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Sommaire
Les données d’options sont nécessaires afin de capturer les moments d’ordre supérieur des ren-
dements boursiers. En utilisant des techniques modernes d’accélération par carte graphique,
nous démontrons comment l’utilisation de rendements et de prix d’option dans l’étape de
rééchantillonnage d’un filtre à particules permet un filtrage beaucoup plus précis des vari-
ables latentes d’un modèle à variance et intensité de saut stochastique. Cela nous apporte
une performance largement accrue en évaluation d’options dût à une meilleure estimation des
moments conditionnels d’ordre supérieur reflétés dans les prix. Finalement, nous explorons
la prime de risque de marché en la décomposant en sa partie diffusive et de saut.
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Abstract
Options data are mandatory to properly model the higher-order conditional moments of
markets returns. Using modern GPU-acceleration, we demonstrate how including returns
and options in the resampling step of a particle filter yield a much more precise filtering of
the latent states variables for a model with time-varying variance and jump intensity. This
results in an increased pricing performance due to a better estimation of the higher-order
conditional moments reflected in options prices. Finally, we explore the composition of the
equity risk premium by decomposing it in its diffusive and jump component.
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1 Introduction
Modelling security prices is of major importance in finance especially in option pricing. From
the first model of Black and Scholes (1973) assuming a normal distribution for the underlying
asset returns, models have improved in capturing the complex dynamics of financial time
series with a literature separated in both continuous and discrete time framework. Looking
at the daily returns of the S&P500 index in Figure 1, we observe that large fluctuations have
been historically grouped together in periods of high volatility. This phenomenon of volatility
clustering led to stochastic variance models such as Heston (1993) and Heston and Nandi
(2000). However, this type of model focusing on time-varying volatility lack the flexibility
to capture another characteristic of financial time series: returns are negatively skewed
and punctuated with large fluctuations that traditional Gaussian innovations can’t properly
capture. This paved the way to models including jumps such as Bates (1996) and Ornthanalai
(2014) composed of a diffusive and a jump innovation, with time-varying volatility and
jump intensity. Today, most modern models include even more complex dynamics to better
capture volatility persistence and extreme events. Notably, Andersen, Fusari, and Todorov
(2015) used multiple volatility components, Amaya, Bégin, and Gauthier (2018) allowed for
correlated jumps in both return and variance, and Bardgett, Gourier, and Leippold (2019)
separated positive and negative jumps in returns.

Figure 1: Returns on the S&P500 index
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Daily log-returns of the S&P500 index from January 1996 to December 2017.

The greatest challenge when using these complex models arises from the estimation of their
parameters since relying only on returns observations fail to properly disentangle time-
varying volatility, tail risk and risk premiums. This motivated the use of other sources
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of information such as high-frequency data like Barndorff-Nielsen and Shephard (2004) who
used realized variance and bipower variation in order to improve the estimation of diffusive
coefficients. Another way to improve the estimation of models parameters is to add the
cross-section of options prices to better capture extreme events, as well as risk premiums,
since their prices provide information under risk-neutral probabilities.

A second complexity arises from the latent states variables present in most modern models
that must be filtered. One of the popular approaches is the particle filter of Johannes,
Polson, and Stroud (2009) that uses Monte Carlo simulation to extract latent states from
observations. Although highly flexible and straight forward, the main drawback from this
method is the increase in dimensionality of the filtering problem, resulting in a massive
computational burden. This issue is particularly striking when options are also used in the
estimation since computing their prices is already numerically costly, thus greatly limiting
their uses. With the exceptions of Hurn, Lindsay, and McClelland (2015) who used parallel
computing with two supercomputers to include options in the estimation of Heston (1993)
model, Amaya, Bégin, and Gauthier (2018) using multiple sources of information1 in their
particle filter to estimate a jump-diffusion class of model, and Jacobs and Liu (2018) who
proposed a novel solution based on model-implied spot volatilities rather than prices in order
to reduce the dimensionality of the filtering problem, the most popular method consists in
estimating the model’s parameters from a weighted likelihood of many information sources
and using only returns to filter the latent states2. While having the advantage of a reasonable
computational time, this method doesn’t capture all of the information present in the options
cross-section.

As models kept evolving over the years, another technology improved sidewise at a similar
rate: Graphics Processing Units. Their use is widespread in artificial intelligence, bioin-
formatics, oil exploration, physics as well as many other scientific fields. In this paper, we
tackled the computational burden of using options prices in a particle filter by the use of
modern GPU-acceleration and explore the benefits of filtering latent states with returns and
options data in order to estimate the parameters of time-varying volatility, tail risk and
equity risk premiums.

Section 2 details the model we use, Section 3 the estimation procedure, Section 4 a simulation
experiment and Section 5 the empirical result.

1Amaya, Bégin, and Gauthier (2018) used returns, realized variance, bipower variation, options implied
volatility and options realized variance to estimate a jump-diffusion model with correlated jumps in returns
and variance

2This method was used notably by Christoffersen, Jacobs, and Ornthanalai (2012), Ornthanalai (2014)
and Bégin, Dorion, and Gauthier (2020).
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2 Model
To capture returns dynamics, we propose the discrete-time asset pricing model of Ornthanalai
(2014) composed of a Brownian increment and a Lévy jump. Although not the most recent
model, it allows us to study the filtering of time-varying variance, jump intensity and risk
premium in parsimonious fashion.

2.1 Under physical probability
Returns Rt+1 of the S&P500 index are modelled as

Rt+1 = log
(
St+1

St

)
= µP

t+1 − ζt+1 + zt+1 + yt+1. (1)

with the conditionally Gaussian and jump risk sources being zt+1 and yt+1 respectively.
The term ζt+1 is the convexity correction detailed in A.1 and µP

t+1 the drift under physical
probability. Therefore, conditionally to the filtration Ft3,

EP[St+1|Ft] = St exp(µP
t+1).

The conditionally Gaussian innovation follows

zt+1|Ft =
√
hz,t+1εt+1

with εt+1 being serially independent Gaussian increments. The conditional variance hz,t+1
captures the volatility clustering under the affine GARCH dynamic of Heston and Nandi
(2000)

hz,t+1 = wz + bzhz,t + az
hz,t

(zt − czhz,t)2 .

The parameter wz represents the long-term level of variance and cz the asymmetric response
to shocks in returns, described as the leverage effect by Black and Cox (1976). The uncon-
ditional level of variance is σ2

z = wz+az
1−bz−azc2

z
and the variance persistence is bz + azc

2
z.

For the jump innovation, we choose the normal inverse Gaussian (NIG) distribution with a
location parameter of 0, a tail heaviness of α, an asymmetry parameter of β and a time-
varying scaling parameter hy,t+1 referred to as the jump-intensity process4

yt+1|Ft ∼ NIG(α,β,0,hy,t+1).

The goal of jump innovations is to capture the skewness and heavy tail risk present in the
index returns particularly for large negative jump and frequent small positive ones. The

3Ft = σ{z1:t, y1:t}, the σ-field generated by the diffusive and jump innovations from 1 to t.
4Bégin, Dorion, and Gauthier (2020) demonstrated that a NIG’s scaling parameter can be seen as the

scaled-jump intensity of a compound-Poisson process of NIG innovations.
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NIG distribution was shown by Ornthanalai (2014) to have a better fit over the data than
Merton’s jumps and other Levy innovations5. The time-varying jump intensity dynamic is
similar to the one of the variance process

hy,t+1 = wy + byhy,t + ay
hz,t

(zt − cyhz,t)2 .

2.2 Under risk-neutral probability
Assuming the conditional Radon-Nikodym derivative that links the physical probabilities P
to the risk-neutral probabilities Q is given by

dQ
dP |Ft+1
dQ
dP |Ft

= exp(−ηt+1zt+1 − Λt+1yt+1)
exp(ξz(−ηt+1)hz,t+1 + ξy(−Λt+1)hy,t+1) , (2)

where ξz(φ) and ξy(φ) are linked to the cumulent generating function of the Gaussian and
NIG innovations (see A.1). Prices discounted at the deterministic risk-free rate of returns
rf,t+1 under Q are martingales

EQ
[
e−rf,t+1

St+1

St

∣∣∣∣Ft] = 1. (3)

We apply the change of measure from the Radon-Nikodym derivative of Eq. (2)

EQ
[
eRt+1

∣∣∣Ft] = EP
[
dQ
dP |Ft+1
dQ
dP |Ft

eRt+1

∣∣∣∣∣Ft
]

= EP
t [exp(−ηt+1zt+1 − Λt+1yt+1 +Rt+1)]

exp(ξz(−ηt+1)hz,t+1 + ξy(−Λt+1)hy,t+1) . (4)

By replacing Rt+1 in Eq.(4) with its definition from Eq.(1) and applying the martingale
condition of Eq.(3) to the equation, we get

erf,t+1 =EP
t [exp(−ηt+1zt+1 − Λt+1yt+1 + µP

t+1 − ζt+1 + zt+1 + yt+1)]
exp(ξz(−ηt+1)hz,t+1 + ξy(−Λt+1)hy,t+1) .

Defining the convexity correction as ζt+1 = ξz(1)hz,t+1 +ξy(1)hy,t+1 (see A.1) and rearranging
the equation yield

erf,t+1 = exp(µP
t+1 − (ξz(1) + ξz(−ηt+1)− ξz(1− ηt+1))hz,t+1

− (ξy(1) + ξy(−Λt+1)− ξy(1− Λt+1))hy,t+1).
5Ornthanalai (2014) demonstrated that the NIG distribution generate large levels of conditional non-

normality while being parsimonious and has a coherent equity risk premium with observed market’s returns

8



The pricing kernel allows for a decomposition of the instantaneous equity risk premium in
terms of Gaussian and jump risk, assuming that η and Λ are deterministic and constant
through time,

µP
t+1 − rf,t+1 = λzhz,t+1 + λyhy,t+1. (5)

where

λz = ξz(1) + ξz(−η)− ξz(1− η)
λy = ξy(1) + ξy(−Λ)− ξy(1− Λ).

The risk-neutral dynamic of returns thus follows

Rt+1 = rf,t+1 − ζ∗t+1 + z∗t+1 + y∗t+1

with ζ∗t+1 being the convexity correction under Q. The risk-neutral conditionally Gaussian
innovation is z∗t+1|Ft ∼ N(0,h∗z,t+1) and jump is y∗t+1|Ft ∼ NIG(α,β∗,0,h∗y,t+1) with β∗ = β−Λ.
Under risk-neutral probabilities, the variance process and jump intensity leverage parameters
are c∗z = cz + η and c∗y = cy + η respectively.

A complete proof of the risk-neutralization can be found in Ornthanalai (2014) and Bégin,
Dorion, and Gauthier (2020).

2.3 Option pricing formula
Since our model selection fall into the exponential affine class, we can efficiently compute
options prices by Inverse Fourier Transform for European options following the work of
Heston and Nandi (2000). This aspect is crucial since our parameters estimation procedure
rely on the computation of a large number of options prices. Hence, the price of a European
call is

Ct(St, hz,t+1, hy,t+1) = StP1,t,T −Ke−rf,t,T (T−t)P2,t,T .

with rf,t,T the deterministic risk-free rate for the corresponding maturity of the option.
Details of the conditional probabilities P1,t,T and P2,t,T are available in A.3.

3 Model estimation
The latent model components zt and yt are estimated from the observed underlying asset
returns and options prices via a particle filter. We compare two filtering methods, the first is
based on index returns only and the second on index returns and the options cross-section.

We also compare three methods of parameter estimation. The first one is based on returns
only, the second consist in filtering the latent states variables with returns and constructing
a weighted likelihood function to include a sample of options in a two-stage method, and
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the third one includes both returns and options prices in the filtering procedure to perform
a one-stage estimation.

In all cases, the model’s parameters are determined via maximum likelihood estimation

argmax
Θ

L(Θ).

with Θ the vector of parameters6 being optimized

3.1 Data
To estimate the model, we use data from the S&P500 index between January 1,1996 and
December 31, 2017, totalling 5,537 trading days. Excess index’s returns are calculated using
data from CRSP and the 1-month T-bill rate from Fama and French library. The S&P500
options, dividend yields and zero-coupon rates are obtained from OptionMetrics. As it is now
standard in the literature, a sample of the most liquid, out-of-the-money and at-the-money
options contracts is selected, with moneyness7 between 0.75 and 1.15, and maturity between
10 and 90 days. Appendix A.5 details our selection procedure, resulting in a dataset of 47,186
options. For the zero-coupon rates associated with each contract, a linear interpolation is
used in cases where the specific maturity isn’t available and a carry-over from the previous
trading day is performed when exchanges are closed.

3.2 Particle filter
We describe a single step of a particle filter based on the sequential importance resampling
(SIR) methodology. Conditioning on the jump paths y(i)

1:t, where i ∈ {1,2,...,N} and N is the
number of particles simulated8, the conditional variance h(i)

z,t+1 and jump intensity h(i)
y,t+1 are

predictable processes from information in time t. In our study, we propose two filtrations.
The first is based on index returns where the sigma-field G(i)

t is defined as

G(i)
t = σ{R1:t, y

(i)
1:t}.

The second filtration includes the index returns as well as the options cross-section. The
relevant sigma-field is

H(i)
t = σ{R1:t, ~O

mkt
1:t , y

(i)
1:t}

6The vector of parameters being Θ = {wz az bz λz cz wy ay by λy cy α β}.
7We define moneyness as K/St.
8Throughout this paper, 25 000 particles were used.

10



with ~Omkt
t being the vector of Mt observed options prices

~Omkt
t =



Omkt(St,K1,τ1)
Omkt(St,K2,τ2)

...
Omkt(St,KMt ,τMt)


.

Since h(i)
z,t and h

(i)
y,t aggregate past information, Rt,h

(i)
z,t, h

(i)
y,t, y

(i)
t is Markovian, which is a useful

property for the filter. Therefore, the filtrations can be rewritten as

G(i)
t ≡ σ{Rt,h

(i)
z,t, h

(i)
y,t, y

(i)
t }.

and
H(i)
t ≡ σ{Rt, ~O

mkt
t ,h

(i)
z,t, h

(i)
y,t, y

(i)
t }

Step 1: Propagation

1. Since the deterministic risk-free rate of returns, the conditional variance and jump inten-
sity are known at time t, we can directly compute the drift and convexity correction

µ
P(i)
t = rf,t + λzh

(i)
z,t + λyh

(i)
y,t

ζ
(i)
t = ψ(i)

zt (1) + ψ(i)
yt (1).

2. The jump innovation is then simulated from the NIG distribution

y
(i)
t ∼ NIG

(
α,β,0,h(i)

y,t

)
.

3. Once conditioned on the jump innovation, the conditionally Gaussian innovation is ob-
tained

z
(i)
t = Rt − µP(i)

t + ζ
(i)
t − y

(i)
t .

4. Since the conditional variance and jump intensity are predictable processes in our frame-
work, they are computed to be used in the next time step

h
(i)
z,t+1 = wz + bzh

(i)
z,t + az

h
(i)
z,t

(
z

(i)
t − czh

(i)
z,t

)2

h
(i)
y,t+1 = wy + byh

(i)
y,t + ay

h
(i)
z,t

(
z

(i)
t − cyh

(i)
z,t

)2
.
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Step 2: Importance weights and filtering of latent state

1. Importance weights reflect the likelihood of a given particle and are based on the infor-
mation available from the filtration, either ω̄(i)

t |G
(i)
t or ω̄(i)

t |H
(i)
t . Since the main contribution

of this paper is to compare the effects of both filtrations, we detail their computation in
Equation (7) from Subsection 3.3 and Equation (11) from Subsection 3.4.

2. Normalized importance weights ω(i)
t to be used in filtering and resampling are

ω
(i)
t = ω̄

(i)
t∑N

k=1 ω̄
(k)
t

. (6)

3. Latent states variables are then filtered as the weighted average of observed particles

z̃t =
N∑
i=1

z
(i)
t ω

(i)
t ỹt =

N∑
i=1

y
(i)
t ω

(i)
t

h̃z,t+1 =
N∑
i=1

h
(i)
z,t+1ω

(i)
t h̃y,t+1 =

N∑
i=1

h
(i)
y,t+1ω

(i)
t .

Step 3: Resampling

We resample the conditional variance and jump intensity based on the normalized weight
of Eq. (6) following the 2-dimensional continuous resampling methodology from Malik and
Pitt (2011):

h
(i)
z,t+1 ← h

(ki)
z,t+1 h

(i)
y,t+1 ← h

(ki)
y,t+1

where ki are the particles being resampled. Since a multinomial resampling would yield
a non-smooth likelihood function, this method allows us to achieve a likelihood function
smooth enough for the use of conventional optimization routine.

3.3 Filtering with Returns
3.3.1 Parameter estimation using only Returns

This first estimation method, which will serve us as a benchmark, computes importance
weights used in the resampling step of the particle filter based only on daily returns

ω̄
(i)
t |G

(i)
t = f

(
Rt|G(i)

t

)
. (7)

Once the returns Rt are conditioned on the simulated jump path y(i)
1:t, the Gaussian term can

be isolated and its density is obtained

f
(
Rt|G(i)

t

)
= 1√

2πh(i)
z,t

exp

−1
2

(
Rt − µP(i)

t + ζ
(i)
t − y

(i)
t

)2

h
(i)
z,t

 . (8)
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The likelihood function can then be computed as a direct by-product of the particle filter

L(Θ) = Lreturns(Θ) =
T∑
t=1

log
(

1
N

N∑
i=1

ω̄
(i)
t |G

(i)
t

)
. (9)

3.3.2 Joint parameter estimation using Returns and Options

This second estimation procedure computes a weighted likelihood in two steps. First, the
conditional variance and jump intensity processes are filtered using the importance weight
computed from equation (7) and the log-likelihood from returns data Lreturns is obtained.
The second steps computes the model’s options prices based on filtered conditional variance
and jump intensity

Omdl
t,m = O

(
St, Kt,m, τt,m, rf,t,m, h̃z,t+1,h̃y,t+1,ΘQ

)
.

We then construct the likelihood function for options data using the Error Specification 4
(ES4) of Hurn, Lindsay, and McClelland (2015), a zero-mean multiplicative error with the
constant σε estimated as the error-term standard deviation

εt,m = log(Omkt
t,m /O

mdl
t,m ) + 1

2σ
2
ε ∼ N(0,σε).

The density of each error being normally distributed

f
(
εt,m|h̃z,t+1,h̃y,t+1

)
= 1√

2πσ2
ε

exp
(
−1

2
(εt,m)2

σ2
ε

)
,

we obtain the log-likelihood based on option observations with Mt being the amount of
option included for each specific day,

Loptions(Θ) =
T∑
t=1

Mt∑
m=0

log(f
(
εt,m|h̃z,t+1,h̃y,t+1

)
). (10)

A weighted likelihood combining the log-likelihood from returns (9) and from options (10)
is then computed

L(Θ) = T +M

2

(
Lreturns(Θ)

T
+ Loptions(Θ)

M

)
.

with T the number for daily observation and M the number of options in the sample.

3.4 Filtering with Returns and Options
Our motive to include options data is to improve the filtering of latent states variables. From
returns alone, it is impossible to distinguish between a large fluctuation in periods of high
volatility and a jump during periods of low volatility. Jumps are also rare events, therefore
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we can’t achieve an accurate estimation of the jump intensity from returns only, especially
if the intensity is time varying. Including the options cross-section to the filtering procedure
solve these problems since prices directly reflect the conditional probability distribution of
the underlying asset’s returns. Also, Bégin and Gauthier (2020) found prices are highly
biased when only historical returns are used to recover latent states and that this bias is
corrected when option prices are added to the sample used to recover the states9.

Contrary to the two-stage estimation commonly used in the literature, this method values
options prices based on the conditional variance and jump intensity of each particle instead
of the filtered values

O
mdl,(i)
t,m = O

(
St, Kt,m, rf,t,m, τt,m, h

(i)
z,t+1, h

(i)
y,t+1,ΘQ

)
.

This is where most of the numerical challenge comes from since N ×M options must be
valued per likelihood calculation, close to a billion in our setting. This computational burden
is only achievable by the use of advance numerical methods, see A.4 for a discussion from a
numerical standpoint. Error terms are then computed for each particle following the same
error specification as the two-stage method

ε
(i)
t,m = log(Omkt

t,m /O
mdl,(i)
t,m ) + 1

2σ
2
ε .

The error terms being normally distributed, the density is

f
(
ε

(i)
t,m|H

(i)
t

)
= 1√

2πσ2
ε

exp

−1
2

(
ε

(i)
t,m

)2

σ2
ε

 .
Assuming that errors from returns and options are independent, the importance weights
conditional to the filtration H(i)

t are computed as

ω̄
(i)
t |H

(i)
t = f

(
Rt|H(i)

t

) Mt∏
m=0

f
(
ε

(i)
t,m|H

(i)
t

)1/Mt

, (11)

with f
(
Rt|H(i)

t

)
calculated the same way as f

(
Rt|G(i)

t

)
in Eq. (8). To prevent options from

overpowering returns observations, we weight options inversely proportional to the number
of contracts observed that day, as proposed by Amaya, Bégin, and Gauthier (2018).

The log-likelihood is then computed from the importance weights of the particle filter

L(Θ) =
T∑
t=1

log
(

1
N

N∑
i=1

ω̄
(i)
t

)
.

9In most models, options prices depend on unobservable factors such as stochastic volatility and jump
intensity. Bégin and Gauthier (2020) demonstrated that the common practice of replacing latent states with
their estimated values from returns induces a significant bias in options prices that is also propagated to
models parameters.
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Table 1: Summary of different filtration used in the simulation study

Filtration Description

Gt A filtration containing only returns

H1
t

A filtration containing returns and one option per day. This option has a maturity of 30 days and
a moneyness of 1.00.

H5
t

A filtration containing returns and five options per day. These options have a maturity of 30 days
and a moneyness of 0.80, 0.90, 1.00, 1.10 and 1.20.

H10
t

A filtration containing returns and ten options per day. These options have a maturity of 30 and 90 days,
and a moneyness of 0.80, 0.90, 1.00, 1.10 and 1.20.

A summary of the different filtrations used in our simulation experiment.

4 Simulation experiments
We propose a simulation study to illustrate the difference between the filtration Gt andHt for
the computation of importance weights in a controlled environment. Adding more options
to the sample require a larger computational burden, therefore we also want to find the ideal
number of options to maximize precision while keeping computation time reasonable.

We first simulate 2500 trading days under our model framework using parameters of the
S&P500 from Bégin, Dorion, and Gauthier (2020), with a spot price starting at 1000, keeping
zero-coupon rates and dividend yields at 0. We then simulate options prices for each day to
be included in the filtering of the latent states. We add a multiplicative noise term to the
simulated prices using the same error structure as in our estimation

Omkt
t,m = Omdl

t,m e
− 1

2σ
2
ε+εt,m

recalling that {εt}t∈N i.i.d.∼ N(0,σε) and setting σε to 0.05. To study the effect of different
number of options included in the sample, we compare a filtration H1

t containing one ATM
option with 30 days to maturity, H5

t containing 5 OTM/ATM options with 30 days to
maturity and moneyness between 0.8 and 1.2, and H10

t containing 10 OTM/ATM options
with 30 and 90 days to maturity and moneyness between 0.8 and 1.2. Table 1 summarize
each filtration used.

We then run the particle filter using the same parameters as the data-generating-process.
Table 2 present a comparative study using different performance measures. Panel A shows
the average daily posterior standard deviation of the filtered process and Panel B the average
error between the filtered process and the simulated one.

We find that information from the options cross-section vastly improves the filtering of latent
states, mostly the conditional variance and jump intensity. The addition of one ATM option
yields a reduction of the average posterior standard deviation of hz and hy, each by a factor
of around threefold. When five options of the same maturity but different moneyness are
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Table 2: Simulation results

Panel A: Average standard deviation of the posterior density

Filtering with Returns
Filtering with Returns

and 1 Option
Filtering with Returns

and 5 Options
Filtering with Returns

and 10 Options

hz 1.47E-05 3.63E-06 1.82E-06 1.75E-06
hy 2.39E-05 6.48E-06 3.29E-06 3.17E-06
z 1.89E-03 1.74E-03 1.33E-03 1.29E-03
y 1.89E-03 1.74E-03 1.33E-03 1.29E-03

Panel B: Average error

Filtering with Returns
Filtering with Returns

and 1 Option
Filtering with Returns

and 5 Options
Filtering with Returns

and 10 Options

hz -6.83E-06 -1.22E-06 1.00E-06 7.78E-07
hy -1.38E-05 -7.36E-06 -3.21E-06 -2.94E-06
z -4.50E-04 -4.95E-04 -4.86E-04 -4.88E-04
y -4.26E-04 -3.92E-04 -4.08E-04 -4.06E-04

Panel A shows the average standard deviation of posterior density of the filtered states. Panel B shows the average
error, which is the difference between the filtered value and the simulated one.

used, we see a reduction of 7 and 6 times respectively. Interestingly, we observe that using
10 options, i.e. adding different maturities, improves but only slightly the filtering precision.
Looking at the average error for hz and hy, we also see a significant improvement from the
addition of options. For a more visual representation, the filtered values of hz and hy using
Gt and H10

t are presented in Figure 2.

For jumps innovation, we note a slight improvement in precision when using 5 or more
options over returns alone but likely caused a more precise estimation of the jump intensity
level itself. The improvement of the average error is insignificant. We graph the filtered
jump innovations from Gt and H10

t in Figure 3. From it, we observe that options help in
filtering large jumps but still fail to capture small jumps innovations. A QQplot of the
filtered Gaussian residuals is available in Figure 4, confirming an improvement in capturing
large jumps when options are added to the filter.

From this experiment, we find that the addition of a panel of options greatly improves the
filtering of variance and jump intensity but doesn’t benefit the identification of jumps them-
selves. This directly validates our hypotheses that the addition of options to the filtration
improve the estimation of hz and hy since their levels are directly reflected in options prices,
but not y, as jumps innovations themselves don’t affect prices in our model.
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5 Empirical results

5.1 Estimated Parameters and Filtered latent state
Table 3 reports the model’s parameters values obtained from the three estimation methods.
Beneath each parameter is the standard error computed using the outer product of gradients
at the optimum parameters values (Newey and McFadden, 1994). From the Joint Estimation
- Filtering with Returns, we observe similar parameters to Ornthanalai (2014) and Bégin,
Dorion, and Gauthier (2020), which is to be expected since both papers used the same
estimation methodology but on different datasets10.

Figure 5 and 6 present the filtered variance and jump intensity levels at the optimum param-
eters values for each estimation method. From the model filtered with returns and options,
we first notice much tighter confidence intervals around the filtered values, indicating a gain
in precision. The value of the parameter az of the Gaussian dynamic in Table 3 is the lowest
off all the three estimation methods, indicating that the variance of the variance process is
the lowest. This is confirmed by looking at the third plot of Figure 5. We also observe a
larger leverage parameter cy and ay from the jump intensity dynamic, indicating a faster
increase following negative returns. The third plot of Figure 6 shows filtering with returns
and options yield the highest level of jump intensity during the financial crisis as compared
to filtering only with returns. At the bottom of Table 3, we note that filtering with returns
and options also yield the lowest level of unconditional volatility from Gaussian innovations.
These findings indicate that extreme events are therefore more likely to be capture by jumps
instead of large spikes in the variance level when options are used in the filtering of latent
states.

The approach of variance targeting is popular in the financial literature (Mezrich and Engle,
1996) and consist in linking the value of a parameter to the variance of the market’s returns
so that that the model’s unconditional variance is coherent with empirical observations11.
However, the presence of jumps in our modelling framework add a layer of complexity as
both Gaussian and Jumps innovations contribute to the total variance. Therefore, we choose
not to proceed with the method of variance targeting in our parameters search. Looking at
the total unconditional volatility from both normal and jump innovations, at the bottom of
Table 3, we see consistent values when compared to the sample’s volatility from market’s
returns of 18.9%, validating that our methodological choice yield coherent results. The strong
persistence of variance and jump intensity on the last row of Table 3 are also very similar to
the results of Ornthanalai (2014) and Bégin, Dorion, and Gauthier (2020).

From the estimation using only returns, we notice in the first plot of Figure 6 that the jump
10Ornthanalai (2014) used data between 1996 and 2009, and Bégin, Dorion, and Gauthier (2020) between

1996 and 2015. Both only used Wednesdays options.
11As an example, under the variance dynamic of Heston and Nandi (2000),the unconditionnal variance is

calculated as σ2
z = wz+az

1−bz−azc2
z
. Therefore, the method of variance targeting would fix the value of the long

term variance’s level parameter wz = σ̂2
z(1− bz − azc

2
z)− az, where σ̂2

z is the returns sample’s variance.
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intensity level is nearly flat. The parameters of jump intensity dynamic in Table 3 shows the
highest value of wy as well as very small ay and cy compared to both estimation methods
using options. This leads us to believe that time-varying jump intensity is miss-identified
in the absence of options. Much higher values for az and cz in the variance dynamic are
also observed, generating large spikes in the variance to capture extreme events that would
normally be captured by jumps, as shown in the first plot of Figure 5.

5.2 Goodness of fit in the option market
To compare the pricing performance and goodness of fit from every estimation method, we
compute the Relative Implied Volatility Root Mean Square error (RIVRMSE) for two subsets
of options

RIV RMSE =

√√√√√ 1
N

∑
j∈O

(
IV mld

j − IV mkt
j

IV mkt
j

)2

,

where IV mld
t,m is the implied volatility for a specific option under the Black-Scholes framework

from the model and IV mkt
t,m the observed market’s implied volatility. The first subset is the

sample of options used in the estimation of the model’s parameters. The results from each
method are shown at the bottom of Table 3. The second subset consists of a broad selection
of OTM/ATM options, with moneyness between 0.775 and 1.15, and maturities between 10
and 365 days. We detail the goodness of fit by moneyness and maturity in Table 4, and by
time-period in Table 5.

Looking at the overall RIVRMSE for the 3 estimation methods, it is clear that the addition
of options increase the performance of the model, most noticeably when options are included
in the filter. It is worth mentioning that options with maturities above 90 days present
slightly higher pricing errors since they were not included in the estimation of the model’s
parameters, but are still priced reasonably well. This in part validates the out-of-sample
performance of our methodology.

5.3 Forecasting option prices
To assess the out-of-sample performance of our methodology, we use data from January
2018 to June 2019 that wasn’t included in the estimation procedure to perform predictions
of options prices for one and five days ahead. Using Monte Carlo simulation, we first forecast
the underlying asset’s spot price, conditional variance and jump intensity k days ahead12 and
used them as inputs in the option pricing formula. Risk-free rates and dividend yields are
kept the same as in t for simplicity. We then compute the Black-Scholes implied volatility

12More precisely, {S(n)
t+k, h

(n)
z,t+k+1, h

(n)
y,t+k+1} based on information from Gt or Ht, where k ∈ {1,5}, the

number of days ahead that are forecasted and n ∈ {1,...,N}, the scenario being simulated.
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for each scenario and calculate the forecast expected value.

ÎV
mld

j,t+k = 1
N

N∑
n=1

(
IV

(n),mld
j

)
We then compare the realized implied volatilities to our expected forecasts using RIVRMSE.

RIV RMSE =

√√√√√ 1
N

∑
j∈O

 ÎV mld

j,t+k − IV mkt
j,t+k

IV mkt
j,t+k

2

,

Table 6 and 7 detail our out-of-sample pricing performance. From the overall valuation
error of both one and five days ahead predictions, we again confirm the superior pricing
performance of our estimation method. We also see the smallest increase in pricing errors
relative to its in-sample counterpart, proving that filtering with returns and options results
in the model’s parameters performing much better, even out-of-sample.

5.4 Risk-premium and returns conditional moments
We plot instantaneous risk premium from Eq.5 on index returns for each estimation method
in Figure 7. When options are used in the filtering of latent states, we notice that the
equity risk premium achieve the highest value of any estimation method at 36.3% during the
financial crisis.

Table 8 summarize the distributions of equity risk premium over our observation period for
each estimation method. With an annualized mean of 5.28%, we note the strongest volatility
in the equity risk premium when options are used in the filtering of latent states with an
annualized standard deviation of 4.99% as well as having a positive skewness of 2.61 and
and a kurtosis of 11.66. Those findings are consistent with the distribution obtained by
Martin (2017) who used a nonparametric approach to estimate the lower bound of the risk
premiums from options prices and argued that premiums are volatile, exhibit right skewness
and heavy tails13.

The ability for the model to decompose the equity risk premium in a diffusive and jump
component allows us to take a more detailed look at each source of risk. Looking at λz and
λy, we see that including options in the sample either in the filter or in a weighted likelihood
function achieve similar values. However, varying levels of risk from each estimation method
yields different overall risk premiums for variance and jump intensity levels. Figure 8 plot
the composition of equity risk premium from each source of risk for the three estimation
methods. We observed that jump risk premium is the major component of the equity risk
premium, particularly during periods of high volatility like the financial crisis.

13Between January 1996 and January 2012, Martin (2017) observed a lower bound for the equity risk
premium, at a 1-Month horizon, with a mean of 5.00%, a volatility of 4.60%, a skewness of 4.03 and a
kurtosis of 27.60.
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We can also decompose the contribution of each source of risk to the overall variance. From
Ornthanalai (2014), the model’s total conditional variance is affected by both the condition-
ally Gaussian and Jump risk

VP[Rt+1|Ft] = σ2
t+1 = hz,t+1 + ψ

′′

yt+1|Ft(0),

with ψ′′yt+1|Ft(0) being the second derivative of the conditional cumulent generating function
of jumps innovations evaluated in zero. When latent states are filtered with returns and
options, we find that jump risk constitutes more than 61% of the equity risk premium
although contributing to only 21% of the overall volatility in our framework, see Figure 9
for a visual representation. This support the theory that investors are much more averse to
the jump component than the Gaussian one.

Another interesting aspect of our model is its ability to capture higher order conditional
moments, see A.2 for details on their calculation. We plot the conditional skewness and
kurtosis of daily index returns in Figure 10, and summarize their average levels in Table 9.

Although equity risk premium and volatility level are fairly consistent across estimation
methods, we observe some major differences in the conditional skewness and kurtosis when
options are included in the filtering of latent states. We first notice less volatile as well as
lower levels of conditional skewness and kurtosis for the underlying index’s returns when
options are also used to recover the latent states variables. By taking a look at the yearly
evolution of pricing errors in Table 5 indicating the goodness of fit, we see the years that
observed the most improvement in pricing performance (2005, 2006 and 2017) are also the
ones observing the highest level of conditional skewness and kurtosis as shown in Figure 10.
We therefore conclude that filtering with only returns fails to properly model the conditional
asymmetry and tail risk present in the underlying asset’s returns and the addition of options
to the filtering of latent states variables is necessary to properly capture those higher-order
conditional moments.
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6 Conclusion
We demonstrated that adding options data to the resampling step of a particle filter, while be-
ing numerically challenging, improve the estimation of the model’s parameters significantly,
especially those of the jumps dynamic. With the advance in computational capabilities al-
lowed by modern GPUs, implemented on traditional programming languages, estimation
method that where once deemed infeasible by numerical constraints should be reconsidered.
With models incorporating richer dynamics to capture conditional asymmetry and tail risk of
asset’s returns, not including options prices in the filtering procedure will inevitably yield a
miss identification of the model’s parameters. An interesting element to explore would be in
improving the filtering of multi-component variance dynamic since options offer information
on the volatility term structure. We leave this subject open for future research.
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7 Conclusion
Nous avons démontré que l’ajout des données d’options dans l’étape de rééchantillon-
nage d’un filtre particulaire, bien que numériquement coûteux, améliore significativement
l’estimation des paramètres du modèle. Avec les avancées technologiques en matière de calcul
numérique permises par les cartes graphiques, implémentées dans des langages de program-
mation courants, nous croyons que le temps de calcul n’est plus le facteur limitant qu’il était
auparavant. Avec des modèles incluant des dynamiques complexes pour capturer l’asymétrie
et les événements extrêmes des données financières, ne pas inclure les prix d’options dans
l’estimation des variables latentes mènera nécessairement à une mauvaise identification des
paramètres animant leur dynamique. Un élément intéressant à explorer serait le filtrage de
modèle à multiple composante de variance puisque les options offrent de l’information sur la
structure à terme de la volatilité. Nous laissons ce sujet ouvert à de futures recherches.
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A APPENDIX

A.1 More on the model
The general modelling framework for index level under P includes a drift aP, a Gaussian
innovation z and a jump term y:

St+1 = St exp(aPt+1 + zt+1 + yt+1)

where St is the spot price of the underlying asset. The daily returns are calculated as

Rt+1 = log
(
St+1

St

)
.

Under the physical probability, the conditional expected return at any time, assuming inde-
pendent Gaussian and jump innovations is

EP[St+1|Ft] = St exp(µP
t+1)

but

EP[St+1|Ft] = Ste
aPt+1EP

t [ezt+1 ] EP
t [eyt+1 ]

= Ste
aPt+1+ψzt+1|Ft (1)+ψyt+1|Ft (1)

where ψX|Ft(φ) is the conditional cumulent generating function evaluated in φ. Hence,

aPt+1 = µP
t+1 − ψzt+1|Ft(1)− ψyt+1|Ft(1).

The conditional cumulant generating function of zt+1 is

ψzt+1|Ft(φ) = log(EP[exp(φzt+1)]) = ξz(φ)hz,t+1

with
ξz(φ) = φ2

2
and the one for yt+1

ψyt+1|Ft(φ) = log(EP[exp(φyt+1)]) = ξy(φ)hy,t+1

with
ξy(φ) =

(√
α2 − β2 −

√
α2 − (β + φ)2)

)
.

Thus the convexity correction is

ζt+1 = ψzt+1|Ft(1) + ψyt+1|Ft(1).
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A.2 Higher-order conditional moments
From Ornthanalai (2014), the conditional skewness and kurtosis of daily returns are

SkewP[Rt+1|Ft] =
ψ
′′′

yt+1|Ft(0)
σ

3/2
t+1

and

KurtP[Rt+1|Ft] =
ψ
′′′′

yt+1|Ft(0)
σ4
t+1

with ψ′′′yt+1|Ft(0) and ψ′′′′yt+1|Ft(0) being the third and fourth derivative of the conditional cu-
mulent generating function evaluated in zero.

A.3 Option valuation
For j ∈ {1,2}, the conditional probabilities are

Pj,t,T =1
2 + 1

π

∫ ∞
0

Re
e−iφ log(K̃)MQ

Rt,T
(iφ+ 2− j)

iφ

 dφ (12)

K̃ =Ke
−rft,T (T−t)

St
(13)

where Re is the real part of a complex number and MQ
Rt,T

(φ) is the conditional moment
generating function of returns under Q.

Following Ornthanalai (2014) , the exponential affine modelling framework allows us to solve
for the moment generating function of the asset price at any future time t+k, and in our
case, the option maturity T.

MQ
Rt,T

(φ) = EQ
t [Sφt+k] = Sφt EQ

t [eφ
∑k

i=1 Rt+i ]
= Sφt EQ

t [exp(A(φ,t,t+ k) +B(φ,t,t+ k)hz,t+1 + C(φ,t,t+ k)h∗y,t+1)]

Since at option maturity
EQ
T [SφT ] = SφT

The terminal values must be:

A(φ,T,T ) = B(φ,T,T ) = C(φ,T,T ) = 0
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By iterated expectation

MQ
Rt,T

(φ) = EQ
t [EQ

t+1[SφT ]] = EQ
t [MQ

Rt+1,T
(φ)]

= EQ
t [Sφt+1 exp(A(φ,t+ 1,T ) +B(φ,t+ 1,T )hz,t+2 + C(φ,t+ 1,T )h∗y,t+2)]

= Sφt EQ
t [exp(φRt+1 + A(φ,t+ 1,T ) +B(φ,t+ 1,T )hz,t+2 + C(φ,t+ 1,T )h∗y,t+2)]

Since the returns under Q follow

Rt+1 = rt+1 −
1
2hz,t+1 +

√
hz,t+1ε

∗
t+1 − ψ∗yt+1|Ft(1) + y∗t+1, (14)

we get

MQ
Rt,T

(φ) =Sφt EQ
t [exp(rt+1 − (φ/2)hz,t+1 − ψ∗yt+1|Ft(1) + A(φ,t+ 1,t+ k))]

×EQ
t [exp(φzt+1 + φy∗t+1 +B(φ,t+ 1,t+ k)hz,t+2 + C(φ,t+ 1,t+ k)h∗y,t+2)].

By substituting the GARCH dynamic

MQ
Rt,T

(φ) =Sφt EQ
t [exp(φrt+1 − (φ/2)hz,t+1 − ψ∗yt+1|Ft(1) + A(φ,t+ 1,t+ k))]

×EQ
t [exp(φzt+1 + φy∗t+1 +B(φ,t+ 1,t+ k)hz,t+2 + C(φ,t+ 1,t+ k)h∗y,t+2)]

=Sφt EQ
t [exp(rt+1 − (φ/2)hz,t+1 − φψ∗yt+1|Ft

(1) +A(φ,t+ 1,T ) +B(φ,t+ 1,T )(wz + bzhz,t+1) + C(φ,t+ 1,T )(wy + byh
∗
y,t+1))]

× EQ
t [exp(φzt+1 + φy∗t+1 +B(φ,t+ 1,t+ k)(az/hz,t+1)(zt+1 − c∗zhz,t+1)2 + C(φ,t+ 1,t+ k)(ay/hz,t+1)(zt+1 − c∗yhz,t+1)2]

By using the properties:

EQ
t [eφzt+1 ] = e(φ2/2)hz,t+1 EQ

t [eφy∗t+1 ] = e
φψ∗

yt+1|Ft
(1)

and
EQ
t [eαzt+1+βz2

t+1 ] = ea
2hz,t+1/2(1−2βhz,t+1)−(1/2) log(1−2hz,t+1),

we can isolate the following form of the moment generating function

MQ
Rt,T

(φ) =Sφt exp(A(φ,t,T ) +B(φ,t,T )hz,t+1 + C(φ,t,T )hy,t+1)
A(φ,t,T ) =φrt+1 + A(φ,t+ 1,T ) +B(φ,t+ 1,T )wz + C(φ,t+ 1,T )wy

− 1
2 log(1− 2B(φ,t+ 1,T )az − 2C(φ,t+ 1,T )ay)

B(φ,t,T ) =− φ

2 +B(φ,t+ 1,T )(bz + azc
∗
z) + C(φ,t+ 1,T )ay(c∗y)2

+
(φ− 2B(φ,t+ 1,T )azc∗z − 2C(φ,t+ 1,T )ayc∗y)2

2(1− 2B(φ,t+ 1,T )az − 2C(φ,t+ 1,T )a∗y)
C(φ,t,T ) =C(φ,t+ 1,T )by − φξ∗y(1) + ξ∗y(φ)

The coefficients are solved recursively.
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A.4 Numerical implementation
Re-Parametrization

The Nelder-Mead derivative-free algorithm was used for the parameters search since the
rugged nature of the likelihood function made the numerical derivatives unreliable. This
algorithm is an unconstrained optimization routine, therefore a re-parametrization was nec-
essary to prevent the algorithm from taking steps outside the function domain, causing
numerical instability. Also, this re-parametrization transform the discontinuous function
into a continuous one, improving the search near discontinuities.

Parallelism

The estimation methods proposed in this study require a significant computational burden,
particularly when options are included in the particle filter. Parallelism is the major factor in
its realization. Since the computation of option prices at a specific time step can be divided
into a large quantity of small independent tasks14, GPU-acceleration is the perfect tool
for this application and massively outperform any traditional CPU-based implementation.
Managing the memory of the GPU-device while also taking into consideration the bandwidth
bottleneck from the PCIe was another numerical consideration. It should be noted that
complex-double15 format limit the GPU processing performance significantly and should be
avoided. In Table 10 we compared the computation time of the likelihood function for the
Joint Estimation - Filtered with Return and Options when computed on a central processing
unit (CPU) and a graphics processing unit (GPU).

Table 10: Likelihood computational time between a CPU and a GPU implementation

Hardware Specification Computation time (Minutes)

CPU-based Dual socket Intel Xeon E5 2667 V3 16 cores @ 3.20 GHz, 396 Go ECC DDR4 545.6
GPU-based NVIDIA Quadro GP100 3584 CUDA Cores @ 1328 MHz, 16 Go ECC HBM2 11.0

We compare the computational speed of the GPU-accelerated implementation against one using only the CPU. Each likelihood function is evaluated
once at the optimal parameter value. The GPU-device is installed in a system equipped with a Xeon W2195 processor (18 cores @ 2.3GHz). Both
implementations are in MATLAB, without the explicit uses of lower-level programming languages.

The GPU-implementation achieve the same results 49 times faster than the CPU-based one.
Considering the large amount of function valuation needed for the parameters estimation,
this performance improvement made this method computationally feasible.

A.5 More on the Data
Here we detail the sampling procedure to obtain the options dataset used in the parameters
estimation:

14We computed each integral by trapezoidal numerical integration using 1101 valuation points.
15Double-precision FP64 is needed since single-precision FP32 yield inaccurate results.
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1. We first discard any contracts that suggests data errors such as bid > ask, Zero bid or
not satisfying the non-arbitrage characteristic.

2. The second step is selecting contracts with positive Open-interest, a Volume above 50
and a mid prices above 0.375$

3. We then made buckets by moneyness (K/S) ranging from 0.775 and 1.15 in steps of
0.075 and maturity of 10 to 45 and 45 to 90 days.

4. The most liquid option, OTM or ATM, from each bucket are then selected .

The final sample containt 47 186 contracts, with up to 10 per trading day. Table 11 give an
overview of the final option sample.
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Figure 2: Simulation result: filtered variance and jump-intensity
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From the simulation on 2500 trading days, the conditional variance and jump intensity are
filtered at the data-generating-process parameters values. The first two graphs reports the
variance and jump intensity when filtered with Gt and the bottom two when filtered withH10

t .
The simulated values are plotted in red, the filtered values in blue and the 95% confidence
intervals are shown in green.
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Figure 4: Simulation result: QQplot of Gaussian residues
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A QQplot of the Gaussian residuals from the simulation study. The first plot reports the
Gaussian residues when filtered with Gt and the bottom one with H10

t .
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Table 3: Estimated parameter values on S&P500 from January 1996 to December 2017

Estimation and Filtering
using only Returns

Joint Estimation - Filtering
with Returns

Joint Estimation - Filtering
with Returns and Options

Gaussian
wz -1.95E-06 -1.04E-06 -6.34E-07

(3.25E-10) (1.49E-09) (1.40E-10)
az 5.16E-06 2.26E-06 1.62E-06

(1.55E-10) (3.26E-09) (2.16E-09)
bz 0.814 0.941 0.945

(3.07E-04) (9.26E-04) (1.28E-03)
λz 0.770 0.861 0.838

(1.84E-03) (2.13E-03) (7.37E-04)
cz 177.4 149.3 167.7

(2.84E-02) (1.25E-01) (2.45E-01)
Jump
wy 2.00E-05 2.31E-07 -1.16E-06

(1.21E-08) (1.87E-09) (5.72E-09)
ay 2.91E-07 2.59E-06 4.09E-06

(9.46E-10) (4.52E-09) (9.70E-09)
by 0.901 0.939 0.943

(4.26E-05) (1.78E-03) (4.05E-04)
λy 0.525 0.718 0.678

(1.50E-04) (4.55E-03) (8.58E-04)
cy 119.5 140.3 146.6

(2.31E-01) (8.37E-01) (5.64E-01)
α 14.41 9.88 13.17

(9.46E-03) (2.44E-02) (6.58E-02)
β -8.60 -5.92 -7.32

(4.29E-03) (1.28E-02) (3.43E-04)

σε N/A 0.485 0.341
RIVRMSE 23.33 15.43 10.13
Log-Likelihood 14762.7 67306.1 12603.2
Uncond. Volatility (Gaussian) 18.37 18.76 16.19
Uncond. Volatility (Jumps) 8.44 9.03 8.37
Uncond. Volatility (Total) 20.22 20.82 18.22
Variance persistence 0.976 0.9913 0.9905

Parameters obtained from the maximum likelihood estimation on S&P500 from January 1996 to December 2017. Robust standard errors
are computed from outer product of gradient at the optimal parameter values (Newey and McFadden, 1994)). RIVRMSE and uncondi-
tional volatility are expressed in percentages. The total unconditional volatility is

√
252× (σ2

z + σ2
yξ
′′
y (0)) where σ2

z is the unconditional
variance and σ2

y = (ay + wy + ayc
2
yσ

2
z)/(1− by), detailed in Ornthanalai (2014).
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Figure 5: Filtered conditional variance (hz)
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For the three methods of parameters estimation, we re-run the particle filter at the optimal
parameters values to filter the conditional variance of the S&P500 daily returns. Confidence
intervals are obtained from the posterior standard deviation of the filtered process. The first
plot reports the filtered variance hz when only returns are used in the parameters estimation,
the second one when latent states are filtered with returns and parameters estimation is done
with a two stages weighted likelihood, and the third one when returns and options are used
to filter latent states. The filtered values are shown in blue and the 95% confidence intervals
in green.
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Figure 6: Filtered conditional jump intensity (hy)
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For the three methods of parameters estimation, we re-run the particle filter at the optimal
parameters values to filter the conditional jump intensity of the S&P500 daily returns. Con-
fidence intervals are obtained from the posterior standard deviation of the filtered process.
The first plot reports the filtered jump intensity hy when only returns are used in the param-
eters estimation, the second one when latent states are filtered with returns and parameters
estimation is done with a two stages weighted likelihood, and the third one when returns
and options are used to filter latent states. The filtered values are shown in blue and the
95% confidence intervals in green.
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Table 4: Valuation error sorted by maturity and moneyness

Estimation and Filtering
using only Returns

Joint Estimation - Filtering
with Returns

Joint Estimation - Filtering
with Returns and Options

Overall 26.99 17.12 11.40

Sorted by day to maturity

]10,45] 24.04 15.87 10.95
]45,90] 26.67 15.76 10.70
]90,180] 26.69 15.34 11.48
]180,270] 27.51 17.22 12.68
]270,365] 27.26 19.12 13.69

Sorted by moneyness

]0.775,0.850] 14.02 9.92 10.19
]0.850,0.925] 17.81 10.74 10.43
]0.925,1.000] 26.23 13.71 10.27
]1.000,1.075] 36.38 22.85 13.82
]1.075,1.150] 31.92 24.99 15.26

Relative Implied-Volatility root mean square errors (RIVRMSE) are calculated from a panel of 538 832 options contracts on the
S&P500 from January 2000 to December 2017. All values are expressed in percentages.
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Table 5: Valuation error sorted by years

Estimation and Filtering
using only Returns

Joint Estimation - Filtering
with Returns

Joint Estimation - Filtering
with Returns and Options

Sorted by years

2000 11.08 11.25 8.54
2001 10.45 10.24 7.97
2002 13.89 11.99 7.90
2003 12.03 8.20 7.39
2004 23.12 12.25 8.04
2005 42.88 25.47 11.72
2006 41.53 24.03 11.38
2007 28.31 17.98 12.12
2008 14.19 16.66 12.37
2009 20.66 11.36 11.33
2010 11.30 14.53 12.19
2011 13.15 13.66 12.30
2012 13.63 14.19 10.62
2013 25.57 13.54 7.72
2014 32.65 18.49 10.11
2015 28.37 23.59 12.39
2016 23.30 16.99 12.20
2017 45.40 19.24 15.05

Relative Implied-Volatility root mean square errors (RIVRMSE) are calculated from a panel of 538 832 options contracts
on the S&P500 from January 2000 to December 2017. All values are expressed in percentages.
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Table 6: Price prediction: one day ahead performance

Estimation and Filtering
using only Returns

Joint Estimation - Filtering
with Returns

Joint Estimation - Filtering
with Returns and Options

Overall 32.81 21.41 13.16

Sorted by day to maturity

]10,45] 27.48 17.77 11.37
]45,90] 30.23 17.53 11.22
]90,180] 30.92 18.04 11.60
]180,270] 32.62 22.17 13.24
]270,365] 31.94 24.38 14.09

Sorted by moneyness

]0.775,0.850] 9.48 6.42 5.74
]0.850,0.925] 15.68 8.03 5.77
]0.925,1.000] 28.89 14.93 7.94
]1.000,1.075] 48.00 32.54 20.19
]1.075,1.150] 46.11 38.21 22.91

Parameters are estimated on the S&P500 from January 1996 to December 2017. Out-of-sample options are from January 2018 to
June 2019 and are composed of a vast panel of OTM/ATM options. Prediction is done using Monte Carlo simulations. Performance
is assessed by RIVRMSE using the predicted and realized options prices. All values are expressed in percentages.
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Table 7: Price prediction: five day ahead performance

Estimation and Filtering
using only Returns

Joint Estimation - Filtering
with Returns

Joint Estimation - Filtering
with Returns and Options

Overall 34.07 23.98 15.18

Sorted by day to maturity

]10,45] 29.75 18.63 12.13
]45,90] 32.07 18.49 11.94
]90,180] 32.27 18.92 12.24
]180,270] 33.35 23.01 13.88
]270,365] 32.50 25.08 14.68

Sorted by moneyness

]0.775,0.850] 9.82 6.46 5.47
]0.850,0.925] 16.27 8.07 5.44
]0.925,1.000] 30.08 15.45 8.24
]1.000,1.075] 50.77 34.77 22.33
]1.075,1.150] 46.68 39.33 23.94

Parameters are estimated on the S&P500 from January 1996 to December 2017. Out-of-sample options are from January 2018 to
June 2019 and are composed of a vast panel of OTM/ATM options. Prediction is done using Monte Carlo simulations. Performance
is assessed by RIVRMSE using the predicted and realized options prices. All values are expressed in percentages.
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Figure 7: Equity risk premium - Three estimation methods
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From the filtered conditional variance and jump intensity, we compute the equity risk pre-
mium (ERP) on the daily S&P500 index’s returns between January 2000 to December 2017,
for each of the three methods of estimation.

Table 8: Equity risk premium

Estimation and Filtering
using only Returns

Joint Estimation -
Filtering with Returns

Joint Estimation -
Filtering with Returns and Options

Average 5.10% 4.82% 5.28%
From diffusion 2.33% 2.40% 2.03%

From jumps 2.77% 2.41% 3.25%

standard deviation 2.40% 3.95% 4.99%
skewness 2.71 2.16 2.61
kurtosis 13.85 9.10 11.66

Minimum 2.71% 0.48% 0.57%
Maximum 24.15% 28.91% 36.30%

Summary of the filtered annualized equity risk premium for the daily S&P500 index’s returns between January 2000 to December
2017.
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Figure 8: Equity risk premium
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From the filtered conditional variance and jump intensity, we compute the contribution of
each risk source to the equity risk premium (252 × (λzhz + λyhy)) of the S&P500 daily
returns. The first plot report the filtered equity risk premium when only returns are used
in the parameter estimation, the second one when latent states are filtered with returns and
parameter estimation is done with a two stages weighted likelihood, and the third one when
returns and options are used to filter latent states.
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Figure 9: Conditional volatility
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From the filtered conditional variance and jump intensity, we compute the annualized con-
ditional volatility (

√
252× (hz,t+1 + ψ

′′
yt+1|Ft(0))) of the S&P500 daily returns. See A.2 for

details. The first plot report the filtered conditional volatility when only returns are used
in the parameter estimation, the second one when latent states are filtered with returns and
parameter estimation is done with a two stages weighted likelihood, and the third one when
returns and options are used to filter latent states.
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Figure 10: Higher order conditional moments
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From the filtered conditional variance and jump intensity, we compute higher order condi-
tional moments of the S&P500 daily returns. See A.2 for details. The top two plots report
the filtered conditional skewness and kurtosis when only returns are used in the parameter
estimation, the middle two when latent states are filtered with returns and parameter esti-
mation is done with a two stages weighted likelihood, and the bottom two when returns and
options are used to filter latent states.
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Table 9: Higher order conditional moments

Estimation and Filtering
using only Returns

Joint Estimation -
Filtering with Returns

Joint Estimation -
Filtering with Returns and Options

Percentage of variance
From diffusion 71.14% 78.50% 78.93%

From jumps 28.86% 21.50% 21.07%

Avg. cond. volatility 15.79% 17.22% 16.07%
Avg. cond. skewness -6.41 -7.07 -4.50
Avg. cond. kurtosis 344.12 613.01 265.11

Average filtered conditional moments of the daily S&P500 index’s returns. Volatility is annualized.
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Table 11: Summary of the sample of options used for model estimation

Panel A: Number of option contracts

DTM ]10,45] ]45,90] All

Moneyness
]0.775,0.850] 3619 4552 8171
]0.850,0.925] 5365 5373 10738
]0.925,1.000] 5449 5503 10952
]1.000,1.075] 5451 5456 10907
]1.075,1.150] 2416 4002 6418
All 22300 24886 47186

Panel B: Average implied volatility

DTM ]10,45] ]45,90] All

Moneyness
]0.775,0.850] 0.3657 0.3067 0.3328
]0.850,0.925] 0.2806 0.2525 0.2666
]0.925,1.000] 0.2086 0.2033 0.2060
]1.000,1.075] 0.1673 0.1703 0.1688
]1.075,1.150] 0.2000 0.1640 0.1775
All 0.2404 0.2193 0.2293

Panel A summarize the number of contracts for each moneyness and matu-
rity buckets and Panel B their average implied volatility.
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