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Résumé 

La pandémie de Covid-19 a démontré l'importance des chaînes d'approvisionnement mondiales, en 
particulier la chaîne d'approvisionnement en vaccins de la Covid-19. La réponse à la pandémie a 
nécessité le développement, la production et la distribution rapides de vaccins, faisant de la chaîne 
d'approvisionnement du vaccin de la Covid-19 la plus importante de ces dernières années. Étant donné 
la rareté des recherches sur la chaîne d'approvisionnement en vaccins pandémiques et le risque d'autres 
pandémies, il est important d'en apprendre le plus possible sur la chaîne d'approvisionnement en vaccins 
Covid-19. Cet article vise à contribuer à la littérature en proposant trois approches quantitatives pour 
analyser la chaîne d'approvisionnement du vaccin Covid-19; 1) catégoriser la chaîne 
d'approvisionnement du vaccin de la Covid-19 en utilisant la classification géographique des entreprises 
internationales, 2) appliquer une analyse économétrique des données de panel pour identifier les facteurs 
pertinents de la chaîne d'approvisionnement qui influencent la distribution des vaccins, et 3) effectuer 
une analyse de réseau de la chaîne d'approvisionnement du vaccin de la covid-19 de Pfizer et Moderna 
pour identifier les principaux nœuds, liens et goulets d'étranglement dans la production de vaccins. Dans 
l'ensemble, la chaîne d'approvisionnement du vaccin Covid-19 est le point de départ de l'amélioration 
des stratégies futures pour des chaînes d'approvisionnement adaptables, équitables et résilientes. 

Mots-clés :  Covid-19, Chaîne d'approvisionnement du vaccin  
Méthodes de recherche : Recherche quantitative 
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Abstract 
 

The Covid-19 pandemic demonstrated the importance of global supply chains, particularly the Covid-
19 vaccine supply chain. The response to the pandemic required the rapid development, production and 
distribution of vaccines, making the Covid-19 vaccine supply chain the most important in recent years. 
Given the scarce research on the pandemic vaccine supply chain and the risk of further pandemics, it is 
important to learn as much as possible about the Covid-19 vaccine supply chain. This article aims to 
contribute to the literature by proposing three quantitative approaches to analyze the Covid-19 vaccine 
supply chain. 1) categorize the Covid-19 VSC using international business geographic classification, 2) 
apply econometric panel data analysis to identify relevant supply chain factors influencing vaccine 
distribution, and 3) perform a network analysis of Pfizer and Moderna's Covid-19 vaccine supply chain 
to identify key nodes, links and bottlenecks in vaccine production. Overall, the Covid-19 vaccine supply 
chain is the starting point for improving future strategies for adaptable, equitable and resilient supply 
chains.  
 
Keywords:  Covid-19, Vaccine supply chain   
Research methods: Quantitative Research 
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Introduction 
The 2020 COVID-19 pandemic brought the world to a halt, posing unprecedented challenges to global 
public health. In the race to combat the virus, the development and distribution of effective vaccines 
emerged as a crucial strategy. The successful deployment of COVID-19 vaccines depended not only on 
their development, but also on the complex network of the vaccine supply chain. This supply chain 
encompasses the complex process of manufacturing, distributing, and administering vaccines on a 
global scale. Understanding the COVID-19 vaccine supply chain is essential to ensure equitable access 
to vaccines and to meet the challenges posed by the pandemic. 

The first phase of the Covid-19 vaccine supply chain is vaccine development and vaccine 
manufacturing. Numerous pharmaceutical companies, research institutes and biotech firms around the 
world have developed COVID-19 vaccines, each using distinct production processes. These processes 
typically involve large-scale cultivation of the components required for the vaccine, such as viral vectors 
or mRNA molecules. Once manufactured, the vaccines undergo stringent quality control measures to 
guarantee their safety and efficacy (clinical trials. Once the vaccines have been manufactured, the next 
critical step is their distribution. Given the urgency of the global immunization campaign, it is vital to 
ensure rapid and efficient vaccine delivery. The distribution process involves many stakeholders, 
including vaccine manufacturers, governments, international organizations, logistics service providers 
and healthcare facilities. Vaccines must be transported under controlled conditions, in compliance with 
specific temperature requirements, to preserve their efficacy. Cold chain logistics, involving refrigerated 
storage and transport, play a crucial role in maintaining the integrity of vaccines as they travel from 
production facilities to vaccination sites around the world. 

To meet the worldwide demand for vaccines, various actors, such as pharmaceutical companies, health 
organizations, universities, and governments, worked collaboratively to set into motion the most 
important value chain of recent years. The Covid-19 vaccine supply chain (VSC was built amid a global 
pandemic and under very tight deadlines being one of the first VSC to be implemented under such 
conditions. With the risk of more and more pandemics, it is important to learn from the Covid-19 
pandemic and analyze the decisions made concerning its supply chain. Thus, the thesis of this 
paper: What can we learn about the emerging vaccine supply chain in the wake of a global 
pandemic using data science? To answer this question, we develop three sub-question that will be 
presented in the form of articles as shown in Figure 0-1. 

Article 1, titled “International Business Classification Approach to the Covid-19 Vaccine Production 
Supply Chain - A Data Science Perspective”, uses international business geographic classification to 
categorize Covid-19 vaccine supply chains. This first article recreates Rugman & Verbeke’s firms’ 
classification (2004 and applies it to six VCS. The categorization was conducted in two dimensions, 
one for the upstream geographic location of the supply chain and one for the downstream geographic 
distribution of the vaccine. The paper aimed to classify the six Covid-19 vaccine producers in terms of 
their internationalization and the associated risk of such strategies. 

In article 2 of this project, titled “Econometric Approach to the Covid-19 Vaccine Production Supply 
Chain”, we want to identify which supply chain factors influence the distribution of two main Covid-
19 vaccines, Pfizer and Moderna. To this effect, we used an econometric panel data analysis to extract 
relevant supply chain factors influencing vaccine distribution. This paper aims to look at vaccine 
distribution in countries from a supply chain perspective instead of indicators previously used, such as 
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demographic factors, economic factors and more. This would then give policy and decision makers a 
new way to see and manage vaccine distribution. 

The last article is titled “Network Analysis Approach to the Covid-19 Vaccine Production Supply 
Chain - A Data Science Perspective”. The objective of this study is to conduct a network analysis of 
the Covid-19 vaccine supply chain of Pfizer and Moderna to identify the key nodes, links, and 
bottlenecks in the production of vaccines. This study will use a qualitative approach. The main purpose 
of this paper is to contribute by exploring innovative ways to analyze and improve the vaccine supply.

Figure 0-1: summarizes the research questions of this thesis. 

The purpose of this project is to contribute to the literature on the vaccine supply chain. As the VSC 
literature in times of pandemic is lacking, we aim through this thesis to provide new direction to research 
on pandemic vaccine supply chains. Thus, opening the door for further research on the topic for future 
potential pandemics.
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Chapter 1: International Business Classification Approach to the 
Covid-19 Vaccine Production Supply Chain - A Data Science 

Perspective 

Koné Aïchata Souleymane, M.Sc. student, HEC 
Montreal Supervision: 

Bélanger Valérie, HEC Montreal 
Warin Thierry, HEC Montreal 

HEC Montréal 
Abstract 

The global response to the COVID -19 pandemic has required the rapid development, production, and 
distribution of vaccines on an unprecedented scale. Ensuring efficient and effective management of the 
COVID -19 vaccine supply chain is critical to successful vaccination campaigns worldwide. This paper 
proposes a novel approach to classifying the COVID -19 vaccine supply chain using internationalization 
classification techniques. This project aims to integrate the principles of international business 
classification, particularly geographic diversification, into the upstream and downstream dimensions of 
the Covid-19 vaccine supply chain by emulating the methodology of Rugman & Verbeke (2004. 

1.1 Introduction 

The first case of Covid-19 was reported on December 31, 2019, in the province of Hubei, China, and 
as of March 11, 2020, the World Health Organization (WHO declared the Covid-19 a global 
pandemic. Rapidly, the need for vaccines emerged and organizations around the world came together 
to develop a vaccine. With a vaccine developed in under a year, there was a rapid need to produce and 
deliver a large quantity of vaccine as possible. Thus, the emergence of the Covid-19 vaccine supply 
chain was one of the most important value chains during the pandemic. 

However, vaccine development is highly regulated. Due to the unique nature of the vaccine supply chain 
(VSC, production planning and decision-making are under major time constraints combined with the 
thermal sensitivity of vaccines makes designing a VSC difficult. 

A vaccine is the most effective defense against pathogen caused disease. Pathogens are organisms, such 
as viruses and bacteria, that cause health issues to the host it enters. Vaccines are designed to train the 
immune system in a controlled manner. Most vaccines contain inactive antigens of a virus that the 
immune system, mainly the white blood cell, whose role is to learn, then recognize and 
create antibodies to counter that pathogen. By doing so, the immune system is then ready for the 
eventuality of encountering that pathogen. The vaccine is generally administrated to healthy 
people in a preventive, before an outbreak (i.e., seasonal influenza), or reactive manner, during an 
outbreak (i.e. Covid-19). Vaccines are different from any other product; therefore, their supply 
chain also has some unique characteristics. Duijzer et al. (2018) identified the following 
characteristics that are unique to the VSC: 

• High uncertainty: The vaccine supply chain has uncertainty in both the availability of supply
and demand forecasting, which makes vaccine production difficult to plan.
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• Misalignment of objectives: There is a misalignment between the producer and the buyer.
Indeed, vaccine manufacturers are for profit organisms while vaccine buyers are non-profit
organizations, such as the government and the WHO. This misalignment creates divergence in
objective.

• Decentralized decision-making: With multiple suppliers involved in the VSC the decision-
making process is decentralized along the chain. This makes coordination a challenge in the
chain.

• Difference between buyers and users: The buyer of vaccine are public health organizations
and governments, while the end user of vaccine is the general population. This difference makes
vaccination strategies complex, as end users refuse to be vaccinated. This makes it harder to
estimate demand.

• Complex political decisions concerning allocation: Decisions regarding the first people to
receive the vaccine and the number of doses allocated per country are the most important
decision once the vaccine is produced that governments and public health organizations must
manage.

• Importance of deciding and acting in time: Vaccine production as well as its distribution are
under time constraints. For some vaccines, such as influenza, it is possible to start production
before the dominant strand is identified. This help to produce more vaccine however the risk is
that they are not sure if the vaccine produced is effective that the strand of that season.

Figure 1-1 represents the flow of the vaccine Supply chain from development to the end user. 
The vaccine supply chain is divided into three main phases: vaccine origination and development, 
vaccine manufacturing, and delivery (Brown & Bollyky, 2021). All VSC start with vaccine 
development. This phase consists of two main processes. First, a phase of research and 
development (R&D) which is necessary to create a vaccine. Once a formulation has been completed, 
it goes through multiple clinical trials, which cannot be bypassed. Each country has their vaccine 
regulations; therefore, one clinical trial can be approved in one country and not in another. 

Vaccines that pass all the trial moves to the second phase after being licensed, while the others are sent 
back for further development. During the vaccine manufacturing phase, the licensed product is sent to 
be produced in large quantities (substance production process), then the vaccine is packaged in glass 
vials, sealed off and ready for delivery (fill and finish process). Both stages of vaccine manufacturing 
require different inputs. The substance production requires capital equipment, raw and single-use 
materials, and other pharmaceutical ingredients. The capital equipment includes bioreactors, pumps, 
and filtration units, whereas the raw and single-use materials include bioreactor bags, cellular materials, 
and filters. Other pharmaceutical ingredients are adjuvants, lipids, preservatives, and excipients. The 
fill and finishing process requires vial-filling equipment, glass vials, stoppers, and refrigeration. The 
last phase of the VSC is the delivery/distribution which requires inputs such as needles, syringes, 
antiseptic wipes, and diluents. 
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Figure 1-1: Vaccine Supply Chain Flow 

As mentioned previously, vaccine development takes time. Thus, making this stage the most time-
consuming step of the VSC, most vaccine takes years before they are approved to be on the market. The 
Covid-19 vaccine being developed in under a year, made the public question the efficacy and safety of 
the vaccine. However, the short period of development is not necessarily an indication of shortcuts in 
development. Indeed, global resources, through collaboration, were allocated to develop a vaccine, 
during the early stage of the pandemic. This was the main reason why the Covid-19 vaccine was among 
one of the fastest vaccines to be developed. The global effort included universities, pharmaceutical 
companies, worldwide organizations, and governments, each contributing in their own ways. 

In this collective effort, universities played a major role with their human and capital resources, in the 
development stage. They were able to map the genome of the virus in a timely manner which is a crucial 
step when developing a vaccine. They also provided additional support during the human clinical trials. 
With their experience in the development and manufacturing of pharmaceutical products, 
pharmaceutical companies such as Pfizer, were crucial in providing manufacturing support but also 
financial support in some cases. Worldwide organization, such as the WHO, provided their expertise in 
epidemiology and vaccine regulation. During the development stage, the WHO created and provided a 
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Covid-19 vaccine blueprint, which is the requirements the vaccine had to follow (WHO, 2020). 
Furthermore, through their epidemiology expertise and their experience with previous epidemic 
management, they proposed a vaccination strategy to flatten the epidemic curves. This is as important 
as the vaccine itself if not more, poor vaccination strategies fail to mitigate the spread of a viral disease. 
The last major player in the Covid-19 vaccine development was the government. Indeed, governments 
provided mainly financial support to both universities and pharmaceutical companies to aid them in 
moving closer to a marketable vaccine. This may be due to the urgency of needing a vaccine to protect 
their population. 

As a result, of this collective effort, 200 vaccine candidates were proposed by December 2020 with only 
52 approved for human clinical trials (WHO,2021). To get a vaccine, new and old approaches were 
used, making in total 3 types of Covid-19 vaccine. The whole-microbe approach uses the whole SARS 
virus either active or not as the base of the vaccine. The sub-unit approach, on the other hand, uses a 
specific part of the virus that is unique to its species, i.e. protein or sugars. In the case of the Covid-19 
vaccine, some vaccines opted for the sub-unit approach using a protein based. The last and newer 
approach is the genetic approach. This vaccine uses isolated genes that code for specific proteins for the 
immune system to recognize. 

When designing a supply chain for the Covid-19 vaccine, many pharmaceutical companies opted for 
multiple supply chains (MSC) to ramp up their production capacity. MSC occurs when a company 
creates separate supply chains to produce a product. This strategy can also be explained by the fear of 
vaccine nationalism, as many feared at the beginning of the pandemic. Additionally, the use of multiple 
chains for different regions provided a safety net by providing manufacturing support in the case where 
one supply chain is not able to meet its required production. However, having multiple supply chains is 
both financially and capital intensive, therefore many pharmaceutical companies decided to have 
partnerships. While partnerships helped to lessen the production load, they also provided some with 
access to new technology. This was the case with BioNTech and Pfizer. Other companies, such as 
Moderna, did not form any partnership and decided to outsource part of their production to other 
companies. This makes it possible for them to keep their intellectual propriety of vaccine formulation. 

With the risk of new pandemics, the need to create, produce and deliver a vaccine becomes one of our 
priorities to limit its impact. In this project, we aim to classify vaccine producers in times of a global 
pandemic, where having a global supply chain would be necessary to fulfill the growing demand. 
Looking at their upstream and downstream may give us a good understanding of vaccine producers’ 
approach and structure in times of crisis. This project will combine international business (IB) 
classification techniques, mainly geographical diversification, to the Covid-19 vaccine producers’ 
supply chain during the early stage of the pandemic. By applying an IB technique to the vaccine supply 
chain, we seek to provide insights into the distinct characteristics and strategies employed by major 
vaccine manufacturers. 
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1.2 Literature Review 

The efficient and effective distribution of vaccines plays a crucial role in ensuring widespread 
immunization and preventing the spread of infectious diseases. The vaccine supply chain encompasses 
various stages, from vaccine production to delivery and administration. Research has been done about 
the vaccine supply chain. Such research includes the paper on the literature review of the vaccine supply 
chain by Duijzer et al. (2018). In their paper, they have highlighted several key points in the VSC 
research field. The vaccine supply chain is a complex multiple stage chain and requires efficient and 
effective management to ensure that vaccines reach those who need them most, especially in low- and 
middle-income countries (Duijzer et al., 2018). Duijzer et al. (2018) conclude that collaboration and 
coordination among the VSC’s stakeholders are key to achieving a successful VSC. In their paper, the 
authors also have identified key challenges unique to VSC. The vaccine supply chain’s main challenges 
include maintaining vaccine potency and stability during transportation and storage, ensuring equitable 
distribution, and addressing supply chain disruptions due to emergencies or outbreaks (Duijzer et al., 
2018). 

The vaccine supply chain faces numerous challenges that can impact its efficiency and effectiveness. 
Research has identified several key areas of concern. Cold chain management is a critical aspect of 
supply chain operations, particularly in industries such as pharmaceuticals, food, and vaccines, where 
temperature control is essential. This literature review examines the key challenges, strategies, and 
technologies associated with cold chain management. In the pharmaceutical industry, cold chain 
management is essential for preserving the potency and effectiveness of temperature-sensitive drugs 
and biologics. According to Ong et al. (2021), temperature excursions during storage and transportation 
can lead to drug degradation and compromise patient safety. Hence, robust cold chain management 
practices are vital to maintaining pharmaceutical product quality. Monitoring and maintaining the 
required temperature range throughout the supply chain is critical. However, achieving accurate and 
real-time temperature monitoring can be challenging, especially during transportation. Yavuz et 
al. (2021) note that temperature monitoring devices, such as data loggers and IoT sensors, can help 
ensure temperature compliance and enable proactive interventions. Additionally, developing and 
maintaining the necessary infrastructure for cold chain operations is crucial. Adequate storage facilities, 
refrigeration units, and transportation systems are essential to maintain the required temperature 
conditions. According to Tseng et al. (2020), optimizing infrastructure design, layout, and capacity can 
enhance the efficiency and effectiveness of cold chain operations. 

Efficient distribution networks are crucial for reaching remote areas and ensuring timely vaccine 
delivery. Perea et al. (2020) highlight the need for optimized routing and scheduling algorithms to 
minimize transportation costs and improve delivery speed. Additionally, effective inventory 
management and demand forecasting are essential to avoid stockouts and wastage. Furthermore, 
achieving equitable vaccine distribution is a significant challenge, particularly in low-income 
countries. Ahmed et al. (2022) emphasize the importance of addressing disparities in access, 
availability, and affordability of vaccines across different regions and populations. 
Strengthening supply chain infrastructure and implementing targeted interventions can help improve 
vaccine equity. 

To overcome the challenges associated with the vaccine supply chain, researchers have proposed 
various strategies including collaboration, technology adoption and data analytics. Effective 
collaboration among stakeholders, including manufacturers, governments, healthcare providers, and 
NGOs, is crucial for optimizing the vaccine supply chain. Li et al. (2021) argue that partnerships can 
help enhance coordination, information sharing, and resource allocation, leading to improved supply 
chain performance. Leveraging technology can significantly enhance vaccine supply chain operations. 
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For instance, blockchain technology can enhance traceability and transparency, ensuring the 
authenticity of vaccine shipments (Praveen et al., 2021). Similarly, the Internet of Things (IoT) devices 
and sensors enable real-time temperature monitoring and quality assurance (Musa et al., 2022). The 
adoption of these technologies can enhance supply chain visibility and reduce risks. Additionally, 
advanced data analytics techniques and predictive modelling can improve decision-making within the 
vaccine supply chain. Shen et al. (2020) demonstrate that data-driven forecasting models can aid in 
accurate demand prediction and inventory optimization. Furthermore, real-time data analytics can help 
identify supply chain bottlenecks and enable proactive interventions. 

The Covid-19 pandemic has highlighted the need for resilient vaccine supply chains. Resilience refers 
to the ability to withstand disruptions and recover quickly. The literature has explored strategies to 
enhance the resilience of vaccine supply chains. Building redundancy and diversification into the supply 
chain can mitigate risks associated with single-source dependencies and transportation disruptions. 
Kumar et al. (2021) argue that maintaining multiple manufacturing facilities, transportation routes, 
and suppliers can enhance resilience and minimize the impact of disruptions. Developing 
comprehensive contingency plans and conducting risk assessments are critical for identifying 
vulnerabilities and potential disruptions. According to Danilov et al. (2021), scenario-based planning 
and risk assessment can help supply chain managers make informed decisions and prepare for 
contingencies effectively. Researchers such as Meng et al. (2020) emphasize the importance of 
conducting risk assessments at different stages of the cold chain, including transportation, storage, 
and handling, to proactively identify and mitigate risks to product integrity. 

Vaccine Nationalism & Vaccine Clubs 

The global response to the COVID-19 pandemic has unveiled a concerning trend known as "vaccine 
nationalism". Vaccine nationalism is characterized by countries prioritizing their populations at the 
expense of others (Ngo, 2021). This phenomenon is not a novel concept but has been exacerbated by 
the urgency of the COVID-19 pandemic (Gupta, 2020). Historically, nations have sought to secure 
essential medical supplies during health crises, but the scale and speed of vaccine nationalism during 
the current pandemic have raised significant concerns (Thompson, 2021). Indeed, vaccine nationalism 
perpetuates global inequity by allowing high-income countries to secure the lion's share of vaccine 
doses, leaving low- and middle-income nations at a disadvantage (Polack et al., 2020). This brings us 
back to one of the characteristics of VSC. As mentioned previously, vaccine producers are for-profit 
organizations thus giving an advantage to high-income countries, who have the means to bide a higher 
price for vaccines than low- and middle-income, thus leaving them to share and salvage what vaccine 
is left.  

Furthermore, By prioritizing their populations, vaccine-nationalist countries risk prolonging the global 
pandemic as the virus continues to circulate unchecked in other regions (Sridhar et al., 2021). Indeed, 
the WHO and epidemiologists have pushed forward the necessity of vaccination equity to reach global 
herd immunity, thus containing the spread of the virus (WHO, 2020). 

Finally, according to Fidler (2021), competition for vaccines has led to diplomatic tensions, export bans 
and trade disputes, straining international relations. Indeed, countries such as the United States, the 
United Kingdom, the European Union, Russia and China have been criticized and accused of hampering 
the global effort against the virus by hoarding vaccines. The most criticized country has been the United 
States. Indeed, the "America First" approach has come under intense scrutiny, with the US initially 
securing large doses of vaccine for its population (Bollyky, 2021). Additionally, Canada was also 
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challenged and associated with vaccine nationalism. As of 2020, Canada had enough vaccines to 
vaccinate its population 9 times (Mullard, 2020) 

In addition to the concept of vaccine nationalism, the notion vaccine club has also received a lot of 
attention during the Covid-19 pandemic. Unlike vaccine nationalism, the vaccine is a cooperative 
alliance among countries aimed at improving equitable access to vaccines and these agreements can 
take various forms, including regional alliances or multilateral initiatives (Smith, 2021). In the paper 
titled “The Covid-19 Vaccine Production Club: Will Value Chains Temper Nationalism?”, the vaccine 
club refers to vaccine producers and vaccine ingredient producers (Evenett et al., 2021). Based on these 
definitions, researchers have concluded the following implications. Vaccine clubs offer mechanisms to 
pool resources, expertise, and vaccine supplies, ensuring that low- and middle-income countries receive 
their fair share (Bollyky & Bown, 2021). Additionally, collaborative efforts within vaccine clubs can 
expedite the research, development, and production of vaccines, making them more readily available 
(Fidler, 2020). Lastly, vaccine clubs are a favourable environment for fostering international 
cooperation, vaccine clubs can reduce conflicts arising from vaccine shortages and promote global 
political stability (World Bank, 2021). On the other hand, Pisani-ferry et al. (2021) highlighted the 
exclusivity of vaccine clubs, which implies that participating countries secure preferential access to 
vaccines. Thus, potentially undermining the global goal of equitable vaccine distribution. Moreover, 
Effective governance and coordination among member countries pose challenges, as diverse interests 
and priorities must be reconciled (Gostin, 2020). Another critique of vaccine clubs is geopolitical 
tensions, this is particularly true between major powers if not structured carefully (Phelan et al., 2020). 

Internationalization classification 

Measuring the internationalization of a firm is crucial for understanding its level of involvement and 
success in global markets. Scholars have developed various techniques to assess and quantify the 
internationalization process. Which is the best strategy for a firm? Regionalization or globalization. This 
question has been extensively discussed in previous and recent academic papers as well as their 
implication on firms’ performance (Berrill, 2015). The debate divided the International Business 
literature into different schools of thought regarding the strategy the largest firms are using. Indeed, 
some academics, as demonstrated in Yip (2002) and Govindarajan & Gupta (2008) papers, strongly 
argue that global strategy is primordial for MNEs to compete among the largest firm, like, Ghemanwat 
(2001), argues the form theory by demonstrating that there is a positive relationship between 
geographical and/or cultural distance and the cost of internationalization, therefore concluding that the 
largest firms follow a semi-global strategy. More authors have taken part in this debate, such as 
Doremus et al. (1998) who concluded that large MNEs are national with a regional focus rather than 
global. Lastly, using the concept of Triad, Rugman & Verbeke (2003, 2004, 2007, 2008) concluded that 
the largest MNEs are national. 

Asmusen et al. (2007) discuss in their paper that the already covered ways of measuring a firm’s 
internationalization were not the actual measuring the degree of globalization. They identify three main 
indicators commonly used to measure the degree of internationalization firms based on IB literature. 
According to the authors, internationalization has been measured using an index of asset distribution; 
(2) using an index of spread measure; (3) using an index of psychology.

• Index of asset distribution: This type of measure uses the distribution of certain assets, such as,
between the home country and other countries.
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• Index of spread measure: This type of measure uses a firm’s spread of function, assets and/or
employees across cultures and/or countries.

• Index of psychology: This type of measure is focused on how employees, mainly management,
are culturally diverse.

Furthermore, they pointed out that some indices use a dichotomous approach, using one of the three 
measurement indicators, while others used two or all indicators making it a composite index (multi-type 
indices). They found that when using the dichotomous approach sales is the most used (Rugman & 
Vebeke,2004), in addition to its being the simplest internationalization indices. Other variables had been 
used, such as shareholder (Hassel et al. 2003) or value added (UNCTAD, 2004). In their paper, Asmusen 
et al. (2007) identify two limitations to the dichotomous approach. The first one is that using home vs 
foreign become void when dealing with cross-country comparison. The second limitation is that this 
approach does not consider the spread of foreign activities across different countries. While one-type 
indices give the bigger picture, it gives one facet of the answer. for that reason, several authors 
introduced the use of multi-type indices (Letto-Gillies, 1998; Germann et al., 1999; Sullivan, 1994). As 
mentioned previously, the multi-type indices use two or all the measure indicators. In their paper, Hassel 
et al. (2000) combined asset distribution with the spread measure. Similar to the one-type indices, the 
validity of multi-type indices’ results has been questioned due to their complexity (Ramaswamy et al., 
1996; Fisch/Oesterle, 2003). 

In their paper, Qian et al. (2008) discussed how most international forms are regional based rather than 
global. They classify regional diversification into two groups: low to moderate diversification and 
moderate to high diversification. Through their research, they came to that conclusion after evaluating 
the impact of the performance of different degrees of regional diversification on a sample of 189 firms 
in the US. This can be explained by the fact that expanding activities within and out of the region comes 
at a cost, and that said cost varies from region to region. Overall, the authors believed that firms in the 
developed country would benefit more, in terms of infrastructure and economic development, by 
diversifying those activities in a moderate number of developed country regions and limiting that 
global expansion to a limited number of developing countries (Qian et al. 2008). 

As mentioned above, measuring the internationalization of a firm has been a recurrent topic in the IB 
field and several techniques have been used to it. One widely recognized approach to measuring 
internationalization is through the analysis of Foreign Direct Investment (FDI) activities. Dunning 
(1988) proposed the eclectic paradigm, which emphasizes ownership, location, and internalization 
advantages as drivers of FDI. FDI reflects a firm’s investment in foreign countries, such as establishing 
subsidiaries or acquiring ownership stakes in foreign companies. FDI data from sources like UNCTAD 
can offer insights into a firm’s internationalization efforts. 

Export intensity is another technique used to measure the internationalization of firms. It quantifies the 
proportion of a firm’s total sales revenue generated from exports. By dividing export sales by total sales 
and multiplying by 100, export intensity indicates a firm’s reliance on international markets. Financial 
statements and trade databases can be utilized to calculate and analyze export intensity. 

Another method used to measure internationalization is by examining the growth rate of a firm’s 
international sales, which provides insights into its expansion in foreign markets. This measure of 
international sales growth reflects the degree of a firm’s internationalization over a specific period. The 
formula for calculating international sales growth involves subtracting the previous year’s international 
sales from the current year’s international sales, dividing by the previous year’s international sales, 
and multiplying by 100. Contractor et al. (2007) highlight the importance of understanding the 
relationship 



11 

between international expansion and firm performance, which can be further assessed through 
international sales growth. 

Lastly, geographical diversification is another crucial technique for measuring the internationalization 
of firms. It quantifies the number of countries in which a firm operates, reflecting its geographical spread 
and market diversification. A higher number of countries indicates a greater level of 
internationalization. This information can be extracted from company reports, databases, and market 
research sources. 

Furthermore, several internationalization indexes have been developed to provide comprehensive 
measures of a firm’s internationalization. For instance, the Transnationality Index (TNI), 
Internationalization Index (II), and Geocentric Orientation Index (GOI) consider factors such as foreign 
assets, foreign sales, and foreign employment to calculate a score representing the firm’s 
internationalization level. Rugman and Verbeke (2004) emphasize the significance of regional and 
global strategies in the context of multinational enterprises, which can be further examined using these 
internationalization indexes. 

Rugman & Verbeke classification 

Rugman & Verbeke (2004) proposed a new way of classifying MNS based on previous international 
business literature using geographical diversification. The triad power concept is one of the main key 
concepts, they based their paper on. This concept, first introduced in 1985 by Kenichi Ohmae, divides 
the world into three main geographic locations: the US, the EU and Japan. The geographic location 
was chosen by Ohmae due to the similarities. According to Ohmae, the US, EU and Japan, all have 
low macroeconomic growth, similar technological infrastructure, presence of large firms in most 
industries, protectionist pressure and homogenize demand. In their paper, Rugman & Verbeke kept 
the concept of the triad but expanded the region proposed by Ohmae to include more countries. Thus, 
creating a new triad constituted of North America, Europe, and Asia, represented by Figure 1-2. 
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Figure 1-2: Rugman & Verbeke’s Triad 

Once the geographic location had been set, they were left with choosing a dimension on which to base 
their classification. For their project, Rugman & Verbeke decided on the sales of the 500 largest MNEs. 
Their choice was based on the fact that sale is a good indicator of market success. 

In their paper, Rugman & Verbeke choose a sample of 500 companies, representing the 500 largest 
MNEs in the world. However, out of the 500 companies, only 380 provided data sales data 
per geographic segment. Out of the 380 MNEs, used in their paper, they were able to classify 
them as whether they are home region-oriented, bi-regional, host region-oriented or global 
companies. Home region-oriented companies are characterized by firms having 50% or more of 
their sale in the home region. Bi-regional MNEs are companies with 20% or more of their sale in two 
regions of the triad, but no less than 50% in one of them. Host region-oriented MNEs have 50% or 
more of their sales in a triad region other than their home region. Global MNEs have 20% or more of 
their sales in all parts of the triad, but 50% or less in one specific region. Based on their definition, 
Rugman and Verbeke found that out of the initial sample of 500 companies, 320 firms were judged as 
being home region-oriented, 25 were bi-regional, 11 were host region-oriented and only 9 were global 
firms. 
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From their finding, they were able to assess that very few companies are global, according to their 
criteria, despite popular belief. They also concluded that balancing sales across the triad is not crucial 
for all MNEs. 

Risk and internationalization 

As companies expand their operations, understanding the risks associated with internationalization 
classification becomes crucial. Therefore, extensive literature explores the risks linked to different 
internationalization classifications (home region-oriented, bi-regional, host region-oriented and global), 
shedding light on the potential challenges and considerations for organizations engaging in global 
expansion. 

One of the key risks associated with a home-oriented company is market saturation. As Brouthers and 
Nakos (2004) suggest, relying solely on the domestic market can limit growth opportunities for 
companies, particularly in mature markets. The authors argue that market saturation can hinder a 
company’s ability to expand and achieve sustained growth. Home-oriented companies are also more 
susceptible to economic downturns within their home country, as highlighted by Xu and Shenkar 
(2002). The authors assert that companies with a limited international presence face higher risks during 
economic crises and recessions. This vulnerability stems from the lack of diversification into 
international markets, leaving the company heavily reliant on the economic conditions of a single 
market. Additionally, operating only in the home market can expose companies to a competitive 
disadvantage compared to their global counterparts, as noted by Rugman and Verbeke (2004). The 
authors argue that companies that have successfully internationalized often benefit from economies of 
scale, access to a broader customer base, and enhanced brand recognition. A home-oriented company 
may struggle to compete effectively on a global scale, facing intensified competition and potentially 
losing market share. Lastly, a home-oriented company’s success can be heavily dependent on local 
factors and is exposed to political risks. As highlighted by Contractor, Kundu, and Hsu (2003), reliance 
on a single market exposes the company to political and regulatory risks that could significantly impact 
its operations. These risks include changes in trade policies, shifts in government regulations, or 
geopolitical tensions that could disrupt supply chains or impede market access. 

Among the risks associated with a bi-regionally oriented company, market concentration was found to 
be one of the main ones. As indicated by Klier and Rubenstein (2008), reliance on a limited number of 
regions can lead to vulnerability when those regions face economic or political instability. The authors 
argue that diversifying into multiple regions can help mitigate this risk by spreading exposure to regional 
market fluctuations. Being bi-regional oriented also exposes companies to the risks associated with 
specific regions, including economic, political, and regulatory factors. According to Delios and Henisz 
(2003), dependence on regional factors can result in heightened exposure to country-specific risks such 
as changes in government policies, economic downturns, or legal and regulatory uncertainties. 
Companies with a more global footprint can diversify their risk exposure by operating in multiple 
regions, reducing dependence on any one specific market. This strategy can result in a lack of in-depth 
knowledge and expertise in markets outside the selected regions. As highlighted by Cantwell and 
Mudambi (2005), expanding into global markets allows companies to gain valuable insights into diverse 
customer preferences, market dynamics, and technological advancements. This broader knowledge base 
facilitates adaptation, innovation, and the ability to respond effectively to changing global trends. 

A significant risk associated with a host region-oriented company is the limited market reach and growth 
potential it may experience. As noted by Mudambi and Navarra (2004), companies that concentrate 
their operations solely within a host region can miss out on opportunities available in other regions. 
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This limited market access restricts their ability to tap into new customer bases, emerging markets, and 
potential growth opportunities, potentially leading to stagnation or slower growth rates. Similar to home 
region-oriented companies, a host region-oriented company is highly dependent on the economic 
conditions of the specific region in which it operates. As highlighted by Anderson and Gatignon (1986), 
relying solely on a single host region exposes the company to risks associated with local economic 
downturns, industry-specific challenges, or changes in consumer spending patterns. Fluctuations in the 
host region’s economic climate can significantly impact the company’s financial performance and 
stability. Operating in a single host region exposes companies to regulatory and political risks unique 
to that specific region. As discussed by Meyer and Nguyen (2005), host region-oriented companies face 
challenges related to compliance with local laws, regulations, and government policies. Changes in 
regulatory frameworks, shifts in political landscapes, or geopolitical tensions can disrupt business 
operations, hinder market access, and increase uncertainty for the company. 

Becoming a global company exposes organizations to the complexities and uncertainties of diverse 
markets. As noted by Ghemawat (2001), operating in multiple markets entails navigating diverse 
cultural, economic, and regulatory landscapes. This complexity increases the risks associated with 
market volatility, shifts in consumer preferences, and changes in political and legal environments. 
Global companies must develop strategies to manage and adapt to the inherent uncertainties of operating 
across multiple markets. Additionally, operating as a global company involves managing complex and 
interconnected supply chains that span multiple countries and regions. As discussed by Choi, Dooley, 
and Rungtusanatham (2001), global companies face risks associated with supply chain disruptions, 
including natural disasters, political instability, transportation disruptions, and supplier failures. The 
interconnected nature of global supply chains amplifies the potential impact of such disruptions, 
emphasizing the need for robust supply chain risk management practices. 

Ghemawat (2001) found that global companies are exposed to the complexities and uncertainties of 
their diverse markets and currency and financial risks arising from fluctuations in exchange rates, 
interest rates, and global economic conditions (Buckley et al., 2006). Ghemawat (2001) noted that 
operating in multiple markets entails navigating diverse cultural, economic, and regulatory landscapes, 
thus increasing the risks associated with market volatility, shifts in consumer preferences, and changes 
in political and legal environments. Global companies must develop strategies to manage and adapt to 
the inherent uncertainties of operating across multiple markets. In their paper, Buckley, Clegg, and Tan 
(2006) conclude that conducting business across borders necessitates dealing with foreign currencies 
impacting profitability, cash flow, and financial performance. Effective risk management strategies, 
such as hedging currency exposures or diversifying financing sources, are essential for mitigating these 
risks. 

Hypotheses 

From the literature review, we were able to formulate three hypotheses: 

• H1: Certain regions of the triad will show a higher concentration of facilities.

• H2: Formulation facilities distribution will lead to a classification of home region-oriented using
Rugman & Verbeke’s classification.

• H3: Downstream dimension will show that Covid-19 vaccine producers are depending on
certain regions of the triad.
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1.3 Methodology 

This study uses a quantitative approach using R to analyze the Covid-19 vaccine supply chain as of June 
2021 using international business internationalization classification. We decided to adopt the 
geographical diversification techniques to classify the Covid-19 VSC, by recreating Rugman & 
Verbeke’s classification model on the production of vaccines in the case of a global pandemic. We 
chose this method as it was the best fit with the data, we had on the vaccine supply chain. Additionally, 
this classification method is compatible with publicly available data, (e.g., address, country) which 
makes up the majority of our database, without undermining the result of the classification. 

The variable used in Rugman & Verbeke’s original model has been adjusted to fit our project. Instead 
of just using sales, we are using two different dimensions, an upstream and downstream dimension, to 
assess the globalization of vaccine suppliers. The upstream dimension, we used in this project is the 
presence of the supply chain in each region of the triad. As our downstream dimension, we used the 
number of doses of each vaccine administrated. The issue of downstream vs. upstream globalization 
was discussed in Rugman & Verbeke’s paper. 

In this project, we are measuring and categorizing the globalization level of Covid-19 vaccine 
producers. The following producer and their supply chain were used: Pfizer, Moderna, 
Johnson&Johnson, Novavax, AstraZeneca and CureVac. Lists of companies directly involved in the 
vaccine production as of June 2021 were collected and six data frames were created, one for each 
producer. Pfizer, Moderna, Johnson&Johnson, AstraZeneca, Novavax & CureVac have 28, 16, 13, 24, 
20 & 9 companies actively involved in their supply chain. All the data used for this part of the project 
was collected from the article by Bown and Bollyky on the Covid-19 vaccine titled “How Covid-19 
vaccine supply chains emerged amid a Pandemic” (2021). The article provided the companies involved 
in the supply chain of the six Covid-19 vaccine producers mentioned above. 

To create our datasets, 7 variables were identified as presented in Table 1-1. Each database 
was processed and observations/companies with missing information were removed. Variables, 
such as latitude and longitude, were created by converting the address of a company into its 
geographic coordinates. As for the stage of production variable, a company can be in the substance 
manufacturing stage, the lipids production or adjuvant production stage and the fill and finish stage. 
This information was available in Bown and Bollyky’s article. 

Table 1-1: Variable description Pfizer dataset, the Moderna dataset and the Covid-19 vaccine producer dataset 

Variable name Description 

Company names The name of the company. 
Country The country in with the company is located. 
Address The address of the company involved in the vaccine production. 
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Variable name Description 

Stage of production The stage of production of the vaccine at which the company is. 
Function The specific function of the company within the chain. 
Longitude The longitude coordination of the company. 
Latitude The latitude coordination of the company. 

As per Rugman & Verbeke’s paper, we need to define the Triad region that will be used in this project. 
We decided to follow the same triad as in Rugman & Verbeke’s paper. Thus, the regions used in this 
paper are North America, Europe, and Asia/Pacific. With the region of the triad defined, we can proceed 
with the classification of our supply chains. 

As mentioned previously, two dimensions were used in this project, the dose administrated ratio and 
the active presence ratio, downstream and upstream dimensions. Starting with the upstream, we started 
by taking the ratio of companies in each region of the triad, this was done by counting the number of 
companies in a region and then dividing it by the total number of companies in the supply chain. Once 
the ratio was calculated, we then created a table with the results and applied Rugman & Verbeke’s 
(2004) criteria of classification to our ratios. Additionally, we wanted to calculate the proportion of each 
stage of production for our six vaccine producers. This was also calculated using the ratio of formulation 
companies, the ratio of lipids production companies and the fill & finish companies on the total number 
of active companies in the chain. Once we had the percentage of formulation manufacturers, lipids 
producers and fill & finish companies, we want to evaluate whether the stages of production were 
evenly distributed in the triad or if they were bound to any specific region. As a result, we were able to 
extract the three additional tables presented in the result section of this paper. This process was 
conducted six times for all the vaccine producers mentioned in the paper. 

Lastly, “sales” quantity was deemed as an important variable during the development of the project 
since it would be considered a measurement of success for the covid-19 vaccine supply chain. However, 
as sales information for the six vaccine producers is not publicly available, the number of vaccine doses 
administered has been used as an approximation. This data will be used as an estimate of the quantity 
sold by each company during a given period and in given countries. We collected the number of Pfizer’s, 
Moderna’s, Johnson&Johnson’s, AstraZeneca’s & Novavax’s Covid-19 vaccines administrated in 34 
countries for one year between January 2021 and January 2022 using “Covid vaccine doses by 
manufacturer” by Our World in Data(2023). Unfortunately, information related to the doses of CureVac 
administrated was not available. As a result, its downstream classification will be omitted from this 
section part of the project. With this information, we can find the ratio of vaccine doses administrated 
per region based on the total number of doses administrated across the 34 countries by counting and 
then dividing the number of administrated doses in each region by the total. This was done for all six 
Covid-19 vaccine producers. 

Once the six VCS were categorized, we created six maps to visualize the six supply chains based using 
the geographical coordinates derived from each company’s address. Each map was created in R using 
the leaflet package. To create the maps, we first needed to upload our six datasets into R. Once the data 
have been loaded, we were then able to create the maps. The leaflet package already provides blank 
world maps that we will use as the base of our six maps, therefore all that is left to be done is to add a 
marker at the location of each company present in the chain. Thus, we only require two variables, the 
longitude, and the latitude coordinate of each company to create our maps. This visualization step was 

https://ourworldindata.org/grapher/covid-vaccine-doses-by-manufacturer
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important as it reinforce the fitness of Rugman & Verbeke’s model by providing us with a visual 
confirmation of the geographic distribution of the six supply chains. 

1.4 Results 

Starting with the upstream dimension, Table 1-2 shows the supply chain distribution of the 
Covid-19 vaccine producers. Pfizer has 32% of its supply chain in North America, 61% in Europe, 4% 
in Asia-Pacific and the remaining 3% are outside of the Triad. Therefore, based on Rugman & 
Verbeke’s classification, is both home region-oriented and host region-oriented. Indeed, 
Pfizer has two headquarters one in the US and the other in Germany, due to their partnership 
with a German company, BioNTech. This makes it possible for Pfizer to have two 
different classifications depending on the headquarters used for the classification. When using 
the German headquarter, Pfizer would be classified as home region-oriented, while when 
taking the US headquarter it would be host region-oriented. Moderna has 50% of its supply 
chain in North America, 44% in Europe and 6% in Asia-Pacific. With its headquarter in the US, 
Moderna is then classified as a home region-oriented Covid-19 vaccine producer, with 50% of 
its chain located in North America. Johnson&Johnson has 38% of its supply chain in North 
America, 38% in Europe and 15% in Asia-Pacific and the remaining 9% are outside of the 
Triad. Similar to Moderna, Johnson&Johnson’s headquarter is in the US. This headquarters location 
classifies it as a bi-regional, North American and European, vaccine producer. AstraZeneca has 17% 
of its supply chain in North America, 42% in Europe and 33% in Asia-Pacific and the 
remaining 8% are outside of the Triad. With its headquarter located in the UK, AstraZeneca is 
classified as bi-regional, alongside Johnson&Johnson, with 42% of the chain in Europe and 33% in 
Asia-Pacific. Novavax has 45% of its supply chain in North America, 40% in Europe and 15% 
in Asia-Pacific. Based on its headquarter located in the US, Novavax is classified as bi-
regional, with 45% of the chain in North America and 40 in Europe. CureVac has 0% of its 
supply chain in North America, 100% in Europe and 0% in Asia-Pacific. With its headquarter 
located in Germany, CureVac is then classified as home region-oriented since 100% of its chain is 
in Europe. Make CureVac, the only producer in our project to have its whole chain in one region 
of the triad. 

Table 1-2: Covid-19 vaccine producers’ presence in the Triad region & function distribution 

Brand 
% in North 
America % in Europe 

% in Asia & 
Pacific 

% in 
formulation % in lipid 

% in fill and 
finish 

Pfizer 32% 61% 4% 36% 39% 25% 
Moderna 50% 44% 6% 38% 19% 44% 
Johnson&Johnson 38% 38% 15% 38% 0% 62% 
AstraZeneca 17% 42% 33% 54% 0% 46% 
Novavax 45% 40% 15% 50% 25% 25% 
CureVac 0% 100% 0% 78% 0% 22% 

Table 1-3 is the distribution of the formulation facilities across the triad. Pfizer has 30% of its vaccine 
formulation facilities in North America, 60% in Europe and 10% in Asia-Pacific. As mentioned above, 
Pfizer has two classifications based on the headquarters location we look at. Thus, when looking from 
the US headquarter point of view, Pfizer is classified as host region-oriented, while from German 
headquarter Pfizer is then home region-oriented. Moderna has 50% of its vaccine formulation facilities 
in North America, 50% in Europe and 0% in Asia-Pacific. With this distribution, Moderna has a bi-



18 

regional strategy for its vaccine formulation. Johnson&Johnson has 40% of its vaccine formulation 
facilities in North America, 20% in Europe and 40% in Asia-Pacific. Based on Rugman & Verbeke’s 
paper, Johnson&Johnson would be considered as global. AstraZeneca has 15% of its vaccine 
formulation facilities in North America, 38% in Europe, 38% in Asia-Pacific and the remaining 
percentages are located outside of the Triad. Thus, classifying AstraZeneca as having a bi-regional for 
its formulation facilities. Novavax has 40% of its vaccine formulation facilities in North America, 30% 
in Europe and 30% in Asia-Pacific. Thus, classifying Novavax as having a global strategy for its 
formulation facilities. CureVac has 0% of its vaccine formulation facilities in North America, 100% in 
Europe and 0% in Asia-Pacific. By having all its formulation facilities in Europe, CureVac is then 
classified as home region-oriented. 

Table 1-3: Distribution of formulation facilities across Triad per Covid-19 vaccine producers 

Brand Formulation/North Formulation/Europe Formulation/Asia 

Pfizer 30% 60% 10% 
Moderna 50% 50% 0% 
Johnson&Johnson 40% 20% 40% 
AstraZeneca* 15% 38% 38% 
Novavax 40% 30% 30% 
CureVac 0% 100% 0% 

* Other region = 8%

For the lipids/adjuvant facilities distribution, Table 1-4 shows that Pfizer has 55% of its 
vaccine lipids/adjuvant facilities in North America, 45% in Europe and 0% in Asia-Pacific. Therefore, 
Pfizer is both home region-oriented, and host region-oriented given its two headquarters. Moderna has 
33% of its vaccine lipids/adjuvant facilities in North America, 67% in Europe and 0% in Asia-Pacific. 
It would then be classified as host region-oriented for its lipids production. Novavax has 60% of 
its vaccine lipids/adjuvant facilities in North America, 40% in Europe and 0% in Asia-Pacific. It 
would then be classified as home region-oriented for its lipids production. From the data 
collected neither Johnson&Johnson nor AstraZeneca nor CureVac seem to have any lipids/adjuvant 
input as part of their supply chain. 

Table 1-4: Distribution of lipids/adjuvant facilities across Triad per Covid-19 vaccine producers 

Brand Lipid/North Lipid/Europe Lipid/Asia 

Pfizer 55% 45% 0% 
Moderna 33% 67% 0% 
Johnson&Johnson n/a n/a n/a 
AstraZeneca n/a n/a n/a 
Novavax 60% 40% 0% 
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Brand Lipid/North Lipid/Europe Lipid/Asia 

CureVac n/a n/a n/a 

Lastly, Table 1-5 is the distribution fill and finish facilities in the triad. Pfizer has 0% of its fill & 
finish facilities in North America, 86% in Europe, 0% in Asia-Pacific and the remaining 
percentages are located outside of the Triad. in this case, Pfizer is still home region oriented 
and host region-oriented. Moderna has 57% of its fill & finish facilities in North America, 
29% in Europe, and 14% in Asia-Pacific. Given these percentages, Moderna would be 
classified as home region-oriented. Johnson&Johnson has 37.5% of its fill & finish facilities in 
North America, 50% in Europe, 0% in Asia-Pacific and the remaining percentages are located 
outside of the Triad. Given these percentages, Johnson&Johnson would be classified as 
home region-oriented. AstraZeneca has 18% of its fill & finish facilities in North America, 45% in 
Europe, 27% in Asia-Pacific and the remaining percentages are located outside of the Triad. 
With these percentages, AstraZeneca would be classified as bi-regional. Novavax has 40% of its 
fill & finish facilities in North America, 60% in Europe and 0% in Asia-Pacific. Given these 
percentages, Novavax would be classified as host region-oriented. CureVac has 0% of its fill & 
finish facilities in North America, 100% in Europe and 0% in Asia-Pacific. Given these 
percentages, CureVac would be classified as home region-oriented. 

Table 1-5: Distribution of fill and finish facilities across Triad per Covid-19 vaccine producers 

Brand Fill/North Fill/Europe Fill/Asia 

Pfizer* 0% 86% 0% 
Moderna 57% 29% 14% 
Johnson&Johnson** 37.5% 50% 0% 
AstraZeneca*** 18% 45% 27% 
Novavax 40% 60% 0% 
CureVac 0% 100% 0% 

* Other region = 14%

** Other region = 13% 

*** Other region = 9% 

Now looking at the downstream dimension. Table 1-6 is the distribution of doses of the Covid-19 
vaccine in the triad region. We can see that Pfizer has 23% of its dose administrated in North America, 
41% in Europe, and 5% in Asia-Pacific and the remaining percentages are located outside of the Triad. 
In this case, Pfizer is bi-regional. Moderna has 52% of its dose administrated in North America, 27% in 
Europe, 4% in Asia-Pacific and the remaining percentages are located outside of the Triad. Given these 
percentages, Moderna would be classified as home region-oriented for its downstream distribution. 
Johnson&Johnson has 37% of its dose administrated in North America, 35% in Europe, and 5% in Asia-
Pacific and the remaining percentages are located outside of the Triad. Given this allocation structure 
of the dose administrated, Johnson&Johnson would be classified as bi-regional. AstraZeneca has 0.25% 
of its dose administrated in North America, 44% in Europe, 13% in Asia-Pacific and the remaining 
percentages are located outside of the Triad. Given this percentage, it is hard to allocate AstraZeneca to 
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a specific group for the number of doses administrated. Indeed, when following Rugman & Verbeke’s 
classification grid, we can see that AstraZeneca would be just at the edge of two groups without 
fulfilling all their requirement. Novavax has 0.003% of its dose administrated in North America, 27% 
in Europe, and 48% in Asia-Pacific percentages are located outside of the Triad. Given this allocation 
of the dose administrated, Novavax would be classified as bi-regional. 

Table 1-6: Distribution of vaccine dose administrated across triad per Covid-19 vaccine producers. 

Brand % North America % Europe % Asia-Pacific 

Pfizer 23% 41% 5% 
Moderna 52% 27% 4% 
Johnson&Johnson 37% 35% 5% 
AstraZeneca 0.257% 44% 13% 
Novavax 0.003% 27% 48% 

When taking a closer look are the disposition of our six supply chains. Figure 1-3 shows the location 
of Pfizer’s Covid-19 vaccine supply chain active companies. In this map, we are able to see that most 
of Pfizer’s supply chain is located in Europe with 17 facilities located there. The second region with 
the most companies is the US with 8 companies. On the Pfizer map, it is also possible to see that 
one company is located in South Africa, one in China and one in Canada. Those companies are mostly 
used for manufacturing support. Indeed, the facilities in South Africa and China are used to assist at 
the fill and finish level of the supply chain. This heavy reliance on the facilities in Europe and the US 
leaves Pfizer’s supply chain vulnerable to disruption if there were to be risk associated with one 
or both regions. 

Figure 1-3: Cartography of Pfizer’s supply chain 
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When comparing Moderna’s map to Pfizer, we can that there is a difference between both supply chains 
in terms of their size. Indeed, Moderna’s supply chain has a smaller number of companies operating in 
its supply chain in comparison to Pfizer. We believe this is due to Pfizer being an older company than 
Moderna, therefore giving a possible advantage to Pfizer over Moderna. Like Pfizer, we can see most 
of Moderna’s supply chain is located in the US with 8 facilities (Figure 1-4). The second region with 
the most companies of Moderna’s Covid-19 VSC is Europe with 7 companies. It is also possible to 
see that one company is in South Korea. This company is mostly used for manufacturing 
support, more specifically to assist at the fill and finish level of the supply chain. Heavy reliance on 
the facilities in Europe and the US, leaves Moderna’s supply chain vulnerable to disruption if there 
were to have risk associated with one or both regions like Pfizer’s supply chain. 

Figure 1-4: Cartography of Moderna’s supply chain 

Figure 1-5 depicts Johnson&Johnson’s supply chain, and we can see that it is dispersed mostly in two 
regions, Europe, and the US with 5 locations each. Additionally, there are two companies located in 
India and one located in South Africa. Like in Pfizer and Moderna’s case, those facilities served as 
manufacturing supports. As we can see Johnson&Johnson is also highly dependent on their North 
American and European location. This leaves Johnson&Johnson vulnerable in the eventuality of 
disruption in those locations. 
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Figure 1-5: Cartography of Johnson&Johnson’s supply chain 

AstraZeneca has in total 24 locations to produce their Covid-19 vaccines. The majority of 
AstraZeneca’s SC is in Europe with 10 companies (Figure 1-6). There remaining companies are in 
Japan (4), Thailand (2), Australia (2), Brazil (1), Argentina (1), Mexico (1) and the US (3). Those 
companies help in the manufacturing of the vaccine. As most of their supply chain is in Europe with 
little presence in other regions, AstraZeneca is also highly vulnerable to the eventuality of disruption 
in Europe. 

Figure 1-6: Cartography of AstraZeneca’s supply chain 
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Figure 1-7 shows the location of Novavax’s Covid-19 vaccine supply chain. In this map, we can 
see that Novavax has 9 facilities located in the US and 8 located in Europe. The map also shows that 
one company is in India, one in Japan and one in South Korea. All three are mostly used to 
increase the manufacturing capacity for the formulation stage. With their heavy reliance on the 
facilities in Europe and the US, Novavax is vulnerable to disruption if there were to have risk 
associated with one or both regions. 

Figure 1-7: Cartography of Novavax’s supply chain 

Figure 1-8 shows the location of CureVac’s Covid-19 vaccine supply chain. In this map, we can 
see that CureVac only has 9 facilities in their supply chain, and they are all located in Europe. By 
focusing its supply chain in only one region, CureVac is highly vulnerable to disruption, compared to 
the other vaccine producers, if there were to have risk associated with that region. 
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Figure 1-8: Cartography of CureVac’s supply chain 

Table 1-7 summarizes the result of classifying the Covid-19 vaccine producers. Most producers were 
classified as bi-regional. While Pfizer, AstraZeneca and CureVac upstream classifications remain the 
same, home region/host region-oriented and bi-regional respectively, the other producers’ upstream 
classifications vary. As presented in the table below, Moderna’s supply chain and fill & finish facilities 
are classified to be home region-oriented, its formulation is bi-regional, and its lipids classification is 
host region-oriented. Johnson&Johnson has three different classifications for its upstream dimensions, 
bi-regional for its whole SC, global for its formulation classification and home region-oriented for its 
fill classification. Like Johnson&Johnson, Novavax has also three upstream classifications. Novavax’s 
supply chain is bi-regional with a global formulation classification and a home region-oriented lipids 
and fill classification. For their downstream classification, most of the classifiable producers are bi-
regional except Moderna which has a home region-oriented classification. 

Table 1-7: Classification of the six main Covid-19 vaccine producers 

Brand SC 
classification 

Formulation 
classification 

Lipids 
classification 

Fill 
classification 

Distribution 
classification 

Pfizer Home/host 
region-oriented 

Home/host 
region-oriented 

Home/host 
region-oriented 

Home/host 
region-oriented 

Bi-regional 

Moderna Home region-
oriented 

Bi-regional Host region-
oriented 

Home region-
oriented 

Home region-
oriented 

Johnson&Johnson Bi-regional Global n/a Home region-
oriented 

Bi-regional 

AstraZeneca Bi-regional Bi-regional n/a Bi-regional unclassifiable 
Novavax Bi-regional Global Home region-

oriented 
Host region-
oriented 

Bi-regional 

CureVac Home region-
oriented 

Home region-
oriented 

n/a Home region-
oriented 

n/a 
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1.5 Discussion 

The first case of Covid-19 was reported on December 31, 2019, in China’s Hubei province, and on 
March 11, 2020, the World Health Organization (WHO declared Covid-19 a global pandemic. The 
need for a vaccine was soon felt, and organizations around the world came together to develop a vaccine. 
With a vaccine developed in less than a year, there was a rapid need to produce and distribute as many 
vaccines as possible. Thus, emerged the Covid-19 vaccine supply chain, which was one of the most 
important value chains during the pandemic. To respond to the rapid demand for the Covid-19 vaccine, 
pharmaceutical companies came up with different strategies to increase their production capacity, i.e., 
expanding their operation either through partnerships, outsourcing and/or relocation production to 
existing vaccine manufacturing facilities. 

The literature on the vaccine supply chain in time of pandemic is a subject that has been under-research, 
therefore limiting the amount of information how been acquired. This project aims to integrate the 
principles of international business classification, particularly geographical diversification, into the 
supply chain of Covid-19 vaccine producers. By implementing this approach to the supply chain, our 
objective was to gain a deeper understanding of the unique attributes and strategies employed by 
prominent vaccine manufacturers during the initial phase of the pandemic. Using Rugman & Verbeke’s 
triad classification, we were able to categorize six Covid-19 vaccine producers based both on their 
production geographical location (upstream and their vaccine distribution (downstream. Thus, 
contributing to expanding the literature on the vaccine supply chain more specifically in a global 
pandemic context. With the literature, we formulated three hypotheses; H1 certain regions of the triad 
will show a higher concentration of facilities, H2 formulation facilities distribution will lead to a 
classification of home region-oriented using Rugman & Verbeke’s classification and H3 downstream 
dimension will show that Covid-19 vaccine producers are depending on a certain region of the triad. 

As mentioned previously, this project uses a quantitative method using R to answer the thesis stated 
above. Data regarding the geographic location of Pfizer, Moderna, Johnson&Johnson, AstraZeneca, 
Novavax and CureVac Covid-19 VSC and the doses distributed across North America, Europe, and 
Asia/Pacific. We use this data to recreate Rugman & Verbeke’s classification using the ratio of 
companies and doses in each region of the triad. This would then give us the upstream and downstream 
classification of the six vaccine producers. 

All the Covid-19 vaccine producers, mentioned in this paper, opted for either a home region-oriented 
or bi-regional, focused between the EU and North America, for their upstream strategy regardless of 
whether they did a partnership, used their existing facilities, or outsourced all or part of their production. 
This coincides the Rugman & Verbeke’s findings, where the majority of MNEs, 320, were home 
oriented followed by 22 companies that were classified bi-regional. Our results also further support 
Qian et al. (2008) paper on regional diversification and firm performance. As shown by the results 
in both papers, firms in developed countries benefit from the available resources (e.g., facilities, 
governments and/or universities support) within developed countries to maximize their 
performance. This may explain why most of the companies in this paper were concentrated in the 
two “developed” regions with very little presence in another region. 

From the result, we see that the participation in the Covid-19 VSC was not a global effort but an 
EU/north American effort as our results show a higher concentration of companies. This observation 
confirms our first hypothesis, as H1 stated that certain regions would have a higher concentration of 
companies than others. Most of the effort/production/supply chains were concentrated in those two 
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regions, which limits the scalability of production. Furthermore, certain vaccine producers located their 
supply close to their customers, meaning that looking at the upstream distribution of a producer we can 
identify with the region are their biggest consumers. Taking Pfizer as an example, this producer has 
most of its supply chain in North America and Europe, which also coincide with the region where 
Pfizer administrated most of their vaccine (23% and 41% respectively). This can be attributed to the 
fact that vaccine producers are for-profit organizations therefore their desire to be close to big 
customers. This proximity is a good thing under normal circumstances as it gives possible to 
respond to demand in a timely manner, however, this may create issues in the global effort to manage 
the spread of the virus in a pandemic, making some regions receive leftovers and have last pick which 
undermine the collective effort. 

Similar to Rugman and Verbeke’s finding, we arrived at the conclusion that very few companies are 
global. In terms of upstream, 3 out of the 6 vaccine producers are bi-regional oriented for their supply 
chain structure, 2 are home region-oriented and 1 is both home region-oriented and host region-oriented. 
Additionally, when looking in terms of the stage of production. We can see that for the formulation, 1 
out of the 6 is home oriented based, 2 are bi-regional, 2 are global and 1 is both home region-oriented 
and host region-oriented. This observation contradicts our second hypothesis as only one producer 
formulation distribution was classified as home region oriented. In terms of lipid/adjuvant production, 
1 is home region-oriented, 1 is host region-oriented and 1 is classified as both. In terms of downstream, 
3 of the Covid-19 producers would be categorized as having a bi-regional distribution (Pfizer, 
Johnson&Johnson and Novavax), and 1 is home region-oriented (Moderna). For the two-remaining 
producer, AstraZeneca and CureVac, it was not possible to categorize their distribution with our data. 
Based on our findings, most producers are bi-regional for both upstream and downstream. As none of 
the Covid-19 vaccine producers had a downstream classification of global, our results support our last 
hypothesis. As mentioned in the literature review section, bi-regional companies as susceptible to risk 
associated with market concentration, dependency on regional factors, and limited knowledge. 

Overall, this project has shown the benefits of applying a new methodology to analyze the vaccine 
supply chain. Applying geographical classification to categorize the Covid-19 vaccine supply chain can 
provide data-driven decision-making. Geographical classification provides a framework for collecting 
and analyzing data on vaccine production, distribution, and uptake within specific regions. This data 
can be used to identify trends, optimize allocation strategies, and make data-driven decisions. By 
understanding the geographic distribution of vaccine doses, vaccination rates, and population coverage, 
policymakers and organizations can make informed choices to optimize the allocation and utilization of 
vaccines. Furthermore, by categorizing the vaccine supply chain based on different regions, risks such 
as natural disasters, geopolitical tensions, or trade disruptions can be assessed more effectively. 
Companies and organizations can develop contingency plans, diversify supply sources, and establish 
alternative routes or storage facilities to mitigate potential disruptions. This enhances the overall 
resilience and robustness of the vaccine supply chain. 

As with any project, ours has its limitations. Starting with the data collected, the datasets related to the 
supply chains were created based on information from June 2021, thus, making our classification 
outdated. Therefore, more recent data would give a better and more representative classification of the 
current situation of the Covid-19 vaccine producer structure. Furthermore, despite being able to find 
good results using their method of classification, we were able to assess two flaws in Rugman & 
Verbeke’s classification. The first is related to the Pfizer case. Indeed, when a company has two 
headquarters, which was the case in Pfizer & BioNTech partnership, this makes the classification more 
complex and gives two contradicting results. The second flaw is related to the classification 
delimitation. It is indeed possible to fall at the edge of two classifications without being in either one. 
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This was the case when analyzing the downstream dimension for AstraZeneca. Future directions to this 
project would be to consider comparing different classifications and/or expand the scope to different 
vaccines, thus comparing pandemic VSC to non-pandemic VSC. 
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Abstract 

The COVID -19 pandemic has posed significant challenges to global health systems and requires rapid 
development, production, and distribution of effective vaccines. Ensuring a robust and efficient vaccine 
supply chain is essential to combat the spread of the virus. This study explores the use of an econometric 
model, panel data analysis, to understand and optimize the Covid-19 vaccine supply chain. Panel data 
analysis is a valuable method for analyzing the Covid-19 vaccine supply chain. It integrates data from 
multiple sources to understand the complex dynamics associated with vaccine production, distribution, 
and delivery. By quantifying the impact of factors such as production capacity, distribution networks, 
transportation infrastructure, regulatory frameworks, and demand patterns, panel data analysis provides 
information that can inform decision making, resource allocation, logistics planning, and risk 
management to improve the efficiency and responsiveness of the vaccine supply chain and ensure 
equitable and timely distribution of vaccines. 

2.1 Introduction 

The Covid-19 pandemic has presented a global health crisis, requiring the rapid development, 
production, and distribution of vaccines on a massive scale. Efficient and equitable allocation of 
vaccines is crucial to counter the spread of the virus and mitigating its impact on public health and 
economies. Econometric models offer a valuable approach to analyzing and optimizing the complex 
dynamics of the vaccine supply chain. These models leverage economic theory and statistical techniques 
to quantify the relationships between key variables such as production capacity, logistics, demand 
dynamics, and policy interventions. By providing quantitative insights into the supply chain, 
econometric models can inform decision-making processes, enhance distribution strategies, and address 
potential bottlenecks. This research aims to explore the application of econometric models in analyzing 
and optimizing the Covid-19 vaccine supply chain, contributing evidence-based strategies for effective 
vaccine allocation and distribution. 

The objective of this project is to analyze the factors influencing the Covid-19 vaccine supply chain of 
the two main vaccine producers (Pfizer and Moderna), develop econometric models that capture the 
relationships between key variables in the vaccine supply chain and quantify the impact of various 
factors on vaccine availability and distribution in a country, such as present vaccine production 
facilities, policies regarding the approval of the vaccine and more. 
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The application of econometric models in the context of the Covid-19 vaccine supply chain can offer 
valuable insights into various aspects of the distribution process. For instance, econometric models can 
be used to estimate the impact of different factors on vaccine availability, such as production capacity 
expansions or transportation infrastructure improvements. These models can also help identify potential 
bottlenecks in the supply chain, allowing policymakers and stakeholders to address critical issues and 
ensure a smooth and efficient distribution process. By quantifying the relationships between production 
capacity, logistics, and demand dynamics, econometric models can provide valuable information for 
decision-making related to resource allocation, vaccine distribution strategies, and policy interventions. 

Furthermore, econometric models can assist in forecasting vaccine demand based on various variables, 
including population demographics, epidemiological trends, and vaccine efficacy data. This forecasting 
capability can be essential for planning and resource allocation at local, regional, and national levels, 
enabling proactive measures to meet future demand and optimize vaccine distribution. Moreover, 
econometric models can evaluate the effectiveness of different policy interventions, such as export 
restrictions, priority allocation strategies, or public-private partnerships, providing insights into their 
potential impacts on the vaccine supply chain. 

By leveraging econometric models, policymakers, public health officials, and vaccine manufacturers 
can make informed decisions to enhance the efficiency and equity of the Covid-19 vaccine supply chain. 
These evidence-based strategies are crucial for achieving global vaccination goals and minimizing the 
socio-economic impact of the pandemic. 

2.2 Literature Review 

The equitable distribution of vaccines is one of the challenges in the vaccine supply chain and a critical 
aspect of public health, particularly in times of global pandemics. In recent years, the world has 
witnessed the emergence of numerous studies focusing on vaccine distribution equity. This literature 
review aims to summarize and analyze the key findings and trends from relevant research articles, 
highlighting the importance of addressing factors influencing vaccine distribution. 

Several studies have highlighted the presence of significant factors affecting vaccine distribution across 
different populations and regions. Factors such as socioeconomic status, race, ethnicity, and 
geographical location have been identified as key determinants of vaccine access and uptake (Hotez et 
al., 2021; Delamater et al., 2021). The literature suggests that marginalized and underserved 
communities face higher barriers to vaccine distribution, leading to increased vulnerability to infectious 
diseases. Additionally, numerous barriers contribute to the inequitable distribution of vaccines. Lack of 
healthcare infrastructure, limited vaccine supply, inadequate funding, and logistical challenges are 
commonly identified barriers (Hotez et al., 2021; Mehrotra et al., 2021). Language and cultural barriers, 
vaccine hesitancy, and misinformation also play a significant role in exacerbating disparities in vaccine 
access (Leask et al., 2018; Karafillakis et al., 2019). 

The literature offers various strategies and interventions to address vaccine distribution disparities. 
Targeted vaccination campaigns, mobile clinics, and community-based outreach programs have proven 
effective in reaching underserved populations (Delamater et al., 2021; Asch et al., 2021). Improving 
vaccine supply chains, enhancing healthcare infrastructure, and implementing effective communication 
campaigns are crucial steps in achieving equitable distribution (Hotez et al., 2021; O’Leary et al., 2021). 
Additionally, policy interventions such as vaccine mandates and subsidies have been proposed to ensure 
equitable access to vaccines (Mehrotra et al., 2021; Phelan et al., 2020). The literature also emphasizes 
the importance of global collaboration and solidarity in addressing vaccine distribution equity. 
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International organizations, such as the World Health Organization (WHO) and COVAX, have been 
instrumental in facilitating equitable access to vaccines (Bollyky et al., 2021). Lessons learned from 
previous pandemics, such as the H1N1 influenza and Ebola outbreaks, have informed current strategies 
for improving vaccine distribution equity (O’Leary et al., 2021; Moon et al., 2020). 

Econometric Models: Foundations and Applications 

Econometric models play a crucial role in empirical economic analysis, enabling researchers to quantify 
and examine the relationships between economic variables. This literature review aims to provide an 
overview of key econometric models developed over the years and their applications in various 
economic domains. The review begins with a discussion of foundation models and then explores recent 
advancements in econometric modelling techniques and provides the contributions of different studies 
and researchers. 

Foundation models enable economists to quantify the effects of various factors on economic outcomes, 
estimate causal relationships, and make predictions. Two key econometric models that have shaped the 
field are simple linear regression and multiple regression. Simple linear regression, introduced by 
Galton (1886), establishes a linear association between a dependent variable and a single 
independent variable. Multiple regression, pioneered by Pearson (1895), extends this model by 
incorporating multiple independent variables to explain the variation in the dependent variable. 
These models have played a pivotal role in econometric analysis and continue to serve as the building 
blocks for more sophisticated econometric techniques. 

Simple Linear Regression Simple linear regression is a fundamental econometric model that 
establishes a linear relationship between a dependent variable and a single independent variable. This 
model, first introduced by Sir Francis Galton ( 1886) has since been widely used in econometric 
analysis. The model can be expressed as: 

! = # + %& + ',

where Y represents the dependent variable, X represents the independent variable, # and % denote the 
intercept and slope coefficients, respectively, and ' represents the error term. Simple linear regression 
enables researchers to estimate the causal impact of the independent variable on the dependent variable 
by quantifying the magnitude and direction of the relationship. 

Multiple Regression Multiple regression expands upon the simple linear regression model by 
incorporating multiple independent variables to explain the variation in a dependent variable. Karl 
Pearson’s work in 1895 laid the foundation for multiple regression, which has since become a 
cornerstone of econometric analysis (Pearson, 1895). The multiple regression model can be expressed 
as: 

! = # + %!&! + %"&"+. . . +%#&# + ',

where &!, &", …, &#ₙ are the independent variables,%!, %", …, %# are the corresponding coefficients, 
and # and ) represent the intercept and error term, respectively. Multiple regression allows researchers 
to simultaneously consider the effects of multiple independent variables on the dependent variable, 
providing a more comprehensive analysis of the relationships between economic variables. 

The significance of these foundation econometric models lies in their ability to estimate the parameters 
of interest, assess statistical significance, and make predictions based on empirical data. By employing 



33 

these models, researchers can quantitatively analyze economic phenomena, test hypotheses, and inform 
policy decisions. 

Advancements in Econometric Modeling Techniques 

Econometric modelling techniques have continuously evolved to address the complexities and 
challenges encountered in empirical economic analysis. This section highlights key advancements in 
econometric modelling and their contributions to the field. 

Time Series Analysis Time series analysis focuses on modelling and forecasting variables observed 
over time. Autoregressive Integrated Moving Average (ARIMA) models have been widely employed 
in this context. Box and Jenkins (1970) introduced the ARIMA model, which incorporates 
autoregressive (AR), moving average (MA), and differencing components to capture the temporal 
dynamics of the data (Box & Jenkins, 1970). This approach has been instrumental in analyzing and 
predicting economic time series, enabling researchers to uncover patterns, seasonality, and trends in 
data. The advantages of ARIMA models lie in their ability to handle non-stationary data and provide 
accurate short-term forecasts. However, ARIMA models may struggle with complex nonlinear 
relationships and may not capture long-term trends effectively (Box & Jenkins, 1970). 

Panel Data Analysis Panel data analysis deals with data collected over multiple individuals or entities 
over time. Fixed Effects (FE) and Random Effects (RE) models have been pivotal in this area. Mundlak 
(1978) introduced the random effects estimator, which effectively captures unobserved heterogeneity 
and time-varying effects in panel data (Mundlak, 1978). These models allow researchers to control for 
individual-specific characteristics, test for individual heterogeneity, and estimate the effects of time-
varying variables, enhancing the understanding of complex economic phenomena. FE models control 
for individual-specific characteristics, while RE models capture time-varying effects. Panel data 
analysis includes the ability to control for unobserved heterogeneity, estimate dynamic effects, and 
improve efficiency. However, these models assume specific assumptions, such as no individual-specific 
omitted variables in FE models, which can be challenging to verify and may lead to biased estimates 
(Mundlak, 1978). 

Instrumental Variable (IV) Regression Instrumental Variable (IV) Regression addresses endogeneity 
issues and helps establish causal relationships between variables. The instrumental variable approach 
was initially developed by Wright in 1928 (Wright, 1928) and expanded upon by Frisch in 1936 (Frisch, 
1936). IV regression uses instrumental variables that are correlated with the endogenous variables of 
interest but unrelated to the dependent variable. The two-stage least squares (2SLS) method is 
commonly employed in IV regression. This technique has been crucial in overcoming endogeneity 
biases and providing unbiased estimates of causal effects, particularly in studies involving observational 
data. The advantages of IV regression lie in its potential to provide consistent estimates of causal effects 
when endogeneity is present. However, IV regression relies on the assumption that the instrumental 
variables are valid and fulfill certain criteria, which can be difficult to satisfy in practice. Additionally, 
IV regression may suffer from weak instrument problems and can introduce additional sources of bias 
(Wright, 1928; Frisch, 1936). 

Machine Learning and Big Data The integration of machine learning techniques and the availability 
of big data have revolutionized econometric modelling. Machine learning algorithms, such as neural 
networks, random forests, and support vector machines, offer powerful tools for predictive modelling 
and pattern recognition. These approaches can handle large and complex datasets and capture intricate 
nonlinear relationships. The advantages of machine learning lie in their flexibility, adaptability, and 
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ability to uncover complex patterns in data. However, machine learning techniques may lack 
interpretability, making it challenging to provide a clear economic interpretation of the results. 
Furthermore, they may be prone to overfitting when the data is noisy or when the model complexity is 
not properly controlled (Bai et al., 2018). 

Hypotheses 

From the literature review, we were able to formulate two hypotheses: 

• H1: The presence of the vaccine producers’ supply chain in a country affects the number of
vaccine dose administrated in that country.

• H2: A higher number of pharmaceutical companies present in a country has a positive impact
on the number of doses administrated.

2.3 Methodology 

This study uses the R language to develop an econometric model for the Covid-19 vaccine supply chain. 
The data on Pfizer and Moderna Covid-19 vaccine and its supply chain will be collected from various 
sources creating a total of three datasets. We decided to collect data for the last 3 years from December 
2020 to March 2023. These data sets were created using information on the number of doses of vaccine 
administrated by Pfizer, Moderna and their total using “Covid vaccine doses by manufacturer” by Our 
World in Data(2023), whether the vaccine was approved from the Covid-19 Vaccine tracker. We also 
required data on the number of Pfizer and/or Moderna supply chains present in the country, the number 
of formulation facilities, the number of lipids producing facilities, and the number of fill and finish 
facilities, which was acquired and derived from the article of Bown and Bollyky titled “How Covid-19 
vaccine supply chains emerged in the midst of a pandemic” (2021). The last data we need was the 
number of the top 1000 pharmaceutical companies present in the country from the Orbis database. 

We then created three panel dataframes which includes the variables as shown in Table 2-1. We chose 
to create our dataset in a panel format as we had information on the number of doses administrated 
throughout a period of 3 years for 43 countries. 

Table 2-1: Variable description Pfizer, Moderna and the Covid-19 vaccine producer panel datasets 

Variable Description 

id Country id 

Country Country the vaccine was administrated 

year Year of administration 

dose_total Sum of the Pfizer dose and Moderna dose administrated 

reg_moderna binary, 1 if Moderna vaccine is approved in the country, and 0 is not 

number_cov_chain_moderna Number of Moderna supply chain present in the country 

reg_pfizer binary, 1 if Pfizer vaccine is approved in the country, and 0 is not 

number_cov_chain_pfizer  the number of Pfizer supply chain present in the country 

number_formulation  Number of formulation facilities in the country 

number_lipids Number of lipids production facilities in the country 

number_fill Number of fill and finish facilities in the country 

number_top_1000 Number of top 1000 facilities in the country 

https://ourworldindata.org/grapher/covid-vaccine-doses-by-manufacturer
https://ourworldindata.org/grapher/covid-vaccine-doses-by-manufacturer
https://covid19.trackvaccines.org/
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rug_ver_pfizer binary, 1 if the country is in Pfizer’s VSC classification region (based on 
Rugman & Verbeke classification), and 0 if not 

rug_ver_moderna binary, 1 if the country is in Moderna’s VCS classification region (based 
on Rugman & Verbeke classification), and 0 if not 

continent Continent the county is in 

Model 
Once our datasets are created, we can formulate a linear regression model for the number of vaccine 
doses administered. We decided to use the simple linear regression model despite having panel data 
because our initial panel data was over a short period of time to be affected by time effect. Despite this 
decision, we still decided to perform a robustness test. To create our linear models, we first needed to 
create dummy variables for our three datasets using the id variable. This resulted in 35 additional 
variables one for each of the 35 countries of the datasets. For the linear regression, we decided to use 
the number of doses administrated as our dependable variable and all the variables presented in Table 
2-1 in addition to the dummy variable generated as independent variables. This process was repeated
for all three datasets, thus creating three simple linear regressions for each dataset. Model 1 examines
the influence of the Pfizer and Moderna supply chain variable on distribution, through the sum of
vaccine doses from both producers across 43 countries. Models 2 and 3 examine the influence of supply
chain variables on distribution focusing solely on Moderna for model 2 and Pfizer for model 3. The
equation of the three models is shown in Table 2-2.

Table 2-2: Linear equation of Model 1,2 & 3 

Model Regression 
Model 1 - 
Total Pfizer 
& Moderna 

*+,-(%&%'() = 	# +	%!/-0(*+,-./) +	%"/-0(0&1./#') +	%21234-/(3&4	36',#	*+,-./)
+ %71234-/(3&4.	36',#	0&1./#') +	%81234-/(+&/09('%,&#)
+ %:1234-/((,*,1;) +	%<1234-/(+,(() +	%=1234-/(%&*	!>>>)
+ %?/205-/(*+,-./) +	%!>/205-/(0&1./#') +	%!!6*(!) +⋯
+ %7:6*(28) + 	)

Model 2 - 
Moderna 

*+,-(*+,-./) = 	# +	%!/-0(*+,-./) +	%"1234-/(3&4	36',#	*+,-./)
+ %21234-/(+&/09('%,&#) +	%71234-/((,*,1;) +	%81234-/(+,(()
+ %:1234-/(%&*	!>>>) +	%<6*(!) +⋯+	%7"6*(28) + 	)

Model 3 - 
Pfizer 

*+,-(0&1./#') = 	# +	%!/-0(0&1./#') +	%"1234-/(3&4.	36',#	0&1./#')
+ %21234-/(+&/09('%,&#) +	%71234-/((,*,1;) +	%81234-/(+,(()
+ %:1234-/(%&*	!>>>) +	%<6*(!) +⋯+	%7"6*(28)	 + 	)

Test of Robustness 

Once our panel data created, the next step is to perform a validity test of our data. We looked at 
the heterogeneity in our three datasets using the number of doses administrated as dependente variable 
and the country as an independent variable. Once the datasets were validated, we tested our dataset for 
fixed and random effects using the Hausman test. This step is important as it dictates the nature of the 
model we need to use. Considering the results of the Hausman test, all three datasets had a p-value 
lower than 5% therefore we need a fixed-effects model. With this result, the question is now to know 
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whether the fixed effects are cross-sectional, or time-based. Indeed, when running a fixed effects 
model, the question then arises as to whether we should test for time-fixed effects. 

In addition to testing for time-fixed effect, we also need to check if we have an unbalanced panel 
(missing values. We ran a Breusch-Pagan test for unbalanced panels, which also confirmed the need 
for time-fixed effects. 

Now that we know for certain that our data required a fixed effect model, we need to check for 
contemporaneous correlation (or cross-sectional dependence. Based on the following two tests: (1 
Breusch-Pagan and (2 Pesaran, we did not find cross-sectional dependence. We also tested for serial 
correlation using the Breusch-Godfrey/Wooldridge test, which did not highlight the presence of serial 
correlation in idiosyncratic errors. To go a little further, we investigated the presence or not of a unit 
root (i.e., non-stationary. If the series is non-stationary, then the generalized method of moments 
(GMM estimators would be perfect candidates. 

Here, there is no unit root, but this does not exclude GMM estimators anyway. Indeed, we need to 
check for the potential presence of heteroskedasticity. Based on the Breusch-Pagan test, we 
highlight the presence of heteroskedasticity. To correct for heteroskedasticity, we need to promote 
an estimation technique with a robust covariance matrix. To summarize all these tests, we do not have 
serial and cross-sectional dependence, with a non-stationary and homoscedastic unbalanced dataset. 

For the results of the tests, we were able to proceed with our models. We decided to use both Beck 
and Katz model and Arellano model to identify the key variable influencing the doses of the 
Covid-19 vaccine administrated in a country. Model 1 looks at the influence of the supply chain 
variable of Pfizer and Moderna on the distribution, through the sum of doses of vaccine of the two 
producers in all 43 countries. While Models 2 and 3 look at the influence of supply chain variables on 
the distribution, the number of doses administered in all 43 countries focused solely on Moderna for 
Model 2 and Pfizer for Model 3. Once we created the model for all 43 countries, we wanted to model 
for different geographic regions and compare their result. Thus, five additional models were derived 
from Model 1. Model 1.1 test for the European region with 31 countries, Model 1.2 test for the North 
American region with two countries, Model 1.3 test for the South American region with five 
countries, Model 1.4 test for the Asian region with four countries and Model 1.5 test for the 
African region with one country. The same geographic separation was done for Model 2 and Model 
3, creating a total of 15 models using both Beck and Katz model and Arellano model. 

2.4 Results 

In the following section, the results of our models will be discussed and analyzed. The results are 
presented in three parts: Model 1, Model 2 and Model 3. For each model, a description of the results 
will be provided, with additional tables and graphs. 

Model 1 - Total Pfizer & Moderna 

Table 2-3 is the statistical summary of our first dataset, which has both information on Pfizer 
and Moderna supply chain and the total of their doses administrated from December 2020 to March 
2023, representing 172 observations or 34 countries. The average total number of doses 
administrated (dose_total) is 4,155.6 with a standard deviation of 14,922.2. The average 
number of Covid-19 vaccine formulation facilities per country is 0.9, the average number of 
Covid-19 vaccine lipids prod-
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uction is 0.3 and the average number of Covid-19 fill & finish facilities is 0.7 with a standard 
deviation of 2.3, 1.1 and 2 respectively. Furthermore, the average number of Moderna Covid-19 SC 
facilities per country is 0.53 while the average is 0.5 for Pfizer. 

Table 2-3: Summary Statistics 

Statistic N Mean St. Dev. Min Max 

172 22.0 12.4 1 43 
172 2,021.5 1.1 2,020 2,023 
172 4,155.6 14,922.2 0.0 105,000.0 
172 0.7 0.5 0 1 
172 0.3 1.2 0 8 
172 0.9 0.2 0 1 
172 0.5 1.8 0 10 
172 0.9 2.3 0 13 
172 0.3 1.1 0 7 
172 0.7 2.0 0 12 
172 10.9 25.9 0 163 
172 0.8 0.4 0 1 

id 
year 
dose_total 
reg_moderna 
number_cov_chain_moderna 
reg_pfizer 
number_cov_chain_pfizer 
number_formulation 
number_lipids 
number_fill 
number_top_1000 
rug_ver_pfizer 
rug_ver_moderna 172 0.05 0.2 0 1 

All the commands and algorithms are coded in R 4.2.2 
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Table 2-4 shows the regression results of Model 1. We can see that only one variable is significant. 
The id_21 is significant at the 1 percent level for Model 1. Additionally, this variable has a positive 
impact on the number of doses administrated. Table 2-5 is the result of the test of robustness for 
Model 1. We can see that in Beck & Katz model only two of our 10 variable was significant. The 
number of fill & finish facilities in the country is significant at the 10 percent level and the variable of 
Pfizer Rugman’s classification (rug_ver_pfizer) is significant at the 5 percent level. Additionally, 
the presence of the fill & finish facility has a positive influence on the number of doses 
administrated while the rug_ver_pfizer variable has a negative influence. On the other hand, 
Arellano & Bond’s model found only one significant variable. According to Table 2-5, the lag of 
the number of Moderna SC facilities present in the country is significant at the 1 percent level 
and has a negative impact on the number of doses administrated. 
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Table 2-4:  Linear Regression Results – Model 1

Number of Vaccine dose administrated

6,375,642,231.00 (≠3,023,044,179.00, 15,774,328,640.00)
615,204,446.00 (≠4,092,858,272.00, 5,323,267,164.00)

6,548,827,772.00 (≠3,518,162,457.00, 16,615,818,000.00)
3,768,211,504.00 (≠2,168,253,356.00, 9,704,676,365.00)

≠5,855,759,578.00 (≠14,066,920,135.00, 2,355,400,979.00)
305,551,317.00 (≠13,695,870,500.00, 14,306,973,134.00)
2,258,931,190.00 (≠4,470,875,442.00, 8,988,737,822.00)

253,942,964.00 (≠320,555,582.00, 828,441,510.00)
≠3,410,476,735.00 (≠15,495,245,795.00, 8,674,292,326.00)

reg_pfizer
reg_moderna
number_cov_chain_pfizer
number_cov_chain_moderna
number_formulation
number_lipids
number_fill
number_top_1000
rug_ver_pfizer
rug_ver_moderna
id_1
id_2
id_3
id_4
id_5
id_6
id_7
id_8
id_9

≠17,506,598,179.00 (≠96,295,700,969.00, 61,282,504,611.00)
9,362,363,440.00 (≠9,659,205,121.00, 28,383,932,000.00)

1,755,851,131.00 (≠12,332,016,311.00, 15,843,718,572.00)
1,085,589,820.00 (≠22,954,674,506.00, 25,125,854,146.00)
3,199,042,425.00 (≠11,739,046,445.00, 18,137,131,294.00)

23,245,751,362.00 (≠51,916,906,694.00, 98,408,409,418.00)
1,322,251,129.00 (≠13,461,225,801.00, 16,105,728,059.00)
3,268,471,230.00 (≠11,660,701,868.00, 18,197,644,328.00)
3,733,077,656.00 (≠11,174,474,475.00, 18,640,629,787.00)
11,582,272,246.00 (≠4,983,340,305.00, 28,147,884,797.00)
2,427,708,020.00 (≠12,806,843,926.00, 17,662,259,966.00)
2,446,071,374.00 (≠12,105,358,128.00, 16,997,500,876.00)
3,740,541,231.00 (≠11,167,010,900.00, 18,648,093,362.00)
2,911,569,698.00 (≠12,127,236,667.00, 17,950,376,062.00)

≠10,266,991,965.00 (≠43,747,749,923.00, 23,213,765,993.00)
1,658,003,377.00 (≠33,898,580,593.00, 37,214,587,347.00)
2,577,666,546.00 (≠11,494,007,055.00, 16,649,340,146.00)
3,155,642,722.00 (≠11,817,429,927.00, 18,128,715,371.00)
3,552,868,766.00 (≠11,317,038,725.00, 18,422,776,258.00)
≠938,631,553.00 (≠21,642,353,006.00, 19,765,089,899.00)
2,217,578,050.00 (≠22,458,495,296.00, 26,893,651,395.00)

40,641,134,386.00úúú (21,730,533,221.00, 59,551,735,552.00)
3,885,503,036.00 (≠11,022,049,096.00, 18,793,055,167.00)
3,706,602,640.00 (≠11,200,949,491.00, 18,614,154,771.00)
3,778,091,621.00 (≠11,129,460,510.00, 18,685,643,752.00)
3,725,379,148.00 (≠11,182,172,983.00, 18,632,931,279.00)
3,724,731,533.00 (≠11,182,820,598.00, 18,632,283,664.00)
2,064,638,112.00 (≠12,333,536,632.00, 16,462,812,856.00)
19,177,707,927.00 (≠9,746,142,937.00, 48,101,558,792.00)
3,672,378,019.00 (≠11,234,922,588.00, 18,579,678,626.00)

id_10
id_11
id_12
id_13
id_14
id_15
id_16
id_17
id_18
id_19
id_20
id_21
id_22
id_23
id_24
id_25
id_26
id_27
id_28
id_29
id_30
id_31
id_32
id_33
id_34
id_35

7,561,414,297.00 (≠6,836,760,447.00, 21,959,589,040.00)
3,062,665,064.00 (≠12,171,886,882.00, 18,297,217,010.00)
3,828,144,329.00 (≠11,079,156,278.00, 18,735,444,936.00)
4,859,657,471.00 (≠10,047,894,660.00, 19,767,209,602.00)
3,821,463,455.00 (≠11,086,088,676.00, 18,729,015,586.00)
3,245,812,772.00 (≠11,683,360,326.00, 18,174,985,870.00)
≠7,132,099,789.00 (≠17,857,998,089.00, 3,593,798,511.00)Constant

Time Fixed E�ects No

Notes: úúúSignificant at the 1 percent level.
úúSignificant at the 5 percent level.
úSignificant at the 10 percent level.

Time-fixed e�ects estimations based on Beck and Katz,
with control for potential serial correlation, contemporenous correlation and heteroskedasticity.

All the commands and algorithms are coded in R 3.5.3 using the plm package.
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Table 2-5: Robustness Regression Results – Model 1 

Number of Vaccine dose administrated 
Beck and Katz 2 Arellano and Bond 2 

(1) (2) 

reg_pfizer 7,538.64 (−4,621.22, 19,698.50) 
reg_moderna 2,641.06 (−1,463.91, 6,746.04) 
number_cov_chain_pfizer −2,083.85 (−9,021.78, 4,854.08)
number_cov_chain_moderna −1,788.50 (−12,192.79, 8,615.80)
number_formulation 1,289.29 (−1,205.77, 3,784.36)
number_lipids 1,557.31 (−5,026.57, 8,141.19)
number_fill 6,149.27∗ (23.26, 12,275.28) 
number_top_1000 −58.63 (−484.47, 367.20)
rug_ver_pfizer −6,242.70∗∗ (−11,296.20, −1,189.20)
rug_ver_moderna −1,608.40 (−13,924.58, 10,707.77)
lag(reg_pfizer, 1) 2,111.17 (−866.95, 5,089.29) 
lag(reg_moderna, 1) 1,221.80 (−276.24, 2,719.85) 
lag(number_cov_chain_pfizer, 1) −5,611.23 (−20,013.35, 8,790.90)
lag(number_cov_chain_moderna, 1) −14,811.30∗∗∗ (−25,745.25, −3,877.36)
lag(number_formulation, 1) 3,692.92 (−2,314.08, 9,699.92) 
lag(number_lipids, 1) −7,800.16 (−27,244.65, 11,644.33)
lag(number_fill, 1) 11,543.29 (−3,058.98, 26,145.56)
lag(number_top_1000, 1) 237.43 (−62.18, 537.04) 
Constant −3,780.17 (−14,105.89, 6,545.54)
Time Fixed Effects No No 

Notes: ∗∗∗Significant at the 1 percent level. 
∗∗Significant at the 5 percent level. 
∗Significant at the 10 percent level. 

Time-fixed effects estimations based on Beck and Katz, 
with control for potential serial correlation, contemporenous correlation and heteroskedasticity. 

All the commands and algorithms are coded in R 3.5.3 using the plm package. 
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When modelling Moderna and Pfizer vaccine distribution in 31 European countries, Beck & Katz’s 
model found that the number of fill & finish facilities in the country is significant at the 5 percent 
level with a positive impact on the number of vaccines administrated. Arellano & Bond’s results 
state that 4 variables are significant. The lag of Pfizer vaccine approval in the country and the lag of 
having a Pfizer supply chain facility in the country are both significant at the 1 percent level. 
The lag of Pfizer vaccine approval has a negative impact while the lag of having a Pfizer supply 
chain facility has a positive impact. Additionally, the lag of having Moderna supply chain facilities 
and the lag of having a formulation facility in the country is significant at the 5 percent level, with a 
positive and negative influence respectively. The results for the North American region of 
Moderna and Pfizer vaccine distribution show that for both Beck & Katz and Arellano & Bond 
models, none of the variables were significant. The result of modelling Moderna and Pfizer 
vaccine distribution in South American countries shows that for both models, Beck & Katz, and 
Arellano & Bond, none of the variables were significant. The result of model 1.4, representing the 
modelling of Moderna and Pfizer vaccine distribution in 4 Asian countries shows that Beck & Katz 
model found no significant variable. On the other hand, Arellano & Bond’s model found that the 
lag of Pfizer vaccine approval in the country, the lag of having Moderna supply chain facilities in 
the country and the lag of having fill & finish facilities in the country are both significant at the 1 
percent level. Lastly, the result of the African region shows that Beck & Katz found no 
significant variable. However, Arellano & Bond found that the lag of Pfizer and Moderna 
vaccine approval is significant at the 1 percent level (Appendix A to E). 

Model 2 - Moderna 

Table 2-6 is the statistical summary of our second dataset, which is for Moderna’s supply chain and 
the number of Moderna vaccine doses administrated from December 2020 to March 2023, 
representing 172 observations or 34 countries. The average total number of doses administrated 
(dose_moderna is 1,037.6 with a standard deviation of 4,722.2. The average number of Covid-19 
vaccine formulation facilities per country is 0.9, the average number of Covid-19 vaccine lipids 
production is 0.3 and the average number of Covid-19 fill & finish facilities is 0.7 with a standard 
deviation of 2.3, 1.1 and 2 respectively. Furthermore, the average number of Moderna Covid-19 SC 
facilities per country is 0.3 with a standard deviation of 1.2. 
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Table 2-6: Summary Statistics 

Statistic N Mean St. Dev. Min Max 

id 172 22.0 12.4 1 43 
year 172 2,021.5 1.1 2,020 2,023 
reg_moderna 172 0.7 0.5 0 1 
dose_moderna 172 1,037.6 4,722.2 0.0 38,837.9 
number_cov_chain_moderna 172 0.3 1.2 0 8 
number_formulation 172 0.9 2.3 0 13 
number_lipids 172 0.3 1.1 0 7 
number_fill 172 0.7 2.0 0 12 
number_top_1000 172 10.8 25.9 0 163 
rug_ver_moderna 172 0.05 0.2 0 1 

All the commands and algorithms are coded in R 4.2.2 
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Table	 2-7	 shows	 the	 linear	 regression	 results	 of	 Model	 2.	 We	 can	 see	 that	 7	 variables	 are	
significant	at	different	 levels.	The	 id_21	 is	 the	only	variable	 that	 is	significant	at	 the	1	percent	
level	and	has	a	positive	impact	on	the	dependent	variable.	The	number_lipids,	the	id_1	and	the	
constant	variable	are	all	significant	at	the	10	percent	level.	Both	the	number_lipids	and	the	id_1	
have	a	positive	 impact	on	 the	number	of	doses	administrated	and	 the	constant	variable	has	a	
negative	 impact	 on	 the	 dependent	 variable.	 The	 number_cov_chain_moderna,	 the	 number_fill	
and	 the	 id_14	 are	 significant	 at	 the	 5	 percent	 level	 and	 the	 first	 two	 have	 a	 positive	 impact	
on	the	 Covid-19	 vaccine	 administrated	while	 the	 id_14	 variable	 has	 a	 negative	 impact.	 Table	
2-8	shows	 the	 regression	 results	of	 the	 test	 of	 robustness	 for	Model	2.	We	 can	 that	 in	Beck	&	
Katz	model	 found	that	none	of	our	6	variables	was	significant.	However,	all	 the	variable	has	a	
positive	influence	 on	 the	 number	 of	 Moderna	 vaccine	 administrated	 in	 a	 country	 except	 the	
variable	about	the	number	of	the	top	1000	pharmaceutical	company	in	the	country	which	has	a	
negative	impact.	 On	 the	 other	 hand,	 Arellano	&	Bond’s	model	 found	4	 significant	 variables	 at	
different	 levels.	 The	 lag(number_lipids)	 and	 the	 lag(number_fill)	 are	 both	 significant	 at	 the	
10	 percent	 level,	 while	 the	 first	 has	 a	 negative	 impact	 on	 the	 Covid-19	 vaccine	
administrated	 and	 the	 second	 has	 a	 positive.	 Additionally,	 the	 lag(reg_moderna,1)	 is	
significant	 at	 the	 5	 percent	 level	 with	 a	 positive	 influence	 and	 the	
lag(number_cov_chain_moderna,1)	 is	 significant	 at	 the	 1	percent	level	with	a	negative	impact	
on	the	dose	administrated.	
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Table 2-7: Linear Regression Results – Model 2

Number of Vaccine dose administrated

46,496,773.00 (≠1,313,453,305.00, 1,406,446,851.00)
1,556,998,936.00úú (58,801,213.00, 3,055,196,660.00)

≠1,481,404,003.00 (≠3,356,804,584.00, 393,996,578.00)
2,050,589,141.00ú (≠90,016,405.00, 4,191,194,687.00)
1,838,251,066.00úú (403,672,227.00, 3,272,829,905.00)

≠21,868,650.00 (≠99,002,515.00, 55,265,214.00)

reg_moderna
number_cov_chain_moderna
number_formulation
number_lipids
number_fill
number_top_1000
id_1
id_2
id_3
id_4
id_5
id_6
id_7
id_8
id_9

4,473,805,338.00ú (≠106,782,018.00, 9,054,392,693.00)
1,369,452,874.00 (≠2,631,391,445.00, 5,370,297,194.00)
4,269,860,922.00 (≠1,372,377,918.00, 9,912,099,762.00)
1,663,787,315.00 (≠2,088,652,877.00, 5,416,227,506.00)
1,165,911,434.00 (≠2,928,270,876.00, 5,260,093,744.00)
1,643,456,217.00 (≠2,131,461,258.00, 5,418,373,692.00)
1,683,885,165.00 (≠2,063,009,318.00, 5,430,779,648.00)
1,635,404,579.00 (≠2,124,156,004.00, 5,394,965,162.00)
3,362,104,975.00 (≠1,017,687,014.00, 7,741,896,965.00)
1,796,429,230.00 (≠1,944,139,501.00, 5,536,997,961.00)
1,688,573,253.00 (≠2,195,638,901.00, 5,572,785,407.00)
1,636,503,291.00 (≠2,123,057,293.00, 5,396,063,874.00)
1,754,031,894.00 (≠1,986,521,249.00, 5,494,585,037.00)

id_10
id_11
id_12
id_13
id_14
id_15
id_16
id_17
id_18
id_19
id_20
id_21
id_22
id_23
id_24
id_25
id_26
id_27
id_28
id_29
id_30
id_31
id_32
id_33
id_34
id_35

≠8,102,823,985.00úú (≠15,980,026,108.00, ≠225,621,862.00)
5,077,502,265.00 (≠3,838,240,616.00, 13,993,245,145.00)
1,754,179,204.00 (≠2,105,214,761.00, 5,613,573,168.00)
1,719,305,101.00 (≠2,023,625,356.00, 5,462,235,558.00)
1,620,296,540.00 (≠2,154,590,563.00, 5,395,183,643.00)
3,140,362,690.00 (≠889,470,264.00, 7,170,195,645.00)

1,131,665,406.00 (≠4,571,385,347.00, 6,834,716,158.00)
9,699,518,901.00úúú (5,161,212,174.00, 14,237,825,628.00)

1,681,528,809.00 (≠2,078,031,774.00, 5,441,089,393.00)
1,632,565,247.00 (≠2,126,995,337.00, 5,392,125,830.00)
1,638,677,265.00 (≠2,120,883,318.00, 5,398,237,849.00)
1,637,099,567.00 (≠2,122,461,016.00, 5,396,660,150.00)
1,636,057,715.00 (≠2,123,502,869.00, 5,395,618,298.00)
1,788,538,088.00 (≠1,971,022,495.00, 5,548,098,672.00)

6,450,078,299.00 (≠1,574,247,507.00, 14,474,404,104.00)
1,696,085,192.00 (≠2,056,355,000.00, 5,448,525,383.00)
1,921,989,821.00 (≠1,837,570,762.00, 5,681,550,405.00)
1,843,064,069.00 (≠1,897,504,663.00, 5,583,632,800.00)
1,718,581,718.00 (≠2,033,858,473.00, 5,471,021,910.00)
1,721,998,130.00 (≠2,037,562,454.00, 5,481,558,713.00)
1,645,687,976.00 (≠2,113,872,607.00, 5,405,248,560.00)
1,679,817,490.00 (≠2,067,076,993.00, 5,426,711,973.00)

≠1,666,704,603.00ú (≠3,501,271,029.00, 167,861,823.00)Constant
Time Fixed E�ects No

Notes: úúúSignificant at the 1 percent level.
úúSignificant at the 5 percent level.
úSignificant at the 10 percent level.

Time-fixed e�ects estimations based on Beck and Katz,
with control for potential serial correlation, contemporenous correlation and heteroskedasticity.

All the commands and algorithms are coded in R 3.5.3 using the plm package.
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Table 2-8: Robustness Regression Results – Model 2 

Number of Vaccine dose administrated 
Beck and Katz 2 Arellano and Bond 2 

(1) (2) 

reg_moderna 122.88 (−551.67, 797.43) 
number_cov_chain_moderna 1,197.46 (−1,174.70, 3,569.62) 
number_formulation 99.99 (−250.09, 450.08) 
number_lipids 231.97 (−860.79, 1,324.72) 
number_fill 940.33 (−496.40, 2,377.07) 
number_top_1000 −10.08 (−221.41, 201.25)
lag(reg_moderna, 1) 562.60∗∗ (60.18, 1,065.03) 
lag(number_cov_chain_moderna, 1) −4,664.65∗∗∗ (−6,653.87, −2,675.42)
lag(number_formulation, 1) 879.00 (−878.42, 2,636.42) 
lag(number_lipids, 1) −5,019.53∗ (−10,359.20, 320.14)
lag(number_fill, 1) 2,382.85∗ (−359.91, 5,125.62)
Constant −170.91 (−766.68, 424.85)
Time Fixed Effects No No 

Notes: ∗∗∗Significant at the 1 percent level. 
∗∗Significant at the 5 percent level. 
∗Significant at the 10 percent level. 

Time-fixed effects estimations based on Beck and Katz, 
with control for potential serial correlation, contemporenous correlation and heteroskedasticity. 

All the commands and algorithms are coded in R 3.5.3 using the plm package. 
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When looking at the regional distribution of Moderna’s vaccine, we can see that the result differs 
from model 2. The region results of the modelling Moderna vaccine distribution in 31 European 
countries. The result of the regression shows that when using Beck & Katz model the number of 
lipids production facilities in the country is significant at the 10 percent level with a positive impact 
on the number of Moderna vaccine administrated. Arellano & Bond’s result state that 2 variables are 
significant. The lag number of Covid-19 vaccine formulation facilities in the country has a negative 
impact on the number of Moderna doses administrated in the country with a significant level of 10 
percent. The second significant variable is the lag number of fill & finish facilities in the country with 
a level of 5 percent. The region results of the modelling Moderna vaccine distribution in Canada and 
the United States show that Beck & Katz model found no significant variable. Arellano & Bond’s 
results state that 2 variables are significant. The lag number of Covid-19 vaccine formulation 
facilities in the country and the lag number of Moderna supply chain facilities in the country has a 
negative impact on the number of Moderna doses administrated in the country with a significant 
level of 1 percent. For South American countries, both Beck & Katz and Arellano & Bond models 
found that none of the variables were significant. The result for Moderna vaccine distribution in 
Asian countries shows that Beck & Katz model found no significant variable. Arellano & Bond’s 
results state that 3 variables are significant. The lag number of fill & finish facilities, the lag of 
Moderna vaccine approval and the lag of the number of Moderna supply chain facilities in the 
country is significant at the 1 percent level. Both the lag of Moderna vaccine approval and the lag 
number of fill & finish facility has a positive impact on the number of Moderna dose 
administrated while the lag of the number of Moderna supply chain facilities in the country has 
a negative impact. Lastly, the result shows that for both Beck & Katz and Arellano & Bond 
models, none of the variables were significant when modelling for Moderna vaccine distribution in 
African countries (Appendix F to J). 

Model 3 - Pfizer 

Table 2-9 is the statistical summary of our last dataset, which is for Pfizer’s supply chain and 
the number of Pfizer vaccine doses administrated from December 2020 to March 2023, 
representing 172 observations or 34 countries. The average total number of doses 
administrated (dose_moderna) is 3,269.3 with a standard deviation of 10,705.2. The average 
number of Covid-19 vaccine formulation facilities per country is 0.9, the average number of 
Covid-19 vaccine lipids production is 0.3 and the average number of Covid-19 fill & finish 
facilities is 0.7 with a standard deviation of 2.3, 1.1 and 2 respectively. Furthermore, the average 
number of Moderna Covid-19 SC facilities per country is 0.5 with a standard deviation of 1.8.	



49 

Table 2-9: Summary Statistics 

Statistic N Mean St. Dev. Min Max 

id 172 22.0 12.4 1 43 
year 172 2,021.5 1.1 2,020 2,023 
reg_pfizer 172 0.9 0.2 0 1 
dose_pfizer 171 3,269.3 10,705.2 0.0 81,780.3 
number_cov_chain_pfizer 172 0.5 1.8 0 10 
number_formulation 172 0.9 2.3 0 13 
number_lipids 172 0.3 1.1 0 7 
number_fill 172 0.7 2.0 0 12 
number_top_1000 172 10.8 25.9 0 163 
rug_ver_pfizer 172 0.8 0.4 0 1 

All the commands and algorithms are coded in R 4.2.2 
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Table	2-10	 shows	 the	 linear	 regression	 results	 of	Model	3.	We	 can	 see	 that	4	 variables	 are	
significant	at	different	levels.	The	id_21	is	significant	at	the	1	percent	level	and	has	a	positive	
impact	on	the	dependent	variable.	As	the	3	other	significant	variables,	they	are	significant	at	
the	5	percent	level.	Those	variables	are	reg_pfizer,	number_cov_chain_pfizer	and	the	constant	
variable.	 Additionally,	 both	 the	 reg_pfizer	 and	 number_cov_chain_pfizer	 have	 a	 positive	
impact	 on	 the	 dependent	 variable	while	 the	 constant	 variable	 has	 a	 negative	 impact	 on	 it.	
Table	2-11	shows	the	results	of	the	test	of	robustness	for	Model	3.	We	can	see	that	in	Beck	&	
Katz	 model	 only	 two	 of	 our	 six	 variable	 was	 significant.	 The	 number	 of	 Covid-19	 vaccine	
formulation	facilities	in	the	country	is	significant	at	the	5	percent	level	and	the	number	of	fill	
&	finish	facilities	in	the	country	is	also	significant	at	the	5	percent	level,	both	variables	have	a	
positive	influence	on	the	number	 of	 Pfizer	 vaccine	 administrated	 per	 country.	 Arellano	 &	
Bond’s	 model	 found	 two	significant	variables.	According	to	Table	2-11,	the	lag	of	the	number	
of	Pfizer	supply	chain	facilities	present	 in	 the	 country	 is	 significant	 at	 the	 10	 percent	 level	
and	 has	 a	 positive	 impact	 on	 the	 number	 of	 doses	 administrated.	 The	 lag	 number	 of	
Covid-19	vaccine	lipids	production	facilities	in	the	country	is	significant	at	the	5	percent	level	
and	has	a	negative	impact.	
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Table 2-10: Linear Regression Results – Model 3

Number of Vaccine dose administrated

6,819,761,954.00úú (764,763,463.00, 12,874,760,444.00)
5,289,817,471.00úú (372,212,977.00, 10,207,421,965.00)

reg_pfizer
number_cov_chain_pfizer
number_formulation
number_lipids
number_fill
number_top_1000
id_1
id_2
id_3
id_4
id_5
id_6
id_7
id_8
id_9
id_10
id_11
id_12
id_13
id_14
id_15
id_16
id_17
id_18
id_19
id_20
id_21
id_22
id_23
id_24
id_25
id_26
id_27
id_28
id_29
id_30
id_31
id_32
id_33
id_34
id_35

≠3,380,071,451.00 (≠8,394,068,531.00, 1,633,925,628.00)
≠2,429,347,169.00 (≠8,348,145,653.00, 3,489,451,315.00)
1,958,887,697.00 (≠1,520,631,893.00, 5,438,407,287.00)

164,008,550.00 (≠110,191,693.00, 438,208,793.00)
4,533,288,868.00 (≠5,744,554,785.00, 14,811,132,521.00)
≠909,372,631.00 (≠10,145,416,863.00, 8,326,671,602.00)

≠5,940,726,410.00 (≠19,791,414,093.00, 7,909,961,272.00)
≠725,009,499.00 (≠9,383,203,270.00, 7,933,184,272.00)

3,191,650,413.00 (≠6,365,197,182.00, 12,748,498,007.00)
254,896,519.00 (≠8,395,935,925.00, 8,905,728,963.00)

≠884,006,018.00 (≠9,558,226,924.00, 7,790,214,889.00)
≠594,095,733.00 (≠9,244,928,177.00, 8,056,736,712.00)

4,748,813,151.00 (≠5,529,030,502.00, 15,026,656,804.00)
≠1,386,667,905.00 (≠10,210,328,120.00, 7,436,992,310.00)
1,956,941,122.00 (≠7,731,434,147.00, 11,645,316,391.00)
≠587,221,108.00 (≠9,238,053,552.00, 8,063,611,337.00)

≠1,082,304,321.00 (≠9,814,360,257.00, 7,649,751,616.00)
≠1,667,792,089.00 (≠19,030,030,563.00, 15,694,446,386.00)
≠4,988,103,755.00 (≠26,066,688,367.00, 16,090,480,858.00)

1,756,419,706.00 (≠6,838,802,686.00, 10,351,642,099.00)
≠915,561,736.00 (≠9,614,427,686.00, 7,783,304,215.00)
≠617,449,065.00 (≠9,268,281,510.00, 8,033,383,379.00)

≠4,664,752,522.00 (≠15,889,896,235.00, 6,560,391,191.00)
≠1,296,812,994.00 (≠13,901,329,441.00, 11,307,703,453.00)

32,019,606,614.00úúú (21,866,324,086.00, 42,172,889,142.00)
≠488,223,984.00 (≠9,139,056,428.00, 8,162,608,461.00)
≠618,155,195.00 (≠9,268,987,639.00, 8,032,677,249.00)
≠550,261,321.00 (≠9,201,093,765.00, 8,100,571,123.00)
≠603,359,079.00 (≠9,254,191,523.00, 8,047,473,366.00)
≠603,150,843.00 (≠9,253,983,287.00, 8,047,681,602.00)
1,105,408,479.00 (≠7,449,660,581.00, 9,660,477,539.00)

9,754,124,401.00 (≠9,460,936,238.00, 28,969,185,040.00)
≠599,215,158.00 (≠9,257,408,929.00, 8,058,978,613.00)

6,873,586,114.00 (≠1,681,482,946.00, 15,428,655,174.00)
≠791,957,263.00 (≠9,615,617,478.00, 8,031,702,952.00)
≠457,450,372.00 (≠9,115,644,143.00, 8,200,743,400.00)
445,461,131.00 (≠8,205,371,313.00, 9,096,293,576.00)

≠513,826,773.00 (≠9,164,659,217.00, 8,137,005,672.00)
≠901,469,677.00 (≠9,575,690,583.00, 7,772,751,230.00)

≠6,201,262,679.00úú (≠12,099,033,382.00, ≠303,491,976.00)Constant
Time Fixed E�ects No

Notes: úúúSignificant at the 1 percent level.
úúSignificant at the 5 percent level.
úSignificant at the 10 percent level.

Time-fixed e�ects estimations based on Beck and Katz,
with control for potential serial correlation, contemporenous correlation and heteroskedasticity.

All the commands and algorithms are coded in R 3.5.3 using the plm package.
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Table 2-11: Robustness Regression Results – Model 3 

Number of Vaccine dose administrated 
Beck and Katz 2 Arellano and Bond 2 

(1) (2) 

reg_pfizer 3,016.35 (−7,715.41, 13,748.12) 
number_cov_chain_pfizer −499.63 (−1,206.07, 206.82)
number_formulation 882.97∗∗ (201.60, 1,564.33)
number_lipids −2,335.54 (−6,791.21, 2,120.13)
number_fill 4,708.00∗∗ (880.85, 8,535.14)
number_top_1000 −61.42 (−348.63, 225.78)
lag(reg_pfizer, 1) 3,989.74 (−914.98, 8,894.47) 
lag(number_cov_chain_pfizer, 1) 5,429.62∗ (−316.79, 11,176.02) 
lag(number_formulation, 1) 1,814.97 (−1,599.70, 5,229.63) 
lag(number_lipids, 1) −12,962.11∗∗ (−25,306.35, −617.87)
lag(number_fill, 1) −3,625.35 (−9,335.14, 2,084.44)
Constant −2,140.00 (−12,469.55, 8,189.55)
Time Fixed Effects No No 

Notes: ∗∗∗Significant at the 1 percent level. 
∗∗Significant at the 5 percent level. 
∗Significant at the 10 percent level. 

Time-fixed effects estimations based on Beck and Katz, 
with control for potential serial correlation, contemporenous correlation and heteroskedasticity. 

All the commands and algorithms are coded in R 3.5.3 using the plm package. 



54 

Similar to model 1 and model 2, we model Pfizer vaccine distribution for different regions. Starting 
with the result of the European countries. Beck & Katz’s model found three significant variables. The 
number of Pfizer supply chain facilities in the country is significant at the 1 percent level and has a 
positive impact on the number of Pfizer vaccines administrated. The number of formulation and fill 
& finish facilities in the country is significant at the 5 percent level. Arellano & Bond’s results state 
that 3 variables are significant. The lag number of Covid-19 vaccine fill & finish facilities in the 
country and the lag of the number of Pfizer supply chain facilities in the country are significant at the 
5 percent level. The lag of Pfizer vaccine approval in the country is significant at the 1 percent level. 
After modelling vaccine distribution in North American countries, Canada and the United States, the 
result shows that Beck & Katz model found no significant variable. On the other hand, Arellano & 
Bond’s model found that the lag of Pfizer vaccine approval in the country and the lag of having 
formulation facilities in the country are both significant at the 1 percent level and have a negative 
impact on the number of Pfizer doses administrated. The result shows that for both Beck & Katz and 
Arellano & Bond models, none of the variables were significant concerning the distribution of Pfizer’s 
vaccine in South America. The results of the modelling Pfizer vaccine distribution in 4 Asian 
countries show that for both Beck & Katz and Arellano & Bond models, none of the variables were 
significant. In terms of distribution in African countries, the result shows that Beck & Katz model 
found no significant variable. On the other hand, Arellano & Bond’s model found that the lag of Pfizer 
vaccine approval is significant at the 1 percent level and has a positive impact on the number of Pfizer 
vaccines administrated in the country (Appendix K to O). 

2.5 Discussion 

The 2020 Covid-19 pandemic triggered a global health crisis that required the rapid development, 
production, and distribution of vaccines on a large scale. Efficient and equitable allocation of vaccines 
is crucial to counter the spread of the virus and mitigating its impact on public health and economies. 
As countries strive to protect their populations, ensuring equitable access to the Covid-19 vaccine 
supply chain has become a critical concern. Achieving an equitable distribution system is vital to 
address both the immediate health needs of individuals and the broader goal of containing the 
pandemic on a global scale. 

The project aims to examine the elements related to VSC that affect the distribution of Covid-19 
vaccines produced by leading manufacturers such as Pfizer and Moderna. We constructed 
econometric models, using the panel data analysis, that depict the connections between crucial 
variables in the vaccine supply chain. Furthermore, we will measure the influence of different factors 
on the availability and distribution of vaccines within a country, including current vaccine production 
facilities, vaccine approval policies, and more. With the literature, we formulated two hypotheses; 
H1) The presence of the vaccine producers’ supply chain in a country affects the number of vaccine 
doses administrated in that country and H2) the high number of pharmaceutical companies present 
in a country has a positive impact on the number of doses administrated. 

This project aims to identify whether supply chain factors affect the distribution of vaccines per 
country and what are the relevant factors. Thus, providing empirical insights on equitable vaccine 
distribution in the context of a global pandemic from a supply chain perceptive. The data collected 
provided information on the number of doses administrated over 3 years for 43 countries for Pfizer 
and Moderna. With dose data, we created three panel dataframes, one for each producer and one for 
both combined. Having panel data, we use the panel data analysis approach. First, we had to perform 
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a validity test on our data. We examined heterogeneity in our data set using the number of doses 
administered as the dependent variable and the country as the independent variable. After validating 
the data sets, we tested our data set for fixed and random effects using the Hausman test, resulting in 
the need for a fixed-effects model. With the result of the Hausman test, we decided to use both Beck 
and Katz model and Arellano model to identify the key variable influencing the dose of the Covid-19 
vaccine administrated in a country creating 3 initial models. We also model the dose of the Covid-19 
vaccine administrated in a country based on their geographical region, thus creating 15 models in 
total. 

When looking at the results, we found that different variables were significant at different levels for 
our three models. For Model 1, the regression that combines data of Pfizer & Moderna, the number 
of fill & finish facilities in the country is significant at the 10 percent level and the variable of Pfizer 
Rugman’s classification (rug_ver_pfizer) is significant at the 5 percent level when using Beck & Katz 
model. According to Arellano & Bond’s model, it is the lag of the number of Moderna SC facilities 
present in the country is significant at the 1 percent level. For Model 2, Beck & Katz model found 
that none of our 6 variables was significant when determining which factors influence the number of 
Moderna’s vaccines administrated in a country. However, Arellano & Bond’s model found 4 
significant variables at different levels, The lag(number_lipids) and the lag(number_fill) are both 
significant at the 10 percent level, the lag(reg_moderna,1) is significant at the 5 percent level and the 
lag(number_cov_chain_moderna,1) is significant at the 1 percent level. Lastly for Model 3, Beck & 
Katz model found that both the number of Covid-19 vaccine formulation facilities and the number of 
fill & finish facilities in the country are significant at the 5 percent level. 

Our results contradict or confirm our first hypothesis (H1) depending on the model used. In the case 
of Model 1 the presence of both Pfizer and Moderna’s supply chain in the country is not significant 
when using Beck & Katz model and Arellano & Bond model. However, for Model 2 and Model 3, 
the presence of a vaccine supply chain is significant when using Arellano & Bond model. This 
shows that the presence of VSC cannot be used as an indicator of vaccine distribution. For the 
second hypothesis (H2), our result contradicts it. For all the models, the number of top 1000 
pharmaceutical companies in the country is not significant and it has a negative impact on the 
number of doses administrated. 

The use of panel econometric models in analyzing the distribution of the Covid-19 vaccine has proven 
to be a valuable tool. Furthermore, panel econometric models enable researchers to analyze the impact 
of various determinants on vaccine distribution, such as population characteristics, healthcare 
infrastructure, government policies, and socio-economic factors. By incorporating multiple 
dimensions, these models offer a more comprehensive and nuanced analysis of the complex dynamics 
at play. Panel econometric models have demonstrated their utility in providing valuable insights into 
the distribution of the Covid-19 vaccine. Their ability to capture heterogeneity, control for unobserved 
factors, and estimate causal effects have enhanced our understanding of the factors influencing 
vaccine distribution and have supported evidence-based policymaking. 

The panel econometric model can be a useful tool for analyzing vaccine supply chain dynamics, but 
it also has certain limitations, primarily the availability of data and the variables chosen. First, the 
panel econometric model requires a relatively large sample size to produce reliable estimates, which 
may be challenging for specific regions or countries with limited data availability. The data we 
collected was for 43 countries, mostly European countries, which skewed the accuracy of our model. 
Additionally, the variable choice is important as panel econometric models can provide insights into 
the associations between variables, but establishing causality can be challenging. Vaccine supply 
chains and vaccine distribution are influenced by various factors, some of which may not be 
observable or measurable. 
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Omitted variable bias can arise when relevant variables are excluded from the model, leading to biased 
parameter estimates and potentially incorrect inferences. Moreover, panel models assume that the 
relationships among variables are constant over time and across entities, which may not always hold 
in the context of vaccine distribution, where factors such as vaccine availability and public sentiment 
can vary significantly. Additionally, the interpretation of panel econometric results requires caution, 
as they are susceptible to omitted variable bias and endogeneity. 

Moving forward, it is crucial to continue refining and advancing panel econometric modelling 
techniques to address the specific challenges posed by vaccine distribution. This includes 
incorporating more granular data, exploring dynamic relationships, and considering additional factors 
such as vaccine hesitancy and distribution logistics. By leveraging econometric models and 
addressing their limitations, policymakers and stakeholders can make informed decisions to ensure 
equitable and efficient distribution of vaccines, ultimately contributing to global efforts in controlling 
the pandemic. 
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Network analysis has proven to be a powerful tool for optimizing t he  distribution and supply 
of the vaccine COVID -19. This study explores the application of network analysis techniques 
to the complex web of stakeholders involved in the vaccine supply chain. By mapping the 
connections and interactions among the actors involved in the chain, network analysis provides 
insights into the flow of vaccines and identifies potential bottlenecks. Visualizing the network 
helps to understand the dynamics of vaccine distribution and enables policy makers and health 
organizations to develop targeted strategies to ensure efficient distribution and equitable access. 
Network analysis is conducted using social network analysis (SNA) techniques. SNA will map the 
network structure of the vaccine supply chain, identify key nodes and links, and analyze the flow of 
vaccines through the network. The expected outcomes of this study are as follows. 1) A map of the 
network structure of the Covid-19 vaccine supply chain, including key players, nodes, and links. 
2) Identification of bottlenecks and inefficiencies in the vaccine supply chain. 3) Suggest 
strategies to improve the efficiency and effectiveness of the vaccine supply chain. 

3.1 Introduction 

The Covid-19 pandemic has presented unprecedented challenges to global healthcare systems, 
economies, and societies (Wouters et al., 2021). The development, production, and distribution of 
Covid-19 vaccines have become critical endeavors in curbing the spread of the virus and mitigating 
its impact (Osterholm et al., 2021). The complexity of the vaccine supply chain, encompassing 
multiple stakeholders, intricate logistics, and global distribution networks, necessitates innovative 
approaches to optimize its efficiency, resilience, and equity. 

Network analysis has emerged as a powerful methodology for understanding complex systems and 
has gained increasing attention in the context of the Covid-19 vaccine supply chain. By examining 
the interconnections and interactions among key actors and nodes, network analysis offers valuable 
insights into the structure, dynamics, and performance of the vaccine supply chain (Wang et al., 2021). 
It facilitates the identification of bottlenecks, vulnerabilities, and opportunities for improvement, 
thereby enabling policymakers and stakeholders to make informed decisions to enhance the 
effectiveness of vaccine distribution efforts. Furthermore, network analysis allows for the evaluation 
of the resilience of the vaccine supply chain. By simulating disruptions, identifying critical nodes or 
links, and assessing the cascading effects of failures, researchers can assess the system’s ability to 
withstand shocks and propose strategies to enhance its resilience (Wu et al., 2021). Moreover, network 
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analysis can facilitate the assessment of the efficiency and equity of vaccine distribution, enabling the 
identification of areas where resources can be better allocated to ensure fair and timely access to 
vaccines for all populations. 

The main objective of this study is to conduct a network analysis of the Covid-19 vaccine supply 
chain. The network analysis will be conducted using social network analysis (SNA) techniques. The 
SNA will involve mapping the network structure of both vaccine supply chains, identifying the key 
nodes and links, and analyzing the flow of vaccines through the network. The expected results of this 
study are as follows: 1) A map of the network structure of the Covid-19 vaccine supply chain, 
including the key stakeholders, nodes, and links. 2) Identification of bottlenecks and inefficiencies in 
the vaccine supply chain. 3) Proposals for strategies to improve the efficiency and effectiveness of 
the vaccine supply chain. The data will be collected from various sources, including official reports, 
news articles, and academic papers on the Pfizer and Moderna Covid-19 vaccine supply chain as of 
June 2021. 

Understanding the network structure of the vaccine supply chain is crucial for identifying critical 
nodes and relationships that can significantly impact the production process. By mapping out the 
network, researchers can discern the key manufacturers involved, and analyze the flow of vaccines 
between them. Such analysis can reveal patterns of centralization or fragmentation in the network, 
shedding light on potential vulnerabilities or inefficiencies that need to be addressed. Thus, the results 
of this study can inform policymakers and stakeholders in the vaccine supply chain on strategies for 
improving the distribution and delivery of vaccines, ultimately contributing to the global effort to 
control the spread of Covid-19. 

3.2 Literature Review 

The efficient and reliable distribution of vaccines is critical to global public health. Vaccination 
programs have saved countless lives by preventing and mitigating the spread of infectious diseases. 
However, the successful implementation of vaccination campaigns depends on a well-functioning 
vaccine supply chain. Bottlenecks in supply chain management refer to specific points or stages 
within a supply chain where the flow of goods, information, or processes is hindered, or slowed down, 
leading to inefficiencies, delays, and potential disruptions. Identifying and addressing bottlenecks is 
crucial for optimizing supply chain performance and ensuring the smooth flow of products from 
suppliers to consumers. Previous papers provide an overview of the concept of bottlenecks in supply 
chain management and provide key research findings. 

Bottlenecks in supply chain management can take various forms as previously mentioned. Goldratt 
and Cox (1984) introduced the Theory of Constraints (TOC), which emphasizes identifying and 
mitigating bottlenecks as a fundamental principle for improving supply chain efficiency. They argue 
that a chain is only as strong as its weakest link, making bottleneck detection and resolution essential. 
One of the most common types of bottlenecks in supply chains is capacity constraints. Research by 
Hopp and Spearman (2000) discusses the impact of limited production capacity on supply chain 
performance. They emphasize the need for effective capacity management and scheduling to alleviate 
bottlenecks and maintain a balanced flow of products. Furthermore, excessive inventory levels can 
also lead to bottlenecks due to storage constraints, increased carrying costs and information distortion. 
This distortion can lead to another concept in supply chain management, the “bullwhip effect” (Lee 
& Billington, 1992). Lastly, Transportation and logistics bottlenecks can occur due to delays in transit, 
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customs clearance, or insufficient transport capacity. Researchers, such as Notteboom and Rodrigue 
(2005), investigate port-related bottlenecks and suggest strategies for addressing them. They 
emphasized the importance of efficient transportation networks in global supply chains. 

Detecting and addressing bottlenecks in the vaccine supply chain is essential to ensure timely and 
equitable access to vaccines. Thus, various techniques and methodologies employed for bottleneck 
detection in vaccine supply chains have been proposed by researchers. Among bottleneck detection 
techniques, Cold chain monitoring plays a pivotal role in vaccine distribution due to the sensitivity of 
vaccines to temperature variations. Kumari et al. (2016) highlight in their paper the importance of 
real-time temperature monitoring using sensors and data loggers to detect temperature excursions. 
Deviations from recommended temperature ranges can signal bottlenecks in cold chain infrastructure 
and transportation.  Another proposed methodology is the use of Data analytics and predictive 
modelling. These methods have seen an increase in their use to detect bottlenecks in vaccine supply 
chains. Indeed, Takian et al. (2020) explore the application of machine learning algorithms to analyze 
historical vaccine distribution data and predict potential bottlenecks. Predictive models can help 
decision-makers proactively allocate resources and optimize supply chain operations. Lastly, Ribeiro 
et al. (2017) demonstrate how Geographic Information Systems (GIS) analyses can help pinpoint 
areas with limited access to vaccination facilities, enabling targeted interventions. With GIS, they 
were able to identify bottlenecks related to geographical constraints and accessibility. 

Network analysis 

Network analysis has become a fundamental tool for understanding the complex patterns of 
interconnected entities in a wide range of domains, including social sciences, biology, computer 
science, and engineering (Newman, 2010; Barabási, 2016). With the advent of large-scale data and 
the increasing availability of computational resources, network analysis has gained prominence as a 
powerful approach to uncovering hidden structures, relationships, and dynamics within complex 
systems. By applying graph theory and advanced analytical techniques, network analysis provides 
valuable insights into the structure, function, and behavior of networks. 

The foundation of network analysis lies in graph theory, which provides a mathematical framework 
for modelling and analyzing interconnected structures (Diestel, 2017). Networks, represented as 
graphs consisting of nodes and edges, capture the relationships and interactions between entities. The 
nodes can represent individuals, organizations, genes, web pages, or any other discrete unit of interest, 
while the edges represent the connections, dependencies, or interactions between these entities. By 
studying the patterns and properties of nodes and edges, network analysis uncovers important 
structural features and dynamics that are often not evident through traditional analytical approaches. 

Network analysis encompasses various fundamental concepts and measures. For instance, centrality 
measures, such as degree centrality, betweenness centrality, and eigenvector centrality, quantify the 
relative importance or influence of nodes within a network (Newman, 2010). These measures allow 
to identify key nodes that act as connectors or central hubs within a network. Another important 
concept is community detection, which aims to identify cohesive groups of nodes that exhibit strong 
internal connections and weaker connections with other groups (Fortunato, 2010). Community 
detection algorithms enable the identification of functional substructures within complex networks, 
providing insights into modular organization and information flow. 
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The methods and techniques used in network analysis have evolved rapidly in recent years. Network 
visualization plays a crucial role in understanding network structures and patterns (Borgatti, Everett, 
& Johnson, 2018). Visualization techniques allow to explore and interpret complex networks, 
facilitating the identification of clusters, subgroups, and relationships between nodes. Network 
modelling involves constructing mathematical models that capture the characteristics and properties 
of real-world networks (Barabási & Albert, 1999; Watts & Strogatz, 1998). These models help 
understand and explain the emergence of specific network properties, such as the small-world 
phenomenon or scale-free degree distributions. 

The applications of network analysis are diverse and span multiple disciplines. In social sciences, 
network analysis has been applied to study social relationships, influence dynamics, information 
diffusion, and the spread of opinions and behaviors within social networks (Wasserman & Faust, 
1994; Borgatti, Mehra, Brass, & Labianca, 2009). In biology, network analysis has been instrumental 
in uncovering molecular interactions, gene regulatory networks, protein-protein interactions, and 
ecological networks (Barabási, 2016; Albert, Jeong, & Barabási, 2000). Network analysis also finds 
applications in transportation systems, urban planning, technological networks, and communication 
systems, aiding in optimizing network efficiency, identifying critical nodes, and improving 
infrastructure design (Ortúzar & Willumsen, 2011; Cohen & Havlin, 2010). 

Network structures or topologies play a crucial role in the design and analysis of networks. Several 
studies have examined the strengths and weaknesses of different network structures to understand 
their impact on network performance and reliability. 

One commonly studied network structure is the bus topology. According to Tanenbaum (2011), the 
bus topology is simple to implement and cost-effective. However, a significant drawback of the bus 
topology is that the failure of the main link can bring down the entire network, making fault 
identification challenging. In contrast, the star topology has gained popularity due to its centralized 
control and easy management (Forouzan, 2013). In this structure, a central node connects all other 
nodes in the network, providing individual fault isolation. However, the central node becomes a single 
point of failure, potentially affecting the entire network if disrupted. Another well-known network 
structure is the ring topology, where nodes are connected in a closed loop (Kurose & Ross, 2020). 
This topology offers a specific sequence for pathing and reduces redundancy. However, a single node 
or link failure can disrupt the entire network, and troubleshooting in a closed loop is challenging. 
Mesh topology provides the highest level of redundancy as each node is connected to every other 
node (Stallings, 2013). This structure ensures multiple paths for data transmission, allowing for 
seamless communication even if one or more connections fail. However, implementing a mesh 
network can be costly due to the number of linkages. Hybrid topologies have gained attention due to 
their flexibility and scalability (Comer, 2019). By combining different network structures, hybrid 
topologies can be tailored to meet specific needs. However, the complexity of managing and 
maintaining multiple topologies within a hybrid structure should be considered. Lastly, the tree 
topology combines the features of the bus and star topologies. It allows for the extension of networks 
by connecting multiple star topologies. It provides a hierarchical structure that can be easily managed 
(Tanenbaum, 2011). However, failure of the central hub or main backbone can disrupt the entire 
network. The scalability of the tree topology is limited by the number of available ports on the central 
hub (Tanenbaum, 2011). 
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Centrality measure 

In network analysis, centrality measures are used to identify the most important nodes in a network. 
Centrality measures capture different aspects of node importance, such as the number of connections, 
the degree of influence, and the ability to bridge different parts of the network. 

Degree Centrality: Degree centrality is the most basic centrality measure, and it is based on the 
number of connections a node has in a network. The more connections a node has, the higher its 
degree of centrality. Degree centrality has been used in various domains, such as social network 
analysis (Scott, 2000) and protein-protein interaction networks (Jeong et al., 2001). 

Degree centrality possesses several strengths that contribute to its wide usage. Firstly, it is simple and 
interpretable, allowing researchers to intuitively understand the importance of nodes based on their 
degree values (Borgatti, Everett, & Freeman, 2002). Secondly, it is computationally efficient, making 
it applicable to large-scale network analysis (Brandes, 2001). Thirdly, degree centrality is robust to 
random failures and noise, as nodes with high degrees tend to have redundancy in their connections 
(Cohen, Havlin, & Ben-Avraham, 2003). Lastly, degree centrality captures both local and global node 
importance, providing insights into both individual node influence and the overall network structure 
(Estrada & Rodríguez-Velázquez, 2005). 

Despite its strengths, degree centrality has some limitations. Firstly, it is insensitive to the position 
of the node within the network, ignoring the role of neighbouring nodes (Barrat et al., 2004). 
Secondly, degree centrality fails to capture indirect or long-range effects in the network, which 
are important in certain contexts (Opsahl et al., 2008). Thirdly, degree centrality is vulnerable to 
intentional attacks and targeted removals, as important nodes can be easily identified and 
compromised (Albert et al., 2000). Lastly, degree centrality overlooks the importance of node 
attributes or contextual factors, which may significantly influence node importance in certain 
applications (Borgatti, 2006). 

Betweenness Centrality: Betweenness centrality measures the degree to which a node acts as a 
bridge between different parts of a network. Nodes with high betweenness centrality are important 
for maintaining the connectivity of the network. Betweenness centrality has been used in various 
domains, such as transportation networks (Brandes et al., 2008) and social network analysis (Freeman, 
1979). 

Betweenness centrality possesses several strengths. Firstly, it identifies nodes that play a crucial role 
in mediating interactions and information flow between other nodes, making it particularly useful in 
understanding the network’s communication efficiency (Freeman, 1977). Secondly, it captures the 
strategic position of nodes in controlling the flow of information, making it valuable for identifying 
potential bottlenecks or vulnerable points in the network (Brandes, 2001). Thirdly, betweenness 
centrality can be applied to both unweighted and weighted networks, allowing for a flexible analysis 
of different types of networks (Borgatti, 2005). 

Betweenness centrality has some limitations. Firstly, it tends to favour nodes in networks with a higher 
number of shortest paths, potentially overlooking nodes with alternative pathways or longer-range 
effects (Newman, 2018). Secondly, betweenness centrality is computationally expensive to calculate, 
particularly in large networks, making it challenging to apply to massive-scale datasets (Brandes, 
2001). Thirdly, betweenness centrality does not consider the importance of node attributes or context, 
which can be relevant in certain applications (Borgatti, 2006). 
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Closeness Centrality: Closeness centrality measures the degree to which a node is close to all other 
nodes in a network. Nodes with high closeness centrality can spread information quickly and 
efficiently throughout the network. Closeness centrality has been used in various domains, such as 
social network analysis (Sabidussi, 1966) and ecological networks (Bodin et al., 2006). 

This centrality measure provides insights into the accessibility and efficiency of information or 
influence flow within a network, allowing the identification of nodes that have faster access to the 
network’s resources (Bavelas, 1950). Secondly, closeness centrality can be calculated for both 
weighted and unweighted networks, providing flexibility in analyzing different types of networks 
(Opsahl, 2013). Thirdly, closeness centrality captures the local perspective by focusing on the node’s 
immediate neighbours, making it useful for understanding local information diffusion (Opsahl, 2013). 

However, closeness centrality assumes that the shortest path is the only pathway for information or 
influence flow, which may not always reflect the complexity of real-world networks (Opsahl, 2013). 
Secondly, closeness centrality is sensitive to disconnected nodes or components in a network, 
potentially distorting centrality rankings (Sabidussi, 1966). Thirdly, closeness centrality may not 
adequately capture the influence of longer-range connections or indirect pathways in certain network 
contexts (Borgatti, 2005). 

Eigenvector Centrality: Eigenvector centrality measures the degree to which a node is connected to 
other high-degree nodes in a network. Nodes with high eigenvector centrality are important because 
they are connected to other important nodes in the network. Eigenvector centrality has been used in 
various domains, such as social network analysis (Bonacich, 1972) and metabolic networks (Ma et 
al., 2003). 

Eigenvector centrality considers not only the number of connections a node has but also the centrality 
of its neighbouring nodes. It assigns higher centrality to nodes that are connected to other important 
nodes in the network (Bonacich, 1972). This captures the idea that being connected to influential 
nodes increases the importance of a node. It also considers the entire network structure when 
calculating centrality. It considers the connections and importance of all nodes, allowing for a holistic 
view of node centrality within the network (Bonacich, 2007). This makes it particularly useful for 
identifying nodes that have indirect influence or are well-positioned within the network. finally, 
Eigenvector centrality is less susceptible to manipulation compared to degree centrality. In degree 
centrality, one can artificially increase their centrality by connecting to many low-degree nodes. 
However, in eigenvector centrality, the importance of a node depends not only on its connections but 
also on the centrality of its neighbours. This makes it more robust against intentional manipulations 
of the network structure (Bonacich, 2007). 

Inversely, eigenvector centrality calculation requires expensive computation power. The process 
involves solving an eigenvector equation, which may require significant computational resources 
(Newman, 2018). This limits the practicality of eigenvector centrality in analyzing very large 
networks. Eigenvector centrality can also be influenced by the size of the network. In very small 
networks, eigenvector centrality may result in equal or similar centrality values for all nodes, 
providing limited discrimination between nodes (Newman, 2018). On the other hand, in very large 
networks, the eigenvector calculation may become computationally challenging, limiting the 
scalability of the measure. Moreover, it is primarily designed for undirected networks. While 
adaptations have been proposed for directed networks (e.g., PageRank algorithm), eigenvector 
centrality may not fully capture the complexities of directed interactions and influence flows in such 
networks (Newman, 2018). Lastly, Eigenvector centrality heavily relies on the network’s structure, 
particularly the connectivity patterns and node interactions. In networks with certain structural 
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characteristics, such as disconnected components or highly clustered nodes, eigenvector centrality 
may not accurately capture the importance of nodes (Newman, 2018). It may assign high centrality 
to nodes that are part of small, isolated clusters or penalize nodes in sparsely connected regions of the 
network. 

Network analysis application for vaccine supply chains 

Several studies have used network analysis to assess the complexity of the vaccine supply chain. For 
example, Li et al. (2021) used social network analysis to map the vaccine supply chain in China and 
identified the key nodes and links in the chain. Zingales et al. (2021) used network analysis to identify 
the critical nodes and links in the vaccine supply chain in Italy. In the context of the Covid-19 
pandemic, multiple studies have applied network analysis to the Covid-19 vaccine supply chain, using 
data from various sources to map the relationships between key actors and nodes. 

Network analysis can also be used to evaluate the effectiveness of vaccine distribution strategies. For 
example, Liu et al. (2021) used network analysis to evaluate the impact of different distribution 
strategies on the vaccine supply chain in China. A study by Wang et al. (2021) used social network 
analysis to examine the distribution of Covid-19 vaccines in China. The study found that the vaccine 
distribution network was highly centralized, with a few key players controlling the majority of vaccine 
distribution channels. The study also identified several bottlenecks in the supply chain, including 
insufficient transportation capacity and inadequate vaccine storage facilities. De Giovanni and Scalera 
(2021) conducted a comprehensive review of the Covid-19 pandemic using network analysis and 
identified the bottlenecks in the vaccine supply chain. Zhu et al. (2021) used network analysis to 
identify the critical nodes and links in the vaccine supply chain in China and proposed strategies for 
improving the efficiency of the chain. 

Another study by Hu et al. (2021) used network analysis to examine the distribution of Covid-19 
vaccines in the United States. The study analyzed data from the Centers for Disease Control and 
Prevention (CDC) and identified several key nodes in the vaccine distribution network, including 
vaccine manufacturers, distributors, and healthcare providers. The study found that the network was 
highly centralized, with a few key players controlling most vaccine distribution channels. The study 
also identified several areas for improvement, including increasing the number of distribution 
channels and improving vaccine allocation strategies. 

A study by Canales et al. (2021) used network analysis to examine the distribution of Covid-19 
vaccines in Latin America and the Caribbean. The study analyzed data from the Pan American Health 
Organization (PAHO) and identified several key nodes in the vaccine distribution network, including 
vaccine manufacturers, national regulatory authorities, and healthcare providers. The study found that 
the network was highly fragmented, with limited coordination and communication between key 
actors. The study also identified several challenges in the supply chain, including limited vaccine 
supply, inadequate transportation capacity, and insufficient vaccine storage facilities. 

In addition to mapping the relationships between key actors and nodes in the Covid-19 vaccine supply 
chain, network analysis can also be used to evaluate the performance of the supply chain. A study by 
Wu et al. (2021) used network analysis to assess the resilience of the Covid-19 vaccine supply chain 
in China. The study analyzed data from the National Health Commission of China and identified 
several key nodes in the vaccine distribution network, including vaccine manufacturers, distributors, 
and healthcare providers. The study found that the network was highly resilient, with multiple backup 
nodes and redundant pathways for vaccine distribution. The study also identified several factors that 
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contributed to the resilience of the supply chain, including strong government support, effective 
communication and coordination between key actors, and robust vaccine storage and transportation 
infrastructure. 

Questions 

From the literature review, we were able to formulate three questions: 

• Q1: By applying network analysis to the Covid-19 vaccine supply, are we able to represent it 
as a complex model?

• Q2: Can network analysis identify bottlenecks, inefficiencies, and redundant nodes within the 
Covid-19 vaccine supply chain?

• Q3: Will applying Centrality measurement techniques to the Covid-19 vaccine supply chain 
reveal key nodes and their significance, provide insights into critical entities and improve 
the overall resilience and efficiency of the supply chain?

3.3 Methodology 

This study uses a quantitative approach using R to analyze the Covid-19 vaccine supply chain as of 
June 2021 using network analysis. The networks created are undirected and all the data used for this 
project was collected from the article of Bown and Bollyky on the Covid-19 vaccine titled “How 
Covid-19 vaccine supply chains emerged amid a pandemic” (2021). The article identified companies 
involved in the supply chain of six Covid-19 vaccine producers: Pfizer, Moderna, Johnson&Johnson, 
AstraZeneca, Novavax, and CureVac. From this article, we created three supply chain datasets, one 
for Pfizer, one for Moderna and the last one for all the companies present in all six Covid-19 vaccine 
producer supply chains. The data will include information on the vaccine supply chain, such as the 
key company involved in both supply chains and the stage of production they are involved in 
(formulation, lipid production & fill and finish). 

The data will be analyzed using network analysis techniques to map the Covid-19 vaccine supply 
chain for both Pfizer and Moderna. The analysis will include the following steps: 

1. Identification of key nodes/links in the vaccine supply chain: The nodes represent both the
key actors involved in the vaccine supply chain and the three stages of production presented
in the vaccine supply chain. The links represent the relationships between the company and
the stage of production nodes, such as that one company is in charge of the fill and finishing
in the chain. Bridging nodes/links will be deemed as the key nodes/links.

2. Identification of key nodes/links in the vaccine supply chain: The nodes represent the key
actors involved in the vaccine supply chain. The links represent the relationships between the
nodes, such as the flow of vaccines between different actors in the production sequence.
Bridging nodes/links will be deemed as the key nodes/links.

3. Assessment of network structure: The network structure will be assessed based on measures
such as degree centrality, betweenness centrality, closeness centrality, eigenvector centrality
and subgraph centrality. These measures will help to identify the most important nodes in the
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network and the bottlenecks in the vaccine supply chain. These measures will then be used to 
re-create the second network with the centrality measures. 

Basic Network 

As mentioned previously, our first group of networks will map the links between companies and their 
function in the chain. This will be done for Pfizer SC, Moderna SC and the six main vaccine 
producers, creating in total three of the first networks. For this part of the project, the nodes were 
both the companies in the chain and the stage of production (formulation, lipids production, 
adjuvant production and fill & finish. While the edges represent the belonging of a company to a 
production stage. This was done by creating a dataset with the two variables: “From” and “To”. 
The “From” variable represents the companies while the “TO” variable is the stage of production as 
presented in Table 3-1. 

Table 3-1: Format of the dataset for the first network of the relation between the stage of production and the 
companies 

From To 

Pfizer Lipids production 
Moderna Formulation 
Catalent Fill and Finish 

The same company can be involved in multiple stages of production. This was the case for Pfizer, 
and other companies, which were involved in all three stages of vaccine production. Pfizer had three 
facilities that were in charge of formulation, three other facilities for fill and finish and one location 
in charge of lipids production. This multi-stage element was considered by creating multiple 
observations for the same company. In the case of Pfizer, seven observations were created, three of 
them leading to the formulation node, three to the fill and finish and one leading to the production of 
the lipids as shown in Table 3-2. 

Table 3-2: Example of the dataset of multi-relation between the stage of production and the companies 

From To 

Pfizer Formulation 
Pfizer Formulation 

From To 

Pfizer Formulation 
Pfizer Fill and finish 
Pfizer Fill and finish 
Pfizer Fill and finish 
Pfizer Lipids formulation 



67 

The second group of networks shows the movement of the vaccine and vaccine components in the 
supply chain of Pfizer, Moderna and the six main vaccine producers. Contrary to the first network, 
the node of this network is the companies only and the edges is the movement of product between 
companies. 

The movement of the product follows this order: lipids producer send their product to the formulation 
manufacturer, as lipid is one of their inputs to create the vaccine, then the formulation manufacturer 
send the finished vaccine to the fill and finish facilities, where the vaccine is bottled and sealed. To 
simplify this project, we are assuming that all the lipid producers can send their products to all the 
formulation manufacturers and that all formulation manufacturers are sending their products to all 
the fill and finish facilities. This assumption was crucial when creating our three new datasets for 
the second network. Taking Pfizer as an example, Table 3-3 shows what the dataset looked like for 
the movement of vaccines between Pfizer’s facilities. This assumption generated a weighted network 
for the vaccine supply chain. 
Table 3-3: Format of the dataset for the second network of the flow of Covid-19 vaccine within its supply chain 

From To 

Pfizer (Lipids) Pfizer (formulation 1) 
Pfizer (Lipids) Pfizer (formulation 2) 
Pfizer (Lipids) Pfizer (formulation 3) 
Pfizer (formulation 1) Pfizer (fill and finish 1) 
Pfizer (formulation 1) Pfizer (fill and finish 2) 
Pfizer (formulation 1) Pfizer (fill and finish 3) 
Pfizer (formulation 2) Pfizer (fill and finish 1) 
Pfizer (formulation 2) Pfizer (fill and finish 2) 
Pfizer (formulation 2) Pfizer (fill and finish 3) 
Pfizer (formulation 3) Pfizer (fill and finish 1) 
Pfizer (formulation 3) Pfizer (fill and finish 2) 
Pfizer (formulation 3) Pfizer (fill and finish 3) 

Centrality Measurement 

For the second part of the project, centrality measures are important parts of network analysis as gives 
information on the importance of certain node over other. We decided to only perform measure the 
centrality of the network of the flow of vaccines with the supply chain rather than the network of the 
stage of production, as we believe that this measurement is more relevant for the flow of vaccines 
between companies. To illustrate our steps for this part of our network analysis, we will use Pfizer’s 
second dataset as an example after the basic network step has been completed for Pfizer’s second 
network. 

The first step is to create a new dataframe with all the node and their centrality measures in a new 
code chunk. Table 3-4 represent the five centrality measures used in this project with their equation: 
degree centrality, betweenness centrality, closeness centrality, eigenvector centrality and subgraph 
centrality. 

Table 3-4: Degree centrality, betweenness centrality, closeness centrality, eigenvector centrality and subgraph 

 centrality with their formulas 
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Centrality measure Equation 
Degree centrality deg(%) = |) ∈ + ∶ (%, )) ∈ .| 
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To create a network with the node’s centrality measure, we first need to create a dataset with the nodes 
and their centrality measures as variables using the formulas in the table above. Once this step is 
completed, we can plot our network with the size of the node depending on its degree centrality score. 
This means that a node with a high degree score will be bigger than a node with a smaller score. 
Additionally, the width of an edge depends on its betweenness score ratio, therefore a higher ratio 
means a thicker line. 

3.4 Results 

In the following section, the results of our networks will be discussed and analyzed. The results are 
presented in three parts one for each supply chain. For each network, we will start by analyzing the 
structure of the network by identifying the structural holes in the networks. Then we will discuss the 
centrality measures of each node of the network. 

Pfizer 

Figure 3-1 is the first network created for Pfizer, where graph A is the network with the company’s 
name and graph B is the structure of Pfizer’s network. We can see that the plotted network resembles 
a tree type network with a central node. In this network, only Pfizer fills the structural hole present. 
It is the only company that takes part in all the stages of production for vaccine manufacturing. 
However, to a different degree, we can see that Pfizer has three facilities that oversee the formulation 
and the fill and finish, while they only have one facility that produces lipids. With only one company 
acting as a broker, this makes that network less robust to change when deleting enough nodes and/or 
links. 
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Figure 3-1: Network Graph with Stage of Production - Pfizer 

A second network was created for Pfizer, and it resembles a star shape network like Moderna’s 
second network (Figure 3-2). Graph A, in Figure 3-2, is the network with the company’s name and 
graph B is the structure of Pfizer’s network. We can also see that the companies that are in 
charge of the fill and finish and the lipids production are located on the outer bound of the 
network, while the formulation is embedded within the network. BioNTech, Pfizer and 
Dermapharm are located at the center of the network. 
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Figure 3-2: Network Graph - Pfizer 

When looking at the centrality measures of our second network represented in Figure 3-3, we can 
see that Pfizer has the highest degree of centrality, betweenness centrality, eigenvector centrality 
and subgraph centrality, with values of 94, 40.1, 0.05555556, 1 and 47183999272 respectively. 
BioNTech has an eigenvector measure of 0.3245553 which means that it is connected to many 
nodes that themselves have high eigenvector scores. AGC Biologics, Exelead, BioNTech, 
Dermapharm and Shanghai Fosun Pharmaceutical, all formulation companies, have the second 
highest closeness centrality measure of 0.04545455, this means that those a node acts as a bridge 
between other nodes in the network. With the centrality measures of each node, we create a final 
network of Pfizer’s supply chain, which resulted in Figure 3-4. Figure 3-4 emphasize important 
nodes by enlarging them based on their degree of centrality, where graph A is the network with the 
company’s name and graph B is the structure of the network. Thus, representing Pfizer with a larger 
node has it has the highest degree of centrality measure in its supply chain as seen in Figure 3-3. 

a

Acuitas

Biovac

Avanti Polar lipids

Croda

Polymun
Evonik

AMRI

Merck

BioNTechA
PfizerGC Biologics

Exelead

Dermapharm

Shanghai Fosun Pharmaceutical

Siegfried

Delpharm

Sanofi

Novartis

Thermo Fisher

b



71 

Figure 3-3: Centrality Measures - Pfizer Supply chain 

Figure 3-4: Network Graph with Centrality Measures - Pfizer 
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Moderna 

When looking at the first network created for Moderna, we can see that the plotted network 
resembles a tree type network (Figure 3-5). Graph A, in Figure 3-5, is the network with the 
company’s name and graph B is the structure of Moderna’s network. We can also see that Rovi is 
the only company in Moderna’s supply chain that fill the structural hole between the fill and finish 
and the formulation. Additionally, only one company, Corden Pharma, is allocated to the lipids 
production of their vaccine this part of the supply chain is also disconnected from the rest of the 
network. This disconnection indicates that the limited number of companies in the fill and 
finish is a bottleneck present in Moderna’s Covid-19 supply chain. The lack of bridging in this 
network affects the production and the capacity of certain key nodes or links were to 
disappear. For example, if one of Corden Pharma’s facilities were to close down, this would 
slow down Moderna production. 

Figure 3-5: Network Graph with Stage of Production - Moderna 

Figure 3-6 is the second network where graph A is the network with the companies’ names and 
graph B is the structure of Moderna’s network. Figure 3-6 presents Moderna’s supply chain in a 
form that resembles most of a star shape network. We can also see that the companies that are in 
charge of the fill and finish are located on the outer bound of the network, while the formulation 
and the lipids production are embedded within the network. Additionally, Lonza, one of the 
formulation companies, is located at the center of the network. 
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Figure 3-6: Network Graph - Moderna 

If we look at the centrality measures of our second network, we can see that Lonza has the highest 
degree of centrality, betweenness centrality, eigenvector centrality and subgraph centrality, with 
values of 30, 15.75, 0.08333, 1 and 803107.66 respectively, as represented in Figure 3-7. 
Furthermore, CordenPharma has an eigenvector measure of 0.866 which means that it is connected 
to many nodes that themselves have high eigenvector scores. Moderna, Aldevron has the same 
closeness centrality measure as Lonza, this means that a node acts as a bridge between other nodes 
in the network. With the centrality measures of each node, we create a final network of 
Moderna’s supply chain, which resulted in Figure 3-8, graph A and graph B the network with the 
company’s name and the structure of the network. Figure 3-8 emphasize important nodes by 
enlarging them based on their degree of centrality. Thus, representing Lonza with a larger node 
has it has the highest degree of centrality measures in Moderna’s supply chain as seen in Figure 
3-7. 
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Figure 3-7: Centrality Measures - Moderna Supply chain 
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Figure 3-8: Network Graph with Centrality Measures - Moderna 

All Covid-19 vaccine producers 

When looking at the first network created for all Covid-19 vaccine producers, we can see that the 
plotted network resembles a tree type network (Figure 3-9). Graph A, in Figure 3-9, is the 
network with the company’s name and graph B is the structure of the network. Only seven 
nodes fill the structural hole present in this network. Two of the seven companies, Merck, and 
Pfizer, take part in the three stages of production for vaccine manufacturing (lipids production, 
formulation & fill and finish), one, Biologics, is involved in two stages of production for vaccine 
manufacturing (adjuvant production and formulation), and four, Catalent, Rovi, CSL and 
FUJIFILM Diosynth Biotechnologie, are involved in two stages of production for vaccine 
manufacturing (formulation & fill and finish). However, we can see that Pfizer has three facilities 
that are in charge of the formulation and the fill and finish, while they only have one facility that 
produces lipids while Merck has one facility for each stage of production. With only a few 
companies acting as brokers, this makes that network less robust to change when deleting key nodes 
and/or links. 
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Figure 3-9: Network Graph with Stage of production - All Covid-19 vaccine producers 

Figure 3-10 is the second network of all the Covid-19 vaccine producers, where graph A is 
the network with the company’s name and graph B is the structure of the network. Figure 3-10 
presents all Covid-19 vaccine producers as a single supply chain and resembles a complete 
network. While most nodes are grouped, three nodes - Desert King, Biofabri and PolyPeptide 
Group - are separated from the group. 
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Figure 3-10: Network Graph - All Covid-19 vaccine producers 

When looking at the centrality measures of our second network, shown in Figure 3-11, we can 
see that Pfizer has the highest degree of centrality and betweenness centrality, with values of 363, 
and 182.04 respectively. We can also see that the three company that located outside of the cluster 
have the smallest degree of centrality and closeness centrality. Polypeptide Group has a degree 
centrality of 20 with a closeness centrality of 0.006, Desert King has a degree centrality of 10 with a 
closeness centrality of 0.006 and Biofabri has a degree centrality of 17 with a closeness centrality of 
0.0074. With the centrality measures of each node, we create a final network of the supply 
chain, which resulted in Figure 3-12 where graph A is the network with the companies’ names and 
graph B is the structure of the network. Figure 3-12 emphasize important nodes by enlarging them 
based on their degree of centrality. Thus, representing Pfizer with a larger node has it has the 
highest degree of centrality measure in its supply chain as seen in Figure 3-11. 
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Figure 3-11: Centrality Measures - All Covid-19 vaccine producers 
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Figure 3-12: Network Graph with Centrality Measures - All Covid-19 vaccine producers 

3.5 Discussion 

The Covid-19 pandemic has presented unprecedented challenges to healthcare systems, economies, 
and societies worldwide. Covid-19 vaccine development, manufacturing, and distribution are critical 
to combating the virus and its impact. The complicated vaccine supply chain involves multiple 
players, complex logistics and global distribution networks. Innovative approaches are therefore 
needed to improve supply chain efficiency, resilience, and fairness. 

Network analysis has proven to be an invaluable tool in optimizing the distribution and delivery of 
the Covid-19 vaccine. By examining the intricate connections among various stakeholders, including 
vaccine manufacturers, distributors, healthcare providers, and government agencies, network analysis 
provides a comprehensive understanding of the vaccine supply chain. This analysis enables 
policymakers and healthcare organizations to identify bottlenecks, predict potential shortages, and 
develop targeted strategies to ensure efficient vaccine delivery. By visualizing vaccine flow and 
identifying critical nodes within the network, network analysis helps streamline the distribution 
process, minimize waste, and ensure that vaccines reach the communities that need them most. It 
plays a critical role in maximizing the impact of vaccination efforts and ultimately contributes to the 
global fight against the Covid-19 pandemic. With the literature, we formulated three questions; H1) 
By applying network analysis to the Covid-19 vaccine supply, we can represent it as a complex model, 
H2) Network analysis can identify bottlenecks, inefficiencies, and redundant nodes within the Covid-
19 vaccine supply chain and H3) Centrality measurement techniques applied on the Covid-19 vaccine 
supply chain will reveal key nodes and their significance, providing insights into critical entities and 
improving the overall resilience and efficiency of the supply chain 

As network analysis is being used more and more to understand the complex patterns of 
interconnected entities in the Covid-19 vaccine supply chain in recent papers, this paper aims to 
complete the existing literature on the application of network analysis on the Covid-19 vaccine supply 
chain, by 1) mapping the supply chain as a weighted network, by 2) mapping a weighted network of 
the function and companies to identify the vulnerable function in the chain and by 3) providing a 
network that features the centrality measures in the mapping. Thus, contributing to the existing 
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literature by giving a different perspective in analyzing the key nodes and links in the Covid-19 supply 
chain. 

In this project, network analysis was used to identify bottlenecks in the VSCs of Pfizer, Moderna and 
the six major Covid-19 vaccine manufacturers combined. After collecting the relevant data, we 
mapped our networks in R. We did this by mapping 1) the relationship between the companies and 
their function in the supply chain, 2) the movement of vaccines between companies in the chain, and 
3) centrality with the second network.

After creating our network, we first analyzed the structure of the network, which helped us identify 
the structural holes within the network. We then examined the centrality measures to identify key 
nodes and potential bottlenecks. With the first group networks, we found that structural holes are 
filled by a few companies making the whole supply vulnerable if those nodes or links were to be 
disrupted. In the cases of Moderna’s Network Graph with Stage of Production, the structural hole 
between lipids production and the rest of the network remains unfilled, isolating a function of the 
supply chain. Furthermore, we also found that the second group of networks has a structure that is 
like a star shape network. This tells us that the network is centralized, which provides control and 
easy management. However, this structure makes the network susceptible to disruption if the central 
nodes were to fail. The centrality measure helps to identify the central and key nodes of our networks 
using degree centrality, betweenness centrality, closeness centrality, eigenvector centrality and 
subgraph centrality. The results of our research validate all our questions. As shown in figures 1 to 8, 
the Covid-19 vaccine supply chain is represented as a complex network when applying network 
analysis techniques, thus supporting Q1. Using both network analysis and centrality measurement we 
were able to identify the cause of bottlenecks, redundancy, and inefficiencies in the Covid-19 VSC, 
thus confirming Q2 and Q3. 

The main conclusion of this research is that bottlenecks in the Covid-19 vaccine supply chain have 
two causes: the absence of gateways in the network, and the dependence on certain companies to 
increase production capacity. Pfizer is the only company to establish gateways between the different 
production stages of its networks, making it one of the main nodes in the network. In the case of the 
Moderna supply chain, Lonza owns three facilities that increase production capacity, making Lonza 
a key node in the network. In addition, Rovi and CordenPharma are also key nodes in the Moderna 
network, as Rovi is the only link node in the network and CordenPharma is the only lipid producer in 
the chain. In conclusion, to reduce risks and limit bottlenecks in CVPs, pharmaceutical companies 
should reduce their dependence on key companies/suppliers, by increasing the number of production 
facilities, and increasing the number of relay companies in their CVPs, by ensuring that several 
companies operate at several production stages. 

In conclusion, network analysis is a powerful tool for studying the Covid-19 vaccine supply chain. 
By mapping the relationships between key actors and nodes in the supply chain, network analysis can 
provide valuable insights into the efficiency, resilience, and performance of the system. It can help 
identify bottlenecks and opportunities for improvement, and inform decision-making by 
policymakers, manufacturers, and distributors. Overall, network analysis has the potential to play a 
critical role in improving the Covid-19 vaccine supply chain and ensuring equitable access to 
vaccines. As the world continues to grapple with the pandemic, researchers, policymakers, and 
stakeholders need to continue exploring innovative ways to analyze and improve the vaccine supply 
chain. 

This study is not without limitations. This project may be limited by the availability and reliability of 
data, especially in low-income countries with limited health infrastructure. The Covid-19 vaccine 
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supply chain is a rapidly changing and dynamic system, which may make it difficult to capture and 
analyze all relevant data points. Additionally, changes to the supply chain (e.g., new vaccine 
manufacturers, changes to distribution channels) may not be reflected in the data promptly. 
Furthermore, network analysis can only capture relationships between actors and nodes that are 
included in the dataset and other factors that may impact vaccine distribution, such as political and 
economic factors, may not be captured in the analysis. The findings of a network analysis of the 
Covid-19 vaccine supply chain may not be directly applicable to other vaccine supply chains or public 
health challenges, as this supply chain is in the context of the early response global pandemic. 
Researchers need to acknowledge and address these limitations in their studies to ensure that the 
findings are accurate, relevant, and useful for informing policy and practice in the vaccine supply 
chain. 

Future directions for this research would include linkage probability based on geographic localization 
to the network. As stated previously, some of our networks were created under the assumption that 
all companies/facilities are sending their product to all the others following the vaccine production 
flow. However, this is unlikely since facilities within the same geographic location have a high chance 
of sending their product to one another, due to their proximity factor. On the other hand, sending 
products from one geographic location to another will serve as a support or safety net, this was the 
case for one of the fill and finish companies present in Pfizer’s supply chain. Therefore, lowers 
the probability of such links in the network. 
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Conclusion 

This project looks at the initial stages of a vaccine supply chain created amid a global pandemic, and 
the lessons that can be learned from such an event. With global pandemics, similar to SARS-CoV-2 
predicted to become more and more likely, this project aims to steer research in the right direction to 
learn as much as possible about a pandemic vaccine supply chain, which has not been the case in the 
literature on vaccine supply chains pre-Covid-19. 

This thesis was presented in the form of three articles that analyze the emerging Covid-19 VSC. In 
the first article, we were able to categorize the upstream and downstream dimensions of six main 
Covid-19 vaccine producers and found that none of them were global in both dimensions. In fact, the 
majority of producers were classified as having both a bi-regional upstream production and 
downstream distribution which tells us those producers are susceptible to market concentration risk, 
dependency on regional factors, and limited knowledge accessibility. In the second article, we used 
panel data analysis and found that Beck & Katz model and Arellano & Bond model identify different 
factors that influence the distribution of Pfizer’s vaccine, Moderna’s vaccine and the total of Pfizer 
and Moderna vaccine in a country. For Moderna’s vaccine, the lag(number_lipids) and the 
lag(number_fill) are both significant at the 10 percent level, the lag(reg_moderna,1) is significant at 
the 5 percent level and the lag(number_cov_chain_moderna,1) is significant at the 1 percent level. 
For Pfizer’s vaccine, the number of Covid-19 vaccine formulation facilities and the number of fill & 
finish facilities in the country are significant at the 5 percent level. For the total vaccine, the number 
of fill & finish facilities in the country and the variable of Pfizer Rugman’s classification are 
significant at the 10 and 5 percent level (Beck & Katz model) and the lag of the number of Moderna 
SC facilities present in the country is significant at the 1 percent level (Arellano & Bond model). 

The last article found that both Pfizer and Moderna, despite going with a different strategy to increase 
production, both supply chains as star-sharped networks with few nodes centralized nodes. In both 
Pfizer cases, they and BioNTech, their partner, are at the center of the network. However, in 
Moderna’s chain, Lonza, an outsourced formulation company, that located at the center of its network. 
Another finding of this article is that only two companies have facilities that operated in two or more 
stages of vaccine production. This company is Pfizer for their network and Rovi for Moderna’s. 
Moderna’s supply chain relies solely on one company, Corden Pharma for the lipid production 
required for their vaccine, making it the bottleneck of this chain. 

The study of the COVID-19 vaccine supply chain proved to be of paramount importance in managing 
and mitigating the global pandemic. The unprecedented demand for vaccines, coupled with logistical 
challenges, has highlighted the essential role played by an efficient and resilient supply chain in 
ensuring equitable access and successful vaccination campaigns worldwide. By examining the Covid-
19 vaccine supply chain, researchers, policymakers, and stakeholders gain valuable insights into the 
complexities of vaccine manufacture, distribution, and administration in times of pandemic. This 
knowledge helps identify potential bottlenecks, vulnerabilities, and areas for improvement, ultimately 
leading to more effective strategies and interventions in times of crisis. By better understanding the 
Covid-19 VSC, pharmaceutical companies, government and non-governmental agencies will be able 
to optimize production and distribution processes, ensuring a smooth flow of vaccines from 
manufacturers to final recipients in the event of future pandemics. Thus, enabling and simplifying 
contingency plans to be drawn up to deal with disruptions, such as measures to be implemented to 
reinforce the security and integrity of the supply chain. Lastly, an efficient vaccine supply chain is 
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essential for equitable vaccine distribution, particularly in times of pandemic which was one of the 
fears during the Covid-19 pandemic. By understanding the intricacies of the supply chain, 
policymakers can design strategies that better address the challenges of vaccine availability and 
accessibility. This ensures that vaccines reach every corner of the globe, contributing to the collective 
effort to achieve global herd immunity. 

This project was based on the Covid-19 vaccine supply chain as of June 2021. Therefore, we suggest 
for future research to access the Covid-19 vaccine supply chain over time which will give insight into 
the evolution of a pandemic vaccine supply which has not been researched to this day. 
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Appendix A -  Econometric model 1.1 (Total Pfizer & Moderna - Europe) 
Robustness Regression Results 

Number of Vaccine doses administrated 
Beck and Katz 2 Arellano and Bond 2 

(1) (2) 

reg_pfizer -1,199,855,738.00 (-3,004,589,376.00, 604,877,899.00)
reg_moderna 1,962,033,172.00 (-1,102,106,931.00, 5,026,173,274.00)
number_cov_chain_pfizer 1,492,283,726.00 (-2,397,859,686.00, 5,382,427,137.00)
number_cov_chain_moderna -1,336,981,569.00 (-5,864,500,848.00, 3,190,537,709.00)
number_formulation -1,095,200,524.00 (-2,546,700,985.00, 356,299,937.00)
number_lipids 253,718,096.00 (-3,815,996,179.00, 4,323,432,372.00)
number_fill 3,846,213,330.00** (387,404,706.00, 7,305,021,954.00)
number_top_1000 17,009,844.00 (-437,022,667.00, 471,042,356.00) 
lag(reg_pfizer, 1) -1,367,418,454.00*** (-1,945,855,018.00, -788,981,889.00)
lag(reg_moderna, 1) 432,410,103.00 (-146,026,461.00, 1,010,846,667.00) 
lag(number_cov_chain_pfizer, 1) 3,485,352,029.00*** (1,538,452,481.00, 5,432,251,576.00) 
lag(number_cov_chain_moderna, 1) 3,086,511,307.00** (517,104,082.00, 5,655,918,533.00) 
lag(number_formulation, 1) -3,137,593,328.00** (-5,627,566,578.00, -647,620,078.00)
lag(number_lipids, 1) -1,300,353,540.00 (-4,559,377,446.00, 1,958,670,365.00)
lag(number_fill, 1) 1,319,307,009.00 (-1,653,884,175.00, 4,292,498,193.00)
lag(number_top_1000, 1) 79,548,243.00 (-36,139,069.00, 195,235,556.00) 
Constant -0.0000 (-1,007,999,357.00, 1,007,999,357.00)
Time Fixed Effects No No 

Notes: ***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level.

Time-fixed effects estimations based on Beck and Katz, 
with control for potential serial correlation, contemporenous correlation and heteroskedasticity. 

All the commands and algorithms are coded in R 3.5.3 using the plm package. 
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Appendix B - Econometric model 1.2 (Total Pfizer & Moderna - North America) 
Robustness Regression Results 

Number of Vaccine doses administrated 
Beck and Katz 2 Arellano and Bond 2 

(1) (2) 

reg_pfizer 34,014.00 (-82,108.33, 150,136.30) 
number_cov_chain_pfizer 5,521.92 (-169.64, 11,213.48) 
number_formulation 1,192.63 (-1,180.93, 3,566.18) 
lag(reg_pfizer, 1) -39,854.79
lag(number_formulation, 1) -621.79
Constant -34,013.94 (-152,102.70, 84,074.78)
Time Fixed Effects No No 

Notes: ***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level.

Time-fixed effects estimations based on Beck and Katz, 
with control for potential serial correlation, contemporenous correlation and heteroskedasticity. 

All the commands and algorithms are coded in R 3.5.3 using the plm package. 
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Appendix C - Econometric model 1.3 (Total Pfizer & Moderna - South America) 
Robustness Regression Results 

Number of Vaccine doses administrated 
Beck and Katz 2 Arellano and Bond 2 

(1) (2) 

reg_pfizer 581.23 (-4,150.71, 5,313.17) 
reg_moderna 3,016.93 (-2,372.18, 8,406.04) 
number_formulation 2,509.14 (-2,843.45, 7,861.72) 
number_top_1000 -129.41 (-3,242.65, 2,983.83)
lag(reg_pfizer, 1) 1,500.03 (-1,909.38, 4,909.45) 
lag(reg_moderna, 1) 654.67 (-2,736.75, 4,046.09) 
Constant 43.14 (-5,262.94, 5,349.22) 
Time Fixed Effects No No 

Notes: ***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level.

Time-fixed effects estimations based on Beck and Katz, 
with control for potential serial correlation, contemporenous correlation and heteroskedasticity. 

All the commands and algorithms are coded in R 3.5.3 using the plm package. 
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Appendix D - Econometric model 1.4 (Total Pfizer & Moderna - Asia) 
Robustness Regression Results 

Number of Vaccine doses administrated 
Beck and Katz 2 Arellano and Bond 2 

(1) (2) 

reg_pfizer -777.24 (-6,354.95, 4,800.46)
reg_moderna 3,553.17 (-11,900.57, 19,006.90)
number_cov_chain_moderna -40,807.27 (-129,625.40, 48,010.92)
number_formulation -41,697.10 (-187,732.40, 104,338.20)
number_fill 50,022.99 (-55,007.21, 155,053.20)
number_top_1000 1,324.35 (-2,746.63, 5,395.34) 
lag(reg_pfizer, 1) 980.1*** (980.10, 980.10) 
lag(reg_moderna, 1) -628.75
lag(number_cov_chain_moderna, 1) -23,457.08*** (-23,457.08, -23,457.08)
lag(number_fill, 1) 29,142.02*** (29,142.02, 29,142.02)
Constant -2,648.71 (-12,633.72, 7,336.30)
Time Fixed Effects No No 

Notes: ***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level.

Time-fixed effects estimations based on Beck and Katz, 
with control for potential serial correlation, contemporenous correlation and heteroskedasticity. 

All the commands and algorithms are coded in R 3.5.3 using the plm package. 
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Appendix E - Econometric model 1.5 (Total Pfizer & Moderna - Africa) 
Robustness Regression Results 

Number of Vaccine doses administrated 
Beck and Katz 2 Arellano and Bond 2 

(1) (2) 

reg_pfizer 0.00 (-14,647.87, 14,647.87) 
reg_moderna 3,736.77 (-8,948.65, 16,422.19) 
lag(reg_pfizer, 1) 7,473.54*** (7,473.54, 7,473.54) 
lag(reg_moderna, 1) -7,473.54*** (-7,473.54, -7,473.54)
Constant -0.00 (-10,357.60, 10,357.60)
Time Fixed Effects No No 

Notes: ***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level.

Time-fixed effects estimations based on Beck and Katz, 
with control for potential serial correlation, contemporenous correlation and heteroskedasticity. 

All the commands and algorithms are coded in R 3.5.3 using the plm package. 
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Appendix F - Econometric model 2.1 (Moderna - Europe) 
Robustness Regression Results 

Number of Vaccine doses administrated 
Beck and Katz 2 Arellano and Bond 2 

(1) (2) 

reg_moderna 405.80 (-299.99, 1,111.59) 
number_cov_chain_moderna -338.37 (-807.46, 130.73)
number_formulation -93.14 (-338.96, 152.67)
number_lipids 255.70* (-42.46, 553.86)
number_fill 833.02* (-123.74, 1,789.78) 
number_top_1000 -2.60 (-120.81, 115.61)
lag(reg_moderna, 1) 196.07 (-66.17, 458.31) 
lag(number_cov_chain_moderna, 1) 144.33 (-949.60, 1,238.26) 
lag(number_formulation, 1) -733.47* (-1,543.26, 76.31)
lag(number_lipids, 1) 56.73 (-1,434.48, 1,547.94)
lag(number_fill, 1) 1,782.9** (404.52, 3,161.43)
Constant -229.99 (-646.71, 186.73)
Time Fixed Effects No No 

        Notes:  ***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level.

Time-fixed effects estimations based on Beck and Katz, 
with control for potential serial correlation, contemporenous correlation and heteroskedasticity. 

All the commands and algorithms are coded in R 3.5.3 using the plm package. 



xvi 

Appendix G - Econometric model 2.2 (Moderna - North America) 
Robustness Regression Results 

Number of Vaccine doses administrated 
Beck and Katz 2 Arellano and Bond 2 

(1) (2) 

number_cov_chain_moderna 7,694.38 (-11,906.57, 27,295.33) 
number_formulation 326.25 (-343.24, 995.73) 
number_lipids -6,586.40 (-32,775.26, 19,602.46)
lag(number_cov_chain_moderna, 1) -3,700.0*** (-3,700.08, -3,700.08)
lag(number_formulation, 1) -113.23*** (-113.23, -113.23)
Constant 6,586.40 (-19,063.41, 32,236.21) 
Time Fixed Effects No No 

Notes: ***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level.

Time-fixed effects estimations based on Beck and Katz, 
with control for potential serial correlation, contemporenous correlation and heteroskedasticity. 

All the commands and algorithms are coded in R 3.5.3 using the plm package. 
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Appendix H - Econometric model 2.3 (Moderna - South America) 
Robustness Regression Results 

Number of Vaccine doses administrated 
Beck and Katz 2 Arellano and Bond 2 

(1) (2) 

reg_moderna 165.80 (-104.98, 436.59) 
number_formulation 1,303.83 (-237.37, 2,845.03) 
number_top_1000 0.00 (-157.22, 157.22) 
lag(reg_moderna, 1) 193.44 (-126.99, 513.86) 
Constant -0.00 (-157.22, 157.22)
Time Fixed Effects No No 

Notes: ***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level.

Time-fixed effects estimations based on Beck and Katz, 
with control for potential serial correlation, contemporenous correlation and heteroskedasticity. 

All the commands and algorithms are coded in R 3.5.3 using the plm package. 



xviii 

Appendix I - Econometric model 2.4 (Moderna - Asia) 
Robustness Regression Results 

Number of Vaccine doses administrated 
Beck and Katz 2 Arellano and Bond 2 

(1) (2) 

reg_moderna 1,023.03 (-2,041.94, 4,088.01) 
number_cov_chain_moderna -8,699.66 (-28,680.38, 11,281.06)
number_formulation -8,530.30 (-39,871.49, 22,810.89)
number_fill 10,142.36 (-12,102.94, 32,387.66)
number_top_1000 277.97 (-627.48, 1,183.42) 
lag(reg_moderna, 1) 313.41*** (313.41, 313.41) 
lag(number_cov_chain_moderna, 1) -7,853.13*** (-7,853.13, -7,853.13)
lag(number_fill, 1) 8,977.55*** (8,977.55, 8,977.55)
Constant -848.37 (-3,772.91, 2,076.17)
Time Fixed Effects No No 

Notes: ***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level.

Time-fixed effects estimations based on Beck and Katz, 
with control for potential serial correlation, contemporenous correlation and heteroskedasticity. 

All the commands and algorithms are coded in R 3.5.3 using the plm package. 
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Appendix J - Econometric model 2.5 (Moderna - Africa) 
Robustness Regression Results 

Number of Vaccine doses administrated 
Beck and Katz 2 Arellano and Bond 2 

(1) (2) 

reg_moderna 0.00 (0.00, 0.00) 
number_fill 0.00 (0.00, 0.00) 
lag(reg_moderna, 1) 0.00 (0.00, 0.00) 
lag(number_fill, 1) 0.00 (0.00, 0.00) 
Constant 0.00 (0.00, 0.00) 
Time Fixed Effects No No 

Notes: ***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level.

Time-fixed effects estimations based on Beck and Katz, 
with control for potential serial correlation, contemporenous correlation and heteroskedasticity. 

All the commands and algorithms are coded in R 3.5.3 using the plm package. 
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Appendix K - Econometric model 3.1 (Pfizer - Europe) 
Robustness Regression Results 

Number of Vaccine doses administrated 
Beck and Katz 2 Arellano and Bond 2 

(1) (2) 

reg_pfizer 252.60 (-1,315.97, 1,821.17) 
number_cov_chain_pfizer 1,985.39*** (585.26, 3,385.53) 
number_formulation -1,145.02** (-2,217.79, -72.24)
number_lipids -360.58 (-1,420.29, 699.13)
number_fill 2,989.81**(85.63, 5,893.99)
number_top_1000 -5.69 (-411.42, 400.05)
lag(reg_pfizer, 1) -708.40***(-708.40, -708.40)
lag(number_cov_chain_pfizer, 1) 1,477.41**(184.93, 2,769.89)
lag(number_formulation, 1) -1,413.34 (-3,284.54, 457.85)
lag(number_lipids, 1) -1,646.18 (-5,350.17, 2,057.82)
lag(number_fill, 1) 2,434.45**(556.20, 4,312.69)
Constant -0.00 (-995.35, 995.35)
Time Fixed Effects No No 

Notes: ***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level.

Time-fixed effects estimations based on Beck and Katz, 
with control for potential serial correlation, contemporenous correlation and heteroskedasticity. 

All the commands and algorithms are coded in R 3.5.3 using the plm package. 
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Appendix L - Econometric model 3.2 (Pfizer - North America) 
Robustness Regression Results 

Number of Vaccine doses administrated 
Beck and Katz 2 Arellano and Bond 2 

(1) (2) 

reg_pfizer 21,135.44 (-47,973.29, 90,244.17) 
number_cov_chain_pfizer 3,117.90 (-207.13, 6,442.92) 
number_formulation 866.38 (-845.13, 2,577.89) 
lag(reg_pfizer, 1) -20,753.77***(-20,753.77, -20,753.77)
lag(number_formulation, 1) -508.55***(-508.55, -508.55)
Constant -21,135.38 (-91,668.42, 49,397.66)
Time Fixed Effects No No 

Notes: ***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level.

Time-fixed effects estimations based on Beck and Katz, 
with control for potential serial correlation, contemporenous correlation and heteroskedasticity. 

All the commands and algorithms are coded in R 3.5.3 using the plm package. 
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Appendix M - Econometric model 3.3 (Pfizer - South America) 
Robustness Regression Results 

Number of Vaccine doses administrated 
Beck and Katz 2 Arellano and Bond 2 

(1) (2) 

reg_pfizer 2,196.47 (-2,445.85, 6,838.79) 
number_formulation 737.37 (-3,485.53, 4,960.28) 
number_top_1000 -1,497.18 (-4,966.47, 1,972.11)
lag(reg_pfizer, 1) 2,212.48 (-1,860.98, 6,285.94) 
Constant 499.06 (-4,328.62, 5,326.74) 
Time Fixed Effects No No 

Notes: ***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level.

Time-fixed effects estimations based on Beck and Katz, 
with control for potential serial correlation, contemporenous correlation and heteroskedasticity. 

All the commands and algorithms are coded in R 3.5.3 using the plm package. 
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Appendix N - Econometric model 3.4 (Pfizer - Asia) 
Robustness Regression Results 

Number of Vaccine doses administrated 
Beck and Katz 2 Arellano and Bond 2 

(1) (2) 

reg_pfizer 812.91 (-806.15, 2,431.96) 
number_formulation -3,244.10 (-46,261.20, 39,772.99)
number_fill 25,156.41 (-14,371.26, 64,684.08)
number_top_1000 -285.63 (-1,053.06, 481.80)
lag(reg_pfizer, 1) 591.96 (-249.15, 1,433.07) 
lag(number_fill, 1) 14,584.58 (-546.75, 29,715.90) 
Constant 571.26 (-1,977.67, 3,120.20) 
Time Fixed Effects No No 

Notes: ***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level.

Time-fixed effects estimations based on Beck and Katz, 
with control for potential serial correlation, contemporenous correlation and heteroskedasticity. 

All the commands and algorithms are coded in R 3.5.3 using the plm package. 
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Appendix O - Econometric model 3.5 (Pfizer - Africa) 
Robustness Regression Results 

Number of Vaccine doses administrated 
Beck and Katz 2 Arellano and Bond 2 

(1) (2) 

reg_pfizer 
lag(reg_pfizer, 1) 
Constant 

2,491.18 (-7,274.06, 12,256.42) 

-0.00 (-8,456.95, 8,456.95)
3,736.77***(3,736.77, 3,736.77) 

Time Fixed Effects No No 

         Notes: ***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level.

Time-fixed effects estimations based on Beck and Katz, 

with control for potential serial correlation, contemporenous correlation and heteroskedasticity. 

All the commands and algorithms are coded in R 3.5.3 using the plm package.




