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Résumé

La complexité croissante des systemes numeriques a mis en évidence les limites
des évaluations traditionnelles de la facilité d'utilisation, en particulier celles qui reposent
exclusivement sur des mesures autodéclarées sujettes a des biais tels que la mémorisation
et la désirabilité sociale. Cette étude répond au besoin de méthodes plus objectives en
examinant les biosignaux qui offrent des mesures précises des réactions corporelles afin
d'identifier et de predire les problemes d'utilisabilité dans le contexte des interfaces
numériques. Elle a exploré des signatures psychophysiologiques distinctes d'utilisateurs
interagissant avec une application numérique et a évalué leur fiabilité pour prédire les

problemes d'utilisabilité dans des environnements d'entreprises commerciales.

L'étude a introduit une approche multimodale utilisant des mesures
psychophysiologiques combinées de I'excitation émotionnelle, de la valence, de la charge
cognitive et de I'attention visuelle de 86 participants qui ont effectué des taches dans trois
systemes d'entreprise. Des points douloureux ont été introduits artificiellement dans des
taches contr6lées afin de susciter des réponses psychophysiologiques. L'analyse en
grappes a révélé quatre profils d'utilisateurs distincts pour ces points douloureux
artificiellement induits. L'étude a utilisé la régression logistique pour former des modeles
prédictifs permettant d'identifier le moment ou les utilisateurs rencontrent des points de

douleur lors d'une tache naturelle.

Cette étude expérimentale a impliqué 86 participants, chacun chargé d'effectuer
des interactions sur trois plateformes SaaS sélectionnées. Les participants ont été exposés
a des perturbations manipulées de I'utilisabilité concues pour évoquer des réponses
naturelles a des points de douleur de I'utilisabilité, et des données ont été collectées sur
leur éveil émotionnel, leur valence, leur charge cognitive et leur attention visuelle. En
utilisant une combinaison d'outils non invasifs, tels qu'un oculométre, des capteurs EDA
et la reconnaissance des expressions faciales (FER), I'étude a suivi les réponses
psychophysiologiques des utilisateurs en temps réel. La recherche a suivi une approche
multimodale, intégrant plusieurs mesures psychophysiologiques pour développer des
modeles prédictifs capables de détecter et de prévoir avec précision les points de douleur



liés a l'utilisabilité. Une analyse en grappes a été réalisée pour identifier les groupes de
participants sur la base de leurs réponses psychologiques. Ensuite, les modéles prédictifs
ont été entrainés a l'aide de la régression logistique et évalués a I'aide de mesures de rappel
et de précision. Enfin, les performances des modeéles prédictifs ont été validées par une

évaluation d'experts.

Les principaux résultats comprennent I'identification de signatures
psychophysiologiques uniques et le succés predictif modéré des modeéles utilisant la
dilatation de la pupille et le coefficient k comme indicateurs significatifs. Malgré la
variabilité individuelle et les défis de précision modérés, ces résultats ont démontré la
faisabilit¢ de I'utilisation de mesures psychophysiologiques pour [I'évaluation de

I'utilisabilité en temps réel.

Cette recherche a permis de mieux comprendre les réactions des utilisateurs aux
problemes de convivialité dans les environnements des entreprises commerciales. Elle a
mis en évidence le potentiel des données psychophysiologiques dans I'évaluation de la
convivialité en temps réel. Elle a abordé les défis posés par I'utilisation d'évaluations auto-
déclareées.

Mots-clés : signatures psychophysiologiques, utilisabilité, points de douleur, modéle

prédictif, analyse en grappes.



Abstract

The increasing complexity of digital systems has highlighted the limitations of
traditional usability assessments, particularly those relying exclusively on self-reported
measures prone to biases such as recall and social desirability. This study addressed the
need for more objective methods by examining biosignals which offers precise
measurements of bodily reactions to identify and predict usability challenges in the
context of digital interfaces. It explored distinct psychophysiological signatures of users
interacting with a digital application and evaluated their reliability in predicting usability

issues in business enterprise environments.

The study introduced a multimodal approach using combined psychophysiological
measures of emotional arousal, valence, cognitive load and visual attention from 86
participants who performed tasks in three enterprise systems. Pain points were introduced
artificially in controlled tasks to elicit psychophysiological responses. Cluster analysis
revealed four distinct user profiles to these artificially induced pain points. The study used
logistic regression to train predictive models to identify when users encounter usability

pain points on a natural task.

This experimental study involved 86 participants, each tasked with completing
interactions on three selected SaaS platforms. Participants were exposed to manipulated
usability disruptions designed to evoke natural responses to usability pain points, with
data collected on their emotional arousal, valence, cognitive load, and visual attention.
Using a combination of non-invasive tools—such as an eye tracker, EDA sensors, and
Facial Expression Recognition (FER)—the study tracked users’ psychophysiological
responses in real-time. The research followed a multimodal approach, integrating several
psychophysiological measures to develop predictive models that could accurately detect
and forecast usability pain points. A cluster analysis was performed to identify group of
participants based on their psychological responses. Then, the predictive models were
trained using logistic regression and evaluated using recall and precision metrics. Lastly,

the predictive models’ performance was validated through expert evaluation.



The key results included the identification of unique psychophysiological
signatures and the moderate predictive success of models using pupil dilation and k-
coefficient as significant indicators. Despite individual variability and moderate precision
challenges, these results demonstrated the feasibility of using psychophysiological

measures for real-time usability assessment.

This research advanced the understanding of user responses to usability pain
points in business enterprise environments. It underscored the potential for
psychophysiological data in real-time usability evaluation. It addressed the challenges

when using self-reported assessment.

Keywords : psychophysiological signatures, usability, pain points, predictive model,

cluster analysis
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Preface

My academic and professional background has always centered on the intersection
of technology and human behavior. With a strong foundation in Human Resources and
User Experience, | have been fascinated by how users, specifically employees, interact
with digital systems, particularly in business enterprise environments. This fascination
became the driving force behind my pursuit of understanding the challenges and
opportunities within enterprise systems—a realm where usability and efficiency often

collide.

The inspiration for this research stemmed from observing how seemingly minor
usability issues can have profound implications in business settings, from reduced
productivity to employee frustration and even attrition. Witnessing these challenges
firsthand in conversations with professionals motivated me to explore how advanced
methodologies, like psychophysiological measures, could provide unique insights into

user experiences and help alleviate these challenges.

This work is significant because it addresses a critical gap in usability research:
the need for objective, real-time data that reflects users’ emotional, cognitive, and
attentional states. While traditional usability methods rely heavily on subjective feedback,
this research explores the potential of psychophysiological data to offer deeper, actionable
insights. | believe that these findings have implications beyond academia, benefiting
businesses striving for more user-centered systems and fostering more productive and

satisfying work environments.

The primary audience for this work includes researchers and practitioners in the
fields of human-computer interaction, user experience, psychophysiology, and enterprise
system design. It may also resonate with professionals tasked with technology adoption

and implementation in organizational settings.

In the chapters that follow, readers can expect a deep dive into the methodology,

findings, and implications of leveraging psychophysiological data to identify usability



xii

pain points. This thesis explored how psychophysiological signatures uncover various
user behavior and predict usability challenges, ultimately contributing to more effective

system design.

One particularly interesting insight from this research is the discovery of distinct
psychophysiological signatures linked to user experiences. These signatures not only
confirm the emotional and cognitive impact of usability challenges but also highlight the
potential for predictive modeling in enhancing user experience. It is my hope that this
work will inspire further exploration into the integration of psychophysiological data in

usability research and system development.
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Chapter 1

Introduction

1.1 Background

The ongoing evolution of digital systems has led to their increased complexity,
requiring sophisticated methods for assessing and optimizing user experience (UX).
While the increasing popularity of enterprise software solutions such as Enterprise
Resource Planning (ERP) and Software-as-a-Service (SaaS) platforms have
revolutionized business processes (Klaus et al., 2000; Haselmann & Vossen, 2011; Yusuf
et al., 2018), their usability remains a critical challenge. In Canada, the SaaS market is
experiencing significant growth due to trends in collaboration-focused markets, CRM and
HRMS software adoption, customer preferences for cloud-based solutions, government
support for digital transformation and a diverse business landscape such as remote work
(Statista). With the rise of enterprise software solutions, research on user experience (UX)

in these digital systems need to be adequately addressed in UX research.

The International Organization for Standardization (2019) defined UX as "the
user's perceptions and responses resulting from using or anticipating a system, product or
service." The concepts of usability assessment are widely used to measure user experience
to ensure that design solutions are practical and centered around user needs. This user-
centered design philosophy emphasizes the importance of understanding user experiences
and expectations, which can lead to more effective and engaging digital products (Klotins
et al., 2018; Berni et al., 2023). Research showed that poor usability in digital interfaces
and applications, such as health tracking platforms, can result in user abandonment (Saleh
et al., 2021). Moreover, Pittet and Barthelemy (2015) highlighted the importance of
optimizing user interface design and tailoring SaaS systems to users' preferences, essential
for enhancing user experience. Factors such as user expectations, environmental
conditions, and the system'’s capacity to meet the current user needs impact overall user
sentiment (Roto & Kaasinen, 2008).



1.2 Research Problem and Gap

User Experience (UX) research has historically relied heavily on self-reported
assessments, such as surveys, interviews, and questionnaires (Bargas-Avila & Hornbak,
2011; Inan Nur et al.,2021; Perrig et al., 2024), to understand users' perceptions, emotions,
and interactions with products and services (Brunn et al., 2016). Studies like those by
Bargas-Avila and Hornbaek (2011) and Inan Nur et al. (2021) have demonstrated the
dominance of these methods, with over 50% of UX studies employing questionnaires.
However, while self-reported assessments are perceived as practical and easy to
administer (Law et al., 2013), they are prone to various biases that undermine the insights'
accuracy, such as social desirability and recall bias (Kwak et al., 2021; Vrijheid et al.,
2008; Horwitz et al., 2024), which can distort the accuracy of the data. Therefore, one of
the primary challenges is finding reliable and objective ways to assess usability challenges

experienced by users beyond self-reporting.

1.3 Significance of the Study

Psychophysiological signatures are objective biological signals that reflect an
individual's emotional, cognitive, and psychological states, derived from physiological
responses such as heart rate variability, skin conductance, and brain activity (Chang et al.,
2015; Ajenaghughrure et al., 2020). These signatures hold significant potential in
complementing self-reported assessments, which are often susceptible to biases and
inaccuracies stemming from subjective interpretation and social desirability effects
(Ajenaghughrure et al., 2020; Wager et al., 2013). For instance, while self-reports can
offer insights into an individual's conscious experience and emotional states,
psychophysiological measures provide a more objective perspective, allowing researchers
to observe the underlying biological processes that correspond to these experiences
(Chang et al., 2015; Visser et al., 2017). While psychophysiological measures may not
always precisely capture bodily reactions, they provide a valuable complementary
perspective. For instance, Barreto et al. (2007) demonstrated the effectiveness of these
measures in detecting stress levels through heart rate variability. Similarly, Maia and

Furtado (2019) used galvanic skin response to monitor emotional responses, while



Ferreira et al. (2014) assessed cognitive load during interactions using

electroencephalography (EEG).

Despite the growing interest in psychophysiological approaches to usability
assessment (Apraiz et al., 2021), limited research integrated multiple psychophysiological
measures to capture a user's real-time response to usability challenges comprehensively.
Furthermore, to our knowledge, prior research has yet to develop predictive models that
could anticipate usability issues in future tasks. Therefore, integrating
psychophysiological methods and predictive models to detect usability challenges would
be a promising avenue for enhancing real-time usability monitoring and system

optimization.

The study's primary purpose is to explore and leverage psychophysiological data
to identify and predict usability challenges users encounter when interacting with a
business enterprise platform. Specifically, this research identified distinct users'
psychophysiological response patterns when encountering usability issues. Moreover, the
study examined the reliability of the uncovered psychophysiological signature to identify
usability obstacles that users experienced in another similar task. This study provided a
novel methodology for improving real-time usability assessment by addressing these

objectives.

1.4 Implications

This study has significant implications for both academic and practical domains.
The study enriched our understanding of user responses to usability challenges by
introducing a multimodal approach to usability assessment. In the real world, this research
offered a valuable framework for system designers, managers, and UX professionals to
anticipate usability obstacles, enabling them to prioritize usability improvements based
on objective, real-time data proactively. Such advancements can enhance employee
satisfaction, reduce training costs, and increase the efficiency of enterprise systems,

aligning with organizational goals.



1.5 Theoretical Framework

The study is grounded in established psychophysiological theories of emotional
and cognitive responses, including the arousal-valence model and adaptive gain theory.
These frameworks helped interpret the psychophysiological signatures captured in the
study, linking changes in emotional arousal, valence, cognitive load, and visual attention
to specific user experiences during task performance. The study built a robust conceptual
foundation for understanding usability challenges by situating the research within these

theoretical models.

1.6 Methodological Approach

The research employed a mixed-subjects experimental design involving 86
participants who performed various tasks on business enterprise platforms.
Psychophysiological data were collected around the artificially manipulated usability
disruption, which was placed on Task 1 and Task 2, including electrodermal activity,
facial expressions, pupil dilation, and k-coefficient. Cluster analysis was used to identify
distinct psychophysiological response patterns to the usability disruptions experienced by
users during their interactions with a digital interface, and logistic regression models were
trained to predict the occurrence of these disruptions on a natural task. The models were
tested on a task free of manipulated usability obstacles, Task 3, to evaluate their

performance and reliability.

1.7 Scope and Limitations

The study focused on business SaaS platforms, specifically Microsoft Dynamics
365, Salesforce, and ServiceNow. While the research provided novel insights into real-
time usability assessment, its findings were constrained by the controlled laboratory
setting, specific stimuli and tasks used and the moderate predictive accuracy of the
models. Future research should validate these findings in diverse environments, other
business enterprise platforms and task sets and explore advanced machine-learning

techniques to improve model reliability.



This research study used the term "usability pain point (UPP)" to refer to the
psychophysiological response to usability challenges experienced by users during their

interaction with a digital interface.

1.8 Thesis Structure

This thesis started with an introduction to the context of the study, including the
problem statement, importance, and objectives. This is followed by an in-depth literature
review, examining prior work on conventional usability assessments and
psychophysiological methods in UX research. Chapter 3 presented the scientific article
prepared to be submitted to the journal Computers in Human Behavior Reports. This
article introduced a novel multimodal approach to identifying and predicting usability
pain points, a detailed experimental method was presented, and key findings were
discussed. In Chapter 4 of this thesis, a short managerial article was written, which
included a summary of the study, the key findings, and best practices and
recommendations. The last chapter provided a thesis conclusion that provides a summary

of the entire study.

This thesis was completed in the Tech3Lab, involving multiple collaborators with
differing input levels throughout various stages. The student's intellectual contributions

to each part of the thesis are detailed in the Table 1 below.

Table 1.

Student’s contribution and responsibilities in the realization of this thesis

Stage in the process Contribution

Research Question Identified gaps in current literature and defined the research problem [80%)]
e Defined research questions
o Identified the constructs to be tested

Literature Review Conducted relevant literature search, read scientific articles relevant to the

research. [100%]
Experimental Design Applied to the Research Ethics Board (REB) [60%]
e  Prepared documentation related to the submission of the
application to the CER

Developed experimental protocol and stimuli [80%]
e Created experimental protocol, questionnaires, task instructions,
short onboarding videos for the experiment
e Determined the tasks to be performed by the participants on the
stimuli




In collaboration with a research assistant, configured stimuli to
apply the artificial pain point

Recruitment,
Pre-testing and Data
Collection

Recruited participants for data collection [20%]

Provided inclusion and exclusion criteria for participant
recruitment (The Tech3Lab operations team oversaw the
guidelines, collected data using the institution’s recruitment panel,
and distributed the compensation for this study)

Coordinated participant's schedules; this includes cancellation,
rescheduling, and other requests.

Managed Pre-testing and data collection [100%]

Oversaw the data collection and managed participants' experience
during the study

Monitored and managed stimuli assignment (randomly assigned,
but switching from one stimulus to the other is not done
automatically and required manual intervention; this includes
applying the manipulated pain point to the stimuli and removing it
after)

Data Analysis

Prepared data for analysis and analyzed the results [60%]

(The data file for the analysis statistics was formatted by the lab
statistician)

Writing the thesis

Wrote the thesis and the articles [100%)]

(The student was guided by their supervisor with their constructive
feedback through the process)

*These percentages did not consider the support and input of the directors during this project.



Chapter 2

Literature review

2.1 Challenges in Usability Assessment

User experience (UX) relies heavily on self-reported assessment to gather
subjective data about users' feelings, perceptions, and experiences with products or
services. This is heavily supported by research paper reviews conducted in the past and
recent years. A study conducted by Bargas-Avila & Hornbaek (2011), which critically
analyzed 66 empirical studies on UX conducted between 2005 and 2009, found that the
dominant method used was questionnaires appearing in 53% of the studies reviewed. Inan
Nur et al. (2021) found that 95% used self-reported measures for UX evaluation on the
61 research papers reviewed from 2000 to 2019. Also, a recent systematic review by
Perrig et al. (2024), which screened 153 research papers from the ACM Conference on
Human Factors in Computing Systems proceedings from 2019 to 2022, identified 85
survey scales used in the reviewed research papers. Indeed, self-reported assessments are

widely used in UX research.

However, this reliance on self-reported measures has its challenges. Law et al.
(2013) explored the attitudes of UX researchers and practitioners toward UX
measurements and found that while most respondents' views are generally positive, UX
professionals showed mixed feelings and were often skeptical of self-reported measures.
Self-reported assessments were seen as practical for capturing subjective experiences but
were criticized for potential bias as they rely on users' interpretations and memory (Law
etal., 2013).

One of the primary biases in self-reported assessments is the social desirability
bias, where users may provide answers, they believe are more socially acceptable rather
than their true feelings or experiences (Nederhof, 1985). For instance, a study conducted
by Kwak et al. (2021), which examined social desirability bias focusing on survey-based

studies that deal with mobile loafing — non-related mobile internet use during work hours,



found that social desirability bias significantly affected mobile internet addiction and
mobile-loafing intentions. According to the study's findings, respondents would
underreport their perceptions of mobile internet addiction and their intentions of
committing mobile loafing, as this will make them look bad (Kwak et al., 2021). In the
context of UX, this bias can lead to inflated reports as users may feel compelled to present
themselves in a more favourable light, thereby skewing the data collected from surveys

or interviews.

Additionally, recall bias is another significant challenge affecting the reliability of
self-reported assessments. This bias occurs when users have difficulty remembering past
experiences and behaviour, leading to inaccurate responses. A study conducted by
Vrijheid et al. (2008) examined the recall bias in self-reported mobile phone use and found
that participants tend to underestimate the number of calls they made by 19% and
overestimate call duration by roughly 40%. The study concluded that recall bias posed
challenges for accurate risk assessment in epidemiological studies relying on self-reported
mobile phone usage data (Vrijheid et al., 2008). Tapping to the recall bias is the peak-
end rule. The peak-end rule refers to the phenomenon where user's retrospective
evaluations of past affective experiences are heavily influenced by the most intense
moment, the "peak," and the final moment, the "end" of the experience (Kahneman et al.,
1993). A recent study conducted by Horwitz et al. (2024) examined the peak-end rule and
found that it significantly affects retrospective mental health assessments. The study
suggested that retrospective self-reports of symptoms are often aligned with the peak
experiences of distress rather than the average daily experience, which can lead to recall
biases in clinical assessments (Horwitz et al., 2024). The recall bias and peak-end rule are
problematic in UX research, where understanding interactions over time is critical for

practical UX evaluation.

Going back to the study conducted by Bargas-Avila & Hornbaek (2011), their
review showed that the majority of UX assessments were conducted after interaction
(70%), 58% of the reviewed papers included during interaction assessment, and before
interaction assessments were rare at only 20%. Whereas Inan Nur et al.'s (2021) findings

showed that most UX evaluations took place after interaction, making up 44 studies out



of 61 reviewed papers, with fewer assessing UX during interaction (12 studies) or over
long-term interactions (6 studies). The context in which self-reported assessments are
collected can also introduce bias. For example, in virtual reality (VR) studies, the
transition between immersive experiences and the physical world when collecting self-
reported assessments can disrupt users' presence and can cause participants to provide
feedback that does not accurately reflect their true feelings during the immersive
experience (Putze et al., 2020; Alexandrovsky et al., 2020), thus compromising the
validity of the findings.

2.2 Shift to psychophysiological methods in usability assessment

These UX challenges highlight the need for more reliable assessment methods.
Thus, in recent years, the exploration of psychophysiological measures has gained
significant traction in UX research, supported by prior research reviews on UX papers.
Based on Bargas-Avila & Hornbzk's (2011) findings, physiological measures were less
common, appearing only in 5% of the 66 empirical studies reviewed from 2005 to 2009.
Meanwhile, Inan Nur et al. (2021) found that 14% of the 61 research papers reviewed
from 2000 to 2019 included physiological measures. Also, a recent review paper by
Apraiz Iriarte et al. (2021) systematically examined a total of 33 research studies that
applied physiological measures in UX evaluations spanning from 2006 to 2020, with a
notable increase in publications from 2016 onwards reflects the growing interest in

incorporating psychophysiological measures in UX research.

Psychophysiological measures provide a non-invasive and implicit approach to
understanding a user's emotional or cognitive processes (Dirican & Goktlrk, 2011). The
psychophysiology theories examine the complex relationships between psychological
processes and physiological responses (Lovallo, 2013) by understanding emotional states,
cognitive processes, and mental well-being through measuring and interpreting
physiological indicators like heart rate, skin conductance, and brain activity (Dair et al.,
2023).
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2.3 Prior research using psychophysiological measures in UX research

Recent advancements in HCI and UX research have highlighted the potential of
psychophysiological measures to provide a more objective and nuanced understanding of
the user's experience. One example is the work of Barreto et al. (2007), where the study
demonstrated the use of non-intrusive psychophysiological measures like galvanic skin
response, blood volume pulse (BVP), skin temperature, and pupil diameter combined with

machine learning to effectively detect stress in real-time.
2.3.1 Emotional Response

Emotion is one of the most researched aspects of a user's response measured
through psychophysiological methods. Arousal and valence are the most studied
dimensions of emotion and commonly utilized psychophysiological measures of a user's
emotion (Partala & Kangaskorte, 2009). A widely used model to represent emotion is the
arousal-valence model (Russell, 1980), which describes emotion as a two-dimensional
space: arousal (vertical axis) and valence (horizontal axis). The valence dimension
represents a range of emotions from negative to neutral to positive, while the arousal
dimension ranges from calm to neutral to aroused (Partala & Kangaskorte, 2009). With
arousal and valence all having values in the same range, between -1 and 1, the arousal-
valence model is widely used and effectively describes a person's emotional change (Yang
& Sun, 2017). In 2013, Alexandros and Michalis (2013) proposed using heart rate, EDA,
respiration rate, and muscle tension to analyze the duration, intensity, and transitions
between emotional states during interactions. Recent research by Maia and Furtado (2019)
highlights the use of electroencephalography (EEG), electrodermal activity (EDA), and
heart rate to capture emotional states. The study showed significant correlations between
psychophysiological signals and emotional dimensions during pleasure-driven tasks
(Maia & Furtado, 2019). The study by Vignaux et al. (2021) examined the impact of
collective immersion in a learning environment on emotional engagement. The study used
psychophysiological methods, EDA and electrocardiogram (ECG), to measure emotional
engagement, and the results showed greater emotional engagement in immersive and

collective environments (Vignaux et al. 2021). Furthermore, a study conducted by
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Swoboda et al. (2022) highlighted the effectiveness of speech and physiological measures

in detecting emotional responses during interactions with voice user interfaces.
2.3.2 Cognitive Process

Another construct to assess user’s response is cognitive load. Cognitive load
theory posits that working memory has a limited capacity that can be easily overwhelmed
by excessive information or complex tasks (Sweller et al., 1998). In human factors
literature, cognitive load is defined as the quantity of mental activity necessary to execute
a task and is commonly termed as mental workload, mental effort, or mental demand in
the field (Van Acker et al., 2018). In 2014, Ferreira et al. (2014) concluded that a real-
time cognitive load assessment is feasible for both younger and older adults using low-
cost, non-invasive physiological sensors. Vanneste et al. (2020) directly examined how
multimodal physiological measures can assess cognitive load, mainly through EDA, EEG,
and eye tracking, and indirectly measuring emotional arousal via EDA. The study
concluded that combining these three physiological measures provides a nuanced picture
of cognitive load by effectively capturing both arousal and mental components (Vanneste
et al., 2020). A recent study by Hudon et al. (2021) investigated how different
visualization methods for explaining Al predictions impact user cognitive load and
confidence in Al systems. The study measured cognitive load using pupillary dilation,
precisely the task-evoked pupillary response (TEPR), which is a well-established proxy
for cognitive effort (Hudon et al., 2021).

Pupil size has been associated with cognitive processes (Kucewicz et al., 2018)
and has shown that pupil dilation increases with increasing task demands (Van Der Wel
& Van Steenbergen, 2018). Prior research studies provided empirical evidence that the
locus coeruleus-norepinephrine (LC-NE) system regulates task engagement, which
correlates with pupil size fluctuations (Gilzenrat et al., 2010; Murphy et al., 2014,
Hopstaken et al., 2015). The Adaptive Gain Theory posits that the LC-NE system operates
in phasic and tonic modes (Aston-Jones & Cohen, 2005). Phasic mode is characterized by
moderate NE levels and intense stimulus-triggered bursts of NE release, associated with

high task engagement, where attention is concentrated on task-relevant stimuli to optimize



12

performance (Minzenberg et al., 2008). In tonic mode, both baseline and stimulus-induced
NE levels are elevated, which is associated with disengagement of the current task, where
attention is no longer primarily focused on task-relevant stimuli but also responds to
irrelevant stimuli (Cohen et al., 2007). In relation, Gilzentrat et al. (2010) explored how
pupil diameter corresponds to the LC-NE modes, where larger baseline pupils indicate
tonic mode (task disengagement) and smaller pupils indicate phasic mode (task

engagement).
2.3.3 Visual Attention Behaviour

Moreover, visual attention is another aspect of the user's behaviour measured
through psychophysiological methods. When engaging in a specific task, users actively
seek, gather, share, and consume information in their environment. This is aligned with
Pirolli and Card's (1999) information foraging theory, which assumes that individuals
maximize their rate of gaining valuable information by modifying their strategies or the
structure of the environment. In real-life computer-based tasks, users are required to
allocate their attention effectively by focusing on the most critical aspects of the display
and ignoring the rest (Wals & Wichary, 2022). Visual attention is a selection process that
allows certain stimuli to be processed more thoroughly than others (Lamme, 2003). Krejtz
et al. (2016) introduced a novel non-invasive visual search measure to characterize
ambient and focal visual attention modes. Building up on Krejtz's findings, a recent study
by Lounis et al. (2020) assessed visual attention in pilots during different flight phases
(take-off, cruise, and landing) by tracking eye movement using novel eye-tracking device,
Tobii Pro Glasses. Moreover, Carmichael et al. (2022) explored how information
disclosure nudges affect users' information disclosure behaviours when interacting with
chatbots. The study measured visual attention using eye-tracking technology and
validated that the information disclosure nudges successfully drew participants' attention,

ensuring their potential to influence user behaviour (Carmichael et al., 2022).
2.4 The use of psychophysiological measures in pain point detection

Platzer's (2018) genealogical approach to trace the historical development of the

term "pain point™ in business and UX context found that "pain point™ refers to specific
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user problems or frustrations that design changes can alleviate. UX professionals use this
term to elicit stakeholder empathy and prioritize user needs. Recent research studies by
Kreger (2022) and Huo et al. (2023) used the term "pain point,” where Kreger (2022)
implicitly used the term to refer to specific moments in the user experience that lead to
frustration, confusion, or difficulty when interacting with digital banking services and
Huo (2023) used the term to refer to the specific interaction touchpoints within the in-
vehicle human-machine interfaces (HMI) where users experience lower levels of
emotional satisfaction. Giroux-Huppé et al. (2019) work differentiated explicit and
implicit pain points. Where explicit pain points are consciously acknowledged negative
emotions reported during or after a task, and implicit pain points, also termed
psychophysiological pain points, are automatic physiological responses characterized by
high emotional arousal and negative emotional valence in reaction to an event during the
interaction (Giroux-Huppé et al., 2019). Kreger (2022) suggested failure mapping to
identify and resolve user pain points, and Huo (2023) combines Kansei Engineering,
which quantifies emotional reactions to design, with user experience mapping to identify
and improve areas of user dissatisfaction. However, neither work used any
psychophysiological measures. Meanwhile, the seminal work of Giroux-Huppé et al.
(2019) used psychophysiological measures to identify psychophysiological pain points in
online grocery shopping. Giroux-Huppé et al. (2019) distinguished between explicit pain
points, consciously acknowledged negative emotions, and implicit pain points,
characterized by automatic physiological responses. Their work demonstrated that
psychophysiological measures, such as heightened arousal and negative valence, offer a
real-time, objective approach to capturing user frustration, surpassing the limitations of
traditional self-reported methods.

2.5 Prior research on measuring multi aspects of user’s response

Although Giroux-Huppé et al. (2019) research introduced a novel approach to
identifying pain points accurately in real-time, the approach concentrated on one aspect
of the user's response: the emotion the users felt. Prior research has used different
psychophysiological methods to assess various aspects of user response separately. Using

a multimodal approach to measure two or more constructs has been gaining traction in
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UX research recently. Prior study by Léger et al. (2014) combined eye tracking with
electroencephalography (EEG) to improve temporal precision in measuring attentional,
cognitive, and motor processes of participants who interacted with a system involving
email notifications during a primary task. Charland et al. (2015) used psychophysiological
tools to measure the key dimensions of engagement, behavioral, cognitive, and emotional,
during learning tasks, suggesting that the combination of these psychophysiological tools
allowed differentiation of low, medium, high levels of engagement, providing a
comprehensive understanding of how learners interact with tasks. Korosec-Serfaty et al.
(2022) investigated how technostress and financial stress in digital financial technology
usage impacts users' emotional and cognitive responses by analyzing
psychophysiological, perceptual, and behavioural data. Parsons et al. (2023) used
psychophysiological measures to assess, in real time, users' cognitive and emotional states
in virtual environments. Also, Mithun et al. (2023) introduced Mind Indriya, a composite
system using psychophysiological measures to assess the cognitive load, anxiety, and
visual attention in real-time. These are a few examples of research studies that used a
multimodal approach and assessed two or more factors using psychophysiological

measures.

This literature underscores the limitations of self-reported usability assessments,
including biases and their inability to capture implicit responses during interaction. While
psychophysiological measures offer promising complement to self-reported assessments,
prior research has often focused narrowly on isolated constructs like emotional arousal in
assessing usability challenges encountered by users in a digital environment. Moreover,
the potential of these psychophysiological responses to identify usability challenges
across tasks must be further addressed. This study bridged these gaps by employing a
multimodal approach to simultaneously capture emotional, cognitive, and attentional
dimensions of users' responses to usability challenges and developing predictive models
to evaluate their reliability across tasks. This comprehensive framework advances
usability research by offering a more nuanced and actionable understanding of user

experiences.
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For this research study, the term "usability pain point (UPP)" referred to the
usability challenges experienced by users during their interaction with a digital interface,
which gives rise to automatic psychophysiological responses characterized by abnormal

changes in emotional arousal, valence, visual attention, and cognitive load.
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Chapter 3
A Multimodal Approach to Identifying and Predicting
Usability Pain Points: An Experimental Study in User
Experience Research

Kelvin Jacinto, Sylvain Sénécal, Constantinos Coursaris, Pierre-Majorique Léger,
Shang-Lin Chen, Thaddé Rolon-Mérette, Alexander Karran
HEC Montreal

Abstract

The increasing reliance on self-reported measures in usability assessments has
highlighted biases undermining their reliability, particularly in complex digital
environments. This study addressed the need for more objective methods by
examining biosignals which offers precise measurements of bodily reactions to identify
and predict usability challenges in the context of digital interfaces. It explored distinct
psychophysiological signatures of users interacting with a digital application and
evaluated their reliability in predicting usability issues in business enterprise

environments.

The study introduced a multimodal approach using combined psychophysiological
measures of emotional arousal, valence, cognitive load and visual attention from 86
participants who performed tasks in three enterprise systems. Pain points were introduced
artificially in controlled tasks to elicit psychophysiological responses. Cluster analysis
revealed four distinct user profiles reactions to these artificially induced pain points. The
study used logistic regression to train predictive models to identify when users encounter

usability pain points on a natural task.

The study's key findings included the identification of unique psychophysiological
signatures and the moderate predictive success of models using pupil dilation and k-

coefficient as significant indicators to usability pain points. Despite individual variability
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and moderate precision challenges, these results demonstrated the feasibility of using

psychophysiological measures for real-time usability assessment.

This research advanced the understanding of user responses to usability pain
points in digital enterprise environments. It underscored the potential for
psychophysiological data in real-time usability evaluation and addressed the challenges

when using self-reported assessment.
Highlights

e Developed and validated a novel multimodal methodology combining
psychophysiological measures (emotional arousal, valence, cognitive load, and
visual attention) to detect and predict real-time usability pain points.

e Cluster analysis revealed four unique psychophysiological response profiles to
usability pain points, indicating that users exhibit diverse emotional, attentional,
and cognitive responses to usability pain points.

e Shifts in pupil dilation and the k-coefficient emerged as predictors of usability
pain points.

e Predictive models trained on psychophysiological signatures demonstrated
moderate success in detecting spontaneous usability pain points in natural task

settings.
Keywords

psychophysiological signatures, usability, pain points, predictive model, cluster analysis
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3.1 Introduction

The definition of usability has evolved from Shackel's (2009) early
characterization, describing it as "the capability to be used by humans easily and
effectively,” to the International Organization for Standardization (1998, pg. 22), defining
it as "the extent to which a product can be used by specified users to achieve specified
goals with effectiveness, efficiency and satisfaction in a specified context of use." These
definitions highlight the importance of user-centered design principles in creating
functional but also intuitive and pleasant systems (ISO, 1999). One way to improve
usability is through usability assessment/testing by identifying user pain points. Most
methods used in usability assessment are based on self-reported and observational data
(Brunn et al., 2016).

The relationship between usability assessment and user pain points is a critical
area of study in human-computer interaction. Usability assessment systematically
evaluates how effectively, efficiently, and satisfactorily users can interact with a system
(ISO, 1998). Pain points can manifest as obstacles users encounter during interactions,
leading to frustration or inefficiency (Platzer, 2018). By pinpointing these pain points,
designers and developers can prioritize improvements that enhance the overall user
experience (Platzer, 2018; Costa et al., 2016). For instance, usability assessment can
reveal common pain points encountered by the users, allowing teams to address these
issues directly, thereby improving user satisfaction and performance (Costa et al., 2016).
Ibarra-Noriega et al. (2024) work on a mobile health platform for assessing postoperative
dental pain illustrated how formal usability evaluations can uncover specific challenges
users face, thereby guiding subsequent design improvements (Ibarra-Noriega, 2024).

The concepts of usability assessment and pain points are widely used in UX
research to ensure that design solutions are practical and centered around user needs. This
user-centered design philosophy emphasizes the importance of understanding user
experiences and expectations, which can lead to more effective and engaging digital
products (Klotins et al., 2018; Berni et al., 2023).
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Usability assessment in UX research predominantly relies on self-reported
measures to gauge users' perceptions, emotions, and reactions (Bargas-Avila & Hornbak,
2011; Inan Nur et al., 2021; Perrig et al., 2024). However, these methods are susceptible
to various biases, including social desirability and recall bias (Kwak et al., 2021; Vrijheid
et al., 2008; Horwitz et al., 2024), which can distort the accuracy of the data. This problem
is particularly pronounced in complex digital environments where moment-by-moment
experiences may not be accurately captured through post-task questionnaires or
interviews. Therefore, one of the primary challenges is finding reliable and objective ways

to assess usability pain points beyond self-reporting.

Psychophysiological signatures hold significant potential in complementing self-
reported assessments, which are often susceptible to biases and inaccuracies stemming
from subjective interpretation and social desirability effects (Ajenaghughrure et al., 2020;
Wager et al., 2013). Psychophysiological signatures are objective biological signals that
reflect an individual's emotional, cognitive, and psychological states, derived from
physiological responses such as heart rate variability, skin conductance, and brain activity
(Chang et al., 2015; Ajenaghughrure et al., 2020). For instance, while self-reports can
offer insights into an individual's conscious experience and emotional states,
psychophysiological measures provide a more objective perspective, allowing researchers
to observe the underlying biological processes that correspond to these experiences
(Dirican & Gokturk, 2011; Chang et al., 2015; Visser et al.,, 2017). While
psychophysiological measures may not always precisely capture bodily reactions, they
provide a valuable complementary perspective. For instance, Barreto et al. (2007)
demonstrated the effectiveness of these measures in detecting stress levels through heart
rate variability. Similarly, Maia and Furtado (2019) used galvanic skin response to
monitor emotional responses, while Ferreira et al. (2014) assessed cognitive load during
interactions using electroencephalography (EEG). However, many of these studies have
primarily focused on assessing these aspects independently, which may limit a more
comprehensive understanding of the holistic, multimodal responses to usability

challenges.
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Despite advancements in psychophysiological methods, limited research
integrates multiple psychophysiological measures to comprehensively capture a user's
response to usability pain points in real time. Furthermore, to our knowledge, no prior
research has examined the potential of using various psychophysiological methods to
assess different aspects of the user's response — emotional and cognitive response and
visual attention behaviour - when users encounter a pain point and develop predictive
models that could anticipate pain points in future tasks. Therefore, integrating
psychophysiological methods and predictive models of pain points would be a promising

avenue for enhancing real-time usability monitoring and system optimization.

This study built upon prior work (Giroux-Huppé et al., 2019) by adopting a
multimodal approach to psychophysiological measurement, combining metrics of
emotional arousal, valence, cognitive load and visual attention. This study aimed to

answer the following:

Research Question #1 (RQ1): What are the distinct psychophysiological
signature patterns exhibited by users when encountering usability issues in a digital

interface?

Research Question #2 (RQ2): To what extent does these psychophysiological
signatures of a user experiencing usability issues reliably identify pain points in other

tasks within the same system?

By capturing these responses simultaneously, the study aimed to identify distinct
"psychophysiological signatures™ associated with usability pain points. These signatures
were then used to train predictive models that could reliably forecast the occurrence of
usability pain points in similar tasks, an innovative approach that has not been extensively
explored in existing literature. The study also aimed to evaluate the predictive model’s

extent to reliably identify usability pain points in another similar task.

The study revealed unique psychophysiological response patterns, which
classified into distinct user profiles based on the users' reactions to usability pain points.
Through cluster analysis, the study identified four unique profiles indicative of variability
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in users' psychophysiological responses during usability disruptions. Additionally, the
trained predictive models, though moderately successful, demonstrated the potential of
psychophysiological measures to detect usability issues in real-time, offering a new

avenue for continuous usability assessment.

This article starts with a comprehensive introduction to the research topic,
including the problem statement, importance, and research gap. A literature analysis
examining earlier research using traditional usability assessment and recent
psychophysiological approaches in usability assessment comes next. This is followed by
a methods section, which discusses how the experiment was conducted. This includes
participant recruitment, experimental design, data collection, and analytical approach.
Next is the data analysis and results section, highlighting the findings from cluster analysis
and model performance evaluation. The discussion section contextualizes the findings
within the existing literature and discusses implications, limitations, and
recommendations for future research. The article concludes with a summary of the critical

insights and contributions to the field of UX research.

3.2 Background

User Experience (UX) research has historically relied heavily on self-reported
assessments, such as surveys, interviews, and questionnaires (Bargas-Avila & Hornbzk,
2011; Inan Nur et al.,2021; Perrig et al., 2024), to understand users' perceptions, emotions,
and interactions with products and services (Brunn et al., 2016). Studies like those by
Bargas-Avila and Hornbak (2011) and Inan Nur et al. (2021) have demonstrated the
dominance of these methods, with over 50% of UX studies employing questionnaires.
However, while self-reported assessments are perceived as practical and easy to
administer (Law et al., 2013), they are prone to various biases that undermine the insights'

accuracy.

3.2.1 Challenges in Self-reported Usability Assessments

One major challenge in self-reported assessments is social desirability bias, where
participants provide responses they perceive as socially acceptable rather than truthful

reflections of their experiences (Nederhof, 1985). For example, Kwak et al. (2021)
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observed this bias in studies on mobile internet addiction, with respondents
underreporting behaviours perceived as unfavourable. Similarly, recall bias poses another
significant challenge. Users often need help remembering past interactions accurately,
leading to distorted data, as evidenced by Vrijheid et al. (2008) in their study on mobile
phone usage. Additionally, the peak-end rule further complicated self-report assessments
by emphasizing users' most intense and final moments of an experience over the entire
interaction (Kahneman et al., 1993), as Horwitz et al. (2024) highlighted in their work on
retrospective mental health assessments.

Moreover, the timing of data collection introduces another layer of complexity.
Studies reviewed by Bargas-Avila and Hornbak (2011) and Inan Nur et al. (2021) reveal
that most UX evaluations occur post-interaction, potentially omitting critical real-time
responses. Virtual reality (VR) studies further underscore this limitation; transitions
between immersive and physical environments often disrupt users' presence, leading to
skewed feedback (Putze et al., 2020; Alexandrovsky et al., 2020). Together, these

challenges highlight the need for more reliable, objective methods in UX research.

3.2.2 Emergence of Psychophysiological Approach to Usability Assessment

Psychophysiological methods have emerged as promising alternatives to address
the biases of self-reported assessments. These techniques, which include tracking
physiological responses like electrodermal activity (EDA), heart rate variability, pupil
dilation, and brain activity, offer non-invasive, real-time insights into users' emotional and
cognitive states (Dirican & Gokturk, 2011). While historically underutilized—accounting
for only 5% of studies from 2005 to 2009 (Bargas-Avila & Hornbak, 2011)—their
adoption has increased, with 14% of studies between 2000 and 2019 incorporating such
measures (Inan Nur et al., 2021). This growth reflects a broader recognition of their
potential, as confirmed by a systematic review by Apraiz Iriarte et al. (2021), which

highlighted a surge in publications employing psychophysiological methods post-2016.

Research has demonstrated the effectiveness of psychophysiological measures in
assessing emotional responses, cognitive processes, and attention. For instance, studies

have used the arousal-valence model (Russell, 1980) to map emotions based on
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psychophysiological data. Alexandros and Michalis (2013) used psychophysiological
measures to assess emotional transitions during interactions. Maia and Furtado (2019)
found significant correlations between emotional dimensions and biosignals like EEG,
EDA, and heart rate during pleasure-driven tasks. Vignaux et al. (2021) showed that EDA
and ECG effectively measured heightened emotional engagement in immersive,
collective learning environments. Similarly, Swoboda et al. (2022) highlighted the role of
speech and physiological measures in detecting emotional responses during voice

interface interactions.

Meanwhile, advancements in cognitive load assessment have shown that measures
like EDA and pupil dilation can provide nuanced insights into task complexity and user
engagement (Vanneste et al., 2020). Cognitive load theory (Sweller et al., 1998)
highlighted the limitations of working memory when faced with excessive information or
complexity. Research by Ferreira et al. (2014) demonstrated the feasibility of real-time
cognitive load assessment using non-invasive sensors. Vanneste et al. (2020) showed that
multimodal measures, including EDA, EEG, and eye tracking, provide nuanced insights
into cognitive load by capturing both arousal and mental components. Hudon et al. (2021)
utilized pupillary dilation, specifically task-evoked pupillary response (TEPR), as a proxy
for cognitive effort, highlighting the link between pupil size and task demands (Kucewicz
etal., 2018; Van Der Wel & Van Steenbergen, 2018). The Adaptive Gain Theory (Aston-
Jones & Cohen, 2005) explains how the locus coeruleus-norepinephrine (LC-NE) system
regulates task engagement, with pupil size fluctuations reflecting its phasic (task-focused)
or tonic (disengaged) modes (Gilzenrat et al.,, 2010). These findings underscore
psychophysiological measures' value in capturing cognitive load and task engagement

dynamics.

Visual attention, another aspect of user behaviour, involves selectively focusing
on relevant stimuli while filtering out distractions (Lamme, 2003). Rooted in Pirolli and
Card's (1999) information foraging theory, users maximize information gain by adapting
their strategies or environment. This process is essential in computer-based tasks, where
users must prioritize key display elements (Wals & Wichary, 2022). Krejtz et al. (2016)

introduced non-invasive measures to distinguish ambient and focal attention modes,
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which Lounis et al. (2020) applied to assess pilots' visual attention across flight phases
using eye-tracking technology. Similarly, Carmichael et al. (2022) demonstrated that eye-
tracking could measure the effectiveness of information disclosure nudges in chatbot
interactions, validating their influence on user behaviour. These studies highlighted the
role of psychophysiological methods in advancing our understanding of visual attention

in diverse user experiences.

3.2.3 Application of Psychophysiological Methods to Usability Pain Point Detection
Integrating psychophysiological methods into UX research has revolutionized the
detection of usability pain points—user frustrations or challenges encountered during
interactions (Platzer, 2018). Giroux-Huppé et al. (2019) distinguished between explicit
pain points and implicit pain points. Where explicit pain points are consciously
acknowledged negative emotions reported during or after a task, and implicit pain points,
also termed psychophysiological pain points, are automatic physiological responses
characterized by high emotional arousal and negative emotional valence in reaction to an
event during the interaction (Giroux-Huppé et al., 2019). Their work demonstrated that
psychophysiological measures, such as heightened arousal and negative valence, offer a
real-time, objective approach to capturing user frustration, surpassing the limitations of

traditional self-reported methods.

3.2.4 The proposed novel approach in identifying pain points

Although Giroux-Huppé et al. (2019) research introduced a novel approach to
identifying pain points accurately in real-time, the approach concentrated on one aspect
of the user's response: the emotion the users felt. Prior and recent UX research
increasingly adopts multimodal approaches to measure multiple aspects of user’s response
simultaneously. Léger et al. (2014) combined eye tracking and EEG to improve the
temporal precision of attentional, cognitive, and motor process measurements. Charland
et al. (2015) used psychophysiological tools to differentiate engagement levels across
behavioural, cognitive, and emotional dimensions during learning tasks. Korosec-Serfaty
et al. (2022) examined the impact of technostress and financial stress on users' emotional

and cognitive responses by integrating psychophysiological, perceptual, and behavioural
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data. Parsons et al. (2023) assessed users' cognitive and emotional states in virtual
environments in real time, while Mithun et al. (2023) introduced the Mind Indriya system
to measure cognitive load, anxiety, and visual attention simultaneously. These studies
highlighted the growing emphasis on multimodal methods to capture a comprehensive
picture of user responses.

To expand on Giroux-Huppé's work, this study applied multimodal approach,
using various psychophysiological methods to assess the different aspects of the user's
response, which are characterized by changes in emotional arousal, valence, visual
attention, and cognitive load when users encounter a pain point. This aimed to provide a
more accurate representation of pain points beyond isolated emotional data. This proposed
that when users encounter a pain point, there will be a distinct psychophysiological
signature such as by changes in emotional arousal, valence, visual attention, and cognitive
load.

Additionally, by using the captured psychophysiological signatures, this study
aimed to develop predictive models and to examine the reliability of these signatures in
identifying pain points across similar tasks. This proposed that the psychophysiological
signature associated with a pain point experienced during a task can be used to identify
pain points on other similar tasks reliably.

For this research study, the term "usability pain point (UPP)" referred to the
usability challenges experienced by users during their interaction with a digital interface,
which gives rise to automatic psychophysiological responses characterized by abnormal

changes in emotional arousal, valence, visual attention, and cognitive load.

3.3 Methods

This research builds on the novel approach on identifying pain points introduced
by Giroux-Huppe et al. (2019) by assessing multi-aspect of user’s psychophysiological
responses. The aim of this experiment is to evoke psychophysiological responses in users
when they encounter a pain point to be able to identify distinct psychophysiological
signatures characterized by changes in emotional arousal, valence, visual attention and
cognitive load, providing a foundation for developing predictive models to identify pain

points on other similar tasks reliably.



3.3.1 Study Design

The study design comprises three phases: Phase | employs a mixed-subject design
to collect psychophysiological data by artificially manipulating the occurrence of pain
points in the tasks that the users are to perform, Phase Il focuses on using the data collected
on Phase I to train a predictive model to identify pain points, and Phase Il evaluates the

predictive model’s performance and its reliability to identify usability pain points on a

natural task. The proposed process framework is detailed in Figure 1.

Proposed Process Framework

Phase I: Data Collection Phase II: Training a predictive model Phase TII: Model .
Performance Evaluation

Step 1: Data Collection

________________ Step 5:
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Figure 1. The proposed process framework

3.3.2 Participants

Eighty-six (86) participants were recruited via our institution's panel to participate
in the study. Recruited participants had an advanced level of French, did not have skin
allergies or sensitivity, had no astigmatism, did not suffer from epilepsy and had no
current or prior experience working with the following SaaS enterprise systems:
ServiceNow, Microsoft Dynamics 365 CRM, and Salesforce Cloud Service. All
participants provided signed consent in line with the HEC Montreal research ethics
committee [Certificate No.: 2024-5933]. Each participant received a compensation of
$20.
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The 41 participants were randomly assigned to Condition A, 24 men and 17
women, ranging from 18 to 45 years old (M=26.5; SD = 6.10). Forty-five (45) participants
were randomly assigned to Condition B, 24 men and 21 women, ranging from 18 to 59
years old (M=27.07; SD=8.97). A t-test for age revealed no statistically significant
difference between the mean ages of Condition A and Condition B (t(84) = -0.332, p =
.741). Additionally, a chi-square test for gender indicated no significant association
between gender and condition (%3(1, N =86) =0.072, p =.789). Other details on Condition
A and B were elaborated in section “3.3.4 Study Conditions and Tasks”.

3.3.3 Stimuli

The SaaS software delivery model is becoming popular for enterprises of all types
and sizes (Haselmann & Vossen, 2011). Software as a Service (SaaS) is a cloud service
where consumers can access software applications over the internet or "the cloud” (Yusuf
et al., 2018). According to Gartner, the shift to SaaS fundamentally changes the
organization's ownership models from owning a software license to paying a third party
for software usage. In 2022, SaaS spending constituted an average of 11% of total IT
spending, up from 5% in 2018 (Gartner: Fueling the Future of Business). Canada's
Software as a Service (SaaS) market is experiencing significant growth due to trends in
collaboration-focused markets, CRM and HRMS software adoption, customer
preferences for cloud-based solutions, government support for digital transformation and
a diverse business landscape such as remote work (Statista). For this research study, three
SaaS platforms were selected to be the experimental stimuli: Microsoft Dynamics 365

CRM, Salesforce, and ServiceNow.

3.3.3.1 Microsoft Dynamics 365 CRM. According to Statista's Market Insights
Financial Statements of Key Players (updated March 2024), one of the vital players in the
SaaS market in Canada in 2022 is Microsoft Cloud, making up 17% of the market.
Microsoft Dynamics 365 CRM is a comprehensive, integrated system designed to
streamline various business processes related to customer management (Microsoft). The

trial version of the customer service instance offered by Microsoft was used for this
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experiment stimuli. Figure 2 presents the homepage the participants see before

performing the task in Microsoft Dynamics 365 — CRM.
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Figure 2. Microsoft Dynamics 365 — CRM Homepage

3.3.3.2 Salesforce. Following Microsoft's lead is Salesforce, comprising 13% of
the SaaS market in Canada in 2022 (Statista). Salesforce is a leading cloud-based CRM
platform that provides various applications and services to assist business operations,
explicitly managing customer relationships and interactions (Salesforce). The institution's
Salesforce account was used for this stimulus. Figure 3 presents the homepage that the

participants see before performing the task in Salesforce.
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Application Reviews by Status Leads by Source

Figure 3. Salesforce Homepage
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3.3.3.3 ServiceNow. Another vital player in the SaaS market is ServiceNow,
comprising 4% of the SaaS market in Canada in 2022 (Statista). ServiceNow is a cloud-
based platform that offers a group of applications designed to help streamline and
automate business processes, particularly in IT Service Management (ITSM), IT
Operations Management (ITOM), and IT Business Management (ITBM) (ServiceNow).
The sponsoring client provided a developer version of the enterprise system. Figure 4
presents the homepage that the participants see before performing the task in

ServiceNow.

SErvicCenow  Tow Favels  Historigue i
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Figure 4. ServiceNow Homepage

3.3.4 Study Conditions and Tasks

3.3.4.1 Study Conditions. Participants were randomly assigned to Condition A or
B. The two conditions entailed the same three tasks and merely varied in the sequence of
the systems being used to perform those tasks. For Condition A, participants performed
Task 1 and 2 using Microsoft Dynamics and Task 3 using ServiceNow. For Condition B,
participants performed Task 1 and 2 using Salesforce and Task 3 using ServiceNow. The
goal of Phase | is to collect psychophysiological data by artificially manipulating the
occurrence of pain points in either Task 1 or Task 2. Assigning each participant to either
Condition A or B helped generalize the psychophysiological data collected from different
systems during Task 1 and Task 2. Also, randomizing the manipulated pain point to either
Task 1 or 2 minimized any potential bias that could arise from participants anticipating or
adapting to the pain point in a specific task.



3.3.4.2 Task 1: Create a Contact. Participants were given the task of creating a
new contact file for a new client. Figure 5 explains the step-by-step process that the user
will perform to accomplish the task. The participants will begin on the assigned stimulus
homepage. They need to locate and click the “Contacts” tab, which will direct them to the
contacts form page, where they will fill in the information required for the task. Once

done, the participants must click the “Save” or “Submit” button.

Completes the contact

Save or Submit
form

SaaS Homepage Clicks the Contacts Tab

Figure 5. Process flow for completing Task 1

3.3.4.3 Task 2: Create a Case. Participants were tasked with creating a new case
file for a client. Figure 6 explains the step-by-step process that the user will perform to
accomplish the task. It is similar to Task 1, but instead of clicking the “Contact” tab,
participants will have to click the “Case” or “Incidents” tab, which will direct them to the
case/incident page form. Once the required information is completed, the participants
must click the “Save” or “Submit” button.

Clicks the Completes the

Case/Incidents Tab Case/Incidents form Save or Submit

SaaS Homepage

Figure 6. Process flow for completing Task 2 and Task 3

3.3.4.4 Task 3: Create a Case. The same steps were used for Task 3 (see Figure
6) when creating a case. However, participants will be exposed to ServiceNow when

performing Task 3.

In summary, the use of Conditions A and B and randomly assigning the
manipulated pain points to either Task 1 or Task 2 enhanced the generalizability of the
psychophysiological data used in Phase Il, which focused on training a predictive model
to identify pain points. Moreover, Task 3 was the same for Conditions A and B, and no
artificial pain points were induced. Task 3 data were used in Phase Il to evaluate the
predictive model’s performance and reliability to identify usability pain points on a

natural task.



3.3.5 Stimuli Manipulation

Configuration errors were randomly induced in either Task 1 or Task 2 in MS
Dynamics 365 CRM and Salesforce to manipulate the presence of pain points. The
manipulated errors were placed on the Contacts tab for Task 1 and the Cases/Incidents tab
for Task 2. Having a similar number of clicks (see Figure 5 and Figure 6 in the previous
section) before reaching the manipulated section ensured that participants had consistent
experience across tasks, which helped in isolating the effect of the manipulated pain point
rather than the differences in task complexity. Also, providing an onboarding video that
showed the steps to accomplish the tasks standardized the participants' approach, which
reduced variability in how participants performed the tasks, ensuring that any
psychophysiological responses were due to the pain point and not differences in task
understanding or execution. Placing the pain point at a specific interaction (clicking the
contact or case tab) allowed the study to precisely measure the psychophysiological
responses to that interaction by extracting the psychophysiological data encompassing 10-

second intervals centered on the manipulated pain point.

Once the participants clicked the Contacts tab or the Case/Incidents tab where the
configuration errors were planted, an error message will appear (see Figure 7 & Figure

8). Although these manipulated errors are aimed at eliciting psychophysiological

responses, the outcomes may vary among participants.

((((((

Error 404: Page not found

Figure 7. Error message in Microsoft Dynamics 365
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Figure 8. Error message in Salesforce

There will be no manipulated error in Task 3. Task 3 will serve as the natural task
to test the reliability of the predictive models in identifying usability pain points in Phase

I11 (refer to Figure 1).
3.3.6 Measures

This study combined eye tracking, EDA, and automated facial expression
recognition data to measure the psychophysiological response patterns exhibited by users

when encountering a pain point.

3.3.6.1 Emotional Arousal. To measure emotional arousal, Electrodermal activity
(EDA) was used. EDA is a physiological measure relevant to emotion research and is
commonly used to indicate physiological arousal (Braithwaite et al., 2013). By capturing
skin conductance, which refers to the electrical properties of the skin changes in response
to sweat secretion, EDA provides a moment-by-moment measure of arousal (Boucsein,
2012). Arousal is the "state of being physiologically alert, awake, and attentive, associated
with sensory stimulation and activation of fibres from the reticular activating system"
(Beri & K, 2019). A study by Caruella et al., (2019) reviews the use of EDA to assess

consumer emotions in marketing and consumer research, where the review finds that EDA
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is a valuable tool for understanding consumer emotions, though the paper also

recommends combining EDA with other methods to capture both arousal and valence.

3.3.6.2 Valence. The study utilized a Facial Expression Recognition (FER)
software to measure the participant’s facial expressions during the experience. The
hedonic tone of the feeling, referred to as valence (Garbas et al., 2013), is measured
through facial expression recognition and has been extensively studied in HCI (Yang &
Sun, 2017). According to Mehrabian's (2017) criterion for emotional expression, humans
express their emotions through facial expressions by 55%, 7% by language, and 38% by
voice. Facial Expression Recognition (FER) advancement was supported by Li and
Deng's (2022) comprehensive review of deep learning techniques applied to FER, which
discussed the transition of FER from controlled laboratory settings to more challenging
real-world environments and emphasizing the increasing use of deep neural networks to

address environmental complexities.

Facial expression and electrodermal activity effectively measure the two
dimensions of emotion and comprehensively describe a person's emotional change
(Russell, 1980; Yang & Sun, 2017).

3.3.6.3 Visual Attention. To measure visual attention, the study used eye tracking
and a visual search measure, k-coefficient. Eye-tracking (or oculography) is a research
method that uses an eye-tracking device to track the point of gaze or a user's eye
movement during task execution (Borys et al., 2017). A visual search measure has been
proposed by Krejtz et al. (2016) to characterize two modes of attention —ambient vs. focal
attention. Coefficient K (k-coefficient) measures visual behaviour fluctuating between
focal and ambient viewing modes, combining the length of saccades with the duration of
fixations (Krejtz et al., 2016).
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3.3.6.4 Cognitive Load. Another psychophysiological measure captured by an
eye-tracking device is pupil dilation. Pupil dilation measures pupil size changes,
providing insights into attention, arousal, emotion, and mental workload (Bergstrom et
al., 2014). Pupil size changes in response to emotionally arousing stimuli (Bradley et al.,
2008). A study by Partala and Surakka (2003) showed that pupil size was significantly
larger during emotionally negative and positive stimuli than during neutral stimuli. Pupil
diameter is valuable for real-time cognitive assessment, distinguishing task difficulty with
larger pupil dilations under challenging tasks (Kreijtz et al., 2018). Biometrics quantify
task-related cognitive effort and provide temporally specific and non-intrusive
measurements of cognitive dynamics throughout a task (Wals & Wichary, 2022). This is
further supported by Gilzentrat et al. (2010) findings that pupil diameter can serve as a
proxy to the locus coeruleus-norepinephrine (LC-NE) system, which has a vital function
in regulating cognitive control and provides evidence that the LC-NE system's regulation

of cognitive control can be monitored non-invasively through pupillometry.

3.3.7 Instrumentation

The study used non-intrusive tools to capture the user's psychophysiological responses.

3.3.7.1 Tobii Pro Eye Tracker & Tobii Pro Lab software. Tobii Pro eye tracker
was used to capture the pupil dilation and gaze entropy of the participant while performing
the task, and the psychophysiological responses were recorded by the Tobii Pro Lab
software version 1.217 (Tobii AB, Danderyd, Sweden).

3.3.7.2 Face Reader v.9. Face Reader (version 9) was used to analyze facial
expressions and emotions felt by the participant while performing the task. Facial
expression analysis with FaceReader can recognize several specific properties in facial
images, including the six universal expressions that infer emotional valence (Noldus

FaceReader, Wageningen, The Netherlands).
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3.3.7.3 Media Recorder. In conjunction with the Tobii Pro eye-tracker and
FaceReader, the Media Recorder is a software application used to capture and synchronize
various types of data streams, which includes video, audio and biometric data to provide
a comprehensive view of the participant's interactions and responses (Noldus Media

Recorder, Wageningen, The Netherlands).
3.3.7.4 Biopac MP-150 & Acgknowledge software. Using the EDA sensors

securely placed on the participant's non-dominant hand, mostly the participant's left hand,
the EDA signal responses were relayed to the Biopac MP-150. BIOPAC MP-150 is a data
acquisition system which provides intuitive analysis and visualization tools for capturing
physiological signals, specifically EDA, which is the measure to capture the participant's
arousal level experienced while performing the tasks (BIOPAC Systems, Inc.). The
BIOPAC MP-150 works with Acgknowledge software (BIOPAC Systems, Inc.).

3.3.7.5 Observer XT. Observer XT is a software tool designed to collect, analyze,
and present observational data from various sources (Tobii Pro Eye-tracker, FaceReader,
Media Recorder, and Biopac MP-150) (Noldus Observer XT, Wageningen, The
Netherlands).

3.3.8 Laboratory Setup

3.3.8.1 Experimental Room Setup. As shown in Figure 9, a dedicated computer
workstation was provided for participant task completion with a microphone that
facilitated clear communication with the moderator and a webcam that captured and
recorded facial expressions. A Tobii Pro eye-tracker was positioned beneath the screen to
monitor eye movements, and an iPad was used to display the consent form, compensation

details, onboarding videos, and essential task instructions.
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Figure 9. Lab setup in the experimental room

3.3.8.2 Observation Room setup. The moderator's workstation shown in Figure
10, which is composed of three system units and five monitors that display the
Acknowledge Biopac software (1), Observer XT (2), Media Recorder (3), mirrored
participant's screen (4), and Tobii Pro (5).

e —

Figure 10. Lab setup in the observation room
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3.3.8.3 Instrument and Equipment Synchronization setup. Presented in Figure
11 is the instrument and equipment synchronization setup designed to capture
physiological and behavioural response data simultaneously. The SyncBox (Noldus)
synchronized data from the EDA, eye-tracking, and facial expression systems, ensuring

temporal alignment across all collected measurements.
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Figure 11. Instrument and Equipment Synchronization Setup

3.3.9 Experimental Procedure

Following the proposed process framework presented in the earlier section of the
study (shown in Figure 1), details of each step are elaborated below.

3.3.9.1 Phase I: Collection of psychophysiological data

Step 1: Data Collection. As shown in Figure 12, the study experience begins with
welcoming the participants and providing them the consent form. The participants were
recruited based on the inclusion and exclusion criteria stated in section 3.3.2 Participants.
Following the signing of the consent form, participants provided socio-demographic
information, EDA sensors were then attached to the non-dominant hand, and an eye
calibration test was conducted.
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Three tasks were administered. To ensure that the participants responses and
interactions with the SaaS enterprise systems were unbiased and uninfluenced by previous
experience, participants who have current and prior experience with ServiceNow,
Microsoft Dynamics 365 CRM, and Salesforce Cloud Service were not recruited for this
study. Prior to task commencement, participants viewed an onboarding video on the iPad,
familiarizing themselves with the assigned system (either MS Dynamics or Salesforce for
Tasks 1 and 2 and ServiceNow for Task 3) (see Appendix B). Task instructions (see
Appendix A) were displayed on the monitor, while relevant information was provided on
the iPad (see Appendix C). The SaaS system instances were presented to the participants'
screens, where they would perform the tasks. Upon completing all three tasks, participants

received a compensation form and expressed gratitude for their involvement.

S 4= — C& 2
= —v
Before the Tasks M - - - -

Welcome Consent Socio-demographic  Placement of Eye-tracking
Questionnaire EDA sensors calibration

Phase 1 Phase 2
System A: Microsoft Dynamics System C: ServiceNow
Randomization: Task w/ IPP & w/o IPP

- - - -

=T <b< —— = << ——

/ Short Task 1 Task 2 Short Task 3
Onboarding Onboarding

Video Video

System B: Salesforce System C: ServiceNow
Randomization: Task w/ IPP & w/o IPP

During the
Tasks

- g-0 - E-g

Short Task 1 Task 2 Short Task 3
Onboarding Onboarding
Video Video

g0
After the Tasks @ - - @

Removal of Compensation End of Study
EDA Sensors

Figure 12. Step-by-step procedure experienced by the participant during the study

47



3.3.9.2 Phase Il: Training a predictive model

Step 2: Data Segmentation. Following the experiment and data collection, UPP
markers were integrated into the physiological data to correspond with identified usability
issues. Data segments surrounding UPP events were extracted, encompassing 10-second
intervals centered on the UPP with a 1-second offset. This temporal window captures
immediate physiological changes in response to the UPP. For instance, a separate study
done by Brown et al. (2011) and Kim et al. (2013) used a brief pre- and post-stimulus
window to accurately evaluate immediate physiological changes which correlates to pain
such as changes in heart rate, skin conductance, and other autonomic responses.
Additionally, the study by Brown et al. (2011) utilized a 20-second baseline period before
each stimulus to establish a reference point for measuring changes in brain activity,
ensuring that the observed responses were directly attributable to the stimuli. For the
purpose of this study, 10-second intervals before and after the UPP marker was chosen
based on the intuition that participants' reactions reach their peak within a few seconds
and remain strong for a few seconds. The 10-second interval after the stimulus captures
this peak reaction, while the 10-second interval before the stimulus serves as a comparison
to accurately assess the changes induced by the usability pain point.

Step 3: Data Preparation for Cluster Analysis. To prepare the data for cluster
analysis, the increase in physiological measures (x_aug) following a UPP was calculated
by subtracting the baseline value (x_before) from the post-UPP value (x_after).

Hence, the study used the formula x_aug = x_after — x_before for cluster analysis,

where x = variable.

Each participant's mean values (x_aug) were calculated and subsequently
employed as input for cluster analysis using the K-Means algorithm. K-means clustering
was utilized to identify groups of participants exhibiting similar physiological responses.

The resulting clusters were then categorized into strong and weak reaction groups.
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Step 4: Training a Logistic Regression Model. After identifying the clusters, the
subsequent step was to train a logistic regression model by calculating the cumulative
averages of the psychophysiological variables (x_ca), which act as baseline "norm" values
for each participant. The data was then centered by subtracting these cumulative averages
(x-ca) from the raw data (x), resulting in x_b. This centered data captured individual

deviations from the "norm."

Hence, the study used the formula x_b = x — x_ca to train the models, where x = variable.

Logistic regression models with random intercepts were subsequently trained
using the centered physiological data (x_b) to detect the likelihood of a pain point.
Separate models were developed for clusters exhibiting strong reactions to identify
significant predictors. The dependent variable (DV) was the time before versus after the
UPP event.

Step 5: Model Performance Evaluation tested on Task 1 and 2. The trained
models were subsequently applied to identify pain points within the Task 1 and Task 2
data, and the performance was evaluated using recall and precision to assess the detection
of UPPs.

3.3.9.3 Phase I11: Model performance evaluation

Step 6: Model Performance Evaluation tested on Task 3. In the final step, the
trained model was applied to Task 3 data to identify pain points. Expert evaluations were
conducted by analyzing video recordings of participant interactions. Each predicted pain
point was rated on a 0-3 scale, with 0 indicating "absolutely not a pain point" and 3

indicating "absolutely a pain point.”
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3.4 Data Analysis and Results
This section presents the analyses conducted to examine the psychophysiological
responses to usability pain points and assess the predictive model's reliability in detecting

pain points in a natural task.
3.4.1 Manipulation check

The manipulation check aimed to verify whether the induced configuration errors
in Task 1 and 2 successfully elicited distinct psychophysiological responses in
participants characterized by emotional arousal, valence, visual attention and cognitive
load changes. Results indicated that 61 out of 86 participants showed significant changes
in these indicators following a usability pain point exposure, confirming that the
manipulations effectively induced psychophysiological responses characteristic of

encountering usability obstacles.

Thus, a final sample of 61 participants with sufficient psychophysiological data
was used for cluster analysis. By focusing on the psychophysiological data gathered from
these 61 participants, the study ensured that the cluster analysis was based on reliable and
meaningful data, which is crucial in Phase Il in training a predictive model in identifying
distinct patterns in psychophysiological responses when users encounter a usability pain
point.

3.4.2 Cluster Analysis Results

K-means clustering was performed to identify groups of participants based on their
psychophysiological responses to usability pain points. The purpose of this analysis was
to identify patterns in user reactions. As a result, four distinct clusters were
identified. Table 2 presents the mean (M) increases in four psychophysiological
measures—valence, EDA phasic, pupil dilation, and k-coefficient—following a usability

pain point.
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Table 2

Mean Increase in Physiological Measures Following a UPP per Cluster

Cluster Valence EDA phasic Pupil Dilation K-coefficient
M M M M

(C,\'lfztg; ! 0.080 0.372 0.722 -0.393

(Cl\'lfztg; 2 -0.558 0.271 -0.728 -0.022

(C,\'l“:gr 3 -0.022 2772 0.458 0.549

E:l\llu:sstsr 4 2.413 -0.131 -0.519 1.414

Note. Total N=61; M = Mean

Each cluster showed varied patterns of psychophysiological reactions to the
usability pain point. For example, in Cluster 1, participants responded with a moderate
increase in arousal (EDA) (0.372), a significant increase in pupil dilation (0.722) and a
moderate decrease in k-coefficient (-0.393). In contrast, participants in Cluster 2 showed
significant decrease in valence (-0.558) and pupil dilation (-0.728) when encountering the
usability pain point. Cluster 3 participants demonstrated a significant decrease in arousal
(-2.772), along with a moderate increase in pupil dilation (0.458) and k-coefficient
(0.549). Meanwhile, participants in Cluster 4 showed a significant increase in valence
(2.413) and k-coefficient (1.414), accompanied by a decrease in arousal (-0.131) and pupil
dilation (-0.519).

Notably, most participants displayed responses aligned with the patterns found in
Clusters 1 (N= 25) and 2 (N= 25). The similarity in response patterns across these
participants indicates that the majority experienced the UPP as significant disruptions.
Conversely, only a small subset of participants exhibited different response patterns found
in Clusters 3 (N= 6) and 4 (N= 5), potentially indicating participants' differences in
sensitivity to usability disruptions or varied task engagement levels. Clusters 3 and 4
participants might represent users who are less affected by minor interface issues or who
adopt different coping mechanisms, such as maintaining focus without exhibiting high

arousal.

Overall, the different response patterns support the concept of a

"psychophysiological signature" when faced with a usability pain point, triggering distinct
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psychophysiological responses consistent with shifts in emotional arousal, valence, visual
attention and cognitive load. However, the prominence of patterns found in Clusters 1 and
2 among participants underscores the robustness of psychophysiological responses as
indicators of usability pain points. The concentration of participants within these clusters
strengthens the proposition that a predictable and recognizable response signature exists

to usability issues, validating the use of these indicators in training the predictive model.
3.4.3 Logistic Regression Model Training Results

The following analysis step involved training logistic regression models to identify
the likelihood of a pain point occurrence based on the observed psychophysiological
responses. Separate models were created for strong-reaction clusters (Clusters 1 and 2) to
capture the primary predictors for each cluster. Participants without EDA phasic data were
excluded from the model training for this analysis. Thus, a final sample of 45 participants
with complete psychophysiological data was used for logistic regression. As discussed in
the Procedure section, Step 4 of this study, the centered data (x_b) for variables valence,
pupil dilation, EDA phasic, and k-coefficient were used for this analysis, where centered
data for valence represents shifts in emotional valence, centered data for pupil dilation
represents shifts in cognitive load, centered data for EDA phasic represents changes in

emotional arousal, and centered data for k-coefficient represents shifts in visual attention.

3.4.3.1 Predictive Model A (PM-A). Predictive Model A (PM-A) used the
centered data (x_b) for variables valence, pupil dilation, EDA phasic, and k-coefficient
from Cluster 1 participants (N=23). The results indicated that the centered data for the k-
coefficient (Estimate = -0.659, SE = 0.244, t(335) = -2.700, p = .007) was significant.
This suggest that changes in visual scanning behaviour are a strong predictor of usability
pain points for participants in this cluster. Other predictors, including centered data for
valence (Estimate = 0.029, SE =1.294, t(335) = 0.020, p = .981), centered data for pupil
dilation (Estimate = -0.542, SE = 0.767, t(335) = -0.710, p = .481), and centered data for
EDA phasic (Estimate = 0.135, SE = 0.254, t( 335) = 0.530, p = .595), were not
statistically significant.
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Given the lack of significance for centered data for valence, an alternative model
excluding this variable was tested. The results for the refined model remained similar,
with centered data for k-coefficient continuing to be a significant predictor (Estimate = -
0.666, SE = 0.237, t(335) = -2.810; p = .005).

Hence, the final predictive model A (PM-A) based on Cluster 1 centered data:

e PM-A: prob_UPP= 1/ (1 + exp(-1 * (0.3252 - 0.572 * pupil_b + 0.1214 *
phasic_b - 0.6664 * k_b)))

Where prob_UPP = probability of usability pain point, x = variable (i.e. valence), and x_b

= centered data of the variable x

3.4.3.2 Predictive Model B (PM-B). Another model, Predictive Model B (PM-
B), was trained for detecting usability pain point using the centered data from Cluster 2
(N=22). In this model, the centered data for pupil dilation (Estimate = -25.291, SE =
2.769, 1(345) = -9.130, p<0.001) emerged as a highly significant predictor of usability
pain point, underscoring the shift in cognitive workload. Other variables, including the
centered data for valence (Estimate = -3.655, SE = 2.832, t(345) = -1.290, p = .198), the
centered data for EDA phasic (Estimate = 1.649, SE = 1.395, t(345) = 1.180, p = .238),
and the centered data for k-coefficient (Estimate = 0.163, SE = 0.528, t(345) = 0.310, p =
.758), were not significant.

Hence, the final predictive model B (PM-B) based on Cluster 2 centered data:

e PM-B: prob_UPP=1/ (1 + exp(-1 * (-0.3404 - 3.6547 * valence_b - 25.2911 *
pupil_b + 1.6491 * phasic_b + 0.1626 * k_b)))

Where prob_UPP = probability of usability pain point, x = variable (i.e. valence), and x_b

= centered data of the variable x

In summary, the results partially support the study's second proposal by identifying
shifts in visual attention and cognitive load, as measured by k-coefficient and pupil
dilation, respectively, as solid indicators of usability pain points, which are then applied

to the predictive model.
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3.4.4 Performance evaluation: PM-A and PM-B tested on Task 1 and Task 2

In Table 3, the performance of PM-A and PM-B were evaluated based on recall
and precision metrics for detecting usability pain points on Task 1 and 2 across different

configurations of cut points, gap durations, and assumed durations.

Table 3

Performance evaluation of predictive models (PM-A & PM-B) for identifying usability pain points across different
configurations

Number of
Minimum Assumed True Number of
Cut point Gap Duration  Duration Positives upp Number of Recall Precision
Obs P (ms) ©) s) among the predicted by induced UPP
predicted  the model
UPP
PM- PM- PM- PM-B PM-A PM-B
A B A
1 0.7 0.95 8000 3 20 6 17 104 232 66 0.348 0.068
1 0.75 0.98 8000 3 20 3 14 25 191 66 0.258 0.079
1 0.73 0.98 8000 3 20 4 14 46 191 66 0.273 0.076
1 0.75 0.99 8000 3 20 3 10 25 164 66 0.197 0.069
1 0.75 0.999 8000 3 20 3 3 25 78 66 0.091 0.058
1 0.75 0.99310000 8 15 1 7 7 99 66 0.121 0.075
1 0.75 0.99310000 5 15 3 8 17 132 66 0.167 0.074
1 0.75 0.99510000 5 15 3 6 17 115 66 0.136 0.068

Several configurations were tested to evaluate both model’s performance. Cut
points were adjusted across different configurations, ranging from 0.7 to 0.75 for PM-A
and 0.95 to 0.995 for PM-B. A cut point indicates the threshold above which the predicted
probability is considered a positive prediction (UPP detected). The gap duration, set
between 8,000 and 10,000 milliseconds (ms), was used to merge neighbouring data points
within a short time interval, considering them a single pain point. The minimum duration
for a predicted pain point to be considered valid was either 3 or 5 seconds (s). To specify
the time interval within which a UPP is detected, the assumed duration was fixed at 20

seconds for most configurations.



Table 4 presents the selected configuration to optimize the prediction performance
regarding recall and precision, particularly for identifying around 100 distinct UPPs
without necessarily maximizing these metrics. The selected configuration indicated that
the models' performance had limited success in identifying true UPPs, with only 10.6%
of the actual positive cases of UPPs detected (recall = 0.106), and among all predicted

pain points, only 8% were actual UPPs (precision = 0.080).

Table 4

The selected configuration aims to predict approximately 100 distinct UPP

Number of
. True
_ Gap Mlnlmum Assumed Positives Numberqf Number of N
Cut point Duration  Duration UPP predicted Induced Recall Precision
Obs ms) () s) among the o e model  UPP
predicted
UPP
PM- PM-B PM- PM- PM- PM-B PM-A PM-B
A A B A
1 0.75 0.995 10000 5 10 15 3 4 17 71 66 0.106 0.080

This finding partially supports the study's second proposal. While the precision
rate indicated limited accuracy, it suggested that the models have some capacity to
identify actual pain points but may generate a substantial number of false positives. The
relatively low recall implies that while some UPPs are detected, the models may not
identify many actual pain points under the current configuration. However, these initial
results highlighted the model's potential in detecting usability pain points. The ability to
identify even a subset of UPPs represented progress toward the study's objective, as it
showed the feasibility of using psychophysiological measures for real-time UPP

detection.
3.45 Performance evaluation: PM-A and PM-B tested on Task 3

PM-A and PM-B trained models were applied to Task 3, where no manipulated
pain points were induced, to test its ability to detect any spontaneous pain points that
might naturally occur during user interaction. The models identified 116 pain point events,

with 42 classified as UPP with k-coefficient as the significant predictor and 74 as UPP



with pupil dilation as the significant predictor. While recall and precision are typically
used to measure model performance, the recall rate could not be calculated because the
ground truth for the spontaneous pain points is unknown. In this case, precision was
assessed through expert evaluation, which analyzed each predicted instance to determine

the likelihood of representing a true pain point.

Table 5 presents the number of UPP events categorized by the expert as likely to

be a usability pain point.

Table 5

Expert's assessment of the predicted pain point
Assessment Scale Number of UPP events
0 = Absolutely not a UPP 21

1 = Somewhat Like a UPP 39

2 = Most likely a UPP 33

3 = Absolutely a UPP 23

Following the expert assessment, a frequency analysis was conducted by creating
a binary variable indicating whether the expert's evaluation (on a scale of 0-3) represented

a higher likelihood of an actual pain point (>1) or not (<1).

Table 6 presents the precision of the predicted UPP based on the expert
assessment. The expert evaluation provided a precision of 47.6% of the instances
predicted as UPP with k-coefficient predictor and 48.6% of the UPP with pupil dilation
predictor, indicating that the expert ratings corroborated nearly half of the model’s

predicted pain points.

Table 6

Precision of predicted UPP based on expert assessment
UPP based on Number of UPP Likelihood of an actual UPP

significant predictor events (>1) based on expert Precision
assessment

UPP (k-coefficient) 42 20 0.476

UPP (pupil dilation) 74 36 0.486

*If expert assessment is >1, then the likelihood of an actual UPP is true (1), otherwise (0)
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The findings further support the study’s second proposal that, while the predictive
models have limitations, they can detect spontaneous UPP with reasonable precision, even
in an unmanipulated task. The moderate precision suggests that the models capture
genuine instances of user friction that were likely subtle but impactful enough to elicit

changes in psychophysiological responses when encountering a usability pain point.

3.5 Discussion
The study identified psychophysiological signature patterns, defined by changes

in emotional arousal, valence, visual attention, and cognitive load when users encountered
usability pain points in enterprise systems. Moreover, using the captured
psychophysiological data, this study developed predictive models and examined their
reliability in identifying pain points across similar tasks. Three SaaS platforms were
selected: Microsoft Dynamics 365 — CRM, Salesforce, and ServiceNow. An artificially
manipulated pain point was placed randomly in the first or second task to evoke reactions,
with data collected for model training. The models' reliability was then evaluated on a

third task, free of manipulation.

Given the limited research on user behaviour in response to usability pain points,
this study introduced a novel multimodal approach that uses psychophysiological data to
identify usability pain points during interaction by assessing users' emotional, cognitive,
and attentional responses.

3.5.1 Profiling users’ psychophysiological response to usability pain points

The study aimed to explore and identify users' distinct psychophysiological
response patterns when encountering usability issues (RQ1). It successfully revealed
characteristic profiles characterized by changes in emotional arousal, valence, visual
attention, and cognitive load, revealing different user experience profiles. The cluster
analysis identified four distinct user profiles with varied psychophysiological reactions to
usability pain points (UPPs) during interaction to a digital interface. Two of these user
profiles, provisionally named "Conventional Reactor A" (Cluster 1) and "Conventional
Reactor B" (Cluster 2), indicated that the majority of the participants experienced the

usability pain point as a significant disruption to their interaction with the SaaS interface.
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Conversely, a small subset of participants responded differently, as found in the other two
user profiles, provisionally named "Unconventional Reactor A" (Cluster 3) and
"Unconventional Reactor B" (Cluster 4). However, why do participants exposed to
identical UPP react differently?

The differentiation between these user profiles can potentially be interpreted
through the lens of the fight, flight, freeze, and fawn responses. The fight or flight theory
describes the physiological reaction that arises when an organism perceives danger or a
threat to survival (Cannon, 1929). Humans adapt to stressful situations by engaging in
"fight or flight" behaviour when encountering an impending danger or threat. The fight
response involves confronting the threat, while the flight response entails escaping from
it (Cannon, 1929).

Conventional Reactor A showed a slight positive increase in an emotional state
after encountering a usability obstacle with heightened physiological arousal, placing the
emotion felt by the participants in the high arousal/positive valence quadrant (Russell,
1980); this may suggest that participants were surprised when encountering the usability
issue. There is a drastic increase in pupil size, which may indicate that participants' LC-
NE system was in tonic mode and may suggest a disengagement in the current task, where
attention is no longer primarily focused on task-relevant stimuli but also responds to
irrelevant stimuli and shifting to an exploration strategy (Aston-Jones & Cohen., 2005;
Gilzenrat et al., 2010). There was a decrease in the k-coefficient, which may indicate that
the participants switched to ambient visual scanning behaviour (Kreijtz et al., 2016) after
encountering the usability issue when exploring the SaaS enterprise environment.
Conventional Reactor A profile possibly reflected a "flight" response when encountering
the usability obstacle.

Whereas Conventional Reactor B showed an extremely significant association
with the drastic decrease in pupil dilation. The drastic decline in pupil dilation may
indicate that participants’ LC-NE system was in phasic mode, which may be associated
with high task engagement on the current task, where attention is concentrated on task-

relevant stimuli to optimize performance, which may suggest that participants shifted to
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exploitation strategy upon encountering the usability issue (Aston-Jones & Cohen., 2005;
Gilzenrat et al., 2010). Participants showed a strong negative emotional response and
increased arousal, suggesting that the participants may have felt frustrated, distressed or
annoyed (high arousal/negative valence quadrant) (Russell, 1980) upon encountering the
usability obstruction. This may also indicate that participants focused on the stimulus
before switching to ambient scanning behaviour (Kreijtz et al., 2016), where the k-
coefficient exhibited by participants was slightly higher than that of Conventional Reactor
A participants. Conventional Reactor B's response may be interpreted as a "fight"

response when encountering a usability issue.

Additional responses, such as freeze and fawn, have been added to expand the
fight or flight theory. The freeze response temporarily suspends the fight-or-flight
response characterized by hyper-focused attention on a perceived threat (Kozlowska et
al., 2015). The less commonly discussed fawn response involves appeasement behaviours

aimed at reducing the danger from an aggressor (Owca, 2020).

Unconventional Reactor A profile exhibited a minimal decrease in emotional
valence and a significant drop in EDA phasic, which may place the emotion felt by the
participants in the low arousal/negative emotions quadrant (Russell, 1980), suggesting
participants may have felt bored or tired. The pupil dilation increased, which may indicate
that the participants' LC-NE system was in tonic mode and may present an exploration
strategy (Aston-Jones & Cohen., 2005; Gilzenrat et al., 2010). Despite the exploration
strategy, the participants exhibited focused attention (increased k-coefficient) (Kreijtz et
al., 2016) while visually scanning the SaaS enterprise environment. This behaviour can
potentially be a "fawn" response due to the indifferent emotion felt by the participants and
disengagement from the current task, quickly diverting their focus to a different stimulus

that they think might solve the current issue.

Lastly, the Unconventional Reactor B user profile presented a substantial increase
in emotional valence, which may indicate a strong positive emotion experienced when
encountering the usability challenge. However, there was a slight decrease in arousal,

which may place the emotions felt by the participants in the low arousal/positive valence
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quadrant (Russell, 1980). This may suggest that the participants felt calm when
encountering the usability issue. The pupil dilation decreased, which may indicate that the
participants' LC-NE system was in phasic mode and may present an exploitation strategy
(Aston-Jones & Cohen., 2005; Gilzenrat et al., 2010) supplemented by a notable increase
in the k-coefficient, which may indicate focused attention (Kreijtz et al., 2016). This
response by Unconventional Reactor B potentially represents a "freeze™ response due to

the calm emotions, exploitation strategy, and focused attention on the stimulus.

It is important to note that this study does not directly focus on the fight-flight-
freeze-fawn responses but on the psychophysiological signature patterns exhibited by the
participants upon encountering a UPP. The fight-flight-freeze-fawn responses (Cannon,
1929) were interpreted based on the existing research on information gathering theory
(Pirolli & Card, 1999), adaptive gain theory (Aston-Jones & Cohen., 2005), arousal-

valence model (Russell, 1980) and psychophysiological theories.
3.5.2 Assessing predictive models’ performance in usability pain point detection

The study aimed to evaluate the extent to which a psychophysiological signature
of a user experiencing usability issues can reliably identify usability pain points in another
similar task (RQ2). Predictive models were trained using robust indicators—specifically,
shifts in visual attention and cognitive load, as measured by the k-coefficient and pupil
dilation found in Conventional Reactor A and Conventional Reactor B user profiles,
respectively. These models were applied to detect the occurrence of usability pain points,
with their performance assessed through precision and recall metrics. Although the initial
performance evaluation results where the predictive models are applied to the pain-point-
induced tasks (Task 1 and 2) showed a low recall of 10.6% and precision of 8%, the
predictive models highlighted its potential in detecting usability pain points. The ability
to identify even a subset of UPPs represents progress toward the study's objective, as it
showed the feasibility of using psychophysiological measures for real-time UPP

detection.

To further address RQ2, on the second performance evaluation, the predictive

models were applied to a natural task — no artificially manipulated pain point — to test its
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ability to detect any spontaneous pain point that may naturally occur during the
interaction. The models detected 116 UPP events, which an expert then validated. The
expert evaluation provided a precision of 47.6% of the instances predicted as UPP with
k-coefficient predictor and 48.6% of the UPP with pupil dilation predictor, indicating that
the expert ratings corroborated nearly half of the model's predicted pain points. The results
showed that while the model is not perfect, it can detect spontaneous usability pain points
with reasonable precision, even in an unmanipulated task. This capability supported the

model's utility in real-world scenarios where usability issues arise organically.

However, the inability to calculate recall due to unknown ground truth for
spontaneous pain points limits a complete evaluation of the model's performance. Without
recall, it is difficult to determine how many actual UPPs the models missed. Thus, the
models should be used cautiously, and an inter-rater expert evaluation is recommended to
mitigate subjectivity bias. Also, the models may require further refinement to improve

reliability in detecting true UPPs in similar tasks.

These mixed results suggest that while psychophysiological data holds promise
for real-time identification of pain points, individual differences in response intensity
complicate the model's accuracy. This variation raises questions about the reliability of
using psychophysiological measures alone for usability assessment, highlighting the need
to account for response variability in predictive models. From a UX research perspective,
these findings suggest that psychophysiological data can be a valuable tool for identifying
pain points but may be more effective when combined with other data sources, such as
behavioral observations or self-reports. This approach could enhance the interpretability
of psychophysiological responses and allow for a more comprehensive understanding of
user experiences. As a result, psychophysiological measures could serve as a
complementary method in UX research, providing objective insights that help capture
real-time reactions, but requiring contextualization to ensure accuracy and relevance

across diverse user profiles and tasks.
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3.5.3 Contributions

3.5.3.1 Theoretical Contributions. The study challenged the traditional notion
that all users react uniformly to usability issues. The study enriched existing UX and HCI
research theories by identifying distinct psychophysiological response patterns across
user profiles. It highlighted the importance of individual differences in emotional,
cognitive, and attentional responses. By demonstrating that specific psychophysiological
measures, such as pupil dilation and visual attention shifts (k-coefficient), can reliably
signal usability issues, the study advanced the theoretical understanding of objective, non-
verbal cues as indicators of user experience disruptions. The study provided a
comprehensive framework for user behaviour analysis regarding usability issues and user
interactions by integrating psychophysiological measures of emotional arousal, valence,
cognitive load, and visual attention. This multimodal approach added depth to theoretical
models, emphasizing the value of combining diverse data streams for richer insights into
user interactions. The study's application of psychophysiological principles to usability
assessment linked the fields of psychophysiology and UX, contributing to a novel
interdisciplinary perspective that lays the groundwork for future theoretical explorations
that connect physiological responses to user experience metrics. The findings also
provided empirical evidence linking emotional, cognitive, and visual attention responses
to usability issues, enriching theoretical discussions on how these factors influence user
behaviour during complex tasks.

3.5.3.2 Practical Contributions. This study provided actionable insights for
improving the usability of enterprise systems by leveraging psychophysiological data,
predictive modelling, and adaptive design strategies. Incorporating tools like eye tracking,
EDA sensors, and facial expression recognition software offers more profound insights
into users' emotional and cognitive states, revealing implicit usability issues. The
predictive models developed in this study enabled proactive usability management by
identifying usability challenges in real-time and allowing immediate interventions to
enhance user experiences. Given the variability in user responses, adaptive interfaces with
customizable features like task shortcuts and personalized guidance are recommended to
accommodate diverse user-profiles and minimize user frustration. The study highlighted

that shifts in pupil dilation and k-coefficient are reliable indicators of usability issues and
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suggested that high-impact usability adjustments should focus on these indicators. These
strategies not only improve usability but also enhance user satisfaction, productivity, and

system adoption.

In practice, UX designers could use a data-driven approach to enhance decision-
making by using real-time user insights, complimenting subjective feedback with a more
objective one. System developers could integrate the predictive models into the backend
of enterprise platforms to proactively address user challenges, enhancing user experience
and system robustness. Human factors specialists could utilize the predictive models to
deeply analyze user-system interactions, leading to evidence-based recommendations for
improving task efficiency and reducing errors. Human resources and learning
development experts could incorporate predictive models into their training modules and
platforms to mitigate users' learning challenges, hence improving employees' training
experience, particularly in mastering new digital interfaces. Management could leverage
the predictive model's insights to improve employee productivity, satisfaction, and

retention, directly supporting organizational success.

The study highlighted its practical relevance by outlining actionable findings for
certain professional positions, thereby facilitating the transformation of enterprise systems
into more user-friendly, efficient, and adaptive environments. In addition, the study could
empower professionals across disciplines to leverage the findings for meaningful user

experience enhancements.

3.5.3.3 Methodological Contributions. This study also contributes
methodologically by introducing a novel multimodal approach to identifying usability
pain points by using various psychophysiological methods to assess the different aspects
of the user's response, which are characterized by changes in emotional arousal, valence,
cognitive load, and visual attention when users encounter a usability obstruction. In
addition, by integrating cluster analysis and logistic regression models to predict usability
challenges, this study demonstrated a robust multimodal approach for analyzing
psychophysiological data in usability studies. The clustering method enabled us to capture

meaningful psychophysiological signatures, revealing different user experiences, a factor
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that enhances the interpretability of psychophysiological data. In addition, through
logistic regression the study was able to identify significant indicators to usability pain
points (pupil dilation and k-coefficient) and developed models that were able to detect
usability pain points on a natural task.

3.5.4 Limitations and Future Work

This study adopted a controlled laboratory setting and specific task parameters to
focus on the feasibility of identifying usability pain points (UPPs) using
psychophysiological measures. While this approach allowed for rigorous testing and
analysis of the proposed predictive models, certain aspects were necessarily constrained,

creating opportunities for future research to extend and refine the findings.

The modest recall (10.6%) and precision (8%) rates observed in training the
predictive models reflect the complexity of reliably identifying user pain points. These
rates highlighted the inherent challenge of capturing the nuanced variability in user
responses. While recall and precision are typically used to measure model performance,
the recall rate could not be calculated because the ground truth for the spontaneous pain
points is unknown. In this case, the decision to use a single expert evaluation for validating
model precision was a practical choice for this study. However, the reliance on a single
expert introduced subjectivity that future studies could address by incorporating multi-

rater assessments or alternative validation techniques.

Although the study introduced a novel perspective by interpreting the link between
psychophysiological responses to existing theories like the arousal-valence model,
adaptive gain theory, and theory of visual scanning behaviour, the actual classification of
user responses into the fight-flight-freeze-fawn categories was not measured and
validated. The reliance on existing theories to infer these behavioural responses might
oversimplify the complexity of human reactions, which are influenced by multiple factors
beyond the psychophysiological measures considered. This study opens avenues for
future work to validate the interpretation of fight-flight-freeze-fawn response

categorization by incorporating more direct behavioural or self-reported measures and
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more advanced psychophysiological measures, providing a richer, nuanced understanding

of user reactions.

The controlled environment and specific sample size enabled precise measurement
of psychophysiological responses, but these factors limit the generalizability of findings
to broader, real-world contexts. User interactions could be influenced by a variety of
contextual factors, including workflow complexities, stress levels, and multitasking
demands. Future studies should extend this work by applying the predictive models in
real-world scenarios, considering different tasks, other enterprise systems, and diverse
user groups. This expansion would validate the models' applicability and enhance their

robustness in identifying usability challenges across varied scenarios.

Additionally, while this study primarily used k-coefficient and pupil dilation as
significant indicators in developing the predictive models, future studies could explore
and employ various indicators, machine learning techniques and other advanced signal
processing methods that could significantly improve the predictive model's performance.
The combination of these technical advancements with multi-dimensional
psychophysiological data would support more accurate, real-time detection of usability
pain points, enabling more profound insights into user behaviour and enhancing the utility

of predictive models in UX research.

Moreover, future studies could explore whether other psychological or
behavioural frameworks align more closely with the psychophysiological signatures
observed. Expanding the study to explore additional psychophysiological measures,
alongside developing the theoretical framework to include more dimensions of emotional
and cognitive responses, could provide a more comprehensive understanding of users'

interaction with usability challenges.

By addressing these avenues, future work can build on the foundation established
by this study, advancing our understanding of psychophysiological responses to usability

challenges and improving the tools available for real-time usability assessment.
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3.6 Conclusion

This research explored psychophysiological responses to usability pain points in
digital enterprise environments. It identified distinct psychophysiological signatures when
users encounter usability issues (RQ1) and determined the extent to which these patterns
reliably predict pain points in other tasks (RQ2). By integrating a novel multimodal
approach to psychophysiological measures of emotional arousal, valence, visual attention,
and cognitive load, the study provided objective, comprehensive insights into user

experiences when encountering usability challenges.

Cluster analysis revealed four unique psychophysiological response profiles,
which indicated users' diverse emotional, attentional, and cognitive responses to usability
pain points. The study identified shifts in pupil dilation and k-coefficient as reliable
indicators of usability challenges and utilized these indicators to train predictive models.
The models demonstrated moderate success in detecting spontaneous usability pain points
in non-manipulated tasks. The results highlighted the predictive models' real-time
capability to detect usability challenges.

This research opened opportunities for expanding the scope of
psychophysiological applications. Future studies could explore cross-industry
implementation, refine predictive algorithms for real-world variability, and integrate these
insights with machine learning to further advance human-computer interaction. By
linking technology and user experience, this work contributed to a more user-centered and
practical approach to identifying and predicting usability challenges experienced by users
in real-time, improving users' experience and enhancing system design in enterprise

environments.

In conclusion, this research underscores the value of psychophysiological
measures in identifying usability challenges beyond traditional methods. By advancing
predictive models and providing actionable insights, it paves the way for more precise
and user-centered design in digital enterprise environments, contributing to a future of

enhanced user satisfaction and system performance.
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Chapter 4
Can We Predict User Frustration? A Novel Approach to
Identifying Usability Pain Points in Real-Time

Kelvin Jacinto, Sylvain Sénécal, Constantinos Coursaris, Pierre-Majorique Léger,
Shang-Lin Chen, Thaddé Rolon-Mérette, Alexander Karran
HEC Montreal

4.1 Introduction

What if we could understand user frustration in real time and predict usability
issues before they arise? With the rise of Software as a Service (SaaS) in the digital
business landscape (Statista; Gartner; Haselmann & Vossen, 2011), the usability of
enterprise software is crucial. From customer relationship management (CRM) and
Human Resource Management (HRM) systems to cloud-based platforms, these tools play
a vital role in an organization’s daily operations (Klaus et al., 2000). However, the
complexity of these enterprise systems can create significant usability issues, leading to
frustrated users, reduced productivity, and even higher employee turnover. Traditional
usability assessment methods, such as post-task questionnaires and interviews, often rely
on subjective feedback (Bargas-Avila & Hornbak, 2011; Law et al., 2013; Inan Nur et
al., 2021; Perrig et al., 2024), which can be limited by social desirability and recall bias
(Kwak et al., 2021; Vrijheid et al., 2008; Horwitz et al., 2024).

This research addressed the limitations of self-reported assessment by adopting a
novel, multimodal, data-driven approach to usability assessment. This study provided a
real-time, objective view of user pain points in SaaS enterprise environments by
leveraging psychophysiological data from eye tracking metrics, electrodermal activity
(EDA), and facial expressions. The insights gained from this approach can empower
managers, system designers and UX professionals to design systems that better meet user

needs (Klotins et al., 2018; Roto & Kaasinen, 2008), ultimately improving user
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satisfaction, productivity (Costa et al., 2016), and the organization's return on investment
(ROI).

4.2 Key Research Question

The study was guided a primary research question:

e How can users’ psychophysiological response patterns be identified and

leveraged to reliably detect usability challenges in similar tasks?

This research aimed to provide a nuanced understanding of how users react to usability
challenges and how these insights can be used to train predictive models in identifying

usability pain points in a similar task in real time.

4.3 Research Methodology

This experimental study involved 86 participants, each tasked with completing
interactions on three selected SaaS platforms: Microsoft Dynamics 365 CRM, Salesforce,
and ServiceNow. Participants were exposed to manipulated usability disruptions designed
to evoke natural responses to usability pain points, with data collected on their emotional
arousal, valence, cognitive load, and visual attention. Using a combination of non-
invasive tools—such as an eye tracker, EDA sensors, and Facial Expression Recognition

(FER)—the study tracked users’ psychophysiological responses in real-time.

The research followed a multimodal approach, integrating several
psychophysiological measures to develop predictive models that could accurately detect
and forecast usability pain points. A cluster analysis was performed to identify group of
participants based on their psychological responses. Then, the predictive models were
trained using logistic regression and evaluated using recall and precision metrics. Lastly,

the predictive models’ performance was validated through expert evaluation.

4.4  Findings
The study uncovered several vital insights that managers can leverage to improve

the user experience in enterprise software.
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4.4.1 Diverse User Response Patterns

The research revealed four unique user profiles, each exhibiting distinct
psychophysiological responses to usability pain points. For instance, some users showed
high cognitive load and strong negative emotions, while others remained largely
unaffected by minor disruptions. These profiles suggest that users react differently based
on factors like differences in sensitivity to usability disruptions or varied task engagement
levels. Recognizing that users react to usability pain points in unique ways highlights the
importance of designing adaptable and customizable interfaces. Systems that offer
flexibility and adaptability can better accommodate varied user preferences and comfort
levels.
4.4.2 Reliable Predictors of Usability Pain Points

The study found that shifts in pupil dilation and visual scanning behaviour
(measured by the k-coefficient) were reliable indicators of usability pain points. In
particular, increased pupil dilation correlated with higher cognitive load, a clear sign of
user difficulty (Sweller et al., 1998; Kucewicz et al., 2018; Van Der Wel & Van
Steenbergen, 2018). By monitoring these psychophysiological indicators, managers and
UX professionals can identify and address specific usability issues that may go unnoticed
with traditional feedback methods. This allows for proactive problem-solving, reducing
frustration and enhancing task efficiency.
4.4.3 Moderate Predictive Model Accuracy

The predictive models developed in this study demonstrated moderate success in
detecting usability pain points, achieving a precision rate of approximately 48% in
identifying usability pain points in natural (unmanipulated) tasks. While not perfect, these
models represented a step forward in real-time usability pain point detection. The
developed predictive models can be integrated as an additional layer of usability
assessment during interaction with the digital enterprise system. Its capability helps detect
potential usability issues before they escalate, saving time and improving the user

experience.
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45 Best Practices and Recommendations

Based on the findings, here are some best practices and recommendations for

managers and UX professionals seeking to improve the usability of enterprise systems.

4.5.1 Integrate Psychophysiological Data in Usability Assessment

While traditional feedback methods are helpful, they may only partially capture
users' real-time experiences (Law et al., 2013). By incorporating psychophysiological data
into UX assessments, implicit usability challenges experienced by the users, which they
may not articulate themselves, can be disclosed. Using non-invasive tools such as eye
tracking, EDA sensors, and facial recognition software during usability assessment,
managers and UX professionals can comprehensively view the user's emotional and
cognitive states during interaction with the enterprise system (Dirican & Goéktiirk, 2011,
Dair et al., 2023).
4.5.2 Employ Predictive Models for Proactive Usability Management

The newly developed predictive models based on psychophysiological data offer
an objective way to anticipate and address usability pain points proactively. Integrating
these predictive models into usability evaluations allows for real-time identification of
usability issues that will enable immediate interventions to improve the user experience.
4.5.3 Develop Adaptive Interfaces to Accommodate Diverse User Profiles

The study highlights that not all users react to usability pain points, similarly,
emphasizing the need for flexible and customizable interfaces. This opens an avenue to
designing systems with adaptability in mind. Integrating features like task shortcuts and
personalized guidance can cater to diverse user profiles, thus reducing the likelihood of
frustration when interacting with the digital enterprise system.
4.5.4 Enhance UX Training for Psychophysiological Data Interpretation

To better integrate the use of the psychophysiological data on UX evaluations and
to use advanced non-invasive tools effectively, it is essential to train UX teams on
interpreting and applying psychophysiological data insights. By offering workshops or
training sessions on analyzing psychophysiological data, UX teams can familiarize
themselves with these measures, allowing them to extract more meaningful insights and

effectively make data-driven design improvements.
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4.5.5 Focus on High-Impact Usability Adjustments

The findings revealed that specific metrics, such as pupil dilation (measure for
cognitive load) and k-coefficient (measure for visual attention), are exceptionally reliable
in identifying usability pain points. In coordination with the system designers and UX
professionals, managers should prioritize design adjustments based on these indicators to
maximize UX improvements. Use insights from psychophysiological data to make
targeted adjustments to the most problematic areas within enterprise systems, focusing on
tasks with high cognitive load or intense user engagement.

4.6 Discussion

This research underscored the power of psychophysiological measures to
transform the way usability is assessed and managed in enterprise systems. For managers
and UX professionals, integrating these advanced psychophysiological measures into
usability testing and design processes opens the door to a more accurate, objective
understanding of user experiences. By adopting these practices, companies can enhance
productivity, reduce employee turnover, and improve satisfaction with enterprise
systems.

Furthermore, these findings highlighted the potential for developing adaptive,
responsive systems that proactively meet user needs. As enterprise software continues to
play a pivotal role in organizational success, the insights from this research offer a
competitive edge, positioning companies to optimize their digital tools for maximum
usability and impact. Embracing these innovations can provide organizations with a
strategic advantage, ensuring that their technology investments yield substantial returns
and contribute positively to employee experience and operational efficiency.
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Chapter 5

Thesis Conclusion

This research's primary objective was to investigate users' psychophysiological
signatures when they encounter usability pain points in digital enterprise environments.
Specifically, the study aimed to identify users' distinct psychophysiological response
patterns when encountering usability issues (RQ1) and to what extent does these
psychophysiological signatures identify usability pain points in another similar task
reliably (RQZ2). By exploring these questions, the study enhanced our understanding of
how psychophysiological measures can be used to offer objective insights into user

experiences, particularly in the context of usability assessment.

5.1 Key Findings

The research revealed several significant findings related to the
psychophysiological responses to usability pain points. Through cluster analysis, four
distinct user profiles were identified, each exhibiting unique patterns of emotional arousal,
valence, visual attention, and cognitive load when exposed to usability challenges. The
profiles highlighted variability in user responses, suggesting that not all users react
uniformly to usability issues. Moreover, the study successfully developed predictive
models that utilized these psychophysiological signatures to identify usability pain points.
This proved that specific psychophysiological measures particularly shift in pupil dilation
and k-coefficient, can serve as reliable indicators of disruptions in user experience.
Despite some limitations in model performance, the results showed that the predictive
models could find usability pain points with moderate precision, even in tasks that were
not directly manipulated with usability pain points, highlighting the predictive models’

capabilities in detecting usability challenges.

5.2 Implications for Research and Practice
The findings of this research have significant implications in UX and HCI

research. This study challenged the notion that all users respond similarly to usability



issues, thus enriching the existing theories in UX research. By demonstrating the diversity
in psychophysiological responses, the study opened avenues for deeper investigation into
the psychological and situational factors that may influence individual differences in user
experiences. From a practical standpoint, the ability to monitor and identify usability pain
points in real time using psychophysiological measures provides a powerful tool for
system designers and UX researchers. This could lead to improved software design that
prioritizes user satisfaction and engagement, ultimately enhancing productivity in
enterprise settings. The multimodal approach employed in this study contributes to the
methodological toolkit available for UX researchers. By integrating various
psychophysiological measures, the research presents a robust framework for capturing
and analyzing user responses, paving the way for future studies to explore the

complexities of user behaviour in digital environments further.

5.3 Limitations and Future Directions

While this study has made significant strides in understanding
psychophysiological responses to usability challenges, it has limitations. Given the
moderate precision and recall achieved, future research could explore advanced machine-
learning algorithms and signal-processing techniques to enhance model accuracy.
Techniques such as deep learning could provide better generalization and higher accuracy
in detecting subtle psychophysiological cues. To address the limitations introduced by a
single expert for validation, future studies should incorporate multi-rater assessments or
alternative validation techniques, reducing subjectivity and increasing reliability. Also,
this study was conducted in a controlled laboratory setting, recommending future studies
to apply the predictive model in real-world settings, with diverse user groups and
enterprise systems, that would help generalize findings and assess the robustness of the
model in detecting natural usability pain points under varied conditions. Expanding the
scope to include other psychophysiological methods, such as heart rate variability or
brainwave patterns, could offer a more comprehensive understanding of users' cognitive

and emotional states.
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Additionally, integrating direct behavioural or self-reported measures could help
validate the inferred fight-flight-freeze-fawn responses, enhancing the interpretability of
psychophysiological data. Investigating whether other psychological frameworks align
more closely with the observed psychophysiological signatures could provide deeper
insights. Expanding the theoretical framework to incorporate a broader range of emotional
and cognitive responses could enrich our understanding of user interactions during

challenging tasks.
5.4 Practical Recommendations

Furthermore, the study highlighted the significant potential of incorporating
psychophysiological data, predictive modelling, and adaptive design strategies to enhance
the usability of enterprise systems. By integrating tools such as eye tracking, EDA
sensors, and facial recognition software, organizations can gain deeper insights into users’
emotional and cognitive responses, uncovering implicit usability challenges. The use of
predictive models enables proactive identification and resolution of usability pain points,
shifting usability management from reactive to anticipatory. Furthermore, designing
adaptive interfaces tailored to diverse user profiles and training UX teams to interpret
psychophysiological data ensures targeted and effective system improvements.
Prioritizing high-impact usability adjustments based on reliable metrics, such as pupil
dilation and the k-coefficient, further optimizes system design and user satisfaction.
Collectively, these strategies provide a data-driven approach to usability enhancement,
offering practical value for improving user experiences and driving system adoption in

enterprise environments.

The study offered practical insights to improve the usability of enterprise systems
for different professional roles. By utilizing the predictive models, UX designers and
system developers could enhance decision-making based on real-time user insights and
address usability issues preemptively. Human Resources and learning development
professionals could utilize these models to improve training programs, facilitating
employees' acclimatization to new digital tools. Management could leverage these

insights as a strategic advancement in the competitive digital market to enhance
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productivity, satisfaction, and retention, increasing the return on investment. This research
advocates for user-centered, efficient, and adaptable enterprise systems while

encouraging interdisciplinary collaboration.

In conclusion, this study demonstrated that psychophysiological measures can
provide valuable insights into identifying usability pain points that traditional self-
reporting methods may overlook. By developing and validating a multimodal approach
that combines various physiological signals and assessing different aspects of user's
response, this research advanced both the theoretical understanding and practical
application of psychophysiology in UX research. While limitations exist, the findings
paved the way for future work to refine predictive models and broaden the application of
psychophysiological data in real-time usability assessment. Ultimately, this research
contributed to a future where user experiences can be optimized with greater precision,
transforming enterprise system design and enhancing user satisfaction across digital

environments.
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Appendices

Appendix A — Task Instructions

Task 1 instructions for both Microsoft Dynamics and Salesforce
Tache 1:

M. John Smith est un nouveau client de I'entreprise. Votre tache consiste a ajouter M.
Smith au systéme en tant que contact client.

Vous trouverez les informations concernant M. Smith sur I'iPad qui vous a été fourni.
Utilisez ces informations pour compléter le dossier de contact du client.

Il est fortement recommandeé de suivre la procédure standard de création d'un
contact, comme indiqué dans la courte vidéo d'accueil. Il est bon de noter que le
systeme a été congu pour accomplir la tache par des voies alternatives.

Veuillez informer le modérateur lorsque vous avez fini de lire les instructions ci-dessus.

Veuillez attendre les instructions suivantes.

Task 2 instructions for Salesforce
Tache 2;

Vous avez recu un courriel de Mme Jane Doe concernant une demande de
renseignements sur la machine a café qu'elle vient d'acheter. La machine a café n'a pas
pu s'allumer. Mme Doe cherche a obtenir de l'aide pour résoudre le probléme. Votre
tache consiste a créer un dossier requétes pour Mme Jane Doe.

Vous trouverez les informations concernant le cas de Mme Doe sur I'iPad qui vous a été
fourni. Utilisez ces informations pour compléter le dossier requétes du client.

1l est fortement recommandé de suivre la procédure opérationnelle standard pour
création d'un dossier, comme indiqué dans la courte vidéo d'introduction. Il est bon
de noter que le systeme a été congu pour accomplir la tAche par des voies alternatives.

Veuillez informer le modérateur lorsque vous avez fini de lire les instructions ci-dessus.

Veuillez attendre les instructions suivantes.



Task 2 instructions for Microsoft Dynamics
Tache 2:

Vous avez recu un courriel de Mme Marléne Dumoulin concernant une demande de
renseignements sur la machine a café qu'elle vient d'acheter. La machine a café n'a pas
pu s'allumer. Mme Doe cherche a obtenir de I'aide pour résoudre le probléme. Votre
tache consiste a créer un dossier requétes pour Mme Marléne Dumoulin.

Vous trouverez les informations concernant le cas de Mme Dumoulin sur I'iPad qui vous
a été fourni. Utilisez ces informations pour compléter le dossier requétes du client.

Il est fortement recommandé de suivre la procédure opérationnelle standard pour
création d'un dossier, comme indiqué dans la courte vidéo d'introduction. Il est bon
de noter que le systéeme a été congu pour accomplir la tache par des voies alternatives.

Veuillez informer le modérateur lorsque vous avez fini de lire les instructions ci-dessus.

Veuillez attendre les instructions suivantes.

Task 3 instructions for ServiceNow

Tache 3:

Vous avez regu un courriel d'une cliente, M. Hector Currie, concernant une demande de
mise a jour du logiciel de son ordinateur. Le logiciel est obsoléte et a besoin d'une mise
a jour. M. Currie cherche de I'aide pour résoudre le probléme. VVotre tache consiste a
créer un dossier pour M. Currie.

Vous trouverez les informations relatives au dossier de M. Currie sur I'iPad qui vous a
été fourni. Utilisez ces informations pour compléter le dossier cas du client.

Il est fortement recommandé de suivre la procédure opérationnelle standard pour
créer un dossier, comme indiqué dans la courte vidéo d'introduction. Il est bon de
noter que le systeme a été congu pour accomplir cette tache par d'autres voies.

Veuillez informer le modérateur lorsque vous avez fini de lire les instructions ci-dessus.

Veuillez attendre les instructions suivantes.



Appendix B — Short Training Video before each Task

The participants are shown a short training video of the enterprise system they are
assigned to before they perform the task.

Microsoft Dynamics Training (French): https://youtu.be/cfYfzPnwUk4

Salesforce Training Video (French): https://youtu.be/PXLuaznoo-A

ServiceNow Training Video (French): https://youtu.be/2Auz7ysTSuM

Appendix C — Required information to accomplish the task

The training videos (Appendix B) and the information required (below) to accomplish
the task are shown on an iPad.

Group A (Task 1 & Task 2 — Microsoft Dynamics; Task 3 — ServiceNow):
https://sway.cloud.microsoft/ KWgfEQ8FANGSTJIXD?ref=Link&loc=play

Group B (Task 1 & Task 2 — Salesforce; Task 3 — ServiceNow):
https://sway.cloud.microsoft/82mHEGENnSUIZZsoO?ref=Link&loc=play

Information required for Task 1 for both Microsoft Dynamics & Salesforce

TACHE 1: CREER UN CONTACT

Veuillez utiliser les informations ci-dessous pour créer un dossier de
contact client.

Formule d'appel (le cas échéant) : Mr

Prénom : John

Nom de famille : Smith

Nom du compte : Café Rouge

Numeéro de Téléphone mobile: 902-330-3388

Courrier électronique : johnsmith@gmail.com

Adresse : 3280 Rue Goyer, Montréal, QC H3S 1J1

Lorsque vous avez terminé la tache, veuillez en informer le modérateur.



https://youtu.be/cfYfzPnwUk4
https://youtu.be/PXLuaznoo-A
https://youtu.be/2Auz7ysTSuM
https://sway.cloud.microsoft/KWgfEQ8FANGSTJXD?ref=Link&loc=play
https://sway.cloud.microsoft/82mHEGEnSUIZZsoO?ref=Link&loc=play
mailto:johnsmith@gmail.com

Information required for Task 2 for Microsoft Dynamics

TACHE 2: CREER UN INCIDENTS
Veuillez utiliser les informations ci-dessous pour créer un dossier incidents
client.

« Nom du client : Marlene Dumoulin

o Titre de l'affaire : Product Malfunction

o Type de incidents : Probléme

e Origine: E-mail

e Sujet: Général

e Produit : Café Duo

« Description : La machine a café ne s'allume pas

Lorsque vous avez terminé la tache, veuillez en informer le modérateur.

Information required for Task 2 for Salesforce

TACHE 2: CREER UNE REQUETE
Veuillez utiliser les informations ci-dessous pour créer un dossier requéte
client.

o Type d'enregistrement : RFI

e Nom du client : Jane Doe

o Compte : Coffee Lab

o Statut : New

e Origine de la requéte : Email

e Type: Problem

o Motif de la requéte: New problem

e Priorité : Medium

e Objet : Alimentation de la machine a café

« Description : La machine a café n'arrive pas a se mettre en marche

Lorsque vous avez terminé la tache, veuillez en informer le modérateur.



Information required for Task 3 for ServiceNow

TACHE 3: CREER UN CAS (SERVICENOW)
Veuillez utiliser les informations ci-dessous pour créer un dossier cas
client.

o Type d'affaire : Commander

o Canal : Email

o Entreprise : Golddex

o Contact : Hector Currie

e Priorité : Moderate

o Affecté a: Jamie Erwin

o Courte description : Demande d'un nouveau logiciel ou d'une mise & jour



Appendix D — Expert Evaluation Protocol

PROTOCOL for INTER-RATER RELIABILITY
Define the observation time frame.
10s before the PP marker time
10s after the PP marker time
Step 1 *This will be the time frame where you begin your observation and end the observation
Watch the video and assess if the user is experiencing a pain point or not.
Scale assessment from 0-3.
Pain Point Assessment
0: Absolutely not a Pain Point
1: Somewhat a Pain Point
2: Most likely a Pain Point
Step 2 3: Absolutely a Pain Point
Type of Pain Point
Identify what type of pain point the user is experiencing in the video.
If itis a Pain Point, what type of Pain Point do you think it was?
0: Not a Pain Point
1: PP1: Actively searching, trying to understand
2: PP2: Frustrated, not making effort
3: PP1 & PP2: mix of actively searching and frustration
4: PP1.a: Actively searching only
5: PP1.b: Trying to understand
6: PP2.a: Frustrated
Step 3 7: PP2.b: not making an effort
Saccade/Eye Jumps
Rewatch the video, but this time you will be ohserving the saccade/eye jumps exhibited by the user within the observation time frame.
Does the participant show erratic eye jumps that deviates from the group of saccades within the observation time?
0: Smooth: No noticeable eye jumps beyond typical saccades (small, rapid eye movements between fixation points).
1: Occasional: Participant shows occasional, brief eye jumps that deviate slightly from the group's saccade patterns. (1 to 3 long eye
jumps)
2: Frequent: Participant exhibits frequent and/or sustained eye jumps that significantly deviate from the group's saccade patterns. (4
or more)
Note: Only count eye jumps (long) that deviates from the group of saccades. Please note that the participant may not show eye data
|Step 4 because they were looking at the iPad. Also, disregard eye jumps when interface switches from one page to another.
Scan Path Pattern
Rewatch the video, but this time you will be observing the scan path pattern exhibited by the user. within the observation time frame.
Does the participant's scan path pattern shows logical progression as they explore the screen within the observation time?
0: Highly Systematic: Participant's scan path follows a clear and logical progression, efficiently moving between relevant areas of the
screen in a way that suggests a strategic exploration.
1: Somewhat Orderly: Participant shows some attempt at logical progression, but there might be backtracks, revisits, or inefficient
jumps between areas of interest
Step 5 2: Random: Participant's eye movements show no clear order or progression as they explore the screen.




Regressions
Rewatch the video, but this time you will be observing the regressions exhibited by the user within the observation time frame.

Does the participant look back at the previously visited area, button, or field?

0: Minimal Regressions: Participant shows very few instances of revisiting previously fixated areas. Their scan path progresses
smoothly with minimal backtracking (0 to 1 times).

1: Moderate Regressions: Participant exhibits some regressions, revisiting previously fixated areas occasionally. (2 to 3 times)

2: Excessive Regressions: Participant frequently revisits previously fixated areas. Their scan path shows a lot of backtracking and may

I|Step6 appear scattered. (4 or more)

Fixations

Rewatch the video, but this time you will be observing the fixations exhibited by the user within the observation time frame.

Did the participant showed longer fixation time on different elements during the obeservation timeline?

0: Uniform Fixation: Participant showed similar fixation times on all elements (short fixations), or there were no clear differences in

fixation durations between elements. (0-1 long fixation)

1: Varied Fixation: Participant exhibited some variation in fixation times between elements. There might be a few elements that stood

out with slightly longer or shorter fixations compared to the rest. (2-3 long fixations)

2: Distinct Fixation: Participant showed clear and significant differences in fixation times between elements. Some elements held the
IStep7 participant's attention for much longer than others. (4 or more)

Hesitations

Rewatch the video, but this time you will be observing the hesitation exhibited by the user within the observation time frame.

Pay attention to the cursor movement. Does it hover over an element for an unusually long time before clicking?

0: No Unusual Hovers: The cursor hovers over elements for a typical amount of time before clicking. There's no indication of

hesitation or prolonged focus on specific elements.

1: Occasional Long Hovers: The cursor occasionally hovers over an element for a slightly longer duration than usual before clicking.

This might happen once or twice during the observation period. (1 or 2 times)

2: Frequent Long Hovers: The cursor frequently hovers over elements for an unusually long time before clicking. (3 or more)

Note: Disregard cursor hovers if the participant is typing, reading, or scrolling. Also, if there is no eye-tracking data on the screen, the
|Step 8 participant might be looking at the iPad, do not count this as "hovers". Make your own judgement if hovering is hesitating to click.

Step9

Cursor Movement
Rewatch the video, but this time you will be ohserving the cursor movement exhibited by the user within the observation time frame.

Does the cursor move back and forth repeatedly between sections of the screen or elements with no click event?

0: No Back-and-Forth: The cursor moves purposefully between sections of the screen or elements without repeated back-and-forth
movements. Clicks likely happen after reaching the intended section.

1: Occasional Back-and-Forth: The cursor occasionally makes brief back-and-forth movements between sections or elements before
settling or clicking. (1 or 2 times)

2: Frequent Back-and-Forth: The cursor frequently moves back and forth repeatedly between sections of the screen or elements
without clicking. (3 or more)
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Missed Clicks
Rewatch the video, but this time you will be observing the missed clicks exhibited by the user within the observation time frame.

Did the participant need to reclick an item because it is not what they intented to click?

0: No Reclicks: The participant clicked on items only once and did not need to reclick anything to achieve their intended action.

1: Single Reclick: The participant reclicked on an item once, possibly due to a minor misclick or needing to confirm their selection. (1
reclick)

2: Multiple Reclicks: The participant reclicked on items multiple times, suggesting significant difficulty selecting the intended target.
(2 or more reclicks)

NOTE: This click action refers to the participant going back and correcting their previous click to achieve their intended action. If it is

Step 10  [not the case, please see next column "Re-evaluation Click".
Re-evaluation Clicks
Rewatch the video, but this time you will be observing the re-evaluation clicks exhibited by the user within the observation time frame.
Did the participant clicked an element (button, field, etc), and clicked a different element, then went back and reclicked the initial
element clicked during the observation time period?
0: No Re-evaluation Clicks: The participant clicks an element and completes the action without revisiting the same element.
1: Single Re-evaluation Click: The participant clicks an element, then clicks a different element, but returns to the initial element with
asingle re-click.
2: Multiple Re-evaluation Clicks: The participant clicks an element, then clicks a different element, and then reclicks the initial
element multiple times (more than once) within the observation period.
NOTE: For this category, element refers to buttons, text box field, drop down menus, etc)

|Step 11

Step 12

Audio Reactions
Rewatch the video, but this time you will be observing the audio reactions exhibited by the user within the observation time frame.

Did the participant produce audio reactions while performing the task?

0: No Audible Reactions: The participant remains silent throughout the task, producing no audible sounds like sighs, grunts, or
verbalizations.

1: Occasional Vocalizations: The participant occasionally produces brief, quiet vocalizations like sighs, soft murmurs, or single
words. (1 or 2 audio)

2: Frequent Vocalizations: The participant frequently produces vocalizations that might be louder, more sustained, or involve clear
words or phrases. (3 or more)
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