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1 Introduction

Modelling dynamic correlations in financial markets is crucial for risk management and asset
allocation. A simplistic approach would be to assume constancy over time, represented by a
fixed correlation matrix. However, this assumption falls short during periods of market stress
or rapid economic change, when correlations can change abruptly. Such a static perspective
risks underestimating the probability and impact of extreme events, potentially leading to
inadequate risk management strategies and portfolio allocations.
To better capture the evolving nature of market conditions, we can employ regime-switching
models, which allow the parameters governing the behavior of financial time series to change
when the regime, or the underlying state of the market, changes. The Markov-Switching
model, a particular type of regime-switching model, employs a Markov chain to represent
the stochastic process of moving between di↵erent regimes. In financial applications, these
regimes might correspond to periods of high or low market volatility, growth or recession in
the economy, or bull or bear market conditions.
This thesis delves into the dynamics of daily exchange rates among major world curren-
cies—the Japanese yen (JPY), Euro (EUR), and Canadian dollar (CAD) against the U.S. dol-
lar (USD). By employing and extending the Regime-Switching Dynamic Correlation (RSDC)
model by Pelletier (2006), which incorporates the principles of Markov-Switching to capture
the dynamic nature of correlations, we aim to provide a more granular and precise represen-
tation of the intricate financial interdependencies at play.

1.1 Survey of Literature

Regime-switching models have evolved substantially since their inception, serving as vital
tools in economic and financial analysis. This section traces the lineage of these models,
highlighting significant contributions and innovations that have shaped current methodolo-
gies.

1.1.1 Early Developments and Applications (1989-2000)

The early literature on Markov-switching models, notably beginning with Hamilton’s seminal
work (Hamilton, 1989; Hamilton, 1990), marked an era where these models were primarily
used for analyzing business cycles and financial data series. These models conceptualized
the notion of regime shifts, elucidating the dynamic nature of various economic variables
through states or regimes that capture the underlying processes and potential future trends.
Key applications during this period extended across business cycles, interest rates, and asset
pricing, with notable studies by Sola and Dri�ll (1994), Asea and Blomberg (1998), and
Town (1992) deepening the understanding of regime shifts in their respective domains.

1.1.2 Advancements and Diversification (2000-Present)

Post-2000, the literature on Markov-switching models diversified into addressing more com-
plex models and technical issues. Studies like Akintug and Rasmussen (2005) expanded the
application to hydrologic time series, while others like Pei Yin (2007) applied Hidden Markov
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Models (HMM) to volatility estimation and price prediction, indicating the model’s superior
performance over GARCH models. The innovation of time-varying transition probabilities,
as proposed by Bazzi et al. (2014), furthered the evolution of these models, allowing for
more nuanced analysis of economic indicators like U.S. Industrial Production growth.
Recent contributions, such as those from Hwuy et al. (2016) and Nystrup et al. (2017),
have introduced models that adaptively estimate parameters, capturing long memory in
return volatility and improving forecasting performance. Chang et al. (2017) presented
a novel approach to regime-switching that introduces an autoregressive latent factor, and
Augustyniak, Bauwens et al. (2019) proposed the factorial hidden Markov volatility process,
enhancing both in-sample fit and out-of-sample forecasting.
The evolution of Markov-switching methodologies has seen a significant shift from being
predominantly used in economic and financial time series analysis to a broader array of
applications and technical refinements post-2000. This thesis aims to build on this rich
literature by applying advanced regime-switching models to the dynamic correlations of
major world currencies, thereby o↵ering novel insights and contributing to the continuous
development of this influential analytical framework.

1.2 Research Contribution

Building upon the vast array of literature, this research positions itself at the intersection of
Markov-switching models and real-world economic indicators. This study contributes to the
existing literature by integrating the methodology of Pelletier (2006) with contemporary eco-
nomic indicators as exogenous variables, an approach that has not been extensively explored
in the context of foreign exchange rates. The primary innovation of this thesis is the use of
these exogenous economic indicators—particularly GDP growth rates and the S&P market
index—to enhance the predictive power and inferential accuracy of the Regime-Switching
Dynamic Correlation (RSDC) models for foreign exchange rates.
Specifically, the thesis investigates the daily exchange rates of major world currencies, focus-
ing on understanding the dynamics of the Japanese yen (JPY), Euro (EUR), and Canadian
dollar (CAD) in relation to the U.S. dollar (USD). Through empirical analysis, it has been
demonstrated that economic indicators such as interest rates, inflation di↵erentials, and
trade balances exert a significant impact on exchange rate fluctuations. The inclusion of
these variables in the RSDC model has shown to improve the detection of regime shifts,
which is particularly evident during periods of economic uncertainty and market turbulence.
The practical implications of this research are far-reaching, o↵ering valuable insights for pol-
icymakers, investors, and economists who grapple with the complexities of foreign exchange
markets. By augmenting the Regime-Switching Dynamic Correlation (RSDC) model with
relevant economic indicators as exogenous variables, this work not only enhances the model’s
analytical precision but also provides a more comprehensive understanding of how external
economic factors interact with currency dynamics.
The findings of this research underscore the increased inferential power of the RSDC model
when it is informed by exogenous economic indicators. The model’s ability to predict regime
switches and correlation dynamics has been improved by incorporating GDP and S&P index
data. This suggests that economic performance and market sentiment, as captured by these
indicators, are integral to the behavior of currency exchange rates.
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The contribution of this thesis lies in its innovative approach to enriching the regime-
switching framework with exogenous economic variables, thus o↵ering a new perspective
on the understanding of dynamic correlations in exchange rates. This endeavor not only
aligns with the ongoing evolution of Markov-switching methodologies but also paves the
way for more sophisticated tools in economic forecasting and financial analysis, which may
include the exploration of additional indicators or the application of high-frequency data to
enhance model accuracy.

1.3 Overview of this Thesis

This thesis is organized as follows:

• Chapter 2: Methodology describes the statistical models and computational tech-
niques employed in this study, with an emphasis on the extensions made to the Regime-
Switching Dynamic Correlation (RSDC) model.

• Chapter 3: Data and Preliminary Analysis presents the data sets used, their
sources, and some preliminary analyses to show the need for regime-switching models
in capturing the dynamic of exchange rates.

• Chapter 4: Empirical Results discusses the findings from the application of the
RSDCmodel to the daily exchange rates between the Japanese yen (JPY), Euro (EUR),
and Canadian dollar (CAD) against the U.S. dollar (USD).

• Chapter 5: Conclusions and Future Work summarizes the key contributions of
this thesis and proposes avenues for future research.
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2 Methodology

2.1 Pelletier’s (2006) RSDC model

We examine a multivariate time series with K components, {Yt}Tt=1, where K represents the
number of time series. The variability in the dynamic relationship between time series is
decomposed into standard deviations and correlations, where the correlation values transit
between di↵erent regimes via a Markov chain:

Yt = H
1/2
t,St

Zt with {Zt}t2N ⇠ i.i.d (0, IK)1. (1)

where {St} is a Markov chain representing to the state at time t, and IK is the identity
matrix of dimension K, which is a K ⇥ K square matrix with ones on the main diagonal
and zeros elsewhere.. We decompose the time-varying covariance matrix Ht,St as follows

Ht,St = Dt�StDt, (2)

where Dt is a diagonal matrix composed of the standard deviations, �k,t, with k = 1, . . . , K,
and �St is the correlation matrix.

The ARMACH model is employed to model the standard deviations �k,t of each component
k in the diagonal matrix Dt. This process, as proposed by Taylor (1986), directly models
the time-varying standard deviations. The representation is given as

�k,t = !k + ↵k|yk,t�1|+ �k�k,t�1, (3)

where yk,t�1 is the component k at time t� 1 of the multivariate time series Yt�1.

The correlation matrix �st varies between di↵erent regimes, with distinct correlation values
assigned to each regime. The transition between these regimes is governed by a Markov
chain, represented by the transition probability matrix ⇧. Each element pi,j in this matrix
represents the probability of moving from regime i in period t to regime j in period t+ 1.

For the scope of this thesis, we will be considering only two regimes, therefore ⇧, the tran-
sition probability matrix, is a 2⇥ 2 matrix. It is represented as

⇧ =


p1,1 1� p1,1

1� p2,2 p2,2

�
, (4)

where pi,j denotes the probability of transitioning from state i at time t � 1 to state j at
time t, for i, j in {1, 2}.

pi,j = P [St = j | St�1 = i]. (5)

The Markov chain used in our model adheres to the standard assumptions of aperiodicity,
irreducibility, and ergodicity, which are crucial for its statistical properties. These concepts
are elaborated in Chapter 4 of Ross (1993).

1The square root of the covariance matrix Ht,St , denoted H
1/2
t,St

, in the context of this model, is used to
transform a vector of i.i.d standard normal random variables Zt into a vector Yt with the desired covariance
structure. The Cholesky decomposition is one common method to compute this matrix square root, ensuring
that the transformed variables Yt have the specified covariance matrix Ht,St .
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2.2 Constrained Specification

In this section, we aim to maintain numerical stability and simplify computational e↵orts
by considering a constant standard deviation matrix. This is in contrast to the dynamic
standard deviation matrix typically employed. Instead of directly modeling the time-varying
volatility for each series, we normalize the observations using a series of estimated standard
deviations derived from the ARMACH(1,1) model. This normalization process allows us to
apply a model with constant volatility parameters to the standardized series, focusing our
attention on the dynamics of the correlation matrix rather than the complexities introduced
by time-varying volatility.

More precisely, let each component of the original data be a time series of length T . For
k = 1, . . . , K, we have

yk = [yk,1, yk,2, . . . , yk,T ].

To model the time-varying volatility of each series, we fit an ARMACH(1,1) model for each
one. This process involves estimating the model parameters !k, ↵k, and �k that best capture
the conditional variance dynamics of each series. We employ the Maximum Likelihood
Estimation (MLE) method, which optimizes the likelihood function given the observed data.
The MLE approach is particularly e↵ective for time series data, as it takes into account
the temporal dependencies within the data. The estimated standard deviations from the
ARMACH model are thus given by

�̂k = [�̂k,1, �̂k,2, . . . , �̂k,T ].

The initial conditional variance �̂2
k,1 can be estimated using the sample variance of the returns,

which provides a straightforward starting point. Alternatively, one may consider the long-
term variance of the process given by !k

1�(↵k+�k)
, under the assumption that ↵k + �k < 1 for

the process to be stationary. This long-term variance reflects the expected level to which
the process will revert over time in the absence of new shocks.
We then transform the original series by dividing each observation by its corresponding
estimated standard deviation to obtain the filtered series:

uk =
yk

�̂k
=


yk,1

�̂k,1
,
yk,2

�̂k,2
, . . . ,

yk,T

�̂k,T

�
= [uk,1, uk,2, . . . , uk,T ].

Dividing the original data by the estimated conditional standard deviations allows for nor-
malization with respect to the volatility of the series. This process reduces the e↵ect of
varying volatility levels over time, making the data more consistent for analysis. It helps in
focusing on the core movements of the series, independent of their volatility magnitude.

Through a filtering process, we refine our model to focus on the variability represented by the
standard deviations, e↵ectively simplifying Dt to the identity matrix I under the assumption
of filtered series. This assumption posits that the filtered components ut have unit variance.
Furthermore, by assuming the innovations Zt are normally distributed, we establish a filtered
framework for our time series analysis.
The filtered series Ut is therefore represented as
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Ut|st = �1/2
st Zt ⇠ N(0K ,�st) (6)

The vector 0K in Equation (6) is a zero vector of dimension K.
Equation (6) provides the distribution of the filtered series Ut, a result of the standardization
procedure and assumptions. A comprehensive validation of this approach, as well as the
detailed outcomes of the filtering process within the variance model, is provided Appendix
A.

2.3 Extension With Time-Varying Transition Probabilities

A method proposed by Diebold et al. (1994) is employed to incorporate time-varying tran-
sition probabilities within regimes and to introduce state dependence into the dynamic cor-
relations model.
The state dependent probability matrix updates its elements at each time step, conditioned
on the accumulated set of information ⌦t, which comprises past filtered series:

⌦t = (Ut, Ut�1, . . . , U1). (7)

In this thesis, the accumulated information set, ⌦t, is primarily derived from the filtered
exchange rates of the Japanese yen (JPY), Euro (EUR), and Canadian dollar (CAD) against
the US dollar (USD), as presented in Section( 3.1).

The transition probability of moving from state i to state j at time t+ 1 is denoted as:

pi,j(t+ 1) = P [St+1 = j|St = i,⌦t]. (8)

This probability is modeled as a logistic function of a set of exogenous variables and param-
eters:

pi,j(t+ 1) =
1

1 + exp[�x
>
t �st ]

. (9)

Here, xt represents the column vector of exogenous variables at time t, including a constant
term, and is specified as

xt =

0

BBBBB@

1
x1,t

x2,t
...

xM,t

1

CCCCCA
, (10)

and �st is the column vector of parameters associated with the current regime st, expressed
as:
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�st =

0

BBBBB@

�0,st

�1,st

�2,st
...

�M,st

1

CCCCCA
. (11)

Each xi,t is the value of the i
th exogenous variable at time t, and each �i,st represents the

parameter for the i
th exogenous variable in state st. When no exogenous variables are

considered, these vectors contain only the constant term, reducing the model to one with
constant transition probabilities represented by a static matrix ⇧.

2.4 Estimation Algorithm

2.4.1 Concepts

Definition 2.1 (Forecast, Filtered, and Smoothing Probabilities). Forecast probability
refers to the probability that the state of a Markov chain St will take on a certain value
st, given information that was known prior to time t. Filtering probability, on the other
hand, is the probability that St will take on the value st given information from the past and
current state, while smoothing probability considers the full sample information to determine
the probability that St will take on the value st:

Pforecast = P [St = st | ⌦t�1, ✓],

Pfiltered = P [St = st | ⌦t, ✓],

Psmoothing = P [St = st | ⌦T , ✓].

The parameter vector, denoted as ✓, includes two sets of coe�cients, �1 and �2, and two sets
of correlation coe�cients, �1 and �2. Specifically,

✓ = [�1, �2,�1,�2]

where each of these parameters is a vector.

In this thesis, we focus on the estimation method based on the maximum likelihood function
(see Section 2.4.2 for details). The accuracy of estimating the state variable St depends on
evaluating its conditional forecasts (conditional expectations) of St = st based on various in-
formation sets. These forecasts encompass the predictions of conditional probability, filtered
probability, and smoothing probability.

The parameters of the Markov-switching model are estimated by considering the joint con-
ditional probability of future states as a function of the joint conditional probabilities of
current states and the transition probabilities. This is described by the filtering process
(Definition 2.2).
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Definition 2.2 (Filtering Process). The process of filtering involves transforming the con-
ditional probabilities of the current states through a dynamic system represented by the
transition probability matrix to obtain the conditional probabilities of future states, that is

P [St = st | ⌦t�1, ✓] =
X

st�1

P [St = st | St�1 = st�1,⌦t�1, ✓]⇥ P [St�1 = st�1 | ⌦t�1, ✓]

2.4.2 Estimating Parameters

The parameter vector ✓ for the proposed model is estimated using the maximum likelihood
method. The log-likelihood function, denoted by l(u1, u2, . . . , uT |✓), is a function of the
vector of parameters ✓. It is defined as the sum of the natural logarithm of the conditional
density function of the observed variables, given the information available up to time t. In
mathematical terms, the log-likelihood function can be written as:

l(u1, u2, . . . , uT |✓) =
TX

t=1

log (f (Ut = ut|⌦t�1, ✓)) , (12)

where T is the sample size, and f represents the conditional density function of the observed
variables. This function f describes the probability distribution of the observed variables Ut

given the information set ⌦t�1 and the parameter vector ✓. Specifically, conditioned on the
regime state, the distribution of Ut follows a multivariate normal distribution as indicated
by Equation (6). The explicit form of the density function f is presented in this section.

Hamilton’s 1989 paper proposed an algorithm to estimate parameters of a switching process
when the true state of the system at any given time is unobservable. Basically, we want
to jointly estimate (i) the parameters of the model conditional on being in either state 1 or
state 2 and (ii) the probability that we are in state 1 or state 2 at a particular time.

Let ⌦t = {u1, u2, . . . , ut�1, ut} denote the information available up to time t, where ut is a
vector of size K and corresponds to the observation of the K components at time t.

1. Time t� 1 state (previous state):

⇠i,t�1 = P [St�1 = i|⌦t�1, ✓]

2. State transition from i to j (state propagation):

pij(t) = P [St = j|St�1 = i,⌦t�1, ✓]

which represents the probability of state i at time t� 1 transitioning to state j at time
t.

3. Densities under the regime j at time t (data observations and state depen-
dent errors):

⌘j,t = f(ut|St = j,⌦t�1, ✓) =
1

(2⇡)
K
2 |�j|

1
2

e
� 1

2u
0
t�

�1
j ut
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4. Conditional density of the time t observation (combined likelihood with
state being collapsed):

f(ut|⌦t�1, ✓) =
2X

i=1

2X

j=1

⇠i,t�1pij(t)⌘j,t

• Start with the definition of conditional probability of observing ut given ⌦t�1 and
✓,

f(ut|⌦t�1, ✓).

• Expand this probability by considering all possible transitions between states i

and j, where i, j 2 {1, 2},

f(ut|⌦t�1, ✓) =
2X

i=1

2X

j=1

P (St�1 = i, St = j|⌦t�1, ✓) · f(ut|St = j,⌦t�1, ✓).

• Recognize that P (St�1 = i, St = j|⌦t�1, ✓) can be decomposed into the product
of the probability of being in state i at time t� 1 and the transition probability
to state j at time t,

P (St�1 = i, St = j|⌦t�1, ✓) = ⇠i,t�1 · pij(t).

• Note that f(ut|St = j,⌦t�1, ✓) is the likelihood of observing ut given the state j,
which is represented by ⌘j,t,

f(ut|St = j,⌦t�1, ✓) = ⌘j,t.

• Substitute these expressions back into the expanded probability,

f(ut|⌦t�1, ✓) =
2X

i=1

2X

j=1

⇠i,t�1 · pij(t) · ⌘j,t.

5. Time t state (corrected from previous state):

⇠j,t = P [St = j|⌦t, ✓] =

P2
i=1 ⇠i,t�1pij(t)⌘j,t
f(ut|⌦t�1, ✓)

• The probability of being in state j at time t, given all information up to t and
parameters ✓, is formulated as the ratio of the joint probability of observing ut

under state j and being in state j at t, to the total probability of observing ut

under any state. This is expressed as:

P [St = j|⌦t, ✓] =
P [St = j, ut|⌦t�1, ✓]

P [ut|⌦t�1, ✓]
.
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• The numerator represents the joint probability of transitioning to state j at time
t and observing ut, which is obtained by summing over all possible previous states
i, considering the transition probabilities pij(t) and the likelihood of ut given state
j, ⌘j,t:

P [St = j, ut|⌦t�1, ✓] =
2X

i=1

⇠i,t�1 · pij(t) · ⌘j,t.

• The denominator, P [ut|⌦t�1, ✓], normalizes the probability by considering all pos-
sible states at time t, ensuring the sum of probabilities over all states equals 1.
It is calculated by summing the joint probabilities over all state transitions and
observations of ut:

P [ut|⌦t�1, ✓] =
2X

j=1

2X

i=1

⇠i,t�1 · pij(t) · ⌘j,t.

• Combining these elements yields the updated probability for state j at time t,
reflecting the latest observed data ut and the transition dynamics encoded in ✓:

P [St = j|⌦t, ✓] =

P2
i=1 ⇠i,t�1 · pij(t) · ⌘j,tP2

j=1

P2
i=1 ⇠i,t�1 · pij(t) · ⌘j,t

=

P2
i=1 ⇠i,t�1 · pij(t) · ⌘j,t
f(ut|⌦t�1, ✓)

Iterate steps 1) through 5) from t = 1 to T .

As a result of executing this iteration, the sample conditional log-likelihood of the observed
data is calculated, and is optimized numerically2 to find the best fitting set ✓̂.

Regime-Switching estimation involves the numerical optimization of a high-dimension param-
eter vector, ✓. Given the nature of this task, it is beneficial to employ vectorized operations.
Many programming languages, including Python and MATLAB, are designed to handle vec-
torized operations more e�ciently, leading to faster computation times. Therefore, we use
vectorization in our algorithm implementation to optimize performance:
First, we have

⇧(t) =


p11 1� p11

1� p22 p22

�
(t)

which is the transition probability matrix.
Let

P [St = st|⌦t, ✓] = ⇠t|t =


⇠1t

⇠2t

�

2Di↵erential evolution is a type of numerical optimization algorithm that is particularly useful for esti-
mating the parameters of complex nonlinear functions. It iteratively explores the parameter space to find
an optimum of the objective function, leveraging a population-based approach that does not require deriva-
tive information. Di↵erential evolution is known for its robustness and e�ciency and has been successfully
applied to a variety of optimization problems, including those in econometrics and finance. Therefore, it can
be a good choice for estimating the parameters of the regime switching model in this thesis, which involves
a complex nonlinear log-likelihood function.
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ft =


f(Ut = ut|st = 1,⌦t�1, ✓)
f(Ut = ut|st = 2,⌦t�1, ✓)

�

and

⇠t|t�1 =


P [St = 1|⌦t�1, ✓]
P [St = 2|⌦t�1, ✓]

�

Now the series of inference and forecast probabilities regarding the unobserved state (regime)
that we need can be expressed as:

⇠t|t =
1

⇠
0
t|t�1ft

⇠t|t�1 � ft

where � corresponds to element-wise multiplication, and

⇠t+1|t = ⇧(t+ 1)⇠t|t

from the definition of the Filtering Process (2.2).

The vectorized algorithm is recursively performed the following way:

1. Initialize a guess (expectation) for the probabilities of each state at time
zero (⇠1|0)
One e↵ective approach to initialize ⇠1|0 is to use the limiting probabilities (⇡1 and ⇡2)
of the Markov process. These limiting probabilities represent the long-term stable
state probabilities to which the system eventually converges. Mathematically, these
probabilities are found by solving:

✓
⇡1

⇡2

◆
= ⇧(1)

✓
⇡1

⇡2

◆
,

⇡1 + ⇡2 = 1

⇡1, ⇡2 > 0.

For a two-state system, the solution is:

⇡1 =
1� p22(1)

1� p11(1) + 1� p22(1)
,

⇡2 =
1� p11(1)

1� p11(1) + 1� p22(1)

These probabilities provide a stable and informed initial guess for ⇠1|0.

2. Use data available at time 1 to update this expectation:

⇠1|1 =
1

⇠
0
1|0f1

⇠1|0 � f1.

3. Use the transition probabilities to form an expectation about the state
probabilities for time 2:

⇠2|1 = ⇧(2)⇠1|1.

4. Continue this process until t = T .
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2.5 Smoothing

In a Markov-Switching model, the regime is considered unobservable and likelihood maximiz-
ing parameter values are obtained using the observed data. There are two main objectives
of this estimation:

1. Finding the likelihood maximizing regime-dependent parameters and

2. Inferring the prevailing regime at specific points in time.

To make inferences about the regime at a particular time, a smoothing algorithm is employed,
which uses all available data and optimized model parameters to determine the most likely
regime at each time period. The main di↵erence between the smoothing algorithm and the
filter is that the former considers all available data up to time T , while the latter considers
all data up to time t�1 to predict the regime at time t. The smoothing algorithm, developed
by Kim (1994), involves the following steps:

Consider the joint probability that the regime is in state j at time t and state k at time t+1
based on full information:

P [St = j, St+1 = k|⌦T ] = P [St+1 = k|⌦T ]⇥ P [St = j|St+1 = k,⌦T ]

⇡ P [St+1 = k|⌦T ]⇥ P [St = j|St+1 = k,⌦t]

=
P [St+1 = k|⌦T ]⇥ P [St = j, St+1 = k|⌦t]

P [St+1 = k|⌦t]

=
P [St+1 = k|⌦T ]⇥ P [St = j|⌦t]⇥ P [St+1 = k|St = j,⌦t]

P [St+1 = k|⌦t]
.

The smoothing algorithm employed in this study follows the approach developed by Kim
(1994), which necessitates an approximation to compute the joint probability of regime
states. While this approximation facilitates the computation process, it is acknowledged
that a more precise calculation could be achieved through the application of a forward-
backward algorithm. The forward-backward method is a dynamic programming approach
that avoids approximations by systematically processing the sequential data in both forward
and backward passes, thus ensuring that the computation of smoothed probabilities leverages
all available information without the need for simplifying assumptions. Rabiner’s (1989)
tutorial on hidden Markov models provides an in-depth explanation of this algorithm and its
applications, underscoring its utility in accurately estimating the states of a system based
on observed sequences.

The mechanics of the smoother involve using the updated regime probability from the last
iteration of the smoother, denoted as P [St = st|⌦t, ✓] (previously represented by ⇠t|t), along
with the updated probability from the filter loop at T � 1, denoted as P [ST�1|⌦T�1] (pre-
viously represented by ⇠T�1|T�1), and the transition probabilities P [ST = 1|ST�1 = 1] and
P [ST = 2|ST�1 = 2], which are the model parameters p11 and p22 (or �1 and �2 for the time
varying model), respectively.
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Given these quantities, we can calculate the smoothed regime probabilities:

P [ST�1 = 1, ST = 1|⌦T ] =
P [ST = 1|⌦T ]⇥ P [ST�1 = 1|⌦T�1]⇥ P [ST = 1|ST�1 = 1,⌦T�1]

P [ST = 1|⌦T�1]

P [ST�1 = 1, ST = 2|⌦T ] =
P [ST = 2|⌦T ]⇥ P [ST�1 = 1|⌦T�1]⇥ P [ST = 2|ST�1 = 1,⌦T�1]

P [ST = 2|⌦T�1]

The smoothed probability that the prevailing regime at time t = T � 1 was in state st = 1
is then:

P (ST�1 = 1|⌦T ) = P (ST�1 = 1, ST = 1) + P (ST�1 = 1, ST = 2)

therefore,
P (ST�1 = 2|⌦T ) = P (ST�1 = 2, ST = 2) + P (ST�1 = 2, ST = 1)

and stepping backwards in time,

P (S1 = 2|⌦T ) = P (S1 = 2, S2 = 2) + P (S1 = 2, S2 = 1)

We compute the smoothed regime probabilities for each time point. These probabilities can
be used to infer the start and end dates of di↵erent regimes by assigning to each date the
regime that has the highest smoothed probability, which can provide valuable insights into
the dynamics of the underlying process.
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3 Data

3.1 Dependant Variables

In this section, we present the data used in our analysis. The dependant variables consist of
daily exchange rates of the Japanese yen (JPY), Euro (EUR), and Canadian dollar (CAD)
against the US dollar (USD). These exchange rates are studied over a period from January
1st, 2018, to April 31st, 2022, depicted in Figure 1, and a test set extending from May 1st,
2022, to January 1st, 2023. The choice of these currencies is motivated by their significant
role in the global foreign exchange market. The time period was chosen to provide a recent
and relevant context for our analysis.

(a) CAD/USD (b) EUR/USD

(c) JPY/USD

Figure 1: Exchange rate series. Time series plots of daily exchange rates of JPY, EUR,
and CAD against USD from January 1st, 2018, to April 31st, 2022. The plots reveal the
dynamic nature of exchange rates, with periods of relative stability interrupted by episodes
of volatility.

Next, we focus on the first log di↵erences of these exchange rates, centered and multiplied
by 100, as it is the correlation of these di↵erences that we are primarily interested in for our
analysis. The log di↵erences of each series are presented in Figure 2.
It is worth noting that the date range of our dataset di↵ers from that of Pelletier (2006).
The reason for this is that we incorporate exogenous variables into our analysis that were
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(a) Log Di↵erence CAD/USD (b) Log Di↵erence EUR/USD

(c) Log Di↵erence JPY/USD

Figure 2: First Log Di↵erences of Exchange Rates. These plots display the first log di↵erences
of the JPY/USD, EUR/USD, and CAD/USD exchange rates, centered and multiplied by
100. This transformation highlights the daily changes in rates and is crucial for our analysis
of dynamic correlations.

not available during the time of those datasets.
To prepare our data for analysis, we apply the ARMACH(1,1) model to the first di↵erence
of the logarithm of each series, which is then filtered. This process helps us in modeling and
understanding the volatility patterns inherent to the exchange rate series. Figure 3 illustrates
the time-varying conditional standard deviations for each exchange rate series derived from
this model, showcasing the periods of volatility and stability for the JPY/USD, EUR/USD,
and CAD/USD pairs.
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Figure 3: Each subplot represents the time series of the fitted standard deviations for the
transformed exchange rate between the specified currencies.

Following the application of the ARMACH(1,1) model, we calculate the parameters for each
currency series. Table 1 presents the estimated parameters for the ARMACH(1,1) models,
detailing the specific values of !, ↵, and � for the JPY/USD, EUR/USD, and CAD/USD
exchange rates.

Table 1.
Estimated Parameters for the ARMACH(1,1) Model
The parameters are estimated on each of the series obtained by taking the first di↵erence of
the logarithm of each series, multiplying by 100, and subtracting the sample mean. These
estimations are according to the ARMACH(1,1) model as described in Equation (3).

Currency !̂ ↵̂ �̂

JPY/USD 0.0272 0.1063 0.8535
EUR/USD 0.0137 0.0716 0.9116
CAD/USD 0.0190 0.0773 0.9002

The estimated parameters of the ARMACH(1,1) model, as presented in Table 1, o↵er in-
sights into the volatility dynamics of the respective currency exchange rates. The estimated
parameter !̂ represents the long-term average volatility, indicating the baseline level of fluc-
tuations in the exchange rates. A higher value of !̂ suggests a greater inherent volatility
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in the currency’s value. The estimated parameter ↵̂ captures the response of volatility to
market shocks from the previous day, reflecting how quickly the market reacts to new infor-
mation. A larger ↵̂ indicates a more sensitive response, leading to higher volatility following
market movements. Lastly, the estimated parameter �̂ measures the persistence of volatility
over time. Values close to 1 suggest that the e↵ects of shocks on volatility are long-lasting,
indicating a high degree of volatility clustering in the currency exchange rate series. This
analysis provides a quantitative foundation for understanding the behavior of volatility in
foreign exchange markets, highlighting di↵erences in the stability and reaction to new infor-
mation among the currencies studied.

The final step in our data preparation is the creation of filtered series. These series, de-
picted in Figure 4, are the result of multiplying the first di↵erence of the logarithms by 100,
subtracting the sample mean, and applying the variance model parameters from Table 1.
The series in Figure 4 are referred to as ’filtered series’ and are used for further analysis of
dynamic correlations between exchange rates.

(a) CAD/USD (b) EUR/USD

(c) JPY/USD

Figure 4: Filtered exchange rate series. The series represent the filtered rates for CAD, EUR,
and JPY against USD, obtained by applying the ARMACH(1,1) model to the first di↵erence
of the logarithm of each series, multiplied by 100, and subtracting the sample mean.

An essential aspect of our analysis is the investigation of dynamic correlations among the
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exchange rates. To provide a visual representation of these correlations, we calculate rolling
correlations using a 45-day window. Figure 5 illustrates the time series of the rolling cor-
relations for each currency pair. This visualization helps in understanding how correlations
between the EUR/JPY, EUR/CAD, and CAD/JPY currency pairs evolve over time.

Figure 5: Rolling correlations between the EUR/JPY, EUR/CAD, and CAD/JPY currency
pairs over time with a 45-day rolling window.

The rolling correlations provide insight into the fluctuating relationship between the currency
pairs over the observed period, highlighting times of convergence and divergence that may
correspond to economic events or market sentiment shifts. The average correlation o↵ers a
summary measure of the overall market correlation structure and serves as a precursor to
more complex analyses within this thesis.

3.2 Explanatory Variables

The set of explanatory variables selected for this study is based on their established im-
pact on exchange rates, as documented in economic literature. The variables encompass a
range of economic indicators and market data, each serving to elucidate di↵erent aspects
influencing currency valuation. Data for these variables was acquired through the Federal
Reserve Economic Data (FRED) database, ensuring comprehensive coverage and robust-
ness of information. Below is an outline of the chosen variables and the rationale for their
inclusion:

1. Gross Domestic Product (GDP): Quarterly GDP growth rates are interpolated
to a daily frequency using the last available value method to represent economic per-
formance without introducing forward-looking bias. GDP is a primary indicator of
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economic strength, and its growth rate directly correlates with the health of a coun-
try’s currency.

2. Consumer Price Index (CPI): Monthly CPI data, converted to a daily measure,
accounts for inflation rate e↵ects. A lower inflation rate typically indicates a stronger
currency value, thus a↵ecting exchange rates.

3. Market Indices: Indicators like the S&P 500, FTSE 100, and the Nikkei 225 reflect
overall economic performance and investor sentiment, both of which have significant
bearings on currency values.

4. Volatility Index (VIX): Known as the ”fear index,” the VIX gauges market risk
and sentiment. Its inclusion helps assess how market volatility influences currency
valuation.

5. Oil Prices (CL=F): As a crucial commodity, oil prices a↵ect the economic stability
of exporting and importing countries, thereby influencing their exchange rates.

6. Gold Prices (GC=F): Gold prices serve as a barometer for economic uncertainty
and can a↵ect currency stability and, consequently, exchange rates.

7. 10-Year Treasury Note Yield (TNX): The yield on this note is a benchmark for
global finances, and shifts in the yield suggest changes in U.S. economic expectations,
which are closely tied to currency fluctuations.

For each of these explanatory variables, both the level (price) and the first moment (return)
were considered to capture di↵erent aspects of their influence on exchange rates. Addition-
ally, all variables were normalized to enable a direct comparison of coe�cient parameters
across di↵erent datasets. This normalization facilitates an equitable assessment and inter-
pretation of the influence exerted by each variable within our models, ensuring a balanced
and comprehensive analytical approach.
Each variable thus provides a distinct and quantifiable perspective on the dynamic forces
shaping exchange rates, ensuring our model comprehensively captures the multifaceted na-
ture of currency fluctuations.
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4 Empirical Results

In this section, we present and discuss the results of our model estimation. We consider
various combinations of exogenous variables, each representing a di↵erent possible set of
influences on the exchange rates under study. The performance of each model is evaluated
using several metrics, including the log-likelihood, the Akaike Information Criterion (AIC),
the Bayesian Information Criterion (BIC), the likelihood ratio (LR) test statistic and its
p-value, and the out-of-sample log-likelihood.
The formulas for AIC and BIC, based on the log-likelihood function l defined in Equation (12)
and the number of parameters q, are as follows:

AIC = 2q � 2l

BIC = q log(T )� 2l

Additionally, we evaluate the out-of-sample likelihood, calculated using Equation (13). This
likelihood is calculated using the parameters estimated from the training set and is evaluated
on the data from the test set, covering observations from T + 1 to T + n, where n is the
number of observations in the test set.

l(uT+1, uT+2, . . . , uT+n|✓̂) =
T+nX

t=T+1

log
⇣
f

⇣
Ut = ut|⌦t�1, ✓̂

⌘⌘
(13)

Subsequently, we conduct a comprehensive analysis to compare the best-fitting extended
model against the restricted model.

4.1 Results Overview

In model selection, the objective is to optimize the trade-o↵ between the fit of the model
to the observed data and its complexity, which is defined by the number of parameters. To
this end, evaluation criteria such as the Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) were employed. Both AIC and BIC integrate the log-likelihood
of the model while penalizing for the number of parameters, albeit to varying degrees. AIC
is generally more permissive regarding model complexity as compared to BIC.
Additionally, out-of-sample log-likelihood was introduced as another evaluation criterion,
serving to assess the generalizability of each model to unseen data.
Initial analyses involved the exploration of various configurations of exogenous variables.
Subsequently, models were ranked based on their AIC, BIC, and out-of-sample log-likelihood
values (LL OOS). Detailed results of this rigorous model selection process are presented in
Table 2.
The Likelihood Ratio test p-value (LR) is also provided in these tables. Although not a
direct measure of goodness-of-fit, the LR test is instrumental in comparing the adequacy
of two nested models. Specifically, the restricted model is considered a special case of the
unrestricted model. The test statistic is derived from the ratio of the likelihoods of these two
models, and the corresponding p-value quantifies the statistical significance of the di↵erences
in fit between them. For an elaborate discussion of the LR test, readers are directed to
Section C in the appendix.
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In summary, lower values of AIC or BIC, in conjunction with higher out-of-sample log-
likelihood, are indicative of a more favorable balance between model fit and complexity.
The correlation estimates are denoted by the symbol �, followed by a subscript that includes
two asset numbers and a state number. The asset numbers correspond to the assets being
compared, and the state number represents the state.
Specifically, the first number in the subscript corresponds to the asset number: 1 for CAD/USD,
2 for EUR/USD, and 3 for JPY/USD. The second number in the subscript also corresponds
to an asset number, following the same numbering system. The third number in the subscript
represents the state, with 1 indicating state 1 and 2 indicating state 2.
These correlation estimates provide insight into the relationships between di↵erent currency
pairs in each state, which can be useful for understanding the dynamics of the exchange
rates under di↵erent conditions.

4.2 Discussion of Results

It’s noteworthy to mention that in our analysis, despite considering both the level (price) and
the first moment (return) for each variable, the models incorporating returns consistently
outperformed those with level variables. This was reflected in the selection of models for
Table 2, where all variables are in their return form. This observation underscores the
importance of focusing on the rate of change or relative movement in the variables, rather
than their absolute levels, in capturing the nuances of exchange rate dynamics.
From Table 2, it’s evident that the combination of Japan GDP, S&P Index, Yield Index
as exogenous variables yields the lowest AIC score, making it the top-performing model
based on this criterion. This could suggest that the dynamics of the Japanese GDP, the
performance of the stock market (as measured by the S&P Index), and the yield index play
a significant role in influencing the correlation dynamics between the exchange rates.

Another interesting observation is that models solely relying on stock market data, like the
S&P Index, also seem to perform exceptionally well, indicating the prominent role of equity
market movements in shaping currency relationships.
However, we highlight the relatively close AIC scores between the top models. This suggests
that while there are di↵erences in how well each model fits the data, the distinctions might
not be pronounced. Consequently, the choice between these models may depend on the
specific goals of the analysis or the ease of acquiring and processing the required data for
the exogenous variables.

The Bayesian Information Criterion (BIC) is another tool used to judge the quality of a model
in light of its complexity. It penalizes complex models more harshly than AIC. Therefore, BIC
can be especially useful when preferring simpler models or when there’s a risk of overfitting.
The model with just the S&P Index as an exogenous variable outperforms others based on
the BIC, suggesting that, when penalizing for complexity, a model focusing on the stock
market provides a satisfactory fit. This underlines the potential influence and significance of
stock markets in determining exchange rate dynamics.

A notable mention is the restricted model (with no exogenous variables) which also ranks
relatively high based on BIC, pointing to the e�ciency of a simpler model.
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Interestingly, the Japan GDP, S&P Index, Yield Index combination, which was the top
performer for AIC, still retains a prominent position in the BIC rankings. This overlap
between AIC and BIC hints at the robustness of this particular model’s performance.

Both AIC and BIC, while approaching model evaluation from slightly di↵erent perspectives,
highlight the substantial influence of stock market indices (like the S&P) on exchange rate
correlations. Moreover, while some combinations of exogenous variables provide optimal fits,
the distinctions between the top models’ performances are relatively nuanced, suggesting that
model selection should be driven by the specific goals of the analysis, data availability, and
computational e�ciency.

The Out-of-Sample Log-Likelihood (OOS LL) is a key metric for evaluating the model’s
predictive accuracy on new data that the model has not seen during training. A higher OOS
LL value suggests a model that generalizes better to new data points, which is essential for
predictive tasks.

From Table 2, the model with Japan GDP, S&P Index, and Yield Index not only performs
well according to AIC and BIC but also shows a superior OOS LL score of -973. This further
solidifies the argument that this model is both well-fitted and generalizable.

Conversely, the restricted model, despite its relative simplicity, managed to achieve a rela-
tively good OOS LL score of -983, as seen in Table 2. This aligns with its high BIC rank,
emphasizing that a less complex model can still o↵er good predictive power.

Interestingly, the S&P Index model, while dominating in BIC, shows a slightly lower OOS
LL score of -988. This might suggest that while the model is parsimonious and fits the
in-sample data well, its predictive accuracy could be slightly compromised.

This multi-criterion analysis—comprising AIC, BIC, and OOS LL—provides a more holistic
view of model performance. It reiterates the substantial role of the S&P Index and the Japan
GDP, among others, in determining exchange rate dynamics. It also implies that depending
on the objective—be it explanatory power or predictive accuracy—di↵erent models may be
more appropriate.

Overall, the OOS LL metric complements the AIC and BIC metrics, o↵ering an additional
layer of validation in model selection.

Ultimately, these findings emphasize the interconnectedness of global financial markets. The
intricate web of relationships between stock markets, economic indicators, and exchange
rates showcases the complexities inherent in predicting currency movements.

4.3 Best-Fitting Model comparison with Restricted Model

In this subsection, we delve deeper into the results by comparing the restricted model, which
includes no exogenous variables, with two unrestricted models: the best-fitting model with
one exogenous variable and the best-fitting model with multiple exogenous variables. This
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Table 3. Transition Probabilities Parameters for Restricted and Unrestricted Models
This table presents the transition probability estimates (beta parameters) and the average
transition probabilities for each state (p̂11 and p̂22) for three distinct models. Model 1 is the
restricted model with no exogenous variables. Model 2 incorporates the S&P Index as an
exogenous variable. Model 3 includes the S&P Index, Japan’s GDP, and the Yield Index as
exogenous variables. The beta parameters represent the logistic probabilities parameters for
transitioning from one state to another, while p̂11 and p̂22 represent the average transition
probabilities for each state.

Models �̂0,1 �̂0,2 �̂1,1 �̂1,2 �̂2,1 �̂2,2 �̂3,1 �̂3,2 p̂11 p̂22

Model 1 1.888 1.502 – – – – – – 0.869 0.818
Model 2 2.074 1.484 1.483 -0.180 – – – – 0.877 0.812
Model 3 2.927 2.191 0.378 -2.363 1.320 5.011 0.437 8.966 0.921 0.512

comparison allows us to better understand the impact of including exogenous variables on
the performance of the model. These models are presented in Table 3.
To complement the analysis presented in Table 3, it is beneficial to visualize the behavior of
the exogenous variables included in the models. This visualization helps in understanding
the characteristics and fluctuations of these variables over time, which may have influenced
the modells performance.
The plot in Figure 6 showcases the individual time series of the three key exogenous variables:
Japan’s GDP, the S&P Index, and the Yield Index.

4.3.1 Comparison of Models

First, we compare the transition probability estimates of the models. Transition probabilities
represent the likelihood of moving from one state to another in the next time period, given
the current state. By comparing these estimates across models, we can gain insights into
how the inclusion of exogenous variables a↵ects the dynamics of the exchange rates. For
instance, if the transition probabilities of the unrestricted models are significantly di↵erent
from those of the restricted model, this would suggest that the exogenous variables have a
substantial impact on the state transitions.

Next, we compare the forecasted probabilities and the smoothed probabilities of each model.
The forecasted probabilities represent the model’s predictions of the future state, given the
current state and the exogenous variables, while the smoothed probabilities represent the
model’s estimates of the current state, given all past and future observations. By comparing
these probabilities, we can assess the accuracy of the model’s predictions and its ability
to capture the underlying dynamics of the exchange rates. If the forecasted probabilities
are close to the smoothed probabilities, this would indicate that the model is accurately
capturing the state transitions and is therefore a good fit for the data.

Through these comparisons, we aim to identify the model that provides the best balance
of accuracy and complexity, and thus the most reliable insights into the dynamics of the
exchange rates.
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Figure 6: Time Series of Exogenous Variables Employed in Model 3

The figure illustrates the time series of Japan’s GDP, the S&P Index, and the Yield Index.
Observing these variables’ trends and volatility o↵ers insight into the economic and market
conditions that may a↵ect the dynamic correlations between exchange rates.
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4.3.2 Transition Probabilities

We defined in section 2 the transition probabilities to correspond to

pi,j(t+ 1) =
1

1 + exp[�xt�st ]

For the restricted model (Model 1: None), we can directly evaluate the recurrent probabilities
using the � parameters from Table 3:

p̂1,1 =
1

1 + exp[��̂0,1]
=

1

1 + exp[�1.888]
= 0.869

p̂2,2 =
1

1 + exp[��̂0,2]
=

1

1 + exp[�1.502]
= 0.818

For the unrestricted models (Model 2 and Model 3), the transition probabilities can be cal-
culated using their respective � parameters, as listed in Table 3. Figures 7 and 8 specifically
present the transition probabilities p11 and p22 for Models 2 and 3, respectively.

Figure 7: Temporal evolution of transition probabilities for Model 2, which incorporates the
S&P Index as an exogenous variable. The figure contains two plots: the first plot represents
p1,1,t and the second plot represents p2,2,t.

The size of the beta coe�cients serves as an excellent metric to gauge the model’s respon-
siveness to the exogenous variable, the S&P Index. A higher absolute value of the beta
coe�cients indicates that even minor variations in the S&P Index can bring about signifi-
cant changes in the transition probabilities. The transition probability p22 hovering around
the 0.80 mark suggests a moderate sensitivity to the S&P Index. However, the sharp volatil-
ity rise at time step 580, aligning with the onset of the COVID-19 pandemic, reveals that
unprecedented events can amplify this sensitivity dramatically.
The transition probability p11 displays pronounced volatility, fluctuating extensively between
0 and 1. Yet, the fact that it is commonly observed around 0.95 signifies a prevailing tendency
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for the system to stay in state 1 once entered. The extensive volatility range of p11 underscores
the system’s susceptibility to external factors, indicating that the persistence in state 1 can
be easily disrupted by minor variations in the S&P Index. This high volatility can be ascribed
to the beta corresponding to the S&P 500 for state 1, which at 1.484, is significantly larger
in magnitude than the corresponding beta for state 2, which stands at -0.180. This means
that the transition probabilities for state 1 are substantially more reactive to shifts in the
S&P Index compared to state 2.
Recurrent probabilities from the restricted model pointed towards one state’s heightened
recurrence over the other. In the context of Model 2, the more stable nature of p22 versus the
high volatility of p11 underlines that while state 2 is relatively consistent and less influenced
by external factors, state 1 is more capricious, primarily due to the pronounced influence of
the S&P Index on its transition probability.
To sum up, the behavior of transition probabilities underscores the profound e↵ects that
external financial variables can exert on exchange rate dynamics. The disruptive influence
of significant exogenous events, such as the COVID-19 pandemic, further emphasizes the
sensitivity of these transition probabilities to worldwide financial occurrences. With the
pronounced influence of the S&P Index on transition probabilities, especially on state 1,
financial analysts and policymakers should remain alert to potential abrupt shifts in exchange
rate behaviors governed by global financial market movements.

Figure 8: Temporal evolution of transition probabilities for Model 3, which includes the S&P
Index, Japan’s GDP, and the Yield as exogenous variables. The figure contains two plots:
the first plot represents p11 and the second plot represents p22.

The incorporation of multiple exogenous variables, namely the S&P Index, Japan’s GDP,
and the Yield, brings forth a richer, albeit more complex, narrative in the temporal evolution
of transition probabilities in Model 3, as depicted in Figure 8.
The transition probability p22 in Model 3 showcases an exceptionally high degree of volatility,
as can be observed in the second plot of Figure 8. So much so that its fluctuations are almost
indiscernible on a visual representation. Such extreme volatility suggests that this state’s
transitions are highly sensitive to the incorporated exogenous variables, with their e↵ects
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being compounded when integrated into the model. The extreme sensitivity and resulting
erratic behavior could potentially make predictions challenging for this state, highlighting
the risks of introducing too much complexity without additional refinement.
In stark contrast, p11 demonstrates a recurrent behavior, centering primarily around the 0.98
mark. Nonetheless, its occasional plunges between the extremities of 0 and 1 reveal that,
while this state is predominantly stable, it isn’t entirely immune to external influences. Such
oscillations emphasize that even states with a recurrent nature can experience instances of
pronounced susceptibility to exogenous variables.
The vastly disparate behaviors of p11 and p22 can be e↵ectively elucidated by examining
their corresponding betas. The betas that are larger in absolute value naturally render the
model more sensitive to variations in the corresponding exogenous variables. In the context
of Model 3, the overwhelming sensitivity and volatility of p22 is a direct outcome of its betas
being significantly larger in absolute value than those governing p11. This highlights that
while large betas can o↵er keen insights into the influence of exogenous factors, they can also
introduce pronounced volatility, potentially rendering certain states too erratic for practical
application.
In short, Model 3 tries to take a closer look by considering more factors, but this also means
it’s a bit trickier to balance. For people using this model, like analysts or decision-makers,
it’s important to remember that it can be a bit unpredictable and to be cautious when
using it to make decisions. The lesson from Model 3 is that we need to keep tweaking and
improving our models to make sure they’re helpful and not just complicated for the sake of
being complicated.

4.3.3 Smoothed and Forecast Probabilities

Notably, while there is a general alignment between the two probabilities, discrepancies
emerge, especially at the peaks. The mismatch at these critical junctures highlights mo-
ments where the model’s predictions were not in tandem with the subsequent realized states.
This divergence underscores the challenges of forecasting even in the absence of exogenous
influences and emphasizes the need for refining the model to better align predictions with
realized transitions.
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Figure 9: Smoothed and Forecast Probabilities Model 1 of state 2

Figure 9 illustrates the temporal interplay between the smoothed and forecast probabilities
of state 2 for Model 1, which operates without any exogenous variables. The blue line
represents the smoothed probabilities, which are calculated based on the past and current
states, while the orange line represents the forecasted probabilities, which are predictions of
future states.

Figure 10: Smoothed and Forecast Probabilities Model 2 of state 2

Figure 10 depicts the smoothed probabilities of state 2 over time for Model 2, which includes
the S&P index as an exogenous variable.

30



Figure 11: Smoothed and Forecast Probabilities Model 3 of state 2

Figure 11 illustrates the smoothed probabilities of state 2 over time for Model 3, which
includes the S&P Index, Japan GDP, and the Yield as exogenous variables. The smoothed
probabilities are indicative of the model’s ability to capture the transition dynamics between
states.

Noticeable improvement is observed in the alignment between the two probabilities of Model
3 compared to Model 1, underscoring the influence of the S&P Index in honing the model’s
predictions. However, this enhanced accuracy comes at the expense of increased volatility
in the forecast probabilities, suggesting that while the inclusion of the S&P Index aids in
prediction accuracy, it also introduces an element of sensitivity to the model’s anticipations.
A profound amplification of the alignment between forecast and smoothed probabilities is
evident when compared to both Models 1 and 2, reinforcing the potency of incorporating a
wider set of exogenous variables. Yet, this heightened congruence is coupled with a substan-
tial surge in volatility, emphasizing that while the integrative approach of Model 3 sharpens
predictive accuracy, it simultaneously escalates its susceptibility to rapid fluctuations. As
we progressed from Model 1 to Model 3, a clear trend emerged in the behavior of both
smoothed and forecast probabilities. This trend o↵ers a compelling narrative about the role
of exogenous variables in modeling and the trade-o↵s inherent in their inclusion.
The most evident observation is the increased alignment between the forecast and smoothed
probabilities as we move from the restricted Model 1 to the more complex Model 3. This can
be attributed to the richer informational content brought about by the inclusion of exogenous
variables. Specifically, these variables contribute supplementary data that help the model
anticipate state transitions more accurately. The S&P Index in Model 2 and the additional
incorporation of Japan’s GDP and the Yield in Model 3 provide the model with a broader
context, thereby allowing it to better predict the likelihood of transitioning to state 2 based
on more diverse and potentially interconnected economic indicators.
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While the enhanced alignment of probabilities is undeniably a positive outcome, it comes
with the added cost of increased volatility. The reason for this trade-o↵ is embedded in the
nature of exogenous variables themselves. By including more variables, the model becomes
more sensitive to fluctuations in any one of them. Hence, while it can more accurately
predict transitions based on current data, it is also more reactive to changes in that data,
leading to greater volatility. The larger absolute values of the betas for the incorporated
exogenous variables, especially in Model 3, make the model hyper-responsive to shifts in
these indicators, amplifying the volatility observed in the transition probabilities.
The observed trends between the three models underscore a fundamental modeling consider-
ation. There exists an inherent tension between accuracy and stability. While the inclusion
of more exogenous variables can o↵er better predictive prowess, it can simultaneously intro-
duce unpredictability in the model’s outputs. This necessitates a careful evaluation of the
trade-o↵s involved. Practitioners must decide on the optimal balance, ensuring that they
aren’t overly sacrificing stability for short-term accuracy.
In conclusion, as we delve into increasingly sophisticated models by incorporating more
exogenous variables, it becomes imperative to understand and anticipate the dynamic e↵ects
these variables can have. Recognizing the interplay between accuracy and volatility can
guide future modeling e↵orts, ensuring that chosen models are both reflective of the data’s
complexity and robust against its inherent unpredictabilities.
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5 Critique and Future Research

5.1 Critical Review of the Current Work

The work presented in this thesis represents a significant step in modeling dynamic cor-
relations in currency markets, notably through the enhancement of the Regime-Switching
Dynamic Correlation (RSDC) model with key economic indicators. By integrating measures
like the VIX index, the thesis o↵ers a nuanced approach to understanding how macroe-
conomic factors influence regime shifts in correlation structures. However, the use of daily
exchange rates, while insightful for day-to-day market movements, may overlook the finer de-
tails that only high-frequency data can capture. Additionally, while the VIX index provides
a broad measure of market volatility, it doesn’t encapsulate the full depth of information
available in the options market, such as the volatility spread across di↵erent strike prices.

5.2 Avenues for Future Research

The present thesis has shed light on the multifaceted domain of dynamic correlation within
financial markets, yet it represents merely the commencement of a broader scholarly en-
deavor. Subsequent inquiries may seek to augment this foundational work by incorporating
high-frequency intraday data. Such an inclusion promises to elucidate the transient dynam-
ics of market behavior in response to economic events and news, o↵ering a window into the
market’s immediate and granular responses, which elude the scope of daily data.
Additionally, the options market harbors a wealth of nuanced data in the form of advanced
implied volatility metrics. A meticulous examination of volatility skewness and the volatility
surface could a↵ord researchers with a more refined understanding of market sentiment and
the anticipatory stances of market actors regarding currency trajectories.
The deployment of sophisticated machine learning algorithms presents a promising avenue
for modeling the intricate, nonlinear interdependencies endemic to financial markets. These
innovative methodologies are poised to detect latent patterns within correlation dynamics,
thus providing robust tools for risk management and augmenting the e�cacy of predictive
models.
Furthermore, the exploration of a broader array of macroeconomic and financial indicators
could serve as a pivotal step towards a more comprehensive understanding of market dy-
namics. These indicators may o↵er prognostic value, heralding impending shifts in market
regimes or oscillations in market volatility.
This thesis serves as an academic precursor, inviting future researchers to delve deeper into
the complex web of currency correlations. It is a call to enrich our collective intellect and
to enhance our strategic interactions with the ever-evolving dynamics of global financial
markets.
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A Monte-Carlo Study to Validate our Implementation

To validate our implementation, we set the parameter vector,

✓ = [�1,2,1,�1,3,1, . . . ,�1,K,1,�12,2,�1,3,2, . . . ,�1,K,2, p1,1, p2,2] ,

and we proceed as follows :

1. We attribute a value for each of the parameters to estimate, let �i,j,1 = 0.8754, �i,j,2 =
0.4739 for all i and j, and p1,1 = 0.93, p2,2 = 0.85.

2. For l = 1, . . . , 100, we simulate a T = 1000 steps Markov-Chain governed by

⇧ =


p1,1 1� p1,1

1� p2,2 p2,2

�
.

We obtain a vector Sl = [sl,1, sl,2, . . . , sl,1000] where sl,t corresponds to the state at time
step t for the simulation l.

We also simulate a vector
yl = [yl,1, yl,2, . . . , yl,1000]

where yl,t is a simulated from distribution N(0K ,�st).

3. For each of our yl vector, we apply the Hamilton Filter (see Subsection 2.4) to estimate
the parameters. We get

✓̂ = [✓̂1, ✓̂2, . . . , ✓̂100].

4. For each of the parameters in ✓, using ✓̂, we construct a boxplot to visualize the
distribution of the estimates around the true parameter values. This allows us to
assess the accuracy of the Hamilton Filter in retrieving the true parameter values and
to evaluate the precision and variability of the estimates.

We apply the preceding methodology for K = 3, which is the number of assets studied in
this thesis. The results are presented in the following tables and figures.
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Figure 12: This figure showcases the distribution of estimated parameters for a system
comprising three assets, derived from 100 Monte-Carlo simulations. The first two boxplots
correspond to the parameters p11 and p22, respectively. The subsequent boxplots represent
correlations, alternating between states: �1,2,1, �1,2,2, �1,3,1, �1,3,2, �2,3,1, and �2,3,2. Each
boxplot represents the spread of estimated values for a specific parameter in the vector. The
true parameter values, used for simulation, are indicated by a bold point. The results provide
insights into the accuracy and consistency of the Hamilton Filter in estimating the model
parameters across multiple simulations.

Table 4. T-test Results for Model Parameters
This table displays t-test analyses for estimated model parameters, comparing each esti-
mated parameter (✓̂) with its true value (✓True). The tests are grounded in 100 Monte-Carlo
simulations, with the t-statistic calculated by t = ✓̄̂�✓True

s/
p
n , where ✓̄̂ is the sample average of

the estimated parameters, s is the sample standard deviation, and n is the number of simu-
lations, which is 100 is this experiment. P-values lower than 5% (i.e., p < 0.05) suggest that
the estimations significantly di↵er from the true values. The parameters under examination
include transition probabilities (p11, p22) and the correlation parameters (�).

Parameter T-statistic P-value (%)
p11 -0.063 95.02
p22 -4.518 0.00
�1,2,1 -1.359 17.77
�1,2,2 -2.349 2.12
�1,3,1 -0.639 52.48
�1,3,2 -2.016 4.71
�2,3,1 -0.591 55.62
�2,3,2 -2.256 2.67
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B Quasi Replication of Pelletier(2006) results

In this replication demonstration, we employ the same exchange rate dataset that was used
by Pelletier (2006), which originally comes from Harvey et al. (1994) and Kim et al. (1998).
This dataset comprises the closing exchange rates of four currencies—Pound, Deutschmark,
Yen, and Swiss Franc—all against the US dollar. The data spans from October 1, 1981, to
June 28, 1985, encompassing a total of 946 observations for each currency. The time-series
for these exchange rates are visually represented in Figure 14.

Figure 13: Exchange rate time-series for four currencies against the USD.

Following the preprocessing steps delineated by Pelletier, we calculate 100 times the first
di↵erence of the logarithm for each of the currency series and then subtract the sample
mean. These are the transformed series on which the volatility model is applied, and they
are represented as Yt in Equation 1. The time-series for these transformed data are visually
represented in Figure 14.
This dataset serves as an invaluable resource for our analysis. It was originally used by
Harvey et al. (1994) to demonstrate a multivariate stochastic volatility model, assuming
constant correlations over time. In our study, we replicate and extend Pelletier’s RSDCmodel
with the goal of scrutinizing this assumption and shedding further light on the dynamics of
these exchange rates.
Our model serves as a sub-model of the one proposed by Pelletier (2006). Specifically,
before applying the filter for regime-switching detection, we standardize the dataset using a
variance model. In this regard, the time-varying variance-covariance matrix is decomposed,
and Pelletier’s ARMACH(1,1) process is used to model the conditional standard deviations:
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Figure 14: Exchange rate time-series for four currencies against the USD.

st = ! + ↵̃|yt�1|+ �st�1 (14)

The transformation we apply aligns with Equation 14, where each univariate exchange rate
time-series is filtered by their respective conditional standard deviations. To elaborate,
consider the four series of exchange rates as shown in Equation (14):

For k = 1, . . . , 4, yk = [yk,1, yk,2, . . . , yk,946]

We fit an ARMACH(1,1) model to each series, obtaining conditional standard deviations sk
for each series as follows:

For i = 1, . . . , 4, sk = [sk,1, sk,2, . . . , sk,946]

The final transformation leads to a filtered series uk, given by:

For k = 1, . . . , 4, uk =
yk

sk
=


yk,1

sk,1
,
yk,2

sk,2
, . . . ,

yk,946

sk,946

�
= [uk,1, uk,2, . . . , uk,946], Ut =

0

BB@

u1,t

u2,t

u3,t

u4,t

1

CCA

The estimated parameters for the ARMACH(1,1) models applied to each series are summa-
rized in Table 5. The time-varying conditional standard deviations are plotted in Figure 15.
Finally, the filtered series Ut are depicted in Figure 16.
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Table 5. Estimated Parameters for the ARMACH(1,1) Models
This table displays the estimated parameters (!, ↵1, and �1) for the ARMACH(1,1) models
as defined by Equation 14. These parameters are essential for understanding the volatility
and persistence in the exchange rates for various currencies including GBP/USD, DM/USD,
JPY/USD, and CHF/USD.

Currency ! ↵1 �1

GBP/USD 0.0147 0.1157 0.8902
DM/USD 0.0436 0.1302 0.8335
JPY/USD 0.0059 0.0287 0.9676
CHF/USD 0.1149 0.1656 0.7251

We apply the Hamilton Filter (see Subsection 2.4) on the transformed datasets. Our esti-
mation results, including both the correlation parameters and transition probabilities, are
showcased in Table 6. The standard deviations of these parameter estimates, indicative of
their precision, are presented below each estimate in parentheses. These were calculated
using the Fisher Information Matrix, details of which are provided in Appendix Section D.
For comparative purposes, we juxtapose our findings with those reported by Pelletier (2006),
enabling a direct assessment of the generalizability and e↵ectiveness of our generalized model.

Table 6: Comparison of Estimated Correlation Parameters and Transition Probabilities

Our Model Pelletier (2006)

Estimates Regime 1 Regime 2 Regime 1 Regime 2

�12 0.8315 0.3284 0.8754 0.4011
(0.0416) (0.0164) (0.0292) (0.0098)

�13 0.7007 0.0269 0.7656 0.1859
(0.0350) (0.0013) (0.0363) (0.0996)

�14 0.8084 0.2280 0.8569 0.3255
(0.0404) (0.0114) (0.0283) (0.1275)

�23 0.8111 0.3729 0.8471 0.4739
(0.0406) (0.0186) (0.0181) (0.0843)

�24 0.9378 0.3924 0.9510 0.5626
(0.0469) (0.0196) (0.0061) (0.1871)

�34 0.8271 0.1935 0.8617 0.3250
(0.0414) (0.0097) (0.0184) (0.0166)

p11 0.9496 - 0.9291 -
(0.0475) (0.0356)

p22 0.6791 - 0.6666 -
(0.0339) (0.0605)

This table presents a comparative analysis of the estimated correlation parameters (�) and tran-
sition probabilities (p11 and p22) between our generalized model and the RSDC model reported in
Pelletier (2006). Standard deviations are provided below each estimate in parentheses to assess the
precision of the estimates.
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Figure 15: Time-varying conditional standard deviations for each series
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Figure 16: Filtered exchange rate series
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Figure 17: Smoothed and Filtered probabilities

(a) This figure illustrates the smoothed and filtered probabilities obtained from our quasi replication
of Pelletier’s methodology. It provides a visual representation of the forecasted state probabilities
over time, allowing for a direct comparison with the original results presented in Pelletier (2006).

Figure 18: Smooth probabilities of the two-regime RSDC model.

(a) This figure, extracted directly from Pelletier (2006), showcases the smoothed probabilities
derived from the two-regime RSDC model. It serves as the benchmark against which our quasi-
replication’s results are evaluated, highlighting the similarities and potential di↵erences between
the two sets of findings.
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C Likelihood Ratio Test

The Likelihood Ratio (LR) test is a statistical method used to compare two nested models to
ascertain which one provides a better fit to the observed data. Specifically, it tests the null
hypothesis H0 that a simpler (restricted) model is true against an alternative hypothesis H1

that a more complex (extended) model is true. The LR test statistic is calculated as follows:

LR = �2 (log Likelihood of Restricted Model� log Likelihood of Extended Model)

Under the null hypothesis, the LR test statistic follows a chi-square distribution with degrees
of freedom equal to the di↵erence in the number of parameters between the two models.
The steps to conduct an LR test are as follows:

1. Fit the restricted and extended models to the data and calculate their log-likelihoods.

2. Compute the LR test statistic using the formula above.

3. Determine the degrees of freedom, which is the di↵erence in the number of parameters
between the extended and restricted models.

4. Use the chi-square distribution to find the p-value corresponding to the computed LR
test statistic and the determined degrees of freedom.

5. Reject or fail to reject the null hypothesis based on the p-value. Typically, a p-value
below 0.05 is considered significant, indicating that the extended model provides a
significantly better fit to the data than the restricted model.

By performing the LR test, researchers can rigorously assess whether the addition of extra
parameters in the extended model meaningfully improves the fit, or if the simpler restricted
model is su�cient.
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D Calculation of Standard Deviations using Fisher In-
formation Matrix

The Fisher Information Matrix is an essential tool in statistical estimation for measuring
the amount of information that an observable random variable carries about an unknown
parameter upon which the probability of the random variable depends. In the context of our
work, we employ it to calculate the standard deviations of our parameter estimates.
Recall the log-likelihood function l(u1, u2, . . . , uT |✓) as defined in Equation 12. After finding
the set of parameters ✓̂ that maximize this function, we evaluate the Hessian matrix H at
these estimated parameters:

H = �r2
l(✓̂),

where r2
l(✓̂) is the second derivative of the log-likelihood function evaluated at ✓̂.

The Fisher Information Matrix I(✓̂) is then obtained as the inverse of the Hessian:

I(✓̂) = H
�1
.

The diagonal elements of I(✓̂) provide the variances of the parameter estimates, and taking
the square root of these diagonal elements gives us their standard deviations. These standard
deviations are reported in Table 6 in the Appendix section B.
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1 import numpy as np

2 import pandas as pd

3

4 def hamilton_filter(theta , y, x):

5 """

6 Compute the log -likelihood of the Hamiltonian Markov Switching Model

with two regimes.

7

8 Parameters:

9 theta (np.array): Parameter vector including betas and rhos.

10 y (np.array): Response variable , assumed to be a two -dimensional numpy

array.

11 x (np.array): Explanatory variables , assumed to be a numpy array.

12

13 Returns:

14 float: Negative log -likelihood of the model.

15 """

16

17 # Reshape y and x if they are Pandas DataFrames

18 if not isinstance(y, np.ndarray):

19 y = y.values

20 if not isinstance(x, np.ndarray):

21 x = x.values

22

23 n_var , n_exog = y.shape[1], x.shape [1] if len(x.shape) > 1 else 1

24 n_rho = n_var * (n_var - 1) // 2

25

26 # Split theta into betas and rhos

27 beta_1 , beta_2 = theta[: n_exog], theta[n_exog :2* n_exog]

28 rho_1 = [2 / (1 + np.exp(-rho_val)) - 1 for rho_val in theta [2* n_exog

:2* n_exog + n_rho]]

29 rho_2 = [2 / (1 + np.exp(-rho_val)) - 1 for rho_val in theta [2* n_exog

+ n_rho :2* n_exog + 2*n_rho ]]

30

31 # Create and populate correlation matrices

32 corr_mtx_1 , corr_mtx_2 = np.ones((n_var , n_var)), np.ones((n_var ,

n_var))

33 corr_mtx_1[np.triu_indices(n_var , 1)] = rho_1

34 corr_mtx_2[np.triu_indices(n_var , 1)] = rho_2

35 corr_mtx_1 = np.triu(corr_mtx_1).T + np.triu(corr_mtx_1 , 1)

36 corr_mtx_2 = np.triu(corr_mtx_2).T + np.triu(corr_mtx_2 , 1)

37

38 # Compute inverse covariance matrices and determinants

39 inv_cov_mtx_1 = np.linalg.pinv(corr_mtx_1)

40 inv_cov_mtx_2 = np.linalg.pinv(corr_mtx_2)

41 det_inv_cov_mtx_1 = np.linalg.det(2 * np.pi * corr_mtx_1)**( -1/2)

42 det_inv_cov_mtx_2 = np.linalg.det(2 * np.pi * corr_mtx_2)**( -1/2)

43

44 # Conditional densities

45 f1 = det_inv_cov_mtx_1 * np.exp(-0.5 * np.einsum(’ij ,ij ->i’, np.dot(y,

inv_cov_mtx_1), y))

46 f2 = det_inv_cov_mtx_2 * np.exp(-0.5 * np.einsum(’ij ,ij ->i’, np.dot(y,

inv_cov_mtx_2), y))

47 f = np.column_stack ((f1, f2))

46



48

49 # State probabilities and model likelihood

50 S_inf = np.zeros_like(f)

51 S_forecast = np.zeros_like(f)

52 model_lik = np.zeros(y.shape [0])

53 p11 = 1 / (1 + np.exp(-np.dot(beta_1 , x[0])))

54 p22 = 1 / (1 + np.exp(-np.dot(beta_2 , x[0])))

55 S_inf[0, :] = np.array([p11 , p22]) * f[0, :] / np.dot([1, 1], np.array

([p11 , p22]) * f[0, :])

56 S_forecast [0] = [0.5, 0.5]

57

58 for t in range(y.shape [0] - 1):

59 p11 = 1 / (1 + np.exp(-np.dot(beta_1 , x[t])))

60 p22 = 1 / (1 + np.exp(-np.dot(beta_2 , x[t])))

61 P = np.array ([[p11 , 1 - p11], [1 - p22 , p22]])

62 S_forecast[t + 1, :] = P.T @ S_inf[t, :]

63 S_inf[t + 1, :] = S_forecast[t + 1, :] * f[t + 1, :] / (S_forecast

[t + 1, :] @ f[t + 1, :])

64 model_lik[t + 1] = np.dot([1, 1], S_forecast[t + 1, :] * f[t + 1,

:])

65

66 # Compute log -likelihood

67 logl = np.sum(np.log(model_lik [1:]))

68 return -logl if np.isfinite(logl) else -1e10

69

70

71

72

73 def Smooth_hamilton_filter(theta , y, x, reg=’Smth’):

74 """

75 Compute smoothed and forecasted probabilities for a Hamiltonian Markov

Switching Model.

76

77 Parameters:

78 theta (np.array): Array of parameters , including betas and rhos.

79 y (np.array): Response variable , assumed to be a two -dimensional numpy

array.

80 x (np.array): Explanatory variables , assumed to be a numpy array.

81 reg (str): Specifies the type of probabilities to use for regime

determination.

82

83 Returns:

84 pd.DataFrame: DataFrame with smoothed probabilities , forecast

probabilities ,

85 filter probabilities , regime and switch indicators.

86 """

87

88 # Ensure y and x are numpy arrays

89 if not isinstance(y, np.ndarray):

90 y = y.values

91 if not isinstance(x, np.ndarray):

92 x = x.values

93

94 n_var , n_exog = y.shape[1], x.shape [1] if len(x.shape) > 1 else 1
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95 n_rho = n_var * (n_var - 1) // 2

96

97 # Extract betas and rhos from theta

98 beta_1 , beta_2 = theta[: n_exog], theta[n_exog :2* n_exog]

99 rho_1 = [2 / (1 + np.exp(-rho_val)) - 1 for rho_val in theta [2* n_exog

: 2* n_exog + n_rho ]]

100 rho_2 = [2 / (1 + np.exp(-rho_val)) - 1 for rho_val in theta [2* n_exog

+ n_rho : 2* n_exog + 2*n_rho ]]

101

102 # Create correlation matrices

103 corr_mtx_1 , corr_mtx_2 = np.ones((n_var , n_var)), np.ones((n_var ,

n_var))

104 corr_mtx_1[np.triu_indices(n_var , 1)] = rho_1

105 corr_mtx_2[np.triu_indices(n_var , 1)] = rho_2

106 corr_mtx_1 = np.triu(corr_mtx_1).T + np.triu(corr_mtx_1 , 1)

107 corr_mtx_2 = np.triu(corr_mtx_2).T + np.triu(corr_mtx_2 , 1)

108

109 # Calculate inverse covariance matrices and determinants

110 inv_cov_mtx_1 = np.linalg.inv(corr_mtx_1)

111 inv_cov_mtx_2 = np.linalg.inv(corr_mtx_2)

112 det_inv_cov_mtx_1 = np.linalg.det(2 * np.pi * corr_mtx_1)**( -1/2)

113 det_inv_cov_mtx_2 = np.linalg.det(2 * np.pi * corr_mtx_2)**( -1/2)

114

115 # Conditional densities

116 f1 = det_inv_cov_mtx_1 * np.exp(-0.5 * np.einsum(’ij ,ij ->i’, np.dot(y,

inv_cov_mtx_1), y))

117 f2 = det_inv_cov_mtx_2 * np.exp(-0.5 * np.einsum(’ij ,ij ->i’, np.dot(y,

inv_cov_mtx_2), y))

118 f = np.column_stack ((f1, f2))

119

120 # Initialize forecast and filtered state probabilities

121 S_forecast = np.zeros ((y.shape [0], 2))

122 S_inf = np.zeros_like(S_forecast)

123

124 # Calculate initial state probabilities

125 p11 = 1 / (1 + np.exp(-np.dot(beta_1 , x[0])))

126 p22 = 1 / (1 + np.exp(-np.dot(beta_2 , x[0])))

127 S_inf[0, :] = (np.array([p11 , p22]) * f[0, :]) / (np.array ([1, 1]) @ (

np.array ([p11 , p22]) * f[0, :]))

128 S_forecast [0] = [0.5, 0.5]

129

130 # Iterate over time series

131 for t in range(y.shape [0] - 1):

132 p11 = 1 / (1 + np.exp(-np.dot(beta_1 , x[t])))

133 p22 = 1 / (1 + np.exp(-np.dot(beta_2 , x[t])))

134 P = np.array ([[p11 , 1 - p11], [1 - p22 , p22]])

135 S_forecast[t + 1, :] = P.T @ S_inf[t, :]

136 S_inf[t + 1, :] = (S_forecast[t + 1, :] * f[t + 1, :]) / (

S_forecast[t + 1, :] @ f[t + 1, :])

137

138 # Smooth the probabilities

139 T = y.shape [0]

140 P_smooth = pd.DataFrame ({’s1’: np.zeros(T), ’s2’: np.zeros(T)})

141 P_smooth.iloc[T - 1] = S_inf[T - 1]
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142

143 for is_ in range(T - 2, -1, -1):

144 p11 = 1 / (1 + np.exp(-np.dot(beta_1 , x[is_])))

145 p22 = 1 / (1 + np.exp(-np.dot(beta_2 , x[is_])))

146

147 # Calculate smoothed probabilities

148 p1 = (S_inf[is_ + 1, 0] * S_inf[is_ , 0] * p11) / S_forecast[is_ +

1, 0]

149 p2 = (S_inf[is_ + 1, 1] * S_inf[is_ , 0] * (1 - p11)) / S_forecast[

is_ + 1, 1]

150 p3 = (S_inf[is_ + 1, 0] * S_inf[is_ , 1] * (1 - p22)) / S_forecast[

is_ + 1, 0]

151 p4 = (S_inf[is_ + 1, 1] * S_inf[is_ , 1] * p22) / S_forecast[is_ +

1, 1]

152 P_smooth.iloc[is_ , 0] = p1 + p2

153 P_smooth.iloc[is_ , 1] = p3 + p4

154

155 # Compile results into DataFrame

156 S_forecast_df = pd.DataFrame(S_forecast , columns =[’ForeP1 ’, ’ForeP2 ’])

157 S_inf_df = pd.DataFrame(S_inf , columns =[’FiltP1 ’, ’FiltP2 ’])

158 result_df = pd.concat ([P_smooth , S_forecast_df , S_inf_df], axis =1)

159 result_df.columns = [’SmthP1 ’, ’SmthP2 ’, ’ForeP1 ’, ’ForeP2 ’, ’FiltP1 ’,

’FiltP2 ’]

160

161 # Determine regime and switching points

162 reg_ind = reg + ’P1’

163 result_df["regime"] = np.where(result_df[reg_ind] > 0.5, 1, 2)

164 result_df["switch"] = np.where(result_df["regime"] != result_df["

regime"]. shift (1), 1, 0)

165

166 return result_df

Listing 1: Hamiltonian Markov Switching Model Code
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