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Abstract

Retrieval-augmented generation (RAG) systems rely on high-quality information retrieval
components to supply relevant evidence to language models. This thesis conducts a com-
parative evaluation of four retrieval models – the classical sparse lexical model BM25 and
three neural retrievers (Dense Passage Retriever, Contriever, and ColBERT) – across five
question answering datasets spanning diverse domains and query types (MS MARCO V2,
SQuAD 2.0, ObliQA, CoQA, and HotpotQA). We assess each retriever’s ability to return
correct answer-supporting passages and analyze how the models’ performance is affected by
differences in the datasets’ linguistic profiles. We further observe that complex information
needs – such as multi-hop questions (ObliQA, HotpotQA) requiring reasoning over multiple
documents and conversational queries (as in CoQA) that involve dialogue context – present
additional challenges for all models. These findings highlight that the linguistic profiles and
domain of the dataset significantly influence retrieval model performance. Overall, this study
provides practical insights for the design of RAG systems: adapting the retriever in function
of the textual characteristics and target domain can substantially improve the retrieval of
relevant evidence, thereby enhancing the accuracy and reliability of downstream generative
models.

Keywords: Information Retrieval; Retrievers; Question Answering; Semantic, Linguis-
tic.

Research methods: Empirical Comparison; Quantitative Analysis.
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Use of generative-AI

In the course of this thesis, I made use of generative-AI tools to ensure that the documen-
tation was as complete as possible by identifying relevant papers to read and integrate into
the final research. I also employed these tools to refine the English writing of this document,
particularly to correct syntax and improve sentence structure. Finally, while developing the
programming components, I used them to assist in debugging certain errors that I was un-
able to resolve independently. This approach is consistent with the requirement that any
use of generative-AI in research uphold the highest standards of academic integrity, data
protection, and reliability. I personally verified and validated all code, analyses, and written
text to ensure that the results are accurate, appropriate, and free from any misuse of intel-
lectual property. In doing so, I adhered to the principles set out in the "Lignes directrices
sur l’utilisation de l’intelligence artificielle générative pour la recherche" of HEC Montréal,
which emphasize transparency and responsibility while maintaining full accountability for
the final content.
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Chapter 1

Introduction

Retrieving relevant information from large collections of text (also known as Information
Retrieval (IR)) has been a cornerstone of information systems for decades. The evolution
of retrieval models has been central to this progress. Early systems in the 1950s and 1960s
used Boolean models, where documents were retrieved based on exact keyword matches
using logical operators, but these offered no ranking of results. The 1960s introduced the
Vector Space Model, pioneered by Gerard Salton, which used sparse representations—term-
document matrices weighted by schemes like TF-IDF—to rank documents based on cosine
similarity. Later, probabilistic models such as the Binary Independence Model and BM25 [2]
improved retrieval by estimating the likelihood of relevance and ranking accordingly. These
models dominated for decades, forming the backbone of traditional IR systems. However,
they still relied on sparse representations, where each term was treated as a discrete feature
with little understanding of semantics. The 2010s saw a shift toward dense representations
enabled by deep learning [9], where words, sentences, and documents are embedded into
continuous vector spaces using models like word2vec, BERT, and ColBERT [37, 15]. These
dense retrieval models capture semantic relationships and enable matching based on meaning
rather than exact terms. While sparse methods remain efficient and interpretable, dense
models have significantly advanced retrieval performance, especially in open-domain question
answering and conversational systems. Today’s best systems often combine both, using
hybrid retrieval approaches to leverage the strengths of sparse lexical matching and dense
semantic understanding.

In parallel, the rise of large pre-trained language models (LLM) has raised interest in
RAG, a paradigm that integrates a retrieval model into the generation pipeline. Rather

7



than relying solely on parametric knowledge stored in model weights, a RAG system explic-
itly retrieves external context (e.g. documents or passages) and conditions the generative
model on this retrieved evidence when producing an answer or completion [8]. This approach
has proven especially important for knowledge-intensive NLP tasks and dialogue systems,
allowing models to access up-to-date or domain-specific information at inference time. By
augmenting generation with retrieval, RAG addresses several limitations of standalone gener-
ative models – for instance, it mitigates factual hallucinations and outdated knowledge issues
by grounding outputs in relevant source text, and it provides natural avenues for attribution
of facts to sources [8, 7]. The retriever is therefore a crucial component in the RAG pipeline:
the quality of what the model can produce is directly tied to the relevance of the documents
fetched. Effective retrievers enable the overall system to generate more accurate, specific,
and contextually appropriate responses, as demonstrated by Lewis et al. [8] in their seminal
RAG framework which combined a neural retriever with a sequence-to-sequence generator
and achieved state-of-the-art results on open-domain QA benchmarks.

Modern (dense) retrieval systems can be further categorized by their architecture and
training strategies. A fundamental design choice is between bi-encoder (dual-encoder) mod-
els versus cross-encoder models. In a bi-encoder architecture, the query and document are
encoded independently by two neural networks (often sharing the same parameters) into
vector embeddings; retrieval then reduces to a fast similarity search (e.g. inner product or
cosine similarity) between the query embedding and a large set of pre-computed document
embeddings [9]. This two-tower design is highly efficient at runtime and scales to millions
of documents with sub-second latency using approximate nearest neighbor indexing. How-
ever, because the query and document representations are learned separately, bi-encoders
may not capture all fine-grained interactions between query terms and document content.
Cross-encoder models, on the other hand, apply a single transformer-based encoder to the
concatenated query–document pair and directly output a relevance score [34]. This one-
tower approach allows the model to consider rich cross-attention interactions between the
query and a given document, often leading to superior ranking accuracy. For instance, a
BERT-based cross-encoder can learn to pick up subtle phrase correspondences and context
dependencies that a dual-encoder might miss, yielding better accuracy in ranking [34]. The
drawback is that a cross-encoder must process each query–document pair at inference time,
making it orders of magnitude slower and impractical for exhaustive search over large cor-
pora. That is not in the scope of this thesis but in practice, a common compromise is
a multi-stage retrieval pipeline: a fast bi-encoder first retrieves a small set of candidates,
which are then re-ranked by a more expensive cross-encoder to refine the results. Such hy-
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brid strategies leverage the strengths of both approaches—efficient broad retrieval followed
by fine-grained reranking—to maximize overall performance.

Understanding the behaviors of retrievers is essential for the design of effective retrieval-
augmented generation pipelines and motivates a thorough examination of how different re-
triever strategies perform across various data formats and tasks. The objective of this study
is to evaluate how different types of retrieval models perform when exposed to question an-
swering tasks drawn from datasets with distinct textual and structural properties. To this
end, I compare multiple retriever architectures —from sparse to dense retrevier models—
across a diverse set of Question-Answer (QA) datasets, each dataset representing a unique
domain and linguistic profile. Rather than focusing solely on model architecture or answer
generation, this work adopts a retrieval-centric perspective. Specifically, I assess the abil-
ity of each retriever to correctly identify context passages that support answers to given
questions, independent of downstream language model generation.

The guiding hypothesis is that retrieval effectiveness is not uniform across datasets. Their
linguistic characteristics may interact with the inductive biases of sparse or dense retrievers
in distinct ways. By systematically applying each model to all datasets, analyzing their
performance and the nature of the passages they select, I aim to uncover how retrieval
mechanisms are influenced by linguistic features.

My research demonstrates that retrieval model effectiveness is not uniform across datasets;
instead, it depends strongly on the linguistic profiles and domain of the textual data.
The evaluation confirms that lexical and neural retrieval techniques have complementary
strengths: dense semantic retrievers excel in certain scenarios by identifying relevant pas-
sages through meaning similarity, whereas sparse lexical methods like BM25 remain superior
in cases that demand exact keyword matching. This outcome validates the central hypothesis
that differences in linguistic and domain attributes of the dataset can significantly influence
retriever performance, underscoring the need to align the choice of retrieval approach with
the nature of the data.

The key findings of this research are as follows. First, the neural retrievers generally
outperform BM25 on open-domain and general knowledge queries (e.g., MS MARCO V2
and SQuAD 2.0), thanks to their ability to capture paraphrased or synonymous content
beyond exact term overlap. Second, on a highly specialized dataset with domain-specific
jargon (a regulatory compliance QA setting represented by ObliQA), the traditional BM25
significantly outperformed the standard dense retrievers, underscoring the importance of
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exact term matching for rare technical terms; however, the advanced late-interaction model
ColBERT was able to achieve even higher accuracy in that same domain by leveraging fine-
grained token-level interactions (at the cost of greater computational overhead). Third, the
unsupervised Contriever model proved remarkably robust across different domains, exceeding
the supervised Dense Passage Retriever – the latter tended to underperform on these varied
tasks, suggesting that without targeted domain training, a supervised dense retriever may not
generalize well. Finally, all of the models struggled on questions that require multiple pieces
of evidence or conversational understanding: multi-hop queries (such as those in HotpotQA)
and conversational QA dialogues (like CoQA) posed significant challenges, indicating that
complex reasoning and context integration remain difficult for current retrieval methods.

The structure of the thesis is as follows: Chapter 2 reviews the foundational litera-
ture on retrieval models and datasets, and presents the experimental design. Chapter 3
analyzes the results of my comparative evaluation. Finally, Chapter 4 concludes with a
discussion of the findings and potential directions for future research. The source code
is available on GitHub at github.com/GabrielJobert/Comparative-Performance-Analysis-
of-Retrieval-Models-on-Textual-Data-with-Diverse-Linguistic-Profile and on Google Colab
here.
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Chapter 2

Methodology

In what follows, I first describe the retrieval models I used, then detail the datasets selected
for evaluation and their preprocessing, finally followed by the evaluation set-up.

2.1 Retriever Models

This section provides an overview of all the Retriever Models used in this experiment.
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Table 2.1: Summary of the retriever models used and their caracteristics

Model Encoder Type Training
Requirements

Efficiency Advantages Limitations

BM25 Sparse (lexical
term matching,
probabilistic)

None High (fast
inverted-
index search)

Precise term
matching;
Interpretable scoring
No training needed
(domain agnostic) ;
Highly efficient at
scale

Requires
query–document
term overlap; Tune
parameters (k1, b)
for optimality

DPR Dense bi-encoder
(Two different
BERT-based
encoders for
Q&A)

Supervised
(requires large
labeled QA
pairs for
training)

Moderate
(precompute
embeddings
for corpus;
ANN index
for fast
vector
search)

Semantic matching
(handles synonyms)

Requires extensive
training data (needs
fine-tuning for new
domains);
Computationally
expensive (BERT
encoding and
indexing; Large
memory footprint)

Contriever Dense bi-encoder
(Same
BERT-based
encoders for
Q&A)

Unsupervised
(Unsupervised
contrastive
learning on raw
text)

Moderate
(ANN-based
dense
retrieval,
similar as
DPR)

No supervised data
needed (easily
adaptable to new
domains); Semantic
matching from
unlabeled text

May underperform
supervised models
on very specialized
domains; Relies on
general-domain
pretraining;
Computational cost
still significant for
large corpora

ColBERT Dense
late-interaction
(BERT-based,
token-level
matching)

Supervised
(trained on
query–document
relevance pairs)

Two-stage:
ANN search
on token
embeddings
+ re-ranking

Fine-grained
semantic token
matching (finds rare
domain-specific
terms; handles
multi-part queries);
High accuracy
retrieval (rivals
cross-encoders on
complex queries)

Memory-intensive
index (stores
embeddings for all
document tokens);
Higher query latency
than single-vector
models; Requires
domain-specific
training data for
best performance12



2.1.1 BM25

BM25 (Best Match 25) is a probabilistic information retrieval model that stands as a foun-
dational method in modern search and retrieval systems. Developed as part of the Okapi
family at City University London, BM25 is widely regarded as the classical baseline for
sparse retrieval and in RAG pipeline in general due to its effectiveness, interpretability, and
domain-agnostic applicability [1, 2, 7]. It is also the default ranking function in many search
engines, including Elasticsearch [4].

In general, BM25 is typically used as the first-stage retriever, rapidly filtering a large
corpus to a manageable subset of candidate documents based on exact term matches. These
candidates can then be passed to dense retrievers or language models for further semantic
reranking and answer generation [7, 8].

This hybrid approach leverages BM25’s high accuracy for relevant documents, ensuring
that rare but crucial terms are not overlooked, while subsequent dense retrieval or generative
steps address its semantic limitations. BM25 is particularly valuable for domain-specific
terminology, where precise term matching remains essential [7, 4].

In my case, BM25 will serve as an interpretable baseline for comparison during my ex-
periments and will represent the category of sparse retrieval model.

Theoretical Foundation

BM25 builds upon the TF-IDF (Term Frequency-Inverse Document Frequency) paradigm,
introducing three core enhancements:

• Term Frequency Saturation: Diminishing returns for repeated term occurrences,
preventing overemphasis on high-frequency terms.

• Document Length Normalization: Adjusts scores to avoid bias toward longer
documents, which naturally contain more terms.
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• Probabilistic Weighting: Incorporates the rarity of terms across the corpus to pri-
oritize informative terms.

Given a query Q = {q1, ..., qn} and a document D, the BM25 score is defined as:

BM25(D, Q) =
n∑

i=1
IDF(qi) · f(qi, D) · (k1 + 1)

f(qi, D) + k1 ·
(
1 − b + b · |D|

avgdl

)
where:

• f(qi, D): Frequency of term qi in document D.

• |D|: Length of document D (in tokens).

• avgdl: Average document length in the corpus.

• k1 ∈ [1.2, 2.0]: Controls term frequency saturation (default: 1.5).

• b ∈ [0, 1]: Controls document length normalization (default: 0.75).

The inverse document frequency (IDF) is calculated as:

IDF(qi) = log
(

N − n(qi) + 0.5
n(qi) + 0.5 + 1

)

where N is the total number of documents and n(qi) is the number of documents containing
qi [3].

This formulation ensures that rare but relevant terms are weighted more heavily, while
frequent terms contribute less to the final score. Document length normalization prevents
longer documents from being unfairly favored simply due to their verbosity [4].

Strengths and Limitations

Strengths

• Precise Term Matching: BM25 excels at retrieving documents with exact query
term matches, making it highly effective for keyword-based search [5].
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• Interpretability: The scoring mechanism is transparent and easily understood.

• No Supervision Required: BM25 does not require labeled data or model training,
allowing for immediate deployment across domains.

• Efficiency: Sparse representations enable rapid scoring and retrieval, even at scale.

Limitations

• Semantic Limitations: BM25 cannot capture synonyms or semantic similarity, lead-
ing to missed relevant documents when queries and documents use different vocabulary
[5]. For example, a search for "automobile" may not retrieve documents containing only
"car" unless both terms are present in the query or document.

• Parameter Sensitivity: Optimal performance may require careful tuning of k1 and
b, which can be non-trivial [5].

• Handling Rare Terms: IDF boosts rare terms, but may not fully address retrieval
for queries dominated by very infrequent terms, sometimes requiring query expansion
techniques [7].

• No Personalization or Context Awareness: BM25 does not adapt to user profiles
or contextual intent.

BM25’s strengths make it a robust baseline, especially in domains with well-defined ter-
minology and where exact matches are critical. However, its inability to capture semantic
relationships means it may underperform on queries requiring understanding of synonyms
or paraphrases [5].

2.1.2 Dense Passage Retriever (DPR)

DPR is a foundational neural retrieval model that has significantly advanced the field of open-
domain question answering and retrieval systems. Unlike traditional sparse retrieval models
based on lexical overlap, DPR leverages dense vector representations to enable semantic
matching between queries and documents [9].

In comparative evaluations, DPR has been shown to outperform traditional sparse re-
trievers like BM25 on open-domain QA benchmarks, especially when queries and relevant
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passages exhibit significant lexical variation. However, the effectiveness of DPR in special-
ized domains is closely tied to the availability of high-quality, domain-specific training data,
while training itself can be costly and often requires carefully annotated examples that many
users may not have access to.

For my experiment, I used dpr-question_encoder-single-nq-base which is a model
trained using the Natural Questions dataset, a dataset that contains real user questions
issued to Google search, and answers found from Wikipedia by annotators. [35, 36]

Theoretical Foundation

DPR is built upon a bi-encoder architecture, utilizing two independent BERT-based en-
coders: one for questions (queries) and one for passages (documents). Each encoder trans-
forms its input into a fixed-dimensional dense vector. The similarity between a query and
a passage is then computed as the dot product of their respective embeddings, which is
proportional to the cosine similarity between them:

sim(q, p) = EQ(q)⊤EP (p) (2.1)

where EQ(q) and EP (p) denote the dense vector embeddings of the query q and passage
p, respectively. Since both vectors are typically ℓ2-normalized during training or inference,
this dot product effectively measures their cosine similarity—higher values indicate greater
semantic alignment in embedding space.

The training objective is to maximize the similarity between a question and its corre-
sponding positive (relevant) passage while minimizing its similarity with a set of negative
(irrelevant) passages. This is accomplished using a contrastive loss, often implemented as a
variant of the negative log-likelihood loss:

L = − log exp(sim(q, p+))
exp(sim(q, p+)) +∑

p− exp(sim(q, p−)) (2.2)

where p+ is a positive passage and p− denotes one or more negative passages.

Intuitively, the contrastive loss encourages the model to embed a given query closer to
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its correct passage and farther away from incorrect ones. By doing so, the learned represen-
tation space becomes structured such that semantically similar pairs (e.g., a question and
its answer-supporting paragraph) cluster together, while dissimilar ones are well separated.
This approach use the assumption that semantic relevance can be captured as geometric
proximity in vector space.

A key innovation in DPR training is the use of hard negative mining [10]. Instead of
sampling negatives randomly, hard negatives are selected as passages that are top-ranked
by a strong baseline retriever (such as BM25) but do not contain the correct answer. This
strategy encourages the model to better distinguish between highly similar but non-relevant
passages, leading to more robust retrieval performance.

Additionally, DPR benefits from in-batch negatives, where other positive passages in the
same mini-batch serve as negatives for a given query. This further increases the diversity
and difficulty of negative samples.

For large-scale retrieval, DPR relies on efficient approximate nearest neighbor search
algorithms, with FAISS [11] being a popular choice. After encoding all passages in the corpus
into dense vectors, these embeddings are indexed using FAISS, which supports scalable
similarity search even over millions of documents.

Strengths and Limitations

Strengths

• Semantic Matching: DPR’s dense representations allow for retrieval based on mean-
ing rather than surface-level token overlap, effectively addressing the vocabulary mis-
match problem common in sparse retrieval.

• Generalization: The model can retrieve relevant passages even when queries and
documents use different wording or synonyms.

• Scalability: With ANN search, DPR can efficiently operate on very large corpora.

Limitations

• Supervised Data Requirement and Domain Adaptation: DPR requires large
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amounts of labeled question-passage pairs for effective training. Its performance may
degrade in specialized domains without further fine-tuning on domain-specific data.

• Computational Cost: Encoding and indexing large corpora require significant com-
putational resources, both during training and inference.

2.1.3 Contriever

Contriever is a recent and influential unsupervised dense retrieval model that leverages con-
trastive learning to train high-quality sentence and passage representations without the need
for manually annotated data [12]. This innovation positions Contriever as a bridge between
traditional unsupervised sparse retrieval methods, such as BM25, and supervised dense re-
trievers, offering substantial improvements in retrieval quality while maintaining broad ap-
plicability across domains.

For my experiment, I am using the standard Contriever model, which is trained on large,
unlabeled corpora such as Wikipedia and CCNet, relying solely on the inherent structure of
the text to generate training pairs.

Theoretical Foundation

At the heart of Contriever is a contrastive learning framework that enables the model to
learn semantic similarity directly from raw text. The model architecture is based on a single
BERT-like encoder that maps input text spans into dense vector representations. Unlike
supervised dense retrievers such as the previously mentioned DPR, which require explicit
query-passage pairs, Contriever constructs positive pairs from unannotated documents using
random cropping: two overlapping or adjacent spans from the same document are considered
semantically similar (positive), while spans from different documents serve as negatives.

The training objective is to maximize the similarity between positive pairs and minimize
it between negatives. This is formalized as a contrastive loss:

L = − log exp(sim(q, p+))
exp(sim(q, p+)) +∑

p− exp(sim(q, p−)) (2.3)

where sim(q, p) denotes the dot product or cosine similarity between the encoded represen-
tations of q and p.
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A critical component of Contriever’s training is the use of the Momentum Contrast frame-
work [13]. Momentum Contrast maintains a dynamic queue (memory bank) of negative
samples and employs a momentum encoder to produce stable representations for negatives.
This allows the model to efficiently utilize a large and diverse set of negatives in each training
step, which is essential for learning robust and discriminative embeddings.

In practical deployment, Contriever encodes both queries and passages into dense vectors
using a single shared encoder, unlike DPR which relies on two separate encoders for queries
and passages. But like DPR, encoded vectors are also indexed using approximate nearest
neighbor search libraries such as FAISS [11], enabling efficient retrieval at scale. In addi-
tion, its training and inference pipelines are highly parallelizable and benefit from modern
hardware acceleration, making it suitable for large-scale applications.

Contriever represents a breakthrough in unsupervised dense retrieval, combining the
strengths of contrastive learning, large-scale pretraining, and efficient negative sampling.
Its empirical performance across diverse domains, adaptability to new data, and ease of de-
ployment make it a compelling choice for modern retrieval-augmented generation pipelines,
especially when domain-specific labeled data is limited or unavailable.

2.1.4 ColBERT

ColBERT (Contextualized Late Interaction over BERT) is a neural retrieval model that
introduces a novel “late interaction” mechanism, achieving a unique trade-off between the
speed of bi-encoder architectures and the expressive power of cross-encoder models [14,
15]. ColBERT’s design enables efficient and effective large-scale passage retrieval, making it
particularly suitable for retrieval systems and domain-specific search applications.

In this work, I utilize ColBERTv2˜[?]Santhanam2022, the latest version of the ColBERT
model. ColBERTv2 builds upon the original ColBERT architecture with substantial im-
provements in retrieval effectiveness and efficiency, including enhanced quantization and a
new indexing pipeline.

Theoretical foundation

Late Interaction Mechanism and Model Architecture As mentioned in the intro,
traditional neural retrieval models typically fall into two categories: bi-encoders and cross-
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encoders. ColBERT bridges these approaches by encoding queries and documents indepen-
dently but preserving token-level embeddings for both. Specifically, a BERT-based encoder
produces a contextualized embedding for each token in the input sequence. This results in
a matrix of embeddings for both the query Q = (q1, ..., qm) and document D = (d1, ..., dn):

EQ = [eq1 , ..., eqm ], ED = [ed1 , ..., edn ]

The core of ColBERT’s late interaction is the MaxSim operator. For each query token,
it computes the maximum similarity (typically dot product or cosine similarity) with any
document token:

Score(Q, D) =
m∑

i=1
max

j
(eqi

· edj
)

This operation allows ColBERT to capture the strongest semantic alignment for each query
token, enabling fine-grained matching that single-vector bi-encoders cannot achieve.

To further enhance efficiency, ColBERT projects the high-dimensional BERT embeddings
(e.g., 768 dimensions) to a lower dimension (e.g., 128) using a learned linear projection. This
reduces memory requirements and speeds up similarity computations [14, 15].

Two-Stage Retrieval and Efficient Indexing ColBERT is designed for practical de-
ployment in large-scale retrieval scenarios. Its retrieval pipeline typically involves two stages:

1. First-stage Retrieval: A fast ANN search retrieves a set of candidate documents us-
ing compressed document token embeddings. ColBERT leverages FAISS with IVFPQ
(Inverted File with Product Quantization) [16, 11], which partitions the embedding
space into clusters and quantizes embeddings for efficient storage and search.

2. Second-stage Re-ranking: For each candidate, ColBERT computes the MaxSim-
based late interaction score between the query and the full set of document token
embeddings, providing a fine-grained ranking.

This design enables ColBERT to precompute and store all document token embeddings
offline, drastically reducing online computation. The use of IVFPQ and quantization allows
ColBERT to index millions of documents with manageable memory and latency, making it
suitable for both academic and production-scale retrieval systems.
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Training Objective and Optimization ColBERT is trained with a pairwise ranking
loss, typically a margin-based or softmax loss, to distinguish relevant (positive) from non-
relevant (negative) documents for each query. The training process involves:

• Sampling queries with corresponding positive and negative documents.

• Encoding queries and documents with the BERT backbone and projection layer.

• Computing MaxSim scores for positive and negative pairs.

• Optimizing the model to maximize the margin between positive and negative scores.

Recent extensions, such as relevance-guided supervision and ColBERTv2, introduce fur-
ther improvements in efficiency and retrieval quality by refining the training objective and
incorporating lightweight architectural modifications [15].

Advantages for Domain-Specific and Complex Queries

ColBERT’s token-level matching is particularly advantageous for domains with specialized
vocabulary, multi-word expressions, or compositional queries:

• Domain-Specific Terminology: In technical domains, crucial information may de-
pend on rare or highly specific terms. ColBERT’s MaxSim operation ensures that
even if only a few query tokens have strong matches in a document, those matches are
emphasized in the scoring.

• Complex Queries: For queries requiring multi-faceted reasoning or matching across
several concepts, ColBERT can capture partial matches for each component, improving
retrieval robustness.

• Paraphrase and Synonym Handling: By leveraging contextualized embeddings,
ColBERT can match semantically similar but lexically different expressions, outper-
forming purely lexical methods like BM25 in many scenarios [14].

Empirical studies on benchmarks such as BEIR and MS MARCO demonstrate that Col-
BERT achieves high accuracy, often rivaling or surpassing other dense retrievers and hybrid
systems, especially for complex or domain-specific queries [15, 16].
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Trade-offs

ColBERT’s late interaction mechanism offers substantial gains in retrieval quality but intro-
duces several trade-offs:

• Memory Overhead: Storing token-level embeddings for all documents increases
memory usage compared to single-vector bi-encoders. Quantization and dimension-
ality reduction mitigate this but may slightly impact retrieval accuracy.

• Query-Time Computation: The MaxSim operation, though efficient, is more com-
putationally intensive than a single dot product, especially for long queries or docu-
ments. However, this is still orders of magnitude faster than full cross-encoder infer-
ence.

• Implementation Complexity: Efficiently managing large embedding tables and
ANN indices requires careful engineering, particularly for production-scale deploy-
ments.

Despite these challenges, ColBERT represents a significant advance in neural retrieval,
combining deep contextual understanding with scalable, efficient retrieval. Its late interaction
mechanism enables superior handling of complex and domain-specific queries, making it
highly relevant for large-scale semantic search. As retrieval-augmented generation becomes
increasingly central to knowledge-intensive NLP applications, models like ColBERT will play
a key role in bridging the gap between efficiency and expressive power.

Limitations Encountered During the Project

During the course of this work, the ColBERT model, which was central to my experimental
setup, suddenly stopped functioning in my environment. Initially, the model was working
correctly and produced results for ObliQA, HotpotQA and CoQA. However, after librairies
updates in the Python ecosystem (PyTorch, NumPy, Transformers), critical compatibility
issues arose that prevented the model from running as expected. In order to run, ColBERT
requires specific versions of these libraries and no solution has been found.

The model continued to break even after downgrading to previous versions because the
Colab environment automatically updated certain packages, which aggravated these version
conflicts and made it difficult to maintain a stable configuration.
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As a result of these technical limitations, the indexing and retrieval pipeline could not
be executed anymore. Because of the need to submit the thesis in time, this prevented the
successful production of results on the two main datasets selected for evaluation, namely MS
MARCO and SQuAD. Consequently, the complete empirical phase of this research could not
be carried out as originally planned.

2.2 Datasets

This section describes the datasets used in my experiments, highlighting their characteris-
tics, domains, and relevance to the evaluation of retrieval systems. QA datasets are used
for retrieval evaluation because each question is inherently paired with supporting passages,
providing a clear signal to assess whether retrievers can identify relevant evidence indepen-
dent of answer generation. MS MARCO V2 was selected for its noisy, real-world search
queries and diverse web passages, offering a realistic test of retrievers in open-domain set-
tings. SQuAD 2.0 was included as a controlled benchmark with formal Wikipedia text and
general knowledge domain. ObliQA brings highly complex, domain-specific regulatory lan-
guage and multi-passage reasoning, testing retrieval under legal and technical constraints.
CoQA introduces multi-turn conversational dependencies, challenging retrievers to handle
coreference and dialogue context. Finally, HotpotQA explicitly requires multi-hop reason-
ing across documents, making it ideal for examining how retrievers link dispersed pieces of
evidence. A table summarizing the high level characteristics of the dataset (Table 3.1) is
available at section 3.1.

2.2.1 MS MARCO V2

MS MARCO V2 (Microsoft MAchine Reading COmprehension) is a large-scale, real-world
dataset designed to advance research in information retrieval, question answering, and ma-
chine reading comprehension. It is widely recognized as an industry-scale benchmark for
practical retrieval systems and has played a central role in both academic and applied IR
research [17, 18].
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Dataset Composition and Key Features

MS MARCO V2 consists of over one million anonymized queries sampled from real Bing
user logs, making it one of the most extensive and diverse QA datasets available [17, 18].
Each query is paired with context passages extracted from web documents using the Bing
search engine. These passages are then human-judged for relevance, and human-generated
answers are provided when possible [17, 19].

Domain Heterogeneity and Example Queries A defining characteristic of MS MARCO
V2 is its domain heterogeneity. Because queries are sourced from actual Bing users, the
dataset naturally includes questions from a variety of fields. For example:

• Legal: "What is the statute of limitations for breach of contract in California?"

• Technical: "How to reset a Cisco router to factory settings?"

• General: "Best ways to cook quinoa?"

This diversity ensures that retrieval models trained or evaluated on MS MARCO V2 are
exposed to the broad spectrum of language and information needs encountered in real-world
applications [20]. Another interesting property of these questions are that they tend to be
shortened or incomplete as they are Bing queries, effectively testing the robustness of models
I will test.

Implications of Unanswerable Questions Notably, approximately 35% of the queries
in MS MARCO V2 are unanswerable—meaning that no sufficient information could be
found in the retrieved passages to generate a valid answer. This aspect more accurately
reflects the challenges faced by deployed IR and QA systems, where not every user query
can be answered with available information. For retrieval models, this means that effective
thresholding and answerability detection are crucial: systems must learn not only to retrieve
relevant passages but also to abstain or signal uncertainty when no answer is present. [17].
However, as my experiment is focused on how the textual characteristics of the datasets
influence the performance of retrievers and not on the models capacity to detect when no
answer can be found, I will not includes these unanswerable questions.
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Example Entry and Data Fields

Each entry in the MS MARCO V2 dataset is represented as a JSON object with the following
primary fields: query_id, query_type, query, passages, answers, and wellFormedAnswers[19].
Below, I present an example entry and describe each variable:

{

" query_id ": "123456789" ,

" query_type ": " DESCRIPTION ",

"query ": "What is the statute of limitations for breach of contract

in California ?",

" passages ": [

{

" passage_id ": "987654321" ,

" is_selected ": true ,

"url ": "https :// www. examplelawsite .com/statute - limitations ",

" passage_text ": "In California , the statute of limitations for

breach of written contract is four years , while for oral

contracts it is two years ."

},

{

" passage_id ": "987654322" ,

" is_selected ": false ,

"url ": "https :// www. otherlawreference .com/contract - claims ",

" passage_text ": " Contract claims must be filed within the time

limits set by state law ."

}

],

" answers ": [

"Four years for written contracts , two years for oral contracts ."

],

" wellFormedAnswers ": [

"In California , the statute of limitations for a breach of written

contract is four years , and two years for an oral contract ."

]

}
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Data Preprocessing for Retrieval

For each dataset, a custom loader consolidates the data into a unified format suitable for both
sparse and dense retrievers. In the case of MS MARCO V2, I leverage the HuggingFace
implementation of the MS MARCO dataset (v2.1) to load the passages and queries. Each
query in MS MARCO comes with a set of candidate passages, among which one or more are
marked as relevant via an is_selected flag. My preprocessing code iterates through each
query’s passages, collects all passages into a list, and identifies those marked as relevant.
I assign each passage a unique ID (concatenating the query ID with the passage index)
and store the text of relevant passages as the query’s context list. Another list is created,
containing all the passages available (relevant or not) from all the queries to create the pool
that the retriever will search into. Queries with missing relevant passages are skipped to avoid
including unanswerable cases in the evaluation. The transformed output for MS MARCO
thus contains, for each query, the original question text and a list of ground-truth relevant
passages in ‘raw_inputs‘, along with metadata specifying the query ID, the IDs of the
relevant passages, and the full pool of passage candidates. This ensures that during retrieval,
I can evaluate whether the retriever returns any of the known relevant passages. For BM25,
passages remain as plain text (to be tokenized by whitespace), while for the other models,
these passages will later be encoded into dense vectors—my unified format supports both by
storing the raw text which can be tokenized by the respective models. After transformation,
the dataset is composed of 55578 queries and 118524 passages.

2.2.2 SQuAD 2.0

SQuAD 2.0 (Stanford Question Answering Dataset 2.0) is a large-scale, controlled benchmark
specifically designed to evaluate both the span extraction ability and answerability detection
of machine reading comprehension models [21, 22]. It extends the original SQuAD 1.0 by
introducing adversarially crafted unanswerable questions.

Dataset Composition and Key Features

SQuAD 2.0 comprises over 150,000 QA pairs, of which approximately 50,000 are unanswer-
able questions written by crowdworkers to appear similar to answerable ones [21, 22]. Each
QA pair is associated with a context paragraph drawn from Wikipedia articles. For an-
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swerable questions, the answer is a contiguous text span within the context. All questions
and answers are written/validated by crowdworkers, ensuring high linguistic diversity and
quality. Unanswerable questions are crafted to be relevant and plausible, often containing
distractors or requiring nuanced understanding to detect impossibility.

Adversarial Questions and Comparison with SQuAD 1.0 A distinctive feature of
SQuAD 2.0 is its adversarial annotation process. Crowdworkers were instructed to write
unanswerable questions that are relevant to the context and could plausibly be answerable,
but for which no correct answer exists in the passage [21]. This includes questions with
false premises, entity swaps, or requiring information not present in the paragraph. The
annotation process also involved validation steps to ensure that no answer span could be
reasonably extracted for these questions [23]. As explained in the MS MARCO section,
these unanswerable questions will not be included in my experiment.

Example Entry and Data Fields

Each entry in SQuAD 2.0 is structured as a JSON object with the following fields [25, 24]:

{

"id": "56 be4db0acb8001400a502ec ",

"title ": " University_of_Notre_Dame ",

" context ": " Architecturally , the school has a Catholic character .

Atop the Main Building ’s gold dome is a golden statue of the

Virgin Mary. ..." ,

" question ": "To whom did the Virgin Mary allegedly appear in 1858

in Lourdes France ?",

" answers ": {

"text ": [" Saint Bernadette Soubirous "],

" answer_start ": 12

}

Variable Descriptions:

• id: Unique identifier for the QA pair (e.g., "56be4db0acb8001400a502ec").

• title: Wikipedia article title (e.g., "University_of_Notre_Dame").
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• context: The passage from which the answer is to be extracted.

• question: The natural language question posed about the context.

• answers: For answerable questions, a dictionary with:

– text: List of valid answer spans.

– answer_start: List of starting character indices for each answer in the context.

Data Preprocessing for Retrieval

For SQuAD 2.0, which provides each question alongside a single context paragraph, the
loader uses HuggingFace’s squad_v2 dataset split. The preprocessing here is straightforward:
for each question, I extract the question text, the context paragraph, and the answer(s) if
available. The dataset’s original fields (e.g. question, context, id, and answers) are
mapped into my unified format. Each SQuAD question is stored with a context list of
length one (the given paragraph). All the passages are from 35 whole article and despite
that they does not have the same content, they still have the same name from the respective
article they came from. That is why the passages receive an identifier which is composed of
the article title + the index of the passage from this article. If a question has no answer,
I skip the question. All contexts across the SQuAD dataset are later combined into the
retrieval index, meaning a retriever must pick the correct paragraph from among all SQuAD
paragraphs. By converting the context into a list (even if singleton) and the answer into a list,
I normalize SQuAD’s structure to match my pipeline’s expected input format. This uniform
structure allows using the same retrieval code for SQuAD as for the other datasets without
special-casing single-context scenarios. After transformation, the dataset is composed of
5928 queries and 5928 passages.

2.2.3 ObliQA

ObliQA (Obligation-based Question-Answering Dataset for Regulatory Compliance) is a
specialized dataset designed to advance regulatory natural language processing (RegNLP)
with a focus on compliance verification, information retrieval, and question answering in the
legal and financial domain [26, 27].

ObliQA serves as a domain-specific stress test for retrieval-augmented generation systems
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in legal and financial contexts. Its complex document structures, multi-hop reasoning re-
quirements, and synthetic yet validated annotation methodology make it a valuable resource
for developing and benchmarking advanced regulatory NLP systems.

Dataset Composition and Key Features

ObliQA is constructed from approximately 640,000 words of regulatory text sourced from
Abu Dhabi Global Markets (ADGM), encompassing 40 documents that range from 30 to 100
pages each. These documents are characterized by complex internal structures, including
numbered clauses, subsections, and extensive cross-references, mirroring the intricacies of
real-world regulatory frameworks.

ObliQA contains 27,869 validated question-passage pairs, with the majority referencing
a single passage and a substantial portion requiring two or more passages for a complete
answer. Table 2.2 summarizes the distribution:

#Passages 1 2 3 4 5 6
Questions 21,187 5,036 1,196 268 121 61

Table 2.2: Distribution of questions by number of passages referenced in ObliQA [26, 27].

The ObliQA dataset maintains the integrity of the original legal documents by preserving
their hierarchical and referential structure. The preparation process begins with the collec-
tion of .docx source documents, which are manually structured to ensure consistency. Tables
and figures are explicitly tagged, and the documents are converted into both plain text and
structured JSON formats [26].

Synthetic Annotation Pipeline Unlike crowd-sourced datasets such as SQuAD, ObliQA
employs a synthetic annotation pipeline: QA pairs are generated using the gpt-4-turbo-1106
model, with prompts tailored for both single-passage and multi-passage scenarios. For single-
passage questions, the context must implicitly contain the answer. For multi-passage ques-
tions, prompts are designed to reflect realistic compliance queries that require synthesizing
information from multiple regulatory sections. To ensure high-quality alignment between
questions and passages, a Natural Language Inference model (nli-deberta-v3-xsmall) is
used for validation. Only pairs where the passage(s) entail the question are retained, while
contradictory or neutral pairs are filtered or further reviewed [26, 27].
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Example Entry and Data Fields

Each entry in ObliQA is structured as a JSON object with the following fields [26]:

{

" QuestionID ": "739921 c1 -385a -4735 - a052 - dee9fba73602 ",

" Question ": "What are the key compliance indicators that a Fund

Manager should monitor to confirm that a Passported Fund is

being managed and operated within its constitutional framework

and applicable ADGM legislation ?",

" Passages ": [

{

" DocumentID ": 16,

" PassageID ": "Part 3.6.(2) ",

" Passage ": "Each Reporting UAE Financial Institution shall

establish and implement appropriate systems and internal

procedures to enable its compliance with the Cabinet

Resolution and these Regulations ."

},

{

" DocumentID ": 5,

" PassageID ": "6.1.2" ,

" Passage ": "The Fund Manager of a Passported Fund must: (a)

ensure that the Passported Fund is at all times managed and

operated in compliance with its constitution , in

accordance with applicable ADGM legislation , and with these

Rules; and (b) maintain , or cause to be maintained , a

Unitholder register for the Passported Fund ."

}

]

}

Variable Descriptions:

• QuestionID: Unique identifier for the question (e.g., "739921c1-385a-4735-a052-dee9fba73602").

• Question: The compliance-focused question referencing regulatory obligations.

• Passages: List of passage objects, each with:
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– DocumentID: Identifier for the source regulatory document.

– PassageID: Section or clause reference within the document (e.g., "Part 3.6.(2)").

– Passage: The full text of the regulatory clause or section.

This structure supports both single-passage and multi-hop question answering, reflecting
the complexity of real-world compliance queries.

Data Preprocessing for Retrieval

The ObliQA dataset was ingested from a JSON file (as no direct HuggingFace loader was
available). Each entry in ObliQA consists of a complex question (often multi-sentence)
and a set of relevant regulatory text passages needed to answer it. The loader reads
each question’s entry and collects all provided passages. I do not have explicit labels in-
dicating which particular passage contains the answer – rather, the entire set of passages
from the question is considered the supporting context for the question. In my transfor-
mation, I therefore treat all these passages as the context for the query. The question
text is stored in raw_inputs["question_text"], and the list of all passage texts is stored
in raw_inputs["context_text"]. I assign each passage a unique ID (using the provided
PassageID from the dataset, prefixed by the question ID to ensure global uniqueness). All
the passages from all the raw_inputs are merged into a pool of passages where the retrievers
will search into during the analysis. Because ObliQA’s JSON did not include a readily usable
answer field (answers in this dataset are often free-form or assumed to be derivable from the
passages), I set the answer key to None in the mapping; accordingly, the loader leaves the
‘answers‘ field empty. Again, the absence of answer does not impact the experiment as the
focus is on the retrieval part and not on the answer generation part. The unified represen-
tation of ObliQA thus contains the question and a list of associated passage texts (often
multiple passages per question), and the metadata includes the question’s ID and a list of
all passage IDs for that question. This format allows BM25 to index all regulatory passages
and dense retrievers to embed them. After transformation, the dataset is composed of 2786
queries and 6143 passages.
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2.2.4 CoQA

The Conversational Question Answering (CoQA) dataset is a large-scale benchmark specifi-
cally constructed to evaluate the ability of models to engage in multi-turn, context-dependent
question answering [28, 29]. CoQA addresses a critical gap in QA research by moving be-
yond single-turn, factoid QA to focus on the challenges of dialogue, context tracking, and
pragmatic reasoning.

Its multi-domain scope, conversational structure, and emphasis on coreference and context
make it an essential testbed for evaluating the conversational consistency and generalization
of retrieval systems.

Dataset Composition and Key Features

With over 127,000 QA pairs spanning more than 8,000 conversations, CoQA is one of the
most comprehensive resources for conversational QA. Each data instance is a conversation—a
sequence of questions and answers—between a questioner and an answerer, grounded in a
passage. This format simulates real-world information-seeking dialogues, where each ques-
tion may depend on the context established by previous turns, requiring models to maintain
a memory of the entire conversation. Unlike extractive QA datasets (e.g., SQuAD), CoQA
allows answers to be free-form, not limited to exact spans in the passage. However, each
answer is linked to a supporting evidence span (rationale) in the passage, enabling both gen-
erative and extractive evaluation [28]. The dataset includes a wide range of conversational
phenomena, such as clarification questions, follow-ups, and topic shifts, which are rarely
present in single-turn QA datasets.

Conversational Consistency and Turn-Taking A defining challenge of CoQA is the
requirement for conversational consistency across multiple turns. Later questions in a con-
versation often refer back to entities, events, or answers mentioned earlier, using pronouns
(“he”, “she”, “it”), definite descriptions (“the animal”), or even implicit references. For ex-
ample, in the literature and children’s stories domains, questions such as “Where did she
go next?” require the model to track the referent of “she” across several previous turns.
This necessitates robust dialogue history modeling, coreference resolution, and pragmatic
inference.
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Moreover, turn-taking patterns vary across domains. In the science and Wikipedia do-
mains, questions may be more fact-based and sequential, while in literature or Reddit,
conversations may involve more narrative and contextual dependencies. This diversity in
dialogue structure provides a rigorous test for retrieval systems aiming to maintain context
and coherence in multi-domain settings.

Example Entry and Data Fields

Each CoQA entry is structured as a JSON object with the following fields [29, 31]:

{

" source ": " literature ",

"story ": "Mary had a little lamb. Its fleece was white as snow.

She took it to school one day .",

" questions ": [

"Who had a little lamb ?",

"What color was its fleece ?",

"Where did she take it?"

],

" answers ": [

{

" input_text ": "Mary",

" answer_start ": 0,

" answer_end ": 4

},

{

" input_text ": "white as snow",

" answer_start ": 32,

" answer_end ": 45

},

{

" input_text ": "to school ",

" answer_start ": 57,

" answer_end ": 66

}

]

}
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Variable Descriptions:

• source: The domain of the passage (e.g., "literature", "science", "reddit").

• story: The passage or context for the conversation.

• questions: List of conversational questions, each referencing the passage and possibly
previous answers.

• answers: List of answer objects, each with:

– input_text: The free-form answer.

– answer_start, answer_end: Character indices of the evidence span in the passage
supporting the answer.

Dialogue Chain and Coreference Example

Consider the following conversation from the “literature” domain [28, 30]:

• Q1: Who had a little lamb? A1: Mary

• Q2: What color was its fleece? A2: white as snow

• Q3: Where did she take it? A3: to school

Here, “its” in Q2 refers to “lamb” in Q1, and “she” in Q3 refers to “Mary” in Q1. Accu-
rately answering Q2 and Q3 requires resolving these coreference links using the conversational
history. This example illustrates the necessity for models to track entities and context across
multiple turns, a core requirement for effective conversational QA.

Data Preprocessing for Retrieval

For the CoQA conversational dataset, a custom loader converts its multi-turn dialogue for-
mat into a retrieval setting. I use the CoQA development set (500 dialogues) and extract
one representative query from each conversation to focus on context-dependent retrieval.
Specifically, I select the first question of each conversation as the standalone query, since it
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generally contains on the actual name of the person/place the story is talking about and thus
presents the easiest retrieval challenge in this context. The associated passage (the story text
for that conversation) serves as the context for that query. All such passages from all CoQA
conversations are then merged into a unified retrieval index. A retriever must therefore pick
the correct story segment from among 500 total passages. Each query’s answer text (from
the dataset) is stored for completeness, but since I evaluate retrieval only, the answer field
is not used.

2.2.5 HotpotQA

HotpotQA is a large-scale, multi-hop QA dataset that has become a cornerstone for evaluat-
ing advanced reasoning and explainability in retrieval systems [32, 33, 32]. Unlike single-hop
QA datasets, HotpotQA explicitly requires systems to integrate information from multiple
sources, mirroring the complex, distractor-rich context, compositional reasoning found in
real-world information retrieval and decision-making tasks [32].

Dataset Composition and Key Features

HotpotQA consists of approximately 113,000 crowd-sourced questions, each designed so
that answering requires synthesizing evidence from at least two distinct Wikipedia arti-
cles. This multi-article requirement turns HotpotQA into a true multi-hop retrieval bench-
mark—systems must not only fetch individually relevant passages but also identify and link
evidence across distinct documents, testing their ability to coordinate and synthesize infor-
mation from multiple sources [32].

A unique aspect of HotpotQA is its explicit annotation of supporting facts. For each
question, annotators identify the exact sentences within the relevant paragraphs that are
essential for answering. This enables strong supervision not only for answer generation but
also for explainability, as models can be evaluated on their ability to retrieve and highlight
the correct reasoning path [32].

In the distractor setting, each question is paired with ten context paragraphs: two gold
paragraphs containing the supporting facts and eight distractor paragraphs selected for their
lexical similarity but lack of relevance. This design mimics the challenges of real-world in-
formation retrieval, where systems must sift through large volumes of potentially misleading
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or tangential information to identify the truly relevant evidence [32, 32].

HotpotQA covers a broad spectrum of multi-hop reasoning patterns:

• Comparison Questions (34%): Require comparing attributes or facts across entities
(e.g., “Who has won more Olympic medals, X or Y?”).

• Intersection/Conjunctive Questions (29%): Require finding entities or facts sat-
isfying multiple conditions (e.g., “Which author wrote both X and Y?”).

• Bridge/Multi-Entity Questions (37%): Require following a chain of references or
linking facts across articles (e.g., “Who is the spouse of the director of movie X?”).

This diversity ensures that models are tested on a wide variety of inference strategies, from
entity resolution to logical conjunction and comparison [32].

Example Entry and Data Fields

Each entry in HotpotQA is a JSON object with the following structure [33]:

{

"_id ": "5 ad3d5605542996e685252bc ",

" question ": "Which team did the quarterback who led the 1985

Chicago Bears play for in college ?",

" answer ": " Brigham Young University ",

" supporting_facts ": [

[" Jim McMahon ", 1],

["1985 Chicago Bears season ", 1]

],

" context ": [

[

"Jim McMahon ",

[

"Jim McMahon is a former American football quarterback .",

"He played college football at Brigham Young University .",

"He was drafted by the Chicago Bears in the first round of

the 1982 NFL Draft ."

]

36



],

[

"1985 Chicago Bears season ",

[

"The 1985 Chicago Bears season was the franchise ’s 66th

season in the National Football League .",

"The Bears were led by quarterback Jim McMahon .",

"They finished the regular season with a 15 1 record ."

]

],

// ...8 distractor paragraphs omitted for brevity ...

]

}

Variable Descriptions:

• _id: Unique identifier for the QA pair.

• question: The multi-hop question requiring reasoning over multiple paragraphs.

• answer: The answer string (not present in the test set).

• supporting_facts: List of [paragraph title, sentence index] pairs, indicating which
sentences in which paragraphs are required to answer the question.

• context: List of paragraphs, each as a [title, list of sentences] pair. The first two are
gold paragraphs, the rest are distractors.

In the above example, the system must first identify that Jim McMahon was the quar-
terback for the 1985 Chicago Bears (from the “1985 Chicago Bears season” paragraph),
then determine where he played college football (from the “Jim McMahon” paragraph), thus
demonstrating multi-hop reasoning.

Data Preprocessing for Retrieval

For HotpotQA, a dataset featuring multi-hop questions, the data required special handling
due to its format. Each HotpotQA question in the dev set comes with multiple supporting
facts across different Wikipedia articles. I loaded a transformed JSON for HotpotQA where
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each entry contains the question, a list of supporting facts (article titles and sentence indices),
and the full text of several candidate passages. In my preprocessing, I concatenate the
sentences of each article’s passage into a single text block and assign that passage a unique
ID derived from the article title (I replace spaces with underscores to form an ID). I then
determine which of these passages contain the supporting facts: for each article, if its title
appears in the question’s supporting facts list, I mark that article’s full passage as part of
the ground-truth context. All passages from all articles are collected as candidate contexts
(with their IDs), but only those passages that correspond to the gold supporting articles are
recorded as the relevant context for the query. If a question has no identified supporting
passages (which can happen in some edge cases or errors in the dataset), I skip that question
to avoid evaluating on incomplete data. The transformed HotpotQA entries thus contain
the question text and a list of one or more supporting passages’ texts as context_text. The
metadata includes the question ID, a list of supporting passage IDs (as the ground truth set),
and a list of all passage IDs considered for that question (to facilitate analysis of retrieval
over the full candidate set). All passages are stored as plain text (allowing BM25 indexing by
terms, and the others encoding by their neural models), ensuring consistency across retriever
implementations. After transformation, the dataset is composed of 6162 queries and 16767
passages.

2.3 Evaluation Setup

After preparing the datasets as described above, I evaluate the retrieval performance of
the four models – BM25, DPR, Contriever and ColBERT – in a standardized pipeline.
my evaluation procedure constructs a retrieval corpus for each dataset and measures how
effectively each model can retrieve the relevant context passages for the queries.

Candidate Passage Indexing

For each dataset, I aggregate all candidate passages from every query into a single corpus
(index). This means that, for a given question, the retriever must search among all passages
of that dataset – not just the passages originally paired with that query. For example, in
SQuAD 2.0 the index consists of every paragraph from the dev set; a retriever processing
one SQuAD question must distinguish the correct paragraph from hundreds of others. This
open-domain retrieval setup makes the task challenging and allows us to assess retriever gen-
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eralization. The pipeline implementation explicitly iterates over each query and collects its
associated passages (and IDs) into global lists, which are then used to initialize the retriever’s
index. In total, the number of indexed passages ranges from a few hundred (for smaller
datasets like HotpotQA dev) up to many thousands for larger sets (e.g. MS MARCO). Each
passage is identified by a unique ID so that I can trace which query it originated from.

Retrieval Procedure

I evaluate each retriever model by issuing every query to the model and retrieving the
top k results, for k ∈ {1, 5, 10}. The BM25 model uses tokenized passages to compute
term-matching scores, while DPR, Contriever, and ColBERT use their neural encoders to
produce dense vector embeddings of all passages and perform similarity search. In my
implementation, dense retrieval for DPR and Contriever is accelerated with a FAISS index:
after encoding all passages into embeddings, I build an index on these vectors for similarity
search. When a query is submitted, these models encode the query into a vector, and the
nearest neighbors in the vector index are returned as the top-k passages. This mirrors the
typical ANN search approach for dense retrievers. ColBERT, on the other hand, uses its
own native indexing process and computes the MaxSim-based late interaction score between
the query and the full set of document token embeddings. BM25, by contrast, scores all
passages on the fly using the Okapi formula without a learned index.

Metrics Logged

For each query, I determine whether the retrieved set contains at least one of the ground-
truth relevant passages identified in my preprocessing. I define a retrieval as “Correct” if any
one of the top-k retrieved passage IDs matches an ID in the query’s ground-truth context
set. This allows credit for retrieving any relevant evidence. I compute this correctness for
k = 1, 5, 10 for every query, and then aggregate the results. The primary metric I report is
Top-k accuracy (the fraction of queries for which a relevant passage is present in the top k).
After running all queries, the pipeline calculates the mean accuracy for each model at each
k by averaging the “Correct” indicator across queries. These results are saved in summary
tables for analysis. Concretely, my code writes out a CSV file listing each query’s outcome
for each model and each k, then groups these results by model and k to compute the average
Correct rate. The outcome is a set of accuracy values per model and per retrieval depth.
This evaluation setup is consistent across all datasets, ensuring that I can directly compare
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retrievers’ performance in different domains. I also log the retrieval time for each query (and
cumulatively) to gauge efficiency, though in this thesis my discussion focuses on accuracy
metrics. A second and complementary metric will be computed exclusively for multi-hop
datasets (where more than one passage is needed to answer the query) where every passages
will be required to be retrieved to be counted as "Correct" instead of only at least one.
This metrics will be called strict accuracy and will be computed for k = 5, 10 for ObliQA
and HotPotQA only. All experiments are run on the respective dev or test portions of the
datasets, using identical retrieval settings. The results (detailed in Chapter 3) shed light on
how each retriever performs and where each has strengths or weaknesses in regard to the
type of textual data it retrieves.
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Chapter 3

Empirical Results

To provide a clear overview of the data sources used throughout this research, Table 3.1
presents a summary of the datasets considered in this study. This consolidated view aims to
facilitate comparison and understanding of the datasets, serving as a reference point for the
analysis conducted in the subsequent sections.

3.1 Technical Linguistic Analysis

3.1.1 Passages Analysis

I provide here a rigorous textual and structural profile of the passages of the five QA datasets.
This analysis draws upon quantitative metrics from my local textual analysis, complemented
by theoretical expectations from their construction.

Summary of passages’ domain and style The domain of the source material greatly
influences the language in each dataset. ObliQA is an outlier in domain specificity and
complexity: its regulatory/legal texts yield a very formal style with dense jargon, whereas
SQuAD and HotpotQA use broad-domain Wikipedia text that, while formal and factual, is
intended for general readership. CoQA, pulling from varied domains, includes both simple
and complex language, but its conversational format means questions are often phrased in
a casual, spoken style. MS MARCO spans an extremely wide domain (the entire web), but
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Dataset Domain and
Source

Question Style N of
Queries

N of
Pas-
sages

Multi-
hop?

Multi-
turn?

MS MARCO
V2

Open-domain web
(user search
queries; real logs)

Brief, often
informal queries
(natural
distribution; some
incomplete)

55 578 118 524 Partial
(multi-doc
retrieval,
usually
single-hop)

No

SQuAD 2.0 Wikipedia (general
knowledge;
crowd-sourced Q)

Well-formed
factoid questions,
independent

5 928 5 928 No No

ObliQA Financial
regulatory text
(legal domain;
LLM-generated Q)

Long, formal
compliance
questions
referencing rules

2 786 6 143 Yes
(requires
1–6
passages)

No

CoQA Multi-domain
passages (stories,
news, etc.; crowd
dialog)

Conversational,
context-dependent
questions in a
sequence

500 500 No Yes

HotpotQA Wikipedia
(open-domain;
crowd-sourced Q)

Complex questions
combining facts
(bridge or
comparison
questions)

6 162 16 767 Yes
(typically 2
docs)

No

Table 3.1: Comparison of datasets by domain, question characteristics, and size. The number
of queries and passages are from dev/test set after transformation. Multi-hop refers to
needing multiple distinct text pieces for one question. Multi-turn indicates conversational
context across questions.
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many passages are drawn from informational web pages similar in style to Wikipedia or
news; however, the presence of forums and less formal sources, plus the unedited nature of
real user queries, injects more linguistic noise (slang, typos, inconsistent grammar) than the
other datasets.

Dataset Avg Length Avg MLU Flesch TTR
MS MARCO V2 38 14.3 50.0 0.025
SQuAD 2.0 146 29.6 35.0 0.010
HotpotQA 29 28.5 43.1 0.120
CoQA 309 21.5 64.9 0.105
ObliQA 103 67.0 0.25 0.016

Table 3.2: Comparative metrics across datasets for passages. Avg Length (average number
of word by passage) and Mean Length of Utterance (average number of word by sentence)
reflect textual extent and syntactic density. Flesch is a score ranging from 0 to 100 denoting
readability ease (higher score is easier to read). TTR (Type-Token Ratio) quantifies lexical
diversity by dividing the distinct number of words by the total number of words. Closer to
1 means almost every word is unique, lower means more repetition.

As shown in Table 3.2, the datasets exhibit pronounced contrasts in both surface textual
metrics and deeper structural patterns, which can be interpreted to forecast theoretical
challenges for downstream language understanding tasks.

Textual length and clause complexity. CoQA features by far the longest average tex-
tual passages (over 300 tokens), reflecting the accumulation of multi-turn dialogue. However,
its average MLU remains comparatively moderate (21.5), suggesting that each utterance
tends to be syntactically simpler, consistent with conversational style. In stark contrast,
ObliQA, despite shorter passages than CoQA, records an exceptionally high MLU (67.0),
signifying highly intricate clause nesting typical of regulatory prose. This indicates that pro-
cessing ObliQA necessitates parsing of multi-layered conditional and referential constructs,
whereas handling CoQA involves maintaining extensive discourse memory across simpler sen-
tences. SQuAD 2.0 and HotpotQA occupy an intermediate zone: both manifest moderately
long passages (especially SQuAD) paired with substantial clause complexity (around 28–30
MLU). HotpotQA’s relatively short overall length (29 tokens) but high clause density (28.5
MLU) suggests compact compositional questions embedding multiple entities or compara-
tive relations. MS MARCO V2, with shorter passages (38 tokens) and lower MLU (14.3),
indicates less syntactically demanding structures but potentially greater fragmentation due
to its origin in web snippets.
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Lexical concentration and diversity. Type-token ratios (TTR) quantifies lexical diver-
sity by dividing the distinct number of words by the total number of words. HotpotQA
and CoQA exhibit markedly higher TTR values (0.12 and 0.105), indicative of richer lexical
diversity per segment. This is expected in HotpotQA, where its multi-hop aspect intro-
duce multiple distinct entities in the passages, and in CoQA where varied dialogue turns
traverse different referents. By contrast, SQuAD 2.0 and ObliQA show lower TTR (0.010
and 0.016 respectively), reflecting repetitive terminology—consistent with SQuAD’s focus
on specific Wikipedia paragraphs and ObliQA’s domain-restricted regulatory vocabulary.
MS MARCO’s modest TTR (0.025) paired with an extremely large overall vocabulary (over
80,000 types) underscores broad corpus heterogeneity but repeated local usage.

Readability and formal linguistic burden. Readability indices corroborate these struc-
tural insights. ObliQA stands out with a Flesch score near zero, aligning with graduate-level
FK and SMOG estimates, confirming the formidable complexity of parsing legal provisions.
In contrast, CoQA’s high Flesch score (65) situates it near typical conversational prose, while
HotpotQA and SQuAD cluster in the low 30s to 40s, matching their encyclopedic, multi-fact
sentences. MS MARCO V2, drawn from informal user queries and varied web text, resides
in a mid-range readability zone (50).

3.1.2 Query Analysis

Here is the same textual profile as in the precedent section but for the queries of the five
datasets. Again, these metrics are from my own local textual analysis.

Dataset Avg Length Avg MLU Flesch TTR
MS MARCO V2 6 5.5 63 0.12
SQuAD 2.0 12 11 58 0.10
HotpotQA 15 13.5 60 0.15
CoQA 7 6 85 0.35
ObliQA 30 28 21 0.05

Table 3.3: Comparative metrics across datasets for queries. Avg Length (average number
of words per query) and Mean Length of Utterance (average number of words per sentence)
reflect query extent and syntactic density. Flesch is the readability ease score (higher means
easier to read). TTR (Type-Token Ratio) quantifies lexical diversity.
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Summary of queries’ creation In terms of question formation, SQuAD and HotpotQA
questions are manually crafted by crowdworkers who had access to relevant information,
resulting in grammatically complete questions with a clear factual focus. CoQA’s questions
are also human-generated but in an interactive setting – thus they are often incomplete
on their own and rely on discourse context. MSMARCO’s queries, being actual search
queries, tend to be the shortest and sometimes not even proper questions (e.g., keywords like
“distance earth sun” or imperative forms like “Define photosynthesis”). ObliQA’s questions,
interestingly, were LLM-generated based on the regulatory text; they read like realistic
queries a compliance officer might ask, which makes them longer and syntactically richer
than typical crowd-sourced factoid questions.

Query length and form. The queries in these datasets vary widely in length and struc-
ture. CoQA questions are extremely short on average (around 7 words, with some follow-up
questions as brief as a single word or phrase like “Why?” or “Who?”), reflecting their con-
versational and context-dependent nature. MSMARCO queries are also very terse (mean ∼6
words), often not even full sentences but rather keyword-style search queries (e.g., “weather
in dallas tomorrow” or “lyrics to Imagine Dragons Believer”). In contrast, SQuAD 2.0 and
HotpotQA questions are longer (approximately 11–18 words on average) and are well-formed
natural questions written in a self-contained manner. ObliQA queries are the longest by far
(roughly 30 words on average), often comprising complex, multi-clause sentences. This is
because ObliQA’s questions frequently provide a detailed scenario or context (as one might
see in a compliance inquiry) before asking for specific information. These characteristics
affect how a retrieval model can interpret the query: a long, well-specified question (e.g., an
ObliQA query) presents more lexical information to latch onto, while a clipped query (e.g.,
“What next?” in CoQA or a two-word MS MARCO query) provides minimal clues and may
be ambiguous without additional context.

Vocabulary and readability. The language style of the queries ranges from informal to
highly domain-specific. CoQA’s questions are written in simple, conversational language,
often mirroring spoken English. Their vocabulary is basic (e.g., pronouns like “she,” “it,”
commonplace verbs), and the readability is very high – indeed, CoQA queries score an aver-
age Flesch Reading Ease of about 85, the easiest among the datasets. MSMARCO queries
are a mixed bag: many are simple factual questions, but others include colloquial expressions,
abbreviations, or web slang. This gives MSMARCO a relatively easy reading level (around
63 Flesch Ease) but also the most “uncurated” lexicon – a wide mix of formal and informal
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terms and sometimes misspelled or telegraphic phrases. SQuAD and HotpotQA questions,
being written by crowdworkers and focusing on Wikipedia topics, fall in the middle: they use
standard written English with an academic or encyclopedic tone, yielding moderate read-
ability (Flesch Ease ∼58–60). Their vocabulary includes proper nouns and specific concepts
from a broad range of domains, but the questions are generally clear and grammatically
well-formed. ObliQA questions are on the opposite extreme from CoQA: they are written in
formal legal/financial language with domain-specific terminology (e.g., “ADGM legislation,”
“Passported Fund”) and complex syntax. Consequently, ObliQA queries are the hardest to
read (average Flesch Ease ∼21). The lexical diversity of the query sets also reflects their na-
ture: HotpotQA and CoQA have high type–token ratios (HotpotQA ∼0.15, CoQA ∼0.35),
since each question often introduces new entities or wording (CoQA’s multi-domain con-
versations could contribute to a particularly diverse vocabulary despite the questions being
short but it could also be due to the fact that there are only 500 questions, meaning that de
denominator is relatively low). SQuAD and MSMARCO have lower TTR (around 0.10–0.12)
because many questions use similar functional words or templates (e.g., “What is...,” “Who
is...”), and MSMARCO’s huge query set contains many rephrasings of common queries.
ObliQA’s queries have the lowest TTR (around 0.05) – a sign that the same technical terms
and phrasings repeat across questions (for example, many compliance questions share words
like “ensure,” “compliance,” “fund,” etc.). In summary, CoQA and MSMARCO queries
use simpler everyday language, SQuAD and HotpotQA queries use polished informational
language, and ObliQA queries use specialized jargon-heavy language. These differences im-
ply that a retrieval system may face very different language-match challenges: e.g., slang or
shorthand in MS MARCO might confound a model trained on formal text, whereas ObliQA’s
heavy jargon could be out-of-vocabulary for models without legal domain training.

Context-dependence and reasoning. Another critical contrast is the degree to which
queries are self-contained or require external context and reasoning. CoQA is the only
dataset that is truly conversational: each question is part of a multi-turn dialogue and often
cannot be understood in isolation. Coreference is rampant – questions include pronouns
(“he,” “she,” “it,” “they”) or definite references (“the city,” “that event”) whose meaning
depends on previous turns. For example, a CoQA query like “Where did she go next?” is
only answerable if the system knows who “she” refers to and what was happening before.
This poses a unique challenge to retrieval: the system ideally needs to incorporate conversa-
tion history or else risk retrieving the wrong passage. None of the other datasets have this
kind of sequential dependency. Each MSMARCO, SQuAD, HotpotQA, or ObliQA query is
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a stand-alone question. That said, MSMARCO queries can be context-underspecified in a
different way: as user queries, they sometimes assume implicit context or contain ambiguity.
A query like “jaguar speed” could refer to the animal or the car, and without disambigua-
tion, a retriever might retrieve irrelevant results. In SQuAD and HotpotQA, ambiguity is
less common because questions were created with a specific Wikipedia context in mind, mak-
ing them fairly precise. HotpotQA and ObliQA do introduce a requirement for multi-hop
reasoning. HotpotQA questions are explicitly designed to require bridging two Wikipedia
articles or comparing two entities, so the question will often contain two clues (e.g., two
entity names) that need to be looked up. The HotpotQA query itself usually makes this
clear by mentioning both parts of the needed reasoning (for instance, “Which author wrote
both Book X and Book Y ?” names two works). ObliQA questions can also require multi-hop
reasoning, although in a more implicit way: the question may stipulate conditions that are
located in different sections of a long regulation. For example, an ObliQA query might ask
whether a certain scenario violates regulations, implicitly requiring the model to find mul-
tiple relevant clauses across the law. In contrast, SQuAD questions are strictly single-hop
(each question is answerable from one paragraph) and CoQA, while it involves reasoning
across dialogue turns, still confines each question to a single relevant passage (the story
given for that conversation). MSMARCO falls somewhere in between: it provides multiple
passages per query as context, and sometimes the answer is a synthesis of information (the
dataset did not guarantee purely single-paragraph answers). However, in many MSMARCO
cases, one of the retrieved snippets contains the answer, meaning the retrieval task is largely
about finding one good passage among many. In summary, these facets suggest that different
retrieval models may have advantages on different datasets – e.g., a model handling CoQA
must be robust to coreference and missing keywords, whereas a model for HotpotQA must
handle multi-hop clues, and one for ObliQA needs to grapple with long, detailed queries but
with telltale domain keywords.

3.1.3 Implications for retrieval and generation

These textual divergences have direct theoretical consequences for the design of retrieval-
augmented or generative language systems. Processing ObliQA entails navigating deeply
nested clause structures, resolving dense anaphoric and cross-referential patterns, and nor-
malizing highly specialized regulatory terminology. By contrast, HotpotQA demands com-
positional semantic interpretation to reconcile multiple distinct factual nuggets within short,
dense prompts, requiring retrieval systems to robustly align disparate but jointly informative
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contexts.

CoQA’s profile foregrounds discourse-level challenges: extensive context windows cou-
pled with pronoun-rich, ellipsis-dependent questions necessitate maintenance of conversa-
tional state and coreference chains. Meanwhile, MS MARCO’s web-derived content places
emphasis on coping with lexical noise, incomplete phrasing, and colloquial style, requiring
normalization strategies to stabilize retrieval effectiveness.

SQuAD 2.0, with relatively formal but moderate-length texts and clear factual questions,
exemplifies a controlled reading comprehension environment. However, the low TTR coupled
with complex syntax still necessitates careful parsing to distinguish nuanced entailment or
to identify unanswerability in high-surface-overlap distractor cases.

In summary, the dataset landscape reveals that linguistic structure—be it through syn-
tactic depth, lexical diversity, or discourse continuity—profoundly shapes the retrieval and
comprehension hurdles a downstream system must surmount. Effective question answer-
ing architectures must therefore explicitly adapt to these structural characteristics, whether
through sophisticated multi-hop index traversal, enhanced discourse state tracking, or syn-
tactic parsing sensitive to deeply nested clause embeddings.

3.2 Retrieval Results and Analysis by Datasets

To set the stage for the retrieval analysis, Table 3.4 summarizes the top-1 retrieval per-
formance achieved by each model across the different datasets. This overview provides an
immediate comparison of baseline effectiveness, highlighting variations in model performance
depending on the dataset characteristics. By presenting these results upfront, the table serves
as a reference point for the more detailed discussions and analyses that follow in this chapter.

Table 3.4: Top-1 Retrieval Accuracy (Non-Strict) across Models and Datasets
Model MS MARCO V2 SQuAD 2.0 ObliQA CoQA HotpotQA
BM25 20.5% 63.6% 53.0% 35.8% 66.4%
DPR 39.6% 41.0% 19.6% 26.8% 46.7%
Contriever 56.4% 61.7% 42.6% 45.4% 66.9%
ColBERT N/A N/A 60.0% 63.8% 73.8%
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3.2.1 MS MARCO: Retrieval Results and Analysis

(During the experiments on MS MARCO, the ColBERT model could not be executed due to
critical library incompatibilities. Although retrieval with other datasets such as ObliQA, Hot-
potQA, and CoQA were successful, subsequent updates in the Python ecosystem (PyTorch,
NumPy, Transformers) caused the model to stop functioning in the Colab environment. Col-
BERT depends on specific versions of these libraries, and even attempts to downgrade to
earlier versions failed, as Colab automatically updated certain packages. This instability
made it impossible to maintain a working configuration, and as a result, no empirical results
could be produced for MS MARCO.)

I first examine the retrieval performance on the MS MARCO V2 dataset. Table 3.5
presents the top-k retrieval accuracies for the different models. Perhaps surprisingly, the
neural retrievers far outperform the lexical baseline in this open-domain setting. BM25
achieves only about 20.5% accuracy@1 – meaning it retrieves a relevant passage as the first
result for roughly one-fifth of the queries – and about 36% by top-10. In stark contrast,
the Contriever dense model attains approximately 56.4% accuracy@1, and up to 83.2% of
queries have a relevant passage in the top-10. DPR performs in between, with about 39.6%
top-1 and 65.8% top-10 accuracy. In other words, Contriever more than doubles BM25’s
accuracy at rank 1, and it maintains an excellent accuracy at higher ranks, retrieving relevant
information for the vast majority of queries by 10 results. DPR, despite being a supervised
dense retriever, lags behind Contriever but still substantially outperforms BM25.

Retriever Top-1 Top-5 Top-10
BM25 20.5% 31.9% 36.3%
DPR 39.6% 59.3% 65.8%
Contriever 56.4% 77.9% 83.2%

Table 3.5: Retrieval accuracy on MS MARCO. Values indicate the proportion of questions
for which a relevant passage was retrieved in the top k results (accuracy@k).

Analysis: The strong showing of dense retrievers on MS MARCO can be attributed to
the nature of the queries and corpus. Its moderate passages’s readability (Flesch 50) and
especially its corpus’s broad lexical variety (over 80,000 unique terms; TTR 0.025) likely
contribute to BM25’s struggles in this setting. Many queries use informal phrasing, slang,
or synonyms that do not appear verbatim in relevant passages, so exact-match retrieval
is brittle. Dense models like Contriever excel at bridging this gap by capturing semantic
similarity: even if a query uses a synonym or acronym, the neural embedding may still align
with passages containing the expanded form or a paraphrase. Indeed, Contriever’s high
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accuracy suggests it can retrieve relevant passages even when there is little lexical overlap, a
crucial advantage for an open-domain web corpus with diverse expressions. Another factor is
scale: with a million passages, many queries have multiple relevant answers. BM25, focusing
on a few keywords, might retrieve one relevant passage but rank it lower due to other
documents containing those keywords out of context (or it might miss the relevant passage
if the wording diverges). Contriever’s vector-based retrieval provides a broader semantic
net, which in this case yields higher top-1 accuracy and much higher top-5/10 accuracy.
DPR, which was trained on a different QA dataset, shows decent performance (better than
BM25), indicating that training on question–passage pairs helps, but it does not match
Contriever (that may be because of an overfit to the Wikipedia scientific style it was trained
on). Likely, Contriever’s unsupervised training on large general text made it more robust to
the variety in MS MARCO. Another point is that MS MARCO queries can be ambiguous
or underspecified; a dense model might encode latent context or popular interpretations
of the query, effectively guessing the intent better than exact match. Overall, the results
suggest that for a noisy, large-scale retrieval task like MS MARCO, semantic retrievers
have a clear edge over traditional lexical methods. BM25’s difficulty here underscores how
real-world search queries (“free-form” questions, often incomplete) benefit from models that
understand meaning beyond literal words.

3.2.2 SQuAD 2.0: Retrieval Results and Analysis

(The same issues encountered with MS MARCO also prevented the completion of experiments
on the SQuAD dataset. Despite extensive efforts to restore compatibility, the ColBERT model
consistently failed to run due to version conflicts across essential libraries. The automatic
updates performed by Colab further aggravated the problem, preventing stable reproduction
of the indexing and retrieval pipeline. Consequently, no ColBERT results could be obtained
for SQuAD, which limited the scope of the empirical evaluation in this thesis.)

Next, I evaluate retrieval on SQuAD 2.0. Table 3.6 shows the top-k accuracy for BM25,
Contriever, and DPR on this dataset. Here we see that BM25 and Contriever both perform
very strongly, while DPR is behind. BM25 returns a relevant paragraph as the first hit for
about 63.6% of the questions, and by 10 retrieved results it achieves roughly 85.3% accuracy.
Contriever’s performance is similar at rank 1 (about 61.7% accuracy@1, essentially on par
with BM25), but it surpasses BM25 at higher k: around 86.5% of questions have a relevant
paragraph in the top-5 results for Contriever, and about 92.5% by the top-10. DPR, on the
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other hand, finds the correct paragraph at rank 1 only 41.0% of the time, and reaches 80.0%
by top-10, notably lower than the other two methods.

Retriever Top-1 Top-5 Top-10
BM25 63.6% 80.0% 85.3%
DPR 41.0% 69.2% 80.0%
Contriever 61.7% 86.5% 92.5%

Table 3.6: Retrieval accuracy on SQuAD 2.0. Values indicate accuracy@k.

Analysis: In the SQuAD setting, the retrieval task is relatively easier than in MS MARCO:
questions are carefully worded and each has a specific Wikipedia paragraph that contains
the answer. The high numbers reflect this — a well-tuned lexical engine or dense model can
retrieve the correct paragraph for the majority of questions. Notably, SQuAD’s passages
have extremely low lexical diversity (TTR = 0.010), meaning many questions share key
terms with their answer paragraphs. This repetitive terminology likely underlies BM25’s
strong performance. Its slight edge at rank 1 suggests that SQuAD questions often share
exact keywords with their source paragraph. This makes sense, as crowdworkers who wrote
the questions likely paraphrased the content in the passage but still mentioned the key entity
names or terms. For example, if a SQuAD paragraph is about Mount Everest, the question is
likely to include “Mount Everest” or a very close synonym. BM25 excels at this kind of direct
term matching. Contriever, despite not having seen SQuAD during training, benefits from its
general semantic comprehension and wide pre-training on Wikipedia. Its accuracy at top-5
and top-10 is excellent, indicating that it can pick up on paraphrases or alternate phrasings
that BM25 might miss. The fact that Contriever slightly lags BM25 at rank 1 but overtakes
by rank 5 suggests that in cases of exact term overlap, BM25 is immediately effective, but in
cases requiring a bit of abstraction (synonyms or rephrasing), Contriever catches up. DPR’s
lower performance on the other hand, is difficult to explain, given that he was trained on
passages from Wikipedia . In summary, SQuAD’s results show that both lexical and neural
unsupervised approaches can nearly solve the retrieval problem in a controlled domain with
explicit query–answer term overlap. The small gap between BM25 and Contriever highlights
that lexical methods remain very competitive when the language is clean and the queries are
closely tied to the content. Dense retrieval still offers an advantage in accuracy by handling
rephrased queries, but the benefit is less dramatic here than in MS MARCO’s noisy setting.
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3.2.3 ObliQA: Retrieval Results and Analysis

I then examine the retrieval performance on the ObliQA dataset. Table 3.7 summarizes the
top-k retrieval accuracies of BM25, DPR, Contriever, and ColBERT on ObliQA. Perhaps
surprisingly, the traditional lexical matcher BM25 significantly outperforms the two stan-
dard dense retrievers (DPR and Contriever) in this domain, yet the advanced ColBERT
model in turn outperforms BM25. BM25 achieves about 53.0% top-1 accuracy (meaning it
retrieves a relevant passage as the first result for 53% of the questions), markedly higher than
Contriever’s top-1 accuracy (approximately 42.6%) and more than double DPR’s (19.6%).
However, ColBERT yields the highest score, with 60% top-1 accuracy – a +7 point absolute
improvement over BM25. This trend continues for broader retrievals: at top-5, ColBERT
reaches about 70.7% accuracy, versus BM25’s 64% (Contriever 57.1%, DPR 30.8%); by
top-10, ColBERT attains around 74.7% accuracy, compared to BM25’s 68.8%, Contriever’s
64.1%, and DPR’s 38.0%. In other words, ColBERT is strongest at accuracy for every ranks,
while BM25 maintains a clear edge over the simpler dense models. These results indicate
that in the legal/financial language of ObliQA, lexical matching signals are extremely im-
portant – but a sufficiently powerful semantic retriever can leverage those signals as well,
surpassing even BM25.

Retriever Top-1 Top-5 Top-10
BM25 53.0% 64.0% 68.8%
Contriever 42.6% 57.1% 64.1%
DPR 19.6% 30.8% 38.0%
ColBERT 60% 70.7% 74.7%

Table 3.7: Retrieval accuracy on ObliQA (regulatory text domain). Values indicate the
proportion of questions for which a relevant passage was retrieved in the top k results (ac-
curacy@k).

Analysis: The ObliQA domain’s extreme linguistic complexity correlates with the dis-
tinct performance pattern observed. Its regulatory passages have by far the lowest readability
(Flesch = 0, indicating very dense legal prose), with long, clause-heavy sentences and highly
specialized vocabulary. In this low-readability, jargon-heavy context, BM25’s reliance on
exact token matching becomes a strength: any uncommon legal term present in the question
can be directly matched to the same term in a candidate passage. This helps explain why
BM25 tops the standard dense models here. In contrast, Contriever – being an unsupervised
dense retriever – may not encode legal jargon or rare domain phrases effectively without
domain-specific training. Indeed, ObliQA questions and passages are relatively long (re-
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spectively averaging about 67 and 103 words each) and detailed, often containing multiple
constraints or references. BM25 can latch onto any uncommon term or reference number in
the query and find passages containing those exact tokens. Contriever’s semantic similarity
search, by compressing the entire text into a single embedding, might be hindered by the
length and complexity of these queries: the model must condense a long, multi-faceted ques-
tion into one vector, potentially losing some of the granular detail. Indeed, the embedding
size used by neural encoders does not change by passage length, so information is lost when
passages are longer (this is also true for DPR). Moreover, the language of ObliQA is very
complex – the average sentence length is high and vocabulary very domain-specific (the text
has a Flesch Reading Ease near 0, indicative of dense legal prose). In such text, subtle
differences in wording can carry big changes in meaning (e.g. “shall” vs. “should” or the
presence of a specific statute number). BM25’s reliance on exact tokens can be an advantage
here, as it does not miss those precise matches; a purely semantic model might consider two
passages similar in meaning even if one does not contain the specific keyword that makes a
passage relevant.

ColBERT, however, mitigates many of these issues. Unlike single-vector models, Col-
BERT uses a late interaction mechanism with token-level embeddings, which allows it to
preserve important rare terms and match them directly between query and passage. This
means that if a query contains a unique clause number or legal term, ColBERT can recognize
that token’s contribution distinctly (via exact or high-similarity token matches) instead of
averaging it away. This ability likely enables ColBERT to capture the same domain cues that
give BM25 its advantage, while also leveraging semantic context for terms that do not ex-
actly match. In essence, ColBERT bridges lexical and semantic retrieval: it retains a strong
focus on exact token overlap when it is informative, but can still generalize for paraphrased
or contextually implied matches. This explains why ColBERT achieves the highest accu-
racy – it benefits from the precise term matching that ObliQA demands, and from semantic
similarity on the parts of the query that use more common language.

DPR performs the worst on ObliQA, which is understandable given its training regime.
DPR was originally trained on open-domain datasets like Wikipedia (e.g. Natural Ques-
tions), so the shift to highly formal, specialized legal language (without any fine-tuning on
that domain) leaves DPR struggling. The vocabulary mismatch between general-domain text
and formal regulations is extreme; DPR’s learned embeddings likely fail to capture critical
legal expressions or nomenclature that it never saw during training. Additionally, ObliQA
often requires multi-passage reasoning: questions sometimes need information from two or
more separate sections of text to answer. A dense retriever not specialized for multi-hop
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reasoning may retrieve one relevant passage but miss the other. In contrast, BM25 can in-
dependently surface multiple relevant sections as long as the query contains some keywords
from each, increasing the chance that at least one of the needed passages appears in the
top-k. ColBERT’s multi-vector approach similarly can handle multi-faceted queries better
than single-vector models: because each query token can retrieve evidence, a complex ques-
tion with multiple clues can trigger matches to different parts of the corpus. For example, if
a question references two distinct regulatory provisions, BM25 or ColBERT might retrieve
documents covering each provision among their top results, whereas a single-vector model
might fixate on one aspect and ignore the other. Neither Contriever nor DPR inherently
understands the structured format of ObliQA’s text (numbered clauses, sections, etc.) un-
less those tokens influence their embeddings, so they don’t explicitly benefit from structural
cues like clause numbers – whereas BM25 can treat a clause number as just another token
to match exactly.

Qualitatively, ObliQA retrieval results reflect these dynamics. BM25’s top hits for these
questions always contain obvious lexical overlaps with the query (often the exact regulatory
subsection identifiers or unique domain terms present in the question). Not surprisingly,
those overlaps usually correspond to the ground-truth relevant sections. Contriever, on the
other hand, sometimes retrieves passages that are topically related to the query but not
actually the specific provision asked about. For instance, if a question is about a particular
compliance obligation in Section 3.6(2), Contriever might return a passage discussing general
compliance procedures – semantically related to the topic, but not the correct clause that
the question targets. This reflects a classic trade-off: Contriever casts a broader semantic
net (indeed, by top-10 its accuracy nearly catches up to BM25’s), but at the expense of
accuracy at rank-1. In a domain like ObliQA, where questions demand pinpointing exact
clauses, such semantic generalization can lead the model slightly astray for the top result.

ColBERT appears to overcome much of this trade-off. Thanks to its token-level match-
ing, ColBERT usually retrieves the correct or very closely relevant passage at rank 1 and
maintains high accuracy by rank 10. For example, in my experiments ColBERT would often
return a passage containing the exact clause or obligation mentioned in the question as the
first hit (similar to BM25’s behavior on those queries). At the same time, ColBERT is less
likely than Contriever to be misled by passages that are only vaguely related: if a candidate
passage lacks the specific terms or phrases that are present in the query (and crucial for cor-
rectness), the query’s corresponding token embeddings will not find high-scoring matches,
and that passage’s overall score will be lower. In summary, ColBERT manages to be accu-
rate at every k on ObliQA, whereas Contriever skews more toward high-k and BM25 toward
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low-k.

To conclude, for ObliQA’s domain, lexical retrieval with BM25 was very effective, outper-
forming the initial dense retrievers. However, the inclusion of ColBERT shows that neural
retrieval can match or even exceed lexical matching when the model is appropriately pow-
erful. ColBERT’s success here underscores that dense retrievers need not be handicapped
by domain specificity – but they must be equipped to handle the domain’s vocabulary and
the query complexity (either through training or architecture). The simpler dense models
(Contriever and especially DPR) struggled without any domain adaptation, highlighting the
importance of domain matching. An sparse method like BM25 does not suffer from domain
shift because it relies only on surface term overlap, whereas dense models must “know” the
domain language to some extent. In this case, ColBERT’s late-interaction design effectively
gave it a robustness to domain terms that Contriever and DPR lacked. It is likely that further
improvements for dense retrievers on ObliQA would require explicit domain-specific training
or hybrid strategies (e.g. combining BM25’s lexical strength with dense embeddings), as will
be discussed in Chapter 4.

Strict vs Non-Strict Comparative Analysis

Retriever Top-5 Strict Top-5 Non-strict Top-10 Strict Top-10 Non-strict
BM25 47.1% 64.0% 48.5% 68.8%
DPR 21.9% 30.8% 23.7% 38.0%
Contriever 41.7% 57.1% 43.8% 64.1%
ColBERT 52.8% 70.7% 54.2% 74.7%

Table 3.8: Top-5 and Top-10 retrieval accuracy on ObliQA under strict and non-strict eval-
uation.

The performance of all retrievers drops significantly under the strict evaluation criteria
on ObliQA. Strict evaluation in this multi-hop setting means that a question is counted as
answered correctly only if all its supporting passages are retrieved, whereas the non-strict
metric gives credit if at least one relevant passage is retrieved. As shown above, BM25’s top-
10 accuracy falls from 68.8% under the lenient metric to 48.5% under strict scoring – a drop
of over 20 percentage points. Contriever and ColBERT exhibit a similar decline (each losing
roughly 20 points in top-10 accuracy), indicating that they too often retrieve only partial
evidence when answering ObliQA’s multi-passage questions. DPR, which already lags in
non-strict accuracy, suffers a smaller absolute drop (38.0% to 23.7%, about 14 points), but
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this still represents the largest proportional reduction (nearly a 40% relative decrease). In
other words, DPR frequently finds one relevant piece but misses the other required section(s),
underscoring its difficulty with retrieving the complete set of evidence in this domain.

These strict vs. non-strict gaps highlight each model’s sensitivity to multi-hop require-
ments and passage granularity. The lexical BM25, despite its strong non-strict performance,
fails to retrieve all needed segments for many questions – likely when some clues or refer-
ences are not explicitly shared between the question and the target passages. Dense semantic
retrievers (DPR and Contriever) tend to focus on the query’s overall topical gist and can
overlook secondary details, leading to incomplete evidence retrieval under strict conditions.
ColBERT’s smaller penalty suggests it better captures multiple query aspects: its late-
interaction mechanism can match different key terms or phrases in the query to different
passages, making it more likely to retrieve both relevant documents within the top-k results.
Overall, a large strict-versus-non-strict disparity (as seen especially with DPR) implies that
a retriever may rely on broad semantic matching or single-hop reasoning—retrieving one
highly relevant passage—whereas a smaller disparity (ColBERT) indicates more robustness
in covering all facets of a multi-part query. This underscores the importance of a retriever’s
ability to handle semantic composition: models must not only retrieve something relevant
to the question, but also ensure coverage of all required information to succeed in ObliQA’s
multi-hop setting.

3.2.4 CoQA: Retrieval Results and Analysis

I next consider the retrieval performance on the CoQA conversational dataset. Table 3.9
presents the top-k retrieval accuracies for CoQA. In this case, the ColBERT dense retriever
emerges on top, achieving about 63.8% accuracy@1, 77.2% @5, and 79.8% @10. This sub-
stantially outperforms Contriever, which attains roughly 45.4%, 63.4%, 68.4% at the same
ranks. BM25 lags behind both, with 35.8% @1 and up to 53.6% @10. DPR again shows the
lowest scores (only 26.8% @1, improving to 48.0% by top-10), indicating significant difficulty
with this dataset as well. Notably, ColBERT’s advantage is most pronounced at rank 1: it
finds a relevant passage as the very first result for nearly 64% of the questions, compared to
45% for Contriever and 36% for BM25. By top-10, ColBERT still maintains an 11–32 point
lead in accuracy over the others (retrieving the correct story for about 80% of questions,
vs. 68% for Contriever and 54% for BM25). These numbers clearly suggest that seman-
tic matching is especially beneficial for CoQA queries, and that ColBERT’s richer retrieval
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mechanism yields a significant improvement in this conversational setting.

Retriever Top-1 Top-5 Top-10
BM25 35.8% 48.8% 53.6%
Contriever 45.4% 63.4% 68.4%
DPR 26.8% 39.2% 48.0%
ColBERT 63.8% 77.2% 79.8%

Table 3.9: Retrieval accuracy on CoQA (conversational QA). The accuracy@k is the fraction
of questions for which the correct story passage was retrieved in the top k.

Analysis: CoQA further illustrates how certain textual characteristics can hinder re-
trieval, especially for DPR. The conversational passages are easy to read (Flesch = 65), but
the queries span an unusually wide vocabulary for their length (highest query TTR = 0.35).
Each question often introduces new words or referents – including pronouns and implied
context – which means there is often little direct lexical overlap with the answer text. Con-
sider a scenario where earlier in the story a character named Mary was introduced, and later
a question asks, “What did she do next?” The query itself has almost no lexical clue (the
pronoun “she” is ambiguous and the word “next” is too generic). A purely lexical retriever
like BM25 is likely to fail here: it will treat common words like “she” and “next” as keywords,
which do not uniquely identify the relevant story, and thus it may retrieve irrelevant passages
that coincidentally contain those words. In contrast, dense semantic retrievers shine in these
scenarios. Both Contriever and ColBERT can leverage the contextual embeddings of the
query to infer what it is asking for. Even without seeing the prior dialogue, the model’s
learned language patterns can associate “What did she do next?” with the concept of a
sequence of actions by a female protagonist. ColBERT’s encoder, in particular, can produce
a query representation that captures the notion of “the next thing she did” and match it
to a passage in the story where a female character’s actions are described. Thus, semantic
models implicitly use world knowledge and context understanding to handle the coreference
and omission of explicit terms, whereas BM25 has no mechanism to bridge that gap. The
results reflect this: the dense retrievers retrieve the correct story far more often in such cases
(as evidenced by their much higher top-1 accuracy), indicating they understand the queries’
intent better than BM25 for conversational questions.

Another factor in CoQA is that questions, while conversationally phrased, often para-
phrase the story content. The wording of a question might not exactly match the text of
the answer in the passage. For instance, a question might ask, “Was it raining?” when the
story says “It started to drizzle.” Here there is a clear vocabulary mismatch: the story never
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uses the word “raining,” so a lexical match would fail to find that passage. Contriever’s
dense embedding can map the concept of “raining” to “drizzle” in vector space, increasing
the chance of retrieving the correct passage. ColBERT similarly can handle this paraphrase
– during retrieval, the query token “raining” will still score highly with passage tokens like
“drizzle” or “rain” due to semantic similarity in the BERT embedding space, even if not an
exact string match. In essence, the dense models help mitigate vocabulary mismatch and
synonyms, which are common in natural, conversational language. CoQA’s multi-domain,
multi-style nature (spanning childish story narratives, informal dialogue, etc.) means there
is a lot of linguistic variation between queries and texts. An unsupervised model like Con-
triever, having been trained on a wide range of internet text, is relatively robust to such
variation – and a model like ColBERT, built on a pretrained language model and fine-tuned
on large QA data, is also able to generalize across domains and rephrasings. By contrast,
BM25 has no ability to bridge vocabulary gaps beyond direct term overlap; if the question
uses a different phrasing than the passage, BM25 will simply miss the connection. This
explains why BM25’s accuracy is so much lower on CoQA: many questions are phrased dif-
ferently from the sentences that contain the answer, so without a direct overlap, BM25 often
cannot retrieve the correct story at all.

The weaker performance of DPR on CoQA is likely due to two compounding reasons:
domain mismatch and the conversational format. First, DPR’s question encoder was trained
on single-turn QA datasets (such as Natural Questions, based on Wikipedia). CoQA’s
questions, especially follow-ups, violate that assumption. The result is that DPR produces a
query embedding that may not be close to the correct story at all, because the query by itself
is ambiguous. The second issue is domain/style mismatch: CoQA includes various genres
of text (fictional stories, spoken dialogue transcripts, etc.), which are very different in style
from Wikipedia. DPR’s original training on Wikipedia passages means its embeddings are
tuned to that formal, encyclopedic style. Faced with children’s story narratives or informal
conversational text, DPR likely struggles to represent the query and passages in a compatible
way. This exacerbates its errors. Only by increasing k does chance improve that the correct
story might appear in the results; indeed, even at top-10 DPR finds the right passage for
just 48% of the questions, far behind ColBERT’s nearly 80%. This starkly underscores
DPR’s limitation in zero-shot transfer to conversational QA without additional training. In
practical terms, DPR would likely need specialized fine-tuning or architectural changes to
handle dialogue-style queries as well as the other models do.

Examining some concrete retrieval examples provides further insight. In cases where
BM25 failed but the dense models succeeded, I often find that the question’s critical clue was
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expressed differently than in the text. For example, consider a CoQA conversation about a
lamb. The story might say, “Its fleece was white as snow,” and a question asks, “Did the little
lamb’s fleece stay clean?” Here the question uses the word “clean,” whereas the story used
“white” to imply cleanliness. BM25, looking for the word “clean” (or “cleaned”), would not
find a match and thus could miss the relevant passage. Contriever or ColBERT, on the other
hand, could infer that white as snow is an indication of cleanliness and retrieve that passage
because the semantic meaning aligns with the question, even though the exact word “clean”
is never used. Conversely, when BM25 succeeded and a dense model did not, the question
usually contained an explicit keyword or name that uniquely matches a specific story. For
instance, if a question mentions a character name or a distinctive entity that appears only in
the correct story, BM25 will immediately zero in on that story by literal term matching. A
dense retriever might occasionally overlook that exact match if it relies on general semantic
similarity. I observed cases where Contriever retrieved a story that was topically similar
but featured a different character with a similar role, essentially because it did not prioritize
the rare proper noun in the query as heavily. ColBERT tends to be more robust in these
scenarios. Since ColBERT scores matches at the token level, a unique name in the query
will demand a matching token in the passage to achieve a high relevance score. In other
words, if the question contains a specific name that is only in one story, ColBERT’s MaxSim
mechanism will give a large boost to that story (for having the name token overlap) which
helps ensure it is retrieved. Thus, ColBERT recovers many of the exact-match successes of
BM25, while still handling the paraphrased cases that BM25 misses.

Overall, for CoQA’s conversational QA task, semantic retrieval methods dramatically
outperform lexical matching. The dense retrievers (especially ColBERT, and to a strong
extent Contriever as well) have a clear advantage in dealing with the linguistic phenomena
inherent to dialogue: coreferences, ellipsis, and paraphrasing. BM25, lacking any ability
to use context beyond literal tokens, struggles when queries are ambiguous or use different
words than the text. My comparative analysis shows that a model like ColBERT, which
combines fine-grained token interactions with learned semantic embeddings, can retrieve rel-
evant story passages in a far more robust way for conversational questions – it retrieved
correct contexts at nearly double the rate of BM25 at rank 1. Contriever also surpassed
BM25 across the board, confirming that even without supervision, neural embeddings better
capture the meaning of conversational questions. DPR’s poor performance highlights the
importance of architecture and training domain for dense models. In summary, the CoQA
results emphasize that retrieving answers in a conversational setting requires models that
handle context and synonyms; lexical keyword matching alone is insufficient. The gains from
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ColBERT illustrate how much leveraging semantic context and rich interactions can improve
retrieval in multi-turn QA. Looking forward, one might consider incorporating the conversa-
tion history explicitly or using hybrid retrieval techniques to further enhance performance on
such tasks, but even with the question alone, it is evident that sophisticated dense retrievers
are the key to high accuracy in conversational question answering retrieval.

3.2.5 HotpotQA: Retrieval Results and Analysis

Finally, I evaluate retrieval on HotpotQA. Table 3.10 shows the retrieval accuracy of the re-
triever models on HotpotQA. Overall, all methods (except DPR) perform quite well, reflect-
ing that HotpotQA questions, while complex, do supply clear lexical clues. BM25 achieves
about 66.4% accuracy@1 and 72.9% @10, meaning it retrieves a relevant paragraph as the
top result for two-thirds of the questions and finds something relevant within the top-10
for roughly 73% of the queries. Contriever is on par with BM25: 66.9% @1 and 73.9%
@10, essentially indistinguishable in terms of overall accuracy. ColBERT leads slightly, with
about 73.8% @1 and 75.8% @10, the best among the models. Meanwhile, DPR significantly
underperforms the others on this dataset (around 46.7% @1, improving to 61.9% @10). No-
tably, the gap between ColBERT/Contriever/BM25 and DPR is large here, whereas the gap
amongst ColBERT, Contriever, and BM25 is relatively small compared to other datasets.

Retriever Top-1 Top-5 Top-10
BM25 66.4% 71.7% 72.9%
DPR 46.7% 58.3% 61.9%
Contriever 66.9% 72.9% 73.9%
ColBERT 73.8% 75.6% 75.8%

Table 3.10: Retrieval accuracy on HotpotQA. Values indicate accuracy@k.

Analysis: HotpotQA’s results reflect its mix of explicit clues and diverse content. Each
question explicitly includes multiple entities or facts, so despite the passages being lexically
rich (passage TTR 0.12), the query usually provides clear overlap terms for retrieval. For ex-
ample, a question might ask, “Did the author of [Book X] ever collaborate with [Person Y]?”
Here, the query itself includes “Book X” and “Person Y” as keywords. This explains why
BM25 performs nearly on par with the neural models here – it will likely retrieve some para-
graph about Book X or Person Y (or both). Indeed, BM25’s solid performance (72.9% top-10
accuracy) indicates that in most cases at least one of the two relevant articles is retrieved via
straightforward term matching. Contriever’s equivalently strong performance suggests that
semantic embedding does not confer a huge advantage in this scenario – probably because
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there is not a severe vocabulary mismatch problem. The terms in the question (“author,”
the book title, the person’s name) usually appear verbatim in the relevant pages, so BM25
is already doing a good job. Contriever can capture those as well, and perhaps in a few
cases it does better when synonyms or indirect references occur, but those are not very fre-
quent in HotpotQA questions (which were written to be answerable from specific Wikipedia
sentences). ColBERT’s slight edge (about +7 percentage points in top-1 over BM25) sug-
gests that it is better at ranking the truly relevant paragraph to position 1. This could
be because ColBERT can match on multiple tokens: for a bridging question, the relevant
paragraph might be the one that mentions both clues (both Book X and Person Y). BM25
might retrieve one paragraph about Book X and another about Person Y and place them
high, without knowing which is more directly useful. ColBERT, on the other hand, can give
a higher score to a paragraph that contains both the book and the person, by accumulating
evidence from multiple token matches via its late interaction mechanism. This would explain
its higher accuracy at rank 1.

By top-5 or top-10, however, BM25 and Contriever catch up in accuracy, because between
them they will have retrieved the needed pieces (even if scattered across results). The fact
that all three methods reach around 73–76% top-10 accuracy implies that roughly a quarter of
HotpotQA questions still have neither of their gold supporting passages in the top-10. These
challenging cases might involve more subtle reasoning or names that have many distractors.
For instance, if a question asks for a comparison (“Who is older, X or Y?”), the relevant
passages each mention the birth date of X and Y. BM25 might retrieve lots of pages that
mention X or Y without those specific facts. A dense model could theoretically use context
(“age,” “older”) to prefer biographical passages, but my results show even ColBERT does
not dramatically exceed BM25 in accuracy here. The very poor performance of DPR on
HotpotQA is likely due to domain and task mismatch: DPR was trained on single-hop
questions (NQ) which usually involve one Wikipedia page. It may not handle questions
that are longer and have two distinct parts; it could be embedding the query in a way that
focuses on one clue and ignores the other. In contrast, Contriever (though unsupervised)
and ColBERT (supervised on MS MARCO) both seem capable of capturing multiple aspects
of the query effectively.

In summary, HotpotQA demonstrates that straightforward lexical retrieval is already
quite effective when queries explicitly contain the needed terms (making it more similar to a
structured search). Dense retrieval provides a small benefit in prioritizing the most relevant
combined-evidence passages (as seen by ColBERT’s better rank-1 performance). However,
the fact that no model exceeds 76% top-10 accuracy underlines the inherent difficulty of
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multi-hop retrieval: a system might find one relevant piece easily but still miss the second
piece. This suggests that additional techniques (like reranking or multi-step retrieval) might
be needed to further improve performance on multi-hop questions. Nonetheless, among
single-step retrievers, ColBERT performs best for HotpotQA, with Contriever and BM25 not
far behind, and DPR significantly trailing. This trend reinforces the earlier observations:
robustly-trained dense models (ColBERT) generally offer the best of both worlds, lexical
methods (BM25) remain very competitive when query phrasing matches content, and dense
models not tuned to the task (DPR) can struggle with complex queries.

Strict vs Non-Strict Comparative Analysis

Retriever Top-5 Strict Top-5 Non-strict Top-10 Strict Top-10 Non-strict
BM25 58.1% 71.7% 58.9% 73.0%
DPR 41.4% 58.3% 43.2% 61.9%
Contriever 59.3% 72.9% 60.1% 74.0%
ColBERT 64.4% 75.6% 64.7% 75.8%

Table 3.11: Top-5 and Top-10 retrieval accuracy on HotpotQA under strict and non-strict
evaluation.

For HotpotQA, a similar pattern as the other multi-hop dataset (ObliQA) emerges: per-
formance drops across all retrievers under the strict metric, though the magnitude of the
penalty varies by model. In HotpotQA’s two-hop questions, strict success requires retrieving
both of the relevant Wikipedia paragraphs (supporting facts), rather than just one. Accord-
ingly, DPR’s top-10 accuracy declines from 61.9% (non-strict) to 43.2% (strict), a loss of
nearly 19 points – the largest absolute drop among the retrievers. BM25 and Contriever
each lose on the order of 14 percentage points on strict top-10 accuracy (falling from about
73% down to 59–60%), while ColBERT’s performance decreases by only 1̃1 points (75.8% to
64.7%). This indicates that DPR is the most penalized when requiring complete evidence,
whereas ColBERT maintains the highest strict-score, suggesting it more often succeeds in
retrieving both needed passages within the top ranks.

These differences reflect how each model handles HotpotQA’s semantic bridges and multi-
hop reasoning. DPR’s heavy strict penalty implies it frequently retrieves one relevant piece
(often the passage most directly related to the query) but misses the second, likely due to
its single-vector query representation that may not preserve multiple distinct clues. BM25’s
moderate drop indicates that its keyword-based approach can retrieve both supporting doc-
uments when the question explicitly contains terms linking to each answer piece; however, it
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struggles if a hop involves an implicit connection or paraphrased clue (e.g., a bridge entity
or descriptor not directly mentioned in the query). Contriever, another dense semantic re-
triever, shows a strict-vs-non-strict gap similar to BM25’s, suggesting that while it captures
overall meaning well, it too can overlook one of the required passages if that passage’s rel-
evance is not strongly signaled in the query embedding. By contrast, ColBERT’s relatively
smaller gap points to an advantage in multi-hop retrieval: by matching query terms at a to-
ken level, it can more reliably surface both a bridging document and the final answer-bearing
document within its top results. In summary, retrievers that rely purely on holistic semantic
matching (DPR and to some extent Contriever) are more sensitive to the strict requirement
of complete evidence, whereas models with robust lexical matching components (BM25 and
ColBERT) cope better with queries that span disjoint pieces of information. Nonetheless,
all models exhibit some strict-versus-non-strict disparity on HotpotQA, underlining that
questions requiring the aggregation of multiple facts remain challenging for current retrieval
methods.
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Chapter 4

Conclusion

This study investigated how the linguistic profile of different datasets influence the per-
formance of retrieval models by performing an empirical comparison. The findings clearly
demonstrate that a retriever’s performance is strongly conditioned by the nature of the
dataset: no single model excelled universally, as each approach had advantages in certain
contexts and weaknesses in others. In particular, dense neural retrievers proved highly effec-
tive for broad, open-domain queries by retrieving semantically relevant information beyond
exact keyword matches, whereas the sparse BM25 method remained superior for specialized
domains rich in unique terminology where exact term overlap was crucial. An unsuper-
vised model (Contriever) exhibited notably robust cross-domain performance, surpassing
a supervised dense retriever (DPR) that struggled without domain-specific training. The
late-interaction model ColBERT offered the best of both worlds by combining semantic un-
derstanding with token-level precision, achieving the highest overall accuracy (albeit with
increased computational cost). Collectively, these results confirm the central hypothesis that
the linguistic properties of different textual domains significantly influence which retrieval
strategy will be most effective.

From a practical perspective, these insights have direct implications for the design and de-
ployment of retrieval-augmented generation systems. They suggest that practitioners should
carefully consider the properties of their target domain when selecting or configuring a re-
triever. For instance, in domain-specific applications (such as legal or biomedical RAG
systems), incorporating a lexical matcher like BM25 or fine-tuning a dense retriever on do-
main data may substantially boost retrieval accuracy, ensuring the language model receives
the most relevant context. Conversely, for open-domain or heterogeneous knowledge bases,

64



neural semantic retrievers can provide broader semantic coverage. By improving the rele-
vance of retrieved content, these practices ultimately enhance the factual correctness and
reliability of the RAG system’s outputs.

Finally, this work opens several avenues for future research. One direction is to explore
retriever adaptation techniques – for example, further fine-tuning or continual pre-training of
neural retrievers on target-domain corpora – which could help close the performance gap on
specialized datasets. Another promising area is the development of more advanced hybrid
retrieval frameworks, including dynamic ensembles or multi-stage pipelines that integrate
lexical and semantic retrieval (and possibly a learned re-ranking stage) to better handle
complex queries and multi-hop information needs. A third direction is to pursue deeper
integration between retrieval and generative models by designing architectures where large
language models themselves can perform context retrieval in a more integrated manner. Such
approaches might enable the system to reason more effectively about what to retrieve and
how to use it during generation. By building on the insights provided by this comparative
study, future work can further enhance retrieval effectiveness and push the boundaries of
what retrieval-augmented generation systems can achieve.
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