bal-

28

anced distribution of positive activity executions, given their impact on resource occurs in future

periods. For each negative activity i−m selected, the algorithm first checks if there are remain-

ing negative activities in I−−, and quickly follows by checking if the length li of this activity is

longer than the predefined length limit L. If the length exceeds the limit, the activity is critical and

likely to impact the project’s makespan significantly. To avoid such activities extending the total

makespan, they are forced to be executed fully as soon as possible. If the common resource qr are

sufficient to consume the operational cost ci and the full activity resource amount ai, the negative

activity is executed, the resource level qr is updated, and this activity is removed from I−−. If

not, the algorithm moves to the next time period without considering other negative activities, this

process will repeat until this one activity is executed. If the length of the activity li does not exceed

the predefined limit L, the execution process will be based on the activity’s split type, detailed in

Figure 3.

Figure 3 provides the detailed structure of how the algorithm handles each split type. In this paper,

we consider four different split types to model real-world cases. In the following, we discuss how

activities will be handled when resource is insufficient.

— Split Type 0: Split type 0 activities can be split up to a predefined maximum number

of times (In the computational study of this work, we take it as three). The threshold

E+ and execution count for each negative activity e−i are used to ensure the number of

splitting events. For the first two executions, selected activity i−m can proceed as long as

the operational cost ci is less than the remaining resource qr. If the remaining resource is

sufficient to execute the full activity resource amount ai, it will be fully executed; otherwise,

it will be partially executed. When this activity reaches its third execution, it must wait until

sufficient resource are available to execute the remaining resource amount; otherwise, it is

skipped in favor of other activities. After each execution, remaining resource qr, activity

resource amount ai, and execution count e−i are updated. Once the activity is fully executed,

it is removed from the set I−−.

— Split Type 1: Split type 1 activities have no splitting restrictions. These activities can be

executed as long as remaining resource qr is sufficient to consume the operational cost ci. If

the remaining resource is sufficient to fully execute the resource amount ai, it will be fully

29

Figure 3 – Execution of Activities by Split Type in the Greedy Algorithm

30

executed; otherwise, it will be partially executed. After each execution, remaining resource

qr and activity resource amount ai are updated. Once the activity is fully executed, it is

removed from the set I−−.

— Split Type 2: Split type 2 activities require a waiting period before the next segment is

executed. Similar to Split type 1, these activities can be fully or partially executed based

on the remaining resource qr, the operational cost ci and resource amount ai. The key

difference is the introduction of a waiting measure for each activity w−
i . When an activity

is partially executed, this value becomes the length of the activity li. At each iteration,

whether this activity is selected to test its feasibility of execution or not, the wait time will

decrease by 1, and the next segment of the activity cannot be executed until this waiting

measure is less than 1.

— Split Type 3: Split type 3 activities cannot be split. They can only be fully executed when

the remaining resource is sufficient for both the operational cost ci and resource amount ai.

Once executed, remaining resource qr is updated, and the activity is removed from the set

I−−.

By using this greedy algorithm as a foundation, the subsequent local search algorithm can leverage

the initial solution to explore the solution space more effectively, thereby improving the overall

optimization.

4.2 Tabu Search Algorithm

Building upon the initial solution provided by the greedy algorithm, a tabu search algorithm is

developed to further enhance solution quality by optimizing the second objective concerning the

sum of operational costs and the third objective about unused common resource for each time

period. The tabu search algorithm iteratively explores the neighborhood of the current solution,

adjusting activity schedules within the solution space and validating the feasibility of each move.

Each move is evaluated, and the best solution is selected after all iterations. To avoid repetition

of recent moves, a tabu list is used to prevent revisiting recently moved activities or paths. The

process continues until the stopping criterion, such as the maximum number of iterations, is met.

31

During the construction of the tabu search, several key strategy choices that could significantly

impact optimization results were proposed. The details are presented in Table 3.

Option 1 Option 2
Selection Criteria A: All activities of time

period & Move one activity
at a time

B: Batch of activities of time
period & Move entire batch

at once
Activity Candidates A1: Mix of positive and

negative activities
A2: Only positive or only

negative activities
Activity Treatment B1: Move all activities to one

new time period t′
B2: Move positive activities
to time period (t′ - activity

length)
Solution Acceptance C1: Accept if the move is

feasible and the new solution
s′ is better than the current

solution s

C2: Accept if the move is
feasible

Table 3 – Categories of Tabu Search Strategies

The selection criteria focus on how to choose and move activities. We can either select all ac-

tivities of one time period and iteratively move one activity at a time to a neighboring period for

incremental improvement, or select a batch of activities from a time period and move the whole

group simultaneously for collective improvement. The activity candidates determine what type

of activities are selected, further refining the selection process. We can either consider a mix of

positive and negative activities or focus on moving one type of activity. The activity treatment

involves deciding where to move the selected activities. Since positive activities and negative ac-

tivities impact resource at different time periods, we must decide whether to move all activities to

the selected neighboring time period or move positive activities before the selected neighboring

time period based on their length li, ensuring their settlement date coincides with the time period

when negative activities will consume resource. Finally, solution acceptance specifies how to ac-

cept the new solution. We can either accept feasible and better solutions during iterations or accept

all feasible solutions to overcome local optima.

Each category offers two distinct options, resulting in 16 possible combinations to fine-tune the

search process. For easier representation, each option is coded as: A (for all)/B (for batch) -

A1/A2 - B1/B2 - C1/C2. For example, a scenario that selects a batch of activities and moves the

32

entire batch to a neighboring time period, considers a mix of positive and negative activities as

candidates to move, moves all of them to the selected neighboring time period, and accepts the

move if it is feasible and better than the current solution would be coded as B-A1-B1-C1. This

approach aims to identify the optimal combination for our tabu search and highlight the criteria

with the most significant impact on optimization results.

Symbol Description

Activity

ib Selected activity i at position b

Integer

b Position index for activity
n Current iteration
t Time period
t′ Neighborhood time period

Set

I∗ Set of selected activities

State

s Current solution schedule
s′ New solution after relocation

Parameter

N Stopping criteria for iteration

Table 4 – Nomenclature for Tabu Search Algorithm

Table 4 represents the terminology and symbols used in the flowchart of the tabu search algorithm,

and the structure of the tabu search algorithm is illustrated in Figure 4.

The algorithm is primarily divided into two distinct branches based on the first strategy category:

selection criteria. With different ways to select activities and move them, the construction of the

tabu list is different.

For the common part, the algorithm always begins by taking the initial solution s and randomly se-

lecting a time period t with activities to start. Activities from this period are considered candidates

for potential relocation to explore better arrangements. After deciding how to select candidate ac-

tivities and move them (A or B), and the type of activities considered (A1 or A2), both branches

33

Start
n = 0, s

Random t with activities

A B

A1 or A2

t0 = 0, b = 0

t = t0? t0 = t0 + 1

b = b + 1

Move ib from t to t0

B1 or B2

Calculate s0 score

C1 or C2

Add s0 to
candidate solution list

|I⇤| > 0?

t0 <
(|T | � 1)?

Select the best
solution s0 at t0

s = s0

Update tabu list
(from t to optimal t0)

t0 = t0 + 1

t0 on
tabu list?

n = n + 1

A1 or A2

Any ib on
tabu list?

t0 = 0

t = t0? t0 = t0 + 1

Move all ib in
I⇤ from t to t0

B1 or B2

Calculate s0 score

C1 or C2

Add s0 to
candidate solution list

t0 <
(|T | � 1)?

Select the best
solution s0 at t0

s = s0

Update tabu
list (List of I⇤)

n < N?

End

Yes

No

No

Yes

Yes

No

No

Yes

No

No

No

No

Yes

Yes

Yes

Yes

Figure 4 – Tabu Search Algorithm

34

will select a neighboring time period t′ and move candidate activities to that time period. Before

the moving process, the algorithm verifies whether the neighboring time period t′ is the same as the

original time period t. If so, a new neighboring time period is selected. When moving activities,

we then need to decide how to treat different types of activities (B1 or B2). After moving activities,

both branches go through the evaluation process by calculating the score of the new solution, com-

paring it with the current solution, and determining whether to accept the potential solution s′ (C1

or C2). The new solution is added to the candidate solution list. After testing one neighboring time

period, the algorithm continues to move activities to all other neighboring time periods, providing

a list of improved solutions. The best solution out of all candidate solutions is selected as the new

solution for the next iteration. The tabu list is updated accordingly, and this process repeats until

the stopping criteria are met.

The main difference between the two branches focuses on the tabu list integration. Both branches

uses a "First-in First-out" strategy for managing the tabu tenure and criteria for lifting restrictions

in order to balance exploration and exploitation. However, when we select all activities of one time

period and move them, the tabu list bans the path (fromDay, toDay) from one time period to the

other. If fromDay = t and toDay = t′ is on the tabu list, this neighboring time period is skipped.

When we select a batch of activities to move, the tabu list bans the batch of selected activities I∗,

preventing those activities from being selected for following time periods until they are no longer

on the list.

Overall, the tabu search-based algorithm represents a sophisticated way to further optimize so-

lutions obtained from the greedy algorithm for RASP. Through strategic activity movements and

an iterative refinement process, the algorithm demonstrates its capability in finding high-quality

solutions. This approach not only optimizes the secondary objectives but also establishes a robust

solution strategy for RASP, setting a benchmark for future research.

35

Section 5: Computational Experiments

We tested the effectiveness of the mathematical model and the metaheuristic algorithms using var-

ious instance. All computations were performed on a personal computer with an Intel(R) Xeon(R)

Silver 4216 CPU (32 cores) and 128 GB of memory to ensure consistent performance. The al-

gorithms were coded in a C# development environment on Windows, specifically using Visual

Studio 2022 and .NET 7.0. The CPLEX 22.1.0 optimization package was used for constructing

and executing the mathematical model.

This section is organized into three subsections. Section 5.1 describes the datasets created for

RASP. Section 5.2 details the comparison framework for different algorithms. Section 5.3 presents

the computational results for both the mathematical model and the metaheuristic algorithms, along

with their comparison.

5.1 Dataset Used

As RASP is a new problem, there are no existing benchmarks in the literature. We therefore create a

series of datasets specifically designed to simulate varying complexities and scales of the problem.

These datasets are used to assess the efficiency and effectiveness of the proposed algorithms.

The series of data is structured to represent a wide range of problem sizes, with activity counts

of 10, 20, 50, and 100, labeled as SET10, SET20, SET50, and SET100, respectively. It

is designed to simulate different problem scales. For each problem size, 40 distinct instances

in JSON format were created, each corresponding to a scheduling scenario. Each instance is

designated by a filename following the pattern RASP-[Size]-[Id]-[PositiveRatio]-[NegativeRatio]-

[SplitRatio].json, indicating the instance size, a unique identifier, the proportion of positive and

negative activities, and the percentage of activities that can be split.

Each JSON file comprises global attributes that quantify and qualify the characteristics of the

instance. These include initial resource amounts, total value of positive and negative resource

activities, theoretical end values, and minimal execution costs. An integral part of the instance is

the "NbActivities" attribute, denoting the count of activities within the instance.

36

The detailed attributes of each activity in the file include:

— Id: A unique identifier for the activity.

— Name: A descriptive name for the activity.

— Length: The duration of the activity.

— ActType: An indicator of whether the activity decreases (coded as 1) or increases (coded

as 2) the available resource.

— ResourceAmount: The quantity of the resource implicated in the activity.

— IsSplittable: A boolean variable indicating the divisibility of the activity (false if it cannot

be split, and true if it can be split).

— SplitInfo: An integer (0, 1, 2, or 3) detailing the splitting behavior where 0 allows up to

a maximum number of splits, 1 denotes unlimited splits at any point, 2 requires waiting

periods between the execution of each segment, and 3 specifies that the activity cannot be

split.

— ExecutionCost: The fixed cost associated with the activity when executing.

The dataset is designed to model varying conditions in a controlled experimental setup. The ratio of

positive to negative activities is defined as 20/80, 40/60, 60/40, or 80/20, while the ratio of divisible

activities is given as 0%, 25%, 50%, 75%, or 100%. Each series progresses through these ratios

systematically, ensuring a comprehensive exploration of potential scenarios. For instance, the first

instance of a series named RASP-Size-Idxac-20-80-0.json would have 20% positive activities and

80% negative activities, with 0% of activities being splittable. The next instance instance RASP-

Size-Id-40-60-25.json would have 40% positive activities and 60% negative activities, with 25%

of activities being splittable, and so on. To generate all possibilities, there must be a total of 4 ×
5 instances, giving 20 combinations. The number of instances generated per series is set at 40,

providing two examples of each possible combination. This comprehensive approach allows for

robust testing and validation of the developed algorithms.

37

5.2 Comparison Framework

To evaluate the performance of our proposed algorithms for RASP, we established a systematic

comparison framework. This framework assesses the algorithms based on three hierarchical ob-

jectives: minimizing the makespan, minimizing operational costs, and minimizing unused resource

at the end of each time period.

First, we focus on the primary objective of minimizing the makespan, we compare the makespan

obtained by our metaheuristic algorithms with the optimal makespan with small instances where

the mathematical model can be solved. We count the number of instances where the metaheuris-

tic achieves the same makespan as the mathematical model. For instances where the metaheuristic

does not achieve the optimal makespan, we calculate the percentage gap between the metaheuristic

and the optimal makespan to understand the efficiency of the metaheuristic algorithms in approxi-

mating the optimal solution.

Next, for the secondary objective of minimizing operational costs, we focus on instances where

the metaheuristic achieves the same makespan as the optimal solution. Among these instances,

we compare the operational costs. For instances with matching makespans but differing opera-

tional costs, we calculate the percentage gap in operational costs between the metaheuristic and

the optimal solutions in order to evaluate the cost efficiency of proposed metaheuristic algorithms.

Finally, we assess the third objective of minimizing unused resource by considering instances that

have matching makespan and operational cost with the optimal solution. For instances with match-

ing makespan and operational costs but differing unused resource, we calculate the percentage gap

in unused resource to assess the effectiveness of the algorithms in resource management.

For larger instances where the optimal solution is unavailable, we compare the performance of

the algorithms to a baseline metaheuristic algorithm. In this evaluation, we primarily focus on

the makespan objective, given its critical importance in RASP. We assess the number of instances

where the proposed metaheuristic algorithms improve upon the baseline greedy algorithm and

calculate the average improvement in makespan for these instances to evaluate the overall effec-

tiveness of the metaheuristics.

38

This hierarchical comparison framework allows us to systematically evaluate the performance of

our algorithms in solving RASP, ensuring a comprehensive understanding of their strengths and

limitations across different problem sizes and objectives.

Section 5.3 presents a detailed comparison of the mathematical model and metaheuristic algorithms

based on this comparison framework.

5.3 Results

To illustrate the computational complexity and effectiveness of various approaches for solving

RASP, we conducted experiments on designed datasets with different problem sizes. A coefficient

setting of 10000-500-1 was determined for each objective to run the mathematical model, and all

metaheuristic algorithms were run 25 times on each instance, each time within a time limit of 15

seconds, to ensure a robust comparison. The results are divided into computations for both the

mathematical model and the metaheuristic algorithms.

Set Min (sec) Max (sec) Average (sec)
SET10 0.1 90.6 3.4
SET20 1.3 392743.5 20230.6

Table 5 – Execution Time of MILP Model with CPLEX

Table 5 shows the execution time of the MILP model with CPLEX. It quickly revealed the NP-

hard nature of RASP with the significant computational resource required and the rapid increase in

solution times with larger problem sizes. When the problem size increased from 10 to 20 activities,

computation time increased dramatically from a few seconds to over 5.6 hours on average. This

exponential growth in computation time, which could extend to days for even larger instances,

highlighted the limitations of the mathematical model for practical application on a larger scale.

Consequently, this confirmed the necessity of metaheuristic methods for efficient problem-solving.

Due to these computational challenges, the MILP model was tested only on instances with 10 and

20 activities and used for comparison at these sizes. For larger instances, the greedy algorithm

served as the baseline for practical feasibility in comparisons.

Tables 6, 7, and 8 compare the mathematical model with the greedy algorithm and 16 variations

39

of the tabu search algorithm based on the greedy approach for small instances with 10 and 20

activities. The comparisons focus on the objectives of makespan, operational costs, and unused

resource, respectively. In the first subtable, we count the number of instances that achieved the op-

timal value in each dataset. In the second subtable, we calculate the performance gap for instances

with sub-optimal values for each dataset, using the total number of instances as the base, along with

an overall average gap across different dataset sizes. Additionally, Table 9 presents the results for

larger instances with 50 and 100 activities, using the greedy algorithm as the baseline, comparing

it with the 16 variations of the greedy-based tabu search algorithm, with a focus on the makespan

objective. For each method, we evaluate the number of instances the method has improved the

makespan objective compared to the greedy algorithm, along with an average improvement based

on those improved instances.

Set Optimal Value Found Sub-optimal Value Found
SET10 38 / 40 (95%) 2 / 40 (5%)
SET20 30 / 40 (75%) 10 / 40 (25%)

Average 34 (85%) 6 (15%)

Method SET10 (%) SET20 (%) Average (%)
Greedy 0.90 1.56 1.23

A - A1 - B1 - C1 0.71 1.51 1.11
A - A1 - B1 - C2 0.53 1.40 0.96
A - A2 - B1 - C1 0.77 1.52 1.14
A - A2 - B1 - C2 0.55 1.53 1.04
A - A1 - B2 - C1 0.71 1.55 1.13
A - A1 - B2 - C2 0.46 1.39 0.93
A - A2 - B2 - C1 0.76 1.54 1.15
A - A2 - B2 - C2 0.62 1.53 1.08
B - A1 - B1 - C1 0.71 1.50 1.11
B - A1 - B1 - C2 0.76 1.52 1.14
B - A2 - B1 - C1 0.69 1.53 1.11
B - A2 - B1 - C2 0.78 1.50 1.14
B - A1 - B2 - C1 0.70 1.49 1.10
B - A1 - B2 - C2 0.73 1.53 1.13
B - A2 - B2 - C1 0.74 1.51 1.12
B - A2 - B2 - C2 0.83 1.55 1.19

Table 6 – Gap Analysis on Objective 1 for Small Instances (Cases Differing on Objective 1)

Table 6 presents the results focusing on the first objective, minimizing the makespan. Among

40

the 80 evaluated instances with 10 or 20 activities, the greedy algorithm achieved the optimal

makespan in 85% of cases on average, demonstrating the general efficiency of our metaheuristic

in achieving the optimal makespan. For the remaining cases that don’t have the same makespan,

the greedy algorithm maintained an average gap of 1.23% from the optimal value. The tabu search

algorithm based on this greedy approach further reduced this gap. Among all variations, the com-

bination A-A1-B2-C2 is particularly good, reducing the gap to as low as 0.93% on average, and

it has the lowest gap for both instances with 10 activities (0.46%) and instances with 20 activities

(1.39%).

Set Optimal Value Found Sub-optimal Value Found
SET10 7 / 38 (18.42%) 31 / 38 (81.58%)
SET20 4 / 30 (13.33%) 26 / 30 (86.67%)

Average 5.5 (15.875%) 28.5 (84.125%)

Method SET10 (%) SET20 (%) Average (%)
Greedy 12.26 10.87 11.57

A - A1 - B1 - C1 6.13 3.80 4.97
A - A1 - B1 - C2 9.25 6.44 7.84
A - A2 - B1 - C1 5.84 3.82 4.83
A - A2 - B1 - C2 9.03 6.74 7.89
A - A1 - B2 - C1 5.85 3.85 4.85
A - A1 - B2 - C2 7.90 5.00 6.45
A - A2 - B2 - C1 5.79 3.80 4.80
A - A2 - B2 - C2 7.90 5.45 6.67
B - A1 - B1 - C1 5.88 4.26 5.07
B - A1 - B1 - C2 9.29 7.21 8.25
B - A2 - B1 - C1 5.99 4.25 5.12
B - A2 - B1 - C2 9.18 6.59 7.89
B - A1 - B2 - C1 5.87 4.11 5.00
B - A1 - B2 - C2 8.67 6.12 7.39
B - A2 - B2 - C1 5.97 4.28 5.12
B - A2 - B2 - C2 8.75 6.21 7.48

Table 7 – Gap Analysis on Objective 2 for Small Instances (Cases Matching on Objective 1, Dif-
fering on Objective 2)

Table 7 shows the results for instances with the same makespan, focusing on the second objec-

tive, operational costs. On average, 15.875% of cases achieved the optimal value with the greedy

algorithm. For cases with the same makespan but differing operational costs, the greedy algo-

rithm maintained a small gap of 11.57%. The tabu search algorithm further significantly narrowed

41

this gap down, especially for A-A2-B2-C1, which reduced it to as low as 4.80%, underlining the

ability of proposed metaheuristic to refine solutions for the second objective while maintaining

performance for the first.

Set Optimal Value Found Sub-optimal Value Found
SET10 1 / 7 (14.29%) 6 / 7 (85.71%)
SET20 0 / 4 (0%) 4 / 4 (100%)

Average 0.5 (7.145%) 5 (92.855%)

Method SET10 (%) SET20 (%) Average (%)
Greedy 352.86 5269.12 2810.99

A - A1 - B1 - C1 95.60 3807.06 1951.33
A - A1 - B1 - C2 199.36 2613.42 1406.39
A - A2 - B1 - C1 38.85 3883.56 1961.21
A - A2 - B1 - C2 141.02 2979.84 1560.43
A - A1 - B2 - C1 50.49 3795.92 1923.21
A - A1 - B2 - C2 163.69 2276.09 1219.89
A - A2 - B2 - C1 49.53 3897.58 1973.55
A - A2 - B2 - C2 115.98 3077.44 1596.71
B - A1 - B1 - C1 143.00 3929.90 2036.45
B - A1 - B1 - C2 225.31 4819.78 2522.55
B - A2 - B1 - C1 143.00 3946.55 2044.78
B - A2 - B1 - C2 264.02 4369.91 2316.97
B - A1 - B2 - C1 128.75 3856.24 1992.50
B - A1 - B2 - C2 192.41 4478.21 2335.31
B - A2 - B2 - C1 128.24 3843.08 1985.66
B - A2 - B2 - C2 240.25 3801.55 2020.99

Table 8 – Gap Analysis on Objective 3 for Small Instances (Cases Matching on Objectives 1 & 2,
Differing on Objective 3)

Table 8 concentrates on cases with the same first two objectives but differing on the third, which

is about minimizing unused resource at the end of each time period. The greedy algorithm found

an optimal solution in some instances with 10 activities. For cases with differing unused resource,

the greedy algorithm showed a relative large gap for this objective, maintaining a performance gap

of 2810.99% on average with the optimal value. The tabu search algorithm significantly reduced

this gap, with A-A1-B2-C2 reducing it to as low as 1219.89%. However, this combination does

not provide the best result in all instance sizes. For instances with 10 activities, combinations such

as A-A2-B1-C1 minimized the gap to as low as 38.85%, whereas A-A1-B2-C2 gave 163.69%.

This shows that our proposed algorithm can significantly reduce the gap in unused resource, even

42

though the tabu search algorithm focus less on this objective, demonstrating the efficiency of our

algorithm.

The considerable difference in gaps for the third objective can be attributed to several factors.

First, due to the comparison metrics we used, relatively fewer qualified instances were considered

in the gap analysis for the third objective. Second, this highlights the trade-off between operational

costs and resource management. Minimizing costs often results in an increase in unused resource

at the end of each time period. Most importantly, one of the limitations of our algorithms is the

lack of incorporation of the postponement effect of positive activities on the common resource. The

greedy algorithm aims to complete all activities as quickly as possible, and it lacks clear restrictions

on common resource for positive activities, unlike for negative activities. This often results in

most positive activities being executed at the beginning. Although we set a maximum count for

positive activity execution per time period E+ to address this, it is not optimal. For example, in

the optimal solution obtained from the mathematical model, certain positive activities with short

length are executed towards the end of the planning horizon to minimize unused resource over time.

Furthermore, our tabu search algorithm cannot improve upon the results of the greedy algorithm,

as it moves activities from one time period to a neighboring time period for improvement. During

this process, any move is rejected if the unused resource in any time period drop below zero.

Therefore, moving only positive activities without moving the corresponding negative activities

may not be feasible, as negative activities require resource consumption during that period. To

address this gap in future research, we need to incorporate the postponement effect of positive

activities into the algorithms, either by generating a better initial solution or by developing a local

search algorithm that moves activities across multiple time periods simultaneously.

Table 9 assesses the performance of the first objective, makespan, of our algorithms on larger

instances of 50 and 100 activities. Compared with the greedy algorithm as the baseline, all varia-

tions of tabu search are able to further improve the makespan in several instances. Among them,

A-A1-B2-C2 improves in the most instances, with 4 instances in activities of 50 and 6 instances

in activities of 100, achieving an average improvement of 2.68% over the greedy algorithm. This

confirms the effectiveness of our tabu search algorithm in handling larger and more complex sce-

narios.

43

Method SET50 SET100 Average
Imp.

Inst.∗ (/40)
% # Imp.

Inst.∗ (/40)
% # Imp.

Inst.∗ (/40)
%

A - A1 - B1 - C1 2 0.44 0 0.00 1 0.22
A - A1 - B1 - C2 4 3.93 5 2.32 4.5 3.12
A - A2 - B1 - C1 1 1.22 0 0.00 0.5 0.61
A - A2 - B1 - C2 5 1.71 2 2.13 3.5 1.92
A - A1 - B2 - C1 1 1.22 0 0.00 0.5 0.61
A - A1 - B2 - C2 4 3.95 6 1.41 5 2.68
A - A2 - B2 - C1 1 0.87 0 0.00 0.5 0.43
A - A2 - B2 - C2 1 0.24 0 0.00 0.5 0.12
B - A1 - B1 - C1 1 1.22 0 0.00 0.5 0.61
B - A1 - B1 - C2 5 0.84 1 2.84 3 1.84
B - A2 - B1 - C1 1 0.70 0 0.00 0.5 0.35
B - A2 - B1 - C2 3 0.66 2 1.55 2.5 1.10
B - A1 - B2 - C1 1 1.04 0 0.00 0.5 0.52
B - A1 - B2 - C2 3 0.34 1 0.65 2 0.49
B - A2 - B2 - C1 1 0.52 0 0.00 0.5 0.26
B - A2 - B2 - C2 2 0.35 1 0.39 1.5 0.37

∗ Number of improved instances

Table 9 – Gap Analysis on Objective 1 for Large Instances (Cases Differing on Objective 1)

Overall, several strategy combinations have been highlighted in the comparison process, but no

single strategy combination of the tabu search algorithm globally dominates all others. However,

the most effective tabu search algorithm overall is A-A1-B2-C2. This strategy involves considering

all positive and negative activities of a time period as candidates for movement and moving one

activity at a time to a neighboring time period for optimization. Specifically, positive activities are

moved before the period where resource is consumed by negative activities, ensuring synchroniza-

tion of resource impacts. Additionally, we adopted the strategy of accepting all feasible solutions

to enhance solution exploration.

This combination of strategies demonstrated superior performance in the comparison of the first

and third objectives and showed the most improvement in the first objective on average for large

instances. Although this combination slightly underperformed in the comparison of the second

objective (7.73% vs. 5.74% for the best-performing strategy), the difference is minimal. Consid-

ering the trade-off of multi-objectives, this strategy combination is the most balanced out of all

other variations, and the small underperformance on the second objective does not detract from its

44

overall high performance compared to other strategies.

Through the comparison process, we were also able to identify and analyze the effects of each

strategy in the tabu search algorithm:

— Selection Criteria (Option A vs. B): Selecting all activities and moving one activity at a

time to a neighboring time period for incremental improvement (Option A) proved superior

to selecting a batch of activities and moving the entire batch together (Option B). All best

and near-best values were found using the first option. Only certain combinations involving

the batch selection approach reached similar levels of results.

— Activity Candidates (Option A1 vs. A2): The decision to move a mix of positive and

negative activities (Option A1) or only one type of activity (Option A2) did not yield clear

insights into its effect, indicating it is the element that influences the result the least.

— Activity Treatment (Option B1 vs. B2): Moving positive activities to periods before the

periods when negative activities consume resource (Option B2) provided slight improve-

ments in the gap with the optimal solution for all objectives compared to moving positive

and negative activities to the same time period in the process (Option B1).

— Solution Acceptance (Option C1 vs. C2): Accepting feasible but not necessarily better

solutions during iterations (Option C2) significantly impacted the results. This strategy

helped further minimize the critical objective of makespan compared to the other option,

showing its capacity to overcome local optima. However, accepting only feasible and better

solutions (Option C1) greatly reduced the gap for the second objective concerning opera-

tional costs.

Overall, the strategies for selection criteria and solution acceptance had the most significant influ-

ence on the results, followed by activity treatment, and the selection of activity candidates had the

least impact. These findings provide valuable direction for future improvements of the tabu search

algorithm.

45

Section 6: Conclusion

This paper has introduced the Resource-Constrained Activity Sequencing Problem (RASP), a com-

binatorial optimization problem focusing on sequencing activities within a planning horizon while

managing a common resource. The problem has three hierarchical objectives (1) to minimize the

makespan, (2) to minimize operational costs, and (3) to reduce unused resource at the end of each

time period. We have presented a formulation of the RASP as a mixed-integer linear program,

combining all three hierarchical objectives into the objective function as a weighted sum. How-

ever, the computational experiments on small instances have highlighted the need for metaheuristic

approaches to handle larger problem sizes effectively.

To this end, we have developed a greedy algorithm and a tabu search algorithm. These methods

have generated near-optimal solutions for the RASP in terms of the first two objectives and have

significantly improved solution times for large instances. We have tested various setting of the tabu

search algorithm. Our computational experiments have demonstrated that the best-performing set-

ting of tabu search algorithm is the A-A1-B2-C2 strategy, performed well in solving the RASP.

This strategy considers all positive and negative activities of a time period as candidates for move-

ment, moving one activity at a time to a neighboring time period. Positive activities are moved

before the selected neighboring time period to ensure synchronization of the resource impacts of

different types of activities. Additionally, feasible but non improving solutions are accepted during

the process to overcome the local optima. Through extensive computational experiments, we have

demonstrated the scalability of our proposed algorithms. The tabu search algorithm have found

the optimal makespan in more than 85% of the small instance, and the algorithm has yielded an

average gap of 0.93%. For large instances, the tabu search algorithm has improved the makespan

obtained from the greedy algorithm by 2.68%. Our analysis of each strategy within the tabu search

algorithm also highlighted the importance of selecting appropriate candidates for movement, the

method of moving them, and the strategy for accepting new solutions during the search process.

The models and methods covered in this paper also has limitations. The MILP model is computa-

tionally challenging for large instances, resulting in a lack of results for systematically evaluating

the performance of metaheuristic algorithms on instances with more than 20 activities, which are

46

closer to real-life case sizes. For the metaheuristic algorithms, an important issue is incorporating

the postponement effect of positive activities while balancing the trade-off in the multi-objective

problem between resource management and operational costs. Although our metaheuristics per-

form well, there remains a gap between the solutions produced and the optimal solution, particu-

larly regarding the third objective of minimizing unused resource over time periods.

Our future research will focus on improving algorithms to minimize unused resource by incorpo-

rating the postponement effect of positive activities, thereby achieving a better balance between

operational costs and resource management. Additionally, we plan to explore other metaheuris-

tic approaches, such as genetic algorithm-based local search strategies, to address the limitations

identified in our current methods. This will help us find more efficient solutions and further close

the gap with optimal solutions.

47

Chapitre 3: Conclusion

Ce mémoire a introduit le problème de séquencement d’activités avec contraintes de ressource

(RASP), un problème d’optimisation combinatoire qui se concentre sur le séquencement des activ-

ités dans un horizon de planification tout en gérant une ressource commune. Le problème a trois

objectifs hiérarchiques : (1) minimiser la durée totale d’exécution des activités, (2) minimiser les

coûts opérationnels, et (3) réduire la ressource inutilisée à la fin de chaque période. Nous avons

présenté une formulation du RASP sous la forme d’un programme linéaire en nombres entiers

mixtes, combinant les trois objectifs hiérarchiques dans la fonction objective en tant que somme

pondérée. Cependant, les expériences computationnelles sur des petites instances ont mis en év-

idence la nécessité d’approches métaheuristiques pour traiter efficacement des problèmes de plus

grande taille.

À cette fin, nous avons développé un algorithme glouton et un algorithme de recherche taboue. Ces

méthodes ont généré des solutions quasi-optimales pour le RASP en termes des deux premiers ob-

jectifs et ont considérablement amélioré les temps de résolution pour les grandes instances. Nous

avons testé différents paramètres de l’algorithme de recherche taboue. Nos expériences compu-

tationnelles ont démontré que la combinaison de paramètres la plus performante de l’algorithme

de recherche taboue est la stratégie A-A1-B2-C2, qui a donné de bons résultats dans la résolution

du RASP. Cette stratégie considère toutes les activités positives et négatives d’une période comme

candidates au déplacement, en déplaçant une activité à la fois vers une période voisine. Les activ-

ités positives sont déplacées avant la période voisine sélectionnée pour assurer la synchronisation

des impacts de la ressource des différents types d’activités. De plus, les solutions faisables mais

non améliorantes sont acceptées pendant le processus pour surmonter les optima locaux. Grâce à

des expériences computationnelles approfondies, nous avons démontré l’évolutivité de nos algo-

rithmes proposés. L’algorithme de recherche taboue a trouvé la durée optimale dans plus de 85%

des petites instances, et l’algorithme a produit un écart moyen de 0.93%. Pour les grandes in-

stances, l’algorithme de recherche taboue a amélioré la durée obtenue par l’algorithme glouton de

2.68%. Notre analyse de chaque stratégie au sein de l’algorithme de recherche taboue a également

mis en évidence l’importance de sélectionner des candidats appropriés pour le déplacement, la

48

méthode de déplacement et la stratégie d’acceptation des nouvelles solutions pendant le processus

de recherche.

Les modèles et méthodes couverts dans ce mémoire ont également des limitations. Le modèle

MILP est computationnellement difficile pour les grandes instances, ce qui entraîne un manque de

résultats pour évaluer systématiquement la performance des algorithmes métaheuristiques sur des

instances de plus de 20 activités, qui sont plus proches des tailles de cas réels. Pour les algorithmes

métaheuristiques, un problème important est d’incorporer l’effet de report des activités positives

tout en équilibrant le compromis dans le problème multi-objectif entre la gestion de la ressource

et les coûts opérationnels. Bien que nos métaheuristiques fonctionnent bien, il subsiste un écart

entre les solutions produites et la solution optimale, en particulier en ce qui concerne le troisième

objectif qui consiste à minimiser la ressource inutilisée au fil du temps.

Nos futures recherches se concentreront sur l’amélioration des algorithmes pour minimiser la

ressource inutilisée en intégrant l’effet de report des activités positives, afin d’atteindre un meilleur

équilibre entre les coûts opérationnels et la gestion de la ressource. De plus, nous prévoyons

d’explorer d’autres approches métaheuristiques, telles que les stratégies de recherche locale basées

sur des algorithmes génétiques, pour répondre aux limitations identifiées dans nos méthodes actuelles.

Cela nous aidera à trouver des solutions plus efficaces et à réduire davantage l’écart avec les solu-

tions optimales.

49

Bibliography

Agarwal, A., Colak, S., & Erenguc, S. (2011). A neurogenetic approach for the resource-constrained project

scheduling problem. Computers & Operations Research, 38(1), 44−50.

Al Aqel, G., Li, X., & Gao, L. (2019). A modified iterated greedy algorithm for flexible job shop scheduling

problem. Chinese Journal of Mechanical Engineering, 32(1).

Amjad, M. K., Butt, S. I., Kousar, R., Ahmad, R., Agha, M. H., Faping, Z., . . . Asgher, U. (2018). Re-

cent research trends in genetic algorithm based flexible job shop scheduling problems. Mathematical

Problems in Engineering, 2018(1), 9270802.

Anghinolfi, D., Montemanni, R., Paolucci, M., & Maria Gambardella, L. (2011). A hybrid particle swarm

optimization approach for the sequential ordering problem. Computers & Operations Research, 38(7),

1076−1085.

Asadzadeh, L. (2015). A local search genetic algorithm for the job shop scheduling problem with intelligent

agents. Computers & Industrial Engineering, 85, 376−383.

Bouleimen, K., & Lecocq, H. (2003). A new efficient simulated annealing algorithm for the resource-

constrained project scheduling problem and its multiple mode version. European Journal of Opera-

tional Research, 149(2), 268−281.

Chen, R., Yang, B., Li, S., & Wang, S. (2020). A self-learning genetic algorithm based on reinforcement

learning for flexible job-shop scheduling problem. Computers & Industrial Engineering, 149, 106778.

Cheng, J., Fowler, J., Kempf, K., & Mason, S. (2015). Multi-mode resource-constrained project scheduling

problems with non-preemptive activity splitting. Computers & Operations Research, 53, 275−287.

Cho, J.-H., & Kim, Y.-D. (1997). A simulated annealing algorithm for resource constrained project schedul-

ing problems. Journal of the Operational Research Society, 48(7), 736−744.

De Reyck, B., & Herroelen, W. (1998). A branch-and-bound procedure for the resource-constrained project

scheduling problem with generalized precedence relations. European Journal of Operational Re-

search, 111(1), 152−174.

Escudero, L. (1988). An inexact algorithm for the sequential ordering problem. European Journal of

Operational Research, 37(2), 236−249.

Gambardella, L. M., & Dorigo, M. (2000). An ant colony system hybridized with a new local search for the

sequential ordering problem. INFORMS Journal on Computing, 12(3), 237−255.

50

Hartmann, S., & Briskorn, D. (2022). An updated survey of variants and extensions of the resource-

constrained project scheduling problem. European Journal of Operational Research, 297(1), 1−14.

Jamal, J., Shobaki, G., Papapanagiotou, V., Gambardella, L., & Montemanni, R. (2017). Solving the

sequential ordering problem using branch and bound. 2017 IEEE Symposium Series on Computational

Intelligence (SSCI), 1−9.

Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times included. Naval

Research Logistics Quarterly, 1(1), 61−68.

Józefowska, J., Mika, M., Różycki, R., Waligóra, G., & Węglarz, J. (2001). Simulated annealing for

multi-mode resource-constrained project scheduling. Annals of Operations Research, 102, 137−155.

Kundakcı, N., & Kulak, O. (2016). Hybrid genetic algorithms for minimizing makespan in dynamic job

shop scheduling problem. Computers & Industrial Engineering, 96, 31−51.

Lenstra, J., Rinnooy Kan, A., & Brucker, P. (1977). Complexity of machine scheduling problems. Studies

in Integer Programming, 1, 343−362.

Li, X., & Gao, L. (2016). An effective hybrid genetic algorithm and tabu search for flexible job shop

scheduling problem. International Journal of Production Economics, 174, 93−110.

Lin, J., Zhu, L., & Gao, K. (2020). A genetic programming hyper-heuristic approach for the multi-skill

resource constrained project scheduling problem. Expert Systems with Applications, 140, 112915.

Luo, J., Vanhoucke, M., Coelho, J., & Guo, W. (2022). An efficient genetic programming approach to design

priority rules for resource-constrained project scheduling problem. Expert Systems with Applications,

198, 116753.

Montoya, C., Bellenguez-Morineau, O., Pinson, E., & Rivreau, D. (2014). Branch-and-price approach for

the multi-skill project scheduling problem. Optimization Letters, 8, 1721−1734.

Pellerin, R., Perrier, N., & Berthaut, F. (2020). A survey of hybrid metaheuristics for the resource-

constrained project scheduling problem. European Journal of Operational Research, 280(2),

395−416.

Phuntsho, T., & Gonsalves, T. (2023). Maximizing the net present value of resource-constrained project

scheduling problems using recurrent neural network with genetic algorithm. 2023 International Con-

ference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT), 524−530.

Pritsker, A. A. B., Waiters, L. J., & Wolfe, P. M. (1969). Multiproject scheduling with limited resources: A

zero-one programming approach. Management Science, 16(1), 93−108.

51

Shirzadeh Chaleshtarti, A., & Shadrokh, S. (2014). A branch and cut algorithm for resource-constrained

project scheduling problem subject to nonrenewable resources with pre-scheduled procurement. Ara-

bian Journal for Science and Engineering, 39, 8359−8369.

Skinderowicz, R. (2017). An improved ant colony system for the sequential ordering problem. Computers

& Operations Research, 86, 1−17.

Vanhoucke, M., & Coelho, J. (2019). Resource-constrained project scheduling with activity splitting and

setup times. Computers & Operations Research, 109, 230−249.

Xie, J., Li, X., Gao, L., & Gui, L. (2023). A hybrid genetic tabu search algorithm for distributed flexible job

shop scheduling problems. Journal of Manufacturing Systems, 71, 82−94.

Xiong, H., Shi, S., Ren, D., & Hu, J. (2022). A survey of job shop scheduling problem: The types and

models. Computers & Operations Research, 142, 105731.

Zhang, G., Hu, Y., Sun, J., & Zhang, W. (2020). An improved genetic algorithm for the flexible job

shop scheduling problem with multiple time constraints. Swarm and Evolutionary Computation, 54,

100664.

Zhao, Z., Zhou, M., & Liu, S. (2022). Iterated greedy algorithms for flow-shop scheduling problems: A

tutorial. IEEE Transactions on Automation Science and Engineering, 19(3), 1941−1959.

Çaliş, B., & Bulkan, S. (2013). A research survey: Review of AI solution strategies of job shop scheduling

problem. Journal of Intelligent Manufacturing, 26(5), 961−973.

52

	Résumé
	Avant-Propos
	Table of Contents
	List of Tables and Figures
	List of Abbreviations and Acronyms
	Acknowledgements
	Chapitre 1: Introduction
	Chapitre 2: Article

	Abstract

	Section 1: Introduction

	Section 2: Literature Review
	Resource-Constrained Project Scheduling Problem
	Job Shop Scheduling Problem
	Sequential Ordering Problem
	Research Gap

	Section 3: Problem Statement
	Problem Definition
	Model Formulation

	Section 4: Solution Methods
	Greedy Algorithm
	Tabu Search Algorithm

	Section 5: Computational Experiments
	Dataset Used
	Comparison Framework
	Results

	Section 6: Conclusion
	Chapitre 3: Conclusion
	Bibliography

