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Résumé

Naviguer dans l’incertitude financière d’une entreprise, c’est un peu comme naviguer sur

des eaux imprévisibles. Les investisseurs jouent le rôle de navigateurs, les auditeurs celui

de vérificateurs, et les régulateurs surveillent la situation depuis la côte. Lorsque des

signes de détresse apparaissent, toutes ces parties prenantes ont besoin d’un signal clair,

suffisamment tôt pour agir et suffisamment transparent pour inspirer confiance. Cette

thèse développe un système d’alerte précoce basé sur l’apprentissage automatique pour

détecter les difficultés financières à différents cycles économique, bien avant que la fail-

lite ne survienne. L’étude évalue divers modèles dans des conditions économiques var-

iées, en se concentrant sur des algorithmes de boosting de pointe ainsi que sur des méth-

odes de référence sans boosting. Le coût d’une mauvaise classification, étant différent

selon la partie prenante, les régulateurs craignant les faux négatifs et les prêteurs les faux

positifs, les modèles sont entraînés à l’aide de stratégies d’apprentissage sensibles aux

coûts qui tiennent compte de ces asymétries. En ajustant la pénalité pour les faux né-

gatifs par rapport aux faux positifs, le système peut refléter les différentes priorités et

tolérances au risque des parties prenantes. Les modèles ont conservé d’excellentes per-

formances, même sur des données inédites, de 2020 à 2023, une période marquée par

des perturbations économiques, soulignant leur capacité à généraliser au-delà des condi-

tions d’entraînement. Cependant, la prédiction seule ne suffit pas. En eaux incertaines,

anticiper l’arrivée d’une tempête n’est qu’une partie du défi. Comprendre sa direction

permet une navigation sûre et stratégique. De même, dans la prise de décision finan-

cière, les parties prenantes ont besoin de plus qu’un signal binaire; elles doivent com-



prendre le raisonnement derrière. Cette thèse aborde ce problème en mettant l’accent sur

l’interprétabilité, en utilisant des techniques telles que les valeurs SHAP et les graphiques

ICE pour faire apparaître les caractéristiques financières qui guident chaque prédiction.

Ces informations clarifient le raisonnement du modèle, le transformant d’une boîte noire

en une aide à la navigation. Ce cadre devient alors plus qu’un outil prédictif: il sert de

système d’orientation partagé. Dans un environnement où le coût de l’inaction peut être

catastrophique, il offre aux décideurs un signal à la fois opportun et transparent, les aidant

non seulement à rester à flot, mais aussi à naviguer de manière décisive dans l’incertitude

financière.

Mots-clés

Prévision de faillite, apprentissage automatique en finance, IA explicable, déséquilibre

des classes, apprentissage sensible aux coûts, IA centrée sur les parties prenantes, sys-

tèmes d’alerte précoce, algorithmes de boosting

Méthodes de recherche

Cette thèse est organisée comme suit : nous commençons par l’introduction, qui décrit

la motivation de l’étude, définit la problématique de recherche et présente les objectifs

principaux. Le chapitre suivant fournit une revue de la littérature pertinente sur la prédic-

tion des faillites et l’apprentissage automatique explicatif. Le chapitre 1 présente le con-

texte théorique, détaillant les techniques de prédiction et d’interprétabilité employées dans

l’étude. Le chapitre 2 décrit l’ensemble de données, y compris les processus de collecte,

de construction et d’étiquetage des données. Le chapitre 3 décrit la méthodologie utilisée

pour le développement, l’évaluation et l’analyse d’explicabilité du modèle. Le chapitre

4 présente les résultats sur la performance du modèle dans différentes configurations de

prévalence et de coût des faillites. Le chapitre 5 présente les résultats d’explicabilité, en se

concentrant sur les modèles les plus performants identifiés par l’évaluation prédictive. Le

ii



chapitre 6 propose une discussion des résultats, les reliant aux objectifs de la recherche.

Le chapitre 7 conclut la thèse, souligne les limites et esquisse des pistes de recherche

futures.
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Abstract

Navigating a company through financial uncertainty is much like steering a ship through

unpredictable waters. Investors act as navigators, auditors serve as map-checkers, and

regulators monitor from the coast. When signs of distress begin to emerge, all these

stakeholders need a clear signal early enough to act, and transparent enough to trust. This

thesis develops a machine learning–based early warning system to detect financial dis-

tress across different stages of the economic cycle, well before bankruptcy strikes. The

study evaluates a range of models under varying economic conditions, focusing on state-

of-the-art boosting algorithms as well as baseline non-boosting methods. Since the cost

of misclassification carries different weight depending on the stakeholder, with regula-

tors fearing false negatives and lenders worrying about false positives, the models are

trained using cost-sensitive learning strategies that account for these asymmetries. By

adjusting the penalty for false negatives relative to false positives, the system can reflect

diverse stakeholder priorities and risk tolerances. The models maintained strong perfor-

mance even on unseen data from 2020 to 2023, a period marked by economic disruption,

highlighting their ability to generalize beyond training conditions. However, prediction

alone is not enough. In uncertain waters, knowing a storm is coming is only part of

the challenge. Understanding which direction it’s coming from is what allows for safe

and strategic navigation. Similarly, in financial decision-making, stakeholders need more

than a binary signal; they need to see the reasoning behind it. This thesis addresses this

by placing emphasis on interpretability, using techniques such as SHAP values and ICE

plots to surface the financial features that guide each prediction. These insights bring
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clarity to the model’s reasoning, transforming it from a black box into a navigational aid.

Taken together, this framework becomes more than a predictive tool: it serves as a shared

system of orientation. In an environment where the cost of inaction can be catastrophic, it

offers decision-makers a signal that is both timely and transparent, helping them not just

stay afloat, but steer decisively through financial uncertainty.

Keywords

Bankruptcy Prediction, Machine Learning in Finance, Explainable AI, Class Imbalance,

Cost-sensitive Learning, Stakeholder-centered AI, Early Warning Systems, Boosting Al-

gorithms

Research Methods

This thesis is organized as follows: We start with the introduction, which outlines the

motivation for the study, defines the research problem, and presents the core objectives.

The next chapter provides a review of the relevant literature on bankruptcy prediction and

explainable machine learning. Chapter 1 presents the theoretical background, detailing

the predictive and interpretability techniques employed in the study. Chapter 2 describes

the dataset, including the processes of data collection, dataset construction, and label-

ing. Chapter 3 outlines the methodology used for model development, evaluation, and

explainability analysis. Chapter 4 reports the results on model performance across differ-

ent bankruptcy prevalence and cost configurations. Chapter 5 presents the explainability

results, focusing on the most performant models as identified through predictive evalu-

ation. Chapter 6 offers a discussion of the findings, linking them back to the research

objectives. Chapter 7 concludes the thesis, highlights limitations and outlines avenues for

future research.
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Introduction

Background & Motivation

Corporate bankruptcy is a high-impact event with profound implications for a wide range

of stakeholders. For investors, it can result in substantial financial losses and destabilize

investment portfolios. Creditors and lenders are exposed to heightened default risk and

diminished loan recoverability. Regulatory bodies bear the responsibility of mitigating

systemic risks and safeguarding the integrity of financial markets. For corporate manage-

ment, the timely identification of financial distress can enable proactive measures such

as cost restructuring, strategic mergers, or turnaround planning to avoid failure. Given

these wide-ranging consequences, the early and accurate detection of financial distress

or impending bankruptcy is not only valuable but essential for informed decision-making

across the financial ecosystem.

Traditional bankruptcy prediction models, such as Beaver’s univariate analysis (Beaver

1966), Altman’s Z-score (E. I. Altman 1968), and Ohlson’s O-score (Ohlson 1980), have

historically relied on a static set of accounting ratios derived from annual financial state-

ments. While these models are interpretable and grounded in economic theory, they suffer

from several limitations.

First, they do not use any historical data. These static models use financial informa-

tion from a single fiscal year or average across multiple years, making them relatively

unresponsive to rapid changes in firm health. Moreover, because financial reports are

published with a lag, often several months after the reporting period ends, these models



effectively base their predictions on outdated information. In practice, this can result in

predictions being delayed, limiting their usefulness as early warning systems for financial

distress.

Second, these models often exhibit rigidity due to their reliance on linear relation-

ships between predictors and outcomes. Such assumptions fail to capture the nonlinear,

complex interactions among financial indicators that frequently characterize corporate

distress in modern economies. As corporate risk dynamics become increasingly complex,

linear modeling frameworks risk oversimplifying the relationships underlying bankruptcy

events.

Third, generalization remains a significant concern. Many traditional models were

developed using datasets from specific industries, regions, or historical periods, limiting

their applicability to today’s diverse and rapidly evolving market conditions. Changes

in industry structures, financial practices, disclosure standards, and macroeconomic envi-

ronments further erode the predictive reliability of models that are not regularly updated

or adapted.

Finally, studies artificially balanced their datasets. While this simplification facilitated

statistical modeling, it substantially overestimated predictive performance and failed to

replicate the natural class imbalance observed in real-world settings, where bankruptcies

are rare events. As a result, such models often perform poorly when deployed in practical

environments.

Together, these limitations underscore the need for more dynamic, flexible, and context-

aware modeling approaches to bankruptcy prediction—approaches that can account for

the timeliness of data, capture nonlinear dependencies, and generalize across different

economic contexts. Addressing these gaps forms a central motivation for the modeling

strategies adopted in this thesis.

In recent years, machine learning (ML) models have gained prominence in financial

risk analytics due to their capacity to learn complex patterns from large datasets. Boost-

ing models such as XGBoost (Chen and Guestrin 2016) and LightGBM (Ke et al. 2017),

as well as deep learning approaches, have demonstrated superior performance over tra-
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ditional statistical models in various financial applications, including credit scoring and

fraud detection. However, these models are frequently criticized for being black boxes

(Balcaen and Ooghe 2006), that is, the decision-making processes is not interpretable.

This hinders their adoption in high-stakes domains where interpretability is critical for

trust, compliance, and accountability.

As such, the intersection of high-performing machine learning techniques and ex-

plainable artificial intelligence (XAI) represents a promising yet underexplored avenue

for improving bankruptcy prediction. It enables not only accurate forecasts but also ac-

tionable insights into the financial and behavioral signals driving firm-level insolvency

risk.

Problem Statement

Despite the promising performance of machine learning models in bankruptcy prediction,

several key challenges persist. One major concern is class imbalance: in most real-world

datasets, bankrupt firms represent only a small minority, often less than 5% of all firms.

This imbalance leads to biased models that are prone to misclassifying the rare but critical

bankrupt cases as healthy, especially when trained using conventional loss functions.

Another layer of complexity arises from economic cycle fluctuations. During eco-

nomic expansions, bankruptcy rates tend to decline, while recessions trigger surges in

corporate failures. A model trained in one economic regime may not generalize well

to another. Hence, there is a need to simulate and evaluate model performance across

varying bankruptcy prevalence levels to ensure robustness.

Moreover, many high-performing models operate as black boxes, offering little to no

transparency into their internal decision-making processes. However, stakeholders may

require clear justifications for why specific firms are flagged as potentially bankrupt. This

demand for transparency is especially critical in regulated sectors, where model outputs

must often withstand scrutiny in audits, compliance reviews, and regulatory disclosures.

In summary, the challenge lies in building robust, explainable, and cost-sensitive ML
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models that can accurately predict bankruptcy under severe class imbalance and evolving

economic conditions.

Research Objectives

The primary objective of this thesis is to develop and evaluate a machine learning pipeline

for corporate bankruptcy prediction that balances predictive accuracy, interpretability, and

practical relevance. The study attempts to address the following goals:

• Model Comparison: Evaluate and compare the performance of boosting models

with non-boosting alternatives. The goal is to identify trade-offs between model

complexity, interpretability, and performance in the bankruptcy context.

• Economic Cycle Simulation: Simulate different macroeconomic conditions by con-

structing datasets with varying levels of bankruptcy prevalence: 1% (optimistic

scenario), 5% (neutral scenario), and 10% (pessimistic scenario). This allows for

robust assessment across different stress conditions.

• Cost-sensitive Learning: Incorporate cost matrices to reflect stakeholder-specific

preferences, penalizing false negatives more heavily to account for the asymmetric

risks of failing to identify bankrupt firms.

• Explainability and Interpretation: Explain models’ predictions using XAI tech-

niques, including:

– Permutation-based feature importance to quantify global variable influence

– Individual Conditional Expectation (ICE) plots to visualize feature effects at

the instance level,

– SHAP values for global feature attribution,
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Through these objectives, this research aims to contribute a comprehensive framework

for explainable, cost-aware bankruptcy prediction using modern machine learning tech-

niques.

Expected Contributions

• Realistic Class Imbalance: Unlike most studies that rely on undersampling, over-

sampling, or SMOTE to artificially balance datasets, we simulate the naturally oc-

curring class prevalence to reflect optimistic, neutral, and pessimistic economic

cycles. This design choice increases the ecological validity of our results and en-

ables a more accurate assessment of model robustness in real-world deployment

scenarios, where bankruptcies remain rare events.

• Cost-sensitive Threshold Tuning: While much of the literature emphasizes metrics

like AUC or accuracy, these can obscure poor minority-class performance. Our

models are calibrated using cost matrices that reflect stakeholder-specific prefer-

ences, tuning thresholds based on false negative to false positive cost ratios. This

enables the development of decision rules that are economically meaningful and

aligned with varying levels of risk aversion, such as that of regulators, lenders, or

equity investors.

• Model Comparison and Experimental Rigor: We systematically benchmark boost-

ing and non-boosting models under a unified experimental framework. This in-

cludes consistent preprocessing, temporal splitting, hyperparameter tuning, and

cost-sensitive evaluation across models.

• Advanced Explainability Pipeline: Our explainability layer combines global and

local analysis techniques, including SHAP, permutation-based variable importance

plots and ICE plots. We stratify predictions by model confidence and explain the

decision pathways for the five most confident bankrupt and healthy predictions per
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model. This multi-level interpretability framework provides insights into both av-

erage behavior and edge cases.
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Literature Review

Distress Prediction: Pioneer Work

The prediction of corporate bankruptcy is a well-established area of research within ac-

counting and econometrics. One of the earliest empirical studies in this field was con-

ducted by Beaver (Beaver 1966), who tested whether financial ratios could predict cor-

porate failure several years in advance. Using a univariate framework, Beaver evaluated

the predictive ability of individual financial ratios by comparing the distributions of failed

and nonfailed firms over a five-year horizon. His results demonstrated that cash flow to

total debt, was a strong indicator of impending distress. In contrast, liquidity-based ratios

such as the current ratio and working capital to total assets were among the worst per-

formers, exhibiting much higher misclassification rates. Beaver’s study thus highlighted

not only the potential of accounting data for distress prediction but also the importance

of carefully selecting which financial indicators to rely on. However, his method relied

heavily on threshold-based classification and did not integrate multiple variables into a

single predictive model.

Building on this foundation, one of the most influential contributions came from E. I.

Altman (1968), who introduced the Z-score model using Multiple Discriminant Analysis

(MDA). This model combined five financial ratios to construct a linear discriminant func-

tion that separated bankrupt from non-bankrupt firms. Despite its empirical success, the

model relied on assumptions such as multivariate normality and homoscedasticity across

classes, which do not always hold in real financial datasets.



Subsequent refinements were proposed, extending the Z-score framework to more

complex firm types, but without addressing its fundamental statistical assumptions (E. I.

Altman, Haldeman, and Narayanan 1977). To overcome these limitations, Ohlson in-

troduced the O-score model (Ohlson 1980) based on logistic regression, relaxing the as-

sumption of linear separability and allowing for probabilistic interpretation. However,

one practical limitation of these models is that they use an annual snapshot of the data,

ignoring historical data and trends (Shumway 2001).

Shumway (2001) advanced the field by developing a hazard model that introduced a

dynamic framework to bankruptcy prediction, incorporating both firm-specific financial

ratios and market-based variables. This addressed time-variation in default probability

and allowed for more timely updates. Campbell, Hilscher, and Szilagyi (2008) extended

this approach by adding market indicators to model the default probabilities. However,

these models suffer from some limitations that include assumptions of linearity and pro-

portional hazards, dependence on efficient and liquid financial markets, and limited appli-

cability to private firms. Furthermore, their designs are not explicitly cost-sensitive and

do not naturally accommodate class imbalance.

A critical methodological contribution was made by Zmijewski (1984), who system-

atically examined two sources of estimation bias in financial distress prediction: choice-

based sample bias and sample selection bias. He demonstrated that many early studies

estimated models on samples that disproportionately included distressed firms—far ex-

ceeding their actual population rate. This oversampling leads to biased parameter esti-

mates and inflated distress probabilities if not corrected using the appropriate techniques.

Additionally, Zmijewski showed that excluding firms with incomplete data introduces

sample selection bias.

Balcaen and Ooghe (2006) provide a comprehensive critique of traditional statistical

models that includes sampling selectivity, that arises from balancing a naturally unbal-

anced dataset, failure to account for phase-based deterioration and lack of interpretability.

With evidence from Elkan (2001) that real-world applications often demand unequal

treatment of errors, cost-sensitive methods for model selection are increasingly being
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used. Yotsawat et al. (2023) demonstrate that embedding misclassification costs directly

into the learning process—rather than relying on oversampling—leads to more accurate

detection of minority class firms. Similarly, Zou, C. Gao, and H. Gao (2022) show

that cost-sensitive boosting frameworks significantly improve model robustness and real-

world relevance by minimizing cost-weighted losses and improving interpretability. These

findings motivate the use of cost-sensitive objective functions in this study to align model

outputs with stakeholder priorities.

Machine Learning Techniques

In recent years, ML methods have increasingly been applied to bankruptcy prediction

problems, because of their ability to model nonlinear interactions, manage high-dimensional

data, and incorporate flexible regularization schemes. Studies such as Barboza, Kimura,

and E. Altman (2017), Yotsawat et al. (2023), Zou, C. Gao, and H. Gao (2022) and Son

et al. (2019) have demonstrated the effectiveness of boosting models, random forests, and

artificial neural networks.

Zięba, S. K. Tomczak, and J. M. Tomczak (2016) emphasize that ensemble methods,

especially boosting, are effective at minimizing both bias and variance and are robust

to noisy financial inputs. However, a major limitation in many of these studies is the

treatment of class imbalance. Bankruptcy datasets typically feature extreme imbalance ,

yet many works mitigate this using random undersampling or synthetic oversampling like

SMOTE (Chawla et al. 2002). While these techniques simplify training, they distort the

natural class prevalence and often yield overly optimistic performance estimates.
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Explainable AI (XAI) Techniques in Bankruptcy

Prediction

The increasing complexity of ML models has triggered a parallel emphasis on explain-

ability.

As high-performing black-box models such as ensemble methods and deep neural

networks become more prevalent in financial applications, concerns around their lack of

transparency have grown. Stakeholders in finance and other regulated sectors demand

clear, understandable justifications for decisions. Doshi-Velez and Kim (2017) argue that

interpretability becomes essential in such high-stakes settings due to inherent incomplete-

ness in the problem formulation—when objectives, constraints, or fairness considerations

cannot be fully encoded into the model. This perspective motivates the use of post hoc

explainability tools in this study to complement high-performing but black-box models.

Explainable AI (XAI) methods aim to make machine learning model outputs under-

standable to humans, a requirement that becomes especially critical in high-stakes do-

mains such as finance. Among the tools developed for this purpose, SHapley Additive

exPlanations (SHAP), introduced by Lundberg and Lee (2017), has emerged as a lead-

ing approach for both global and local feature attribution. Tran et al. (2022) applied

SHAP to interpret bankruptcy predictions for listed firms in Vietnam across a range of

models, including logistic regression, SVM, decision trees, random forests, MLPs, and

XGBoost. They used mean absolute SHAP values to identify consistent drivers of model

output and leveraged partial dependence plots (PDPs) to visualize the marginal effects of

financial ratios on predicted bankruptcy risk. Similarly, Zhang et al. (2022) proposed an

XAI framework that integrates SHAP and PDPs into a whole-process ensemble modeling

approach for financial distress prediction. Their study demonstrated that SHAP-based ex-

planations aligned closely with expert knowledge, improving both predictive credibility

and stakeholder understanding.

Other interpretability techniques such as PDPs, individual conditional expectation

(ICE) plots, permutation importance, and LIME are frequently used to visualize model
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behavior (Yeo et al. 2025). However, much of the literature remains focused on global

feature importance, overlooking how models behave for specific classes or individual pre-

dictions. While LIME provides localized explanations by fitting simple surrogate models,

it is often unstable and sensitive to the sampling of the neighborhood, making it less reli-

able for sensitive applications like financial risk modeling.

A critical limitation in current XAI research is the misalignment between interpretabil-

ity tools and the practical needs of stakeholders such as investors, regulators, and auditors.

As Weber, Carl, and Hinz (2023) argue, many explainability efforts remain developer-

centric and fail to deliver actionable insights for non-technical decision-makers. Our study

addresses this gap by integrating permutation importance, SHAP value analysis and ICE

analysis across models, bankruptcy prevalence levels, and cost configurations. This de-

sign enhances interpretability in ways that are both technically robust and meaningful to

financial decision-makers, reflecting a growing emphasis on domain-relevant storytelling

to support the responsible deployment of ML in finance.

Contribution to Literature

This thesis addresses several critical gaps in the literature on bankruptcy prediction:

• Realistic Class Imbalance: Unlike most studies that rely on undersampling, over-

sampling, or SMOTE to artificially balance datasets, we retain the naturally oc-

curring class prevalence to simulate optimistic, neutral, and pessimistic economic

cycles. This approach enhances the ecological validity of the results and enables a

more accurate assessment of model robustness under real-world conditions, where

bankruptcies remain rare events.

• Cost-sensitive Threshold Tuning: While much of the literature optimizes models

based on metrics such as AUC or accuracy, these measures can obscure poor per-

formance on the minority class. In contrast, this thesis calibrates models using

stakeholder-specific cost matrices, adjusting thresholds based on false negative to
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false positive cost ratios. This enables the development of decision rules that are

economically meaningful and aligned with varying degrees of risk aversion, such

as those of regulators, lenders, and equity investors.

• Temporal Granularity and Recency Effects: Feature vectors are constructed from

20 consecutive calendar quarters of financial ratios per firm, allowing a direct ex-

amination of the predictive value of recent versus older information. This structure

enables testing of the common assumption that newer financial signals carry greater

predictive weight—an aspect often overlooked or collapsed in studies that aggregate

ratios or rely on single-year snapshots.

• Model Comparison and Experimental Rigor: Boosting and non-boosting models

are benchmarked within a unified experimental framework, incorporating consistent

preprocessing, temporal data splitting, hyperparameter tuning, and cost-sensitive

evaluation. This ensures comparability across model classes and strengthens the

robustness of the conclusions drawn.

• Advanced Explainability Pipeline: The thesis integrates global and local inter-

pretability methods, including permutation-based variable importance, mean ab-

solute SHAP values, and ICE plots. Predictions are stratified by model confidence,

and decision pathways are analyzed for the five most confident bankrupt and healthy

cases per model. This multi-level explainability framework offers insights into both

average model behavior and critical edge cases.
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Chapter 1

Theoretical Background

In this section, we will provide the conceptual foundations that inform the design and

evaluation of the bankruptcy prediction framework. This includes an overview of boosting

and non-boosting model families, and a review of explainable AI (XAI) techniques used

to interpret model behavior both globally and locally.

1.1 Decision Trees

Decision Trees (DT) are a fundamental type of supervised learning model used for both

classification and regression tasks. They are non-parametric, i.e. , they do not assume any

fixed functional form or distribution for the data. DT learn a sequence of rules that par-

tition the feature space into smaller and more homogeneous subsets, forming a tree-like

structure where each internal node represents a decision rule based on a specific feature,

each branch corresponds to an outcome of the rule, and each terminal node (or leaf) rep-

resents a predicted class label (for classification) or a numerical value (for regression).

The tree is constructed by recursively splitting the data based on criteria that aim to

increase the homogeneity, or “purity,” of the resulting subsets. To evaluate the quality of a

split, the algorithm relies on impurity measures such as Gini impurity and entropy. These

are defined as follows:



Gini = 1−
k

∑
i=1

p2
i

Entropy =−
k

∑
i=1

pi log2(pi)

where pi is the proportion of observations belonging to class i at a particular node.

A node is considered “pure” when it contains only samples from a single class, which

corresponds to a Gini impurity and entropy of zero. During training, the tree grows by se-

lecting the feature and threshold that yield the greatest reduction in impurity. The process

continues until a stopping criterion is reached.

One of the key advantages of decision trees is their interpretability. They provide

a clear, rule-based decision path for each prediction, which is particularly valuable in

high-stakes domains where model transparency is important. Furthermore, decision trees

can naturally capture non-linear relationships between features and do not require feature

scaling or transformation. They also handle both numerical and categorical variables well

and are robust to outliers.

Despite these strengths, decision trees are prone to overfitting, especially when the

tree grows too deep and starts to capture noise in the training data. Additionally, they

can be unstable, meaning that small changes in the training data can lead to a completely

different tree structure.

To mitigate overfitting and improve generalization, several hyperparameters in the de-

cision tree implementation of the scikit-learn library (Pedregosa et al. 2011) must be

carefully tuned. The max_depth parameter controls the maximum depth of the tree, pre-

venting it from growing excessively complex. The min_samples_split parameter sets

the minimum number of samples required to split an internal node, while min_samples_leaf

defines the minimum number of samples that must be present at a leaf node. These hyper-

parameters act as regularization mechanisms, helping reduce model variance and improve

performance on unseen data.
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1.2 Random Forest

Random Forest (RF) is a widely used ensemble learning method designed to improve

the predictive performance and robustness of individual decision trees. It belongs to the

family of bagging algorithms and operates by constructing many decision trees during

training, where each tree in the forest is trained on a different bootstrap sample. Addi-

tionally, at each node, a random subset of features is considered for splitting, introducing

further diversity among trees.

The final prediction for a given input x(i) is obtained by aggregating the predictions of

all individual trees. In classification tasks, this is typically done by majority voting:

ŷ(i) = mode{T1(x(i)),T2(x(i)), . . . ,Tn(x(i))}

where Tj(x(i)) denotes the prediction of the j-th decision tree on sample i.

The intuition behind RF is that while individual decision trees are prone to high vari-

ance (overfitting), averaging the predictions of many diverse trees can significantly reduce

variance without increasing bias, resulting in a model that is both accurate and more sta-

ble.

Random Forests inherit several strengths from decision trees: they can handle high-

dimensional data, accommodate both numerical and categorical variables, manage miss-

ing values, and capture complex, non-linear relationships. However, because predictions

are made by aggregating the outcomes of many trees, the overall model becomes less in-

terpretable. Unlike a single decision tree, which provides a clear sequence of rules leading

to each prediction, the forest’s collective behavior is more opaque.

To balance model complexity with generalization, several key hyperparameters in

scikit-learn’s RandomForestClassifier are tuned. In addition to decision tree pa-

rameters such as max_depth, min_samples_split, and min_samples_leaf, the en-

semble introduces n_estimators, which defines the number of trees in the forest. In-

creasing this value typically improves predictive performance but incurs higher compu-

tational cost. Another important hyperparameter is max_features, which controls the
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number of features considered when splitting a node. Lower values promote tree diver-

sity and reduce overfitting, while higher values can reduce bias but increase correlation

across trees. Together, these hyperparameters help regulate model variance and bias, en-

suring better out-of-sample performance.

1.3 Logistic Regression

Logistic Regression (LR) is one of the most established and widely used statistical models

in financial risk prediction, particularly due to its simplicity, interpretability, and solid

theoretical foundation. It is well-suited to binary classification tasks, such as predicting

whether a firm will go bankrupt.

The basic logistic regression model estimates the probability that an observation be-

longs to the positive class (e.g., bankruptcy) by applying the sigmoid (logistic) function

to a linear combination of input features:

P(y = 1 | x) =
1

1+ e−wT x

where x ∈ Rp is the feature vector, w ∈ Rp is the coefficient vector, and wT x is the

linear predictor. The parameters w are estimated by maximizing the log-likelihood func-

tion:

L (w) =
n

∑
i=1

[yi logP(yi = 1 | xi)+(1− yi) log(1−P(yi = 1 | xi))]

While this formulation constitutes the classical logistic regression model, regularized

extensions are commonly used to improve generalization, particularly in high-dimensional

settings or when multicollinearity is present.

A regularized logistic regression model incorporates a penalty term into the objective

function to shrink coefficient estimates and reduce overfitting. Two widely used variants

are:
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• L1 regularization (lasso penalty), which penalizes the absolute magnitude of the

coefficients and can produce sparse models:

Llasso(w) = L (w)−λ∥w∥1

This form of regularization tends to shrink some coefficients to zero, effectively

performing feature selection. As a result, L1 regularization can produce sparse

models that rely only on a subset of the most relevant features.

• L2 regularization (ridge penalty), which penalizes the squared magnitude of the

coefficients:

Lridge(w) = L (w)−λ∥w∥2
2

Unlike L1, L2 regularization discourages large weights but does not drive them

exactly to zero. It distributes the penalty across all coefficients, encouraging small

but non-zero values and leading to more stable models when features are correlated.

Here, λ > 0 controls the strength of the regularization. In practice, λ is treated as

a hyperparameter and selected through cross-validation or grid search. Regularization

introduces bias into the estimates but often results in improved predictive performance by

reducing variance.

Modern software libraries, such as scikit-learn, implement these regularized ver-

sions of logistic regression by default. For example, in the sklearn implementation, the

regularization strength is controlled via the parameter C, where C= 1/λ .

In software implementations such as scikit-learn, another important hyperparam-

eter is the choice of optimization algorithm, specified via the solver argument. Common

solvers include "liblinear" (a coordinate descent algorithm suitable for small datasets

and L1-penalized models), "lbfgs" (Limited-memory Broyden–Fletcher–Goldfarb–Shanno),

and "newton-cg" (Newton-Conjugate Gradient), each offering different trade-offs in

terms of speed, memory usage, and support for regularization types.

In summary, regularized logistic regression models combine the interpretability of

linear models with improved robustness to overfitting. Their solid statistical grounding
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and probabilistic outputs make them valuable tools in financial risk modeling, especially

when balancing performance and explainability is essential.

1.4 Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is a class of feedforward artificial neural network

that is well-suited to learning complex, non-linear patterns in high-dimensional datasets.

Unlike linear models such as LR, MLPs can approximate any continuous function given

sufficient depth (number of layers) and width (number of neurons per layer), making

them a powerful and flexible choice for classification problems, including bankruptcy

prediction.

An MLP consists of an input layer, one or more hidden layers, and an output layer.

Each neuron in a given layer computes a weighted sum of its inputs, adds a bias term,

and applies a non-linear activation function to introduce non-linearity. Mathematically,

the transformation performed by a single neuron can be expressed as:

y = f

(
d

∑
i=1

wixi +b

)
where wi are the input weights, xi the input features, b the bias term, and f a non-

linear activation function. Common choices for f include the rectified linear unit (ReLU),

hyperbolic tangent (tanh), and sigmoid functions. For the binary classification task of

bankruptcy prediction, the sigmoid activation is typically applied in the final output layer

to map predictions into the interval [0,1], representing the estimated probability of bankruptcy.

In our implementation however, we exclude the sigmoid activation function on the final

layer of the model. This means that our model outputs logits (log-odds), which is de-

sirable for our loss function, Sigmoid Focal Loss. We apply the sigmoid function only

during evaluation to compute the prediction probabilities and associated cost.

The capacity of an MLP is primarily determined by its architecture—that is, the num-

ber of hidden layers and the number of neurons in each layer. Deeper networks with more
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neurons can model more intricate relationships but are also more susceptible to overfit-

ting, particularly in small or imbalanced datasets.

In this study, architectures consisting of two to three hidden layers were explored.

The number of neurons per layer was drawn from uniform distributions over the ranges

64–512 for the layers. The MLP models were trained using the Adam optimizer with

early stopping and learning rate decay. Dropout were applied between layers to stabilize

training and mitigate overfitting. Hyperparameters such as learning rate, batch size, and

dropout probability were tuned using the Optuna framework with minimzing the misclas-

sification cost as objective.

Focal Loss

To address the pronounced class imbalance typical of corporate bankruptcy datasets,

where bankrupt firms may constitute only 1% to 10% of the total, our experiments demon-

strated that a standard binary cross-entropy loss may not be sufficient. In such cases, the

model may become biased toward the majority (non-bankrupt) class. To counter this, we

adopted the Focal Loss. It is a variant of the binary cross-entropy loss introduced by T.-Y.

Lin et al. (2018) which dynamically scales the loss contribution of each sample based on

the confidence of its prediction.

The focal loss for a single prediction is defined as:

Lfocal(pt) =−αt(1− pt)
γ log(pt)

where:

• y ∈ {0,1} is the true binary label,

• p = σ(z) ∈ [0,1] is the predicted probability for the positive class, obtained from

the sigmoid function applied to the logit z,

• pt =

p if y = 1

1− p if y = 0
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• αt =

α if y = 1

1−α if y = 0

• α ∈ [0,1] is the weighting factor that balances the importance of positive and nega-

tive examples,

• γ ≥ 0 is the focusing parameter that reduces the loss contribution from easy exam-

ples and extends the range in which an example receives low loss.

When γ = 0, focal loss reduces to the weighted binary cross-entropy loss. As γ in-

creases, the loss places more focus on hard, misclassified examples. When α = 0.5, no

class weighting is applied.

In our model, we use the sigmoid_focal_loss function from the torchvision.ops

module in PyTorch (Paszke et al. 2019). This implementation expects the model outputs

as raw logits rather than probabilities. Therefore, we do not apply a sigmoid activation to

the final layer of the neural network during training. This is consistent with the formula-

tion of focal loss in logit space and helps prevent numerical instability when computing

the loss.

1.5 AdaBoost (Adaptive Boosting)

AdaBoost, short for Adaptive Boosting, is a boosting learning algorithm first introduced

by Freund and Schapire (1997) that constructs a strong classifier by iteratively combining

multiple weak learners—typically shallow decision trees. Each weak learner is trained

to focus on the errors made by the ensemble up to that point, making the overall model

progressively better at handling difficult cases.

AdaBoost assigns weights to training instances and updates them after each round of

learning. Initially, all training samples are given equal weight. After each weak learner is

trained, the algorithm increases the weights of the misclassified examples and decreases
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the weights of the correctly classified ones. As a result, subsequent weak learners focus

more on the harder examples that previous learners failed to classify correctly.

The final prediction is obtained through a weighted majority vote (in classification)

or weighted sum (in regression) of all the weak learners. For binary classification, the

ensemble model can be written as:

H(x) = sign

(
T

∑
t=1

αtht(x)

)

where ht(x) is the prediction of the t-th weak learner, αt is the weight assigned to that

learner based on its performance, and T is the total number of learners. A learner with

lower classification error receives a higher weight αt , contributing more strongly to the

final decision.

In our implementation, we use the AdaBoostClassifier from the scikit-learn

library. Three key hyperparameters govern its behavior. The first is n_estimators, which

determines the number of boosting rounds, or equivalently, the number of weak learners

in the ensemble. Increasing this value can enhance predictive performance but also leads

to higher computational cost and may increase the risk of overfitting. The second is the

weak learner, estimator, which is often a decision tree. Since the choice of the base es-

timator exponentially increases the hyperparameter tuning phase for AdaBoost, we use

the default estimator, which is a decision tree with max_depth= 1. The third hyperpa-

rameter is the learning_rate, a shrinkage parameter that scales the contribution of each

weak learner. Lower values of the learning rate make the model more conservative, which

can improve generalization but typically requires a larger number of boosting rounds to

maintain performance.

1.6 LightGBM

LightGBM (Light Gradient Boosting Machine) is a high-performance gradient boosting

framework developed by Ke et al. (2017) to handle large-scale datasets with improved
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speed and memory efficiency. It is well-suited to classification and regression tasks in-

volving structured data, and has become a popular choice due to its scalability, accuracy,

and flexibility.

LightGBM belongs to the family of gradient boosting algorithms, which build an en-

semble of decision trees in a sequential manner. Each new tree is trained to minimize

the residual errors made by the ensemble up to that point. The training process involves

optimizing a differentiable loss function, typically binary cross-entropy for classification,

using gradient descent. Unlike traditional boosting methods, LightGBM introduces sev-

eral key innovations that accelerate training and reduce memory usage without sacrificing

performance.

Unlike conventional gradient boosting frameworks that grow trees by expanding all

leaves at the same depth before moving deeper, LightGBM grows trees leaf-wise, choos-

ing the leaf with the highest loss reduction at each step. This often leads to deeper trees

and better accuracy, although it increases the risk of overfitting.

The complexity and behavior of LightGBM models are affected by several hyperpa-

rameters. The parameter num_leaves controls the maximum number of leaves in each

tree and directly influences model complexity; a higher value increases flexibility but

also the risk of overfitting. The parameter max_depth optionally sets a hard limit on tree

depth, acting as a regularization mechanism. The learning_rate scales the contribution

of each new tree and is typically set to a small value to ensure gradual learning. Sub-

sampling techniques are implemented via subsample, which determines the fraction of

training instances used per tree, and colsample_bytree, which specifies the fraction of

features considered during split selection.

We use the LGBMClassifier from the lightgbm Python library for our gradient

boosting implementation. The model’s complexity and behavior are governed by sev-

eral key hyperparameters. The num_leaves parameter controls the maximum number

of leaves per tree and directly affects model capacity; larger values allow more flexi-

ble trees but may increase the risk of overfitting. The max_depth parameter optionally

sets a hard limit on tree depth, serving as a regularization mechanism to prevent exces-
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sively deep trees. The learning_rate determines the contribution of each new tree to

the ensemble; smaller values slow down learning but often yield better generalization.

To introduce randomness and improve generalization, LightGBM supports subsampling

techniques through subsample, which sets the fraction of training data used per tree, and

colsample_bytree, which controls the fraction of features randomly selected for each

tree.

1.7 XGBoost (Extreme Gradient Boosting)

XGBoost, short for Extreme Gradient Boosting, is a highly optimized and scalable imple-

mentation of gradient boosting proposed by Chen and Guestrin (2016) that has become

a benchmark model in structured data tasks, particularly in finance and tabular machine

learning competitions. It builds upon the standard gradient boosting framework by in-

corporating regularization, native support for sparse input, and efficient system-level en-

hancements such as parallel computation and cache awareness.

Like other gradient boosting methods, XGBoost builds an ensemble of decision trees

in a sequential manner. At each stage, a new tree is trained to correct the residual errors

made by the current ensemble. The model optimizes an objective function composed of

two components: a training loss that quantifies how well the model fits the data, and a

regularization term that discourages overly complex trees. This regularization compo-

nent helps control model capacity by penalizing tree structures that are too deep or rely

on extreme leaf weights. By doing so, XGBoost achieves a balance between predictive

performance and model simplicity, reducing the risk of overfitting.

One of XGBoost’s distinguishing features is its ability to handle missing values during

both training and prediction. Instead of requiring imputation, XGBoost learns the optimal

path for missing values during tree construction, treating them as a separate informative

branch. The model also supports sparse input natively, making it efficient for datasets

with many zero or missing entries. However, since we want to ensure fair comparison

across the different selected models, we do not leverage this strength of XGBoost.
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We use the XGBClassifier from the xgboost Python library for our implementa-

tion of gradient boosting. XGBoost shares many hyperparameters with other boosting

frameworks. The parameter n_estimators controls the number of trees in the ensemble,

while learning_rate scales the contribution of each tree. max_depth sets the maxi-

mum depth of each tree, affecting model expressiveness and overfitting risk. To intro-

duce randomness, subsample specifies the fraction of training data sampled per tree, and

colsample_bytree controls the fraction of features considered when constructing each

tree. The gamma parameter imposes a minimum reduction in the loss function required

to perform a split, encouraging only the most informative partitions. Finally, reg_alpha

and reg_lambda correspond to ℓ1 and ℓ2 regularization penalties on the leaf weights,

helping to constrain model complexity and improve generalization.

1.8 Explainable AI

As machine learning models become increasingly complex and opaque, the need for inter-

pretability in high-stakes applications such as bankruptcy prediction becomes crucial. In

financial contexts, regulatory bodies, stakeholders, and analysts require transparent mod-

els that can provide not only accurate predictions but also insights into the rationale behind

each decision. Explainable AI (XAI) encompasses a suite of techniques that help interpret

and audit the internal mechanics of predictive models. This section reviews three major

approaches used in this thesis: Permutation feature importance (PFI), SHapley Additive

exPlanations (SHAP) values, and individual conditional expectation (ICE).

1.8.1 Permutation Feature Importance

Permutation Feature Importance (PFI) is a model-agnostic approach used to assess the

contribution of individual input features to a model’s predictive performance initially pro-

posed by Breiman (2001) and improved by Fisher, Rudin, and Dominici (2019). The core

idea behind PFI is intuitive: if a feature is important, disrupting its association with the
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outcome should degrade the model’s performance (or increase the loss). Conversely, if

permuting a feature has little to no impact on performance, the model is likely not relying

on that feature in its decision-making process.

To evaluate the importance of a given feature x j, we permute the values of that feature

across all instances in the dataset, effectively breaking its relationship with the target

variable y, while keeping all other features unchanged. The predictions on this modified

dataset are then compared to predictions on the original data. The drop in predictive

accuracy (or increase in loss) serves as a measure of how important the permuted feature

was to the model.

One of the primary advantages of PFI is its broad applicability. It can be used with

any machine learning model, including decision trees, gradient boosting machines, neural

networks, and even ensemble models. Because it does not rely on model-specific internal

structures, it provides a uniform basis for comparing feature importance across different

algorithms.

1.8.2 SHAP

SHapley Additive exPlanations (SHAP) is a unified framework for interpreting machine

learning model predictions based on concepts from cooperative game theory (Lundberg

and Lee 2017). It assigns each input feature a contribution value that reflects its impact

on a specific prediction, hence enabling both global and local interpretability. SHAP

values are based on the Shapley value framework from cooperative game theory, which

provides a principled approach for attributing the overall outcome of a model to individual

features. Each feature’s contribution is quantified by averaging its marginal impact on

the prediction across all possible subsets of features, ensuring a fair and theoretically

grounded measure of feature importance.

SHAP satisfies several desirable properties that make it particularly appealing for ex-

planation:

• Local accuracy (additivity): The sum of feature attributions equals the model out-
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put.

• Consistency: If a model changes such that the marginal contribution of a feature

increases, its SHAP value will not decrease.

• Missingness: Features not used in the model receive a SHAP value of zero.

SHAP values can be visualized in multiple ways to support both instance-level and

dataset-level interpretations. In particular, Mean Absolute SHAP values measures feature

importance in prediction. Dependence plots show how a feature’s SHAP value varies with

its value, optionally highlighting interactions with other features.

1.8.3 ICE Plots

Individual Conditional Expectation (ICE) plots are a model-agnostic visualization tech-

nique used to examine how changes in a single feature affect a model’s predictions at the

instance level. They provide a fine-grained, instance-specific complement to Partial De-

pendence Plots (PDPs), which show the average effect of a feature across all observations.

While PDPs can mask heterogeneity in feature effects, ICE plots reveal this variation ex-

plicitly by plotting separate curves for each instance in the dataset.

By generating ICE curves for multiple instances, we obtain a collection of trajectories

showing how each prediction responds to hypothetical changes in a specific feature. These

curves can be plotted together to visualize both common trends and deviations. If the

ICE curves for all instances are roughly parallel, this suggests that the model treats the

feature’s effect consistently across the dataset, and a global summary like a PDP may

suffice. However, if the ICE curves diverge significantly, it indicates feature interactions

or non-linear behavior that varies by instance.

A common enhancement is the use of centered ICE plots, where each curve is shifted

so that all trajectories start at a common baseline. This helps isolate the shape of the

response function from differences in model output due to other fixed features.
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Chapter 2

Dataset

2.1 Dataset Description

This study is based on a custom dataset comprising publicly listed companies in the

United States. The dataset includes five key accounting ratios that serve as predictive

features:

• Earnings Before Interest and Taxes to Total Assets (EBIT/TA): This ratio measures

the firm’s operating profitability relative to its asset base, abstracting from tax and

interest effects. It captures the fundamental earning power of a company’s assets,

with higher values indicating stronger internal cash generation and a lower proba-

bility of financial distress.

• Market Capitalization to Total Liabilities (MKTCAP/TL): This solvency measure

compares the market value of equity to the book value of total liabilities. It reflects

the market’s assessment of the firm’s ability to cover its debts. Higher values imply

a larger equity cushion relative to obligations, reducing the risk of insolvency.

• Retained Earnings to Total Assets (RE/TA): Retained earnings represent cumula-

tive past profits that have been reinvested in the business. This ratio serves as a

proxy for the firm’s historical profitability and its ability to internally fund opera-



tions. Lower values may indicate a history of operating losses or heavy reliance on

external financing, both of which can signal elevated bankruptcy risk.

• Total Revenue to Total Assets (TR/TA): Often interpreted as an asset turnover ratio,

this measure captures the firm’s ability to generate sales from its asset base. While

high turnover generally reflects operational efficiency, extreme values may indicate

either insufficient capitalization or aggressive revenue strategies, both of which can

pose financial risks if not managed carefully.

• Working Capital to Total Assets (WC/TA): Working capital, defined as current as-

sets minus current liabilities, represents short-term financial health. When scaled

by total assets, it provides insight into liquidity relative to the size of the firm. Per-

sistently low or negative working capital ratios may signal potential short-term cash

flow difficulties.

These ratios are well-established indicators of financial health and have been widely

used in the literature, notably forming the foundation of Altman’s seminal work (E. I.

Altman 1968) on bankruptcy prediction.

The dataset spans from Calendar Quarter 1 (CQ1) 1998 to CQ4 2023, covering 26

years worth of quarterly data. To collect data for this study, we utilize S&P Capital IQ Pro,

a financial intelligence platform developed by S&P Global Market Intelligence. Capital

IQ Pro provides detailed financial, accounting, and market data on publicly listed and

private companies across global markets. The platform aggregates standardized firm-level

data from a variety of regulatory filings, earnings announcements, and audited financial

statements. The raw data was retrieved at the firm-quarter level and included all variables

necessary to compute the five financial ratios used in this study.

The next sections outline the data construction process, rationale for key design deci-

sions and the structure of the resulting dataset.
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2.2 Dataset Construction

2.2.1 Russell 3000 Constituents

For each calendar quarter within the time range, the full list of companies included in the

Russell 3000 Index, which represents the 3000 largest US-traded companies by market

capitalization, was retrieved. We then constructed a master set of firms by taking the

union of all constituent lists across quarters from CQ1 1998 to CQ4 2023.

This approach captures firms that entered or exited the index at different times, en-

suring that their historical data is included even if their index membership was not con-

tinuous. In contrast, selecting companies based only on quarterly index membership, that

is, including companies only when they form part of the index, would lead to systematic

missingness in the financial records of firms that temporarily exited the index, causing

their removal during the data cleaning phase. Taking the union allows us to maximize the

retention of firms with complete temporal coverage.

2.2.2 Corporate Hierarchies

For each company in our universe, we retrieved its associated parent and ultimate parent

firms using definitions provided by S&P Capital IQ (SPCIQ):

• The parent refers to the immediate controlling entity—it is usually the company

that directly holds a majority ownership stake.

• The ultimate parent is the top-level legal entity in the ownership hierarchy that

consolidates financial control across subsidiaries.

Incorporating these entities allows us to better capture bankrupt firms as in some cases, it

is the parent company or the ultimate parent company that gets labelled as "bankrupt" as

per our definition (see Section 2.3).
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2.2.3 Bankrupt Companies

To enhance the representation of distressed firms, we supplemented the dataset with all

US public companies that met our definition of bankruptcy and had available financial

data in S&P Capital IQ Pro (SPCIQ). These companies were included regardless of their

Russell 3000 membership status.

2.2.4 “Originally Reported” Financial Data.

All financial statement values used in this study are originally reported values, that is,

they reflect the original values filed by companies in each quarter, without incorporating

subsequent restatements.

Relying on “originally reported” financial data strengthens the external validity of

this study by aligning the modeling process with the real-world conditions under which

financial decisions are made. Stakeholders such as analysts, lenders, and investors typi-

cally base their assessments on the financial statements available at the time of filing, not

on figures revised months or years later.

In contrast, incorporating restated financial statements can introduce structural bias

into the learning process. Firms that revise their reports more frequently—due to internal

audits, regulatory enforcement, or delayed recognition of accounting issues—may appear

more financially stable in hindsight. However, these corrections reflect information that

was unavailable at the time of decision-making. Consequently, models trained on restated

data risk learning patterns informed by future knowledge, rather than by the signals of

financial health available at the time. This creates a biased learning environment in which

firms with post-filing corrections may be systematically favored, as their historical data

has been retroactively improved—making them appear less prone to bankruptcy than they

were in real-time.
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2.3 Bankruptcy Definition

The target variable in this study is a binary indicator: bankrupt versus healthy. A company

is labeled as bankrupt if, according to SPCIQ, it satisfies at least one of the following

conditions:

1. Filed for bankruptcy, under Chapter 7 or Chapter 11 of the US Bankruptcy Code,

as disclosed in SEC filings, court documents, or press releases.

2. Key Development: Potential red flag – debt outstanding, indicating that the com-

pany was flagged by SPCIQ analysts as having unresolved debt or liquidity con-

cerns.

This definition captures both formal insolvency and serious signs of financial distress,

enabling the model to detect a broader spectrum of risky cases.

2.4 Forecast Horizon and Labeling Strategy

The objective of this study is to predict bankruptcy in advance. As outlined in the Litera-

ture Review section, several studies use financial data for a year to predict bankruptcy in

the next. This, however, would not be practical since there would be other indicators (for

example market indicators), hinting about bankruptcy. Moreover, as outlined in Ohlson

(1980), there is often a lead between a bankruptcy event and the release of the relevant

financial reports. Our goal therefore is to find models that identify patterns in the data

available before a company goes bankrupt as per our definition. Accordingly, a com-

pany is labeled as bankrupt for 8 calendar quarters (CQs) before the actual bankruptcy or

red-flag event.
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2.5 Temporal Structure

Each company-quarter instance in the dataset is represented by a unique (SPCIQIDi, date)

tuple, where date denotes the calendar quarter at which we want to make the prediction

(e.g., CQ3_2021 is the third calendar quarter of the year 2021). In particular, the feature

set consists of ratios reported in a fixed-length window of 20 CQs preceeding the date.

A column such as tr_ta_cq_1 refers to the TR/TA ratio calculated from figures disclosed

one calendar quarters before the target date. Such a column would be denoted by TR/TA

CQ_1 in this thesis.

This study focuses on U.S. public companies, which are required by the Securities

Exchange Act of 1934 to file quarterly financial reports (Form 10-Q) and an annual report

(Form 10-K) with the Securities and Exchange Commission (SEC). As such, quarterly

data should be consistently available for compliant firms. Following standard practice in

the literature ( Ohlson 1980, Shumway 2001), we exclude firms with incomplete report-

ing windows from the sample to maintain temporal consistency and model comparability.

While this filtering ensures the integrity of input sequences, it may introduce sample se-

lection bias—particularly if firms with missing data are systematically more likely to be

in distress. Zmijewski (1984) cautions that excluding such firms can bias parameter esti-

mates and understate bankruptcy probabilities. However, given that financial disclosures

are a regulatory requirement for listed firms, persistent missing data is rare. We adopt

this exclusion criterion as a pragmatic trade-off, acknowledging the potential bias while

preserving model validity across a uniform 20-quarter input horizon.

2.6 Temporal Splitting and Undersampling Strategy

A structured data sampling strategy was implemented to ensure both the validity and

robustness of the predictive models. First, the dataset was temporally split to prevent data

leakage and to more accurately reflect real-world forecasting scenarios. The training set

included only observations from CQ1 1998 through CQ4 2019, while the remaining data,
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spanning CQ1 2020 to CQ4 2023, was evenly divided into validation and test sets. This

chronological separation preserves the temporal integrity of model evaluation and ensures

that future data is not inadvertently used to inform past predictions.

To address the severe class imbalance inherent in bankruptcy prediction, we applied

a targeted undersampling strategy to the majority class (non-bankrupt firms). Specifi-

cally, for a given bankruptcy prevalence level (e.g. 1%), all bankrupt observations were

retained, and a random subset of healthy ones was sampled such that the final propor-

tion of bankrupt to healthy firms matched the specified ratio. This procedure was applied

independently to the training, validation, and test sets, allowing us to simulate different

economic conditions while preserving the minority class in full. This design enhances

both generalizability and comparability across prevalence scenarios.

2.7 Dataset Exploratory Data Analysis

This section presents a descriptive analysis of the financial ratios used in the study, based

on firm-quarter level data that has been winsorized to reduce the influence of extreme

values. Winsorization was applied separately within each calendar quarter to preserve

temporal comparability.

For each financial ratio, we report summary statistics and visualize the distribution

through box plots for five representative calendar quarters: CQ4 2004, CQ4 2008, CQ4

2012, CQ4 2016, and CQ4 2020. The summary statistics for all the calendar quarters

can be found in Appendix A (6.7). In addition, Figure 2.1 displays histograms of the full

distribution of each ratio across all quarters. To assess the asymmetry of the distributions

over time, Figure 2.2 shows the average skewness of each ratio, computed across all

calendar quarters.
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Figure 2.1: Histogram of Ratios Winsorized at CQ-level

Figure 2.2: Mean Skewness per Accounting Ratio over all CQs

Table 2.1: Summary Statistics of EBIT/TA for Selected Calendar Quarters

CQ Mean Q1 Median Q3 Min Max Skewness
CQ4 2020 -0.0944 -0.0139 0.0097 0.0234 -164.0000 0.4741 -51.02
CQ4 2016 -0.0857 -0.0051 0.0126 0.0253 -99.5554 0.8870 -40.81
CQ4 2012 -0.1477 0.0008 0.0150 0.0287 -285.9835 1.3875 -51.92
CQ4 2008 -0.1768 -0.0103 0.0123 0.0278 -631.5087 0.9664 -67.14
CQ4 2004 -0.0123 0.0007 0.0167 0.0324 -54.2202 203.9198 52.49

34



Figure 2.3: EBIT/TA Box Plots for Selected CQs

2.7.1 EBIT/TA

Boxplots for selected calendar quarters in Figure 2.3 reveal that the distribution of EBIT/TA

remains consistently centered slightly above zero. However, the presence of a large num-

ber of negative outliers pulls the mean downwards. The median EBIT/TA stays positive

across periods, suggesting that the majority of firms maintain modest profitability relative

to their assets, while a minority experiences severe operational losses.

The histogram confirms a strong left-skewed distribution, with a peak close to zero and

a long negative tail extending to approximately −1.2. The mean skewness for EBIT/TA

is around −40, reflecting the asymmetry caused by distressed firms with large negative

EBIT relative to their asset base.

2.7.2 WC/TA

The WC/TA ratio exhibits a similar pattern to EBIT/TA. Boxplots indicate that although

the median WC/TA is slightly positive, the mean is consistently lower due to numerous

extreme negative outliers. This behavior suggests that while most firms maintain posi-

tive or neutral working capital positions, a significant minority operates with substantial
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Table 2.2: Summary Statistics of WC/TA for Selected Calendar Quarters

CQ Mean Q1 Median Q3 Min Max Skewness
CQ4 2020 -3.5247 -0.0385 0.0115 0.0891 -8456.0000 0.9197 -50.01
CQ4 2016 -0.7106 -0.0380 0.0194 0.1079 -595.4490 0.9454 -28.93
CQ4 2012 -0.3998 -0.0295 0.0349 0.1439 -577.9490 0.9570 -39.68
CQ4 2008 -0.2460 -0.0282 0.0440 0.1524 -774.8564 0.9602 -58.05
CQ4 2004 -1.5851 -0.0297 0.0402 0.1588 -3870.9580 0.9997 -49.83

Figure 2.4: WC/TA Box Plots for Selected CQs

deficits.

The histogram displays a clear concentration around zero with a pronounced left tail,

stretching as far as −3.0. The mean skewness for WC/TA is the most negative among the

five ratios, at approximately −50, highlighting the extreme working capital deficiencies.

2.7.3 RE/TA

The RE/TA ratio consistently has negative mean across all periods. The boxplots in Fig-

ure 2.5 demonstrate that while the median remains close to zero, the distributions are

dominated by negative retained earnings.

The histogram reveals a sharp peak near zero but an extensive negative tail reaching
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Table 2.3: Summary Statistics of RE/TA for Selected Calendar Quarters

CQ Mean Q1 Median Q3 Min Max Skewness
CQ4 2020 -37.9017 -0.2913 0.0266 0.2458 -44612.0000 7612.7562 -29.48
CQ4 2016 -34.8125 -0.2100 0.0417 0.2801 -80324.7359 5080.6578 -53.06
CQ4 2012 -5.8633 -0.1622 0.0552 0.2976 -9149.0340 3357.6159 -30.09
CQ4 2008 -6.6734 -0.2256 0.0467 0.2849 -11344.9335 4844.7424 -29.69
CQ4 2004 -16.5056 -0.1952 0.0513 0.2574 -22602.9760 1885.9358 -36.66

Figure 2.5: RE/TA Box Plots for Selected CQs

beyond −80. The mean skewness across all periods for RE/TA is approximately −30,

showing that the distribution is very negatively skewed.

2.7.4 TR/TA

TR/TA displays similar patterns, but flipped. Boxplots in Figure 2.6 show that while

both the mean and median TR/TA remain positive across all periods, there are significant

positive outliers. There is a notable decrease in the mean of TR/TA values post-2020,

coinciding with the COVID-19 pandemic.

The histogram is moderately right-skewed, with most observations concentrated be-

tween 0.1 and 0.3, and a few firms achieving exceptionally high revenue-to-asset ratios.
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Table 2.4: Summary Statistics of TR/TA for Selected Calendar Quarters

CQ Mean Q1 Median Q3 Min Max Skewness
CQ4 2020 0.1547 0.0375 0.1158 0.2146 -0.3970 2.5159 2.85
CQ4 2016 0.1871 0.0449 0.1409 0.2558 -0.3178 3.9598 3.79
CQ4 2012 0.2123 0.0574 0.1605 0.2855 -1.3254 5.0997 4.84
CQ4 2008 0.2256 0.0604 0.1696 0.2920 -1.1523 28.2789 39.33
CQ4 2004 0.2132 0.0655 0.1783 0.3106 -90.1257 14.0823 -63.66

Figure 2.6: TR/TA Box Plots for Selected CQs

The mean skewness is positive, around +5, suggesting that while the majority of firms

operate within a typical range, a small number exhibit exceptionally high turnover effi-

ciency.

2.7.5 MKTCAP/TL

MKTCAP/TL stands out with very different distributional characteristics compared to

the other ratios. Boxplots illustrate extremely high positive skewness, with the majority

of firms clustered near low MKTCAP/TL values and a small fraction reaching extraordi-

narily high levels.

The histogram shows an extremely right-skewed distribution, extending beyond 100
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Table 2.5: Summary Statistics of MKTCAP/TL for Selected Calendar Quarters

CQ Mean Q1 Median Q3 Min Max Skewness
CQ4 2020 19.6408 0.5603 1.7960 6.3120 -0.6598 5789.0248 24.39
CQ4 2016 16.8373 0.6659 1.6889 4.3161 0.0027 11996.4814 41.72
CQ4 2012 13.6387 0.5480 1.5547 4.1278 0.0001 10374.2394 42.29
CQ4 2008 9.9257 0.2729 0.9612 2.8788 0.0000 15665.4350 63.99
CQ4 2004 18.6686 0.7570 2.1755 6.5569 0.0000 14567.7854 41.47

Figure 2.7: MKTCAP/TL Box Plots for Selected CQs

in some periods. The mean skewness for MKTCAP/TL is approximately +40, the highest

among all ratios.

2.7.6 Ratios Summary

Overall, the financial ratios analyzed exhibit skewed distributions, highlighting impor-

tant patterns in firms’ financial health across economic cycles. EBIT/TA, WC/TA, and

RE/TA display strong left-skewness, indicating that although the central mass of firms

achieves near-neutral or slightly positive financial outcomes, a substantial fraction con-

sistently records significant negative values.

In contrast, TR/TA displays a relatively balanced distribution, with a slight right skew.
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The majority of firms cluster around typical TR/TA ratios, but a small number achieve

exceptionally high turnover efficiencies. MKTCAP/TL stands out from the other ratios

by exhibiting extreme positive skewness, as reflected in the box plots and histograms.

Most firms maintain relatively low market capitalization relative to liabilities, while a

minority of firms have extraordinarily high market valuations, leading to a heavy right-

tailed distribution.

Together, the results highlight that firm-level financial health is highly uneven. While

most firms maintain typical financial ratios, a non-negligible portion consistently falls into

the extreme tails of the distributions. These patterns reflect the inherent asymmetries in

firms’ financial characteristics over time.

2.8 Correlation Analysis

To examine redundancy across the temporal features used for bankruptcy prediction, we

performed a two-part correlation analysis: first within each accounting ratio across time

(intra-ratio), and then across ratios at a fixed point in time (inter-ratio). These analy-

ses provide insight into multicollinearity, which has direct implications for both model

training and interpretability.

2.8.1 Intra-Ratio Correlation Over 20 Quarters

Figures 2.8a through 2.8d present heatmaps of Pearson correlations between 20 consec-

utive CQs for each financial ratio. The patterns reveal high autocorrelation within each

ratio, particularly for RE/TA and WC/TA, where values remain above 0.90 across wide

time lags. Even more volatile ratios such as EBIT/TA and MKTCAP/TL show substantial

persistence, with most correlations above 0.70.

Although the high correlation observed within each financial ratio across calendar

quarters is technically a form of temporal autocorrelation, our models treat all input fea-

tures as flat, unordered variables without temporal structure. Consequently, this intra-ratio

40



(a) EBIT/TA over 20 quarters (b) RE/TA over 20 quarters

(c) TR/TA over 20 quarters (d) WC/TA over 20 quarters

(e) MKTCAP/TL over 20 quarters

Figure 2.8: Intra-ratio correlation heatmaps over 20 calendar quarters. Each plot shows
the degree of autocorrelation within a financial ratio.
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correlation introduces feature redundancy that behaves analogously to multicollinearity,

particularly in its impact on feature attribution in post-hoc explainability methods.

This strong temporal correlation implies considerable redundancy in the 20-CQ in-

put representation. Such multicollinearity can obscure feature attribution in post-hoc ex-

plainability techniques like PFI and SHAP. When multiple features convey overlapping

information, these methods often distribute importance arbitrarily across them, making it

difficult to isolate the true temporal origin of the predictive signal. Consequently, inter-

pretability degrades even when prediction performance remains high.

2.8.2 Inter-Ratio Correlation at CQ_1

Figure 2.9: Cross Ratio Correlation at CQ_1

To address this, we explore a simplified input structure that retains only the most
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recent value for each ratio, i.e., calendar quarter 1 (CQ_1). Figure 2.9 shows the corre-

lation heatmap among the five financial ratios at CQ_1. The inter-ratio correlations are

notably lower, with most values below 0.30. The highest observed correlation is between

EBIT/TA and WC/TA (0.57). Other pairs exhibit weak associations, suggesting minimal

redundancy. This reduction in multicollinearity offers a more interpretable feature set.

2.9 Data Transformations

To enhance the stability and predictive power of the models, a series of data transforma-

tions were applied uniformly across all features in the dataset. These preprocessing steps

were consistently performed for every model and across all experimental settings. Im-

portantly, transformations were applied at the CQ level to maintain the temporal structure

and ensure no information from future quarters leaked into earlier ones. This consistent

application ensured fair and comparable input representations across the full modeling

pipeline.

2.9.1 Winsorization of Outliers

Outliers in financial ratios can severely distort model training, particularly in datasets with

significant inter-firm heterogeneity or during particular economic periods. To reduce the

influence of extreme values while preserving the overall structure of the data, we applied

per-quarter Winsorization. Specifically, for each feature within a given calendar quarter,

values were clipped at the 1st and 99th percentiles. Let x(q)i denote the value of a given

feature for instance i in quarter q. Define:

x(q)i,wins =


P(q)

1 if x(q)i < P(q)
1

x(q)i if P(q)
1 ≤ x(q)i ≤ P(q)

99

P(q)
99 if x(q)i > P(q)

99

43



where P(q)
1 and P(q)

99 represent the 1st and 99th percentiles of the feature values within

quarter q. This transformation preserves the temporal context of the data while dampening

extreme variations.

2.9.2 Logarithmic Transformation for Skewness

Many financial ratios exhibit skewed distributions due to extreme values. To reduce skew-

ness and stabilize variance, a signed modulus-log transformation was applied:

xi,log = sign(xi) · log(1+ |xi|)

This transformation is monotonic and preserves the sign of the original data while

compressing the range of extreme values. It is particularly useful for dealing with heavy-

tailed distributions and reducing the impact of large-magnitude observations.

2.9.3 Robust Scaling for Temporal Normalization

To ensure that the magnitude of features is comparable across different quarters, we per-

formed robust normalization per quarter. Unlike z-score normalization, which uses the

mean and standard deviation, robust scaling is less sensitive to outliers as it uses the me-

dian and interquartile range (IQR). For each feature x(q)i in quarter q, the normalized value

is computed as:

x̃(q)i =
x(q)i −median(q)

IQR(q)

Here, IQR(q) = Q(q)
75 −Q(q)

25 , where Q(q)
75 and Q(q)

25 denote the 75th and 25th percentiles

of the feature distribution within the quarter. This transformation centers each quarterly

group around zero and scales it based on its spread, allowing the model to learn from

relative rather than absolute values across time.
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2.10 Bankruptcies Distribution

This section provides an overview of the dataset used to develop and evaluate the bankruptcy

prediction models. The dataset is structured at the firm-quarter level, with each instance

representing the financial profile of a company over a sequence of 20 consecutive calendar

quarters.

Table 2.6 presents the number of unique companies, bankrupt companies, and the

total number of healthy and bankrupt observations in the training, validation, and test sets

for each of the three bankruptcy prevalence levels (1%, 5%, and 10%). The number of

bankrupt observations was held constant across splits to ensure a controlled experimental

setup, facilitating a fair comparison of model behavior under varying class imbalance and

false negative cost configurations.

Table 2.6: Dataset Composition by Bankruptcy Prevalence Level

Bankruptcy
Rate Split Companies

Bankrupt
Companies

Healthy
Observations

Bankrupt
Observations

1% Training 3,757 325 503,118 5,082
1% Validation 1,825 42 29,799 301
1% Test 1,852 39 31,185 315
5% Training 3,350 325 96,558 5,082
5% Validation 952 42 5,719 301
5% Test 988 39 5,985 315

10% Training 2,936 325 45,738 5,082
10% Validation 716 42 2,709 301
10% Test 733 39 2,835 315

It is important to note that since firms with incomplete financial histories were ex-

cluded, resulting in the omission of bankruptcy events occurring before the first quarter

of 2004 (CQ1_2004). Table 2.7 details the number of bankruptcies observed per calen-

dar quarter between 2004 and 2023. This distribution highlights temporal fluctuations in

bankruptcy incidence, reflecting both macroeconomic cycles and firm-specific vulnera-

bilities.

Figure 2.10 illustrates the annual distribution of bankruptcies between 2004 and 2023.

The trend reveals two prominent peaks: one in 2009, following the global financial crisis,
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Table 2.7: Number of Bankruptcies per Quarter (2004–2023)

Year CQ1 CQ2 CQ3 CQ4 Year CQ1 CQ2 CQ3 CQ4
2004 26 11 15 12 2014 14 11 15 13
2005 15 13 26 10 2015 18 16 25 20
2006 21 10 21 11 2016 19 11 40 27
2007 20 18 33 20 2017 17 14 27 17
2008 33 27 45 36 2018 11 10 16 11
2009 17 11 43 15 2019 15 19 36 17
2010 13 12 70 6 2020 9 7 106 20
2011 7 10 40 12 2021 4 5 5 4
2012 12 10 52 7 2022 7 3 20 10
2013 14 15 18 12 2023 3 5 81 26

Figure 2.10: Annual number of bankruptcies from 2004 to 2023

and another in 2020, coinciding with the COVID-19 pandemic. These peaks align with

periods of significant macroeconomic instability. Interestingly, we observe a decline in

bankruptcies in 2021 and 2022. This may be partly attributed to temporary relief measures

deployed at the time, raising concerns about a potential backlog of distressed firms.
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Chapter 3

Methodology

This chapter presents the methodology adopted to develop, evaluate, and interpret ma-

chine learning models for corporate bankruptcy prediction. The process consists of mul-

tiple stages, outlined as follows:

1. Constructing datasets with varying bankruptcy prevalence levels (1%, 5%, and

10%) to simulate different economic environments,

2. Training a range of machine learning models, including both non-boosting and

boosting approaches,

3. Optimizing model hyperparameters using the Optuna framework, with a cost-sensitive

objective that reflects stakeholder-specific asymmetries between false negatives and

false positives,

4. Evaluating model performance primarily based on total misclassification cost, with

secondary consideration given to conventional metrics such as precision, recall, F1-

score, and AUC,

5. Comparing model performance under two temporal input configurations: full his-

torical data (20 consecutive CQs) versus the most recent quarter (CQ_1),



6. Applying Explainable AI (XAI) techniques to models trained on CQ_1 inputs in or-

der to enhance interpretability. Global interpretability is assessed using Permutation

Feature Importance (PFI) and Mean Absolute SHAP values , while local explana-

tions are provided using Individual Conditional Expectation (ICE) plots and SHAP

waterfall plots.

3.1 Model Classes and Setup

The machine learning models used in this study are categorized into two broad families

based on their learning mechanisms:

• Boosting Models: These ensemble learners iteratively improve predictions by fo-

cusing on previously misclassified observations, making them particularly effective

for structured and imbalanced data. The models in this group include AdaBoost,

XGBoost, and LightGBM.

• Non-Boosting Models: To establish meaningful baselines and evaluate perfor-

mance trade-offs, we include Logistic Regression, Decision Tree, Random Forest,

and a Multilayer Perceptron (MLP).

All models were implemented in Python using the scikit-learn, xgboost, lightgbm,

and pytorch libraries. The training and evaluation pipelines were designed to ensure re-

producibility, consistent preprocessing, and fair comparison across model classes.

3.2 Input Configurations and Temporal Window

Comparison

To evaluate the influence of historical information on predictive performance, two distinct

input configurations were explored:
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• 20-Quarter Input Window: The primary setup uses lagged financial ratios span-

ning the 20 quarters preceding each firm’s bankruptcy evaluation point.

• Most Recent Quarter (CQ_1): A secondary configuration simplifies the input

by retaining only the most recent value of each financial ratio, aiming to improve

explainability and reduce redundancy.

To maintain a fair comparison, both configurations were applied to the same dataset

sample, without regenerating the dataset for shorter history windows. That is, firms in-

cluded in the 20-quarter configuration were retained in the CQ_1 setting, excluding those

with no historical data. This consistency in the training dataset ensures that any observed

differences in model performance stem from the temporal input structure rather than sam-

ple variation.

3.3 Bankruptcy Level Thresholds

Bankruptcy events are rare, particularly in developed economies. However, their preva-

lence can vary significantly under different macroeconomic conditions. To evaluate model

robustness under varying class imbalance levels, three datasets were created with different

bankruptcy prevalence levels:

A 1% bankruptcy rate reflects an optimistic, low-risk environment, consistent with

periods of economic expansion or stable credit markets. A 5% bankruptcy rate represents

a neutral or average scenario. Finally, a 10% bankruptcy rate simulates a stressed or pes-

simistic market condition, capturing the dynamics of financial downturns or recessionary

periods with elevated firm default rates.

3.4 Cost Matrices and Stakeholder Perspectives

Binary classification typically assumes uniform misclassification costs. However, in the

context of bankruptcy prediction, FN cases where a bankrupt firm is misclassified as
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healthy, carry significantly higher consequences than FP.

To reflect stakeholder-specific risk tolerances, we defined three asymmetric cost ma-

trices, parameterized by the FN:FP ratio:

Table 3.1: False Negative and False Positive Cost Settings by Scenario

Scenario FN Cost FP Cost
Moderate 5 1
Balanced 10 1

Conservative 20 1

Different stakeholders are likely to favor different cost configurations based on their

exposure to risk and tolerance for false alarms. Investors, for instance, may opt for a

moderate cost ratio of 5:1 to avoid unnecessary alerts that could disrupt portfolio strategy.

Regulators and lenders, on the other hand, are more likely to adopt a conservative stance,

assigning a much higher cost to false negatives—up to 20 times that of a false positive—to

ensure that potential bankruptcies are not overlooked. Meanwhile, auditors and rating

agencies might favor a more balanced configuration (10:1), aiming to strike a compromise

between the cost of misreporting and the operational burden of issuing false warnings.

To reflect these varying risk preferences, stakeholder-informed cost matrices were

incorporated throughout the modeling pipeline: during hyperparameter tuning, threshold

selection, and model performance evaluation under each scenario. In this thesis, we will

refer to these cost configurations using shorthand such as FN cost = 5x or FN penalty =

5 to indicate the relative weighting applied to false negatives.

3.5 Hyperparameter Optimization

To ensure fair and optimal model comparisons, hyperparameter tuning was performed us-

ing Optuna, which is a state-of-the-art Bayesian optimization framework. This allowed

efficient exploration of high-dimensional, non-convex search spaces and reduced the num-

ber of trials needed to converge on high-performing configurations.
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3.5.1 Optimization Objective

Unlike conventional hyperparameter tuning processes that aim to maximize generic met-

rics such as AUC or accuracy, this study adopts a cost-sensitive approach grounded in

the relative penalties of misclassification. Specifically, hyperparameters are selected by

minimizing the following misclassification cost function on the validation set:

Total Cost = (FP×CostFP)+(FN×CostFN) (3.1)

The models are trained with gradients computed and backpropagated in the usual man-

ner. However, during validation, model predictions are evaluated in terms of the total cost

defined above. Hyperparameter configurations that yield the lowest total misclassification

cost are retained. This approach ensures that model selection aligns with the asymmetric

cost structure associated with false positives and false negatives, which is central to the

application context.

3.5.2 Search Spaces

The search spaces presented in table 3.2 were used for hyperparameter tuning.

3.6 Model Evaluation and Interpretability

This section describes the evaluation procedures used to assess model performance and in-

terpretability. Given the high cost of misclassification in bankruptcy prediction, our eval-

uation framework prioritizes cost-sensitive analysis while also reporting standard classi-

fication metrics for completeness and comparability with existing literature. Moreover,

we applied both global and local explainability techniques to better understand model

behavior and feature importance.
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Table 3.2: Hyperparameter Search Space for Each Model

Note. "Range" denotes the set of values searched during hyperparameter tuning. Intervals
such as (a,b) indicate continuous ranges, while “step” refers to uniform sampling within a
discrete grid. Parameters with “log scale” were searched over a logarithmic scale.

Model Hyperparameters (Range)
XGBoost n_estimators: (100, 1000, step 100)

max_depth: (3, 15, step 1)
learning_rate: (0.01, 0.3, log scale)
subsample: (0.6, 1.0)
colsample_bytree: (0.6, 1.0)
reg_al pha: (0, 10)
reg_lambda: (0, 10)

LightGBM n_estimators: (100, 1000, step 100)
max_depth: (3, 15)
learning_rate: (0.01, 0.3, log scale)
num_leaves: (20, 150, step 10)
subsample: (0.6, 1.0)
colsample_bytree: (0.6, 1.0)
reg_al pha: (0, 10)
reg_lambda: (0, 10)

Random Forest n_estimators: (100, 600, step 100)
max_ f eatures: (1, num_features, step 1)
max_depth: (5, 20, step 1)
min_samples_split: (2, 10, step 1)
min_samples_lea f : (1, 10, step 1)

Decision Tree max_depth: (3, 20)
min_samples_split: (2, 10, step 1)
min_samples_lea f : (1, 10, step 1)

Logistic Regression C: (0.001, 10, log scale)
solver: {lbfgs, newton-cg, liblinear}

AdaBoost n_estimators: (50, 500, step 50)
learning_rate: (0.001, 1.0, log scale)

MLP learning_rate_cls: (1e-8, 1e-4, log scale)
batch_size: {512, 1024}
num_cls_hidden_layers: (1, 4, step 1)
cls_hidden_size_layer_i: (64, 512, step 64)
al pha: (0.5, 0.99)
gamma: {2, 3}
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3.6.1 Evaluation Metrics

Primary Metric: Total Misclassification Cost

The central evaluation metric in this study is the total cost associated with misclassifi-

cations, calculated using the asymmetric cost matrices. This cost reflects stakeholder-

specific preferences and penalizes FN more heavily than FP. It is given by equation 3.1

This formulation ensures that model selection and threshold tuning are aligned with

the economic and strategic priorities of different stakeholder groups. For each cost sce-

nario, the optimal classification threshold was identified by minimizing the cost on the

validation set.

Secondary Metrics: Traditional Classification Metrics

While total cost served as the primary decision criterion for model selection and evalua-

tion, several traditional classification metrics were also reported to facilitate comparison

with prior studies and to provide a more comprehensive assessment of model behavior.

We calculated Recall (Sensitivity), which measures the proportion of correctly identified

bankrupt firms. Precision was also evaluated, quantifying the proportion of predicted

bankruptcies that were correct and therefore offering insight into the model’s false alarm

rate. To balance the trade-off between recall and precision, we reported the F1-Score,

the harmonic mean of the two, which is particularly informative in imbalanced settings.

Finally, we included the Area Under the Receiver Operating Characteristic Curve (AUC),

a threshold-independent metric that captures the model’s overall ability to discriminate

between bankrupt and healthy firms. All secondary metrics were computed on the test set

predictions, using the optimal threshold identified for each model and cost configuration.

The formula for each metric is given below:

• Recall (Sensitivity):

Recall =
True Positives

True Positives+False Negatives
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• Precision:

Precision =
True Positives

True Positives+False Positives

• F1-Score:

F1-Score = 2× Precision×Recall
Precision+Recall

• Area Under the ROC Curve (AUC):

AUC summarizes the Receiver Operating Characteristic curve, which plots the True

Positive Rate (Recall) against the False Positive Rate across different threshold set-

tings. Formally, it can be expressed as:

AUC =
∫ 1

0
TPR(FPR)d(FPR)

where TPR is the True Positive Rate and FPR is the False Positive Rate.

3.6.2 Explainable AI Techniques

To enhance transparency and increase trust in model predictions, we applied Explainable

AI (XAI) techniques to the best-performing model from each model family, across all

bankruptcy prevalence levels and cost scenarios. These interpretability methods were

applied specifically to models trained using the CQ_1 input configuration, a design choice

that minimizes multicollinearity and improves the reliability of feature attribution. The

selected XAI tools provide both global and local insights into feature influence and model

decision-making.

Global Interpretability

Global interpretability techniques help to identify the overall drivers of model predictions

across the dataset, providing stakeholders with an understanding of which features matter

most and how they interact.

• Permutation Feature Importance: For each feature, its values are randomly per-

muted to break the association with the target. The resulting drop in performance,
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or increase in the loss function, indicates the importance of that feature. This is

a model-agnostic that was applied on all classifiers. In this study, we will use the

false negative penalty as loss function to the PFI calculation.

• Mean Absolute SHAP Values: SHAP values decompose each prediction into ad-

ditive contributions from each feature. Aggregating the absolute values across all

instances provides a global importance ranking that is consistent and theoretically

grounded in cooperative game theory.

These tools were used to assess whether boosting models and non-boosting models

relied on similar features, and whether their decision logic was robust under different

prevalence and cost conditions.

Local Interpretability

Local interpretability focuses on explaining individual predictions, which is critical in

high-stakes applications where users need to understand why a particular firm was classi-

fied as high-risk or low-risk.

ICE plots visualize the marginal effect of a feature on the model’s predicted proba-

bility for individual instances. We favour ICE plots over partial dependence plots (PDP)

since ICE captures heterogeneity by plotting one curve per instance, thus enabling the

detection of non-monotonic effects and interactions.
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Chapter 4

Results – Model Comparison

This chapter presents the empirical results of the bankruptcy prediction models devel-

oped in this study. The primary goal is to compare the performance of boosting and

non-boosting model classes across different experimental conditions that simulate vary-

ing economic environments and stakeholder cost preferences.

Model evaluation is centered on minimizing total misclassification cost, which cap-

tures the asymmetric penalties associated with false negatives and false positives. This

cost-sensitive metric reflects the priorities of key stakeholders, such as investors, auditors,

and regulators. To complement this primary criterion, traditional classification metrics in-

cluding precision, recall, F1-score, and Area Under the Receiver Operating Characteristic

Curve (AUC), are reported as secondary indicators of model performance.

Results are organized by bankruptcy prevalence level (1%, 5%, and 10%). Within

each scenario, models are evaluated under three cost configurations that assign increas-

ing weight to false negatives (5x, 10x, and 20x the cost of a false positive). For each

combination of model, prevalence, and cost setting, we report results under two input

configurations: a full 20-quarter historical input window and a reduced 1-quarter setup

using only the most recent financial data. To facilitate direct comparison, results for the 1

CQ configuration are shown in parentheses directly below the corresponding 20 CQ row

for each model.



4.1 Evaluation at 1% Bankruptcy Level

The results are summarized in tables 4.1, 4.2 and 4.3. Figure 4.1 and Figure 4.2 illustrate

the precision-recall trade-offs and threshold-dependent cost behavior of all models trained

with 20 CQ data.

Figure 4.1: Precision-Recall Curves at 1% Bankruptcy Rate under FN cost ratios of 5x,
10x, and 20x. (20 CQ)

Figure 4.2: Threshold-cost tradeoffs at 1% Bankruptcy Rate for all models across FN cost
ratios. (20 CQ)

4.1.1 FN Cost = 5x

Under the FN cost setting of 5x at 1% bankruptcy prevalence, XGBoost emerges as the

best-performing boosting model, achieving the lowest total cost (1145) and the highest

F1-score (0.400) among boosting models. The inclusion of 20 calendar quarters (CQ)
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Table 4.1: Performance at 1% Bankruptcy Rate with FN Cost = 5x. The first row for each
model shows results for 20 CQ input, and the second row (in parentheses) shows results
for 1 CQ input.

Model Cost AUC Precision Recall F1
XGBoost 1145 0.965 0.442 0.366 0.400

(1202) (0.954) (0.375) (0.356) (0.365)
LightGBM 1146 0.968 0.291 0.531 0.376

(1266) (0.939) (0.292) (0.381) (0.331)
AdaBoost 1176 0.955 0.240 0.689 0.356

(1159) (0.942) (0.240) (0.721) (0.360)
Random Forest 1371 0.951 0.356 0.204 0.259

(1355) (0.928) (0.248) (0.356) (0.292)
Decision Tree 1393 0.776 0.641 0.130 0.216

(1371) (0.797) (0.229) (0.397) (0.290)
Logistic Regression 1545 0.897 0.193 0.117 0.146

(1581) (0.924) (0) (0) (0)
MLP 1264 0.919 0.497 0.248 0.331

(1389) (0.949) (0.425) (0.162) (0.234)

of input history significantly enhances its performance compared to the 1-CQ variant,

reducing cost and improving all key metrics, underscoring the value of temporal context

in detecting rare bankruptcy signals.

Among non-boosting models, the MLP delivers the best results, with a cost of 1264,

outperforming all other traditional models. We also note that the Logistic Regression

model was overfit in this configuration with our methodology. The optimal cost was

attained when the model converged towards the trivial solution, marking all observations

as "healthy". The best non-boosting model trained with 1-CQ data was Random Forest

with a cost of 1355.

4.1.2 FN Cost = 10x

Under the 10x FN cost scenario, LightGBM is the best-performing boosting model, achiev-

ing the lowest total cost (1581) and the highest recall (0.839) among all models. The sub-

stantial cost reduction compared to its 1-CQ counterpart (1910) suggests the contribution
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Table 4.2: Performance at 1% Bankruptcy Rate with FN Cost = 10x. The first row for
each model shows results for 20 CQ input, and the second row (in parentheses) shows
results for 1 CQ input.

Model Cost AUC Precision Recall F1
XGBoost 1878 0.965 0.304 0.558 0.392

(2204) (0.953) (0.173) (0.575) (0.266)
LightGBM 1581 0.968 0.259 0.839 0.395

(1910) (0.952) (0.276) (0.533) (0.364)
AdaBoost 1709 0.955 0.226 0.695 0.341

(1852) (0.951) (0.188) (0.724) (0.299)
Random Forest 2513 0.951 0.273 0.664 0.387

(2262) (0.929) (0.250) (0.403) (0.308)
Decision Tree 2777 0.776 0.433 0.207 0.278

(2438) (0.803) (0.155) (0.498) (0.236)
Logistic Regression 2476 0.897 0.264 0.646 0.375

(2474) (0.924) (0.131) (0.635) (0.218)
MLP 2419 0.919 0.281 0.666 0.395

(2432) (0.916) (0.156) (0.495) (0.238)

of long-term financial history in enhancing its predictive performance.

Among non-boosting models, the MLP delivers the best results, with a cost of 2419

and a matched F1-score of 0.395. The best-performing model trained with 1-CQ data was

again Random Forest with a cost of 2262.

4.1.3 FN Cost = 20x

Under the most conservative cost configuration (FN cost = 20x), LightGBM is the top-

performing boosting model with the lowest total cost (2126). The large cost gap between

the 20-CQ and 1-CQ inputs (2126 vs. 3643) again highlights the value of long-term

financial histories in improving predictive accuracy under extreme cost asymmetry and

data imbalance.

For non-boosting models, the MLP continues to be the strongest performer, achieving

a cost of 2925. While not as cost-efficient as LightGBM, the MLP presents a compelling

alternative among traditional and deep learning baselines. In this setting as well, Random
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Table 4.3: Performance at 1% Bankruptcy Rate with FN Cost = 20x. The first row for
each model shows results for 20 CQ input, and the second row (in parentheses) shows
results for 1 CQ input.

Model Cost AUC Precision Recall F1
XGBoost 2992 0.965 0.268 0.619 0.377

(3300) (0.954) (0.152) (0.660) (0.247)
LightGBM 2126 0.968 0.223 0.796 0.351

(3643) (0.951) (0.140) (0.610) (0.227)
AdaBoost 2273 0.955 0.259 0.746 0.384

(2674) (0.946) (0.211) (0.708) (0.325)
Random Forest 3091 0.951 0.273 0.660 0.384

(3605) (0.925) (0.133) (0.635) (0.220)
Decision Tree 5014 0.776 0.241 0.263 0.252

(3948) (0.811) (0.166) (0.498) (0.249)
Logistic Regression 4173 0.897 0.253 0.630 0.361

(3624) (0.924) (0.131) (0.635) (0.218)
MLP 2925 0.919 0.256 0.667 0.372

(4426) (0.861) (0.104) (0.524) (0.173)

Forest was the best performing model when trained with 1-CQ features, with a cost of

3605.

4.2 Evaluation at 5% Bankruptcy Level

This section evaluates model performance at a moderate bankruptcy prevalence of 5%,

where the data distribution reflects more frequent corporate distress events compared to

the 1% setting. Performance is analyzed under the same cost levels and input data size as

in the previous section.

4.2.1 FN Cost = 5x

At the 5% bankruptcy level with FN cost = 5x, LightGBM is the best-performing boosting

model, achieving the lowest total cost (589) and the highest F1-score (0.616) among all

models. Notably, the cost increases substantially when restricted to a 1-CQ input (907),
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Figure 4.3: Precision-Recall Curves at 5% Bankruptcy Rate under FN cost ratios of 5x,
10x, and 20x. (20 CQ)

Figure 4.4: Threshold-cost tradeoffs at 5% Bankruptcy Rate for all models across FN cost
ratios. (20 CQ)

confirming the importance of leveraging long-term financial trajectories.

Among non-boosting models, Random Forest achieves the lowest cost (591) and de-

livers a competitive F1-score (0.568), performing nearly on par with LightGBM and Ad-

aBoost. It also benefits clearly from the 20-CQ input window, with both recall and cost

improving significantly compared to the 1-CQ setup.

4.2.2 FN Cost = 10x

Under the 10x false negative penalty at 5% bankruptcy prevalence, XGBoost achieves the

lowest cost (690), outperforming all models in terms of cost-efficiency while maintaining

a high recall (0.916). AdaBoost is the best performing boosting model when trained with
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Table 4.4: Performance at 5% Bankruptcy Rate with FN Cost = 5x. The first row for each
model shows results for 20 CQ input, and the second row (in parentheses) shows results
for 1 CQ input.

Model Cost AUC Precision Recall F1
XGBoost 604 0.959 0.389 0.899 0.543

(726) (0.947) (0.331) (0.905) (0.485)
LightGBM 589 0.958 0.511 0.775 0.616

(907) (0.935) (0.422) (0.584) (0.490)
AdaBoost 599 0.956 0.429 0.844 0.569

(643) (0.952) (0.401) (0.844) (0.543)
Random Forest 591 0.953 0.425 0.857 0.568

(848) (0.919) (0.420) (0.638) (0.506)
Decision Tree 710 0.913 0.468 0.711 0.564

(789) (0.912) (0.531) (0.606) (0.566)
Logistic Regression 859 0.893 0.391 0.660 0.491

(818) (0.916) (0.324) (0.825) (0.456)
MLP 663 0.903 0.445 0.769 0.567

(827) (0.911) (0.462) (0.619) (0.529)

Table 4.5: Performance at 5% Bankruptcy Rate with FN Cost = 10x. The first row for
each model shows results for 20 CQ input, and the second row (in parentheses) shows
results for 1 CQ input.

Model Cost AUC Precision Recall F1
XGBoost 690 0.959 0.350 0.916 0.509

(1051) (0.939) (0.261) (0.930) (0.407)
LightGBM 711 0.958 0.467 0.838 0.602

(922) (0.950) (0.309) (0.911) (0.461)
AdaBoost 840 0.956 0.432 0.844 0.571

(920) (0.952) (0.392) (0.838) (0.534)
Random Forest 691 0.953 0.365 0.907 0.520

(1444) (0.936) (0.334) (0.676) (0.447)
Decision Tree 1019 0.913 0.359 0.779 0.478

(1371) (0.912) (0.508) (0.625) (0.560)
Logistic Regression 1169 0.893 0.310 0.765 0.440

(1098) (0.916) (0.313) (0.835) (0.455)
MLP 896 0.903 0.364 0.817 0.502

(1144) (0.918) (0.268) (0.876) (0.410)

63



1-CQ data with a cost of 920.

Among non-boosting models, Random Forest matches XGBoost in cost (691) and

delivers a nearly identical F1-score (0.520), making it the best-performing non-boosting

model in this setting. Logistic Regression is the best model of this category when trained

with 1-CQ data, achieving a cost of 1098.

4.2.3 FN Cost = 20x

Table 4.6: Performance at 5% Bankruptcy Rate with FN Cost = 20x. The first row for
each model shows results for 20 CQ input, and the second row (in parentheses) shows
results for 1 CQ input.

Model Cost AUC Precision Recall F1
XGBoost 790 0.959 0.312 0.920 0.468

(1258) (0.946) (0.286) (0.914) (0.436)
LightGBM 766 0.958 0.414 0.866 0.558

(1158) (0.952) (0.300) (0.924) (0.453)
AdaBoost 1139 0.956 0.338 0.908 0.493

(1378) (0.948) (0.337) (0.867) (0.485)
Random Forest 968 0.953 0.338 0.901 0.493

(1199) (0.943) (0.265) (0.940) (0.414)
Decision Tree 1525 0.913 0.330 0.774 0.461

(1539) (0.905) (0.345) (0.835) (0.488)
Logistic Regression 1850 0.893 0.287 0.768 0.423

(1697) (0.916) (0.266) (0.848) (0.405)
MLP 1252 0.903 0.329 0.825 0.468

(1809) (0.920) (0.226) (0.860) (0.358)

In the most conservative cost scenario (FN cost = 20x) at 5% bankruptcy preva-

lence, LightGBM achieves the lowest cost (766) among all models, making it the best-

performing boosting model. It delivers a strong F1-score (0.558) and combines high recall

(0.866) with respectable precision (0.414), favoring broad bankruptcy detection without

excessive false alarms.

Among non-boosting models, Random Forest performs best with a cost of 968 and a

high recall of 0.901.
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LightGBM and Random Forest are also the best performing models when trained with

1-CQ data, with a cost of 1158 and 1199 respectively.

4.3 Evaluation at 10% Bankruptcy Level

This section examines model performance under a higher bankruptcy prevalence of 10%,

where financially distressed firms are more frequent.

Figure 4.5: Precision-Recall Curves at 10% Bankruptcy Rate under FN cost ratios of 5x,
10x, and 20x. (20 CQ)

Figure 4.6: Threshold-cost tradeoffs at 10% Bankruptcy Rate for all models across FN
cost ratios. (20 CQ)
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Table 4.7: Performance at 10% Bankruptcy Rate with FN Cost = 5x. The first row for
each model shows results for 20 CQ input, and the second row (in parentheses) shows
results for 1 CQ input.

Model Cost AUC Precision Recall F1
XGBoost 437 0.941 0.529 0.879 0.660

(527) (0.927) (0.493) (0.838) (0.620)
LightGBM 418 0.946 0.554 0.876 0.678

(468) (0.934) (0.470) (0.908) (0.619)
AdaBoost 453 0.943 0.529 0.867 0.657

(530) (0.932) (0.433) (0.898) (0.585)
Random Forest 471 0.942 0.524 0.857 0.650

(786) (0.898) (0.339) (0.822) (0.480)
Decision Tree 1248 0.619 0.301 0.387 0.339

(1033) (0.838) (0.415) (0.479) (0.445)
Logistic Regression 601 0.879 0.486 0.784 0.600

(618) (0.902) (0.431) (0.825) (0.566)
MLP 566 0.901 0.537 0.774 0.634

(716) (0.887) (0.358) (0.851) (0.504)

4.3.1 FN Cost = 5x

At the 10% bankruptcy level with FN cost = 5x, LightGBM stands out as the top-performing

boosting model, achieving the lowest total cost (418) and the highest F1-score (0.678). It

offers a strong balance between precision (0.554) and recall (0.876), making it highly ef-

fective in moderately imbalanced settings. It is also the best model when 1-CQ data are

fed as inputs.

Among non-boosting models, Random Forest is the best performer with a cost of 471

and an F1-score of 0.650. Logistic Regression emerges as the best performing model of

this category when trained with 1-CQ data.

4.3.2 FN Cost = 10x

At a 10% bankruptcy prevalence and a 10x false negative cost, LightGBM achieves the

lowest total cost (491) and the highest F1-score (0.645) among all models.

Among non-boosting models, Random Forest performs best with a cost of 686 and an
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Table 4.8: Performance at 10% Bankruptcy Rate with FN Cost = 10x. The first row for
each model shows results for 20 CQ input, and the second row (in parentheses) shows
results for 1 CQ input.

Model Cost AUC Precision Recall F1
XGBoost 574 0.941 0.470 0.901 0.614

(646) (0.933) (0.403) (0.933) (0.563)
LightGBM 491 0.946 0.504 0.904 0.645

(691) (0.933) (0.433) (0.898) (0.584)
AdaBoost 646 0.945 0.445 0.908 0.598

(720) (0.934) (0.409) (0.902) (0.563)
Random Forest 686 0.942 0.452 0.887 0.598

(804) (0.902) (0.317) (0.949) (0.475)
Decision Tree 2190 0.619 0.261 0.443 0.327

(1050) (0.838) (0.266) (0.921) (0.413)
Logistic Regression 935 0.879 0.406 0.835 0.546

(876) (0.903) (0.328) (0.908) (0.482)
MLP 715 0.901 0.456 0.821 0.584

(816) (0.897) (0.356) (0.905) (0.511)

F1-score of 0.598 when trained with 20-CQ data, and with a cost of 804 and F1-score of

0.475 when trained with 1-CQ data.

4.3.3 FN Cost = 20x

Under the most conservative cost setting (FN cost = 20x) at 10% bankruptcy prevalence,

LightGBM achieves the lowest total cost (742) among boosting models and delivers a

strong F1-score (0.550) with very high recall (0.959). While its precision (0.385) is mod-

erate, its cost advantage and sensitivity to bankruptcies make it the most effective model

in this high-stakes scenario. Performance declines with 1-CQ input (cost rises to 903),

reaffirming that access to long-term financial history is essential to optimizing detection

under heavy false negative penalties. Yet, it remains the best performing boosting-model

when trained with 1-CQ data.

Among non-boosting models, Random Forest delivers the lowest cost (708) and the

highest F1-score (0.570), outperforming even the best boosting model in this configura-
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Table 4.9: Performance at 10% Bankruptcy Rate with FN Cost = 20x. The first row for
each model shows results for 20 CQ input, and the second row (in parentheses) shows
results for 1 CQ input.

Model Cost AUC Precision Recall F1
XGBoost 850 0.931 0.388 0.914 0.545

(943) (0.923) (0.360) (0.933) (0.519)
LightGBM 742 0.946 0.385 0.959 0.550

(903) (0.924) (0.339) (0.949) (0.500)
AdaBoost 893 0.944 0.358 0.943 0.519

(908) (0.933) (0.405) (0.924) (0.563)
Random Forest 708 0.942 0.420 0.892 0.570

(879) (0.910) (0.348) (0.949) (0.509)
Decision Tree 2814 0.619 0.260 0.460 0.328

(1233) (0.837) (0.266) (0.933) (0.414)
Logistic Regression 1438 0.879 0.366 0.836 0.499

(1149) (0.903) (0.321) (0.914) (0.475)
MLP 981 0.901 0.418 0.824 0.559

(1007) (0.894) (0.372) (0.917) (0.530)

tion. It maintains a strong balance of precision (0.420) and recall (0.892), and, similar to

LightGBM, suffers a performance drop in the 1-CQ case (cost rises to 879, F1 drops to

0.509). Interestingly, Random Forest beats the boosting models when trained with 1-CQ

data.
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Chapter 5

Results – Explainability Analysis

This chapter investigates the factors driving model predictions using XAI techniques.

While predictive performance indicates how accurately models classify firms, explain-

ability is essential to understanding the rationale behind these decisions, particularly in

high-stakes applications such as financial risk assessment.

We focus on the best-performing model type across bankruptcy prevalence and cost

settings to analyze feature importance and feature effects using complementary inter-

pretability methods. These include permutation feature importance, mean absolute SHAP

values and ICE plots, offering both global and local perspectives on model behavior. How-

ever, because of the high level of multicollinearity in our 20 CQ dataset, we perform the

XAI analyses on the best models that were trained only with 1 CQ data, which has con-

siderably less correlation.

The analysis is organized by bankruptcy prevalence level and examines both con-

sistent predictors of financial distress and variations in feature relevance and attribution

patterns across models and false negative cost configurations.



Figure 5.1: 1% Bankruptcy; PFI

5.1 PFI Results

5.1.1 1% Bankruptcy Level

Figure 5.1 (top) displays the permutation feature importance rankings for AdaBoost at a

1% bankruptcy prevalence level. Across all three cost configurations, the model consis-

tently relies on RE/TA, WC/TA, and MKTCAP/TL as the primary drivers of bankruptcy

prediction.

As the penalty for false negatives increases, AdaBoost becomes more selective, con-

centrating its reliance on a narrower subset of features. The importance scores for RE/TA

and WC/TA increase from 5x FN cost to 20x FN cost. In contrast, the relative importance

of TR/TA and EBIT/TA remains more stable or declines slightly relative to the other ratios.

Figure 5.1 (bottom) presents the permutation feature importance rankings for Random

Forest. In all configurations, the model consistently ranks RE/TA, EBIT/TA, and WC/TA

as the most influential predictors.

As the cost of false negatives increases, similar to AdaBoost, the importance scores

for RE/TA increases, indicating the model’s growing emphasis on retained earnings as a
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robust signal of financial resilience. The relative importance of EBIT/TA also increases

slightly, while WC/TA maintains a stable contribution across cost settings. In contrast,

MKTCAP/TL and TR/TA consistently rank lower in terms of importance.

5.1.2 5% Bankruptcy Level

Figure 5.2: 5% Bankruptcy; PFI

Figure 5.2 presents permutation feature importance rankings for selected models un-

der a 5% bankruptcy prevalence level. Across both boosting and non-boosting models,

there is strong convergence in feature prioritization: RE/TA and WC/TA consistently dom-

inate the attribution profiles. In contrast, MKTCAP/TL and TR/TA generally rank lower.

Among boosting models, AdaBoost and LightGBM focus on RE/TA and WC/TA as

FN cost increases from 5x to 20x. The LightGBM at FN penalty= 20×, in particular,

shows the highest magnitude of feature importance values, suggesting stronger reliance

on these key ratios to minimize high-stakes misclassification.

Random Forest displays a similar trend but with a more balanced feature distribution.

The model still attributes meaningful weight to EBIT/TA and WC/TA, indicating a more

diffuse reliance pattern.
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Decision Tree and Logistic Regression follow comparable patterns, with RE/TA re-

maining the dominant signal. We also note that the PFI of the Logistic Regression model

is diffused among the secondary ratios.

5.1.3 10% Bankruptcy Level

Figure 5.3: 10% Bankruptcy; PFI

Figure 5.3 summarizes the permutation feature importance rankings across selected

models at a 10% bankruptcy prevalence level. As in previous settings, RE/TA and WC/TA

consistently emerge as the most influential features across all models and cost scenarios.

For boosting models, RE/TA dominates in all configurations, with importance scores

peaking at FN cost = 20x. The role of WC/TA also strengthens as FN penalties rise, while

the contribution of MKTCAP/TL and TR/TA diminishes.

Random Forest also prioritizes RE/TA and WC/TA, but exhibits more balanced reliance

across features than boosting models. Interestingly, at FN cost = 20x, WC/TA surpasses

RE/TA in importance.

Logistic Regression demonstrates a similar ranking, with RE/TA as the top predictor.

However, the separation between features is less pronounced, and the relative importance
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of WC/TA, EBIT/TA, and MKTCAP/TL remains closer in magnitude, similar to its be-

haviour at 5% bankruptcy prevalence.

Overall, these results suggest the dominant role of RE/TA and WC/TA as early indi-

cators of financial distress and show that boosting models intensify their focus on these

ratios under conservative cost assumptions. Random Forest offers a more balanced fea-

ture importance, and logistic regression tends to have more diffused feature importance

among secondary indicators.

5.2 SHAP-Based Analysis

To analyze feature importance at a specific point in time, we computed the mean absolute

SHAP values for each of the five core financial ratios at the most recent calendar quarter.

SHAP values were calculated on a log scale to account for variation in feature magnitudes.

The analysis was performed across model classes (boosting and non-boosting) and false

negative cost penalties under varying bankruptcy prevalence levels.

5.2.1 1% Bankruptcy Level

Figure 5.4: 1% Bankruptcy; Boosting; Mean Absolute SHAP Values

Figure 5.5: 1% Bankruptcy; Non-Boosting; Mean Absolute SHAP Values
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Figures 5.4 and 5.5 present the mean absolute SHAP values for each financial ratio

across different false negative (FN) penalty levels. These values reflect the global impor-

tance of each feature, computed as the average magnitude of its SHAP contribution across

all test samples.

In the boosting models (Figure 5.4), RE/TA and WC/TA consistently emerge as the

most influential predictors. At FN penalty 5, WC/TA dominates with a SHAP value of

2.72× 10−2, followed by RE/TA at 2.19× 10−2. As the FN penalty increases, both fea-

tures maintain their prominence. This indicates that these two ratios are robust indicators

of distress when minimizing costly misclassifications is prioritized. Meanwhile, EBIT/TA

and TR/TA exhibit substantially lower SHAP values, suggesting reduced model reliance

on profitability and revenue metrics under this setting.

In contrast, the Random Forest models (Figure 5.5) yield a more distributed attribu-

tion across features. While RE/TA still ranks highest at each FN penalty level, the gap

between the top and bottom features is narrower than in boosting. EBIT/TA receives more

consistent weight in Random Forest models, suggesting that this ratio plays a more stable

role in this architecture. Similar to what we saw in the boosting models, TR/TA is the least

influential feature.

5.2.2 5% Bankruptcy Level

Figures 5.6 and 5.7 display mean absolute SHAP values for boosting and non-boosting

models under the 5% bankruptcy setting. In all boosting models, RE/TA and WC/TA con-

sistently dominate, with sharply increasing SHAP values as the FN penalty rises. For

instance, under LightGBM with FN cost 20, their values exceed 0.45, while TR/TA re-

mains minimally influential throughout.

Non-boosting models show more varied attribution. Logistic regression heavily weights

RE/TA (up to 1.32 at FN 10), while decision trees and random forests offer more balanced

distributions. MKTCAP/TL has smaller influence in these models, especially at FN penal-

ties 5 and 20.
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Figure 5.6: 5% Bankruptcy; Boosting; Mean Absolute SHAP Values

Figure 5.7: 5% Bankruptcy; Non-Boosting; Mean Absolute SHAP Values

5.2.3 10% Bankruptcy Level

Figure 5.8: 10% Bankruptcy; Boosting; Mean Absolute SHAP Values

Figure 5.9: 10% Bankruptcy; Non-Boosting; Mean Absolute SHAP Values

Figures 5.8 and 5.9 display the mean absolute SHAP values for boosting and non-

boosting models under the 10% bankruptcy setting across varying FN cost penalties.

In the boosting models, RE/TA and WC/TA consistently emerge as the most influential

features. At FN penalty 5, both ratios register SHAP values close to 0.39, indicating

strong and balanced influence. As the FN penalty increases, their importance intensifies

further and reaching above 0.7 under LightGBM at FN 20. EBIT/TA also becomes more
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prominent at higher penalties. In contrast, TR/TA remains the weakest contributor across

all boosting configurations.

Logistic regression heavily weights RE/TA (SHAP = 1.11 at FN 5), while decision

trees and random forests assign more balanced importance to RE/TA, EBIT/TA, and WC/TA.

Across all non-boosting models, TR/TA and MKTCAP/TL show consistently lower influ-

ence.

These results confirm the robustness of RE/TA and WC/TA in higher-prevalence dis-

tress settings, while highlighting the sharper cost sensitivity in boosting architectures

compared to the more stable attribution patterns of non-boosting models.

5.3 ICE Plots

This section uses Individual Conditional Expectation (ICE) plots to analyze how the CQ_1

ratios influence model predictions at the instance level. ICE plots provide a fine-grained

view of model behavior by illustrating how changes in a given feature affect the predicted

probability of bankruptcy for individual samples, while holding other features fixed. We

focus on the best-performing model trained with CQ_1 accounting ratios within each

family across all bankruptcy prevalence levels and cost ratios.

5.3.1 1% Bankruptcy Level

Boosting

Figure 5.10: ICE Plots; 1% Bankruptcy Level; Boosting; FN Penalty 5
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FN Cost 5 Figure 5.10 presents ICE plots for AdaBoost under the 1% bankruptcy sce-

nario with a false negative cost five times higher than a false positive. Each subplot illus-

trates the marginal effect of a specific financial ratio on the model’s predicted bankruptcy

risk, with 100 blue lines representing 100 randomly selected individual instances and the

orange dashed line showing the partial dependence (average effect).

The y-axis shows ∆ f (x), which represents the change in the model’s predicted output

when the value of a single feature is varied, holding all other features fixed. A negative

∆ f (x) indicates that increasing the feature reduces the model’s predicted probability of

bankruptcy, while a positive value reflects a rising predicted risk. These effects are com-

puted for each observation, producing a family of curves that reveal both global trends

and individual-level variation.

The features RE/TA, WC/TA, and EBIT/TA all exhibit strong negative marginal effects:

as values increase, the model’s predicted risk of bankruptcy decreases. For RE/TA and

EBIT/TA, this effect is monotonic, with the average prediction sharply dropping near zero

and plateauing at higher values. This suggests that firms with stronger retained earnings

or earnings before interest and taxes are perceived by the model as significantly less likely

to default.

WC/TA shows a steep drop in prediction risk around zero, indicating a threshold-like

behavior where firms with positive working capital are viewed as substantially safer than

those with negative liquidity positions. This aligns with theoretical expectations about

solvency and short-term operational risk.

In contrast, MKTCAP/TL and TR/TA exhibit positive marginal effects, with higher

values increasing the model’s predicted risk. For MKTCAP/TL, the upward trend may

reflect the model’s learned association between high equity volatility or inflated market

valuations and potential distress. The positive relationship in TR/TA is weaker but still

notable, suggesting that revenue alone may not mitigate bankruptcy risk.

FN Cost 10 Figure 5.11 displays ICE plots for AdaBoost under the 1% bankruptcy

scenario with a false negative cost ten times greater than a false positive.
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Figure 5.11: ICE Plots; 1% Bankruptcy Level; Boosting; FN Penalty 10

The plots show a sharpening of feature effects compared to the 5x cost setting. RE/TA

exhibits a steep, monotonic decline in prediction risk as values increase from negative to

positive territory, with a saturation point beyond which additional retained earnings no

longer reduce risk. WC/TA follows a similar threshold pattern near zero.

The marginal effect of MKTCAP/TL remains positive, with a sharp upward shift at

low values.

TR/TA and EBIT/TA show consistent effects with the prior configuration. TR/TA only

slightly increases predicted risk, and EBIT/TA shows a clear downward trend.

Figure 5.12: ICE Plots; 1% Bankruptcy Level; Boosting; FN Penalty 20

FN Cost 20 Figure 5.12 displays the individual conditional expectation (ICE) plots for

AdaBoost under the 1% bankruptcy setting with a false negative cost twenty times greater

than a false positive.

RE/TA produces a sharply decreasing marginal effect on bankruptcy risk, with a pro-

nounced decline for values below zero and saturation at around 2. This indicates that even
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moderate levels of retained earnings provide strong protective signals under conservative

risk preferences.

WC/TA shows a steep drop in predicted risk around the zero threshold. The individual

curves are tightly clustered, indicating consistent behavior across firms.

MKTCAP/TL and TR/TA continue to show positive effects, suggesting that higher val-

ues in these ratios correspond to higher predicted bankruptcy probabilities. Notably, the

effect of TR/TA intensifies compared to earlier configurations, with a clear nonlinear jump

around the value of 3.

EBIT/TA retains a negative marginal effect, but the slope is less steep than RE/TA, and

individual effects remain more dispersed.

Non-Boosting

Figure 5.13: ICE Plots; 1% Bankruptcy Level; Non-Boosting; FN Penalty 5

FN Cost 5 Figure 5.13 presents ICE plots for the Random Forest model under the 1%

bankruptcy scenario with a false negative cost five times higher than a false positive.

The features RE/TA and EBIT/TA exhibit strong and consistent negative marginal ef-

fects: as retained earnings and profitability increase, predicted bankruptcy risk declines.

In particular, RE/TA shows a steep decline followed by a plateau. EBIT/TA demonstrates

a similarly negative slope with more heterogeneity among individual effects.

WC/TA displays a modest negative effect centered around zero. While the average

trend is slightly downward-sloping, the individual ICE curves suggest greater dispersion,
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reflecting that working capital may interact with other features in Random Forest’s en-

semble structure.

In contrast, MKTCAP/TL and TR/TA exhibit positive marginal effects. Higher values

of TR/TA, in particular, are associated with increased predicted risk, especially beyond a

threshold of 3.

Figure 5.14: ICE Plots; 1% Bankruptcy Level; Non-Boosting; FN Penalty 10

FN Cost 10 Figure 5.14 illustrates the effect of increasing the false negative penalty on

Random Forest’s feature behavior. The response to RE/TA becomes even more decisive,

with a sharp and monotonic decrease in predicted bankruptcy risk as retained earnings

increase. The average trend flattens beyond zero, indicating that even low but positive

earnings are protective against bankruptcy under high-cost settings.

The marginal effects of EBIT/TA remain negative but show increased variability across

observations. While the average curve continues to decline, some individual instances

exhibit nonlinear or even flat effects.

For MKTCAP/TL, the model response remains mild and noisy. The average curve

increases only slightly at higher values, with substantial dispersion across individual ICE

lines, suggesting this feature is still viewed as less predictive in this setting.

TR/TA shows a clearer pattern of increasing predicted risk at higher values. The effect

becomes more convex above a ratio of 3, indicating that very high turnover relative to

assets is flagged more aggressively as a risk indicator.
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Figure 5.15: ICE Plots; 1% Bankruptcy Level; Non-Boosting; FN Penalty 20

FN Cost 20 The marginal effect of RE/TA remains strongly negative and stabilizes

around −0.1 for most of the observed range. The steep decline in predictions for neg-

ative values is consistent with the model’s increased aversion to missed bankruptcies.

The effect of WC/TA remains negative on average, but its influence appears to plateau.

While individual ICE curves remain volatile, the average marginal effect flattens com-

pared to prior settings, suggesting that working capital is treated as a secondary discrimi-

nator.

Both MKTCAP/TL and TR/TA show minimal average impact. While some outlier

trajectories exist, the bulk of individual predictions are centered around zero.

5.3.2 5% Bankruptcy Level

Boosting

Figure 5.16: ICE Plots; 5% Bankruptcy Level; Boosting; FN Penalty 5
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FN Cost 5 The marginal effect of RE/TA is steep and consistently negative, with a drop

near zero, similar to the 1% bankruptcy level.

WC/TA exhibits a similar step-like pattern. The average prediction drops steeply as

working capital becomes negative, then plateaus.

EBIT/TA also shows a strongly negative relationship. The average effect steadily de-

clines across the observed range.

In contrast, MKTCAP/TL presents a sharp increase in predictions beyond the zero

mark. This inversion is counterintuitive and suggests interaction effects or outlier sensi-

tivity in how AdaBoost processes market-based features.

TR/TA remains mostly flat, with a positive shift. The average response increases at

higher values, but the effect is small, implying this feature contributes marginally under

this setting.

Figure 5.17: ICE Plots; 5% Bankruptcy Level; Boosting; FN Penalty 10

FN Cost 10 RE/TA exhibits a pronounced drop in prediction values as the ratio ap-

proaches zero. Notably, the ICE curves flatten quickly beyond this cutoff, indicating

diminishing marginal effects once the retained earnings reach positive territory.

WC/TA follows a similar binary-like behavior. Once working capital surpasses zero,

its contribution to the model prediction remains mostly stable. Below this threshold,

however, the average bankruptcy prediction drops steeply.

The treatment of MKTCAP/TL remains counterintuitive. The model still increases

predictions for higher values of this market-based ratio.
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TR/TA continues to exert only a mild positive influence, with low variability across

individuals and a nearly flat average response. Its marginal role is consistent with its

lower importance ranking in permutation-based analyses.

Figure 5.18: ICE Plots; 5% Bankruptcy Level; Boosting; FN Penalty 20

FN Cost 20 Figure 5.18 presents the ICE plots for LightGBM under the most conserva-

tive cost configuration at the 5% bankruptcy level.

The effect of RE/TA is particularly strong and stable: across the majority of obser-

vations, the model assigns significantly lower risk scores as retained earnings increase.

The ICE curves are tightly aligned below the zero threshold, highlighting LightGBM’s

discrimination between negative and positive profitability history.

WC/TA displays similarly concentrated effects. The ICE curves show a steep decline

near zero, after which the effect plateaus, indicating that the model strongly penalizes

negative working capital levels.

For EBIT/TA, the curves reflect a sharp nonlinear drop in predicted risk for values

increasing beyond zero.

The model’s response to MKTCAP/TL and TR/TA remains positive but more subdued.

Both features exhibit greater variability and weaker average slopes, suggesting that while

they contribute to the prediction, their influence is secondary.

Non-Boosting

FN Cost 5 The most prominent marginal effects appear for RE/TA and EBIT/TA. Both

features display strong negative influence on the predicted bankruptcy risk, with the av-
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Figure 5.19: ICE Plots; 5% Bankruptcy Level; Non-Boosting; FN Penalty 5

erage ICE curve dropping sharply as values increase above zero. However, the individual

curves vary considerably in magnitude, with several samples showing abrupt shifts. Such

discontinuities are typical in tree-based models, where predictions change abruptly at de-

cision boundaries rather than evolving gradually.

WC/TA shows a relatively flat response for most of the feature range, with slight drops

in predicted risk near the zero threshold. Nonetheless, the uneven trajectory of the ICE

curves and the absence of a consistent trend across observations reduce interpretability.

TR/TA and MKTCAP/TL demonstrate the weakest and most erratic marginal effects.

Many ICE lines remain constant or fluctuate without clear patterns, indicating that these

features are either underutilized in the tree structure or only activated in a narrow subset

of the decision paths.

Figure 5.20: ICE Plots; 5% Bankruptcy Level; Non-Boosting; FN Penalty 10

FN Cost 10 Figure 5.20 displays the ICE plots for Logistic Regression under a conser-

vative cost setting. As expected from a linear model, the marginal effects are smooth and

monotonic across all features, with consistent directionality across individual samples.
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RE/TA, EBIT/TA, and WC/TA exhibit strong, negative slopes, indicating that higher

values of these profitability and liquidity ratios are associated with a pronounced decrease

in predicted bankruptcy risk. The parallel structure of the ICE curves across these features

reinforces the model’s global linear behavior.

MKTCAP/TL and TR/TA show positive marginal effects in this setting as well. In-

creases in these ratios correspond to higher predicted financial health.

The ICE curves reveal minimal individual variation, and the average response closely

tracks the individual trends. This uniformity enhances transparency but may also limit the

model’s ability to capture nuanced interactions or nonlinear thresholds observed in more

complex classifiers.

Figure 5.21: ICE Plots; 5% Bankruptcy Level; Non-Boosting; FN Penalty 20

FN Cost 20 RE/TA, EBIT/TA, and WC/TA exhibit a consistent downward trend, with

increasing values associated with a lower predicted bankruptcy probability.

In contrast, MKTCAP/TL and TR/TA show positive associations with financial health,

particularly in the upper range of their observed values. The patterns are similar to Ran-

dom Forest’s behaviour at 1% bankruptcy level.

5.3.3 10% Bankruptcy Level

Boosting

FN Cost 5 Figure 5.22 displays the ICE plots for LightGBM under a 5x FN penalty.
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Figure 5.22: ICE Plots; 10% Bankruptcy Level; Boosting; FN Penalty 5

The model captures a consistent negative relationship between profitability and bankruptcy

risk. Both RE/TA and EBIT/TA exhibit strong monotonic effects, with risk declining

sharply as retained earnings and operating profits increase—stabilizing near zero, consis-

tent with their roles as financial buffers. WC/TA follows a similar but weaker trend, with

greater variability across firms suggesting conditional effects based on broader financial

context.

In contrast, the leverage-related ratios, MKTCAP/TL and TR/TA, show nonlinear and

positive marginal effects. Their influence becomes pronounced only after surpassing key

thresholds (approximately 1).

Figure 5.23: ICE Plots; 10% Bankruptcy Level; Boosting; FN Penalty 10

FN Cost 10 The strongest marginal effect is observed for RE/TA, where even modest im-

provements from negative to slightly positive values sharply reduce predicted bankruptcy

risk, with diminishing gains thereafter. Similar threshold behavior appears for WC/TA and

EBIT/TA, where risk drops markedly around zero, indicating the model treats a return to

positive liquidity or earnings as a key turning point.
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By contrast, MKTCAP/TL and TR/TA exhibit more gradual nonlinear increases in the

prediction. The greater variation in TR/TA effects across observations suggests interaction

effects that the model captures through tree-based splits.

Figure 5.24: ICE Plots; 10% Bankruptcy Level; Boosting; FN Penalty 20

FN Cost 20 RE/TA shows the most pronounced effect, with both individual and average

curves indicating a sharp increase in predicted risk as the ratio fall below zero. Similar

threshold patterns are seen for WC/TA and EBIT/TA, particularly around zero, where the

model sharply penalizes negative values.

In contrast, MKTCAP/TL and TR/TA display more moderate, upward-sloping effects

with greater heterogeneity across observations. Their contribution to reducing bankruptcy

risk appears less decisive and more conditional.

Non-Boosting

Figure 5.25: ICE Plots; 10% Bankruptcy Level; Non-Boosting; FN Penalty 5
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FN Cost 5 RE/TA and EBIT/TA both show strong negative slopes, indicating that higher

values in these ratios reduce the predicted bankruptcy risk. These effects are steep for

values near zero.

MKTCAP/TL and TR/TA both demonstrate positive marginal effects, with nearly linear

increases in model output as the values rise.

Figure 5.26: ICE Plots; 10% Bankruptcy Level; Non-Boosting; FN Penalty 10

FN Cost 10 For RE/TA, the ICE curves exhibit a sharply negative slope for low values,

with saturation occurring near zero. A similar pattern is observed for EBIT/TA, where the

marginal effect flattens past moderate profitability levels, indicating diminishing returns

on further gains.

MKTCAP/TL and TR/TA both show upward trends, but with scattered and abrupt

changes.

Figure 5.27: ICE Plots; 10% Bankruptcy Level; Non-Boosting; FN Penalty 20
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FN Cost 20 RE/TA and EBIT/TA show sharp risk reductions as values cross above zero,

with effects tapering off at higher levels. WC/TA follows a similar threshold pattern but

with more variability, indicating firm-specific responses to liquidity shortfalls.

MKTCAP/TL and TR/TA contribute positively in a stepwise manner, though with

greater dispersion.
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Chapter 6

Discussion

6.1 Model Performance Across Cost Settings and

Prevalence Levels

The experimental results reveal several consistent patterns across varying bankruptcy

prevalence levels and cost configurations. Notably, boosting-based ensemble methods,

particularly LightGBM and AdaBoost, demonstrate superior adaptability under different

stakeholder-driven cost asymmetries.

Among non-boosting models, Random Forest emerges as the most competitive base-

line, occasionally surpassing boosting models at higher prevalence levels and extreme FN

cost settings. Its relatively strong recall, combined with moderate precision, makes it a

viable interpretable alternative in operational contexts demanding transparency. Logistic

Regression and Decision Tree models, by contrast, demonstrate inconsistent performance

and a limited ability to adapt to increasing cost asymmetry, often sacrificing either recall

or precision without achieving corresponding cost benefits and often overfitting.

A noteworthy outcome is the models’ ability to generalize effectively to the test set

spanning CQ1 2020 to CQ4 2023. This period was marked by heightened uncertainty

following the COVID-19 pandemic. Despite being trained exclusively on data up to 2019,

the models performed surprisingly well. This might be because of our labeling strategy



that forced the model to learn early warning patterns better.

6.2 Temporal Input Importance

Across all models, the integration of a 20-quarter input window yields substantial per-

formance gains over a single-quarter snapshot. The cost reduction observed between

20-CQ and 1-CQ inputs is particularly pronounced under 10x and 20x FN cost scenarios,

highlighting the critical importance of temporal dynamics in financial distress prediction.

Models utilizing longer historical sequences not only improve recall but also stabilize pre-

cision. This finding validates the hypothesis that bankruptcy is not a point-in-time event

but the culmination of long-term deterioration, best captured through extended financial

histories.

6.3 Feature Importance and Interpretability Insights

The XAI techniques used in this study provide converging evidence on the relative influ-

ence of financial ratios and the model-specific nature of their effects.

Across both PFI and SHAP analyses, RE/TA consistently emerges as the most influ-

ential predictor. It ranks highest in nearly all configurations, reaffirming the centrality

of retained earnings in capturing accumulated financial stress. WC/TA also plays a key

role, often ranking second. In contrast, TR/TA is systematically the least important ra-

tio across all models, prevalence levels, and FN cost scenarios. MKTCAP/TL displays

modest and inconsistent importance, indicating limited predictive value in comparison to

accounting-based features.

A clear pattern emerges with increasing FN cost: the absolute magnitude of both PFI

and mean SHAP values rises. This trend reflects the model’s growing reliance on high-

signal features such as RE/TA and WC/TA under conservative risk preferences. As the

cost of false negatives increases, models increasingly prioritize these core ratios, reducing

reliance on less discriminative features like TR/TA and MKTCAP/TL.
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ICE plots offer further insight into how models respond to marginal changes in input

features. Across all settings and model types, RE/TA exhibits a steep decline in predicted

bankruptcy probability as values cross from negative to positive. EBIT/TA and WC/TA

show similar behavior, with threshold-like drops and eventual flattening, indicating di-

minishing marginal gains.

In contrast, MKTCAP/TL and TR/TA display positive marginal effects, where higher

values are sometimes associated with increased predicted bankruptcy risk. This counter-

intuitive pattern, especially for MKTCAP/TL, may reflect outlier sensitivity or interaction

effects not captured in global rankings.

The structure of ICE plots also reveals model-specific interpretability dynamics. In

decision trees, the ICE lines are highly separated, consistent with abrupt decision bound-

aries. LightGBM and Random Forest models exhibit more clustered ICE curves, in-

dicating smoother and more stable feature effects across instances. Logistic Regression

produce monotonic and near-parallel ICE lines, reflecting continuous and linear treatment

of features.

Notably, these interpretability patterns remain stable across bankruptcy prevalence

levels and FN cost configurations. This consistency reinforces the robustness of prof-

itability and liquidity ratios as drivers of predictive confidence and strengthens the case

for their inclusion in early-warning frameworks.

6.4 Link to Research Objectives

This study set out to build a machine learning framework for bankruptcy prediction that

balances predictive accuracy, stakeholder-relevant cost sensitivity, and interpretability.

The key research objectives outlined at the start of this thesis were fully addressed through

the empirical design and analysis:

• Model Comparison: The thesis compared boosting models with non-boosting alter-

natives across a unified pipeline. The results confirmed that boosting models, par-
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ticularly LightGBM, offer superior performance, while Random Forest emerges as

a competitive interpretable baseline. Logistic Regression and Decision Tree models

were shown to be less performant under extreme class imbalance and cost asymme-

tries.

• Economic Cycle Simulation: Bankruptcy prevalence levels were varied across 1%,

5%, and 10% to simulate optimistic, neutral, and pessimistic macroeconomic sce-

narios. Model behavior was evaluated under each setting, revealing stable feature

prioritization (especially for RE/TA and WC/TA) and consistent performance trends,

thus confirming the framework’s robustness across economic conditions.

• Cost-sensitive Learning: Stakeholder-specific cost matrices were incorporated with

FN:FP ratios of 5:1, 10:1, and 20:1. The experiments demonstrated that increasing

FN cost sharpened model focus on the most predictive features and shifted decision

thresholds to minimize high-cost errors. The framework successfully produced de-

cision rules that are economically meaningful for regulators, lenders, and investors.

• Explainability and Interpretation: A multi-level interpretability layer was imple-

mented using PFI, SHAP values, and ICE plots. RE/TA consistently emerged as

the most influential feature across all models and evaluation methods. ICE plots re-

vealed model-specific behavioral patterns, including smooth monotonic responses

in linear models, clustered responses in ensemble methods, and sharp discontinu-

ities in decision trees. These results enhance model transparency and provide ac-

tionable insights into the financial drivers of distress.

Together, these outcomes fulfill the thesis objectives and establish a replicable, inter-

pretable, and cost-aware methodology for corporate bankruptcy prediction. The pipeline

not only supports rigorous model benchmarking but also aligns predictive outputs with

real-world decision-making needs.
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6.5 Stakeholder-Centered Interpretation

A central objective of this thesis was to align model outputs with the specific needs and

risk tolerances of key stakeholders involved in bankruptcy prediction. In practice, differ-

ent actors such as regulators, lenders, auditors, and investors face varying costs for false

negatives and false positives, and their interpretability requirements differ accordingly.

The integration of cost-sensitive learning addressed these differences by allowing the

models to prioritize recall or precision depending on stakeholder preferences. For in-

stance, under conservative cost settings that penalize false negatives more heavily, the

models emphasized recall, reducing the likelihood of missing high-risk firms. This is par-

ticularly relevant for regulators and creditors, who bear substantial losses when bankrupt-

cies go undetected. In contrast, under moderate cost configurations, where the cost of

false positives is also a concern, models’ predictions showed a more balanced trade-

off—suitable for investors seeking to avoid overreacting to noise while still flagging po-

tential risks.

Interpretability tools such as SHAP, permutation importance, and ICE plots enhanced

the practical usability of the models in stakeholder contexts. These techniques provided

not only rankings of influential features but also case-specific insights into prediction

drivers. For example, a regulator could use the model to identify firms flagged as high-risk

due to negative retained earnings and liquidity shortfalls, while a lender could inspect the

ICE trajectory of a specific firm’s working capital to understand whether its improvement

trajectory is sufficient to downgrade risk. The clustered and monotonic patterns observed

in ensemble and linear models, respectively, support decision-making processes where

consistency and transparency are paramount.

By making the model’s logic more transparent and its risk signals more aligned with

stakeholder priorities, this work supports the deployment of machine learning systems in

real-world financial settings. Ultimately, stakeholder-centered interpretation bridges the

gap between predictive analytics and responsible action, ensuring that AI-driven decisions

are not only accurate, but also intelligible, actionable, and justifiable.
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6.6 Limitations

First, the study is restricted to publicly listed U.S. firms. As a result, the models may not

generalize to private companies or firms in other jurisdictions, where financial reporting

standards, data availability, and economic conditions differ significantly.

Second, the feature space is intentionally constrained to five core accounting ratios

to ensure interpretability and alignment with prior literature. While this design improves

transparency, it may exclude complementary signals such as qualitative disclosures, macroe-

conomic indicators, or market sentiment that could enhance predictive power in more

complex settings.

Third, while the highest-performing models were trained on 20-quarter sequences, the

interpretability analysis was conducted on models using only the most recent quarter as

input. This decision was made to avoid the effects of multicollinearity, as accounting

ratios across consecutive quarters were found to be highly correlated. While this sim-

plification enabled clearer attribution and reduced interpretability noise, it introduces a

disconnect: the explanations reflect a simplified version of the input structure used in

the best-performing models. Future research could explore time-aware interpretability

techniques capable of handling multivariate temporal inputs directly.

Fourth, the use of fixed bankruptcy prevalence levels (1%, 5%, and 10%) to simu-

late different economic regimes constitutes an experimental approximation rather than a

reflection of observed empirical distributions. These prevalence levels were selected to

approximate plausible conditions under expansionary, neutral, and recessionary periods,

respectively. While this design enables cost-sensitive evaluation under controlled class

imbalance, it does not capture the endogenous dynamics of economic cycles. As such,

the findings should be interpreted within the context of these constructed scenarios rather

than as representations of firms operating under actual economic conditions correspond-

ing to the assumed bankruptcy prevalence.

Finally, while the interpretability methods employed—SHAP, permutation importance,

and ICE plots—provide valuable insights, they are primarily post hoc and do not offer
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formal guarantees about causality or fairness. Additional tools such as counterfactual ex-

planations or fairness audits would strengthen the interpretability and ethical reliability of

the framework.

Addressing these limitations presents opportunities for future research to extend the

model’s generalizability, temporal sophistication, and feature richness, while maintaining

the core commitment to stakeholder relevance and transparency.

6.7 Future Work

Several avenues remain open for extending the contributions of this thesis. First, future

work should explore time-aware interpretability methods that can handle multivariate se-

quential inputs directly to better align interpretability with the high-performing 20-quarter

models. Dimensionality reduction techniques could also be explored to decorrelate highly

collinear historical features prior to explainability analysis. Expanding the feature space

beyond core accounting ratios to include macroeconomic indicators, ESG metrics, qual-

itative disclosures, or alternative data sources like sentiment and analyst forecasts could

also enhance model performance and early-warning capabilities. Applying the framework

to private firms, emerging markets, or different regulatory environments would help as-

sess its generalizability across contexts with varying data transparency. Future research

may also incorporate causal and counterfactual explanation techniques to enhance the

actionability and fairness of model outputs.
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Conclusion

This thesis addressed the challenge of designing machine learning models for corporate

bankruptcy prediction that are not only accurate, but also interpretable and aligned with

the cost sensitivities and transparency needs of real-world stakeholders. The study tackled

three key constraints in this domain: severe class imbalance, macroeconomic variability,

and the practical need for model interpretability in high-stakes financial decision-making.

In response, a structured, cost-sensitive modeling pipeline was developed and evalu-

ated across a range of bankruptcy prevalence levels (1%, 5%, and 10%) and false negative

cost ratios (5x, 10x, and 20x). Both boosting and non-boosting model families were sys-

tematically compared under consistent preprocessing, hyperparameter tuning, and evalu-

ation protocols.

The empirical results demonstrate that boosting algorithms consistently achieve the

lowest misclassification costs and highest recall rates, especially under conservative cost

scenarios where false negatives carry severe consequences. Random Forest, among non-

boosting models, emerged as a competitive alternative, offering a balance between per-

formance and interpretability. Notably, all models generalized well to the out-of-sample

test period spanning 2020 to 2023, despite being trained only on pre-2020 data. This

robustness suggests that the models successfully internalized early warning patterns that

remained valid amid economic disruptions.

Beyond predictive performance, this research contributes a multi-level explainability

framework that combines permutation-based feature importance, SHAP values, and in-

dividual conditional expectation (ICE) plots. These techniques revealed that RE/TA and



WC/TA are the most influential financial ratios across models, configurations, and cost

settings. EBIT/TA also played a secondary but consistent role. In contrast, TR/TA and

MKTCAP/TL were repeatedly found to have limited predictive value. ICE plots showed

steep risk reductions near zero for RE/TA, EBIT/TA and WC/TA, with model-specific pat-

terns in how individual cases were treated, ranging from sharp splits in decision trees to

smooth, monotonic behavior in logistic regression.

A key contribution of this work lies in aligning technical modeling choices with the

asymmetric risk tolerances of real-world stakeholders. By tuning thresholds based on

stakeholder-specific cost matrices and incorporating interpretability at both global and

local levels, the framework demonstrates that high-performing machine learning models

can be both practical and accountable.

Ultimately, this thesis offers a rigorous and extensible methodology for bankruptcy

prediction under uncertainty. It provides theoretical clarity on feature influence, empirical

insight into model behavior under varying conditions, and practical tools for explainable,

cost-aware deployment. By bridging predictive performance with interpretability and

stakeholder alignment, this work contributes to the development of trustworthy AI in

high-stakes financial contexts.
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Appendix A – Features Summary

Statistics

Table 1: Summary Statistics of EBIT/TA Across All Calendar Quarters

CQ Mean Q1 Median Q3 Min Max Skewness

CQ42023 -0.0297 -0.0121 0.0105 0.0234 -23.4599 2.5876 -36.89

CQ32023 -0.0358 -0.0165 0.0102 0.0238 -38.4190 0.5463 -52.88

CQ22023 -0.0457 -0.0192 0.0103 0.0240 -77.6337 0.2781 -61.10

CQ12023 -0.0913 -0.0235 0.0080 0.0218 -275.6200 0.8268 -65.22

CQ42022 -0.0346 -0.0225 0.0095 0.0239 -34.2940 1.0375 -47.96

CQ32022 -0.0307 -0.0258 0.0099 0.0246 -18.9820 1.0250 -33.63

CQ22022 -0.0266 -0.0259 0.0094 0.0248 -20.8920 0.4567 -45.27

CQ12022 -0.0535 -0.0258 0.0080 0.0227 -58.2300 0.8800 -40.68

CQ42021 -0.0629 -0.0223 0.0098 0.0244 -103.5190 0.7113 -52.38

CQ32021 -0.0312 -0.0218 0.0095 0.0240 -34.5287 0.4292 -43.34

CQ22021 -0.0325 -0.0180 0.0099 0.0249 -21.7644 0.4626 -30.66

CQ12021 -0.0661 -0.0195 0.0089 0.0224 -110.0000 0.7781 -52.78

CQ42020 -0.0944 -0.0139 0.0097 0.0234 -164.0000 0.4741 -51.02

CQ32020 -0.0645 -0.0135 0.0093 0.0229 -144.0980 0.4065 -61.17

CQ22020 -0.0313 -0.0240 0.0049 0.0174 -21.0080 0.4460 -38.48

CQ12020 -0.0680 -0.0197 0.0063 0.0176 -57.4071 0.6052 -39.12

CQ42019 -0.5638 -0.0075 0.0104 0.0218 -1612.1509 0.2826 -60.76

i



CQ Mean Q1 Median Q3 Min Max Skewness

CQ32019 -0.0638 -0.0052 0.0112 0.0226 -78.1860 0.5698 -39.86

CQ22019 -0.0376 -0.0057 0.0110 0.0227 -21.0079 0.4983 -29.63

CQ12019 -0.0469 -0.0096 0.0094 0.0203 -47.4246 1.5850 -42.99

CQ42018 -0.0792 -0.0041 0.0125 0.0258 -88.7970 0.6607 -37.94

CQ32018 -0.0854 -0.0034 0.0129 0.0257 -85.4054 2.5666 -33.72

CQ22018 -0.2117 -0.0033 0.0127 0.0261 -597.4470 0.6064 -62.13

CQ12018 -0.0741 -0.0055 0.0109 0.0233 -90.0206 0.4513 -41.15

CQ42017 -0.1092 -0.0032 0.0130 0.0253 -174.4682 27.3303 -41.23

CQ32017 -0.0376 -0.0047 0.0119 0.0247 -24.9020 1.0399 -28.31

CQ22017 -0.1291 -0.0030 0.0122 0.0249 -333.2910 0.5493 -62.53

CQ12017 -0.0580 -0.0061 0.0106 0.0225 -33.8933 0.4579 -26.36

CQ42016 -0.0857 -0.0051 0.0126 0.0253 -99.5554 0.8870 -40.81

CQ32016 -0.1174 -0.0027 0.0132 0.0259 -110.0354 1.2455 -35.95

CQ22016 -0.1575 -0.0047 0.0125 0.0259 -343.9520 0.5556 -57.77

CQ12016 -0.1282 -0.0089 0.0104 0.0227 -245.4810 0.5314 -52.32

CQ42015 -0.1063 -0.0044 0.0127 0.0264 -104.5909 2.1918 -32.84

CQ32015 -0.0574 -0.0035 0.0134 0.0265 -58.5030 0.9003 -38.25

CQ22015 -0.0344 -0.0045 0.0129 0.0259 -18.0448 0.3786 -25.19

CQ12015 -0.4045 -0.0050 0.0113 0.0237 -1685.9923 1.9484 -66.65

CQ42014 -1.4090 -0.0007 0.0150 0.0288 -5394.7088 0.6260 -65.56

CQ32014 -0.0583 0.0001 0.0157 0.0285 -95.2640 0.4753 -49.70

CQ22014 -0.0705 -0.0004 0.0145 0.0267 -156.4790 1.5992 -62.47

CQ12014 -0.0729 -0.0027 0.0122 0.0242 -138.8200 0.5564 -59.93

CQ42013 -0.0864 -0.0001 0.0148 0.0278 -162.3430 4.2462 -58.11

CQ32013 -0.0663 0.0008 0.0153 0.0277 -62.4605 0.9562 -33.68

CQ22013 -0.1206 0.0012 0.0152 0.0282 -286.2560 1.0273 -58.78

CQ12013 -0.1233 -0.0016 0.0126 0.0252 -216.9055 0.7153 -52.42

ii



CQ Mean Q1 Median Q3 Min Max Skewness

CQ42012 -0.1477 0.0008 0.0150 0.0287 -285.9835 1.3875 -51.92

CQ32012 -0.1332 0.0017 0.0156 0.0285 -123.1170 0.5000 -32.10

CQ22012 -0.7988 0.0025 0.0159 0.0300 -3166.6312 0.4845 -65.80

CQ12012 -0.4513 0.0007 0.0142 0.0278 -1356.8995 0.7127 -59.44

CQ42011 -1.5160 0.0018 0.0158 0.0299 -4847.2593 9.8857 -61.94

CQ32011 -1.4175 0.0027 0.0172 0.0316 -5344.3400 0.8406 -65.02

CQ22011 -0.5084 0.0030 0.0166 0.0316 -2132.8699 0.6089 -66.33

CQ12011 -0.0634 -0.0010 0.0143 0.0288 -58.5948 0.5428 -31.78

CQ42010 -0.0487 0.0022 0.0163 0.0312 -53.1148 1.0000 -35.58

CQ32010 -0.0438 0.0025 0.0169 0.0304 -46.0250 1.0188 -36.85

CQ22010 -0.0320 0.0026 0.0164 0.0302 -19.1183 1.5983 -22.13

CQ12010 -0.0419 -0.0007 0.0138 0.0273 -36.6020 0.4561 -34.45

CQ42009 -0.0343 -0.0002 0.0150 0.0298 -33.8058 1.3788 -34.61

CQ32009 -0.0318 -0.0022 0.0142 0.0272 -20.3856 0.6883 -27.78

CQ22009 -0.0519 -0.0056 0.0121 0.0251 -58.4570 0.7506 -43.32

CQ12009 -0.0431 -0.0125 0.0093 0.0232 -14.2706 0.8224 -18.20

CQ42008 -0.1768 -0.0103 0.0123 0.0278 -631.5087 0.9664 -67.14

CQ32008 -0.0868 -0.0035 0.0155 0.0313 -310.7394 6.6019 -67.05

CQ22008 -0.0777 -0.0016 0.0157 0.0307 -258.8889 0.5149 -67.56

CQ12008 -0.0724 -0.0051 0.0135 0.0282 -219.2135 0.3485 -67.57

CQ42007 -0.0208 -0.0020 0.0161 0.0313 -20.1038 1.4260 -35.52

CQ32007 -9.6514 -0.0010 0.0166 0.0310 -45595.3200 0.7137 -68.87

CQ22007 -0.4721 -0.0015 0.0163 0.0313 -2122.3220 2.1437 -69.17

CQ12007 -0.0303 -0.0028 0.0148 0.0289 -26.5735 0.4796 -34.12

CQ42006 -0.0406 0.0006 0.0172 0.0322 -40.7690 0.7490 -36.92

CQ32006 -0.0334 0.0008 0.0171 0.0322 -55.5909 0.3000 -52.48

CQ22006 -0.0287 0.0019 0.0171 0.0324 -27.8010 0.4214 -35.24

iii



CQ Mean Q1 Median Q3 Min Max Skewness

CQ12006 -0.0474 -0.0003 0.0159 0.0308 -108.0385 4.9741 -58.86

CQ42005 -0.1955 0.0010 0.0181 0.0340 -654.4810 1.8343 -67.08

CQ32005 -0.0373 -0.0004 0.0168 0.0320 -24.0598 10.0535 -23.47

CQ22005 -0.0393 0.0015 0.0170 0.0328 -66.7193 6.0000 -52.20

CQ12005 -0.0384 -0.0007 0.0153 0.0301 -48.5581 0.3633 -42.53

CQ42004 -0.0123 0.0007 0.0167 0.0324 -54.2202 203.9198 52.49

CQ32004 -0.0493 0.0004 0.0169 0.0321 -40.5568 0.5666 -29.89

CQ22004 -0.1833 0.0026 0.0171 0.0320 -581.1429 2.7928 -65.52

CQ12004 -0.2737 0.0001 0.0152 0.0298 -806.5590 0.3422 -64.03

CQ42003 -0.0863 -0.0003 0.0158 0.0305 -121.5319 0.9713 -43.40

CQ32003 -0.8135 -0.0015 0.0150 0.0297 -3435.5714 0.5999 -68.26

CQ22003 -0.3924 -0.0036 0.0141 0.0274 -1584.2500 1.5130 -68.37

CQ12003 -0.1011 -0.0078 0.0115 0.0260 -190.8056 0.5352 -47.71

CQ42002 -0.0325 -0.0086 0.0133 0.0282 -27.3738 3.2713 -32.44

CQ32002 0.0087 -0.0080 0.0129 0.0276 -10.2274 120.2710 66.45

CQ22002 -0.0759 -0.0101 0.0133 0.0271 -204.9850 0.8642 -62.59

CQ12002 -0.2297 -0.0114 0.0110 0.0249 -1032.6990 1.8188 -69.50

CQ42001 0.0492 -0.0198 0.0101 0.0252 -14.3400 333.6103 68.23

CQ32001 -0.0154 -0.0208 0.0107 0.0263 -1.8623 2.6954 -3.86

CQ22001 -0.0148 -0.0187 0.0124 0.0274 -4.7264 22.3234 43.92

CQ12001 -0.0178 -0.0176 0.0121 0.0271 -30.6679 24.0047 -16.13

CQ42000 2.5582 -0.0201 0.0145 0.0311 -11.0122 12519.6370 69.61

CQ32000 -0.0195 -0.0122 0.0161 0.0324 -17.1574 0.4972 -34.05

CQ22000 -0.0110 -0.0090 0.0168 0.0326 -8.8825 12.2351 6.34

CQ12000 -0.0294 -0.0094 0.0154 0.0307 -66.8918 0.4551 -61.38

CQ41999 -0.0185 -0.0102 0.0169 0.0336 -13.0166 2.3967 -27.52

CQ31999 -0.0122 -0.0039 0.0176 0.0336 -8.1043 0.3643 -23.85

iv



CQ Mean Q1 Median Q3 Min Max Skewness

CQ21999 -0.0117 -0.0016 0.0178 0.0330 -7.8750 0.9885 -20.02

CQ11999 -0.0097 -0.0006 0.0166 0.0307 -16.3601 0.4779 -49.77

CQ41998 -0.0170 -0.0031 0.0180 0.0347 -13.9412 0.7930 -32.60

CQ31998 -0.0044 0.0017 0.0191 0.0350 -15.8242 0.5402 -48.78

CQ21998 -0.0022 0.0040 0.0200 0.0358 -11.7270 0.3255 -36.41

CQ11998 -0.0008 0.0043 0.0194 0.0341 -9.7010 0.2163 -34.00

Table 2: Summary Statistics of TR/TA Across All Calendar Quarters

CQ Mean Q1 Median Q3 Min Max Skewness

CQ42023 0.1602 0.0481 0.1249 0.2213 -0.4136 2.5490 2.89

CQ32023 0.1612 0.0481 0.1267 0.2229 -0.1261 2.8721 3.27

CQ22023 0.1610 0.0470 0.1242 0.2245 -0.1137 2.5538 3.27

CQ12023 0.1585 0.0461 0.1216 0.2192 -0.0891 2.0480 3.03

CQ42022 0.1613 0.0455 0.1240 0.2227 -1.5590 2.4455 2.40

CQ32022 0.1634 0.0475 0.1272 0.2282 -0.1736 2.8103 3.24

CQ22022 0.1628 0.0444 0.1245 0.2263 -0.1335 2.7886 3.16

CQ12022 0.1562 0.0428 0.1192 0.2182 -0.0789 2.0128 2.54

CQ42021 0.1591 0.0416 0.1199 0.2214 -0.6873 2.6025 2.73

CQ32021 0.1559 0.0397 0.1184 0.2170 -0.1856 2.9098 3.23

CQ22021 0.1534 0.0396 0.1176 0.2185 -24.2316 2.5305 -50.49

CQ12021 0.1483 0.0390 0.1144 0.2127 -24.2316 1.9618 -51.83

CQ42020 0.1547 0.0375 0.1158 0.2146 -0.3970 2.5159 2.85

CQ32020 0.1528 0.0393 0.1129 0.2085 -0.0141 2.4290 3.26

CQ22020 0.1403 0.0341 0.1016 0.1866 -0.2238 8.0252 16.83

CQ12020 0.1508 0.0415 0.1159 0.2071 -0.2811 7.3926 14.13

CQ42019 0.1690 0.0462 0.1268 0.2307 -0.7328 12.6926 27.23

v



CQ Mean Q1 Median Q3 Min Max Skewness

CQ32019 0.1692 0.0445 0.1277 0.2332 -0.0525 10.2932 20.45

CQ22019 0.1705 0.0459 0.1256 0.2334 -0.0553 8.0044 13.40

CQ12019 0.1649 0.0468 0.1249 0.2306 -0.0258 2.2241 2.80

CQ42018 0.1839 0.0464 0.1371 0.2515 -0.8248 2.6932 2.44

CQ32018 0.1828 0.0471 0.1360 0.2516 -0.0611 3.2776 3.63

CQ22018 0.1875 0.0481 0.1385 0.2564 -0.0153 2.9606 2.81

CQ12018 0.1821 0.0479 0.1363 0.2489 -0.0153 2.8458 3.03

CQ42017 0.1891 0.0472 0.1388 0.2513 -0.0918 6.8012 8.03

CQ32017 0.1836 0.0470 0.1353 0.2501 -0.0028 4.1890 4.58

CQ22017 0.1832 0.0460 0.1356 0.2513 -0.0081 3.1294 3.12

CQ12017 0.1800 0.0455 0.1352 0.2484 -0.0030 3.3094 3.50

CQ42016 0.1871 0.0449 0.1409 0.2558 -0.3178 3.9598 3.79

CQ32016 0.1853 0.0457 0.1386 0.2540 -0.0309 4.4162 4.85

CQ22016 0.1878 0.0462 0.1384 0.2548 -0.0442 9.2145 13.93

CQ12016 0.1797 0.0442 0.1342 0.2449 -1.0200 8.1900 12.33

CQ42015 0.1893 0.0453 0.1445 0.2565 -2.1868 5.9781 7.24

CQ32015 0.1865 0.0447 0.1407 0.2565 -0.5412 5.1566 7.18

CQ22015 0.1882 0.0455 0.1422 0.2576 -0.0138 5.1133 6.56

CQ12015 0.1869 0.0447 0.1429 0.2524 -0.0073 4.8625 6.51

CQ42014 0.2016 0.0513 0.1521 0.2692 -0.9440 5.2215 6.74

CQ32014 0.2016 0.0545 0.1517 0.2699 -0.0190 5.4824 7.40

CQ22014 0.2030 0.0555 0.1484 0.2676 -0.2229 5.5181 6.64

CQ12014 0.1988 0.0538 0.1444 0.2634 -0.1008 5.2723 7.01

CQ42013 0.2082 0.0558 0.1559 0.2785 -14.6898 7.5364 -11.03

CQ32013 0.2079 0.0551 0.1536 0.2774 -0.0233 6.8061 8.52

CQ22013 0.2089 0.0562 0.1581 0.2798 -0.0837 6.8377 8.36

CQ12013 0.2038 0.0554 0.1528 0.2739 -1.3877 6.3384 7.03

vi



CQ Mean Q1 Median Q3 Min Max Skewness

CQ42012 0.2123 0.0574 0.1605 0.2855 -1.3254 5.0997 4.84

CQ32012 0.2072 0.0582 0.1598 0.2820 -0.0821 5.9701 6.57

CQ22012 0.2135 0.0579 0.1639 0.2862 -0.7465 7.8929 10.05

CQ12012 0.2106 0.0571 0.1596 0.2871 -0.4690 6.6949 7.48

CQ42011 0.2186 0.0594 0.1656 0.2936 -4.1676 8.2664 9.07

CQ32011 0.2169 0.0591 0.1675 0.2974 -0.4723 9.1316 10.74

CQ22011 0.2189 0.0605 0.1690 0.2965 -0.0972 7.2672 8.81

CQ12011 0.2153 0.0598 0.1627 0.2890 -0.0442 6.4174 6.85

CQ42010 0.2208 0.0582 0.1707 0.2954 -2.4481 8.0003 8.03

CQ32010 0.2155 0.0599 0.1686 0.2920 -0.0475 4.9895 5.40

CQ22010 0.2182 0.0618 0.1696 0.2963 -0.0893 9.3439 13.36

CQ12010 0.2121 0.0608 0.1622 0.2839 -0.5689 16.3180 25.46

CQ42009 0.2190 0.0622 0.1658 0.2924 -1.1717 16.1340 23.57

CQ32009 0.2100 0.0624 0.1602 0.2829 -0.1940 6.4322 8.21

CQ22009 0.2065 0.0603 0.1547 0.2773 -0.1502 21.2138 39.66

CQ12009 0.2072 0.0594 0.1546 0.2729 -0.6851 42.2145 59.80

CQ42008 0.2256 0.0604 0.1696 0.2920 -1.1523 28.2789 39.33

CQ32008 0.2223 0.0658 0.1750 0.3026 -0.4068 10.5146 13.60

CQ22008 0.2200 0.0652 0.1717 0.3013 -1.4522 11.2719 14.96

CQ12008 0.2113 0.0616 0.1644 0.2894 -0.7254 8.7398 10.41

CQ42007 0.2214 0.0616 0.1707 0.3020 -0.8298 9.1816 10.75

CQ32007 0.2142 0.0634 0.1707 0.2960 -10.6019 4.9276 -7.96

CQ22007 0.2188 0.0629 0.1700 0.3048 -0.1014 5.6184 5.40

CQ12007 0.2165 0.0627 0.1720 0.2990 -0.9833 4.7051 4.23

CQ42006 0.2265 0.0653 0.1782 0.3088 -0.4283 4.2945 3.45

CQ32006 0.2230 0.0642 0.1752 0.3098 -0.3940 4.8242 4.06

CQ22006 0.2235 0.0658 0.1740 0.3116 -4.2642 6.7361 4.27

vii



CQ Mean Q1 Median Q3 Min Max Skewness

CQ12006 0.2237 0.0657 0.1778 0.3070 -0.5124 6.2649 6.99

CQ42005 0.2337 0.0675 0.1811 0.3166 -0.7504 4.6704 4.12

CQ32005 0.2296 0.0660 0.1792 0.3100 -0.0391 12.0225 14.96

CQ22005 0.2265 0.0671 0.1805 0.3122 -1.2025 4.8583 3.73

CQ12005 0.2193 0.0644 0.1747 0.3039 -0.5432 4.2482 3.53

CQ42004 0.2132 0.0655 0.1783 0.3106 -90.1257 14.0823 -63.66

CQ32004 0.2259 0.0634 0.1774 0.3096 -0.1342 4.3140 3.74

CQ22004 0.2288 0.0637 0.1764 0.3096 -0.0399 17.5420 27.41

CQ12004 0.2260 0.0624 0.1765 0.3059 -0.0366 17.1592 27.51

CQ42003 0.2309 0.0631 0.1765 0.3115 -1.8371 5.4654 4.48

CQ32003 0.2236 0.0630 0.1735 0.3095 -0.2667 3.3676 3.07

CQ22003 0.2249 0.0650 0.1752 0.3050 -0.0103 5.8640 5.30

CQ12003 0.2207 0.0641 0.1717 0.2992 -0.0486 3.8329 4.09

CQ42002 0.2276 0.0641 0.1728 0.3108 -7.9407 5.2927 0.01

CQ32002 0.2198 0.0612 0.1676 0.3016 -0.1293 4.5402 4.71

CQ22002 0.2202 0.0606 0.1671 0.2997 -0.0751 8.0190 8.97

CQ12002 0.2148 0.0569 0.1601 0.2917 -0.0973 9.2080 10.98

CQ42001 0.2143 0.0562 0.1611 0.2940 -22.8680 4.5669 -34.68

CQ32001 0.2167 0.0564 0.1622 0.2961 -0.3946 10.4743 14.73

CQ22001 0.2246 0.0595 0.1671 0.3039 -1.4479 23.3343 35.08

CQ12001 0.2305 0.0569 0.1738 0.3032 -0.2499 32.1030 40.45

CQ42000 -10.2073 0.0563 0.1748 0.3130 -56816.0190 7.5529 -73.76

CQ32000 0.2188 0.0545 0.1723 0.3084 -0.8421 5.1885 5.04

CQ22000 0.2217 0.0546 0.1743 0.3114 -3.9189 5.1998 4.11

CQ12000 0.2192 0.0523 0.1740 0.3107 -0.4325 5.6850 5.59

CQ41999 0.2292 0.0586 0.1876 0.3244 -17.7723 5.5757 -23.14

CQ31999 0.2317 0.0651 0.1906 0.3210 -0.3389 5.9957 6.21

viii



CQ Mean Q1 Median Q3 Min Max Skewness

CQ21999 0.2326 0.0651 0.1923 0.3255 -0.2196 4.6193 3.69

CQ11999 0.2298 0.0632 0.1897 0.3204 -0.2659 7.2411 7.19

CQ41998 0.2447 0.0673 0.1937 0.3346 -0.5474 7.7895 7.26

CQ31998 0.2350 0.0647 0.1943 0.3274 -1.4440 4.6849 4.05

CQ21998 0.2392 0.0676 0.2019 0.3342 -0.0344 5.2351 5.36

CQ11998 0.2352 0.0668 0.2018 0.3324 -0.1784 4.3476 3.39

Table 3: Summary Statistics of RE/TA Across All Calendar Quarters

CQ Mean Q1 Median Q3 Min Max Skewness

CQ42023 -2.3370 -0.2870 0.0445 0.2840 -14789.8070 9335.9692 -25.33

CQ32023 -2.5775 -0.3485 0.0405 0.2808 -29555.5100 14891.8541 -29.31

CQ22023 -8.3918 -0.3593 0.0382 0.2708 -29517.0910 8831.3542 -48.19

CQ12023 -8.0828 -0.3629 0.0355 0.2684 -29505.1460 3764.2463 -57.23

CQ42022 -8.6324 -0.3693 0.0371 0.2593 -29229.5260 10775.8086 -44.29

CQ32022 -7.0804 -0.3659 0.0313 0.2530 -29195.2320 15285.0054 -35.32

CQ22022 -9.8591 -0.3348 0.0295 0.2493 -29176.2500 1726.6411 -59.36

CQ12022 -10.6042 -0.3266 0.0282 0.2484 -29101.8270 14615.1279 -32.04

CQ42021 -6.8090 -0.3140 0.0262 0.2370 -29002.4300 10102.2906 -49.23

CQ32021 5.0098 -0.3143 0.0242 0.2346 -14447.8430 40324.1512 49.00

CQ22021 -20.1907 -0.3105 0.0211 0.2326 -28796.3780 1693.1415 -36.14

CQ12021 -39.1321 -0.3121 0.0218 0.2389 -45922.0000 3456.4823 -31.81

CQ42020 -37.9017 -0.2913 0.0266 0.2458 -44612.0000 7612.7562 -29.48

CQ32020 -15.8580 -0.3104 0.0274 0.2448 -24168.6255 6607.0946 -32.94

CQ22020 -10.5055 -0.3117 0.0304 0.2443 -28389.2110 5678.0971 -41.42

CQ12020 -23.6576 -0.2931 0.0357 0.2486 -55968.6236 59441.2107 -8.83

CQ42019 -196.3059 -0.2558 0.0410 0.2614 -564590.4839 6045.8662 -58.36

ix



CQ Mean Q1 Median Q3 Min Max Skewness

CQ32019 -38.2472 -0.2379 0.0430 0.2625 -45535.9619 5246.8223 -34.07

CQ22019 -18.3081 -0.2301 0.0443 0.2636 -27997.4750 5770.2088 -36.14

CQ12019 -13.8280 -0.2162 0.0447 0.2645 -27897.2840 2155.2180 -50.80

CQ42018 -67.1967 -0.2105 0.0461 0.2800 -211932.5860 7614.9279 -59.04

CQ32018 -7.9637 -0.2219 0.0468 0.2827 -27616.4940 46426.2821 21.24

CQ22018 -65.1528 -0.2263 0.0469 0.2812 -211678.6920 24505.8617 -57.55

CQ12018 -12.4785 -0.2190 0.0453 0.2786 -27354.9870 17924.1623 -22.33

CQ42017 -2.7190 -0.2214 0.0468 0.2800 -35151.7915 91372.7273 35.30

CQ32017 -11.6027 -0.2224 0.0406 0.2710 -35175.9127 6256.2450 -52.03

CQ22017 -17.1969 -0.2189 0.0418 0.2732 -21650.4280 5754.7319 -32.83

CQ12017 22.2015 -0.2296 0.0387 0.2760 -26524.5709 122729.9600 55.24

CQ42016 -34.8125 -0.2100 0.0417 0.2801 -80324.7359 5080.6578 -53.06

CQ32016 -17.9984 -0.2314 0.0387 0.2753 -15920.5587 5268.0578 -25.65

CQ22016 -18.5921 -0.2132 0.0407 0.2781 -20770.3735 4072.4726 -32.14

CQ12016 -10.9330 -0.2172 0.0393 0.2808 -14812.9850 4282.5677 -33.57

CQ42015 -8.1757 -0.2095 0.0413 0.2829 -8486.0089 4420.3774 -25.94

CQ32015 -4.6070 -0.2161 0.0397 0.2794 -6464.1285 2587.0516 -30.58

CQ22015 -6.0588 -0.2200 0.0441 0.2835 -7029.1395 1894.6872 -31.53

CQ12015 -1.9536 -0.2051 0.0467 0.2862 -3162.2962 3130.2110 -2.56

CQ42014 -53.1871 -0.1830 0.0477 0.2854 -179564.7439 5347.9208 -61.17

CQ32014 -6.8751 -0.2078 0.0447 0.2843 -15572.0780 5336.9794 -38.82

CQ22014 -7.4429 -0.2109 0.0457 0.2875 -15441.1820 5173.5962 -36.66

CQ12014 -7.3288 -0.2221 0.0446 0.2865 -15232.8550 5836.3499 -34.13

CQ42013 -10.3501 -0.1819 0.0505 0.2923 -15032.6600 6271.4364 -30.15

CQ32013 -11.1072 -0.1995 0.0487 0.2965 -20008.5610 7011.0619 -36.67

CQ22013 -16.1692 -0.1901 0.0527 0.3011 -26740.0470 3461.7248 -42.44

CQ12013 -31.5284 -0.1824 0.0531 0.3004 -78161.2793 3231.4241 -56.70

x



CQ Mean Q1 Median Q3 Min Max Skewness

CQ42012 -5.8633 -0.1622 0.0552 0.2976 -9149.0340 3357.6159 -30.09

CQ32012 -23.5761 -0.1705 0.0547 0.3013 -33301.5150 3332.5523 -38.32

CQ22012 -4.3323 -0.1647 0.0559 0.3034 -6650.0160 3710.3852 -14.40

CQ12012 -1.6960 -0.1731 0.0531 0.2996 -3793.0425 5686.3726 8.19

CQ42011 -46.2646 -0.1654 0.0524 0.3004 -170896.2812 7929.2358 -61.20

CQ32011 -1.8140 -0.1801 0.0538 0.2999 -9806.9650 16552.0504 21.70

CQ22011 2.4456 -0.1707 0.0543 0.2990 -7366.2727 16500.2096 37.03

CQ12011 0.9605 -0.1844 0.0500 0.2971 -4950.0613 9437.3111 28.80

CQ42010 -3.4155 -0.1772 0.0524 0.3015 -7776.8030 3555.1134 -26.17

CQ32010 -236.7361 -0.2048 0.0485 0.2976 -910752.2124 13160.9785 -61.81

CQ22010 -34.1695 -0.2038 0.0483 0.3044 -129035.4090 6724.5915 -61.39

CQ12010 -5.8890 -0.2244 0.0471 0.2993 -21959.0490 12056.8297 -30.64

CQ42009 -16.4944 -0.2067 0.0491 0.2958 -49973.4000 12883.0098 -46.74

CQ32009 -7.4920 -0.2235 0.0482 0.2885 -18560.1481 8010.2300 -33.34

CQ22009 -5.4797 -0.2278 0.0486 0.2852 -11866.1488 9658.3131 -10.74

CQ12009 -4.2329 -0.2431 0.0452 0.2842 -12818.8737 7504.0246 -23.56

CQ42008 -6.6734 -0.2256 0.0467 0.2849 -11344.9335 4844.7424 -29.69

CQ32008 -1.6456 -0.1535 0.0537 0.2828 -4949.9505 3022.3869 -19.83

CQ22008 -223.2066 -0.1564 0.0555 0.2792 -898301.7778 2277.7092 -63.61

CQ12008 -21.2566 -0.1603 0.0518 0.2759 -81479.3371 4093.5742 -63.09

CQ42007 -3.8015 -0.1512 0.0541 0.2710 -8776.1320 2361.0753 -42.30

CQ32007 -34.0580 -0.1614 0.0521 0.2724 -68461.8000 1677.9476 -44.82

CQ22007 -11.8937 -0.1671 0.0536 0.2683 -17115.5480 1878.9664 -38.15

CQ12007 -3.5217 -0.1654 0.0555 0.2761 -8434.9205 1498.4011 -39.83

CQ42006 -2.1962 -0.1509 0.0571 0.2744 -6236.4105 13799.2216 26.66

CQ32006 -7.5214 -0.1753 0.0544 0.2681 -19804.1903 6563.6534 -44.55

CQ22006 -6.1019 -0.1773 0.0517 0.2634 -11158.1172 6539.2577 -25.52

xi



CQ Mean Q1 Median Q3 Min Max Skewness

CQ12006 -5.9083 -0.1762 0.0500 0.2647 -12841.0870 5624.6101 -35.92

CQ42005 -5.2625 -0.1748 0.0523 0.2687 -11511.3920 2833.1012 -47.55

CQ32005 -4.2898 -0.1929 0.0490 0.2620 -5281.8077 3492.4019 -19.38

CQ22005 -5.6926 -0.1986 0.0487 0.2574 -9063.3548 3730.5455 -32.69

CQ12005 -7.6371 -0.2033 0.0485 0.2571 -21825.2308 2962.2627 -57.23

CQ42004 -16.5056 -0.1952 0.0513 0.2574 -22602.9760 1885.9358 -36.66

CQ32004 -15.1924 -0.1907 0.0505 0.2510 -19329.2578 355.6737 -36.87

CQ22004 -11.4582 -0.1930 0.0517 0.2525 -19297.5530 2346.5714 -45.30

CQ12004 -84.3382 -0.1982 0.0489 0.2426 -294593.1130 1320.1584 -63.56

CQ42003 -274.8128 -0.1934 0.0507 0.2516 -1069363.8936 482.8803 -64.50

CQ32003 -43.1239 -0.2148 0.0483 0.2427 -88472.4773 1287.4177 -51.00

CQ22003 -2959.2069 -0.2204 0.0476 0.2432 -11936588.5000 14615.8445 -63.59

CQ12003 -34.8058 -0.2299 0.0489 0.2442 -93220.5276 11945.0176 -55.82

CQ42002 -5.0901 -0.2412 0.0468 0.2362 -8115.8926 7016.8590 -13.95

CQ32002 -2.2175 -0.2397 0.0466 0.2323 -8129.6822 5796.8836 -19.79

CQ22002 -3.4374 -0.2427 0.0434 0.2313 -11782.0210 5760.4527 -37.64

CQ12002 -6.0424 -0.2245 0.0441 0.2389 -11560.8250 3682.4052 -33.48

CQ42001 -1.4743 -0.1857 0.0463 0.2404 -7249.9930 2342.2216 -50.68

CQ32001 0.5719 -0.1902 0.0445 0.2343 -539.5934 2192.3811 38.36

CQ22001 -8.9841 -0.1790 0.0475 0.2391 -42932.6327 2448.0013 -64.12

CQ12001 -9.5963 -0.1564 0.0502 0.2446 -44906.8480 2560.7440 -64.38

CQ42000 -16.8844 -0.1444 0.0534 0.2486 -39507.8900 1395.3059 -46.43

CQ32000 -3.5026 -0.1409 0.0497 0.2352 -16869.3677 1586.8202 -61.60

CQ22000 -1.0538 -0.1401 0.0484 0.2383 -7797.3111 914.6033 -61.18

CQ12000 -20.0356 -0.1339 0.0476 0.2393 -84134.2313 959.8762 -65.29

CQ41999 0.9074 -0.1090 0.0528 0.2466 -1247.9974 2467.5992 30.44

CQ31999 0.8797 -0.0913 0.0543 0.2482 -895.6390 2309.7951 37.53

xii



CQ Mean Q1 Median Q3 Min Max Skewness

CQ21999 3.3522 -0.0799 0.0561 0.2524 -569.3544 10779.5923 59.58

CQ11999 0.9246 -0.0621 0.0578 0.2552 -311.5980 2352.3286 53.18

CQ41998 0.8466 -0.0481 0.0584 0.2621 -1133.0915 2678.3275 40.46

CQ31998 4.1103 -0.0370 0.0662 0.2647 -1178.5808 14757.3859 61.12

CQ21998 1.3643 -0.0344 0.0662 0.2698 -1883.8528 6003.9889 49.46

CQ11998 1.0223 -0.0288 0.0685 0.2733 -1782.7441 4510.0159 42.69

Table 4: Summary Statistics of WC/TA Across All Calendar Quarters

CQ Mean Q1 Median Q3 Min Max Skewness

CQ42023 -0.0303 -0.0393 0.0183 0.1065 -78.4185 0.9405 -37.40

CQ32023 -0.1718 -0.0373 0.0205 0.1130 -352.1058 0.9431 -45.45

CQ22023 -0.1695 -0.0373 0.0213 0.1150 -284.6129 0.9464 -37.76

CQ12023 -0.0975 -0.0369 0.0214 0.1161 -180.5118 0.9512 -37.26

CQ42022 -0.1758 -0.0391 0.0183 0.1087 -391.2046 0.9221 -47.95

CQ32022 -0.0879 -0.0394 0.0191 0.1144 -173.1612 0.9073 -40.41

CQ22022 -0.3050 -0.0352 0.0212 0.1131 -1108.0740 0.9170 -64.07

CQ12022 -1.7270 -0.0369 0.0195 0.1063 -5273.9880 0.9133 -58.06

CQ42021 -1.3807 -0.0403 0.0142 0.0923 -5174.5910 0.9063 -66.17

CQ32021 -0.6475 -0.0388 0.0134 0.0942 -2533.9235 0.9043 -66.39

CQ22021 -1.4522 -0.0380 0.0133 0.0928 -4968.5390 0.9161 -64.75

CQ12021 -3.4724 -0.0351 0.0134 0.0923 -9113.0000 0.9198 -52.20

CQ42020 -3.5247 -0.0385 0.0115 0.0891 -8456.0000 0.9197 -50.01

CQ32020 -0.8026 -0.0368 0.0142 0.0968 -1555.3637 0.9291 -45.27

CQ22020 -1.2201 -0.0358 0.0163 0.1000 -4561.3720 0.8792 -64.76

CQ12020 -1.7349 -0.0320 0.0212 0.1103 -4460.3420 0.8869 -53.67

CQ42019 -4.6037 -0.0360 0.0180 0.1030 -10838.1613 0.9553 -52.34

xiii



CQ Mean Q1 Median Q3 Min Max Skewness

CQ32019 -1.6813 -0.0338 0.0218 0.1122 -4257.4900 0.9199 -56.10

CQ22019 -1.2329 -0.0310 0.0232 0.1174 -4169.6360 0.9206 -63.74

CQ12019 -1.2936 -0.0327 0.0236 0.1191 -4069.4450 0.9201 -61.50

CQ42018 -1.5653 -0.0386 0.0174 0.1121 -3958.5740 0.9439 -56.03

CQ32018 -2.1195 -0.0387 0.0226 0.1162 -3788.6550 0.9433 -44.36

CQ22018 -2.0678 -0.0353 0.0249 0.1185 -3658.6400 0.9668 -41.47

CQ12018 -1.3339 -0.0330 0.0258 0.1182 -3527.1480 0.9338 -54.99

CQ42017 -1.6027 -0.0402 0.0189 0.1094 -3398.6090 0.9429 -50.35

CQ32017 -0.3258 -0.0380 0.0215 0.1133 -360.3683 0.9487 -32.30

CQ22017 -0.5176 -0.0358 0.0224 0.1153 -1169.3030 0.9357 -56.20

CQ12017 -0.4517 -0.0375 0.0223 0.1147 -745.4812 0.9379 -44.72

CQ42016 -0.7106 -0.0380 0.0194 0.1079 -595.4490 0.9454 -28.93

CQ32016 -0.9760 -0.0337 0.0238 0.1201 -2524.5870 0.9453 -59.16

CQ22016 -1.4056 -0.0317 0.0261 0.1228 -2661.6180 0.9446 -45.80

CQ12016 -1.2467 -0.0305 0.0278 0.1269 -2164.2490 0.9955 -44.02

CQ42015 -0.6357 -0.0337 0.0240 0.1196 -965.5370 0.9407 -43.19

CQ32015 -0.3517 -0.0291 0.0281 0.1310 -625.9725 0.9374 -44.19

CQ22015 -0.3099 -0.0274 0.0324 0.1326 -704.9042 0.9370 -51.30

CQ12015 -0.1123 -0.0269 0.0330 0.1343 -301.3770 0.9415 -53.39

CQ42014 -0.5352 -0.0320 0.0295 0.1235 -1483.6540 0.9483 -59.32

CQ32014 -0.5757 -0.0344 0.0342 0.1326 -1629.7780 0.9412 -57.05

CQ22014 -0.2931 -0.0313 0.0340 0.1379 -570.4940 0.9496 -47.79

CQ12014 -0.3056 -0.0318 0.0340 0.1408 -571.3640 0.9498 -47.33

CQ42013 -0.4269 -0.0335 0.0312 0.1370 -595.8090 0.9565 -37.38

CQ32013 -0.7030 -0.0304 0.0366 0.1456 -1244.0360 0.9398 -44.90

CQ22013 -0.4816 -0.0262 0.0410 0.1461 -803.8532 0.9403 -41.89

CQ12013 -1.7128 -0.0249 0.0417 0.1516 -5490.7248 0.9547 -63.85

xiv



CQ Mean Q1 Median Q3 Min Max Skewness

CQ42012 -0.3998 -0.0295 0.0349 0.1439 -577.9490 0.9570 -39.68

CQ32012 -1.3609 -0.0255 0.0404 0.1492 -3275.5480 0.9402 -58.73

CQ22012 -1.4400 -0.0244 0.0425 0.1497 -4388.0567 0.9363 -62.66

CQ12012 -1.1663 -0.0257 0.0428 0.1470 -3485.7143 0.9201 -61.74

CQ42011 -3.4879 -0.0289 0.0368 0.1429 -9579.4630 0.9536 -57.29

CQ32011 -2.3259 -0.0259 0.0411 0.1469 -7435.5000 0.9418 -61.18

CQ22011 -0.4724 -0.0255 0.0451 0.1485 -1571.0616 0.9399 -62.14

CQ12011 -0.3156 -0.0269 0.0426 0.1469 -463.9183 0.9424 -39.17

CQ42010 -0.2601 -0.0306 0.0377 0.1387 -319.5094 1.0000 -36.68

CQ32010 -0.1302 -0.0269 0.0423 0.1419 -299.1000 0.9511 -52.83

CQ22010 -0.0983 -0.0264 0.0413 0.1394 -221.0137 0.9325 -51.48

CQ12010 -0.1759 -0.0269 0.0408 0.1394 -342.7813 0.9578 -49.81

CQ42009 -0.2084 -0.0284 0.0384 0.1383 -314.6833 0.9300 -41.44

CQ32009 -0.2081 -0.0255 0.0432 0.1444 -565.7316 0.9743 -62.41

CQ22009 -0.5263 -0.0244 0.0452 0.1481 -1640.1107 0.9636 -61.71

CQ12009 -0.3612 -0.0219 0.0476 0.1586 -1024.3874 0.9630 -56.57

CQ42008 -0.2460 -0.0282 0.0440 0.1524 -774.8564 0.9602 -58.05

CQ32008 -0.0033 -0.0268 0.0495 0.1605 -103.8079 0.9676 -51.72

CQ22008 -0.3399 -0.0269 0.0483 0.1589 -1580.8889 0.9733 -67.32

CQ12008 -0.0804 -0.0298 0.0461 0.1588 -241.6983 0.9721 -43.55

CQ42007 -0.0386 -0.0320 0.0436 0.1504 -233.3443 0.9727 -56.99

CQ32007 -5.5698 -0.0267 0.0490 0.1625 -18501.1600 0.9912 -57.59

CQ22007 -1.1309 -0.0255 0.0465 0.1612 -2585.6180 0.9932 -45.63

CQ12007 -0.2812 -0.0251 0.0465 0.1616 -1256.4545 0.9931 -66.98

CQ42006 -0.5824 -0.0295 0.0407 0.1515 -2321.8315 0.9954 -66.15

CQ32006 -0.3661 -0.0264 0.0474 0.1604 -909.9233 0.9926 -46.68

CQ22006 -0.3785 -0.0255 0.0479 0.1592 -1074.7287 0.9918 -51.38

xv



CQ Mean Q1 Median Q3 Min Max Skewness

CQ12006 -0.5008 -0.0269 0.0459 0.1598 -1242.6907 0.9897 -48.37

CQ42005 -0.5564 -0.0298 0.0418 0.1515 -1474.5170 0.9894 -51.07

CQ32005 -0.3003 -0.0273 0.0454 0.1601 -673.9222 0.9905 -47.79

CQ22005 -0.2236 -0.0261 0.0431 0.1605 -663.8778 0.9751 -53.02

CQ12005 -0.0883 -0.0268 0.0429 0.1590 -237.6320 0.9649 -42.62

CQ42004 -1.5851 -0.0297 0.0402 0.1588 -3870.9580 0.9997 -49.83

CQ32004 -0.6791 -0.0284 0.0445 0.1678 -2869.9220 0.9221 -68.12

CQ22004 -1.0137 -0.0256 0.0452 0.1636 -2852.4286 0.9771 -55.49

CQ12004 -0.5563 -0.0287 0.0423 0.1643 -772.6057 0.9639 -36.26

CQ42003 -0.3752 -0.0294 0.0411 0.1586 -799.6170 0.9330 -46.68

CQ32003 -1.9742 -0.0276 0.0451 0.1662 -4417.5470 0.9975 -47.86

CQ22003 -1.4080 -0.0283 0.0435 0.1739 -6266.0000 0.9975 -68.32

CQ12003 -0.7436 -0.0272 0.0463 0.1713 -3473.4960 0.9976 -68.16

CQ42002 0.0124 -0.0304 0.0420 0.1631 -43.3501 0.9975 -29.46

CQ32002 0.0153 -0.0273 0.0454 0.1734 -97.0974 0.9296 -52.48

CQ22002 -0.5258 -0.0241 0.0489 0.1774 -2434.0410 0.9392 -68.06

CQ12002 -0.4164 -0.0214 0.0500 0.1802 -2231.5450 0.9060 -69.26

CQ42001 0.0499 -0.0253 0.0460 0.1753 -15.6432 0.8948 -21.38

CQ32001 0.0658 -0.0226 0.0553 0.1947 -23.1931 0.9219 -31.48

CQ22001 0.0687 -0.0187 0.0568 0.2003 -18.8516 0.9278 -23.35

CQ12001 0.0598 -0.0165 0.0610 0.2037 -41.5542 0.9020 -37.57

CQ42000 0.0528 -0.0183 0.0567 0.1992 -61.6675 0.9026 -49.70

CQ32000 0.0849 -0.0138 0.0621 0.2008 -11.9341 0.9183 -17.73

CQ22000 0.0852 -0.0127 0.0636 0.2036 -9.4600 0.9267 -16.44

CQ12000 0.0850 -0.0128 0.0641 0.2032 -22.1458 0.9490 -33.75

CQ41999 0.0778 -0.0157 0.0646 0.1969 -30.0775 0.9579 -41.19

CQ31999 0.0948 -0.0118 0.0689 0.2105 -10.7629 0.9518 -17.21

xvi



CQ Mean Q1 Median Q3 Min Max Skewness

CQ21999 0.0918 -0.0118 0.0746 0.2125 -22.0075 0.9658 -32.23

CQ11999 0.0957 -0.0093 0.0787 0.2199 -10.9351 0.9789 -14.62

CQ41998 0.0875 -0.0102 0.0757 0.2160 -16.6912 0.9801 -21.43

CQ31998 0.1104 -0.0042 0.0880 0.2270 -6.1079 0.9114 -8.87

CQ21998 0.1091 -0.0027 0.0918 0.2324 -24.0000 0.9027 -38.22

CQ11998 0.1149 -0.0022 0.0924 0.2333 -12.9542 0.9712 -20.93

Table 5: Summary Statistics of MKTCAP/TL Across All Calendar Quarters

CQ Mean Q1 Median Q3 Min Max Skewness

CQ42023 14.8944 0.5348 1.5763 4.1796 -706.6714 7309.8908 29.97

CQ32023 14.6659 0.4954 1.4556 3.7965 0.0001 6735.4787 28.20

CQ22023 15.1589 0.5325 1.5456 4.2471 0.0004 7101.0689 30.54

CQ12023 14.7485 0.5193 1.5464 4.0848 0.0004 5896.5097 26.51

CQ42022 17.4976 0.5056 1.4732 3.8386 0.0004 12270.8742 38.68

CQ32022 15.9975 0.4812 1.4211 3.9176 0.0005 7473.9366 29.80

CQ22022 16.0005 0.5556 1.5703 4.0732 0.0000 6813.9056 27.89

CQ12022 18.0535 0.7049 1.9515 5.5426 0.0008 6159.6124 25.47

CQ42021 21.5177 0.7175 2.1322 6.2730 0.0000 8523.0592 27.47

CQ32021 23.7628 0.7363 2.1856 6.9870 0.0000 8951.2879 28.24

CQ22021 21.3086 0.7642 2.2331 7.6420 0.0000 8303.1758 30.10

CQ12021 22.1091 0.6927 2.1061 7.2486 0.0024 7837.9103 29.19

CQ42020 19.6408 0.5603 1.7960 6.3120 -0.6598 5789.0248 24.39

CQ32020 16.8559 0.4068 1.4770 4.9631 0.0007 6240.7555 26.39

CQ22020 15.9833 0.3786 1.3583 4.7303 0.0004 6930.0903 30.29

CQ12020 12.4325 0.2850 1.0322 3.6470 0.0002 4745.3773 28.82

CQ42019 16.6980 0.5154 1.6034 4.5730 0.0002 5403.5313 23.12

xvii



CQ Mean Q1 Median Q3 Min Max Skewness

CQ32019 14.2482 0.4954 1.5015 4.2267 0.0006 5098.1352 25.33

CQ22019 14.4906 0.5221 1.5617 4.4975 0.0000 4238.5802 22.32

CQ12019 15.1244 0.5332 1.5615 4.6000 0.0011 4252.5367 21.32

CQ42018 15.1025 0.5121 1.4625 4.2097 0.0000 5049.2933 22.03

CQ32018 18.8505 0.6504 1.8463 5.3323 0.0007 5754.1336 21.38

CQ22018 18.6605 0.6704 1.8691 5.1841 0.0007 8592.9956 32.02

CQ12018 18.1473 0.6375 1.7989 4.9583 0.0022 8101.2155 30.01

CQ42017 17.7746 0.6608 1.8469 4.8831 0.0007 9864.6160 35.72

CQ32017 17.9157 0.6321 1.7682 4.8113 0.0017 9905.8913 35.76

CQ22017 19.1996 0.6384 1.7314 4.5480 0.0027 12262.2520 36.78

CQ12017 19.9719 0.6829 1.7365 4.5713 0.0039 12681.4513 34.81

CQ42016 16.8373 0.6659 1.6889 4.3161 0.0027 11996.4814 41.72

CQ32016 18.1670 0.6075 1.6141 4.3186 0.0004 16038.8591 49.70

CQ22016 17.0323 0.5633 1.5800 4.0684 0.0004 10422.3822 34.81

CQ12016 20.1368 0.5557 1.5842 4.0996 0.0009 9881.3474 26.53

CQ42015 20.8677 0.5719 1.5885 4.3192 0.0000 10763.7663 28.97

CQ32015 19.4825 0.5652 1.5707 4.2858 0.0000 9506.6575 28.23

CQ22015 24.0427 0.6902 1.8229 4.9021 0.0000 12123.0031 28.66

CQ12015 21.1133 0.7140 1.8943 5.0918 0.0000 13304.7044 38.24

CQ42014 23.6368 0.6912 1.8467 4.8694 0.0001 14622.2222 35.20

CQ32014 22.0216 0.6943 1.8586 4.9458 0.0002 17260.4879 39.33

CQ22014 22.2425 0.7737 1.9978 5.4776 0.0000 18646.9882 43.85

CQ12014 20.2046 0.7610 1.9913 5.7476 0.0001 19156.6172 50.24

CQ42013 21.2375 0.7336 1.9936 5.3827 0.0048 18536.5779 44.64

CQ32013 18.9979 0.6841 1.8487 5.0785 0.0003 16863.1963 46.60

CQ22013 14.4131 0.6410 1.7534 4.7623 0.0000 4006.1339 22.33

CQ12013 17.6782 0.6232 1.7497 4.6204 0.0001 12057.0661 35.54

xviii



CQ Mean Q1 Median Q3 Min Max Skewness

CQ42012 13.6387 0.5480 1.5547 4.1278 0.0001 10374.2394 42.29

CQ32012 14.8909 0.5418 1.5726 4.3294 0.0000 14962.9400 50.70

CQ22012 13.7021 0.5401 1.5715 4.3443 0.0000 13157.4061 50.34

CQ12012 15.9272 0.5696 1.6816 4.6937 0.0000 16262.5227 52.44

CQ42011 13.5407 0.5133 1.4667 4.0013 0.0000 13785.5202 50.59

CQ32011 14.6164 0.4578 1.3598 3.8375 0.0000 16556.9500 53.93

CQ22011 17.5762 0.6020 1.7844 4.9414 0.0000 12390.8622 36.72

CQ12011 18.2521 0.6369 1.8503 5.2579 0.0000 13107.0209 38.02

CQ42010 17.8765 0.5875 1.7296 4.8609 0.0000 19015.8634 48.34

CQ32010 14.3399 0.5301 1.5860 4.4046 0.0000 7844.1432 33.18

CQ22010 14.6647 0.4965 1.4674 4.3511 0.0000 6606.3995 27.40

CQ12010 14.4699 0.5402 1.6431 4.8479 0.0000 5237.6952 25.87

CQ42009 14.1361 0.4764 1.4842 4.5088 0.0000 19828.5273 60.32

CQ32009 154.7687 0.4549 1.4552 4.2434 0.0000 669300.0000 67.52

CQ22009 7.6420 0.3470 1.1788 3.6170 0.0000 1443.6667 18.32

CQ12009 6.7484 0.2438 0.8884 2.8703 0.0000 2651.0970 29.74

CQ42008 9.9257 0.2729 0.9612 2.8788 0.0000 15665.4350 63.99

CQ32008 16.6563 0.4464 1.3328 3.9442 0.0000 35483.6364 65.92

CQ22008 12.4387 0.4985 1.5437 4.6112 0.0000 13673.9220 61.48

CQ12008 29.2999 0.5350 1.6166 4.7054 0.0000 78167.6917 67.61

CQ42007 35.3846 0.6373 1.8473 5.4096 0.0000 89127.6825 62.32

CQ32007 28.6461 0.7366 2.1012 5.9914 0.0000 74608.9277 68.74

CQ22007 27.5503 0.8202 2.2526 6.2315 0.0000 77750.1905 68.91

CQ12007 14.2568 0.8015 2.2523 6.1919 0.0000 3399.0402 19.68

CQ42006 17.5553 0.7710 2.1943 5.8890 0.0000 24540.6403 64.30

CQ32006 14.6780 0.7191 2.0817 5.7335 0.0000 6465.8103 31.46

CQ22006 13.6313 0.7272 2.1350 6.0138 0.0000 5859.2691 33.22

xix



CQ Mean Q1 Median Q3 Min Max Skewness

CQ12006 25.0680 0.7555 2.3731 6.7204 0.0000 30848.6542 49.63

CQ42005 18.8839 0.6987 2.1152 6.0215 0.0000 25324.4474 61.80

CQ32005 15.6966 0.7033 2.1385 6.2036 0.0000 14144.5672 52.45

CQ22005 10.7779 0.7098 2.0794 5.9564 0.0000 1549.6242 16.27

CQ12005 14.3540 0.7167 2.0756 6.0788 0.0000 14731.2844 60.49

CQ42004 18.6686 0.7570 2.1755 6.5569 0.0000 14567.7854 41.47

CQ32004 12.9521 0.6685 1.9255 5.9025 0.0000 13132.8495 60.43

CQ22004 15.1790 0.6798 2.1000 6.5457 0.0000 18645.4171 64.00

CQ12004 13.4741 0.6512 2.1293 6.7619 0.0000 11397.9551 60.00

CQ42003 19.5238 0.6053 1.9896 6.1758 0.0000 32867.9365 63.62

CQ32003 32.7920 0.5042 1.6963 5.4942 0.0000 107264.9587 68.68

CQ22003 10.3259 0.4508 1.5005 4.7659 0.0000 5747.2846 36.13

CQ12003 8.3042 0.3512 1.2225 3.7745 0.0001 4562.4293 37.06

CQ42002 13.5203 0.3936 1.3230 4.0470 0.0001 19896.9434 61.57

CQ32002 7.4226 0.3624 1.2185 3.6989 0.0000 4857.4749 44.15

CQ22002 10.7445 0.4822 1.5949 4.8308 0.0000 7917.9902 41.19

CQ12002 14.0717 0.5152 1.8109 5.9561 0.0005 6718.3777 31.83

CQ42001 12.7500 0.4835 1.6903 5.8516 0.0003 4012.1197 25.14

CQ32001 8.3906 0.3950 1.3361 4.3487 0.0002 3337.4952 33.35

CQ22001 11.9559 0.5051 1.6216 6.0912 0.0000 4339.7531 32.49

CQ12001 10.6248 0.4423 1.4837 5.2542 0.0000 2030.3785 18.85

CQ42000 13.1458 0.4192 1.4673 5.8841 0.0011 4050.7438 29.04

CQ32000 20.6926 0.4615 1.6613 7.9023 0.0003 15132.7219 55.17

CQ22000 20.8561 0.4644 1.6570 8.5284 0.0003 6912.0078 32.17

CQ12000 23.3311 0.5013 1.7947 9.8515 0.0029 6749.7604 31.54

CQ41999 23.9436 0.5188 1.6766 8.3182 0.0000 14618.7956 51.31

CQ31999 13.5440 0.5469 1.5697 6.0509 0.0004 7603.0158 51.93

xx



CQ Mean Q1 Median Q3 Min Max Skewness

CQ21999 15.2936 0.6181 1.7456 6.1702 0.0033 12097.7181 58.18

CQ11999 12.4542 0.5372 1.5120 5.3237 0.0002 7892.1503 54.17

CQ41998 9.4530 0.5943 1.6534 5.4068 0.0000 1454.3942 18.36

CQ31998 17.6195 0.5811 1.5438 4.7043 0.0000 22373.4599 45.30

CQ21998 14.3257 0.7948 2.1239 6.4984 0.0000 10598.5965 45.26

CQ11998 11.9842 0.8734 2.4211 7.1156 0.0000 2690.4507 25.84

xxi





Appendix B – Hyperparameter Tuning
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