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Résumé 

Les ports jouent un rôle essentiel dans le commerce mondial. En tant que nœuds de transport 

critiques au sein des chaînes d'approvisionnement, ils contribuent au développement économique 

et social des communautés environnantes. Cependant, ils sont confrontés à des défis croissants liés 

aux incertitudes climatiques, telles que les cyclones, les ouragans et les tsunamis, ainsi qu'à la 

volatilité des volumes commerciaux, qui engendrent souvent des problèmes de congestion. En 

réponse, de plus en plus de ports réalisent conjointement des investissements en capacité et en 

adaptation climatique afin de renforcer leur résilience et d'assurer la continuité de leurs opérations 

face aux perturbations climatiques. Cette étude développe un modèle à deux périodes pour analyser 

les décisions de synchronisation d’investissements décisions interdépendantes en capacité et en 

adaptation climatique de deux ports concurrents, sous incertitude climatique et selon une structure 

de gouvernance portuaire de type « landlord ». Trois scénarios de synchronisation sont examinés : 

les deux ports investissent tôt (période 1), tard (période 2), ou l’un investit tôt et l’autre tard. Les 

résultats montrent que le bien-être social diminue avec l’intensité croissante des catastrophes dans 

les trois cas. En cas d’intensité faible, l’investissement en adaptation augmente tandis que 

l’investissement en capacité varie selon les scénarios, révélant l’influence des contraintes de 

capacité et du calendrier d’investissement. En revanche, sous forte intensité, l’investissement en 

adaptation augmente initialement, puis diminue au-delà d’un certain seuil, illustrant la diminution 

des bénéfices liés à la résilience face à des catastrophes sévères. Les stratégies proactives 

surpassent généralement les stratégies réactives en matière de bien-être social, en particulier sous 

des intensités de catastrophe faibles à modérées. L’efficacité du calendrier d’investissement 

dépend de l’intensité des catastrophes. Sous faible intensité, des investissements précoces 

maximisent le bien-être social. En cas d’intensité extrême, le bien-être social est optimal lorsque 

les ports investissent à des moments différents, avec un port investissant tôt sous contrainte de 

capacité non contraignante. Cette stratégie mixte offre une plus grande flexibilité dans l’allocation 

des ressources entre adaptation et capacité. Ces résultats soulignent l’importance d’une 

planification proactive de la résilience, d’une allocation efficiente des ressources et de stratégies 

d’investissement spécifiques à chaque port. 
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Abstract 

Ports play an important role in global trade. As critical transportation hubs in supply chain, ports 

contribute to both economic and social development of their nearby communities. However, ports 

are facing increasing challenges from climate uncertainties such as cyclones, hurricanes and 

tsunamis as well as fluctuating trade volumes which often lead to congestion problems.  In 

response to these growing challenges, more ports engage in joint capacity and climate-change 

adaptation investments to improve resilience and ensure smooth port operations during climate-

induced disruptions. This study develops a two-period model to analyze the timing decisions of 

two competing ports regarding the interdependent capacity and adaptation investments under 

climate-change uncertainty and the “landlord” port governance structure. Three investment timing 

cases are investigated: both ports invest early (in period 1), both ports invest late (in period 2), and 

one port invests early (in period 1), while the other port invests late (in period 2). The findings 

show that social welfare decreases with increasing disaster intensity across all three cases. Under 

low disaster intensity, adaptation investment increases and capacity investment varies across cases, 

demonstrating how investment priorities are influenced by timing and capacity constraints. 

However, under high disaster intensity, adaptation investment initially increases but later decreases 

after certain threshold which illustrates that the benefits from additional resilience planning are 

offset by severe disaster disruptions. Proactive investment strategies generally outperform reactive 

ones in maximizing social welfare, especially under low to moderate disaster intensities. The 

effectiveness of investment timing is associated with the range of disaster intensity. Under low 

disaster intensity, early investments achieve highest levels of social welfare. Under extreme 

disaster intensity, the highest social welfare result is achieved when two ports invest at different 

times with the early-investing port operating under non-binding capacity constraints. This mixed 

strategy provides the ports with more flexibility in allocating resources between capacity and 

adaptation investments. These findings emphasize the importance of proactive resilience plannings, 

efficient resources allocation between investments, and port-specific investment strategies.  

Keywords: Investment timing, port capacity investment, port adaptation investment, climate 

change uncertainty, disaster intensities, port competition 

Research methods: Two-period game-theoretic model, Nash equilibrium, Numerical analysis
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1. Introduction 

Ports are crucial transportation hubs to manage essential operations for the importation, 

exportation, and transshipment of cargo (Hidalgo-Gallego, 2017). Aside from their impacts on the 

global economy, ports also provide socioeconomic advantages for local communities through 

employment opportunities and infrastructure development that enhance national economic growth 

(Chang, 1978). However, ports face increasing challenges because of both climate change and 

rising port demand. Because of their location near rivers and coastal areas, ports are particularly 

vulnerable to natural disasters including cyclones, hurricanes, and earthquake-triggered tsunamis 

(Gou and Lam, 2019). Research shows that 86% of global ports are exposed to three or more 

climate and geological hazards, and storms create service disruptions at 40% of these ports 

(Verschuur et al., 2023). Moreover, the number of disaster events has increased dramatically from 

100 per year during the 1970s to reach approximately 400 worldwide, exacerbating port 

vulnerabilities (Food and Agriculture Organization of the United Nations, 2023). This increasing 

frequency is combined with growing unpredictability because climate change leads to more often, 

intense, and variable climate extremes across the world (World Meteorological Organization, 

2021). Furthermore, tropical cyclone-related ocean disasters intensify other hazards and bring 

ripple effects such as flooding (World Meteorological Organization, 2021). The rising natural 

hazards together with increased uncertainties create disruption in port operations, lead to broader 

economic and supply chain impacts, and affect nearby coastal communities (Izaguirre, 2021).  It 

is therefore essential that ports invest in adaptation to enhance their resilience. Port adaptation 

investments consist of infrastructure improvements that include elevating port facilities, building 

flood barriers and seawalls, and upgrading drainage systems (Becker et al., 2018). The 

implementation of these adaptation strategies helps reduce vulnerabilities and maintain operational 

continuity during disaster events. Moreover, the advantages of adaptation investments exceed their 

expenses. According to Public Safety Canada (2019), every dollar spent on resilience-building 

leads to a reduction of ten dollars in post-disaster recovery costs. Proactive resilience planning also 

provides long-term resilience through strategies that protect against future extreme events. For 

example, Associated British Ports dedicated $2 million to construct a new lock gate which will 

defend against future storms (Associated British Ports, 2020). The Port Authority of New York 

and New Jersey established a $60 million flood protection initiative to protect their facilities 
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together with nearby airports. The project will protect against 100-year storm events with a 

consideration of projected sea level rise (Port Authority of New York and New Jersey, 2022). The 

CLARION project, which unites the four major European ports (Rotterdam, Antwerp, Hamburg, 

Constanta) under the EU’s Horizon Europe Programme, dedicates €6.9 million to enhance port 

resilience through climate-resilient quay walls, corrosion monitoring systems, flood prevention, 

and weather forecasting (Clarion project, 2025).  

Ports are increasingly facing congestion problems due to rising demand, which illustrates the need 

for capacity-related investments such as improving storage areas, berths, and terminals (Bureau of 

Transportation Statistics, 2016). The global goods trading volume is expected to grow by 2.7% in 

2024, with a projected increase of 3.0% in 2025 (World Trade Organization, 2024). As trading 

volumes continue to rise, ports need to consistently enhance their infrastructure to handle 

increasing demand and achieve higher economic returns (Munim and Schramm, 2018). By June 

2024, 2.5 million TEUs (twenty-foot equivalent units) of vessel capacity were waiting offshore 

globally, accounting for 8.4% of the total worldwide fleet and contributing to rising freight rates 

(United Nations Conference on Trade and Development, 2024a). The number of port calls reached 

its highest level of 250,000 in 2023 due to renewed demand following the COVID-19 pandemic. 

This high level persisted through 2024, causing significant congestion—particularly at Asian ports, 

which handle 63% of global trade (Xu et al., 2021; UNCTAD, 2024b). Under the combined 

influence of increasing port calls and disruptions in the Red Sea, the Port of Singapore experienced 

wait times nearly twice the usual level from March to May 2024 (UNCTAD, 2024c). To address 

these challenges and ensure sustainable growth, it is important for ports to invest in infrastructure 

improvements. Several ports worldwide are already taking action to expand their capacity. For 

example, the Port of Mobile invested $200 million in the fourth stage of its terminal capacity 

expansion plan, which doubled the port’s capacity from 500,000 to 1 million TEUs annually 

(Alabama Port Authority, 2024). The Port of Montreal invested more than $300 million to build 

the new Contrecœur terminal, which will add 1.15 million TEUs of annual capacity (Port of 

Montreal, 2024). The Port Authority of Rotterdam and Rotterdam World Gateway (RWG) are 

jointly expanding the Prinses Amaliahaven terminal, which will increase its capacity by 1.8 million 

TEUs (Port of Rotterdam, 2023c). 
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The growing worldwide shipping volumes and climate uncertainties have led ports to pursue joint 

investment plans for capacity expansion and climate-change adaptation measures. Ports now 

incorporate climate forecasts into the design of new facilities through supply chain automation and 

climate-adaptative planning (Becker et al., 2018). Integrating resilience into port infrastructure 

expansion design allows ports to adapt better to future climate disruptions at reduced costs 

(Mansouri, 2010). For example, the Port of Rotterdam implements the Rotterdam World Gateway 

(RWG) initiative, which adds two million TEUs (Port of Rotterdam, 2023a) to its capacity, and 

the national Delta programme uses adjustable flood barriers and reinforced dikes to manage and 

resist increasing water levels (Port of Rotterdam, 2023b). The Port of San Diego enhances its 

infrastructure and expands capacity through the Tenth Avenue Marine Terminal (TAMT) project, 

while simultaneously restoring coastal wetlands to minimize storm disruptions and using advanced 

stormwater treatment systems to protect wetlands (Port of San Diego, 2024). 

The timing of investment plays a vital role in port capacity and adaptation decisions because early 

and late investments create different advantages and disadvantages that affect long-term 

investment outcomes’ efficiency and effectiveness. Ports can invest in adaptation early to gain 

protective advantages from proactive resilience strategies. According to UNCTAD (2022), 

proactive planning is more effective at reducing climate disruptions when dealing with repeated 

risks such as anticipated climate events, rapid demand surges, capacity shortages caused by 

congestion, and port operational inefficiencies. The Canadian Climate Institute (2022) reports that 

proactive strategies help decrease coastal flooding expenses by 90%. Alternatively, ports may 

delay adaptation investments because they need to understand how climate disruptions will affect 

their operations. Ports can wait until the uncertainties become clearer by delaying investments 

(Truong et al., 2024). Another reason ports delay investments is that adaptation projects generate 

less profit than standard investments because they focus on cost reduction rather than revenue 

generation (United Nations Environment Programme, 2016). In addition, adaptation investments 

often involve significant upfront costs. For example, elevation strategies, which raise the height of 

infrastructure to improve resilience against sea-level rise, can cost between US $30 million and 

$200 million per square kilometre of port area (RTI International & Environmental Defense Fund, 

2022). Additional barriers, such as regulatory policies, political instability, and economic and 

institutional weaknesses in various country settings can further increase the upfront costs (Climate 

Investment Funds, 2010). These high expenditures may be difficult to justify if climate disruptions 
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do not occur. However, delaying adaptation investments will make ports vulnerable to climate 

change and potentially result in huge economic losses due to disruptions and shipping delays. 

Current annual storm-related damages are estimated at nearly $3 billion but could reach $25.3 

billion per year by 2100 without adaptation investments (RTI International & Environmental 

Defense Fund, 2022). Meanwhile, early capacity investments enable ports to handle more vessels, 

which can significantly reduce congestion, boost trade, and generate positive spillover effects for 

neighboring ports (Brancaccio et al., 2024). It was also noted by Brancaccio et al. (2024) that 

adding capacity for one more vessel reduced congestion by 4% at the investing port and 0.6% at 

nearby ports. However, early investments in port infrastructure can lead to lock-in problems, where 

decision-makers continue inefficient projects due to excessive commitments, causing reduced 

flexibility and increased cost overruns (Cantarelli, 2010). In contrast, delayed capacity investments 

offer greater flexibility in aligning port capacity with actual market demand under uncertainty, 

helping to avoid risks of overcapacity or undercapacity (International Transport Forum, 2018). 

Both insufficient and excessive capacity expansion without a clear consideration of demand lead 

to high unit costs, congestion, and reduced competitiveness (Notteboom et al., 2022c). 

Nevertheless, delaying capacity expansions can result in increased congestion, which influences 

shipping rates, and delivery times and causes inefficiencies throughout the entire supply chain 

(Vizion, 2025).  

The globalization of goods and services, the expansion of global supply chain networks, shifts in 

inter-port relations, and improved port-hinterland connections have intensified competition among 

ports (Notteboom et al., 2022b). Competition offers incentives for ports to strategically prioritize 

capacity and adaptation investments to improve their market positions, capture greater market 

share, and limit the expansion of competing ports (Musso et al., 2006). It directly influences critical 

decisions such as port pricing, adaptation strategies, and capacity investments, which are key 

determinants of port performance in competitive environments (Ishii et al., 2013; Itoh and Zhang, 

2023). Increased port competition also benefits customers through expanded service choices, lower 

prices, and greater social welfare (Luo et al., 2022). Moreover, several studies highlight that inter-

port competition influences investment decisions. Competition can lead to larger adaptation 

investments to mitigate climate disruptions (Wang and Zhang, 2018). It also accelerates 

investment timing, which leads to earlier—but not necessarily larger—capacity expansion 

investments (Balliauw et al., 2019; Randrianarisoa and Zhang, 2019). However, excessive 
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competition forces ports to make trade-offs between long-term infrastructure investments, 

including capacity expansion and equipment upgrades, and short-term operational efficiency 

required by shipping companies to minimize dock time (Cheon et al., 2018). As a result, ports may 

either over-invest in capacity, which can lead to financial losses from unused resources, or delay 

investments to prioritize short-term efficiency, which can cause congestion (Heaver, 1995).  

The study employs a two-period model to analyze investment-timing strategies, considering 

interdependent capacity and adaptation investments, the landlord port ownership structure1, inter-

port competition, and uncertainties in disaster intensity. Specifically, three investment timing cases 

are considered: both ports investing early in period 1 (Case I), both ports investing late in period 

2 (Case II), and one port investing early in period 1 while the other invests late in period 2 (Case 

III). Adaptation and capacity investment decisions are made by the Port Authority with the 

objective of maximizing social welfare, while the Terminal Operator sets the port service charge 

to maximize profit, subject to the constraint that throughput volume must not exceed the capacity 

established by the Port Authority. Closed-form equilibrium outcomes for the three cases are 

derived. Numerical analysis is conducted by varying the disaster intensity parameter to illustrate 

the impact of investment-timing decisions on social welfare and to examine how disaster intensity 

affects capacity and adaptation investment choices. 

The study presents several key findings. First, as disaster intensity increases, social welfare 

declines across all cases. Under low disaster intensity, adaptation investment often increases, and 

capacity investment differs across cases. This reflects how ports adjust resilience and expansion 

investment priorities based on investment timing and capacity constraints. However, when disaster 

intensity becomes high, adaptation investment initially increases but eventually decreases because 

of diminishing marginal returns, which the benefits from additional resilience fail to offset the 

 
1 According to Notteboom et al. (2022a), five types of port governance structures exit: public service ports, tool ports, 

landlord ports, corporatized ports, and private service ports. Public service ports are fully owned and operated by the 

government, whereas private service ports are fully privatized with only public sector supervision. Tool ports are still 

operated by the public but allow private cargo handling, while corporatized ports operate like private enterprises but 

remain publicly owned. Compared to corporatized and private service ports, landlord ports maintain public ownership 

of port land and regulations. In contrast to public service ports and tool ports, landlord ports maintain private sector 

decisions on operations and infrastructure maintenance. As the most common port model globally, accounting for 

more than 80% of ports, landlord ports provide an effective balance between public governance and private efficiency 

by keeping port land and regulations under public ownership and port infrastructure, operations and maintenance 

under private control by terminal operators (Notteboom and Haralambides, 2020). Therefore, this study focuses only 

on landlord port governance structure. 
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impacts of severe disruptions. Second, proactive investments generally achieve better performance 

than delayed investments, leading to higher investment levels, especially under low- to moderate-

disaster intensities. Third, investment-timing decisions are influenced by the range of disaster 

intensities. When disaster intensity is low, early investments by both ports result in the highest 

social welfare. In contrast, under high disaster intensity, Case III, where one port invests early with 

non-binding capacity constraint in period 2 and the other port invests late with binding capacity 

constraint, achieves the highest level of social welfare. This suggests that non-binding capacity 

constraints give ports greater flexibility in adjusting investment decisions, improving their ability 

to cope with extreme disaster disruptions. 

The remainder of the study is structured as follows: Section 2 presents a review of the relevant 

literature. Section 3 introduces the basic model. Section 4 conducts a numerical analysis. Finally, 

Section 5 concludes the key findings and outlines directions for future research.  
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2. Literature review 

The study is related to two major research streams: port capacity investment and port adaptation 

investment.  

2.1 Port capacity investment 

Since uncertainty associated with demand, economic conditions, or disasters plays an important 

role in analyzing port capacity investment decisions, numerous studies have developed 

mathematical models to optimize the pricing, timing, and scale of capacity investments, mostly 

under demand uncertainty. For instance, Tan et al. (2015) construct a Hotelling-location 

framework to determine optimal service pricing, capacity, and location for inland ports under 

continuous demand, uncertain river conditions, and congestion. Allahviranloo and Afandizadeh 

(2008) apply a fuzzy integer programming model to optimize port development investment, while 

considering capacity constraints and uncertain cargo demand predictions across optimistic growth 

and pessimistic decline scenarios. Dekker et al. (2011) develop an optimal control framework to 

determine the timing and size of efficient port expansion investments under conditions of demand 

uncertainty and economies of scale for investment decisions. In addition to optimization models, 

real options models serve as dynamic tools for analyzing capacity investment timing under 

uncertainty. Balliauw et al. (2019) examine the timing and size of capacity investments of two 

heterogeneous competing ports, while accounting for demand uncertainty and provide suggestions 

for different ownership structures. Balliauw et al. (2020) assess the optimal scale and timing for 

building a new port that considers demand uncertainty and customer waiting time preferences, 

showing that ports with more wait time sensitive customers should delay capacity expansion 

projects.  By extending this real-options analysis, Balliauw (2021) evaluate how different capacity 

investment options affect the timing and scale of capacity projects between a new capacity project 

and a completed port expansion project, while incorporating uncertain construction timelines and 

demand uncertainty. Guo et al. (2021) develop a stepwise model to examine optimal port capacity 

investment decisions and exit strategies for ports under uncertain demand and congestion in port 

cluster settings. With the same objective, Guo and Jiang (2022) present a multistage model to help 

ports choose between continuing or abandoning capacity expansion projects, while aiming to 

optimize their resource allocation within any port cluster under demand uncertainty. Chen and Liu 
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(2016) examine how demand uncertainty and congestion influence risk-averse ports’ capacity 

expansion and pricing decisions when facing trade-offs between stability and efficiency. Beyond 

the context of ports, Gao and Driouchi (2013) incorporates Knightian uncertainty into real options 

analysis to show how decision makers’ attitudes affect the timing of rail transit investment and 

population thresholds for investment, while applying this to Xiamen, China to improve rail 

transportation efficiency. Xiao et al. (2013) analyze how demand uncertainty influences capacity 

investment decisions in competitive multi-airport environments, showing that airports build larger 

capacities when capital costs are low during uncertain times. Zheng et al. (2020) study the optimal 

airlines’ investment timing in exclusive airport terminals (ETs) under Knightian uncertainty and 

competition, and demonstrate how government subsidies modify private investments’ incentives 

to achieve social optimality.  

Many studies focus on how competitive dynamics between ports influence capacity investment 

and pricing strategies. Anderson et al. (2008) discuss how ports in Busan and Shanghai react to 

each other’s capacity investment strategies to protect their market shares. Under a multi-port 

competition setting, Yeo and Song (2006) provide a competitiveness assessment tool to analyze 

and rank the competitiveness of Asian ports under the Hierarchical Fuzzy Process framework. The 

study identifies capacity, infrastructure facility, location, service quality, and profitability as 

important factors in gaining a competitive advantage over rival ports. Luo et al. (2012) employ a 

two-stage game model to study the impacts of structural transitions from monopoly to duopoly on 

pricing and irreversible capacity investment decisions. Wan and Zhang (2013) analyze the 

relationship between road congestion and seaport competition within the Cournot framework and 

illustrate how road capacity expansion and congestion tolls impact seaport competitive dynamics. 

Cheng and Yang (2017) compare capacity investment decisions at ports whose objectives differ—

profit-oriented versus GDP-oriented. Talley and Ng (2021) develop a cargo port choice 

equilibrium model that simultaneously analyze the decisions of both shippers and port service 

providers, enabling policymakers to observe how policy changes and competition influence 

capacity investments and trade volume in the entire port network.  

Multiple research studies analyze how different port ownership structures and vertical integration 

influence capacity investment decisions. De Borger et al. (2008) demonstrate how congestible 

duopolistic markets affect public investment in hinterland capacity and private port pricing 
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strategies, which result in changes to hinterland congestion, competitive pricing, and overall 

welfare in European ports. Xiao et al. (2012) investigate how different port ownership structures 

influence capacity investments, pricing strategies, and congestion under various competition 

scenarios to impact social welfare.  Zheng and Negenborn (2014) compare centralized versus 

decentralized regulation under imperfect information through agency theory and Stackelberg 

framework, showing decentralized regulation leads to better port efficiency, higher port demand, 

and social welfare. Wan et al. (2016) analyze how different coalition structures in landside 

accessibility investments influence social welfare under port competition, showing different port 

ownership structures (private or public) ports affect the social welfare outcomes. While both Zhu 

et al. (2019) and Jiang et al. (2021) analyze the effects of vertical integration between terminal 

operators and shipping lines on capacity investment and port pricing, they produce different social 

welfare outcomes. Zhu et al. (2019) suggest that vertical integration improves social welfare 

through enhanced infrastructure, which reduces congestion. Conversely, Jiang et al. (2021) believe 

that integration diminishes social welfare by allowing shipping lines to gain excessive control over 

port operations. 

2.2 Port adaptation investment 

Extensive research has explored the perceptions, actions, and strategies of various stakeholders 

regarding climate risks, resilience, and port adaptation investment. Interviews and surveys 

conducted by Becker et al. (2012), Ng et al. (2018), and Mclean and Becker (2021) illustrate that 

ports need holistic and integrated strategies to collect information and develop long-term, proactive 

resilience plans. Case studies by Becker and Caldwell (2015) on two American ports and by Ng et 

al. (2013) on four Australian ports demonstrate that collaborative adaptation strategies and a clear 

understanding of regional vulnerabilities are essential. Becker et al. (2013, 2018) explain how 

infrastructure, policy frameworks, and adaptation investments enhance port resilience from the 

global viewpoint. In particular, Becker et al. (2018) expand the global knowledge base of port 

resilience through financial and risk-management strategies, while advocating customized risk 

assessments for specific ports. In addition to port studies, Wang et al. (2020b) perform a critical 

analysis of climates risks affecting road and rail systems across various locations to develop 

resilience planning and adaptation strategies. 
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Several studies use economic models to evaluate the timing and scale of adaptation investments. 

Xiao et al. (2015) develop an integrated model for landlord ports, which incorporates information 

accumulation with disaster uncertainties and investment spillovers to determine the optimal timing 

of adaptation investments. Randrianarisoa and Zhang (2019) create a two-period model to analyze 

the optimal timing and scale of adaptation investments, while considering climate uncertainty, 

competition, and information accumulation over time. Jiang et al. (2020) apply an economic model 

to evaluate the relative effectiveness of climate change mitigation (CCM) and climate change 

adaptation (CCA) strategies across different market conditions. Wang et al. (2022) develop a two-

period model to examine how competition and different risk attitudes influence the size and timing 

of adaptation investments within an integrated seaport and dry port system. 

Various studies have investigated how competition or cooperation among ports influence 

adaptation strategies. Asadabadi and Miller-Hooks (2018) develop a deterministic, game-theoretic 

model of a co-opetitive port network to evaluate protective infrastructure investments’ resilience 

benefits. Asadabadi and Miller-Hooks (2020) use a stochastic framework with various 

unpredictable disaster scenarios to help stakeholders who operate under both competitive and co-

opetitive circumstances. Chen et al. (2018) use a network game-theoretic model to examine how 

port-hinterland container transportation networks (PHCTNs) become more resilient against man-

made unconventional emergency events (MUEEs) through adaptation investments in a co-

opetitive setting. Wang and Zhang (2018) examine how inter-port competition or cooperation 

influences adaptation investments in two competing public ports that share a common hinterland 

under Knightian uncertainty. By introducing governance structure to the analysis, Wang et al. 

(2020a) demonstrate how terminal operators’ governance structures influence adaptation strategies 

under asymmetric disaster uncertainties and inter- or intra-port competition. Itoh and Zhang (2023) 

analyze independent and simultaneous disaster risks at two competing ports and propose a 

framework to balance private and public investment responsibilities. 

Several studies illustrate the impacts of government policies on port adaptation investments and 

resilience planning. Pauw et al. (2022) show that government intervention to deal with market 

information asymmetries leads to increased private-sector funding for port adaptation projects. 

Zheng et al. (2021a; 2021c) examine the effects of two common regulatory instruments—subsidies 

and minimum-investment quotas—on adaptation investments. Zheng et al. (2021c) focus on a two-
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port network with asymmetric disaster impacts to demonstrate that minimum-investment quotas 

with adaptation-sharing produce greater adaptation investments than subsidies. Conversely, Zheng 

et al. (2021a) incorporate climate ambiguity, diverse risk attitudes and inter-port spillovers to show 

that the most suitable instrument depends on uncertainty levels and port-specific risk preferences. 

Zheng et al. (2022a) analyze how a subsidy impacts port adaptation investment when both 

government assessments and disasters are uncertain, showing that the presence of these 

uncertainties discourages the subsidy’s effectiveness. Zheng et al. (2022b) develop a two-port 

economic model to analyze how public versus confidential government disclosure policies with a 

subsidy influence adaptation investments and social welfare. 

2.3 Joint port capacity and adaptation investments 

In Section 2.1, although many studies using economic models have examined the timing and scale 

of port capacity investment under demand uncertainty, congestion, pricing strategies, competition, 

and governance structures, most of them focus on single-period competitive settings. These studies 

overlook the interdependence between capacity and adaptation investments, and they do not 

consider how disaster uncertainty influences investment timing decisions in a multi-period 

framework. Similarly, the studies in Section 2.2 analyze the optimal scale and timing of adaptation 

investments under climate uncertainty, but they emphasize information accumulation, competition, 

or market dynamics rather than the interaction between capacity and adaptation investment 

decisions. 

Limited research has analyzed the joint capacity and adaptation investment decisions. Gong et al. 

(2020) demonstrate an analytical model to analyze the trade-off between port capacity expansion 

and adaptation investments under uncertainty and budget constraints. However, their model 

focuses on investment decisions within a single-period, single-port setting and does not consider 

investment timing decisions. Xia and Lindsey (2021) and Xia et al. (2024) illustrate integrated 

capacity and adaptation investments under climate uncertainty. The former study analyzes optimal 

time and size of joint investments under information accumulation in a non-competitive setting, 

whereas the latter explores the impacts of inter-port competition and climate disruptions on joint 

investment decisions without considering the timing of investments. Wang et al. (2023) develop a 

two-period model to analyze the optimal timing and size of joint capacity and adaptation 
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investments by port authorities under risk-sensitive behaviour and disaster uncertainty. However, 

their study focuses on single port setting without considering inter-port competition and how 

terminal operators make decisions in response to port authorities’ investment decisions. This study 

bridges these gaps by developing a two-period model that analyzes the timing of joint capacity and 

adaptation investments under climate uncertainty, inter-port competition and interactions between 

port authorities and terminal operators.  

Table 1 presents a summary of key factors considered or omitted in the papers reviewed in Section 

2 on port investments that utilize game-theoretic modeling approaches. The key factors considered 

are port competition, investment periods, information updating, ownership structure and types of 

uncertainty. 
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Table 1: Summary of reviewed papers using game-theoretic modeling approaches 

Paper Capacity 

investment 

Adaptation 

investment 

Competition Investment 

horizon 

Information Port 

structure2 

Uncertainty 

Allahviranloo 

and 

Afandizadeh 

(2008) 

√ × × Multi-

period 

(finite-

horizon) 

× × Uncertainty 

in cargo 

demand 

forecast 

De Borger et 

al. (2008) 

√ × Two 

competing 

ports 

Two Full Landlord × 

Dekker et al. 

(2011) 

√ × × Multi-

period 

(finite-

horizon) 

× Public Uncertainty 

in demand 

forecast 

Luo et al. 

(2012) 

√ × Two 

competing 

ports 

Two Full Landlord × 

Gao and 

Driouchi 

(2013) 

√ × × Continuous 

time 

(infinite-

horizon) 

Incomplete Public Uncertainty 

in 

population 

growth 

forecast 

 
2 Definitions of the port structures are provided in the footnote in Section 1.  
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Xiao et al. 

(2013) 

√ × Two 

competing 

airports 

Two × Mixed 

(public and 

private) 

Uncertainty 

in future 

demand 

Wan and 

Zhang (2013) 

√ × Two 

competing 

ports 

Two Full Mixed 

(public and 

private) 

× 

Zheng and 

Negenborn 

(2014) 

√ × Competing 

terminals 

within a 

single port 

One Asymmetric 

(centralization

) and full 

(decentralizati

on) 

× × 

Tan et al. 

(2015) 

√ × × One × Private × 

Xiao et al. 

(2015) 

× √ × Two Information 

accumulation 

Landlord Climate 

uncertainty 

Chen and Liu 

(2016) 

√ × Two 

competing 

ports 

Two Incomplete 

(stage 1) and 

full (stage 2) 

× Demand 

uncertainty 

Asadabadi and 

Miller-Hooks 

(2018) 

× √ Multi-port 

co-opetition3 

One Information 

sharing 

× Disruption 

uncertainty 

 
3 Co-opetition is when companies collaborate and compete at the same time (Brandenburger and Nalebuff, 1996). It shows that business performance involves 

not only outperforming rivals but also cooperating to gain mutual benefits.  
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Chen et al. 

(2018) 

× √ Multi-port 

co-opetition 

One Full  × Man-made 

unconventi

onal 

emergency 

events 

(MUEEs) 

Wang and 

Zhang (2018) 

× √ Two 

competing 

ports 

Discrete 

time (early 

and late) 

Information 

accumulation 

Landlord Climate 

uncertainty 

Balliauw et al. 

(2019) 

√ × Two 

competing 

ports 

Continuous 

time 

(infinite-

horizon) 

Information 

accumulation 

× Demand 

uncertainty 

Randrianariso

a and Zhang 

(2019) 

× √ Two 

competing 

ports 

 Two  Information 

accumulation 

 Landlord Climate 

uncertainty 

Zhu et al. 

(2019) 

√ × Intra-port 

competition 

Discrete 

time  

Full Landlord × 

Asadabadi and 

Miller-Hooks 

(2020) 

× √ Multi-port 

co-opetition 

One Full × Disruption 

uncertainty 

Balliauw et al. 

(2020) 

√ × × Continuous 

time 

(infinite-

horizon) 

Full × Demand 

uncertainty 
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Gong et al. 

(2020) 

√ √ × Discrete 

time 

Full × Demand and 

disaster 

uncertainty 

Jiang et al. 

(2020) 

× √ Two 

competing 

ports 

One Full × × 

Wang et al. 

(2020a) 

× √ Two 

competing 

ports 

Discrete 

time 

Information 

accumulation 

Landlord Disaster 

occurrence 

uncertainty 

Zheng et al. 

(2020) 

√ × Intra-airport 

competition 

Continuous 

time 

(infinite-

horizon) 

Full  × Demand 

uncertainty 

with 

ambiguity 

Balliauw 

(2021) 

√ × × Continuous 

time 

(infinite-

horizon) 

Full × Demand 

uncertainty 

Guo et al. 

(2021) 

√ × Multi-port 

competition 

within 

cluster 

Continuous 

time 

(stepwise 

investment) 

× Public Demand 

uncertainty 

Jiang et al. 

(2021) 

√ × Two 

competing 

ports 

Multi-stage Full × × 
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Xia and 

Lindsey 

(2021) 

√ √ × Two Information 

accumulation 

Landlord Climate 

and 

demand 

uncertainty 

Guo and Jiang 

(2022) 

√ × Multi-port 

competition 

within 

cluster 

Continuous 

time 

(multi-

stage) 

Full Public Demand 

uncertainty 

Wang et al. 

(2022) 

× √ Seaport-dry 

port 

competition 

in shared 

hinterland 

Two Information 

accumulation 

× Risk 

occurrence 

ambiguity 

Itoh and 

Zhang (2023) 

× √ Two 

competing 

ports 

One Full Public, 

private, 

landlord 

comparison 

Disaster 

occurrence 

uncertainty 

Xia et al. 

(2024) 

√ √ Two 

competing 

ports 

One × Mixed 

(public and 

private) 

Climate 

uncertainty 

This study √ √ Two 

competing 

ports 

Two × Landlord Climate 

uncertainty 
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3. The model  

The model considers two competing ports A and B that compete under the landlord port ownership 

structure. Each port, A and B, consists of a Port Authority (PA) and a Terminal Operating 

Company (TOC). The PAs is responsible for developing port infrastructure and making investment 

decisions on behalf of the regional or national government (Verhoeven, 2010). Acting as a 

“landlord”, the PA leases port infrastructure to the TOC, who is responsible for port operations 

(Notteboom, 2007). Since the PA considers public interests when making investment decisions, 

we assume its objective is to maximize social welfare, whereas the TOC, as a private entity, aims 

to maximize profit by setting the port service charge, taking into account the investments made by 

the PA (WorldBank, 2007). 

This study develops a two-period, two-stage model to examine the capacity and adaptation 

investment decisions of PAs and the pricing strategies of TOCs at two competing ports under 

disaster uncertainty. The study assumes that both the PAs and TOCs have full knowledge of the 

demand and cost functions which allows the model to be solved by backward induction in Section 

3.2.2. A complete list of the mathematical notations used in the following model is provided in 

Appendix A.1. 

The model is structured as follows: 

Regarding investment timing, the PAs of the two competing ports, A and B, can choose to invest 

either in period 1 or period 2. Each period represents a planning horizon for port infrastructure 

investments, typically spanning 15–20 years, depending on the port. To examine the trade-off 

between early and delayed investment, we assume that a port can invest in either period 1 or period 

2, but not both. Three investment timing scenarios are introduced and analyzed:  

Case I: both ports (A and B) invest in period 1. 

Case II: both ports (A and B) invest in period 2.  

Case III: one port invests in period 2, while the other port invests in period 2.  
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Within each period, the model unfolds in two stages: 

Stage 1: At the beginning of the period, the PAs of ports A and B determine the optimal capacity 

and adaptation investment levels to maximize their respective social welfare. 

Stage 2: Based on the investment decisions made by the PAs, the TOCs at ports A and B determine 

port charge while ensuring that throughput volume does not exceed the available port capacity. 

This capacity includes the initial capacity plus any additional capacity resulting from investments 

made by the PA at the beginning of the period. The TOCs aim to maximize their own profit. If the 

PAs do not invest at the beginning of the period, the available capacity remains equal to the initial 

capacity. We therefore disregard any depreciation of available capacity in subsequent periods.  

3.1 Demand function for port service 

Following Singh and Vives (1984), this study assumes that a representative shipper has a quadratic 

utility function 𝑈𝑡 when choosing between port A and port B. This function shows diminishing 

returns which as traffic volume increases, the marginal utility decreases and it also allows for 

substitution between two ports.  

𝑈𝑡 = 𝑎(𝑞𝐴𝑡 + 𝑞𝐵𝑡) −
1

2
𝑏(𝑞𝐴𝑡

2 + 𝑞𝐵𝑡
2 + 2𝑟𝑞𝐴𝑡𝑞𝐵𝑡), (1) 

where 𝑞𝑖𝑡  is the traffic volume at port 𝑖  (𝑖 = 𝐴, 𝐵 ) in period 𝑡  (𝑡 = 1, 2 ), and 𝑎 , 𝑏 , and 𝑟  are 

positive parameters. 

The representative shipper maximizes its net utility 𝑁𝑈𝑡 by choosing 𝑞𝐴𝑡 and 𝑞𝐴𝑡: 

𝑁𝑈𝑡 = 𝑈(𝑞𝐴𝑡, 𝑞𝐵𝑡) − 𝜏𝐴𝑡𝑞𝐴𝑡 − 𝜏𝐵𝑡𝑞𝐵𝑡, (2) 

where 𝜏𝑖𝑡 represents the port charge set by the TOC at port 𝑖 (𝑖 = 𝐴, 𝐵) in period 𝑡 (𝑡 = 1, 2). We 

assume that the full cost incurred by shippers when using a port consists solely of the port service 

charge. However, the model could be extended to incorporate additional costs, such as congestion 

costs (e.g., De Borger and Van Dender, 2006; Xiao et al., 2012; Balliauw et al., 2019) and disaster-

related damage costs (Xia and Lindsey, 2021; Xia et al., 2024), which may also impact shippers’ 

decisions.  
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By applying the first-order conditions (FOCs), i.e., 
𝜕𝑁𝑈

𝜕𝑞𝐴𝑡
= 0 and 

𝜕𝑁𝑈

𝜕𝑞𝐵𝑡
= 0, the inverse demand 

functions can be derived as follows: 

𝜏𝐴𝑡 = 𝑎 − 𝑏𝑞𝐴𝑡 − 𝑟𝑞𝐵𝑡 (3) 

𝜏𝐵𝑡 = 𝑎 − 𝑏𝑞𝐵𝑡 − 𝑟𝑞𝐴𝑡   (4) 

The parameter 𝑎 represents the maximum willingness to pay when there is no demand (or the price 

at which the demand drops to 0). The parameter 𝑏 represents the price sensitivity to own demand. 

The parameter 𝑟 (0 < 𝑟 < 𝑏) represents the degree of substitutability between the services of ports 

A and B. When 𝑟 = 0, the two ports provide completely differentiated services, representing a 

market scenario where each operates as a monopoly without competition. In contrast, when 𝑟 = 𝑏, 

the two ports provide homogeneous services, reflecting a fully competitive market. Similar 

parameters are used in Caravaggio and Sodini (2018), Balliauw et al. (2019), and Zheng et al. 

(2020, 2021b, 2021c) to illustrate the degree of differentiation and product heterogeneity within 

maritime and aviation markets.  

By rearranging Eq. (3) and (4), the demand functions are derived as follows: 

𝑞𝐴𝑡 = 
𝑎

(𝑏 + 𝑟)
−

𝑏 

(𝑏 − 𝑟)(𝑏 + 𝑟)
𝜏𝐴𝑡 +

𝑟

(𝑏 − 𝑟)(𝑏 + 𝑟)
𝜏𝐵𝑡 (5) 

𝑞𝐵𝑡 =
𝑎

(𝑏 + 𝑟)
−

𝑏 

(𝑏 − 𝑟)(𝑏 + 𝑟)
𝜏𝐵𝑡 +

𝑟

(𝑏 − 𝑟)(𝑏 + 𝑟)
𝜏𝐴𝑡 

(6) 

For model tractability, the demand function is assumed to remain the same across both periods. 

However, the model could be extended to incorporate period-dependent parameters (e.g., 𝑎𝑡, 𝑏𝑡, 

𝑟𝑡) to capture different demand features of the two periods. 

3.2 Case I: Both ports invest in period 1 

3.2.1 Problem formulation 

Stage 1: PAs’ social welfare maximization problem 

Suppose the port 𝑖  (𝑖 = 𝐴 or 𝐵) start with an initial capacity 𝐾̅𝑖  and adaptation 𝐼𝑖̅ . The initial 

capacity 𝐾̅𝑖 represents the maximum cargo volume that port 𝑖 can handle within a given period. 

The adaptation investment 𝐼𝑖̅ represents the financial resources allocated to enhancing the port's 

resilience against natural disasters. Bekker et al. (2013) suggest that adaptation includes both hard 
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interventions, such as constructing storm surge barriers, enhancing drainage systems, and elevating 

infrastructure, and soft interventions such as emergency plans, conservation programs and 

improved decision support systems. Hass and Wentland (2023) illustrate that there is a lack of 

agreements upon the standardized methodologies to recognize climate change adaptation. Unlike 

capacity, which can be measured in standardized units, such as millions of TEUs (Twenty-Foot 

Equivalent Units) per year, adaptation strategies cannot be quantified with a single unit. Therefore, 

the adaptation investments in this study are defined as the total expenditures incurred in adaptation 

strategies. 

Since in Case I, the PAs of both ports invest in period 1 and no investment in period 2 will be 

made, the available capacity and adaptation in both periods are 𝐾̅𝑖 + 𝐾𝑖1 and 𝐼𝑖̅ + 𝐼𝑖1, assuming no 

depreciation on the physical infrastructure. As stated earlier, the objective of the PAs for both ports 

are to maximize social welfare by determining the capacity and adaptation investment levels in 

period 1. 

max
{𝐾𝑖1,𝐼𝑖1}

𝑆𝑊𝑖 = 𝑆𝑊𝑖1 +  𝛽 𝑆𝑊𝑖2, (7) 

where 𝑆𝑊𝑖 is the social welfare of port 𝑖, which includes the social welfare in period 1 (𝑆𝑊𝑖1) and 

period 2 (𝑆𝑊𝑖2), and 𝛽 is the discount factor.  

Social welfare of port 𝑖 in period 𝑡 𝑆𝑊𝑖𝑡 is calculated as the sum of consumer surplus 𝐶𝑆𝑖𝑡, the 

profit of TOC 𝜋𝑖𝑡  minus the expected costs associated with disasters 𝐷𝑖𝑡 , capacity investment 

𝑐𝑘 𝐾𝑖𝑡, adaptation investment 𝐼𝑖𝑡. 

𝑆𝑊𝑖𝑡 = 𝐶𝑆𝑖𝑡 + 𝜋𝑖𝑡 − 𝐷𝑖𝑡 − 𝑐𝑘 𝐾𝑖𝑡 − 𝐼𝑖𝑡, (8) 

where 𝑐𝑘 is the unit capacity investment cost.  

The total consumer surplus, 𝐶𝑆𝐴𝑡 + 𝐶𝑆𝐵𝑡, is represented by the net utility defined in Eq. (2). Since 

each port prioritizes its own consumers, the consumer surplus for each port is defined as follows: 

𝐶𝑆𝑖𝑡 = 𝑎𝑞𝑖𝑡 −
1

2
𝑏 𝑞𝑖𝑡

2 − 𝑟 𝑞𝑖𝑡𝑞−𝑖𝑡 − 𝜏𝑖𝑡𝑞𝑖𝑡, (9) 

where the subscript −𝑖 denotes the port other than port 𝑖. The detailed derivation is provided in 

Appendix A.2. 
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The study assumes that no operating costs are incurred by the TOC to focus on the influence of 

capacity and adaptation investments on revenues. The TOC’s profit function is defined as: 

𝜋𝑖𝑡 = 𝜏𝑖𝑡𝑞𝑖𝑡, (10) 

The expected disaster damage cost in period 1 𝐷𝑖1 is defined as: 

𝐷𝑖1 = 𝐸𝑥1 [(𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖)]
+, (11) 

where 𝑥1 is the disaster intensity during period 1 and 𝜃 (𝜃 > 1) is the effectiveness in adaptation 

investment. This shows that every $1 invested in adaptation brings more than $1 benefits in disaster 

damage reduction which offer incentives for PAs to invest in adaptation planning.  (𝐾̅𝑖 + 𝐾𝑖1) is 

the available capacity of port 𝑖  at the beginning of period 1 after the investment by the PA. 

(𝐾̅𝑖 + 𝐾𝑖1)𝑥1 represents the vulnerability of a port, as greater handling capacity increases exposure 

to natural disasters due to the extensive physical infrastructure at risk and the intensity of the 

disaster further amplifies the port’s vulnerability. However, the port’s vulnerability can be reduced 

by adaptation investments. If the adaptation investment 𝜃(𝐼𝑖̅ + 𝐼𝑖) is sufficient to fully offset 

potential damage (𝐾̅𝑖 + 𝐾𝑖1)𝑥1, the resulting damage is zero. Thus, the positive part function [∙]+ 

is applied to ensure that the disaster costs are non-negative. Since 𝑥1 is a random variable, the 

expectation is taken with respect to 𝑥1.  

Since the ports do not make further investment in period 2, available capacity and adaptation in 

period 2 is still (𝐾̅𝑖 + 𝐾𝑖1) and (𝐼𝑖̅ + 𝐼𝑖) respectively. The expected disaster damage cost for port 𝑖 

in period 2 𝐷𝑖2 is thus defined as: 

𝐷𝑖2 = 𝐸𝑥2 [(𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖)]
+, (12) 

where 𝑥2 is the disaster intensity in period 2, which is a random variable.  

By rearranging the terms, the PA’s objective function can be written as:  

max
{𝐾𝑖1,𝐼𝑖1}

𝑆𝑊𝑖 = (
1

2
𝑞𝑖1(𝑎 + 𝜏𝑖1) −  𝐸𝑥1 [(𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖)]

+ − 𝑐𝑘𝐾𝑖1 − 𝐼𝑖1)

+ 𝛽 (
1

2
𝑞𝑖2(𝑎 + 𝜏𝑖2) − 𝐸𝑥2 [(𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]

+). 

(13) 
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Stage 2: TOCs’ profit maximization problem 

The TOC of port 𝑖 maximizes its profits in each period, subject to the capacity constraint:  

max
{𝜏𝑖𝑡}

 𝜋𝑖𝑡 = 𝜏𝑖𝑡𝑞𝑖𝑡 

𝑠. 𝑡. 𝑞𝑖𝑡 ≤ 𝐾̅𝑖 + 𝐾𝑖1. 
(14) 

3.2.2 Model analysis 

The model can be solved using backward induction, starting from Stage 2. If the capacity constraint 

is binding for both ports, the equilibrium traffic volume at port 𝑖 is given by: 

𝑞𝑖𝑡 = 𝐾̅𝑖 + 𝐾𝑖1. (15) 

Substituting this equilibrium traffic volume into the inverse demand function in Eq. (3) and Eq. 

(4), the equilibrium port charge is derived as:  

𝜏𝑖𝑡 = 𝑎 − 𝑏(𝐾̅𝑖 +𝐾𝑖1) + 𝑟(𝐾̅−𝑖 + 𝐾−𝑖1). (16) 

If the capacity constraint is not binding for either port, the demand function is substituted into the 

TOC’s profit function: 𝜋𝑖𝑡 = 𝜏𝑖𝑡𝑞𝑖𝑡 = 𝜏𝑖𝑡( 
𝑎

(𝑏+𝑟)
−

𝑏 

(𝑏−𝑟)(𝑏+𝑟)
𝜏𝑖𝑡 +

𝑟

(𝑏−𝑟)(𝑏+𝑟)
𝜏−𝑖𝑡) . The 

equilibrium port charges are obtained by solving the system of FOCs for profit maximization: 

𝜕𝜋𝐴𝑡

𝜕𝜏𝐴𝑡
= 0 and 

𝜕𝜋𝐵𝑡

𝜕𝜏𝐵𝑡
= 0. Solving these equations yields the equilibrium port charges: 

𝜏At =
𝑎(𝑏 − 𝑟)

2𝑏 − 𝑟
, 𝜏Bt =

𝑎(𝑏 − 𝑟)

2𝑏 − 𝑟
. (17) 

The equilibrium traffic can be obtained by substituting the equilibrium port charges into the 

demand function: 

𝑞At =
𝑎𝑏

(2𝑏 − 𝑟)(𝑏 + 𝑟)
, 𝑞Bt =

𝑎𝑏

(2𝑏 − 𝑟)(𝑏 + 𝑟)
. (18) 

Based on the assumption that both the PAs and TOCs fully know the demand quantities, and that 

the PAs make investment decisions considering the responses of the TOCs, equations (17) and (18) 

use to discuss that a rational PA would choose the investment level exactly required by the TOCs. 

For example, if the capacity investment by the PA exceeds the level required by the TOC (i.e., 

𝐾̅𝑖 + 𝐾𝑖1 >
𝑎𝑏

(2𝑏−𝑟)(𝑏+𝑟)
), it would result in overinvestment, as the PA could achieve the same 

outcome with the investment level exactly needed by the TOC (i.e., 𝐾̅𝑖 + 𝐾𝑖1 =
𝑎𝑏

(2𝑏−𝑟)(𝑏+𝑟)
). 

Therefore, at the optimal investment level, the capacity constraint must be binding to avoid costs 
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of excess or shortage. Equations (17) and (18) also provide the parameter functions for the port A 

non-binding scenario discussed later in Section 3.4.2.2.   

Substituting the equilibrium port charge from Eq. (15), along with the equilibrium port traffic 

volume from Eq. (16), into the PA’s objective function in Eq. (13), the PA’s objective function is 

reformulated as: 

max
{𝐾𝑖1,𝐼𝑖1}

𝑆𝑊𝑖 = (
1

2
(𝐾̅𝑖 + 𝐾𝑖1)(𝑎 + (𝑎 − 𝑏(𝐾̅𝑖 + 𝐾𝑖1) + 𝑟(𝐾̅−𝑖 + 𝐾−𝑖1)))

−  𝐸𝑥1 [(𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖)]
+ − 𝑐𝑘𝐾𝑖1 − 𝐼𝑖1)

+ 𝛽 (
1

2
(𝐾̅𝑖 + 𝐾𝑖1)(𝑎 + (𝑎 − 𝑏(𝐾̅𝑖 + 𝐾𝑖1) + 𝑟(𝐾̅−𝑖 + 𝐾−𝑖1)))

− 𝐸𝑥2 [(𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]
+) 

(19) 

We first examine the adaptation investment decision. In the PA’s objective function, adaptation 

investment affects only the cost components, including: the disaster damage cost in period 1 (i.e., 

−  𝐸𝑥1 [(𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖)]
+), the adaptation investment cost in period 1 (i.e., −𝐼𝑖1), and 

the disaster damage cost in period 2 (i.e., − 𝛽 𝐸𝑥2 [(𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]
+ ). Thus, the 

optimal adaptation investment 𝐼𝑖1 should minimize these cost terms. We first derive the optimal 

𝐼𝑖1 as a function of 𝐾𝑖1, and then determine the optimal 𝐾𝑖1. The optimal 𝐼𝑖1 must satisfy:  

min
{𝐼𝑖1}   

𝐸𝑥1 [(𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]
+ + 𝐼𝑖1 + 𝛽 𝐸𝑥2  [(𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]

+. (20) 

To solve for optimal 𝐼𝑖1, the derivative of the objective function is taken with respect to 𝐼𝑖1, and 

the first-order condition (FOC) is as follows:  

𝜕𝐸𝑥1  [(𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]
+

𝜕𝐼𝑖1
+ 1 + 𝛽 ∙

𝜕𝐸𝑥2  [(𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]
+

𝜕𝐼𝑖1
= 0. (21) 

The FOC is equivalent to: 

𝜕𝐸𝑥1[𝐼((𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)) ∙ ((𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1))]

𝜕𝐼𝑖1
+ 1

+ 𝛽
𝜕𝐸𝑥2[𝐼((𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)) ∙ ((𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1))]

𝜕𝐼𝑖1
= 0, 
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where 𝐼(∙) represents the indicator function, defined as: 

𝐼(𝑥) = {
1, 𝑖𝑓 𝑥 > 0 
0, 𝑖𝑓 𝑥 ≤ 0

 

Since 
𝜕𝐸(𝐼(𝑓(𝑥))𝑓(𝑥))

𝜕𝑥
= 𝐸(𝐼(𝑓(𝑥))

𝜕𝑓(𝑥)

𝜕𝑥
), where 𝑓(𝑥) is any function of variable 𝑥, the FOC can be 

rewritten as: 

𝐸𝑥1[𝐼((𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)) ∙ (−𝜃)] + 1 + 𝛽 ∙ 𝐸𝑥2[𝐼((𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)) ∙ (−𝜃)]

= 0. 

Since 𝐸 (𝐼(𝑓(𝑥))) = 𝑃(𝑓(𝑥) > 0), the FOC can be reformulated as: 

(−𝜃) ∙ 𝑃((𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1) ≥ 0) + 1 + 𝛽 ∙ (−𝜃) ∙ 𝑃((𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1) ≥ 0)

= (−𝜃) ∙ (1 − 𝑃((𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1) ≤ 0)) + 1 + 𝛽 ∙ (−𝜃)

∙ (1 − 𝑃((𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1) ≤ 0))

= (−𝜃) ∙ (1 − 𝑃 (𝑥1 ≤
𝜃(𝐼𝑖̅ + 𝐼𝑖1)

(𝐾̅𝑖 + 𝐾𝑖1)
)) + 1 + 𝛽 ∙ (−𝜃)

∙ (1 − 𝑃 (𝑥2 ≤
𝜃(𝐼𝑖̅ + 𝐼𝑖1)

(𝐾̅𝑖 + 𝐾𝑖1)
)) = 0, 

which is equivalent to: 

(−𝜃) ∙ (1 − 𝐹𝑥1 (
𝜃(𝐼𝑖̅ + 𝐼𝑖1)

(𝐾̅𝑖 + 𝐾𝑖1)
)) + 1 + 𝛽 ∙ (−𝜃) ∙ (1 − 𝐹𝑥2 (

𝜃(𝐼𝑖̅ + 𝐼𝑖1)

(𝐾̅𝑖 + 𝐾𝑖1)
)) = 0, (22) 

where 𝐹𝑥𝑡(∙) is the CDF (cumulative distribution function) of 𝑥𝑡. 

To obtain a closed-form solution, we must assume a probability distribution for 𝑥𝑡. For tractability, 

we assume that 𝑥1~𝑈[0,1], meaning 𝑥1 follows a uniform distribution between 0 and 1, and that 

𝑥2~[0, 𝑥] , meaning 𝑥2  follows a uniform distribution between 0 and 𝑥 . The parameter 𝑥 

represents climate change trends. If 𝑥 > 1, it indicates worsening climate conditions. If 𝑥 < 1, it 

indicates improving climate conditions. 
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Given the distribution of 𝑥𝑡, four scenarios arise with respect to the values of 𝐹𝑥𝑡 (
𝜃(𝐼𝑖̅+𝐼𝑖1)

(𝐾̅𝑖+𝐾𝑖1)
). 

If 0 <
𝜃(𝐼𝑖̅+𝐼𝑖1)

𝐾̅𝑖+𝐾i1
< 𝑥 < 1  (scenario 1, illustrated in Figure 1(a)), 𝐹𝑥1 (

𝜃(𝐼𝑖̅+𝐼𝑖1)

(𝐾̅𝑖+𝐾𝑖1)
) =

𝜃(𝐼𝑖̅+𝐼𝑖1)

(𝐾̅𝑖+𝐾𝑖1)
 and 

𝐹𝑥2 (
𝜃(𝐼𝑖̅+𝐼𝑖1)

(𝐾̅𝑖+𝐾𝑖1)
) =

1

𝑥

𝜃(𝐼𝑖̅+𝐼𝑖1)

(𝐾̅𝑖+𝐾𝑖1)
.  

If 0 < 𝑥 <
𝜃(𝐼𝑖̅+𝐼𝑖1)

𝐾̅𝑖+𝐾i1
< 1  (scenario 2, illustrated in Figure 1(a)), 𝐹𝑥1 (

𝜃(𝐼𝑖̅+𝐼𝑖1)

(𝐾̅𝑖+𝐾𝑖1)
) =

𝜃(𝐼𝑖̅+𝐼𝑖1)

(𝐾̅𝑖+𝐾𝑖1)
 and 

𝐹𝑥2 (
𝜃(𝐼𝑖̅+𝐼𝑖1)

(𝐾̅𝑖+𝐾𝑖1)
) = 1.  

If 0 <
𝜃(𝐼𝑖̅+𝐼𝑖1)

𝐾̅𝑖+𝐾i1
< 1 < 𝑥  (scenario 3, illustrated in Figure 1(b)), 𝐹𝑥1 (

𝜃(𝐼𝑖̅+𝐼𝑖1)

(𝐾̅𝑖+𝐾𝑖1)
) =

𝜃(𝐼𝑖̅+𝐼𝑖1)

(𝐾̅𝑖+𝐾𝑖1)
 and 

𝐹𝑥2 (
𝜃(𝐼𝑖̅+𝐼𝑖1)

(𝐾̅𝑖+𝐾𝑖1)
) =

1

𝑥

𝜃(𝐼𝑖̅+𝐼𝑖1)

(𝐾̅𝑖+𝐾𝑖1)
.  

If 0 < 1 <
𝜃(𝐼𝑖̅+𝐼𝑖1)

𝐾̅𝑖+𝐾i1
< 𝑥  (scenario 4, illustrated in Figure 1(b)), 𝐹𝑥1 (

𝜃(𝐼𝑖̅+𝐼𝑖1)

(𝐾̅𝑖+𝐾𝑖1)
) = 1  and 

𝐹𝑥2 (
𝜃(𝐼𝑖̅+𝐼𝑖1)

(𝐾̅𝑖+𝐾𝑖1)
) =

1

𝑥

𝜃(𝐼𝑖̅+𝐼𝑖1)

(𝐾̅𝑖+𝐾𝑖1)
.  

 

     Figure 1(a)      Figure 1(b) 

Figure 1: Four scenarios with respect to the value of 𝐹𝑥𝑡 (
𝜃(𝐼𝑖̅+𝐼𝑖1)

(𝐾𝑖+𝐾𝑖1)
) 

The closed-form solutions of the four scenarios are derived in the following Subsection 3.2.2.1 to 

3.2.2.4. The comparative results for the following scenarios are summarized in Table 2.  
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3.2.2.1 Scenario 1: 𝟎 <
𝜽(𝑰̅𝒊+𝑰𝒊𝟏)

𝑲̅𝒊+𝑲𝒊𝟏
< 𝒙 < 𝟏 

The FOC in Eq. (22) can be rewritten as:  

(−𝜃) ∙ (1 − (
𝜃(𝐼𝑖̅ + 𝐼𝑖1)

𝐾̅𝑖 + 𝐾𝑖1
)) + 1 + 𝛽 ∙ (−𝜃) ∙

(

 
 
1 −

(

 

𝜃(𝐼𝑖̅ + 𝐼𝑖1)

𝐾̅𝑖 + 𝐾𝑖1
𝑥

)

 

)

 
 
= 0 

After rearranging the terms, the optimal adaptation investment in period 1 by port 𝑖 (𝐼𝑖1), expressed 

as a function of 𝐾𝑗1, can be obtained as:  

𝐼𝑖1 =
(𝐾̅𝑖 + 𝐾𝑖1)𝑥(𝜃 + 𝛽𝜃 − 1)

(𝑥 + 𝛽)𝜃2
− 𝐼𝑖̅. (23) 

Substituting Eq. (23) into the threshold, 
𝜃(𝐼𝑖̅+𝐼𝑖1)

𝐾̅𝑖+𝐾𝑖1
 , the range 0 <

𝜃(𝐼𝑖̅+𝐼𝑖1)

𝐾̅𝑖+𝐾𝑖1
< 𝑥 < 1 simplifies to 0 <

𝑥(𝜃+𝛽𝜃−1)

(𝑥+𝛽)𝜃
< 𝑥 < 1. Further rearrangement simplifies the range to 0 < 1 −

1

𝜃
< 𝑥 < 1.  

Within this range, the expected disaster cost in both periods at optimal 𝐼𝑖1 are calculated as follows, 

with details available in the Appendix A.3:  

𝐸𝑥1  [(𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]
+ =

(𝐾̅𝑖 + 𝐾𝑖1) ∙ (𝛽𝜃 − 𝑥(𝛽𝜃 − 1))
2

2(𝑥 + 𝛽)2𝜃2
. (24) 

𝐸𝑥2  [(𝐾̅𝑖 +𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]
+ =

(𝐾̅𝑖 + 𝐾𝑖1)𝑥(1 − (1 − 𝑥)𝜃)
2

2(𝑥 + 𝛽)2𝜃2
. 

(25) 

To simplify the expressions of equilibrium outcomes, the total cost in the social welfare function 

of port 𝑖 is denoted as 𝑇𝐶𝑖, which includes the capacity and adaptation investments and disaster 

damage costs over two periods.  

𝑇𝐶𝑖 =  𝐸𝑥1  [(𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]
+ + 𝑐𝑘 ∙ 𝐾𝑖1 + 𝐼𝑖1 + 𝐸𝑥2 [(𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]

+. 

Specifically, for scenario 1, by plugging in Eq. (23) to (25) into 𝑇𝐶𝑖, the total cost becomes:  

  𝑇𝐶𝑖
𝐼,1 =

(𝐾̅𝑖+𝐾𝑖1)∙(𝛽𝜃−𝑥(𝛽𝜃−1))
2

2(𝑥+𝛽)2𝜃2
+ 𝑐𝑘 ∙ 𝐾𝑖1 +

(𝐾̅𝑖+ 𝐾𝑖1)𝑥(𝜃+𝛽𝜃−1)

(𝑥+𝛽)𝜃2
− 𝐼𝑖̅ + 𝛽 ∙

(𝐾̅𝑖+𝐾𝑖1)𝑥(1−(1−𝑥)𝜃)
2

2(𝑥+𝛽)2𝜃2
, 

where the superscript I indicates Case I and superscript 1 indicates Scenario 1.  
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For simplicity, the derivative of the total cost with respect to 𝐾𝑖1 (i.e., 
𝜕𝑇𝐶𝑖

𝐼,1

𝜕𝐾𝑖1
) is denoted as the 

marginal cost 𝐶𝑖
𝐼,1

: 

𝐶𝑖
𝐼,1 =

𝜕𝑇𝐶𝑖
𝜕𝐾𝑖1

=
(𝛽𝜃 − 𝑥(𝛽𝜃 − 1))2

2(𝑥 + 𝛽)2𝜃2
+ 𝑐𝑘 +

𝑥(𝜃 + 𝛽𝜃 − 1)

(𝑥 + 𝛽)𝜃2
+ 𝛽

𝑥(1 − (1 − 𝑥)𝜃)2

2(𝑥 + 𝛽)2𝜃2
. (26) 

Eq. (26) sums all marginal-cost-related terms in social welfare into 𝐶𝑖
𝐼,1

. The equilibrium values 

of 𝜏𝑖𝑡, 𝑞𝑖𝑡, and 𝐼𝑖1 are expressed as functions of 𝐾𝑖1 in Eq. (15), (16) and (23). We substitute these 

expressions into the social welfare function in Eq. (19) and obtain the specific social welfare 

function for scenario 1:  

𝑆𝑊𝑖
𝐼,1 = (

1

2
(𝐾̅𝑖 + 𝐾𝑖1) (𝑎 + (𝑎 − 𝑏(𝐾̅𝑖 + 𝐾𝑖1) + 𝑟(𝐾̅−𝑖 + 𝐾−𝑖1)))) (1 + 𝛽) − 𝑇𝐶𝑖

𝐼,1. (27) 

The complete scenario-specific social welfare functions with calculated expressions for all three 

cases are provided in Appendix B.1.  

The FOC with respect to 𝐾𝑖1 can be obtained by solving two simultaneous FOCs (i.e., 
𝜕𝑆𝑊𝐴

𝜕𝐾𝐴1
=

0 𝑎𝑛𝑑 
𝜕𝑆𝑊𝐵

𝜕𝐾𝐵1
= 0): 

𝜕𝑆𝑊𝑖
𝐼,1

𝜕𝐾𝑖1
=
1

2
(2𝑎 − 2𝑏(𝐾̅𝑖 + 𝐾𝑖1) − (𝐾̅−𝑖 + 𝐾−𝑖1)𝑟)(1 + 𝛽) − 𝐶𝑖

𝐼,1. (28) 

By solving the first-order conditions in Eq. (28), the equilibrium capacity investment is calculated 

as follows:  

𝐾𝑖1
𝐼,1,∗ =

2((𝛽 + 1)𝑎 − 𝐶𝑖
𝐼,1)

(2𝑏 + 𝑟)(1 + 𝛽)
− 𝐾̅𝑖, (29) 

where * indicates the equilibrium and 𝐶𝑖
𝐼,1

 is expressed in Eq. (26). 
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The equilibrium capacity investment in Eq. (29) is subsequently substituted into Eq. (15) to (16) 

and (23) to derive the equilibrium adaptation investment, as well as the TOC-determined 

equilibrium prices and quantities across two periods: 

𝐼𝑖1
𝐼,1,∗ =

2𝑥(𝑎(1 + 𝛽) − 𝐶𝑖
𝐼,1)(−1 + 𝜃 + 𝛽𝜃)

(2𝑏 + 𝑟)(1 + 𝛽)(𝑥 + 𝛽)𝜃2
− 𝐼𝑖̅, (30) 

𝜏𝑖1
𝐼,1,∗ = 𝜏𝑖2

𝐼,1,∗ =
2(𝑏 + 𝑟)𝐶𝑖

𝐼,1 − 𝑎𝑟(1 + 𝛽)

(2𝑏 + 𝑟)(1 + 𝛽)
, 

(31) 

𝑞𝑖1
𝐼,1,∗ = 𝑞𝑖2

𝐼,1,∗ =
2(𝑎(1 + 𝛽) − 𝐶𝑖

𝐼,1)

(2𝑏 + 𝑟)(1 + 𝛽)
. 

(32) 

3.2.2.2 Scenario 2: 𝟎 < 𝒙 <
𝜽(𝑰̅𝒊+𝑰𝒊𝟏)

𝑲̅𝒊+𝑲𝒊𝟏
< 𝟏 

The FOC in Eq. (22) can be rewritten as:  

(−𝜃) ∙ (1 − (
𝜃(𝐼𝑖̅ + 𝐼𝑖1)

𝐾̅𝑖 + 𝐾𝑖1
)) + 1 + 𝛽 ∙ (−𝜃) ∙ (1 − 1) = 0. 

By rearranging the equation, the optimal adaptation investment of port 𝑖  in period 1 (𝐼𝑖1 ) is 

formulated as a function of 𝐾𝑖1:  

𝐼𝑖1 =
(𝐾̅𝑖 + 𝐾𝑖1)(−1 + 𝜃)

𝜃2
− 𝐼𝑖̅ . (33) 

By substituting Eq. (33) into the threshold expression, 
𝜃(𝐼𝑖̅+𝐼𝑖1)

𝐾̅𝑖+𝐾𝑖1
, the original range 0 < 𝑥 <

𝜃(𝐼𝑖̅+𝐼𝑖1)

𝐾̅𝑖+𝐾𝑖1
< 1 simplifies to 0 < 𝑥 <

−1+𝜃

𝜃
< 1. 

Within this range, the expected disaster costs over both periods based on the optimal 𝐼𝑖1  are 

determined as follows and the complete explanation is available in Appendix A.3:  

𝐸𝑥1  [(𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]
+ =

𝐾̅𝑖 + 𝐾𝑖1
2𝜃2

, 
(34) 

𝐸𝑥2 [(𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]
+ = 0. (35) 
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By following the same calculations in Scenario 1, the total cost in the social welfare function for 

port 𝑖 and Scenario 2 is presented as follows:  

𝑇𝐶𝑖
𝐼,2 =

𝐾̅𝑖 + 𝐾𝑖1
2𝜃2

+ 𝑐𝑘 ∙ 𝐾𝑖1 +
(𝐾̅𝑖 + 𝐾𝑖1)(−1 + 𝜃)

𝜃2
− 𝐼𝑖̅ + 𝛽 ∙ 0, 

where the superscript 𝐼 represents Case I and superscript 2 indicates Scenario 2.  

The marginal cost 𝐶𝑖
𝐼,2

 is defined as 
𝜕𝑇𝐶𝑖

𝐼,2

𝜕𝐾𝑖1
 for simplicity:  

𝐶𝑖
𝐼,2 =

𝜕𝑇𝐶𝑖
𝜕𝐾𝑖1

=
1

2𝜃2
+ 𝑐𝑘 +

(−1 + 𝜃)

𝜃2
. (36) 

In Eq. (15), (16) and (33), the equilibrium values of 𝜏𝑖𝑡, 𝑞𝑖𝑡, and 𝐼𝑖1 are expressed in terms of 𝐾𝑖1. 

These equations are then substituted into the social welfare function in Eq. (19) and the scenario-

specific social welfare function becomes:  

𝑆𝑊𝑖
𝐼,2 = (

1

2
(𝐾̅𝑖 + 𝐾𝑖1) (𝑎 + (𝑎 − 𝑏(𝐾̅𝑖 + 𝐾𝑖1) + 𝑟(𝐾̅−𝑖 + 𝐾−𝑖1)))) (1 + 𝛽) − 𝑇𝐶𝑖

𝐼,2. (37) 

By taking Eq. (37) with respect to 𝐾𝑖1 (i.e., 
𝜕𝑆𝑊𝐴

𝜕𝐾𝐴1
= 0 and 

𝜕𝑆𝑊𝐵

𝜕𝐾𝐵1
= 0), the first order condition is 

derived:  

𝜕𝑆𝑊𝑖
𝐼,2

𝜕𝐾𝑖1
=
1

2
(2𝑎 − 2𝑏(𝐾̅𝑖 + 𝐾𝑖1) − (𝐾̅−𝑖 + 𝐾−𝑖1)𝑟)(1 + 𝛽) − 𝐶𝑖

𝐼,2. (38) 

By solving the first-order conditions for ports A and B, the equilibrium capacity investments are 

obtained:  

𝐾𝑖1
𝐼,2,∗ =

2((𝛽 + 1)𝑎 − 𝐶𝑖
𝐼,2)

(2𝑏 + 𝑟)(1 + 𝛽)
− 𝐾̅𝑖. 

(39) 

Eq. (39) is then substituted in equations (15) to (16) and (33) to calculate equilibrium values for 

adaptation investment, traffic volume and port charge across two periods:  

𝐼𝑖1
𝐼,2,∗ =

2(𝑎(1 + 𝛽) − 𝐶𝑖
𝐼,2)(𝜃 − 1)

(2𝑏 + 𝑟)(1 + 𝛽)𝜃2
− 𝐼𝑖̅, (40) 
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𝑞𝑖1
𝐼,2,∗ = 𝑞𝑖2

𝐼,2,∗ =
2(𝑎(1 + 𝛽) − 𝐶𝑖

𝐼,2)

(2𝑏 + 𝑟)(1 + 𝛽)
, 

(41) 

𝜏𝑖1
𝐼,2,∗ = 𝜏𝑖2

𝐼,2,∗ =
2(𝑏 + 𝑟)𝐶𝑖

𝐼,2 − 𝑎𝑟(1 + 𝛽)

(2𝑏 + 𝑟)(1 + 𝛽)
. 

(42) 

  

3.2.2.3 Scenario 3: 𝟎 <
𝜽(𝑰̅𝒊+𝑰𝒊𝟏)

𝑲̅𝒊+𝑲𝒊𝟏
< 𝟏 < 𝒙 

Eq. (22) can be reformulated as follows:  

(−𝜃) ∙ (1 − (
𝜃(𝐼𝑖̅ + 𝐼𝑖1)

𝐾̅𝑖 + 𝐾𝑖1
)) + 1 + 𝛽 ∙ (−𝜃) ∙

(

 
 
1 −

(

 

𝜃(𝐼𝑖̅ + 𝐼𝑖1)

𝐾̅𝑖 + 𝐾𝑖1
𝑥

)

 

)

 
 
= 0. 

By rearranging the equation, the optimal adaptation investment is expressed as a function of 𝐾𝑖1:  

𝐼𝑖1 =
(𝐾̅𝑖 + 𝐾𝑖1)𝑥(−1 + 𝜃 + 𝛽𝜃)

(𝑥 + 𝛽)𝜃2
− 𝐼𝑖̅. (43) 

The equation (43) is then substituted into the threshold, 
𝜃(𝐼𝑖̅+𝐼𝑖1)

𝐾̅𝑖+𝐾𝑖1
, and the simplified range is 

calculated as: 0 <
𝑥(−1+𝜃+𝛽𝜃)

(𝑥+𝛽)𝜃
< 1 < 𝑥. 

Appendix A.3 shows calculation of disaster costs which match the results from Eq. (24) and (25) 

in Scenario 1:  

                           𝐸𝑥1 [(𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]
+ =

(𝐾̅𝑖+𝐾𝑖1)∙(𝛽𝜃−𝑥(𝛽𝜃−1))
2

2(𝑥+𝛽)2𝜃2
                     

                        𝐸𝑥2  [(𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]
+ =

(𝐾̅𝑖+𝐾𝑖1)𝑥(1−(1−𝑥)𝜃)
2

2(𝑥+𝛽)2𝜃2
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With only differences in the ranges of disaster intensity (𝑥 < 1  in Scenario 1 and 𝑥 > 1  in 

Scenario 3), Scenario 3 and Scenario 1 share identical calculations and results. Consequently, the 

marginal cost function for Scenario 3 is the same as in Scenario 1 with only changes in superscript 

from Eq. (26) and is given by (𝐶𝑖
𝐼,1 = 𝐶𝑖

𝐼,3
):  

𝐶𝑖
𝐼,3 =

𝜕𝑇𝐶𝑖
𝜕𝐾𝑖1

=
(𝛽𝜃 − 𝑥(𝛽𝜃 − 1))2

2(𝑥 + 𝛽)2𝜃2
+ 𝑐𝑘 +

𝑥(𝜃 + 𝛽𝜃 − 1)

(𝑥 + 𝛽)𝜃2
+ 𝛽

𝑥(1 − (1 − 𝑥)𝜃)2

2(𝑥 + 𝛽)2𝜃2
. 

All other parameter calculations including equilibrium capacity investments, TOC-selected 

equilibrium prices and quantities across both periods remain the same as in Scenario 1 which is 

shown in Eq. (29), (31) and (32).  

3.2.2.4 Scenario 4: 𝟏 <
𝜽(𝑰̅𝒊+𝑰𝐢𝟏)

𝑲̅𝒊+𝑲𝒊𝟏
< 𝒙 

Eq. (22) can be rearranged in the following form:  

                      (−𝜃) ∙ (1 − 1) + 1 + 𝛽 ∙ (−𝜃) ∙ (1 − (

𝜃(𝐼̅𝑖+𝐼𝑖1)

𝐾̅𝑖+𝐾𝑖1

𝑥
)) = 0. 

After rearranging, the optimal adaptation investment equation in period 1 becomes:  

𝐼𝑖1 =
(𝐾̅𝑖 + 𝐾𝑖1)𝑥(−1 + 𝛽𝜃)

𝛽𝜃2
− 𝐼𝑖̅. (44) 

The range 1 <
𝜃(𝐼𝑗̅+𝐼j1)

𝐾̅𝑗+𝐾j1
< 𝑥 is simplified by incorporating equation (44) in the threshold, 

𝜃(𝐼𝑖̅+𝐼𝑖1)

𝐾̅𝑖+𝐾𝑖1
 

and the range is expressed as: 0 < 1 < 𝑥 −
𝑥

𝛽𝜃
< 𝑥. 

The expected disaster costs follow similar calculations as in the above scenarios with details 

provided in the Appendix A.3:  

𝐸𝑥1  [(𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]
+ = 0, (45) 

𝐸𝑥2 [(𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]
+ =

(𝐾̅𝑖 + 𝐾𝑖1)𝑥

2𝛽2𝜃2
. 

(46) 
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Applying the same calculation procedure in early scenarios, the total cost in the social welfare 

function for port 𝑖 in Scenario 4 is expressed as: 

𝑇𝐶𝑖
𝐼,4 = 0 + 𝑐𝑘 ∙ 𝐾𝑖1 +

(𝐾̅𝑖 + 𝐾𝑖1)𝑥(−1 + 𝛽𝜃)

𝛽𝜃2
− 𝐼𝑖̅ + 𝛽 ∙

(𝐾̅𝑖 + 𝐾𝑖1)𝑥

2𝛽2𝜃2
. 

By taking derivative with respect to 𝐾𝑖1, the result is represented as 𝐶𝐼,4: 

𝐶𝑖
𝐼,4 =

𝜕𝑇𝐶𝑖
𝜕𝐾𝑖1

= 𝑐𝑘 +
𝑥(−1 + 𝛽𝜃)

𝛽𝜃2
+ 𝛽 ∙

𝑥

2𝛽2𝜃2
. 

The equilibrium values of 𝜏𝑖𝑡, 𝑞𝑖𝑡, and 𝐼𝑖1 are expressed as functions of 𝐾𝑖1 in Eq. (15), (16) and 

(44). These expressions are substituted into the social welfare function in Eq. (19) and reorganized 

as:  

𝑆𝑊𝑖
𝐼,4 = (

1

2
(𝐾̅𝑖 + 𝐾𝑖1) (𝑎 + (𝑎 − 𝑏(𝐾̅𝑖 + 𝐾𝑖1) + 𝑟(𝐾̅−𝑖 + 𝐾−𝑖1)))) (1 + 𝛽) − 𝑇𝐶𝑖

𝐼,4. (47) 

The FOC with respect to 𝐾𝑖1 can be obtained by differentiating 𝑆𝑊𝐴 and 𝑆𝑊𝐵 with respect to 𝐾𝐴1 

and 𝐾𝐵1 simultaneously and the result is as follows:  

𝜕𝑆𝑊𝑖
𝐼,4

𝜕𝐾𝑖1
=
1

2
(2𝑎 − 2𝑏(𝐾̅𝑖 + 𝐾𝑖1) − (𝐾̅−𝑖 + 𝐾−𝑖1)𝑟)(1 + 𝛽) − 𝐶𝑖

𝐼,4.  

The equilibrium capacity investment of port 𝑖  are derived by solving the above first-order 

conditions for ports A and B:   

𝐾𝑖1
∗ =

2(𝑎(𝛽 + 1) − 𝐶𝑖
𝐼,4)

(2𝑏 + 𝑟)(1 + 𝛽)
− 𝐾̅𝑖, (48) 

The remaining equilibrium values are determined by substituting 𝐾𝑖1
∗ into equations (15) to (16) 

and (44):   

𝐼𝑖1
∗ =

2𝑥(−1 + 𝛽𝜃)(𝑎(1 + 𝛽) − 𝐶𝑖
𝐼,4)

(2𝑏 + 𝑟)𝛽(1 + 𝛽)𝜃2
− 𝐼𝑖̅ , (49) 

𝜏𝑖1
𝐼,4,∗ = 𝜏𝑖2

𝐼,4,∗ =
2(𝑏 + 𝑟)𝐶𝑖

𝐼,4 − 𝑎𝑟(1 + 𝛽)

(2𝑏 + 𝑟)(1 + 𝛽)
, 

(50) 
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𝑞𝑖1
𝐼,4,∗ = 𝑞𝑖2

𝐼,4,∗ =
2(𝑎(1 + 𝛽) − 𝐶𝑖

𝐼,4)

(2𝑏 + 𝑟)(1 + 𝛽)
. 

(51) 

3.3 Case II: Both ports invest in period 2 

3.3.1 Problem formulation 

Stage 1: PAs’ social welfare maximization problem 

In Case II, the Port Authorities (PAs) of both ports A and B defer capacity (𝐾𝑖2) and adaptation 

investment decisions (𝐼𝑖2) to period 2. Since no investments are made in period 1, the capacity and 

adaptation investments remain at their initial endowment levels, 𝐾̅𝑖  and 𝐼𝑖̅  respectively. Once 

investments are made in period 2, the available capacity and adaptation levels become 𝐾̅𝑖 + 𝐾𝑖2 

and 𝐼𝑖̅ + 𝐼𝑖2 respectively.  

As shown in Case I, the objective of the PAs for both ports are to maximize social welfare. The 

total consumer surplus remains unchanged from Eq. (9) because investment timing influences only 

the disaster costs and the PA decisions without changing consumer behavior.   

Since ports do not make investment in period 1, the expected disaster cost in period 1, 𝐷𝑖1, only 

relates to initial adaptation and capacity levels:  

𝐷𝑖1 = 𝐸𝑥1  [𝐾̅𝑖 ∙ 𝑥1 − 𝜃 ∙ 𝐼𝑖̅]
+. (52) 

With the investments in period 2, the expected disaster cost in period 2, 𝐷𝑖2, is expressed as:  

𝐷𝑖2 = 𝐸𝑥2  [(𝐾̅𝑖 + 𝐾𝑖2)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖2)]
+. 

 
 (53) 

The objective function of the PAs in Case II can be formulated as:  

max
{𝐾𝑖2,𝐼𝑖2}

𝑆𝑊𝑖 = (
1

2
𝑞𝑖1(𝑎 + 𝜏𝑖1) −  𝐸𝑥1  [𝐾̅𝑖 ∙ 𝑥1 − 𝜃 ∙ 𝐼𝑖̅]

+)

+ 𝛽 (
1

2
𝑞𝑖2(𝑎 + 𝜏𝑖2) − 𝐸𝑥2  [(𝐾̅𝑖 + 𝐾𝑖2)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖2)]

+ − 𝑐𝑘𝐾𝑖2 − 𝐼𝑖2). 

(54) 
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Stage 2: TOCs’ profit maximization problem  

The TOC of port 𝑖 maximizes its profits in both periods and is constrained by available capacity 

levels:  

max
{𝜏𝑖1}

 𝜋𝑖1 = 𝜏𝑖1𝑞𝑖1 

𝑠. 𝑡. 𝑞𝑖1 ≤ 𝐾̅𝑖 
(55) 

max
{𝜏𝑖2}

 𝜋𝑖2 = 𝜏𝑖2𝑞𝑖2 

𝑠. 𝑡. 𝑞𝑖2 ≤ 𝐾̅𝑖 + 𝐾𝑖2 

(56) 

  

3.3.2 Model analysis 

In period 1, if the capacity constraint is binding for both ports, the equilibrium traffic volume at 

port 𝑖 simply equals to the initial capacity endowment:  

𝑞𝑖1 = 𝐾̅𝑖 . (57) 

The Eq. (57) is then incorporated into Eq. (3) and (4) to obtain the equilibrium port prices:  

𝜏𝑖1 = 𝑎 − 𝑏𝐾̅𝑖 + 𝑟𝐾̅−𝑖. (58) 

If the capacity constraint is non-binding, equilibrium port charges, 𝜏𝑖1  and equilibrium traffic 

volume, 𝑞𝑖1, are calculated exactly as in Case I with the identical results in Eq. (17) and (18).  

In period 2, when the capacity constraint is binding for both ports 𝑖, the equilibrium traffic volume 

at port 𝑖 can be formulated as:  

𝑞𝑖2 = 𝐾̅𝑖 + 𝐾𝑖2. (59) 

The Eq. (59) is then incorporated into the inverse demand functions in Eq. (3) and (4) and the 

equilibrium port charge is obtained:  

𝜏𝑖2 = 𝑎 − 𝑏(𝐾̅𝑖 + 𝐾𝑖2) + 𝑟(𝐾̅−𝑖 + 𝐾−𝑖2). (60) 

For non-binding capacity constraint, the equilibrium port charges, 𝜏𝑖2 traffic volume, 𝑞𝑖2, follow 

the same calculation in Case I as presented in Eq. (17) and (18).  

The PAs determine their investment decisions by anticipating the TOCs’ equilibrium choices. In 

period 1, the initial capacity endowment naturally governs the TOCs’ equilibrium capacity choices. 



36 

 

In period 2, if the PAs invest in a capacity that exceeds the equilibrium needs of the TOCs (i.e., 

𝐾̅𝑖 + 𝐾𝑖2 >
𝑎𝑏

(2𝑏−𝑟)(𝑏+𝑟)
), it results in overinvestment, because the same results will be achieved by 

investing exactly the amount required by the TOCs (i.e., 𝐾̅𝑖 + 𝐾𝑖2 =
𝑎𝑏

(2𝑏−𝑟)(𝑏+𝑟)
). Therefore, at 

equilibrium, the capacity constraint is always binding. 

By substituting Eq. (57) to (60) into Eq. (54), the PAs’ objective function is rewritten as:  

max
{𝐾𝑖2,𝐼𝑖2}

𝑆𝑊𝑖 = (
1

2
𝐾̅𝑖(𝑎 + (𝑎 − 𝑏𝐾̅𝑖 + 𝑟𝐾̅−𝑖)) −  𝐸𝑥1  [𝐾̅𝑖 ∙ 𝑥1 − 𝜃 ∙ 𝐼𝑖̅]

+)

+ 𝛽 (
1

2
(𝐾̅𝑖 + 𝐾𝑖2)(𝑎 + (𝑎 − 𝑏(𝐾̅𝑖 + 𝐾𝑖2) + 𝑟(𝐾̅−𝑖 + 𝐾−𝑖2)))

− 𝐸𝑥2 [(𝐾̅𝑖 + 𝐾𝑖2)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖2)]
+ − 𝑐𝑘𝐾𝑖2 − 𝐼𝑖2). 

(61) 

In Eq. (61), the adaptation investment, 𝐼𝑖2 , only influences the disaster cost in period 2 (i.e., 

 𝐸𝑥2  [(𝐾̅𝑖 + 𝐾𝑖2)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖2)]
+) and adaptation investment cost in period 2 (i.e., −𝐼𝑖2). Thus, 

the optimal adaptation investment 𝐼𝑖2 is calculated by minimizing these total costs and is expressed 

as:  

min
{𝐼𝑖2}

𝐸𝑥2 [(𝐾̅𝑖 + 𝐾𝑖2)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖2)]
+  + 𝐼𝑖2. (62) 

Following the same process as in Case I, the function is minimized by taking the partial derivative 

with respect to 𝐼𝑖2, with the details in the Appendix B.2, the function simplifies to:  

𝐹𝑥2 (
𝜃(𝐼𝑖̅ + 𝐼𝑖2)

𝐾̅𝑖 + 𝐾𝑖2
) = 1 −

1

𝜃
. 

Since 𝑥2~𝑈[0, 𝑥], the above equation can be rewritten as:  

(
𝜃(𝐼𝑖̅ + 𝐼𝑖2)

𝐾̅𝑖 + 𝐾𝑖2
) ∙
1

𝑥
= 1 −

1

𝜃
. 

By rearranging this equation, the adaptation investment of the PAs as a function of capacity is 

given by:  

𝐼𝑖2 = −𝐼𝑖̅ +
(𝐾̅𝑖 + 𝐾𝑖2)(−1 + 𝜃)

𝜃2
. (63) 
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Case II has only one valid range:  

0 <
𝜃(𝐼𝑖̅ + 𝐼𝑖2)

𝐾̅𝑖 + 𝐾𝑖2
< 𝑥. 

If the scenario for the threshold that exceeds the upper range (i.e.,  𝑥 <
𝜃(𝐼𝑖̅+𝐼𝑖2)

𝐾̅𝑖+𝐾𝑖2
), the cumulative 

distribution function 𝐹𝑥2 (
𝜃(𝐼𝑖̅+𝐼𝑖2)

𝐾̅𝑖+𝐾𝑖2
) would equal to 1, which is higher than the right-hand side of   

1 −
1

𝜃
 , making the equation not equal.  The optimal condition of adaptation investment, 𝐼𝑖2, in Eq. 

(63) will not hold. The range can be further simplified as: 0 < 𝑥(1 −
1

𝜃
) <  𝑥. 

To calculate disaster costs in period 1, we assume the endowment capacity and adaptation are at 

their optimal levels. Following a similar process, with the details in Appendix B.2, the optimal 𝐼𝑖̅ 

can be determined as follows:   

                                                      𝐼𝑖̅ =
1

𝜃
∙ 𝐾̅𝑖 ∙ (1 − 𝜃). 

The expected disaster costs at the optimal investment, 𝐼𝑖2 , across both periods are shown in 

Appendix A.3:  

𝐸𝑥1 [𝐾̅𝑖 ∙ 𝑥1 − 𝜃 ∙ 𝐼𝑖̅]
+ =

𝐾̅𝑖
2𝜃2

, (64) 

𝐸𝑥2 [(𝐾̅𝑖 + 𝐾𝑖2)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖2)]
+ =

(𝐾̅𝑖 + 𝐾𝑖2)𝑥

2𝜃2
. 

(65) 

For port 𝑖, the total cost in the social welfare function becomes:  

𝑇𝐶𝑖 =  𝐸𝑥1  [𝐾̅𝑖 ∙ 𝑥1 − 𝜃 ∙ 𝐼𝑖̅]
+ + 𝑐𝑘 ∙ 𝐾𝑖2 + 𝐼𝑖2 + 𝐸𝑥2 [(𝐾̅𝑖 + 𝐾𝑖2)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖2)]

+. 

By substituting Eq. (63) to (65), the function is presented as:  

𝑇𝐶𝑖
𝐼𝐼 =

𝐾̅𝑖
2𝜃2

+ 𝑐𝑘 ∙ 𝐾𝑖2 +
(𝐾̅𝑖 + 𝐾𝑖2)(−1 + 𝜃)

𝜃2
− 𝐼𝑖̅ + 𝛽 ∙

(𝐾̅𝑖 + 𝐾𝑖2)𝑥

2𝜃2
, 

where the superscript I indicates Case II. 
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The marginal cost function, 𝐶𝑖
𝐼𝐼 is calculated by taking the derivative of total cost with respect to 

𝐾𝑖2 (i.e., 
𝜕𝑇𝐶𝑖

𝐼𝐼

𝜕𝐾𝑖2
) and the resulting expression is given by:  

𝐶𝑖
𝐼𝐼 =

𝜕𝑇𝐶𝑖
𝐼𝐼

𝜕𝐾𝑖2
=

1

2𝜃2
+ 𝑐𝑘 +

(−1 + 𝜃)

𝜃2
+ 𝛽 ∙

𝑥

2𝜃2
. (66) 

The expressions in Eq. (57) to (60) and (63) are substituted in the social welfare equation in Eq. 

(68). The social welfare function in Eq. (61) can be reorganized as:  

𝑆𝑊𝑖
𝐼𝐼 = (

1

2
𝐾̅𝑖(𝑎 + (𝑎 − 𝑏𝐾̅𝑖 + 𝑟𝐾̅−𝑖)))

+
𝛽

2
(𝐾̅𝑖 + 𝐾𝑖2) (𝑎 + (𝑎 − 𝑏(𝐾̅𝑖 + 𝐾𝑖2) + 𝑟(𝐾̅−𝑖 + 𝐾−𝑖2))) − 𝑇𝐶𝑖

𝐼𝐼 . 

 

(67) 

By taking the partial derivatives of the social welfare function with respect to capacity investment 

simultaneously (i.e., 
𝜕𝑆𝑊𝐴

𝜕𝐾𝐴2
= 0 and 

𝜕𝑆𝑊𝐵

𝜕𝐾𝐵2
= 0), the FOC is obtained:  

𝜕𝑆𝑊𝑖
𝐼𝐼

𝜕𝐾𝑖2
=
𝛽

2
(2𝑎 − 2𝑏(𝐾̅𝑖 + 𝐾𝑖2) − (𝐾̅−𝑖 + 𝐾−𝑖2)𝑟) − 𝐶𝑖

𝐼𝐼 , (68) 

where 𝐶𝑖
𝐼𝐼 is from Eq. (66).  

The equilibrium capacity investment of port 𝑖 can be calculated by solving Eq. (68):  

𝐾𝑖2
𝐼𝐼,∗ =

2((𝛽 + 1)𝑎 − 𝐶𝑖
𝐼𝐼)

(2𝑏 + 𝑟)(1 + 𝛽)
− 𝐾̅𝑖, 

 

(69) 

where 𝐶𝑖
𝐼𝐼 is from Eq. (66). 

The Eq. (69) is then incorporated into Eq. (57) to (60) and (63) to calculate the equilibrium 

adaptation investment and the TOCs decisions on port prices and throughput quantities across two 

periods:  

𝐼𝑖2
∗ =

2(𝑎𝛽 − 𝐶𝑖
𝐼𝐼)𝑥(−1 + 𝜃)

(2𝑏 + 𝑟)𝛽𝜃2
− 𝐼𝑖̅, 

(70) 

𝑞𝑖1
∗ = 𝐾̅𝑖, (71) 

𝜏𝑖1
∗ = 𝑎 − 𝑏𝐾̅𝑖 − 𝑟𝐾̅−𝑖, (72) 
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𝑞𝑖2
∗ =

2(𝑎𝛽 − 𝐶𝑖
𝐼𝐼)

(2𝑏 + 𝑟)𝛽
, 

 

(73) 

𝜏𝑖2
∗ = −

𝑎𝑟𝛽 − 2𝑏𝐶𝑖
𝐼𝐼 − 2𝑟𝐶𝑖

𝐼𝐼

(2𝑏 + 𝑟)𝛽
. 

(74) 

  
The comparative analysis is summarized in Table 2.   

3.4 Case III: Port A invests in period 1 and Port B invests in period 2 

3.4.1 Problem formulation 

Stage 1: PAs’ social welfare maximization problem 

Under Case III assumptions, two situations are possible: port A invests early, while port B invests 

late, or port A invests late, while port B invests early. Due to the symmetrical results between these 

two situations, the study only focuses on the first situation in which port A invests in the first 

period and port B in the second period. In this case, the PA of port A makes capacity (𝐾𝐴1) and 

adaptation investments (𝐼𝐴1) in period 1 and the PA of port B decides on capacity (𝐾𝐵2) and 

adaptation investments (𝐼𝐵2) choices in period 2.  

As shown in Case I, the PAs’ objective is to maximize social welfare and the consumer surplus in 

Eq. (9) and the TOCs’ function for both ports 𝑖 in Eq. (10) remain unchanged.  

Due to the differences in investment timing, ports A and B each follow the disaster damage cost 

function separately as in Case I and II. Thus, for port A, the disaster cost function is exactly the 

same as in Case I in Eq. (11) and (12), and for port B, the disaster cost function is given by Eq. 

(52) and (53). Thus, every term in the social welfare function for port A and port B respectively 

are the same as in Eq. (19) and Eq. (61).  

Stage 2: TOCs’ profit maximization problem  

The TOCs of port A and B maximize its profit in each period and are constrained by its capacity 

which remains the same as in Eq. (14) and (55) to (56):  

max
{𝜏𝐴𝑡}

 𝜋𝐴𝑡 = 𝜏𝐴𝑡𝑞𝐴𝑡 

𝑠. 𝑡. 𝑞𝐴𝑡 ≤ 𝐾̅𝐴 + 𝐾𝐴1 
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max
{𝜏𝐵1}

 𝜋𝐵1 = 𝜏𝐵1𝑞𝐵1 

𝑠. 𝑡. 𝑞𝐵1 ≤ 𝐾̅𝐵 
 

max
{𝜏𝐵2}

 𝜋𝐵2 = 𝜏𝐵2𝑞𝐵2 

𝑠. 𝑡. 𝑞𝐵2 ≤ 𝐾̅𝐵 + 𝐾𝐵2 

 

3.4.2 Model analysis 

3.4.2.1 Ports A and B operate under capacity binding constraints across both periods 

In this situation, both ports A and B operate under capacity binding constraints across both periods. 

For port A, the PAs in period 1 invest the capacity investment that exactly match the TOCs’ 

optimal throughput quantities because the PAs have full knowledge of TOCs’ throughput decisions 

which avoid over- or under- investments. In period 2, port A naturally takes on capacity binding 

constraints because the capacity investment of the PAs in the first period are optimal and by 

continuing operating under binding constraints, port A maintains optimal results and avoids waste 

in throughput quantities. For port B, in period 1, the capacity constraint is binding because no 

additional capacity and adaptation investments are incurred in this period. The throughput 

quantities chosen by TOCs are exactly met by initial capacity endowment to ensure efficiency and 

optimality. In period 2, the capacity investment of the PA of port B will invest the amount that 

exactly matches the throughput need of port B to avoid inefficiencies and ensure the social welfare 

is maximized. Thus, port B in period 2 also remains capacity binding.  

Similar to Case I and II, the results below are derived using backward inductions which ensure 

that TOCs’ decisions are integrated into the PAs’ optimal investment choices. The equilibrium 

traffic volume at port A and B for period 1 is given by:  

𝑞𝐴1 = 𝐾̅𝐴 +𝐾𝐴1, 
(75) 

𝑞𝐵1 = 𝐾̅𝐵. (76) 

The Eq. (75) and (76) are substituted in the inverse demand function in Eq. (3) and (4) to calculate 

equilibrium port charges for port 𝑖 in period 1:  

𝜏𝑖1 = 𝑎 − 𝑏𝐾̅𝑖 − 𝑏𝐾𝑖1 − 𝐾̅−𝑖𝑟. 
(77) 
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Similarly, in period 2, the equilibrium throughput quantities at port A and B are derived as:  

𝑞𝐴2 = 𝐾̅𝐴 +𝐾𝐴1, 
(78) 

𝑞𝐵2 = 𝐾̅𝐵 + 𝐾𝐵2. (79) 

By substituting Eq. (78) and (79) into Eq. (3) and (4), the equilibrium traffic volume for port 𝑖 in 

period 2 is given by:  

𝜏𝑖2 = 𝑎 − 𝑏𝐾𝑖1 − 𝑟𝐾−𝑖2 − 𝑏𝐾̅𝑖 − 𝑟𝐾̅−𝑖. (80) 

As mentioned above, port A’s disaster costs and adaptation investment, 𝐼𝐴1, for early investments 

match the calculations in Case I and port B’s disaster costs and adaptation investment function, 

𝐼𝐵2, for late investments follow the calculations in Case II. Therefore, the results of optimal 𝐼𝐴1 for 

four different ranges and optimal 𝐼𝐵2 remain unchanged as shown in Eq. (23), (33), (43), (44) and 

(63).  

The full comparative analysis for Case III is excluded from Table 2 because only port A’s 

sensitivity results demonstrate a clear directional effect of the parameters, and port B’s results 

remain unclear.  

3.4.2.1.1 Scenario 1: 𝟎 <
𝜽(𝑰̅𝒊+𝑰𝒊𝟏)

𝑲̅𝒊+𝑲𝒊𝟏
< 𝒙 < 𝟏 

By following the calculations in Case I and II, the adaptation investment function 𝐼𝐴1 and 𝐼𝐵2 are 

directly from equations (23) and (63) respectively. The disaster costs remain the same as Eq. (24) 

and (25) in Case I for port A and Eq. (64) and (65) in Case II for port B. Thus, the total cost in the 

social welfare function for port A and B can be derived as:  

𝑇𝐶𝐴
𝐼𝐼𝐼,1 =

(𝐾̅𝐴 + 𝐾𝐴1) ∙ (𝛽𝜃 − 𝑥(𝛽𝜃 − 1))
2

2(𝑥 + 𝛽)2𝜃2
+ 𝑐𝑘 ∙ 𝐾𝐴1 +

(𝐾̅𝐴 + 𝐾𝐴1)𝑥(𝜃 + 𝛽𝜃 − 1)

(𝑥 + 𝛽)𝜃2
− 𝐼𝐴̅ + 𝛽

∙
(𝐾̅𝐴 +𝐾𝐴1)𝑥(1 − (1 − 𝑥)𝜃)

2

2(𝑥 + 𝛽)2𝜃2
, 
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𝑇𝐶𝐵
𝐼𝐼𝐼,1 =

𝐾̅𝐵
2𝜃2

+ 𝑐𝑘 ∙ 𝐾𝐵2 +
(𝐾̅𝐵 + 𝐾𝐵2)(−1 + 𝜃)

𝜃2
− 𝐼𝐵̅ + 𝛽 ∙

(𝐾̅𝐵 + 𝐾𝐵2)𝑥

2𝜃2
, 

where the superscript III indicates Case III and superscript 1 indicates Scenario 1.  

The marginal cost 𝐶𝐴
𝐼𝐼𝐼,1

 and 𝐶𝐵
𝐼𝐼𝐼,1

 are calculated by taking derivative of the total cost with respect 

to 𝐾𝐴1 and 𝐾𝐵2 respectively: 

𝐶𝐴
𝐼𝐼𝐼,1 =

𝜕𝑇𝐶𝐴
𝐼𝐼𝐼,1

𝜕𝐾𝐴1
=
(𝛽𝜃 − 𝑥(𝛽𝜃 − 1))2

2(𝑥 + 𝛽)2𝜃2
+ 𝑐𝑘 +

𝑥(𝜃 + 𝛽𝜃 − 1)

(𝑥 + 𝛽)𝜃2
+ 𝛽

𝑥(1 − (1 − 𝑥)𝜃)2

2(𝑥 + 𝛽)2𝜃2
, 

𝐶𝐵
𝐼𝐼𝐼,1 =

𝜕𝑇𝐶𝐵
𝐼𝐼𝐼,1

𝜕𝐾𝐵2
=

1

2𝜃2
+ 𝑐𝑘 +

(−1 + 𝜃)

𝜃2
+ 𝛽 ∙

𝑥

2𝜃2
. 

The equilibrium values of port A and B in Eq. (75) to (80) and adaptation investments, 𝐼𝐴1 and 𝐼𝐵2, 

in Eq. (23) and (63) with the above two marginal cost functions are substituted into the social 

welfare functions in Eq. (19) and (61) for port A and B respectively. Then, these two social welfare 

functions are taking derivative with respect to 𝐾𝐴1 and 𝐾𝐵2 to solve for the equilibrium capacity 

investment for port A and B (i.e., 
𝜕𝑆𝑊𝐴

𝜕𝐾𝐴1
= 0 and 

𝜕𝑆𝑊𝐵

𝜕𝐾𝐵2
= 0):  

 

The equilibrium capacity investments for both ports in Eq. (81) and (82) are then substituted to Eq. 

(23), (63) and (75) to (80) to calculate the equilibrium adaptation investments as well as the 

equilibrium throughput quantities and prices determined by TOCs. 

𝐾𝐴1
𝐼𝐼𝐼,1,∗ =

4𝑏(𝑎(1 + 𝛽) − 𝐶𝐴
𝐼𝐼𝐼,1) + 2𝑟(𝐶𝐵

𝐼𝐼𝐼,1 − 𝑏𝐾̅𝐵 − 𝑎𝛽)

4𝑏2 + 4𝑏2𝛽 − 𝑟2𝛽
− 𝐾̅𝐴, 

 

(81) 

𝐾𝐵2
𝐼𝐼𝐼,1,∗ =

4𝑏(𝛽 + 1)(𝑎𝛽 − 𝐶𝐵
𝐼𝐼𝐼,1) − 2𝛽𝑟(𝑎(𝛽 + 1) − 𝐶𝐴

𝐼𝐼𝐼,1) + 𝐾̅𝐵𝑟
2𝛽

𝛽(4𝑏2 + 4𝑏2𝛽 − 𝑟2𝛽)
− 𝐾̅𝐵. 

(82) 

𝐼𝐴1
∗ = 2(−1 + 𝜃 + 𝛽𝜃)𝑥

(2𝑏(𝑎 − 𝐶𝐴
𝐼𝐼𝐼,1) + 𝑟(𝐶𝐵

𝐼𝐼𝐼,1 − 𝑏𝐾̅𝐵) + 𝑎𝛽(2𝑏 − 𝑟))

(𝑥 + 𝛽)(−𝑟2𝛽 + 4𝑏2(1 + 𝛽))𝜃2
− 𝐼𝐴̅, 

𝐼𝐵2
∗ = (𝜃 − 1)𝑥

(4𝑏(1 + 𝛽)(𝑎𝛽 − 𝐶𝐵
𝐼𝐼𝐼,1) − 2(𝑎(1 + 𝛽) − 𝐶𝐴

𝐼𝐼𝐼,1)𝑟𝛽 + 𝐾̅𝐵𝑟
2𝛽)

𝛽(−𝑟2𝛽 + 4𝑏2(1 + 𝛽))𝜃2
− 𝐼𝐵̅, 
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3.4.2.1.2 Scenario 2:  𝟎 < 𝒙 <
𝜽(𝑰̅𝒊+𝑰𝒊𝟏)

𝑲̅𝒊+𝑲𝒊𝟏
< 𝟏 

The adaptation investment functions, 𝐼𝐴1  and 𝐼𝐵2 , are directly from equations (33) and (63) 

respectively. The expected disaster costs for both periods are the same as in Eq. (34), (35) for port 

A and Eq. (64), (65) for port B. The total cost in the social welfare function can be calculated as:  

𝑇𝐶𝐴
𝐼𝐼𝐼,2 =

𝐾̅𝐴 + 𝐾𝐴1
2𝜃2

+ 𝑐𝑘 ∙ 𝐾𝐴1 +
(𝐾̅𝐴 + 𝐾𝐴1)(−1 + 𝜃)

𝜃2
− 𝐼𝐴̅ + 𝛽 ∙ 0, 

𝑇𝐶𝐵
𝐼𝐼𝐼,2 =

𝐾̅𝐵
2𝜃2

+ 𝑐𝑘 ∙ 𝐾𝐵2 +
(𝐾̅𝐵 + 𝐾𝐵2)(−1 + 𝜃)

𝜃2
− 𝐼𝐵̅ + 𝛽 ∙

(𝐾̅𝐵 + 𝐾𝐵2)𝑥

2𝜃2
, 

where the superscript III indicates Case III and superscript 2 indicates Scenario 2.  

By taking partial derivatives of  𝑇𝐶𝐴
𝐼𝐼𝐼,2

 and 𝑇𝐶𝐵
𝐼𝐼𝐼,2

 with respect to 𝐾𝐴1  and 𝐾𝐵2 , the resulting 

marginal cost functions are illustrated as 𝐶𝐴
𝐼𝐼𝐼,2

 and 𝐶𝐵
𝐼𝐼𝐼,2

:  

𝐶𝐴
𝐼𝐼𝐼,2 =

𝜕𝑇𝐶𝐴
𝐼𝐼𝐼,2

𝜕𝐾𝐴1
=

1

2𝜃2
+ 𝑐𝑘 +

−1 + 𝜃

𝜃2
, 

𝑞𝐴1
∗ =

2(−2𝑎𝑏 − 2𝑎𝑏𝛽 + 𝑎𝑟𝛽 + 𝑏𝑟𝐾̅𝐵 − 𝑟𝐶𝐵
𝐼𝐼𝐼,1 + 2𝑏𝐶𝐴

𝐼𝐼𝐼,1)

𝑟2𝛽 − 4𝑏2(1 + 𝛽)
, 

𝑞𝐵1
∗ = 𝐾̅𝐵 

𝜏𝐴1
∗ =

−2𝑎𝑏𝑟𝛽 + 𝑎𝑟2𝛽 + (−𝑟3𝛽 + 𝑏2𝑟(2 + 4𝛽))𝐾̅𝐵 + 2𝑏𝑟𝐶𝐵
𝐼𝐼𝐼,1 − 4𝑏2𝐶𝐴

𝐼𝐼𝐼,1

𝑟2𝛽 − 4𝑏2(1 + 𝛽)
, 

𝜏𝐵1
∗ =

1

𝑟2𝛽 − 4𝑏2(1 + 𝛽)
(−4𝑎𝑏2 + 4𝑎𝑏𝑟 − 4𝑎𝑏2𝛽 + 4𝑎𝑏𝑟𝛽 − 𝑎𝑟2𝛽

+ (4𝑏3(1 + 𝛽) − 𝑏𝑟2(2 + 𝛽))𝐾̅𝐵 + 2𝑟
2𝐶𝐵

𝐼𝐼𝐼,1 − 4𝑏𝑟𝐶𝐴
𝐼𝐼𝐼,1), 

𝑞𝐴2
∗ =

2(−2𝑎𝑏 − 2𝑎𝑏𝛽 + 𝑎𝑟𝛽 + 𝑏𝑟𝐾̅𝐵 − 𝑟𝐶𝐵
𝐼𝐼𝐼,1 + 2𝑏𝐶𝐴

𝐼𝐼𝐼,1)

𝑟2𝛽 − 4𝑏2(1 + 𝛽)
, 

𝑞𝐵2
∗ =

𝑟2𝛽𝐾̅𝐵 − 4𝑏(1 + 𝛽)𝐶𝐵
𝐼𝐼𝐼,1 + 2𝛽(𝑎(2𝑏 − 𝑟)(1 + 𝛽) + 𝑟𝐶𝐴

𝐼𝐼𝐼,1)

𝛽(−𝑟2𝛽 + 4𝑏2(1 + 𝛽))
, 

𝜏𝐴2
∗

=
−𝑎(2𝑏 − 𝑟)𝑟𝛽(2 + 𝛽) − 𝑟(−2𝑏2 + 𝑟2)𝛽𝐾̅𝐵 + 2𝑏𝑟(2 + 𝛽)𝐶𝐵

𝐼𝐼𝐼,1 + (4𝑏2 − 2𝑟2)𝛽𝐶𝐴
𝐼𝐼𝐼,1

𝛽(−𝑟2𝛽 + 4𝑏2(1 + 𝛽))
, 

𝜏𝐵2
∗ =

𝑏𝑟2𝛽𝐾̅𝐵 + (−2𝑟
2𝛽 + 4𝑏2(1 + 𝛽))𝐶𝐵

𝐼𝐼𝐼,1 + 𝑟𝛽(𝑎𝑟𝛽 − 2𝑎𝑏(1 + 𝛽) + 2𝑏𝐶𝐴
𝐼𝐼𝐼,1)

𝛽(−𝑟2𝛽 + 4𝑏2(1 + 𝛽))
. 
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𝐶𝐵
𝐼𝐼𝐼,2 =

𝜕𝑇𝐶𝐵
𝐼𝐼𝐼,2

𝜕𝐾𝐵2
=

1

2𝜃2
+ 𝑐𝑘 +

−1 + 𝜃

𝜃2
+ 𝛽 ∙

𝑥

2𝜃2
. 

By incorporating 𝐶𝐴
𝐼𝐼𝐼,2

 and 𝐶𝐵
𝐼𝐼𝐼,2

 with Eq. (75) to (80) and adaptation investments in Eq. (33) and 

(63) into the social welfare functions in Eq. (19) and (61), the equilibrium capacity investment for 

port A and B is solved by taking derivatives of the rewritten social welfare functions with respect 

to 𝐾𝐴1 and 𝐾𝐵2:  

𝐾𝐴1
𝐼𝐼𝐼,2,∗ =

4𝑏(𝑎(1 + 𝛽) − 𝐶𝐴
𝐼𝐼𝐼,2) + 2𝑟(𝐶𝐵

𝐼𝐼𝐼,2 − 𝑏𝐾̅𝐵 − 𝑎𝛽)

4𝑏2 + 4𝑏2𝛽 − 𝑟2𝛽
− 𝐾̅𝐴, 

 

(83) 

𝐾𝐵2
𝐼𝐼𝐼,2,∗ =

4𝑏(𝛽 + 1)(𝑎𝛽 − 𝐶𝐵
𝐼𝐼𝐼,2) − 2𝛽𝑟(𝑎(𝛽 + 1) − 𝐶𝐴

𝐼𝐼𝐼,2) + 𝐾̅𝐵𝑟
2𝛽

𝛽(4𝑏2 + 4𝑏2𝛽 − 𝑟2𝛽)
− 𝐾̅𝐵. 

 

(84) 

The Eq. (83) and (84) are then substituted into Eq. (33), (63), (75) to (80) to obtain equilibrium 

adaptation investments and equilibrium port throughput quantities and prices decided by the TOCs.  

𝐼𝐴1
∗ = 2(𝜃 − 1)

(2𝑏(𝑎(1 + 𝛽) − 𝐶𝐴
𝐼𝐼𝐼,2) − 𝑟(𝑎𝛽 + 𝑏𝐾̅𝐵 − 𝐶𝐵

𝐼𝐼𝐼,2))

(−𝑟2𝛽 + 4𝑏2(1 + 𝛽))𝜃2
− 𝐼𝐴̅, 

𝐼𝐵2
∗ = (𝜃 − 1)𝑥

(4𝑏(1 + 𝛽)(𝑎𝛽 − 𝐶𝐵
𝐼𝐼𝐼,2) − 𝑟𝛽(2𝑎(1 + 𝛽) − 2𝐶𝐴

𝐼𝐼𝐼,2 − 𝐾̅𝐵𝑟))

𝛽(−𝑟2𝛽 + 4𝑏2(1 + 𝛽))𝜃2
− 𝐼𝐵̅, 

𝑞𝐴1
∗ =

2(−2𝑎𝑏 − 2𝑎𝑏𝛽 + 𝑎𝑟𝛽 + 𝑏𝑟𝐾̅𝐵 − 𝑟𝐶𝐵
𝐼𝐼𝐼,2 + 2𝑏𝐶𝐴

𝐼𝐼𝐼,2)

𝑟2𝛽 − 4𝑏2(1 + 𝛽)
, 

𝑞𝐵1
∗ = 𝐾̅𝐵 

𝜏𝐴1
∗ =

−2𝑎𝑏𝑟𝛽 + 𝑎𝑟2𝛽 + (−𝑟3𝛽 + 𝑏2𝑟(2 + 4𝛽))𝐾̅𝐵 + 2𝑏𝑟𝐶𝐵
𝐼𝐼𝐼,2 − 4𝑏2𝐶𝐴

𝐼𝐼𝐼,2

𝑟2𝛽 − 4𝑏2(1 + 𝛽)
, 

𝜏𝐵1
∗ =

1

𝑟2𝛽 − 4𝑏2(1 + 𝛽)
(−4𝑎𝑏2 + 4𝑎𝑏𝑟 − 4𝑎𝑏2𝛽 + 4𝑎𝑏𝑟𝛽 − 𝑎𝑟2𝛽

+ (4𝑏3(1 + 𝛽) − 𝑏𝑟2(2 + 𝛽))𝐾̅𝐵 + 2𝑟
2𝐶𝐵

𝐼𝐼𝐼,2 − 4𝑏𝑟𝐶𝐴
𝐼𝐼𝐼,2), 

𝑞𝐴2
∗ =

2(−2𝑎𝑏 − 2𝑎𝑏𝛽 + 𝑎𝑟𝛽 + 𝑏𝑟𝐾̅𝐵 − 𝑟𝐶𝐵
𝐼𝐼𝐼,2 + 2𝑏𝐶𝐴

𝐼𝐼𝐼,2)

𝑟2𝛽 − 4𝑏2(1 + 𝛽)
, 

𝑞𝐵2
∗ =

𝑟2𝛽𝐾𝐵 − 4𝑏(1 + 𝛽)𝐶𝐵
𝐼𝐼𝐼,2 + 2𝛽(𝑎(2𝑏 − 𝑟)(1 + 𝛽) + 𝑟𝐶𝐴

𝐼𝐼𝐼,2)

𝛽(−𝑟2𝛽 + 4𝑏2(1 + 𝛽))
, 

𝜏𝐴2
∗

=
−𝑎(2𝑏 − 𝑟)𝑟𝛽(2 + 𝛽) − 𝑟(−2𝑏2 + 𝑟2)𝛽𝐾̅𝐵 + 2𝑏𝑟(2 + 𝛽)𝐶𝐵

𝐼𝐼𝐼,2 + (4𝑏2 − 2𝑟2)𝛽𝐶𝐴
𝐼𝐼𝐼,2

𝛽(−𝑟2𝛽 + 4𝑏2(1 + 𝛽))
, 

𝜏𝐵2
∗ =

𝑏𝑟2𝛽𝐾̅𝐵 + (−2𝑟
2𝛽 + 4𝑏2(1 + 𝛽))𝐶𝐵

𝐼𝐼𝐼,2 + 𝑟𝛽(𝑎𝑟𝛽 − 2𝑎𝑏(1 + 𝛽) + 2𝑏𝐶𝐴
𝐼𝐼𝐼,2)

𝛽(−𝑟2𝛽 + 4𝑏2(1 + 𝛽))
. 
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3.4.2.1.3 Scenario 3:  𝟎 <
𝜽(𝑰̅𝒊+𝑰𝒊𝟏)

𝑲̅𝒊+𝑲𝒊𝟏
< 𝟏 < 𝒙 

In Scenario 3, all parameter values are the same as in Scenario 1 under Case III with only 

differences in the range of disaster intensities. This means that the adaptation investments, disaster 

costs and social welfare functions remain the same with only changes in the superscripts in the 

cost functions to reflect the range difference. The scenario-specific cost functions with its 

corresponding superscripts are as follows:  

𝐶𝐴
𝐼𝐼𝐼,3 =

𝜕𝑇𝐶𝐴
𝐼𝐼𝐼,3

𝜕𝐾𝐴1
=
(𝛽𝜃 − 𝑥(𝛽𝜃 − 1))2

2(𝑥 + 𝛽)2𝜃2
+ 𝑐𝑘 +

𝑥(𝜃 + 𝛽𝜃 − 1)

(𝑥 + 𝛽)𝜃2
+ 𝛽

𝑥(1 − (1 − 𝑥)𝜃)2

2(𝑥 + 𝛽)2𝜃2
, 

𝐶𝐵
𝐼𝐼𝐼,3 =

𝜕𝑇𝐶𝐵
𝐼𝐼𝐼,3

𝜕𝐾𝐵2
=

1

2𝜃2
+ 𝑐𝑘 +

(−1 + 𝜃)

𝜃2
+ 𝛽 ∙

𝑥

2𝜃2
 . 

The equilibrium capacity investments, 𝐾𝐴1
𝐼𝐼𝐼,3,∗

 and 𝐾𝐵2
𝐼𝐼𝐼,3,∗

, are the same as shown in Eq. (81) and 

(82). With the exact same calculation processes, the equilibrium parameter results including 

adaptation investments and TOC-chosen port throughput quantities and prices remain the same as 

in Scenario 1 except for the superscripts.  

𝐼𝐴1
∗ = 2(−1 + 𝜃 + 𝛽𝜃)𝑥

(2𝑏(𝑎 − 𝐶𝐴
𝐼𝐼𝐼,3) + 𝑟(𝐶𝐵

𝐼𝐼𝐼,3 − 𝑏𝐾̅𝐵) + 𝑎𝛽(2𝑏 − 𝑟))

(𝑥 + 𝛽)(−𝑟2𝛽 + 4𝑏2(1 + 𝛽))𝜃2
− 𝐼𝐴̅, 

𝐼𝐵2
∗ = (𝜃 − 1)𝑥

(4𝑏(1 + 𝛽)(𝑎𝛽 − 𝐶𝐵
𝐼𝐼𝐼,3) − 2(𝑎(1 + 𝛽) − 𝐶𝐴

𝐼𝐼𝐼,3)𝑟𝛽 + 𝐾̅𝐵𝑟
2𝛽)

𝛽(−𝑟2𝛽 + 4𝑏2(1 + 𝛽))𝜃2
− 𝐼𝐵̅, 

𝑞𝐴1
∗ =

2(−2𝑎𝑏 − 2𝑎𝑏𝛽 + 𝑎𝑟𝛽 + 𝑏𝑟𝐾̅𝐵 − 𝑟𝐶𝐵
𝐼𝐼𝐼,3 + 2𝑏𝐶𝐴

𝐼𝐼𝐼,3)

𝑟2𝛽 − 4𝑏2(1 + 𝛽)
, 

𝑞𝐵1
∗ = 𝐾̅𝐵 

𝜏𝐴1
∗ =

−2𝑎𝑏𝑟𝛽 + 𝑎𝑟2𝛽 + (−𝑟3𝛽 + 𝑏2𝑟(2 + 4𝛽))𝐾̅𝐵 + 2𝑏𝑟𝐶𝐵
𝐼𝐼𝐼,3 − 4𝑏2𝐶𝐴

𝐼𝐼𝐼,3

𝑟2𝛽 − 4𝑏2(1 + 𝛽)
, 

𝜏𝐵1
∗ =

1

𝑟2𝛽 − 4𝑏2(1 + 𝛽)
(−4𝑎𝑏2 + 4𝑎𝑏𝑟 − 4𝑎𝑏2𝛽 + 4𝑎𝑏𝑟𝛽 − 𝑎𝑟2𝛽

+ (4𝑏3(1 + 𝛽) − 𝑏𝑟2(2 + 𝛽))𝐾̅𝐵 + 2𝑟
2𝐶𝐵

𝐼𝐼𝐼,3 − 4𝑏𝑟𝐶𝐴
𝐼𝐼𝐼,3), 

𝑞𝐴2
∗ =

2(−2𝑎𝑏 − 2𝑎𝑏𝛽 + 𝑎𝑟𝛽 + 𝑏𝑟𝐾̅𝐵 − 𝑟𝐶𝐵
𝐼𝐼𝐼,3 + 2𝑏𝐶𝐴

𝐼𝐼𝐼,3)

𝑟2𝛽 − 4𝑏2(1 + 𝛽)
, 

𝑞𝐵2
∗ =

𝑟2𝛽𝐾̅𝐵 − 4𝑏(1 + 𝛽)𝐶𝐵
𝐼𝐼𝐼,3 + 2𝛽(𝑎(2𝑏 − 𝑟)(1 + 𝛽) + 𝑟𝐶𝐴

𝐼𝐼𝐼,3)

𝛽(−𝑟2𝛽 + 4𝑏2(1 + 𝛽))
, 
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3.4.2.1.4 Scenario 4:  𝟏 <
𝜽(𝑰̅𝒊+𝑰𝐢𝟏)

𝑲̅𝒊+𝑲𝒊𝟏
< 𝒙 

The adaptation investment functions for ports A and B are obtained from Eq. (44) and (63) as well 

as the disaster damage cost functions are from Eq. (45) and (46) for port A and Eq. (64) and (65) 

for port B. Thus, the total cost in the social welfare function can be expressed as:  

𝑇𝐶𝐴
𝐼𝐼𝐼,4 = 0 + 𝑐𝑘 ∙ 𝐾𝐴1 +

(𝐾̅𝐴 + 𝐾𝐴1)𝑥(−1 + 𝛽𝜃)

𝛽𝜃2
− 𝐼𝐴̅ + 𝛽 ∙

(𝐾̅𝐴 +𝐾𝐴1)𝑥

2𝛽2𝜃2
, 

𝑇𝐶𝐵
𝐼𝐼𝐼,4 =

𝐾̅𝐵
2𝜃2

+ 𝑐𝑘 ∙ 𝐾𝐵2 +
(𝐾̅𝐵 + 𝐾𝐵2)(−1 + 𝜃)

𝜃2
− 𝐼𝐵̅ + 𝛽 ∙

(𝐾̅𝐵 + 𝐾𝐵2)𝑥

2𝜃2
. 

The marginal total cost functions are calculated by taking derivative of the total cost functions with 

respect to 𝐾𝐴1 and 𝐾𝐵2:  

𝐶𝐴
𝐼𝐼𝐼,4 =

𝜕𝑇𝐶𝐴
𝐼𝐼𝐼,4

𝜕𝐾𝐴1
= 𝑐𝑘 +

𝑥(−1 + 𝛽𝜃)

𝛽𝜃2
+ 𝛽 ∙

𝑥

2𝛽2𝜃2
, 

𝐶𝐵
𝐼𝐼𝐼,4 =

𝜕𝑇𝐶𝐵
𝐼𝐼𝐼,4

𝜕𝐾𝐵2
=

1

2𝜃2
+ 𝑐𝑘 +

(−1 + 𝜃)

𝜃2
+ 𝛽 ∙

𝑥

2𝜃2
. 

The cost functions 𝐶III,4,𝐴 and 𝐶III,4,𝐵 with adaptation investments in Eq. (44), (63) and equilibrium 

prices and throughput quantities in Eq. (75) to (80) are substituted into the social welfare functions 

in Eq. (19) and (61). By taking partial derivatives of these reorganized social welfare functions 

with respect to 𝐾𝐴1 and 𝐾𝐵2, the equilibrium capacity investments are calculated as: 

𝐾𝐴1
𝐼𝐼𝐼,4,∗ =

4𝑏(𝑎(1 + 𝛽) − 𝐶𝐴
𝐼𝐼𝐼,4) + 2𝑟(𝐶𝐵

𝐼𝐼𝐼,4 − 𝑏𝐾̅𝐵 − 𝑎𝛽)

4𝑏2 + 4𝑏2𝛽 − 𝑟2𝛽
− 𝐾̅𝐴, 

 

(85) 

𝐾𝐵2
𝐼𝐼𝐼,4,∗ =

4𝑏(𝛽 + 1)(𝑎𝛽 − 𝐶𝐵
𝐼𝐼𝐼,4) − 2𝛽𝑟(𝑎(𝛽 + 1) − 𝐶𝐴

𝐼𝐼𝐼,4) + 𝐾̅𝐵𝑟
2𝛽

𝛽(4𝑏2 + 4𝑏2𝛽 − 𝑟2𝛽)
− 𝐾̅𝐵. 

 

(86) 

𝜏𝐴2
∗

=
−𝑎(2𝑏 − 𝑟)𝑟𝛽(2 + 𝛽) − 𝑟(−2𝑏2 + 𝑟2)𝛽𝐾̅𝐵 + 2𝑏𝑟(2 + 𝛽)𝐶𝐵

𝐼𝐼𝐼,3 + (4𝑏2 − 2𝑟2)𝛽𝐶𝐴
𝐼𝐼𝐼,3

𝛽(−𝑟2𝛽 + 4𝑏2(1 + 𝛽))
, 

𝜏𝐵2
∗ =

𝑏𝑟2𝛽𝐾̅𝐵 + (−2𝑟
2𝛽 + 4𝑏2(1 + 𝛽))𝐶𝐵

𝐼𝐼𝐼,3 + 𝑟𝛽(𝑎𝑟𝛽 − 2𝑎𝑏(1 + 𝛽) + 2𝑏𝐶𝐴
𝐼𝐼𝐼,3)

𝛽(−𝑟2𝛽 + 4𝑏2(1 + 𝛽))
. 
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The Eq. (85) and (86) are then substituted into Eq. (44), (63) and (75) to (80) to determine the 

remaining parameters.  

𝐼𝐴1
∗ = 2𝑥(𝛽𝜃 − 1)

(2𝑏(𝑎(1 + 𝛽) − 𝐶𝐴
𝐼𝐼𝐼,4) − 𝑟(𝑎𝛽 + 𝑏𝐾̅𝐵 − 𝐶𝐵

𝐼𝐼𝐼,4))

𝛽(−𝑟2𝛽 + 4𝑏2(1 + 𝛽))𝜃2
− 𝐼𝐴̅, 

𝐼𝐵2
∗ = 𝑥(𝜃 − 1)

(4𝑏(1 + 𝛽)(𝑎𝛽 − 𝐶𝐵
𝐼𝐼𝐼,4) − 𝑟𝛽(2𝑎(1 + 𝛽) − 2𝐶𝐴

𝐼𝐼𝐼,4 − 𝐾̅𝐵𝑟))

𝛽(−𝑟2𝛽 + 4𝑏2(1 + 𝛽))𝜃2
− 𝐼𝐵̅, 

𝑞𝐴1
∗ =

2(−2𝑎𝑏 − 2𝑎𝑏𝛽 + 𝑎𝑟𝛽 + 𝑏𝑟𝐾̅𝐵 + 2𝑏𝐶𝐴
𝐼𝐼𝐼,4 − 𝑟𝐶𝐵

𝐼𝐼𝐼,4)

𝑟2𝛽 − 4𝑏2(1 + 𝛽)
, 

𝑞𝐵1
∗ = 𝐾̅𝐵 

𝜏𝐴1
∗ =

𝑎𝑟(−2𝑏 + 𝑟)𝛽 + (−𝑟3𝛽 + 𝑏2𝑟(2 + 4𝛽))𝐾̅𝐵 − 4𝑏
2𝐶𝐴

𝐼𝐼𝐼,4 + 2𝑏𝑟𝐶𝐵
𝐼𝐼𝐼,4

𝑟2𝛽 − 4𝑏2(1 + 𝛽)
, 

𝜏𝐵1
∗ =

1

𝑟2𝛽 − 4𝑏2(1 + 𝛽)
(−4𝑎𝑏2 + 4𝑎𝑏𝑟 − 4𝑎𝑏2𝛽 + 4𝑎𝑏𝑟𝛽 − 𝑎𝑟2𝛽 + (4𝑏3(1 + 𝛽)

− 𝑏𝑟2(2 + 𝛽))𝐾̅𝐵 − 4𝑏𝑟𝐶𝐴
𝐼𝐼𝐼,4 + 2𝑟2𝐶𝐵

𝐼𝐼𝐼,4), 

𝑞𝐴2
∗ =

2(−2𝑎𝑏 − 2𝑎𝑏𝛽 + 𝑎𝑟𝛽 + 𝑏𝑟𝐾̅𝐵 + 2𝑏𝐶𝐴
𝐼𝐼𝐼,4 − 𝑟𝐶𝐵

𝐼𝐼𝐼,4)

𝑟2𝛽 − 4𝑏2(1 + 𝛽)
, 

𝑞𝐵2
∗ =

𝑟2𝛽𝐾̅𝐵 − 4𝑏𝐶𝐵
𝐼𝐼𝐼,4 + 2𝛽(𝑎(2𝑏 − 𝑟)(1 + 𝛽) + 𝑟𝐶𝐴

𝐼𝐼𝐼,4 − 2𝑏𝐶𝐵
𝐼𝐼𝐼,4)

𝛽(−𝑟2𝛽 + 4𝑏2(1 + 𝛽))
, 

𝜏𝐴2
∗

=
−𝑟(−2𝑏2 + 𝑟2)𝛽𝐾̅𝐵 + 4𝑏𝑟𝐶𝐵

𝐼𝐼𝐼,4 + 𝛽(−𝑎(2𝑏 − 𝑟)𝑟(2 + 𝛽) + (4𝑏2 − 2𝑟2)𝐶𝐴
𝐼𝐼𝐼,4 + 2𝑏𝑟𝐶𝐵

𝐼𝐼𝐼,4)

𝛽(−𝑟2𝛽 + 4𝑏2(1 + 𝛽))
, 

𝜏𝐵2
∗ =

𝑏𝑟2𝛽𝐾̅𝐵 + 4𝑏
2𝐶𝐵

𝐼𝐼𝐼,4 + 𝛽(𝑎𝑟(𝑟𝛽 − 2𝑏(1 + 𝛽)) + 2𝑏𝑟𝐶𝐴
𝐼𝐼𝐼,4 + (4𝑏2 − 2𝑟2)𝐶𝐵

𝐼𝐼𝐼,4)

𝛽(−𝑟2𝛽 + 4𝑏2(1 + 𝛽))
. 

3.4.2.2 Port A has non-binding capacity in period 2 while Port B faces binding capacity in both 

periods 

In this situation, port B operates under capacity binding constraints across both periods. In the first 

period, there is no capacity or adaptation investments by the PA of port B, so the capacity 

constraints are naturally binding for port B, indicating the throughput quantities of TOCs can not 

exceed the initial capacity endowment. In the second period, the PA of port B have anticipated the 

TOCs’ throughput decisions and invest the exact amount of additional capacity investment to meet 

the throughput quantities required by TOCs which ensures the optimal results. For port A, in the 

first period, given enough knowledge of TOCs by the PA, the additional capacity investment by 

the PAs match with the throughput quantities of TOCs without any additional or waste amount in 

period 1, so the capacity constraint is binding. However, in period 2, since the PA of port B invest 

in additional capacity and adaptation investments, and this leads to increased market competition 
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as port B gains more market shares. Under competition, port A suffers from reduced market shares 

which potentially lead to a situation that its available capacity may exceed the throughput 

quantities that is needed by TOCs. Thus, port A would operate under non-binding capacity 

constraint in period 2 due to port competition. 

The TOCs profit maximization for port B remains the same as shown in Section 3.4.1:  

max
{𝜏𝐴1}

 𝜋𝐴2 = 𝜏𝐴1𝑞𝐴1 

𝑠. 𝑡. 𝑞𝐴1 ≤ 𝐾̅𝐴 + 𝐾𝐴1 
 

max
{𝜏𝐴2}

 𝜋𝐴2 = 𝜏𝐴2𝑞𝐴2 

𝑠. 𝑡. 𝑞𝐴2 ≤ 𝐾̅𝐴 + 𝐾𝐴1 

 

 

max
{𝜏𝐵1}

 𝜋𝐵1 = 𝜏𝐵1𝑞𝐵1 

𝑠. 𝑡. 𝑞𝐵1 ≤ 𝐾̅𝐵 
 

max
{𝜏𝐵2}

 𝜋𝐵2 = 𝜏𝐵2𝑞𝐵2 

𝑠. 𝑡. 𝑞𝐵2 ≤ 𝐾̅𝐵 + 𝐾𝐵2 

 

Similar to previous calculations, the functions are solved by using backward induction. In period 

1, both ports A and B operate under capacity binding constraint, so the TOCs’ decisions on 

throughput quantities and prices remain the same as in Eq. (75) to (77). In period 2, the equilibrium 

throughput volume is given by:  

𝑞𝐴2 = −
𝑏(−𝑎 + 𝑟𝐾B2 + 𝑟𝐾̅𝐵)

2𝑏2 − 𝑟2
, (87) 

𝑞𝐵2 = 𝐾̅𝐵 + 𝐾𝐵2. (88) 

By incorporating Eq. (87) and (88) into Eq. (3) and (4), the equilibrium price is calculated as:  

𝜏𝐴2 = −
(𝑏 − 𝑟)(𝑏 + 𝑟)(−𝑎 + 𝑟𝐾𝐵2 + 𝑟𝐾̅𝐵)

2𝑏2 − 𝑟2
, (89) 

𝜏𝐵2 = −
(𝑏 − 𝑟)(−2𝑎𝑏 − 𝑎𝑟 + 2𝑏2𝐾𝐵2 + 2𝑏𝑟𝐾𝐵2 + 2𝑏

2𝐾̅𝐵 + 2𝑏𝑟𝐾̅𝐵)

2𝑏2 − 𝑟2
. 

(90) 

Similar to Section 3.4.2.1, the disaster damage costs and adaptation investments, 𝐼𝐴1  and 𝐼𝐵2 , 

remain the same as Case I for port A and Case II for port B. Thus, the adaptation investments in 
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Eq. (23), (33), (43), (44) for optimal 𝐼𝐴1 and Eq. (63) for optimal 𝐼𝐵2 remain unchanged. The total 

cost function in social welfare functions and the marginal total cost function are the same as in 

Section 3.4.2.1 for each respective range for ports A and B. The only difference between Section 

3.4.2.1 and Section 3.4.2.2 is the TOCs’ throughput decisions and prices in period 2 as shown in 

Eq. (87) to (90). The port A’s non-binding capacity constraint in period 2 influence the TOCs’ 

decisions and subsequently influence the social welfare calculations. For simplicity, in the 

following four ranges, only the parts changes compared to Section 3.4.2.1 are illustrated.  

3.4.2.2.1 Scenario 1: 𝟎 <
𝜽(𝑰̅𝒊+𝑰𝒊𝟏)

𝑲̅𝒊+𝑲𝒊𝟏
< 𝒙 < 𝟏 

The equilibrium values of 𝜏𝑖𝑡, 𝑞𝑖𝑡, 𝐼𝐴1 and 𝐼𝐵2 as expressed in function of 𝐾𝐴1 and 𝐾𝐵2 from Eq. 

(75) to (77), (87) to (90), (23) and (63) with 𝐶𝐴
𝐼𝐼𝐼,1

 and 𝐶𝐵
𝐼𝐼𝐼,1

 are substituted into the social welfare 

function in Eq. (19) and (61) which the reorganized social welfare function is then taking partial 

derivative with respect to 𝐾𝐴1 and 𝐾𝐵2 to obtain equilibrium capacity investment of port A and B:  

𝐾𝐴1
𝐼𝐼𝐼,1,∗ =

2𝑎 − 2𝑏𝐾̅𝐴 − 𝑟𝐾̅𝐵 − 2𝐶𝐴
𝐼𝐼𝐼,1

2𝑏
, 

 
 

(91) 

𝐾𝐵2
𝐼𝐼𝐼,1,∗ =

4𝑎𝑏2𝛽 − 𝑎𝑏𝑟𝛽 − 2𝑎𝑟2𝛽 − 4𝑏3𝛽𝐾̅𝐵 + 4𝑏𝑟
2𝛽𝐾̅𝐵 − 4𝑏

2𝐶𝐵
𝐼𝐼𝐼,1 + 2𝑟2𝐶𝐵

𝐼𝐼𝐼,1

4𝑏(𝑏2 − 𝑟2)𝛽
. 

 
 

(92) 

The Eq. (91) and (92) is substituted to the adaptation investments in Eq. (23) and (63) and the 

equilibrium TOC-chosen prices and throughput quantities across two periods in Eq. (75) to (77) 

and (87) to (90) and these parameter values are calculated:   

𝐼𝐴1
∗ =

1

2𝑏(𝑥 + 𝛽)𝜃2
(−2𝑎𝑥 + 2𝑎𝑥𝜃 + 2𝑎𝑥𝛽𝜃 − 2𝑏𝑥𝜃2𝐼𝐴̅ − 2𝑏𝛽𝜃

2𝐼𝐴̅ + 𝑟𝑥𝐾̅𝐵 − 𝑟𝑥𝜃𝐾̅𝐵

− 𝑟𝑥𝛽𝜃𝐾̅𝐵 + 2𝑥𝐶𝐴
𝐼𝐼𝐼,1 − 2𝑥𝜃𝐶𝐴

𝐼𝐼𝐼,1 − 2𝑥𝛽𝜃𝐶𝐴
𝐼𝐼𝐼,1), 

𝐼𝐵2
∗ = −

1

4𝑏(𝑏 − 𝑟)(𝑏 + 𝑟)𝛽𝜃2
(4𝑎𝑏2𝑥𝛽 − 𝑎𝑏𝑟𝑥𝛽 − 2𝑎𝑟2𝑥𝛽 − 4𝑎𝑏2𝑥𝛽𝜃 + 𝑎𝑏𝑟𝑥𝛽𝜃

+ 2𝑎𝑟2𝑥𝛽𝜃 + 4𝑏3𝛽𝜃2𝐼𝐵̅ − 4𝑏𝑟
2𝛽𝜃2𝐼𝐵̅ − 4𝑏

2𝑥𝐶𝐵
𝐼𝐼𝐼,1 + 2𝑟2𝑥𝐶𝐵

𝐼𝐼𝐼,1

+ 4𝑏2𝑥𝜃𝐶𝐵
𝐼𝐼𝐼,1 − 2𝑟2𝑥𝜃𝐶𝐵

𝐼𝐼𝐼,1), 

𝑞𝐴1
∗ =

2𝑎 − 𝑟𝐾̅𝐵 − 2𝐶𝐴
𝐼𝐼𝐼,1

2𝑏
, 

𝑞𝐵1
∗ = 𝐾̅𝐵, 
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𝜏𝐴1
∗ =

1

2
(−𝑟𝐾̅𝐵 + 2𝐶𝐴

𝐼𝐼𝐼,1), 

𝜏𝐵1
∗ = −

−2𝑎𝑏 + 2𝑎𝑟 + 2𝑏2𝐾̅𝐵 − 𝑟
2𝐾̅𝐵 − 2𝑟𝐶𝐴

𝐼𝐼𝐼,1

2𝑏
, 

𝑞𝐴2
∗ =

4𝑎𝑏3𝛽 − 4𝑎𝑏2𝑟𝛽 − 3𝑎𝑏𝑟2𝛽 + 2𝑎𝑟3𝛽 + 4𝑏2𝑟𝐶𝐵
𝐼𝐼𝐼,1 − 2𝑟3𝐶𝐵

𝐼𝐼𝐼,1

4(𝑏 − 𝑟)(𝑏 + 𝑟)(2𝑏2 − 𝑟2)𝛽
, 

𝑞𝐵2
∗ =

4𝑎𝑏2𝛽 − 𝑎𝑏𝑟𝛽 − 2𝑎𝑟2𝛽 − 4𝑏2𝐶𝐵
𝐼𝐼𝐼,1 + 2𝑟2𝐶𝐵

𝐼𝐼𝐼,1

4𝑏(𝑏 − 𝑟)(𝑏 + 𝑟)𝛽
, 

𝜏𝐴2
∗ =

4𝑎𝑏3𝛽 − 4𝑎𝑏2𝑟𝛽 − 3𝑎𝑏𝑟2𝛽 + 2𝑎𝑟3𝛽 + 4𝑏2𝑟𝐶𝐵
𝐼𝐼𝐼,1 − 2𝑟3𝐶𝐵

𝐼𝐼𝐼,1

4𝑏(2𝑏2 − 𝑟2)𝛽
, 

𝜏𝐵2
∗ =

−𝑎𝑏𝑟𝛽 + 4𝑏2𝐶𝐵
𝐼𝐼𝐼,1 − 2𝑟2𝐶𝐵

𝐼𝐼𝐼,1

2(2𝑏2 − 𝑟2)𝛽
. 

3.4.2.2.2 Scenario 2:  𝟎 < 𝒙 <
𝜽(𝑰̅𝒊+𝑰𝒊𝟏)

𝑲̅𝒊+𝑲𝒊𝟏
< 𝟏 

The equilibrium prices and traffic volume determined by TOCs in Eq. (75) to (77) and (87) to (90) 

as well as the adaptation investments in Eq. (33) to (63) with 𝐶𝐴
𝐼𝐼𝐼,2

 and 𝐶𝐵
𝐼𝐼𝐼,2

 are substituted into 

the social welfare function in Eq. (19) and (61) and the rewritten social welfare function is then 

taking simultaneous partial derivatives with port-respective capacity investments, 𝐾𝐴1 and 𝐾𝐵2:  

𝐾𝐴1
𝐼𝐼𝐼,2,∗ =

2𝑎 − 2𝑏𝐾̅𝐴 − 𝑟𝐾̅𝐵 − 2𝐶𝐴
𝐼𝐼𝐼,2

2𝑏
, 

(93) 

𝐾𝐵2
𝐼𝐼𝐼,2,∗ =

4𝑎𝑏2𝛽 − 𝑎𝑏𝑟𝛽 − 2𝑎𝑟2𝛽 − 4𝑏3𝛽𝐾̅𝐵 + 4𝑏𝑟
2𝛽𝐾̅𝐵 − 4𝑏

2𝐶𝐵
𝐼𝐼𝐼,2 + 2𝑟2𝐶𝐵

𝐼𝐼𝐼,2

4𝑏(𝑏2 − 𝑟2)𝛽
. 

(94) 

The Eq. (93) and (94) are then incorporated into the adaptation investments for ports A and B in 

Eq. (33) and (63) and equilibrium port charges and throughput quantities decided by the TOCs in 

Eq. (75) to (77) and (87) to (90).  

𝐼𝐴1
∗ =

(−1 + 𝜃)(2𝑎 − 𝑟𝐾̅𝐵 − 2𝐶𝐴
𝐼𝐼𝐼,2)

2𝑏𝜃2
− 𝐼𝐴̅, 

𝐼𝐵2
∗ =

4𝑏(−𝑏2 + 𝑟2)𝛽𝜃2𝐼𝐵̅ + 𝑥(−1 + 𝜃)(𝑎(4𝑏
2 − 𝑏𝑟 − 2𝑟2)𝛽 + (−4𝑏2 + 2𝑟2)𝐶𝐵

𝐼𝐼𝐼,2)

4𝑏(𝑏2 − 𝑟2)𝛽𝜃2
, 

𝑞𝐴1
∗ = −

−2𝑎 + 𝑟𝐾̅𝐵 + 2𝐶𝐴
𝐼𝐼𝐼,2

2𝑏
, 

𝑞𝐵1
∗ = 𝐾̅𝐵, 

𝜏𝐴1
∗ = −

1

2
𝑟𝐾̅𝐵 + 𝐶𝐴

𝐼𝐼𝐼,2, 

𝜏𝐵1
∗ =

2𝑎(𝑏 − 𝑟) + (−2𝑏2 + 𝑟2)𝐾̅𝐵 + 2𝑟𝐶𝐴
𝐼𝐼𝐼,2

2𝑏
, 
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𝑞𝐴2
∗ =

𝑎(4𝑏3 − 4𝑏2𝑟 − 3𝑏𝑟2 + 2𝑟3)𝛽 + (4𝑏2𝑟 − 2𝑟3)𝐶𝐵
𝐼𝐼𝐼,2

4(2𝑏4 − 3𝑏2𝑟2 + 𝑟4)𝛽
, 

𝑞𝐵2
∗ =

4𝑎𝑏2𝛽 − 𝑎𝑏𝑟𝛽 − 2𝑎𝑟2𝛽 − 4𝑏2𝐶𝐵
𝐼𝐼𝐼,2 + 2𝑟2𝐶𝐵

𝐼𝐼𝐼,2

4𝑏3𝛽 − 4𝑏𝑟2𝛽
, 

𝜏𝐴2
∗ =

𝑎(4𝑏3 − 4𝑏2𝑟 − 3𝑏𝑟2 + 2𝑟3)𝛽 + (4𝑏2𝑟 − 2𝑟3)𝐶𝐵
𝐼𝐼𝐼,2

8𝑏3𝛽 − 4𝑏𝑟2𝛽
, 

𝜏𝐵2
∗ =

−𝑎𝑏𝑟𝛽 + (4𝑏2 − 2𝑟2)𝐶𝐵
𝐼𝐼𝐼,2

4𝑏2𝛽 − 2𝑟2𝛽
. 

3.4.2.2.3 Scenario 3:  𝟎 <
𝜽(𝑰̅𝒊+𝑰𝒊𝟏)

𝑲̅𝒊+𝑲𝒊𝟏
< 𝟏 < 𝒙 

Everything in Scenario 3 is the exact same as Scenario 1 with the only exception in superscripts 

indicating different scenarios (𝐶𝐴
𝐼𝐼𝐼,3 = 𝐶𝐴

𝐼𝐼𝐼,1
, 𝐶𝐵

𝐼𝐼𝐼,3 = 𝐶𝐵
𝐼𝐼𝐼,1

). The results are shown again with 

updated superscripts:  

𝐼𝐴1
∗ =

1

2𝑏(𝑥 + 𝛽)𝜃2
(−2𝑎𝑥 + 2𝑎𝑥𝜃 + 2𝑎𝑥𝛽𝜃 − 2𝑏𝑥𝜃2𝐼𝐴̅ − 2𝑏𝛽𝜃

2𝐼𝐴̅ + 𝑟𝑥𝐾̅𝐵 − 𝑟𝑥𝜃𝐾̅𝐵

− 𝑟𝑥𝛽𝜃𝐾̅𝐵 + 2𝑥𝐶𝐴
𝐼𝐼𝐼,3 − 2𝑥𝜃𝐶𝐴

𝐼𝐼𝐼,3 − 2𝑥𝛽𝜃𝐶𝐴
𝐼𝐼𝐼,3), 

𝐼𝐵2
∗ = −

1

4𝑏(𝑏 − 𝑟)(𝑏 + 𝑟)𝛽𝜃2
(4𝑎𝑏2𝑥𝛽 − 𝑎𝑏𝑟𝑥𝛽 − 2𝑎𝑟2𝑥𝛽 − 4𝑎𝑏2𝑥𝛽𝜃 + 𝑎𝑏𝑟𝑥𝛽𝜃

+ 2𝑎𝑟2𝑥𝛽𝜃 + 4𝑏3𝛽𝜃2𝐼𝐵̅ − 4𝑏𝑟
2𝛽𝜃2𝐼𝐵̅ − 4𝑏

2𝑥𝐶𝐵
𝐼𝐼𝐼,1 + 2𝑟2𝑥𝐶𝐵

𝐼𝐼𝐼,3

+ 4𝑏2𝑥𝜃𝐶𝐵
𝐼𝐼𝐼,3 − 2𝑟2𝑥𝜃𝐶𝐵

𝐼𝐼𝐼,3), 

𝑞𝐴1
∗ =

2𝑎 − 𝑟𝐾̅𝐵 − 2𝐶𝐴
𝐼𝐼𝐼,3

2𝑏
, 

𝑞𝐵1
∗ = 𝐾̅𝐵, 

𝜏𝐴1
∗ =

1

2
(−𝑟𝐾̅𝐵 + 2𝐶𝐴

𝐼𝐼𝐼,3), 

𝜏𝐵1
∗ = −

−2𝑎𝑏 + 2𝑎𝑟 + 2𝑏2𝐾𝐵 − 𝑟
2𝐾̅𝐵 − 2𝑟𝐶𝐴

𝐼𝐼𝐼,3

2𝑏
, 

𝑞𝐴2
∗ =

4𝑎𝑏3𝛽 − 4𝑎𝑏2𝑟𝛽 − 3𝑎𝑏𝑟2𝛽 + 2𝑎𝑟3𝛽 + 4𝑏2𝑟𝐶𝐵
𝐼𝐼𝐼,3 − 2𝑟3𝐶𝐵

𝐼𝐼𝐼,3

4(𝑏 − 𝑟)(𝑏 + 𝑟)(2𝑏2 − 𝑟2)𝛽
, 

𝑞𝐵2
∗ =

4𝑎𝑏2𝛽 − 𝑎𝑏𝑟𝛽 − 2𝑎𝑟2𝛽 − 4𝑏2𝐶𝐵
𝐼𝐼𝐼,3 + 2𝑟2𝐶𝐵

𝐼𝐼𝐼,3

4𝑏(𝑏 − 𝑟)(𝑏 + 𝑟)𝛽
, 

𝜏𝐴2
∗ =

4𝑎𝑏3𝛽 − 4𝑎𝑏2𝑟𝛽 − 3𝑎𝑏𝑟2𝛽 + 2𝑎𝑟3𝛽 + 4𝑏2𝑟𝐶𝐵
𝐼𝐼𝐼,3 − 2𝑟3𝐶𝐵

𝐼𝐼𝐼,3

4𝑏(2𝑏2 − 𝑟2)𝛽
, 

𝜏𝐵2
∗ =

−𝑎𝑏𝑟𝛽 + 4𝑏2𝐶𝐵
𝐼𝐼𝐼,3 − 2𝑟2𝐶𝐵

𝐼𝐼𝐼,3

2(2𝑏2 − 𝑟2)𝛽
. 
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3.4.2.2.4 Scenario 4:  𝟏 <
𝜽(𝑰̅𝒊+𝑰𝐢𝟏)

𝑲̅𝒊+𝑲𝒊𝟏
< 𝒙 

The adaptation investment functions for port A and B in Eq. (44), (63) and the TOCs’ equilibrium 

port charges and throughput quantities in Eq. (75) to (77) for period 1 and Eq. (87) to (90) for 

period 2 with 𝐶𝐴
𝐼𝐼𝐼,4

 and 𝐶𝐵
𝐼𝐼𝐼,4

 are substituted into the social welfare function in Eq. (19) and (61) 

which the two social welfare functions are then taking partial derivative with respect to 𝐾𝐴1 and 

𝐾𝐵2 simultaneously:  

𝐾𝐴1
𝐼𝐼𝐼,4,∗ =

2𝑎 − 2𝑏𝐾̅𝐴 − 𝑟𝐾̅𝐵 − 2𝐶𝐴
𝐼𝐼𝐼,4

2𝑏
, 

(95) 

𝐾𝐵2
𝐼𝐼𝐼,4,∗ =

4𝑎𝑏2𝛽 − 𝑎𝑏𝑟𝛽 − 2𝑎𝑟2𝛽 − 4𝑏3𝛽𝐾̅𝐵 + 4𝑏𝑟
2𝛽𝐾̅𝐵 − 4𝑏

2𝐶𝐵
𝐼𝐼𝐼,4 + 2𝑟2𝐶𝐵

𝐼𝐼𝐼,4

4𝑏(𝑏2 − 𝑟2)𝛽
. 

(96) 

The equilibrium prices and traffic volume decided by TOCs and adaptation investments are 

obtained by substituting Eq. (95) and (96) to Eq. (75) to (77), (87) to (90), (44) and (63).  

𝐼𝐴1
∗ = −

2𝑎𝑥 − 2𝑎𝑥𝛽𝜃 + 2𝑏𝛽𝜃2𝐼
_

𝐴 − 𝑟𝑥𝐾̅𝐵 + 𝑟𝑥𝛽𝜃𝐾̅𝐵 − 2𝑥𝐶𝐴
𝐼𝐼𝐼,4 + 2𝑥𝛽𝜃𝐶𝐴

𝐼𝐼𝐼,4

2𝑏𝛽𝜃2
, 

𝐼𝐵2
∗ = −

1

4𝑏(𝑏 − 𝑟)(𝑏 + 𝑟)𝛽𝜃2
(4𝑎𝑏2𝑥𝛽 − 𝑎𝑏𝑟𝑥𝛽 − 2𝑎𝑟2𝑥𝛽 − 4𝑎𝑏2𝑥𝛽𝜃 + 𝑎𝑏𝑟𝑥𝛽𝜃

+ 2𝑎𝑟2𝑥𝛽𝜃 + 4𝑏3𝛽𝜃2𝐼𝐵̅ − 4𝑏𝑟
2𝛽𝜃2𝐼𝐵̅ − 4𝑏

2𝑥𝐶𝐵
𝐼𝐼𝐼,4 + 2𝑟2𝑥𝐶𝐵

𝐼𝐼𝐼,4

+ 4𝑏2𝑥𝜃𝐶𝐵
𝐼𝐼𝐼,4 − 2𝑟2𝑥𝜃𝐶𝐵

𝐼𝐼𝐼,4), 

𝑞𝐴1
∗ =

2𝑎 − 𝑟𝐾̅𝐵 − 2𝐶𝐴
𝐼𝐼𝐼,4

2𝑏
, 

𝑞𝐵1
∗ = 𝐾̅𝐵, 

𝜏𝐴1
∗ =

1

2
(−𝑟𝐾̅𝐵 + 2𝐶𝐴

𝐼𝐼𝐼,4), 

𝜏𝐵1
∗ = −

−2𝑎𝑏 + 2𝑎𝑟 + 2𝑏2𝐾̅𝐵 − 𝑟
2𝐾̅𝐵 − 2𝑟𝐶𝐴

𝐼𝐼𝐼,4

2𝑏
, 

𝑞𝐴2
∗ =

4𝑎𝑏3𝛽 − 4𝑎𝑏2𝑟𝛽 − 3𝑎𝑏𝑟2𝛽 + 2𝑎𝑟3𝛽 + 4𝑏2𝑟𝐶𝐵
𝐼𝐼𝐼,4 − 2𝑟3𝐶𝐵

𝐼𝐼𝐼,4

4(𝑏 − 𝑟)(𝑏 + 𝑟)(2𝑏2 − 𝑟2)𝛽
, 

𝑞𝐵2
∗ =

4𝑎𝑏2𝛽 − 𝑎𝑏𝑟𝛽 − 2𝑎𝑟2𝛽 − 4𝑏2𝐶𝐵
𝐼𝐼𝐼,4 + 2𝑟2𝐶𝐵

𝐼𝐼𝐼,4

4𝑏(𝑏 − 𝑟)(𝑏 + 𝑟)𝛽
, 

𝜏𝐴2
∗ =

4𝑎𝑏3𝛽 − 4𝑎𝑏2𝑟𝛽 − 3𝑎𝑏𝑟2𝛽 + 2𝑎𝑟3𝛽 + 4𝑏2𝑟𝐶𝐵
𝐼𝐼𝐼,4 − 2𝑟3𝐶𝐵

𝐼𝐼𝐼,4

4𝑏(2𝑏2 − 𝑟2)𝛽
, 

𝜏𝐵2
∗ =

−𝑎𝑏𝑟𝛽 + 4𝑏2𝐶𝐵
𝐼𝐼𝐼,4 − 2𝑟2𝐶𝐵

𝐼𝐼𝐼,4

2(2𝑏2 − 𝑟2)𝛽
. 
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3.5 Comparative analysis of equilibrium results 

After deriving the closed-form equilibrium, I conduct comparative analysis to examine how 

different parameters would affect the equilibrium decisions. The analysis focuses on how changes 

in parameters influence equilibrium outcomes of capacity investments ( 𝐾𝑖𝑡 ), adaptation 

investments (𝐼𝑖𝑡), throughput quantities (𝑞𝑖𝑡) and port charges (𝜏𝑖𝑡). Case III is removed due to 

unclear analytical results with only port A’s comparative statistics available. All parameters with 

ambiguous results are also excluded to keep clarity. Under Case I, the parameter results of 

Scenarios 1 and 3 are identical, so the direction of parameters are illustrated together.  

Explanation of symbols: “↑” indicates an increase in the parameter results in an increase in the 

corresponding variable, “↓” indicates an increase in the parameter results in a decrease in the 

corresponding variable, “∼” denotes unclear results. 

Table 2: Sensitivity analysis under Case I and Case II 

 Case I Case I  Case I  Case II 

Parameter Scenario 1 and 3 Scenario 2 Scenario 4  

Customer willingness 

to pay (𝑎) 

𝐾𝑖1↑ 

 𝐼𝑖1↑ 

 𝑞𝑖1, 𝑞𝑖2↑ 

 𝜏𝑖1, 𝜏𝑖2↓ 

𝐾𝑖1↑ 

 𝐼𝑖1↑ 

 𝑞𝑖1, 𝑞𝑖2↑ 

 𝜏𝑖1, 𝜏𝑖2↓ 

𝐾𝑖1↑ 

 𝐼𝑖1↑ 

 𝑞𝑖1, 𝑞𝑖2↑ 

 𝜏𝑖1, 𝜏𝑖2↓ 

𝐾𝑖2↑ 

 𝐼𝑖2↑ 

 𝑞𝑖2↑ 

  𝜏𝑖2↓ 

Unit capacity 

investment cost (𝑐𝑘) 

𝐾𝑖1↓ 

 𝐼𝑖1↓ 

 𝑞𝑖1, 𝑞𝑖2↓ 

 𝜏𝑖1, 𝜏𝑖2↑ 

𝐾𝑖1↓ 

 𝐼𝑖1↓ 

 𝑞𝑖1, 𝑞𝑖2↓ 

 𝜏𝑖1, 𝜏𝑖2↑ 

𝐾𝑖1↓ 

 𝐼𝑖1↓ 

 𝑞𝑖1, 𝑞𝑖2↓ 

 𝜏𝑖1, 𝜏𝑖2↑ 

𝐾𝑖2↓ 

 𝐼𝑖2↓ 

 𝑞𝑖2↓ 

  𝜏𝑖2↑ 

Adaptation 

investment efficiency 

(𝜃) 

𝐾𝑖1↑ 

 𝑞𝑖1, 𝑞𝑖2↑ 

 𝜏𝑖1, 𝜏𝑖2↓ 

𝐾𝑖1↑ 

 𝑞𝑖1, 𝑞𝑖2↑ 

 𝜏𝑖1, 𝜏𝑖2↓ 

𝐾𝑖1↑ 

 𝑞𝑖1, 𝑞𝑖2↑ 

 𝜏𝑖1, 𝜏𝑖2↓ 

𝐾𝑖2↑ 

𝑞𝑖2↑ 

  𝜏𝑖2↓ 

Disaster intensity (𝑥)  𝑞𝑖1, 𝑞𝑖2↓ 

 𝜏𝑖1, 𝜏𝑖2↑ 

∼ 𝐾𝑖1↓ 

 𝑞𝑖1, 𝑞𝑖2↓ 

 𝜏𝑖1, 𝜏𝑖2↑ 

𝐾𝑖2↓ 

 𝑞𝑖2↓ 

  𝜏𝑖2↑ 

Initial capacity 

endowment (𝐾̅𝑖) 
𝐾𝑖1↓ 𝐾𝑖1↓ 𝐾𝑖1↓ 𝐾𝑖2↓ 

Initial adaptation 

endowment (𝐼𝑖̅) 
𝐼𝑖1↓ 𝐼𝑖1↓ 𝐼𝑖1↓ 𝐼𝑖2↓ 
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Discount factor (𝛽) ∼ 𝐾𝑖1↑ 

 𝐼𝑖1↑ 

 𝑞𝑖1, 𝑞𝑖2↑ 

 𝜏𝑖1, 𝜏𝑖2↓ 

∼ ∼ 

 

The increase in customer willingness to pay (𝑎) and adaptation investment efficiency (𝜃) boosts 

investment decisions and demonstrates a consistent pattern in both Case I and Case II. As customer 

demand increases, the PAs of both ports choose to invest more in capacity and adaptation (𝐾𝑖𝑡↑, 

𝐼𝑖𝑡↑), encouraging the TOCs to increase throughput quantities (𝑞𝑖𝑡↑) to sustain the growing demand. 

To capture more market share in a competitive environment, the TOCs set lower port charges 

(𝜏𝑖𝑡 ↓). Similarly, as adaptation investment becomes more efficient, the PAs invest more in 

adaptation (𝐼𝑖𝑡↑). With higher protection and a safer operational environment, the PAs invest more 

in capacity (𝐾𝑖𝑡↑). These improved capacity and resilience protection levels encourage the TOCs 

to handle more throughputs (𝑞𝑖𝑡↑) and decrease prices to capture more market shares (𝜏𝑖𝑡↓). 

Conversely, an increase in the unit capacity investment cost (𝑐𝑘 ) reduces the incentives of 

investment decisions. Higher unit costs increase the expense of maintaining current capacity 

investment levels, so the PAs choose to reduce capacity investment (𝐾𝑖𝑡↓) to alleviate financial 

pressure. With the halt of capacity expansion projects, the PAs decrease adaptation investment 

( 𝐼𝑖𝑡 ↓) because same or lower operational capacity no longer need for additional resilience 

protection measures. Without further capacity expansion, the TOCs decrease throughput quantities 

(𝑞𝑖𝑡↓) and charge higher prices (𝜏𝑖𝑡↑) to maintain operational efficiency.  

Disaster intensity (𝑥 ) mainly influences throughput and port charge decisions. Under higher 

disaster intensity, the TOCs reduce throughput quantities (𝑞𝑖𝑡 ↓) to buffer against expected 

disruptions and raise prices (𝜏𝑖𝑡 ↑) to compensate for operational risks and maintain current 

profitability. Specifically, in Scenario 4 under both Case I and Case II, increasing disaster intensity 

leads to decreasing capacity investments (𝐾𝑖𝑡↓) due to higher chances of operational disruption. 

The relationship between initial capacity endowment (𝐾̅𝑖) and added capacity investment, and 

between initial adaptation investment (𝐼𝑖̅) and added adaptation investment, remains consistent 

across both Case I and Case II. Higher levels of initial endowment reduce the incentive for new 

investments (𝐾𝑖𝑡, 𝐼𝑖𝑡↓) because the endowment already provides sufficient capacity and resilience.  

The discount factor (𝛽) only appears in Scenario 2 under Case I and brings positive effect on 
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capacity and adaptation investments (𝐾𝑖1, 𝐼𝑖1↑). This shows that future investment returns are more 

valuable than the current ones, which the PAs will invest more today for higher future profits. 

When the PAs invest more, capacity expands and resilience improves, enabling the TOCs to 

increase throughput quantities (𝑞𝑖1,2↑) and lower prices (𝜏𝑖1,2↓) to gain more market shares.  
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4. Numerical analysis 

To better understand the relationships between key parameters and support rational investment 

decisions, several baseline parameters are chosen, as outlined in Table 3. All parameters are in 

normalized form to satisfy the model’s feasibility requirements (positive demand, non-negative 

profits and investments) and to produce realistic equilibrium outcomes. These values serve as a 

benchmark scenario rather than representing any specific port data and remain consistent across 

all three cases to ensure that the analysis isolates the effects of disaster intensity on social welfare 

and investment decisions. For simplicity, “both binding” refers to the situation where both ports A 

and B face binding capacity constraints across the two periods, and “port A non-binding” indicates 

that port A have non-binding capacity constraints.  

Table 3: Baseline parameter values for all three cases 

Competition level 

 

Unit capacity costs 

            𝑟 = 0.3 

            𝑐𝑘 = 2 

Efficiency of adaptation investment             𝜃 = 10 

Discount factor             𝛽 = 0.4 

Maximum prices customer willing to pay without quantities 

 
            𝑎 = 4 

The slope             𝑏 = 0.4 

Initial capacity endowment of port A and B        𝐾̅𝐴 = 𝐾̅𝐵 = 0.5 

Initial adaptation endowment of port A and B        𝐼𝐴̅ = 𝐼𝐵̅ = 0.045 

 

The disaster intensity parameters, 𝑥1  and 𝑥2 , follow uniform distributions, with 𝑥1~[0,1] and 

𝑥2~[0, 𝑥], respectively. The upper boundary 𝑥  varies across cases and does not have a fixed 

baseline value. Based on the equilibrium equations and the baseline parameters in Table 3, figures 

are generated by varying 𝑥 within their respective range for each case. These figures illustrate the 

impact of disaster intensity on adaptation investments, capacity investments, and social welfare.  
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4.1 Impact of disaster intensity on investment decisions 

Figure 2: Case I – Adaptation Investment (𝐼𝑖1) and capacity investment (𝐾𝑖1) with varying disaster 

intensity (𝑥) 

The zoomed plot for adaptation investment is shown below.  

 

Scenario-specific adaptation investment plots for port 𝑖 (zoomed-in views of the above graph) 
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Scenario-specific capacity investment plots for port 𝑖 

    

As shown in the combined graphs, capacity investment (𝐾𝑖1) consistently declines as disaster 

intensity increases, and adaptation investment (𝐼𝑖1) continually increases, but suddenly decreases 

after reaching a certain disaster intensity threshold. This suggests that ports prioritize adaptation 

investment under small to moderate disaster intensity but face diminishing returns in high disaster 

intensity.  

In the individual plot for Scenario 1, when the disaster intensities are small, adaptation investment 

steadily increases. The positive slope shows the effectiveness of early adaptation investment 

against small climate intensity. In contrast, capacity investment in Scenario 1 exhibits an opposite 

trend, which decreases as the disaster intensity increases. This reflects that ports focus more on 

adaptation investments over capacity expansion under small ranges of climate intensities. In 

Scenario 2, both 𝐼𝑖1 and 𝐾𝑖1 remain constant regardless of changes in disaster intensity. This is due 

to no disaster costs incurred within the range of 𝑥2, so ports choose to maintain their current 

investment levels. In Scenario 3, as 𝑥  becomes larger, adaptation investment increases more 

sharply than in Scenario 1, showing enhanced resilience under moderate disaster intensity. The 
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slope of capacity investment is steeper than Scenario 1. This suggests that ports are reallocating 

their resources more rapidly from capacity expansion to other areas including adaptation 

investments. The gap between Scenarios 3 and 4 reflects that as disaster intensity moves from 

moderate to high level, building resilience against more severe disruptions is urgent and required. 

In Scenario 4, as 𝑥 becomes extremely large, ports initially invest more in adaptation. However, 

after a certain disaster intensity level, adaptation investment shows diminishing returns, which 

additional investment either fails to provide sufficient protection or is no longer cost-effective. For 

𝐾𝑖1, capacity investment steadily decreases as 𝑥 becomes really large, which indicates that ports 

consistently reduce the priority of capacity expansion investments.   

Figure 3: Case II – Adaptation Investment (𝐼𝑖2) and capacity investment (𝐾𝑖2) with varying disaster 

intensity (𝑥) 

 

In Case II, as 𝑥 increases, ports A and B invest more in adaptation to improve resilience. However, 

after reaching a disaster intensity level, adaptation investment begins to decrease. This suggests 

that investing in resilience initially has a greater marginal benefit than its marginal costs, but the 

benefit decreases, suggesting that the current adaptation investment is inefficient for dealing with 

extreme disaster intensity. Capacity investment decreases as 𝑥 increases, which indicates a shift in 

the ports’ investment budgets toward other areas including adaptation investments. Compared to 
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Figure 2, early investment under Case I results in higher adaptation and capacity investment levels, 

showing the benefits of proactive plans.  

Figure 4: Case III – Adaptation Investment (𝐼𝑖1,2) and capacity investment (𝐾𝑖1,2) with varying 

disaster intensity (𝑥) under both ports capacity binding  

  

Scenario-specific adaptation investment plots for port A 

   

Scenario-specific adaptation investment plots for port B 
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Scenario-specific capacity investment plots for port A 

    

 

Scenario-specific capacity investment plots for port B 

   

Both adaptation and capacity investments by port A in all four scenarios are higher than port B, 

suggesting early investments offer higher investment quantities and flexibility. In individual plot 

for Scenario 1, adaptation investments (𝐼𝐴1 and 𝐼𝐵2) demonstrate a linear increase with 𝑥. Both 

ports are trying to build some level of resilience in low disaster intensities for future disruptions. 

Capacity investment (𝐾𝐴1) initially increases with 𝑥, but later decreases. This suggests that after 

certain disaster intensity, investing in capacity is no longer effective in coping with climate 

disruptions. 𝐾𝐵2 decreases as disaster intensity increases. With consistently increasing adaptation 
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investments, late investment of port B focuses more on adaptation. In Scenario 2, with higher 

disaster intensity, both ports continue to increase adaptation investments. 𝐾𝐴1 shows a positive 

linear trend compared to the decline in port B. This shows that port A tries to balance adaptation 

and capacity investments to cope with higher chances of operational disruptions. With 

continuously increasing adaptation investment, port B, which invests late, improves its resilience 

quickly to urgently address future extreme disruptions.  

In Scenario 3, both 𝐼𝐴1 and 𝐼𝐵2 increase linearly with 𝑥, but capacity investments (𝐾𝐴1 and 𝐾𝐵2) 

decreases as 𝑥  increases. With higher disaster intensity, both ports choose to invest in more 

resilience for risk mitigation instead of expanding capacity. Port A demonstrates a less steep slope 

in both adaptation and capacity investments, showing that early investments allow for more 

balanced considerations and flexibility to adjust investments. In Scenario 4, as 𝑥 becomes very 

large, both ports initially increase adaptation investment, but decline after certain disaster intensity. 

Under high disaster intensity, the additional adaptation investments no longer provide resilience 

benefits. Capacity investments consistently decrease. At very high disaster intensities, both ports 

choose to halt capacity expansion and focus on building resilience.  

Figure 5: Case III - Adaptation Investment (𝐼𝑖1,2) and capacity investment (𝐾𝑖1,2) with varying 

disaster intensity (𝑥) under port A capacity non-binding in period 2 

In period 2, port A invests more in capacity under competition, but with lower market shares, the 

equilibrium throughput is now lower than the available capacity (𝑞𝐴2 ≤ 𝐾̅𝐴 + 𝐾𝐴1), which results 

in a non-binding capacity constraint.  
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Scenario-specific adaptation investment plots for port A 

    

Scenario-specific adaptation investment plots for port B 

    

 

 

Scenario-specific capacity investment plots for port A 
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Scenario-specific capacity investment plots for port B 

    

Across all four scenarios, port A has higher investment values due to early investment benefits. In 

the individual plots for Scenario 1, the adaptation investments ( 𝐼𝐴1 and 𝐼𝐵2) illustrate an increasing 

trend as 𝑥 increases. Capacity investments (𝐾𝐴1 and 𝐾𝐵2 ) decrease with increasing 𝑥, but the slope 

of 𝐾𝐴1 is less steep compared to 𝐾𝐵2. This indicates that port A’s non-binding constraint in period 

2 helps maintain capacity levels more effectively. Both ports A and B choose to invest more in 

resilience and less in capacity expansion under small disaster intensity. Compared to Figure 4, port 

A’s adaptation investments demonstrate a similar pattern, but capacity investment decreases more 

smoothly instead of an inverted U-shape trend with a sudden increase and decrease. With non-

binding capacity constraints, port A obtains more flexibility in investment choices and can 

gradually decrease capacity investment based on demand and operational needs. In Scenario 2, 

port A chooses constant adaptation and capacity investments because no disaster costs are incurred 

within the range of 𝑥2. Compared to Figure 4, both capacity and adaptation investments no longer 

need to maintain an increasing trend to satisfy binding constraints and can be flexible to invest a 

steady amount without considering changes in 𝑥 . Meanwhile, port B increases adaptation 

investment and decreases capacity investment with increasing 𝑥 , shifting its focus towards 

resilience to gain immediate protection.  

In Scenario 3, both 𝐼𝐴1  and 𝐼𝐵2  increase as 𝑥  rises. 𝐾𝐴1  and 𝐾𝐵2  decline as 𝑥  becomes larger. 

Compared to the fully binding case in Figure 4, both investments resemble similar patterns. This 

demonstrates that the non-binding capacity constraint in period 2 has mere influence under 

moderate disaster intensity. In Scenario 4, both 𝐼𝐴1 and 𝐼𝐵2 initially rise with increasing 𝑥, but later 

decline. This is because of the diminishing returns of adaptation investment which make both ports 

challenging to maintain effective risk mitigation. Port A’s optimal point is higher and later than 

port B’s, which suggests early investments bring more sustained resilience. 𝐾𝐴1  and 𝐾𝐵2  both 

show a decreasing trend as 𝑥  increases and indicates both ports choose to decrease capacity 
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expansion in extreme disaster intensity. Compared to Figure 4, port A’s capacity investment 

follows a similar pattern, but adaptation investment shows a more gradual increase and decline. 

This shows that non-binding capacity constraints provide greater stability and flexibility in 

regulating investments under extreme disaster intensity.  

4.2 Impact of disaster intensity on social welfare 

Figure 6: Social welfare comparison across scenarios under Case I, II, III 

  

  

Across all three cases, as disaster intensity increases, the social welfare function decreases. This 

aligns with theoretical expectations, which higher intensity disaster intensity increases the disaster-

related costs, decreases port profits, reduces consumer surplus and ultimately lowers social welfare. 

The analysis does not include individual social welfare plots for each scenario across the three 

cases because the combined graphs already show the trends clearly.  
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In Case I, the social welfare is the highest compared to other cases, showing the importance of 

early adaptation and capacity investments. The flat line in Scenario 2 occurs because no disaster 

costs are incurred within the range of 𝑥2. As a result, changes in 𝑥 have no impact on the social 

welfare function. In Scenario 3, the social welfare function demonstrates a similar trend as in 

Scenario 1 but with a slightly smoother slope. In Scenario 4, social welfare declines more rapidly 

compared to the other scenarios. This indicates that early investments are not generating enough 

resilience to address high disaster intensity. Overall, when 𝑥 is larger than 1, the social welfare 

function begins decreasing fast which demonstrate the early investments is uncapable of keeping 

high returns under high disaster intensity. In Case II, the social welfare function begins at its 

highest value but decreases sharply as disaster intensity 𝑥 increases. This rapid decline indicates 

the vulnerability and unpreparedness of ports that delay capacity and adaptation investments. The 

decline becomes slower when 𝑥 is around 10. This suggests that the loss of social welfare is mainly 

due to the failure of building resilience proactively. Compared to Case I, it is shown that for smaller 

disaster intensities, early investments offer better and smoother social welfare levels. 

In Case III, when both ports face capacity binding constraints, in Scenarios 1 and 2, the range of 

𝑥 is relatively small and social welfare gradually decreases. This shows early investments at port 

A demonstrate some resilience to small disaster intensities. The social welfare impact from disaster 

disruptions intensifies as 𝑥 becomes larger in Scenarios 3 and 4. Both early and late investments 

fail to address climate impacts and maintain social welfare in high disaster levels. When port A 

operates under non-binding capacity constraints, Scenarios 1 and 2 show a positive correlation 

between social welfare and disaster intensity. The combination of early investments and non-

binding capacity constraints at port A provides flexible investment options that help reduce disaster 

impacts on social welfare. As 𝑥 becomes larger in Scenario 3 and 4, the influence of port A’s non-

binding constraints diminishes due to B’s capacity binding constraints and late investment 

strategies. In Scenario 4, although the decline in social welfare is initially steeper compared to the 

same scenario in both ports under capacity binding constraints, the slope later decreases, benefiting 

from the flexible adaptation strategies under port A’s non-binding capacity constraint. Compared 

to both ports binding case, for small to moderate ranges of 𝑥, the non-binding constraints provide 

an increasing trend and lower decline in social welfare. For higher disaster intensity (𝑥 > 1), port 
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A’s non-binding constraint helps social welfare remain at higher levels and allows social welfare 

to decline more smoothly.  

To better illustrate the results and make investment decisions, numerical social welfare is 

computed as the sum of the social welfare of port A and port B, reflecting the overall market social 

welfare rather than focusing on individual port. The current social welfare, 𝑆𝑊𝑐𝑢𝑟𝑟𝑒𝑛𝑡  , is 

calculated by averaging the range of 𝑥 and incorporating it with the baseline parameters in Table 

3 into the general social welfare equation. Similarly, the value of 𝑥  for  𝑆𝑊𝑚𝑎𝑥𝑖𝑚𝑢𝑚   and 

𝑆𝑊𝑚𝑖𝑛𝑖𝑚𝑢𝑚 are selected based on maximum and minimum social welfare points observed in the 

above figures of social welfare versus 𝑥. The results, along with the corresponding numerical 

ranges, are shown in Table 4. 

Table 4: Social welfare calculations 

Case I  SWCurrent SWMaximum SWMinimum Per-Case 
Min-Max 

Scenario 1 0.9 < 𝑥 < 1 13.691 13.693 13.684  
Scenario 2 0 < 𝑥 < 0.9 13.69 13.69 13.69  
Scenario 3 1 < 𝑥 < 1.333 13.63 13.68 13.55  

Scenario 4 1.33 < 𝑥
< 36.7429 

5.62 7.62 2.2  

Overall      2.2-13.693 

Case II       SWCurrent SWMaximum SWMinimum  
 0.138 < 𝑥

< 18.16 

5.33 6.73 4.7  

Overall      4.7-6.73 
Case III -

both 

binding 

 SWCurrent SWMaximum SWMinimum  

Scenario 1 0.9 < 𝑥 < 1 13.08 13.08 13.07  
Scenario 2 0.18 < 𝑥 < 0.9 13.09 13.1 13.08  
Scenario 3 1 < 𝑥 < 1.333 13.03 13.07 12.96  
Scenario 4 10.48 < 𝑥

< 12.07 

8.56 8.96 8.42  

Overall     8.42-13.08 
 Case III - 

A non- 

binding 

 SWCurrent SWMaximum SWMinimum  

Scenario 1 0.9 < 𝑥 < 1 12.86 12.8595 12.8593  
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Scenario 2 0.13 < 𝑥 < 0.9 12.82 12.85 12.78  
Scenario 3 1 < 𝑥 < 1.333 12.84 12.86 12.80  
Scenario 4 1.333 < 𝑥

< 8.787 

12.05 12.80 11.8  

Overall     11.8-12.86 
 

In Case I, where both ports A and B invest early, social welfare is the highest across all 

comparisons (current, maximum or minimum) when 𝑥 is relatively small to moderate levels (𝑥 <

1.333 ). The outcome is preferred under both binding and non-binding scenarios as early 

investments yield the highest 𝑆𝑊𝑐𝑢𝑟𝑟𝑒𝑛𝑡 under moderate disaster probabilities. However, when 𝑥 

becomes very large (𝑥 > 1.333), social welfare in both Case I and III drops significantly. In this 

larger range, the non-binding condition in Case III achieves the best performance by offering 

flexibility to manage severe climate disruptions. When 𝑥  is small (𝑥 < 1.333 ), the binding 

constraints for both ports A and B in Case III result in higher social welfare compared to when 

port A adopts non-binding constraints. This is because binding constraints optimize adaptation and 

capacity investments without any waste or underuse of resources. As 𝑥 increases significantly, 

Case I exhibits the largest gap between 𝑆𝑊𝑚𝑎𝑥𝑖𝑚𝑢𝑚   and 𝑆𝑊𝑚𝑖𝑛𝑖𝑚𝑢𝑚 . This indicates the 

inefficiencies in resource allocation under extreme disaster intensities. While Case I perform well 

for smaller disaster intensities, it lacks robustness against severe climate disruptions. For small 

ranges (𝑥 < 1.333), the 𝑆𝑊𝑐𝑢𝑟𝑟𝑒𝑛𝑡  in Case II is significantly lower than in other cases which 

demonstrate that late investments are not optimal decisions. However, when comparing Case II to 

Scenario 4 of Case I within the similar ranges, Case II achieves higher 𝑆𝑊𝑚𝑖𝑛𝑖𝑚𝑢𝑚, but lower 

𝑆𝑊𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑆𝑊𝑚𝑎𝑥𝑖𝑚𝑢𝑚. This aligns with previous observations that Scenario 4 of Case I has 

a larger Min-Max gap which demonstrate higher variability, lower minimum social welfare values 

and increased vulnerability to rising 𝑥. In contrast, Case II demonstrates more stability in its Min-

Max range under high disaster intensities, though its overall social welfare performs moderately.  



 

69 

5. Conclusion and future research directions 

This study proposes a two-period model to analyze the capacity and adaptation investment timing 

decisions and its influences on the social welfare with the presence of competition, climate 

uncertainty. It brings two main contributions to the field of literature. The first is the model 

introduces a more comprehensive investment decision framework for two ports which analyzes 

both synchronous (early, late) and asynchronous (dynamic) investment timing strategies. Unlike 

existing literatures by Xiao et al. (2015), Randrianarisoa and Zhang (2019) and Wang et al. (2022), 

it extends the timing choices between immediate or later in only disaster prevention investing 

settings to more dynamic investing scenarios with interdependent capacity and adaptation 

investment choices. Secondly, the study examines the disaster intensity boundaries for each 

specific case and analyze the investment decisions between competitive ports across different 

ranges. This approach offers a more realistic and intuitive framework for policymakers and 

practitioners to better understand how disaster intensities influence the investment timing decisions, 

resource allocation decisions and social welfare. 

Firstly, as disaster intensity 𝑥 increases, social welfare decreases across all cases due to increasing 

disaster costs and reduced consumer surplus. Under low disaster intensity, ports tend to increase 

adaptation investments, while capacity investment patterns differ due to investment priorities 

between resilience and expansion. At higher disaster intensity levels, adaptation investments 

initially rise but then decrease once 𝑥  surpasses a certain threshold, beyond which additional 

resilience measures become less effective in mitigating the impacts of extreme disasters. Secondly, 

early investments enable higher levels of capacity and adaptation investments through proactive 

planning, while late investments choose to shift resources toward adaptation to address immediate 

risks. Thirdly, investment timing decisions are closely related to the range of disaster intensity. 

When 𝑥 is small to moderate (𝑥 < 1.333), early investments result in higher social welfare and 

slower rates of social welfare decline. However, under large disaster intensity (𝑥 > 1.333), early 

investments lose their advantages as they become less effective in sustaining resilience. When one 

port invests early under non-binding capacity constraints in period 2 and the other port invests late, 

social welfare is higher and illustrates a smoother decline under extreme disaster intensities. This 

highlights non-binding capacity constraints offer greater flexibility in allocating resources between 

adaptation and capacity which ports can be more effective in coping with severe disruptions.  
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Several future research directions can be considered. First, the baseline parameters in Case III can 

take on different values between ports A and B to illustrate the different characteristics of ports A 

and B for more realistic results. Second, future studies could source parameters from reality to 

enhance its practicality. Third, the current model focuses only on the competition between two 

ports and could be extended to competitions among multiple ports. Fourth, future research could 

incorporate information accumulation, allowing the realization of disaster uncertainties in period 

1 to inform and update the uncertainty estimates for period 2. Fifth, instead of predetermined 

investment timings, future studies could allow each port to decide on when or whether to invest 

based on the decisions of its competitors. Sixth, multi-stage investment timing models could be 

used to analyze how the investment timings influence long-term social welfare. Seventh, future 

studies could investigate separate capacity and adaptation investment decisions rather than joint 

decision-making. Last, the social welfare function could include more factors such as 

environmental shocks, technical advancements, and governmental subsidies to make the model 

more realistic.  
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Appendix 

Appendix A  

Appendix A.1 List of mathematical notations 

Model notations 

      𝑖 
       

      𝑡 
 

     𝜏𝑖𝑡  
 

     𝑞𝑖𝑡 
 

Port 𝑖,  𝑖 = A or B 

Period 𝑡,  𝑡 = 1 or 2 

Port charges of port 𝑖 in period 𝑡 

Traffic volume of port 𝑖 in period 𝑡 

     𝐾̅𝑖 Initial capacity endowment of port 𝑖 

     𝐾𝑖𝑡 
 

     𝛽 

Capacity investment of port 𝑖 in period 𝑡 

Discount factor 

     𝐼𝑖̅ Initial adaptation endowment of port 𝑖 

     𝐼𝑖𝑡 Adaptation investment of port 𝑖 in period 𝑡 

     𝜃 Effectiveness of adaptation investment  

    𝑥1, 𝑥2 Disaster intensity in period 𝑡 

      𝑐𝑘 Cost of capacity investment per unit 

      𝑎 Maximum price customers willing to pay without 

quantities 

      𝑏 Slope of demand function 

      𝑟 Degree of substitutability between ports A and B 

    𝑆𝑊𝑖  
 

Social welfare of port 𝑖 
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Appendix A.2 Calculations of consumer surplus 

Under linear demand function, the consumer surplus is defined as the difference between the 

maximum price the customer willing to pay and the actual price they pay (Xiao et al. 2012, Zhu et 

al. 2019, and Balliauw, 2019):  

𝐶𝑆(𝑞𝑖)  =
1

2
∙ 𝑞𝑖(𝑎 − 𝜏𝑖) 

The full derivation of the consumer surplus of port A and B is as follows:  

𝐶𝑆 (𝑞𝐴, 𝑞𝐵) = ∫ 𝑃𝐴(𝑞𝐴, 𝑞𝐵)𝑑𝑞𝐴 + ∫ 𝑃𝐵(𝑞𝐴, 𝑞𝐵)𝑑𝑞𝐵 − 𝜏𝐴𝑞𝐴 − 𝜏𝐵𝑞𝐵
𝑞𝐵
0

𝑞𝐴
0

  

                                 = ∫ (𝑎 − 𝑏𝑞𝐴 − 𝑟𝑞𝐵)
𝑞𝐴
0

𝑑𝑞𝐴 + ∫ (𝑎 − 𝑏𝑞𝐵 − 𝑟𝑞𝐴)
𝑞𝐵
0

𝑑𝑞𝐵 − 𝜏𝐴𝑞𝐴 − 𝜏𝐵𝑞𝐵                                                                                            

                                 = 𝑎(𝑞𝐴 + 𝑞𝐵) −
1

2
𝑏(𝑞𝐴

2 + 𝑞𝐵
2) − 𝑟𝑞𝐴𝑞𝐵 − 𝜏𝐴𝑞𝐴 − 𝜏𝐵𝑞𝐵 

This function is then separated into terms involving port A and B respectively:  

                                    𝐶𝑆𝐴 = 𝑎𝑞𝐴 −
1

2
𝑏𝑞𝐴

2 −
1

2
𝑟𝑞𝐴𝑞𝐵 − 𝜏𝐴𝑞𝐴 

                                   𝐶𝑆𝐵 = 𝑎𝑞𝐵 −
1

2
𝑏𝑞𝐵

2 −
1

2
𝑟𝑞𝐴𝑞𝐵 − 𝜏𝐵𝑞𝐵 

By plugging 𝜏𝐴 = 𝑎 − 𝑏𝑞𝐴 − 𝑟𝑞𝐵 and 𝜏𝐵 = 𝑎 − 𝑏𝑞𝐵 − 𝑟𝑞𝐴 (equation (1) and (2) in the text) into 

the above equations:  

                             𝐶𝑆𝐴 = 𝑎𝑞𝐴 −
1

2
𝑏𝑞𝐴

2 −
1

2
𝑟𝑞𝐴𝑞𝐵 − (𝑎 − 𝑏𝑞𝐴 − 𝑟𝑞𝐵) ∙ 𝑞𝐴 

                                    = 𝑎𝑞𝐴 −
1

2
𝑏𝑞𝐴

2 −
1

2
𝑟𝑞𝐴𝑞𝐵 − 𝑎𝑞𝐴 + 𝑏𝑞𝐴

2 + 𝑟𝑞𝐴𝑞𝐵 

                                             =
1

2
𝑏𝑞𝐴

2 +
1

2
𝑟𝑞𝐴𝑞𝐵 

                                             = 𝑞𝐴 ∙
1

2
∙ (𝑏𝑞𝐴 + 𝑟𝑞𝐵) 

                     𝐶𝑆𝐵 = 𝑎𝑞𝐵 −
1

2
𝑏𝑞𝐵

2 −
1

2
𝑟𝑞𝐴𝑞𝐵 − (𝑎 − 𝑏𝑞𝐵 − 𝑟𝑞𝐴) ∙ 𝑞𝐵 
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                                    = 𝑎𝑞𝐵 −
1

2
𝑏𝑞𝐵

2 −
1

2
𝑟𝑞𝐴𝑞𝐵 − 𝑎𝑞𝐵 + 𝑏𝑞𝐵

2 + 𝑟𝑞𝐴𝑞𝐵 

                                             =
1

2
𝑏𝑞𝐵

2 +
1

2
𝑟𝑞𝐴𝑞𝐵 

                                             = 𝑞𝐵 ∙
1

2
∙ (𝑏𝑞𝐵 + 𝑟𝑞𝐴) 

From equations 𝜏𝐴 = 𝑎 − 𝑏𝑞𝐴 − 𝑟𝑞𝐵  and 𝜏𝐵 = 𝑎 − 𝑏𝑞𝐵 − 𝑟𝑞𝐴 , we can infer 𝑎 − 𝜏𝐴 = 𝑏𝑞𝐴 +

𝑟𝑞𝐵 and 𝑎 − 𝜏𝐵 = 𝑏𝑞𝐵 + 𝑟𝑞𝐴. Thus, the above equations can be substituted as:  

                           𝐶𝑆𝐴 = 𝑞𝐴 ∙
1

2
∙ (𝑏𝑞𝐴 + 𝑟𝑞𝐵) =

1

2
∙ 𝑞𝐴 ∙ (𝑎 − 𝜏𝐴) 

                           𝐶𝑆𝐵 = 𝑞𝐵 ∙
1

2
∙ (𝑏𝑞𝐵 + 𝑟𝑞𝐴) =

1

2
∙ 𝑞𝐵 ∙ (𝑎 − 𝜏𝐵) 

Appendix A.3 Derivations of disaster costs across three cases  

Case I and III - Scenario 1 and Scenario 3 in Section 3.2.2.1, 3.2.2.3, 3.4.2.1.1 and 3.4.2.1.3 

Substituting equation 𝐼𝑖1 =
(𝐾̅𝑖+ 𝐾𝑖1)𝑥(−1+𝜃+𝛽𝜃)

(𝑥+𝛽)𝜃2
− 𝐼𝑖̅  into the inside term of the disaster costs 

equations  𝐸𝑥1  [(𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]
+and   𝐸𝑥2  [(𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]

+, the results 

are shown as follows:  

                          (𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1) =
(𝐾̅𝑖+𝐾𝑖1)(𝑥+𝑥(−1+𝑥1−𝛽)𝜃+𝑥1𝛽𝜃)

(𝑥+𝛽)𝜃
 

                          (𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1) =
(𝐾̅𝑖+𝐾𝑖1)(𝛽𝜃−𝑥(−1+𝛽𝜃))

2

2(𝑥+𝛽)2𝜃2
 

Next, the expected value and indicator function in disaster costs functions are expressed as follows:  

             𝐸𝑥1  [𝐼 ∙ (
(𝐾̅𝑖+𝐾𝑖1)(𝑥+𝑥(−1+𝑥1−𝛽)𝜃+𝑥1𝛽𝜃)

(𝑥+𝛽)𝜃
) ∙ (

(𝐾̅𝑖+𝐾𝑖1)(𝑥+𝑥(−1+𝑥1−𝛽)𝜃+𝑥1𝛽𝜃)

(𝑥+𝛽)𝜃
)] 

             𝐸𝑥2  [𝐼 ∙ (
(𝐾̅𝑖+𝐾𝑖1)(𝛽𝜃−𝑥(−1+𝛽𝜃))

2

2(𝑥+𝛽)2𝜃2
) ∙ (

(𝐾̅𝑖+𝐾𝑖1)(𝛽𝜃−𝑥(−1+𝛽𝜃))
2

2(𝑥+𝛽)2𝜃2
)] 
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The indicator functions ensures that only positive terms included in calculation of expected disaster 

costs. The expectation is then computed as an integral over the ranges of  𝑥1~[0,1] and 𝑥2~[0, 𝑋]. 

The results are as follows:  

            𝐸𝑥1  [(𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]
+ =

(𝐾̅𝑖+𝐾𝑖1)(𝑥+𝑥(−1+𝑥2−𝛽)𝜃+𝑥2𝛽𝜃)

(𝑥+𝛽)𝜃
 

            𝐸𝑥2  [(𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]
+ =

(𝐾̅𝑖+𝐾𝑖1)𝑥(1+(−1+𝑥)𝜃)
2

2(𝑥+𝛽)2𝜃2
 

Case I and III - Scenario 2 in Section 3.2.2.2, 3.4.2.1.2 and 3.4.2.1.2 

Following the same calculations above, the adaptation equation 𝐼𝑖1 = −𝐼𝑖̅ +
(𝐾̅𝑖+𝐾𝑖1)(−1+𝜃)

𝜃2
 are 

substituted into the inside term of disaster cost functions and the results are given as:  

                           (𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1) =
(𝐾̅𝑖+𝐾𝑖1)(1+(−1+𝑥1)𝜃)

𝜃
 

                           (𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1) =
(𝐾̅𝑖+𝐾𝑖1)(1+(−1+𝑥2)𝜃)

𝜃
 

The expected values with indicator functions are represented as:  

                      𝐸𝑥1  [𝐼 ∙ (
(𝐾̅𝑖+𝐾𝑖1)(1+(−1+𝑥1)𝜃)

𝜃
) ∙ (

(𝐾̅𝑖+𝐾𝑖1)(1+(−1+𝑥1)𝜃)

𝜃
)] 

                      𝐸𝑥2  [𝐼 ∙ (
(𝐾̅𝑖+𝐾𝑖1)(1+(−1+𝑥2)𝜃)

𝜃
) ∙ (

(𝐾̅𝑖+𝐾𝑖1)(1+(−1+𝑥2)𝜃)

𝜃
)] 

By taking the integral with its respective ranges and the results are illustrated below:  

                        𝐸𝑥1  [(𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]
+ =

𝐾̅𝑖+𝐾𝑖1

2𝜃2
                                                

                        𝐸𝑥2  [(𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]
+ = 0             

Case I and III - Scenario 4 in Section 3.2.2.4, 3.4.2.1.4 and 3.4.2.1.4 

By following the same processes with the above scenarios, the disaster cost functions are as follows:               

                           (𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1) =
(𝐾̅𝑖+𝐾𝑖1)(𝑥−𝑥𝛽𝜃+𝑥1𝛽𝜃)

𝛽𝜃
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                           (𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1) =
(𝐾̅𝑖+𝐾𝑖1)(𝑥−𝑥𝛽𝜃+𝑥2𝛽𝜃)

𝛽𝜃
 

The expected value and indicator functions are expressed as:  

                      𝐸𝑥1  [𝐼 ∙ (
(𝐾̅𝑖+𝐾𝑖1)(𝑥−𝑥𝛽𝜃+𝑥1𝛽𝜃)

𝛽𝜃
) ∙ (

(𝐾̅𝑖+𝐾𝑖1)(𝑥−𝑥𝛽𝜃+𝑥1𝛽𝜃)

𝛽𝜃
)] 

                      𝐸𝑥2[𝐼 ∙ (
(𝐾̅𝑖+𝐾𝑖1)(𝑥−𝑥𝛽𝜃+𝑥2𝛽𝜃)

𝛽𝜃
) ∙ (

(𝐾̅𝑖+𝐾𝑖1)(𝑥−𝑥𝛽𝜃+𝑥2𝛽𝜃)

𝛽𝜃
)] 

By taking integrals with respective ranges of 𝑥1 and 𝑥2, the results are shown as:  

                               𝐸𝑥1  [(𝐾̅𝑖 + 𝐾𝑖1)𝑥1 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]
+ = 0 

                            𝐸𝑥2  [(𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1)]
+ =

(𝐾̅𝑖+𝐾𝑖1)𝑥

2𝛽2𝜃2
 

Case II in Section 3.3.2 

By following the similar calculations as above, the disaster cost functions are as follows:  

                                 𝐾̅𝑖 ∙ 𝑥1 − 𝜃 ∙ 𝐼𝑖̅ =
𝐾̅𝑖(1−𝜃+𝑥1𝜃)

𝜃
 

                                (𝐾̅𝑖 + 𝐾𝑖1)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖1) =
(𝐾̅𝑖+𝐾𝑖2)(𝑥−𝑥𝜃+𝑥2𝜃)

𝜃
 

The expected value with indicator functions are as follows:  

                               𝐸𝑥1  [𝐼 ∙ (
𝐾̅𝑖(1−𝜃+𝑥1𝜃)

𝜃
) ∙ (

𝐾̅𝑖(1−𝜃+𝑥1𝜃)

𝜃
)] 

                         𝐸𝑥2[𝐼 ∙ (
(𝐾̅𝑖+𝐾𝑖2)(𝑥−𝑥𝜃+𝑥2𝜃)

𝜃
) ∙ (

(𝐾̅𝑖+𝐾𝑖2)(𝑥−𝑥𝜃+𝑥2𝜃)

𝜃
)] 

Taking integrals with respect to 𝑥1 and 𝑥2, the results are given by:  

                                     𝐸𝑥1  [𝐾̅𝑖 ∙ 𝑥1 − 𝜃 ∙ 𝐼𝑖̅]
+ =

𝐾̅𝑖

2𝜃2
                                                                       

                                     𝐸𝑥2  [(𝐾̅𝑖 + 𝐾𝑖2)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖2)]
+ =

(𝐾̅𝑖+𝐾𝑖2)𝑥

2𝜃2
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Appendix B 

Appendix B.1 Port-specific social welfare equations  

Case I-Scenario 1 

𝑆𝑊𝑖 =
1

2
𝑞𝑖1(𝑎 − 𝜏𝑖1) + 𝜏𝑖1𝑞𝑖1 −

(K̅𝑖 + 𝐾𝑖1)(𝛽𝜃 − 𝑥(−1 + 𝛽𝜃))
2

2(𝑥 + 𝛽)2𝜃2
− 𝑐𝑘𝐾𝑖1

− (
(K̅𝑖1 + 𝐾𝑖1)𝑥(−1 + 𝜃 + 𝛽𝜃)

(𝑥 + 𝛽)𝜃2
− I𝑖̅)) + 𝛽 ∙ (

1

2
𝑞𝑖2(𝑎 − 𝜏𝑖2) + 𝜏𝑖2𝑞𝑖2

−
(K̅𝑖 + 𝐾𝑖2)𝑥(1 + (−1 + 𝑥)𝜃)

2

2(𝑥 + 𝛽)2𝜃2
)) 

Case I-Scenario 2 

𝑆𝑊𝑖 =
1

2
𝑞𝑖1(𝑎 − 𝜏𝑖1) + 𝜏𝑖1𝑞𝑖1 −

K̅𝑖 + 𝐾𝑖1
2𝜃2

− 𝑐𝑘𝐾𝑖1 − (
(K̅𝑖1 + 𝐾𝑖1)(−1 + 𝜃)

𝜃2
− I𝑖̅)) + 𝛽

∙ (
1

2
𝑞𝑖2(𝑎 − 𝜏𝑖2) + 𝜏𝑖2𝑞𝑖2 − 0)) 

Case I-Scenario 3 

𝑆𝑊𝑖 =
1

2
𝑞𝑖1(𝑎 − 𝜏𝑖1) + 𝜏𝑖1𝑞𝑖1 −

(K̅𝑖 + 𝐾𝑖1)(𝛽𝜃 − 𝑥(−1 + 𝛽𝜃))
2

2(𝑥 + 𝛽)2𝜃2
− 𝑐𝑘𝐾𝑖1

− (
(K̅𝑖1 + 𝐾𝑖1)𝑥(−1 + 𝜃 + 𝛽𝜃)

(𝑥 + 𝛽)𝜃2
− I𝑖̅)) + 𝛽 ∙ (

1

2
𝑞𝑖2(𝑎 − 𝜏𝑖2) + 𝜏𝑖2𝑞𝑖2

−
(K̅𝑖 + 𝐾𝑖2)𝑥(1 + (−1 + 𝑥)𝜃)

2

2(𝑥 + 𝛽)2𝜃2
)) 

Case I-Scenario 4 

𝑆𝑊𝑖 =
1

2
𝑞𝑖1(𝑎 − 𝜏𝑖1) + 𝜏𝑖1𝑞𝑖1 − 0 − 𝑐𝑘𝐾𝑖1 − (

(K̅𝑖 + 𝐾𝑖1)𝑥(−1 + 𝛽𝜃)

𝛽𝜃2
− I𝑖̅)) + 𝛽 ∙ (

1

2
𝑞𝑖2(𝑎

− 𝜏𝑖2) + 𝜏𝑖2𝑞𝑖2 −
(K̅𝑖 +𝐾𝑖1)𝑥

2𝛽2𝜃2
)) 
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Case II 

𝑆𝑊𝑖 =
1

2
𝑞𝑖1(𝑎 − 𝜏𝑖1) + 𝜏𝑖1𝑞𝑖1 −

K̅𝑖
2𝜃2

+ 𝛽 ∙ (
1

2
𝑞𝑖2(𝑎 − 𝜏𝑖2) + 𝜏𝑖2𝑞𝑖2 −

𝑥(K̅𝑖 + 𝐾𝑖2)

2𝜃2
− 𝑐𝑘𝐾𝑖2

− (
(K̅𝑖 + 𝐾𝑖2)𝑥(𝜃 − 1)

𝜃2
− I𝑖̅)) 

Case III-Scenario 1 

The social welfare functions for both ports A and B choose capacity binding constraints and A 

chooses non-binding constraints under period 2 remain the same, so the functions are illustrated 

under different ranges only.  

𝑆𝑊𝐴 =
1

2
𝑞𝐴1(𝑎 − 𝜏A1) + 𝜏A𝑞A1 −

(K̅𝐴 + 𝐾A1)(𝛽𝜃 − 𝑥(−1 + 𝛽𝜃))
2

2(𝑥 + 𝛽)2𝜃2
− 𝑐𝑘𝐾A1

− (
(K̅A1 + 𝐾A)𝑥(−1 + 𝜃 + 𝛽𝜃)

(𝑥 + 𝛽)𝜃2
− I𝐴̅)) + 𝛽 ∙ (

1

2
𝑞A2(𝑎 − 𝜏A2) + 𝜏A2𝑞A2

−
(K̅𝐴 + 𝐾A2)𝑥(1 + (−1 + 𝑥)𝜃)

2

2(𝑥 + 𝛽)2𝜃2
)) 

𝑆𝑊𝐵 =
1

2
𝑞𝐵1(𝑎 − 𝜏B1) + 𝜏B1𝑞B1 −

K̅𝐵
2𝜃2

+ 𝛽 ∙ (
1

2
𝑞B2(𝑎 − 𝜏B2) + 𝜏B2𝑞B2 −

𝑥(K̅𝐵 + 𝐾B2)

2𝜃2

− 𝑐𝑘𝐾B2 − (
(K̅𝐵 + 𝐾B2)𝑥(𝜃 − 1)

𝜃2
− I𝐵̅)) 

Case III-Scenario 2 

𝑆𝑊𝐴 =
1

2
𝑞𝐴1(𝑎 − 𝜏A1) + 𝜏A1𝑞A1 −

K̅𝐴 + 𝐾A1
2𝜃2

− 𝑐𝑘𝐾A1 − (
(K̅A1 + 𝐾A1)(−1 + 𝜃)

𝜃2
− I𝐴̅)) + 𝛽

∙ (
1

2
𝑞A2(𝑎 − 𝜏A2) + 𝜏A2𝑞A2 − 0)) 

𝑆𝑊𝐵 =
1

2
𝑞𝐵1(𝑎 − 𝜏B1) + 𝜏B1𝑞B1 −

K̅𝐵
2𝜃2

+ 𝛽 ∙ (
1

2
𝑞B2(𝑎 − 𝜏B2) + 𝜏B2𝑞B2 −

𝑥(K̅𝐵 + 𝐾B2)

2𝜃2

− 𝑐𝑘𝐾B2 − (
(K̅𝐵 + 𝐾B2)𝑥(𝜃 − 1)

𝜃2
− I𝐵̅)) 
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Case III-Scenario 3 

𝑆𝑊𝐴 =
1

2
𝑞𝐴1(𝑎 − 𝜏A1) + 𝜏A𝑞A1 −

(K̅𝐴 + 𝐾A1)(𝛽𝜃 − 𝑥(−1 + 𝛽𝜃))
2

2(𝑥 + 𝛽)2𝜃2
− 𝑐𝑘𝐾A1

− (
(K̅A1 + 𝐾A)𝑥(−1 + 𝜃 + 𝛽𝜃)

(𝑥 + 𝛽)𝜃2
− I𝐴̅)) + 𝛽 ∙ (

1

2
𝑞A2(𝑎 − 𝜏A2) + 𝜏A2𝑞A2

−
(K̅𝐴 + 𝐾A2)𝑥(1 + (−1 + 𝑥)𝜃)

2

2(𝑥 + 𝛽)2𝜃2
)) 

𝑆𝑊𝐵 =
1

2
𝑞𝐵1(𝑎 − 𝜏B1) + 𝜏B1𝑞B1 −

K̅𝐵
2𝜃2

+ 𝛽 ∙ (
1

2
𝑞B2(𝑎 − 𝜏B2) + 𝜏B2𝑞B2 −

𝑥(K̅𝐵 + 𝐾B2)

2𝜃2

− 𝑐𝑘𝐾B2 − (
(K̅𝐵 + 𝐾B2)𝑥(𝜃 − 1)

𝜃2
− I𝐵̅)) 

Case III-Scenario 4 

𝑆𝑊𝐴 =
1

2
𝑞A1(𝑎 − 𝜏𝐴1) + 𝜏A1𝑞A1 − 0 − 𝑐𝑘𝐾A1 − (

(K̅𝐴 + 𝐾A1)𝑥(−1 + 𝛽𝜃)

𝛽𝜃2
− I𝐴̅)) + 𝛽

∙ (
1

2
𝑞A2(𝑎 − 𝜏A2) + 𝜏A2𝑞A2 −

(K̅𝐴 + 𝐾A1)𝑥

2𝛽2𝜃2
)) 

𝑆𝑊𝐵 =
1

2
𝑞𝐵1(𝑎 − 𝜏B1) + 𝜏B1𝑞B1 −

K̅𝐵
2𝜃2

+ 𝛽 ∙ (
1

2
𝑞B2(𝑎 − 𝜏B2) + 𝜏B2𝑞B2 −

𝑥(K̅𝐵 + 𝐾B2)

2𝜃2

− 𝑐𝑘𝐾B2 − (
(K̅𝐵 + 𝐾B2)𝑥(𝜃 − 1)

𝜃2
− I𝐵̅)) 

Appendix B.2 Detailed calculations of optimal 𝑰𝒊 and 𝑰̅𝒊 in Section 3.3.2 

The optimal adaptation function for Case II is defined as follows:  

                              min
{𝐼𝑖2}   

𝐸𝑥2  [(𝐾̅𝑖 + 𝐾𝑖2)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖2)]
++ 𝐼𝑖2 

By following the same processes as in Case I and incorporating the indicator function, the equation 

becomes:  

𝜕𝐸𝑥2[𝐼((𝐾̅𝑖 + 𝐾𝑖2)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖2)) ∗ ((𝐾̅𝑖 + 𝐾𝑖2)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖2))]

𝜕𝐼𝑖2
+ 1 = 0 
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𝐸𝑥2[𝐼((𝐾̅𝑖 + 𝐾𝑖2)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖2)) ∙ (−𝜃)] + 1 = 0 

𝐸𝑥2[𝐼((𝐾̅𝑖 + 𝐾𝑖2)𝑥2 − 𝜃(𝐼𝑖̅ + 𝐼𝑖2))] =
1

𝜃
 

𝑃𝑥2 (
𝜃(𝐼𝑖̅ + 𝐼𝑖2)

𝐾̅𝑖 + 𝐾𝑖2
) = 1 −

1

𝜃
 

To calculate the disaster costs for period 1, the initial adaptation endowment, 𝐼𝑖̅, is first determined 

by minimizing the associated costs under assumption that  𝐼𝑖̅ is optimal for the initial capacity 

endowment, 𝐾̅𝑖. The corresponding objective function is expressed as:  

                                                min
{𝐼𝑖̅}

𝐸𝑥0 [𝐾̅𝑖 ∙ 𝑥0 − 𝜃 ∙ 𝐼𝑖̅]
+ + 𝐼𝑖̅  

𝜕𝐸𝑥0  [𝐾̅𝑖 ∙ 𝑥0 − 𝜃 ∙ 𝐼𝑖̅]
+ + 𝐼𝑖̅

𝜕𝐼𝑖̅
= 0 

𝜕𝐸𝑥0[𝐼(𝐾̅𝑖 ∙ 𝑥0 − 𝜃 ∙ 𝐼𝑖̅) ∗ (𝐾̅𝑖 ∙ 𝑥0 − 𝜃 ∙ 𝐼𝑖̅)] + 𝐼𝑖̅

𝜕𝐼𝑖̅
= 0 

                                               −𝜃 ∙ 𝑃(𝐾̅𝑖 ∙ 𝑥0 − 𝜃 ∙ 𝐼𝑖̅ ≥ 0) + 1 = 0 

𝐹𝑥0 (
𝜃 ∙ 𝐼𝑖̅

𝐾̅𝑖
) = 1 −

1

𝜃
 

                                                              𝐼𝑖̅ =
1

𝜃
∙ 𝐾̅𝑖 ∙ (1 − 𝜃) 

 


