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Résumé 

La complexité croissante des systèmes numériques a mis en évidence les limites 

des évaluations traditionnelles de la facilité d'utilisation, en particulier celles qui reposent 

exclusivement sur des mesures autodéclarées sujettes à des biais tels que la mémorisation 

et la désirabilité sociale. Cette étude répond au besoin de méthodes plus objectives en 

examinant les biosignaux qui offrent des mesures précises des réactions corporelles afin 

d'identifier et de prédire les problèmes d'utilisabilité dans le contexte des interfaces 

numériques. Elle a exploré des signatures psychophysiologiques distinctes d'utilisateurs 

interagissant avec une application numérique et a évalué leur fiabilité pour prédire les 

problèmes d'utilisabilité dans des environnements d'entreprises commerciales. 

L'étude a introduit une approche multimodale utilisant des mesures 

psychophysiologiques combinées de l'excitation émotionnelle, de la valence, de la charge 

cognitive et de l'attention visuelle de 86 participants qui ont effectué des tâches dans trois 

systèmes d'entreprise. Des points douloureux ont été introduits artificiellement dans des 

tâches contrôlées afin de susciter des réponses psychophysiologiques. L'analyse en 

grappes a révélé quatre profils d'utilisateurs distincts pour ces points douloureux 

artificiellement induits. L'étude a utilisé la régression logistique pour former des modèles 

prédictifs permettant d'identifier le moment où les utilisateurs rencontrent des points de 

douleur lors d'une tâche naturelle. 

Cette étude expérimentale a impliqué 86 participants, chacun chargé d'effectuer 

des interactions sur trois plateformes SaaS sélectionnées. Les participants ont été exposés 

à des perturbations manipulées de l'utilisabilité conçues pour évoquer des réponses 

naturelles à des points de douleur de l'utilisabilité, et des données ont été collectées sur 

leur éveil émotionnel, leur valence, leur charge cognitive et leur attention visuelle. En 

utilisant une combinaison d'outils non invasifs, tels qu'un oculomètre, des capteurs EDA 

et la reconnaissance des expressions faciales (FER), l'étude a suivi les réponses 

psychophysiologiques des utilisateurs en temps réel.  La recherche a suivi une approche 

multimodale, intégrant plusieurs mesures psychophysiologiques pour développer des 

modèles prédictifs capables de détecter et de prévoir avec précision les points de douleur 
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liés à l'utilisabilité.  Une analyse en grappes a été réalisée pour identifier les groupes de 

participants sur la base de leurs réponses psychologiques. Ensuite, les modèles prédictifs 

ont été entraînés à l'aide de la régression logistique et évalués à l'aide de mesures de rappel 

et de précision. Enfin, les performances des modèles prédictifs ont été validées par une 

évaluation d'experts.  

Les principaux résultats comprennent l'identification de signatures 

psychophysiologiques uniques et le succès prédictif modéré des modèles utilisant la 

dilatation de la pupille et le coefficient k comme indicateurs significatifs. Malgré la 

variabilité individuelle et les défis de précision modérés, ces résultats ont démontré la 

faisabilité de l'utilisation de mesures psychophysiologiques pour l'évaluation de 

l'utilisabilité en temps réel. 

Cette recherche a permis de mieux comprendre les réactions des utilisateurs aux 

problèmes de convivialité dans les environnements des entreprises commerciales. Elle a 

mis en évidence le potentiel des données psychophysiologiques dans l'évaluation de la 

convivialité en temps réel. Elle a abordé les défis posés par l'utilisation d'évaluations auto-

déclarées. 

Mots-clés : signatures psychophysiologiques, utilisabilité, points de douleur, modèle 

prédictif, analyse en grappes. 
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Abstract 

The increasing complexity of digital systems has highlighted the limitations of 

traditional usability assessments, particularly those relying exclusively on self-reported 

measures prone to biases such as recall and social desirability. This study addressed the 

need for more objective methods by examining biosignals which offers precise 

measurements of bodily reactions to identify and predict usability challenges in the 

context of digital interfaces. It explored distinct psychophysiological signatures of users 

interacting with a digital application and evaluated their reliability in predicting usability 

issues in business enterprise environments. 

The study introduced a multimodal approach using combined psychophysiological 

measures of emotional arousal, valence, cognitive load and visual attention from 86 

participants who performed tasks in three enterprise systems. Pain points were introduced 

artificially in controlled tasks to elicit psychophysiological responses. Cluster analysis 

revealed four distinct user profiles to these artificially induced pain points. The study used 

logistic regression to train predictive models to identify when users encounter usability 

pain points on a natural task. 

This experimental study involved 86 participants, each tasked with completing 

interactions on three selected SaaS platforms. Participants were exposed to manipulated 

usability disruptions designed to evoke natural responses to usability pain points, with 

data collected on their emotional arousal, valence, cognitive load, and visual attention. 

Using a combination of non-invasive tools—such as an eye tracker, EDA sensors, and 

Facial Expression Recognition (FER)—the study tracked users’ psychophysiological 

responses in real-time.  The research followed a multimodal approach, integrating several 

psychophysiological measures to develop predictive models that could accurately detect 

and forecast usability pain points.  A cluster analysis was performed to identify group of 

participants based on their psychological responses. Then, the predictive models were 

trained using logistic regression and evaluated using recall and precision metrics. Lastly, 

the predictive models’ performance was validated through expert evaluation.  
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The key results included the identification of unique psychophysiological 

signatures and the moderate predictive success of models using pupil dilation and k-

coefficient as significant indicators. Despite individual variability and moderate precision 

challenges, these results demonstrated the feasibility of using psychophysiological 

measures for real-time usability assessment. 

This research advanced the understanding of user responses to usability pain 

points in business enterprise environments. It underscored the potential for 

psychophysiological data in real-time usability evaluation. It addressed the challenges 

when using self-reported assessment. 

Keywords : psychophysiological signatures, usability, pain points, predictive model, 

cluster analysis 
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Preface 

My academic and professional background has always centered on the intersection 

of technology and human behavior. With a strong foundation in Human Resources and 

User Experience, I have been fascinated by how users, specifically employees, interact 

with digital systems, particularly in business enterprise environments. This fascination 

became the driving force behind my pursuit of understanding the challenges and 

opportunities within enterprise systems—a realm where usability and efficiency often 

collide. 

The inspiration for this research stemmed from observing how seemingly minor 

usability issues can have profound implications in business settings, from reduced 

productivity to employee frustration and even attrition. Witnessing these challenges 

firsthand in conversations with professionals motivated me to explore how advanced 

methodologies, like psychophysiological measures, could provide unique insights into 

user experiences and help alleviate these challenges. 

This work is significant because it addresses a critical gap in usability research: 

the need for objective, real-time data that reflects users’ emotional, cognitive, and 

attentional states. While traditional usability methods rely heavily on subjective feedback, 

this research explores the potential of psychophysiological data to offer deeper, actionable 

insights. I believe that these findings have implications beyond academia, benefiting 

businesses striving for more user-centered systems and fostering more productive and 

satisfying work environments. 

The primary audience for this work includes researchers and practitioners in the 

fields of human-computer interaction, user experience, psychophysiology, and enterprise 

system design. It may also resonate with professionals tasked with technology adoption 

and implementation in organizational settings. 

In the chapters that follow, readers can expect a deep dive into the methodology, 

findings, and implications of leveraging psychophysiological data to identify usability 
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pain points. This thesis explored how psychophysiological signatures uncover various 

user behavior and predict usability challenges, ultimately contributing to more effective 

system design. 

One particularly interesting insight from this research is the discovery of distinct 

psychophysiological signatures linked to user experiences. These signatures not only 

confirm the emotional and cognitive impact of usability challenges but also highlight the 

potential for predictive modeling in enhancing user experience. It is my hope that this 

work will inspire further exploration into the integration of psychophysiological data in 

usability research and system development. 
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Chapter 1 

Introduction 

1.1 Background 

The ongoing evolution of digital systems has led to their increased complexity, 

requiring sophisticated methods for assessing and optimizing user experience (UX). 

While the increasing popularity of enterprise software solutions such as Enterprise 

Resource Planning (ERP) and Software-as-a-Service (SaaS) platforms have 

revolutionized business processes (Klaus et al., 2000; Haselmann & Vossen, 2011; Yusuf 

et al., 2018), their usability remains a critical challenge. In Canada, the SaaS market is 

experiencing significant growth due to trends in collaboration-focused markets, CRM and 

HRMS software adoption, customer preferences for cloud-based solutions, government 

support for digital transformation and a diverse business landscape such as remote work 

(Statista). With the rise of enterprise software solutions, research on user experience (UX) 

in these digital systems need to be adequately addressed in UX research. 

The International Organization for Standardization (2019) defined UX as "the 

user's perceptions and responses resulting from using or anticipating a system, product or 

service." The concepts of usability assessment are widely used to measure user experience 

to ensure that design solutions are practical and centered around user needs. This user-

centered design philosophy emphasizes the importance of understanding user experiences 

and expectations, which can lead to more effective and engaging digital products (Klotins 

et al., 2018; Berni et al., 2023). Research showed that poor usability in digital interfaces 

and applications, such as health tracking platforms, can result in user abandonment (Saleh 

et al., 2021). Moreover, Pittet and Barthélemy (2015) highlighted the importance of 

optimizing user interface design and tailoring SaaS systems to users' preferences, essential 

for enhancing user experience. Factors such as user expectations, environmental 

conditions, and the system's capacity to meet the current user needs impact overall user 

sentiment (Roto & Kaasinen, 2008).  
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1.2 Research Problem and Gap  

User Experience (UX) research has historically relied heavily on self-reported 

assessments, such as surveys, interviews, and questionnaires (Bargas-Avila & Hornbæk, 

2011; Inan Nur et al.,2021; Perrig et al., 2024), to understand users' perceptions, emotions, 

and interactions with products and services (Brunn et al., 2016). Studies like those by 

Bargas-Avila and Hornbæk (2011) and Inan Nur et al. (2021) have demonstrated the 

dominance of these methods, with over 50% of UX studies employing questionnaires. 

However, while self-reported assessments are perceived as practical and easy to 

administer (Law et al., 2013), they are prone to various biases that undermine the insights' 

accuracy, such as social desirability and recall bias (Kwak et al., 2021; Vrijheid et al., 

2008; Horwitz et al., 2024), which can distort the accuracy of the data. Therefore, one of 

the primary challenges is finding reliable and objective ways to assess usability challenges 

experienced by users beyond self-reporting. 

1.3 Significance of the Study 

Psychophysiological signatures are objective biological signals that reflect an 

individual's emotional, cognitive, and psychological states, derived from physiological 

responses such as heart rate variability, skin conductance, and brain activity (Chang et al., 

2015; Ajenaghughrure et al., 2020). These signatures hold significant potential in 

complementing self-reported assessments, which are often susceptible to biases and 

inaccuracies stemming from subjective interpretation and social desirability effects 

(Ajenaghughrure et al., 2020; Wager et al., 2013). For instance, while self-reports can 

offer insights into an individual's conscious experience and emotional states, 

psychophysiological measures provide a more objective perspective, allowing researchers 

to observe the underlying biological processes that correspond to these experiences 

(Chang et al., 2015; Visser et al., 2017). While psychophysiological measures may not 

always precisely capture bodily reactions, they provide a valuable complementary 

perspective. For instance, Barreto et al. (2007) demonstrated the effectiveness of these 

measures in detecting stress levels through heart rate variability. Similarly, Maia and 

Furtado (2019) used galvanic skin response to monitor emotional responses, while 
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Ferreira et al. (2014) assessed cognitive load during interactions using 

electroencephalography (EEG). 

Despite the growing interest in psychophysiological approaches to usability 

assessment (Apraiz et al., 2021), limited research integrated multiple psychophysiological 

measures to capture a user's real-time response to usability challenges comprehensively. 

Furthermore, to our knowledge, prior research has yet to develop predictive models that 

could anticipate usability issues in future tasks. Therefore, integrating 

psychophysiological methods and predictive models to detect usability challenges would 

be a promising avenue for enhancing real-time usability monitoring and system 

optimization.  

The study's primary purpose is to explore and leverage psychophysiological data 

to identify and predict usability challenges users encounter when interacting with a 

business enterprise platform. Specifically, this research identified distinct users' 

psychophysiological response patterns when encountering usability issues. Moreover, the 

study examined the reliability of the uncovered psychophysiological signature to identify 

usability obstacles that users experienced in another similar task. This study provided a 

novel methodology for improving real-time usability assessment by addressing these 

objectives. 

 

1.4 Implications 

This study has significant implications for both academic and practical domains. 

The study enriched our understanding of user responses to usability challenges by 

introducing a multimodal approach to usability assessment. In the real world, this research 

offered a valuable framework for system designers, managers, and UX professionals to 

anticipate usability obstacles, enabling them to prioritize usability improvements based 

on objective, real-time data proactively. Such advancements can enhance employee 

satisfaction, reduce training costs, and increase the efficiency of enterprise systems, 

aligning with organizational goals. 
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1.5 Theoretical Framework 

The study is grounded in established psychophysiological theories of emotional 

and cognitive responses, including the arousal-valence model and adaptive gain theory. 

These frameworks helped interpret the psychophysiological signatures captured in the 

study, linking changes in emotional arousal, valence, cognitive load, and visual attention 

to specific user experiences during task performance. The study built a robust conceptual 

foundation for understanding usability challenges by situating the research within these 

theoretical models. 

1.6 Methodological Approach 

The research employed a mixed-subjects experimental design involving 86 

participants who performed various tasks on business enterprise platforms. 

Psychophysiological data were collected around the artificially manipulated usability 

disruption, which was placed on Task 1 and Task 2, including electrodermal activity, 

facial expressions, pupil dilation, and k-coefficient. Cluster analysis was used to identify 

distinct psychophysiological response patterns to the usability disruptions experienced by 

users during their interactions with a digital interface, and logistic regression models were 

trained to predict the occurrence of these disruptions on a natural task. The models were 

tested on a task free of manipulated usability obstacles, Task 3, to evaluate their 

performance and reliability. 

1.7 Scope and Limitations 

The study focused on business SaaS platforms, specifically Microsoft Dynamics 

365, Salesforce, and ServiceNow. While the research provided novel insights into real-

time usability assessment, its findings were constrained by the controlled laboratory 

setting, specific stimuli and tasks used and the moderate predictive accuracy of the 

models. Future research should validate these findings in diverse environments, other 

business enterprise platforms and task sets and explore advanced machine-learning 

techniques to improve model reliability. 
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This research study used the term "usability pain point (UPP)" to refer to the 

psychophysiological response to usability challenges experienced by users during their 

interaction with a digital interface. 

1.8 Thesis Structure 

This thesis started with an introduction to the context of the study, including the 

problem statement, importance, and objectives. This is followed by an in-depth literature 

review, examining prior work on conventional usability assessments and 

psychophysiological methods in UX research. Chapter 3 presented the scientific article 

prepared to be submitted to the journal Computers in Human Behavior Reports. This 

article introduced a novel multimodal approach to identifying and predicting usability 

pain points, a detailed experimental method was presented, and key findings were 

discussed. In Chapter 4 of this thesis, a short managerial article was written, which 

included a summary of the study, the key findings, and best practices and 

recommendations. The last chapter provided a thesis conclusion that provides a summary 

of the entire study.  

This thesis was completed in the Tech3Lab, involving multiple collaborators with 

differing input levels throughout various stages. The student's intellectual contributions 

to each part of the thesis are detailed in the Table 1 below.  

Table 1.  

Student’s contribution and responsibilities in the realization of this thesis 

Stage in the process Contribution 

Research Question Identified gaps in current literature and defined the research problem [80%] 

• Defined research questions 

• Identified the constructs to be tested 

Literature Review Conducted relevant literature search, read scientific articles relevant to the 

research. [100%] 

Experimental Design Applied to the Research Ethics Board (REB) [60%] 

• Prepared documentation related to the submission of the 

application to the CER  

 

Developed experimental protocol and stimuli [80%] 

• Created experimental protocol, questionnaires, task instructions, 

short onboarding videos for the experiment 

• Determined the tasks to be performed by the participants on the 

stimuli 
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• In collaboration with a research assistant, configured stimuli to 

apply the artificial pain point 

Recruitment,  

Pre-testing and Data 

Collection 

Recruited participants for data collection [20%] 

• Provided inclusion and exclusion criteria for participant 

recruitment (The Tech3Lab operations team oversaw the 

guidelines, collected data using the institution’s recruitment panel, 

and distributed the compensation for this study) 

• Coordinated participant's schedules; this includes cancellation, 

rescheduling, and other requests. 

 

Managed Pre-testing and data collection [100%] 

• Oversaw the data collection and managed participants' experience 

during the study 

• Monitored and managed stimuli assignment (randomly assigned, 

but switching from one stimulus to the other is not done 

automatically and required manual intervention; this includes 

applying the manipulated pain point to the stimuli and removing it 

after) 

Data Analysis Prepared data for analysis and analyzed the results [60%] 

(The data file for the analysis statistics was formatted by the lab 

statistician) 

Writing the thesis Wrote the thesis and the articles [100%] 

(The student was guided by their supervisor with their constructive 

feedback through the process) 

*These percentages did not consider the support and input of the directors during this project. 
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Chapter 2 

Literature review 

2.1 Challenges in Usability Assessment 

User experience (UX) relies heavily on self-reported assessment to gather 

subjective data about users' feelings, perceptions, and experiences with products or 

services. This is heavily supported by research paper reviews conducted in the past and 

recent years. A study conducted by Bargas-Avila & Hornbæk (2011), which critically 

analyzed 66 empirical studies on UX conducted between 2005 and 2009, found that the 

dominant method used was questionnaires appearing in 53% of the studies reviewed. Inan 

Nur et al. (2021) found that 95% used self-reported measures for UX evaluation on the 

61 research papers reviewed from 2000 to 2019. Also, a recent systematic review by 

Perrig et al. (2024), which screened 153 research papers from the ACM Conference on 

Human Factors in Computing Systems proceedings from 2019 to 2022, identified 85 

survey scales used in the reviewed research papers. Indeed, self-reported assessments are 

widely used in UX research.    

However, this reliance on self-reported measures has its challenges. Law et al. 

(2013) explored the attitudes of UX researchers and practitioners toward UX 

measurements and found that while most respondents' views are generally positive, UX 

professionals showed mixed feelings and were often skeptical of self-reported measures. 

Self-reported assessments were seen as practical for capturing subjective experiences but 

were criticized for potential bias as they rely on users' interpretations and memory (Law 

et al., 2013). 

One of the primary biases in self-reported assessments is the social desirability 

bias, where users may provide answers, they believe are more socially acceptable rather 

than their true feelings or experiences (Nederhof, 1985). For instance, a study conducted 

by Kwak et al. (2021), which examined social desirability bias focusing on survey-based 

studies that deal with mobile loafing – non-related mobile internet use during work hours, 
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found that social desirability bias significantly affected mobile internet addiction and 

mobile-loafing intentions. According to the study's findings, respondents would 

underreport their perceptions of mobile internet addiction and their intentions of 

committing mobile loafing, as this will make them look bad (Kwak et al., 2021). In the 

context of UX, this bias can lead to inflated reports as users may feel compelled to present 

themselves in a more favourable light, thereby skewing the data collected from surveys 

or interviews.  

Additionally, recall bias is another significant challenge affecting the reliability of 

self-reported assessments. This bias occurs when users have difficulty remembering past 

experiences and behaviour, leading to inaccurate responses. A study conducted by 

Vrijheid et al. (2008) examined the recall bias in self-reported mobile phone use and found 

that participants tend to underestimate the number of calls they made by 19% and 

overestimate call duration by roughly 40%. The study concluded that recall bias posed 

challenges for accurate risk assessment in epidemiological studies relying on self-reported 

mobile phone usage data (Vrijheid et al., 2008).  Tapping to the recall bias is the peak-

end rule. The peak-end rule refers to the phenomenon where user's retrospective 

evaluations of past affective experiences are heavily influenced by the most intense 

moment, the "peak," and the final moment, the "end" of the experience (Kahneman et al., 

1993). A recent study conducted by Horwitz et al. (2024) examined the peak-end rule and 

found that it significantly affects retrospective mental health assessments. The study 

suggested that retrospective self-reports of symptoms are often aligned with the peak 

experiences of distress rather than the average daily experience, which can lead to recall 

biases in clinical assessments (Horwitz et al., 2024). The recall bias and peak-end rule are 

problematic in UX research, where understanding interactions over time is critical for 

practical UX evaluation.  

Going back to the study conducted by Bargas-Avila & Hornbæk (2011), their 

review showed that the majority of UX assessments were conducted after interaction 

(70%), 58% of the reviewed papers included during interaction assessment, and before 

interaction assessments were rare at only 20%. Whereas Inan Nur et al.'s (2021) findings 

showed that most UX evaluations took place after interaction, making up 44 studies out 
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of 61 reviewed papers, with fewer assessing UX during interaction (12 studies) or over 

long-term interactions (6 studies). The context in which self-reported assessments are 

collected can also introduce bias. For example, in virtual reality (VR) studies, the 

transition between immersive experiences and the physical world when collecting self-

reported assessments can disrupt users' presence and can cause participants to provide 

feedback that does not accurately reflect their true feelings during the immersive 

experience (Putze et al., 2020; Alexandrovsky et al., 2020), thus compromising the 

validity of the findings.   

2.2 Shift to psychophysiological methods in usability assessment 

These UX challenges highlight the need for more reliable assessment methods. 

Thus, in recent years, the exploration of psychophysiological measures has gained 

significant traction in UX research, supported by prior research reviews on UX papers. 

Based on Bargas-Avila & Hornbæk's (2011) findings, physiological measures were less 

common, appearing only in 5% of the 66 empirical studies reviewed from 2005 to 2009. 

Meanwhile, Inan Nur et al. (2021) found that 14% of the 61 research papers reviewed 

from 2000 to 2019 included physiological measures. Also, a recent review paper by 

Apraiz Iriarte et al. (2021) systematically examined a total of 33 research studies that 

applied physiological measures in UX evaluations spanning from 2006 to 2020, with a 

notable increase in publications from 2016 onwards reflects the growing interest in 

incorporating psychophysiological measures in UX research.   

Psychophysiological measures provide a non-invasive and implicit approach to 

understanding a user's emotional or cognitive processes (Dirican & Göktürk, 2011). The 

psychophysiology theories examine the complex relationships between psychological 

processes and physiological responses (Lovallo, 2013) by understanding emotional states, 

cognitive processes, and mental well-being through measuring and interpreting 

physiological indicators like heart rate, skin conductance, and brain activity (Dair et al., 

2023).  
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2.3 Prior research using psychophysiological measures in UX research 

Recent advancements in HCI and UX research have highlighted the potential of 

psychophysiological measures to provide a more objective and nuanced understanding of 

the user's experience. One example is the work of Barreto et al. (2007), where the study 

demonstrated the use of non-intrusive psychophysiological measures like galvanic skin 

response, blood volume pulse (BVP), skin temperature, and pupil diameter combined with 

machine learning to effectively detect stress in real-time.  

2.3.1 Emotional Response 

Emotion is one of the most researched aspects of a user's response measured 

through psychophysiological methods. Arousal and valence are the most studied 

dimensions of emotion and commonly utilized psychophysiological measures of a user's 

emotion (Partala & Kangaskorte, 2009). A widely used model to represent emotion is the 

arousal-valence model (Russell, 1980), which describes emotion as a two-dimensional 

space: arousal (vertical axis) and valence (horizontal axis). The valence dimension 

represents a range of emotions from negative to neutral to positive, while the arousal 

dimension ranges from calm to neutral to aroused (Partala & Kangaskorte, 2009). With 

arousal and valence all having values in the same range, between -1 and 1, the arousal-

valence model is widely used and effectively describes a person's emotional change (Yang 

& Sun, 2017).  In 2013, Alexandros and Michalis (2013) proposed using heart rate, EDA, 

respiration rate, and muscle tension to analyze the duration, intensity, and transitions 

between emotional states during interactions. Recent research by Maia and Furtado (2019) 

highlights the use of electroencephalography (EEG), electrodermal activity (EDA), and 

heart rate to capture emotional states. The study showed significant correlations between 

psychophysiological signals and emotional dimensions during pleasure-driven tasks 

(Maia & Furtado, 2019). The study by Vignaux et al. (2021) examined the impact of 

collective immersion in a learning environment on emotional engagement. The study used 

psychophysiological methods, EDA and electrocardiogram (ECG), to measure emotional 

engagement, and the results showed greater emotional engagement in immersive and 

collective environments (Vignaux et al. 2021). Furthermore, a study conducted by 
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Swoboda et al. (2022) highlighted the effectiveness of speech and physiological measures 

in detecting emotional responses during interactions with voice user interfaces.    

2.3.2 Cognitive Process 

Another construct to assess user’s response is cognitive load. Cognitive load 

theory posits that working memory has a limited capacity that can be easily overwhelmed 

by excessive information or complex tasks (Sweller et al., 1998). In human factors 

literature, cognitive load is defined as the quantity of mental activity necessary to execute 

a task and is commonly termed as mental workload, mental effort, or mental demand in 

the field (Van Acker et al., 2018). In 2014, Ferreira et al. (2014) concluded that a real-

time cognitive load assessment is feasible for both younger and older adults using low-

cost, non-invasive physiological sensors. Vanneste et al. (2020) directly examined how 

multimodal physiological measures can assess cognitive load, mainly through EDA, EEG, 

and eye tracking, and indirectly measuring emotional arousal via EDA. The study 

concluded that combining these three physiological measures provides a nuanced picture 

of cognitive load by effectively capturing both arousal and mental components (Vanneste 

et al., 2020). A recent study by Hudon et al. (2021) investigated how different 

visualization methods for explaining AI predictions impact user cognitive load and 

confidence in AI systems. The study measured cognitive load using pupillary dilation, 

precisely the task-evoked pupillary response (TEPR), which is a well-established proxy 

for cognitive effort (Hudon et al., 2021). 

Pupil size has been associated with cognitive processes (Kucewicz et al., 2018) 

and has shown that pupil dilation increases with increasing task demands (Van Der Wel 

& Van Steenbergen, 2018). Prior research studies provided empirical evidence that the 

locus coeruleus-norepinephrine (LC-NE) system regulates task engagement, which 

correlates with pupil size fluctuations (Gilzenrat et al., 2010; Murphy et al., 2014; 

Hopstaken et al., 2015). The Adaptive Gain Theory posits that the LC-NE system operates 

in phasic and tonic modes (Aston-Jones & Cohen, 2005). Phasic mode is characterized by 

moderate NE levels and intense stimulus-triggered bursts of NE release, associated with 

high task engagement, where attention is concentrated on task-relevant stimuli to optimize 
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performance (Minzenberg et al., 2008). In tonic mode, both baseline and stimulus-induced 

NE levels are elevated, which is associated with disengagement of the current task, where 

attention is no longer primarily focused on task-relevant stimuli but also responds to 

irrelevant stimuli (Cohen et al., 2007). In relation, Gilzentrat et al. (2010) explored how 

pupil diameter corresponds to the LC-NE modes, where larger baseline pupils indicate 

tonic mode (task disengagement) and smaller pupils indicate phasic mode (task 

engagement). 

2.3.3 Visual Attention Behaviour 

Moreover, visual attention is another aspect of the user's behaviour measured 

through psychophysiological methods. When engaging in a specific task, users actively 

seek, gather, share, and consume information in their environment. This is aligned with 

Pirolli and Card's (1999) information foraging theory, which assumes that individuals 

maximize their rate of gaining valuable information by modifying their strategies or the 

structure of the environment. In real-life computer-based tasks, users are required to 

allocate their attention effectively by focusing on the most critical aspects of the display 

and ignoring the rest (Wals & Wichary, 2022). Visual attention is a selection process that 

allows certain stimuli to be processed more thoroughly than others (Lamme, 2003). Krejtz 

et al. (2016) introduced a novel non-invasive visual search measure to characterize 

ambient and focal visual attention modes. Building up on Krejtz's findings, a recent study 

by Lounis et al. (2020) assessed visual attention in pilots during different flight phases 

(take-off, cruise, and landing) by tracking eye movement using novel eye-tracking device, 

Tobii Pro Glasses. Moreover, Carmichael et al. (2022) explored how information 

disclosure nudges affect users' information disclosure behaviours when interacting with 

chatbots. The study measured visual attention using eye-tracking technology and 

validated that the information disclosure nudges successfully drew participants' attention, 

ensuring their potential to influence user behaviour (Carmichael et al., 2022). 

2.4 The use of psychophysiological measures in pain point detection 

Platzer's (2018) genealogical approach to trace the historical development of the 

term "pain point" in business and UX context found that "pain point" refers to specific 
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user problems or frustrations that design changes can alleviate. UX professionals use this 

term to elicit stakeholder empathy and prioritize user needs. Recent research studies by 

Kreger (2022) and Huo et al. (2023) used the term "pain point," where Kreger (2022) 

implicitly used the term to refer to specific moments in the user experience that lead to 

frustration, confusion, or difficulty when interacting with digital banking services and 

Huo (2023) used the term to refer to the specific interaction touchpoints within the in-

vehicle human-machine interfaces (HMI) where users experience lower levels of 

emotional satisfaction. Giroux-Huppé et al. (2019) work differentiated explicit and 

implicit pain points. Where explicit pain points are consciously acknowledged negative 

emotions reported during or after a task, and implicit pain points, also termed 

psychophysiological pain points, are automatic physiological responses characterized by 

high emotional arousal and negative emotional valence in reaction to an event during the 

interaction (Giroux-Huppé et al., 2019). Kreger (2022) suggested failure mapping to 

identify and resolve user pain points, and Huo (2023) combines Kansei Engineering, 

which quantifies emotional reactions to design, with user experience mapping to identify 

and improve areas of user dissatisfaction. However, neither work used any 

psychophysiological measures. Meanwhile, the seminal work of Giroux-Huppé et al. 

(2019) used psychophysiological measures to identify psychophysiological pain points in 

online grocery shopping. Giroux-Huppé et al. (2019) distinguished between explicit pain 

points, consciously acknowledged negative emotions, and implicit pain points, 

characterized by automatic physiological responses. Their work demonstrated that 

psychophysiological measures, such as heightened arousal and negative valence, offer a 

real-time, objective approach to capturing user frustration, surpassing the limitations of 

traditional self-reported methods. 

2.5 Prior research on measuring multi aspects of user’s response 

Although Giroux-Huppé et al. (2019) research introduced a novel approach to 

identifying pain points accurately in real-time, the approach concentrated on one aspect 

of the user's response: the emotion the users felt. Prior research has used different 

psychophysiological methods to assess various aspects of user response separately. Using 

a multimodal approach to measure two or more constructs has been gaining traction in 
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UX research recently. Prior study by Léger et al. (2014) combined eye tracking with 

electroencephalography (EEG) to improve temporal precision in measuring attentional, 

cognitive, and motor processes of participants who interacted with a system involving 

email notifications during a primary task. Charland et al. (2015) used psychophysiological 

tools to measure the key dimensions of engagement, behavioral, cognitive, and emotional, 

during learning tasks, suggesting that the combination of these psychophysiological tools 

allowed differentiation of low, medium, high levels of engagement, providing a 

comprehensive understanding of how learners interact with tasks. Korosec-Serfaty et al. 

(2022) investigated how technostress and financial stress in digital financial technology 

usage impacts users' emotional and cognitive responses by analyzing 

psychophysiological, perceptual, and behavioural data. Parsons et al. (2023) used 

psychophysiological measures to assess, in real time, users' cognitive and emotional states 

in virtual environments. Also, Mithun et al. (2023) introduced Mind Indriya, a composite 

system using psychophysiological measures to assess the cognitive load, anxiety, and 

visual attention in real-time. These are a few examples of research studies that used a 

multimodal approach and assessed two or more factors using psychophysiological 

measures.  

This literature underscores the limitations of self-reported usability assessments, 

including biases and their inability to capture implicit responses during interaction. While 

psychophysiological measures offer promising complement to self-reported assessments, 

prior research has often focused narrowly on isolated constructs like emotional arousal in 

assessing usability challenges encountered by users in a digital environment. Moreover, 

the potential of these psychophysiological responses to identify usability challenges 

across tasks must be further addressed. This study bridged these gaps by employing a 

multimodal approach to simultaneously capture emotional, cognitive, and attentional 

dimensions of users' responses to usability challenges and developing predictive models 

to evaluate their reliability across tasks. This comprehensive framework advances 

usability research by offering a more nuanced and actionable understanding of user 

experiences. 
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For this research study, the term "usability pain point (UPP)" referred to the 

usability challenges experienced by users during their interaction with a digital interface, 

which gives rise to automatic psychophysiological responses characterized by abnormal 

changes in emotional arousal, valence, visual attention, and cognitive load. 
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Abstract 

The increasing reliance on self-reported measures in usability assessments has 

highlighted biases undermining their reliability, particularly in complex digital 

environments. This study addressed the need for more objective methods by 

examining biosignals which offers precise measurements of bodily reactions to identify 

and predict usability challenges in the context of digital interfaces. It explored distinct 

psychophysiological signatures of users interacting with a digital application and 

evaluated their reliability in predicting usability issues in business enterprise 

environments. 

The study introduced a multimodal approach using combined psychophysiological 

measures of emotional arousal, valence, cognitive load and visual attention from 86 

participants who performed tasks in three enterprise systems. Pain points were introduced 

artificially in controlled tasks to elicit psychophysiological responses. Cluster analysis 

revealed four distinct user profiles reactions to these artificially induced pain points. The 

study used logistic regression to train predictive models to identify when users encounter 

usability pain points on a natural task. 

The study's key findings included the identification of unique psychophysiological 

signatures and the moderate predictive success of models using pupil dilation and k-

coefficient as significant indicators to usability pain points. Despite individual variability 
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and moderate precision challenges, these results demonstrated the feasibility of using 

psychophysiological measures for real-time usability assessment. 

This research advanced the understanding of user responses to usability pain 

points in digital enterprise environments. It underscored the potential for 

psychophysiological data in real-time usability evaluation and addressed the challenges 

when using self-reported assessment. 

Highlights 

• Developed and validated a novel multimodal methodology combining 

psychophysiological measures (emotional arousal, valence, cognitive load, and 

visual attention) to detect and predict real-time usability pain points.  

• Cluster analysis revealed four unique psychophysiological response profiles to 

usability pain points, indicating that users exhibit diverse emotional, attentional, 

and cognitive responses to usability pain points.  

• Shifts in pupil dilation and the k-coefficient emerged as predictors of usability 

pain points.  

• Predictive models trained on psychophysiological signatures demonstrated 

moderate success in detecting spontaneous usability pain points in natural task 

settings. 

Keywords 

psychophysiological signatures, usability, pain points, predictive model, cluster analysis 
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3.1 Introduction 

The definition of usability has evolved from Shackel's (2009) early 

characterization, describing it as "the capability to be used by humans easily and 

effectively," to the International Organization for Standardization (1998, pg. 22), defining 

it as "the extent to which a product can be used by specified users to achieve specified 

goals with effectiveness, efficiency and satisfaction in a specified context of use." These 

definitions highlight the importance of user-centered design principles in creating 

functional but also intuitive and pleasant systems (ISO, 1999). One way to improve 

usability is through usability assessment/testing by identifying user pain points. Most 

methods used in usability assessment are based on self-reported and observational data 

(Brunn et al., 2016). 

The relationship between usability assessment and user pain points is a critical 

area of study in human-computer interaction. Usability assessment systematically 

evaluates how effectively, efficiently, and satisfactorily users can interact with a system 

(ISO, 1998). Pain points can manifest as obstacles users encounter during interactions, 

leading to frustration or inefficiency (Platzer, 2018). By pinpointing these pain points, 

designers and developers can prioritize improvements that enhance the overall user 

experience (Platzer, 2018; Costa et al., 2016). For instance, usability assessment can 

reveal common pain points encountered by the users, allowing teams to address these 

issues directly, thereby improving user satisfaction and performance (Costa et al., 2016). 

Ibarra-Noriega et al. (2024) work on a mobile health platform for assessing postoperative 

dental pain illustrated how formal usability evaluations can uncover specific challenges 

users face, thereby guiding subsequent design improvements (Ibarra-Noriega, 2024). 

The concepts of usability assessment and pain points are widely used in UX 

research to ensure that design solutions are practical and centered around user needs. This 

user-centered design philosophy emphasizes the importance of understanding user 

experiences and expectations, which can lead to more effective and engaging digital 

products (Klotins et al., 2018; Berni et al., 2023).   
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Usability assessment in UX research predominantly relies on self-reported 

measures to gauge users' perceptions, emotions, and reactions (Bargas-Avila & Hornbæk, 

2011; Inan Nur et al., 2021; Perrig et al., 2024). However, these methods are susceptible 

to various biases, including social desirability and recall bias (Kwak et al., 2021; Vrijheid 

et al., 2008; Horwitz et al., 2024), which can distort the accuracy of the data. This problem 

is particularly pronounced in complex digital environments where moment-by-moment 

experiences may not be accurately captured through post-task questionnaires or 

interviews. Therefore, one of the primary challenges is finding reliable and objective ways 

to assess usability pain points beyond self-reporting. 

Psychophysiological signatures hold significant potential in complementing self-

reported assessments, which are often susceptible to biases and inaccuracies stemming 

from subjective interpretation and social desirability effects (Ajenaghughrure et al., 2020; 

Wager et al., 2013). Psychophysiological signatures are objective biological signals that 

reflect an individual's emotional, cognitive, and psychological states, derived from 

physiological responses such as heart rate variability, skin conductance, and brain activity 

(Chang et al., 2015; Ajenaghughrure et al., 2020). For instance, while self-reports can 

offer insights into an individual's conscious experience and emotional states, 

psychophysiological measures provide a more objective perspective, allowing researchers 

to observe the underlying biological processes that correspond to these experiences 

(Dirican & Göktürk, 2011; Chang et al., 2015; Visser et al., 2017). While 

psychophysiological measures may not always precisely capture bodily reactions, they 

provide a valuable complementary perspective. For instance, Barreto et al. (2007) 

demonstrated the effectiveness of these measures in detecting stress levels through heart 

rate variability. Similarly, Maia and Furtado (2019) used galvanic skin response to 

monitor emotional responses, while Ferreira et al. (2014) assessed cognitive load during 

interactions using electroencephalography (EEG). However, many of these studies have 

primarily focused on assessing these aspects independently, which may limit a more 

comprehensive understanding of the holistic, multimodal responses to usability 

challenges.  
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Despite advancements in psychophysiological methods, limited research 

integrates multiple psychophysiological measures to comprehensively capture a user's 

response to usability pain points in real time. Furthermore, to our knowledge, no prior 

research has examined the potential of using various psychophysiological methods to 

assess different aspects of the user's response – emotional and cognitive response and 

visual attention behaviour - when users encounter a pain point and develop predictive 

models that could anticipate pain points in future tasks. Therefore, integrating 

psychophysiological methods and predictive models of pain points would be a promising 

avenue for enhancing real-time usability monitoring and system optimization.  

This study built upon prior work (Giroux-Huppé et al., 2019) by adopting a 

multimodal approach to psychophysiological measurement, combining metrics of 

emotional arousal, valence, cognitive load and visual attention. This study aimed to 

answer the following: 

Research Question #1 (RQ1): What are the distinct psychophysiological 

signature patterns exhibited by users when encountering usability issues in a digital 

interface? 

Research Question #2 (RQ2): To what extent does these psychophysiological 

signatures of a user experiencing usability issues reliably identify pain points in other 

tasks within the same system? 

By capturing these responses simultaneously, the study aimed to identify distinct 

"psychophysiological signatures" associated with usability pain points. These signatures 

were then used to train predictive models that could reliably forecast the occurrence of 

usability pain points in similar tasks, an innovative approach that has not been extensively 

explored in existing literature. The study also aimed to evaluate the predictive model’s 

extent to reliably identify usability pain points in another similar task. 

The study revealed unique psychophysiological response patterns, which 

classified into distinct user profiles based on the users' reactions to usability pain points. 

Through cluster analysis, the study identified four unique profiles indicative of variability 
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in users' psychophysiological responses during usability disruptions. Additionally, the 

trained predictive models, though moderately successful, demonstrated the potential of 

psychophysiological measures to detect usability issues in real-time, offering a new 

avenue for continuous usability assessment.  

This article starts with a comprehensive introduction to the research topic, 

including the problem statement, importance, and research gap. A literature analysis 

examining earlier research using traditional usability assessment and recent 

psychophysiological approaches in usability assessment comes next. This is followed by 

a methods section, which discusses how the experiment was conducted. This includes 

participant recruitment, experimental design, data collection, and analytical approach. 

Next is the data analysis and results section, highlighting the findings from cluster analysis 

and model performance evaluation. The discussion section contextualizes the findings 

within the existing literature and discusses implications, limitations, and 

recommendations for future research. The article concludes with a summary of the critical 

insights and contributions to the field of UX research.  

3.2 Background 

User Experience (UX) research has historically relied heavily on self-reported 

assessments, such as surveys, interviews, and questionnaires (Bargas-Avila & Hornbæk, 

2011; Inan Nur et al.,2021; Perrig et al., 2024), to understand users' perceptions, emotions, 

and interactions with products and services (Brunn et al., 2016). Studies like those by 

Bargas-Avila and Hornbæk (2011) and Inan Nur et al. (2021) have demonstrated the 

dominance of these methods, with over 50% of UX studies employing questionnaires. 

However, while self-reported assessments are perceived as practical and easy to 

administer (Law et al., 2013), they are prone to various biases that undermine the insights' 

accuracy. 

3.2.1 Challenges in Self-reported Usability Assessments 

One major challenge in self-reported assessments is social desirability bias, where 

participants provide responses they perceive as socially acceptable rather than truthful 

reflections of their experiences (Nederhof, 1985). For example, Kwak et al. (2021) 
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observed this bias in studies on mobile internet addiction, with respondents 

underreporting behaviours perceived as unfavourable. Similarly, recall bias poses another 

significant challenge. Users often need help remembering past interactions accurately, 

leading to distorted data, as evidenced by Vrijheid et al. (2008) in their study on mobile 

phone usage. Additionally, the peak-end rule further complicated self-report assessments 

by emphasizing users' most intense and final moments of an experience over the entire 

interaction (Kahneman et al., 1993), as Horwitz et al. (2024) highlighted in their work on 

retrospective mental health assessments. 

Moreover, the timing of data collection introduces another layer of complexity. 

Studies reviewed by Bargas-Avila and Hornbæk (2011) and Inan Nur et al. (2021) reveal 

that most UX evaluations occur post-interaction, potentially omitting critical real-time 

responses. Virtual reality (VR) studies further underscore this limitation; transitions 

between immersive and physical environments often disrupt users' presence, leading to 

skewed feedback (Putze et al., 2020; Alexandrovsky et al., 2020). Together, these 

challenges highlight the need for more reliable, objective methods in UX research. 

3.2.2 Emergence of Psychophysiological Approach to Usability Assessment 

Psychophysiological methods have emerged as promising alternatives to address 

the biases of self-reported assessments. These techniques, which include tracking 

physiological responses like electrodermal activity (EDA), heart rate variability, pupil 

dilation, and brain activity, offer non-invasive, real-time insights into users' emotional and 

cognitive states (Dirican & Göktürk, 2011). While historically underutilized—accounting 

for only 5% of studies from 2005 to 2009 (Bargas-Avila & Hornbæk, 2011)—their 

adoption has increased, with 14% of studies between 2000 and 2019 incorporating such 

measures (Inan Nur et al., 2021). This growth reflects a broader recognition of their 

potential, as confirmed by a systematic review by Apraiz Iriarte et al. (2021), which 

highlighted a surge in publications employing psychophysiological methods post-2016. 

Research has demonstrated the effectiveness of psychophysiological measures in 

assessing emotional responses, cognitive processes, and attention. For instance, studies 

have used the arousal-valence model (Russell, 1980) to map emotions based on 
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psychophysiological data. Alexandros and Michalis (2013) used psychophysiological 

measures to assess emotional transitions during interactions. Maia and Furtado (2019) 

found significant correlations between emotional dimensions and biosignals like EEG, 

EDA, and heart rate during pleasure-driven tasks. Vignaux et al. (2021) showed that EDA 

and ECG effectively measured heightened emotional engagement in immersive, 

collective learning environments. Similarly, Swoboda et al. (2022) highlighted the role of 

speech and physiological measures in detecting emotional responses during voice 

interface interactions. 

Meanwhile, advancements in cognitive load assessment have shown that measures 

like EDA and pupil dilation can provide nuanced insights into task complexity and user 

engagement (Vanneste et al., 2020). Cognitive load theory (Sweller et al., 1998) 

highlighted the limitations of working memory when faced with excessive information or 

complexity. Research by Ferreira et al. (2014) demonstrated the feasibility of real-time 

cognitive load assessment using non-invasive sensors. Vanneste et al. (2020) showed that 

multimodal measures, including EDA, EEG, and eye tracking, provide nuanced insights 

into cognitive load by capturing both arousal and mental components. Hudon et al. (2021) 

utilized pupillary dilation, specifically task-evoked pupillary response (TEPR), as a proxy 

for cognitive effort, highlighting the link between pupil size and task demands (Kucewicz 

et al., 2018; Van Der Wel & Van Steenbergen, 2018). The Adaptive Gain Theory (Aston-

Jones & Cohen, 2005) explains how the locus coeruleus-norepinephrine (LC-NE) system 

regulates task engagement, with pupil size fluctuations reflecting its phasic (task-focused) 

or tonic (disengaged) modes (Gilzenrat et al., 2010). These findings underscore 

psychophysiological measures' value in capturing cognitive load and task engagement 

dynamics. 

Visual attention, another aspect of user behaviour, involves selectively focusing 

on relevant stimuli while filtering out distractions (Lamme, 2003). Rooted in Pirolli and 

Card's (1999) information foraging theory, users maximize information gain by adapting 

their strategies or environment. This process is essential in computer-based tasks, where 

users must prioritize key display elements (Wals & Wichary, 2022). Krejtz et al. (2016) 

introduced non-invasive measures to distinguish ambient and focal attention modes, 
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which Lounis et al. (2020) applied to assess pilots' visual attention across flight phases 

using eye-tracking technology. Similarly, Carmichael et al. (2022) demonstrated that eye-

tracking could measure the effectiveness of information disclosure nudges in chatbot 

interactions, validating their influence on user behaviour. These studies highlighted the 

role of psychophysiological methods in advancing our understanding of visual attention 

in diverse user experiences. 

 

3.2.3 Application of Psychophysiological Methods to Usability Pain Point Detection 

Integrating psychophysiological methods into UX research has revolutionized the 

detection of usability pain points—user frustrations or challenges encountered during 

interactions (Platzer, 2018). Giroux-Huppé et al. (2019) distinguished between explicit 

pain points and implicit pain points. Where explicit pain points are consciously 

acknowledged negative emotions reported during or after a task, and implicit pain points, 

also termed psychophysiological pain points, are automatic physiological responses 

characterized by high emotional arousal and negative emotional valence in reaction to an 

event during the interaction (Giroux-Huppé et al., 2019). Their work demonstrated that 

psychophysiological measures, such as heightened arousal and negative valence, offer a 

real-time, objective approach to capturing user frustration, surpassing the limitations of 

traditional self-reported methods. 

3.2.4 The proposed novel approach in identifying pain points 

Although Giroux-Huppé et al. (2019) research introduced a novel approach to 

identifying pain points accurately in real-time, the approach concentrated on one aspect 

of the user's response: the emotion the users felt. Prior and recent UX research 

increasingly adopts multimodal approaches to measure multiple aspects of user’s response 

simultaneously. Léger et al. (2014) combined eye tracking and EEG to improve the 

temporal precision of attentional, cognitive, and motor process measurements. Charland 

et al. (2015) used psychophysiological tools to differentiate engagement levels across 

behavioural, cognitive, and emotional dimensions during learning tasks. Korosec-Serfaty 

et al. (2022) examined the impact of technostress and financial stress on users' emotional 

and cognitive responses by integrating psychophysiological, perceptual, and behavioural 
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data. Parsons et al. (2023) assessed users' cognitive and emotional states in virtual 

environments in real time, while Mithun et al. (2023) introduced the Mind Indriya system 

to measure cognitive load, anxiety, and visual attention simultaneously. These studies 

highlighted the growing emphasis on multimodal methods to capture a comprehensive 

picture of user responses. 

To expand on Giroux-Huppé's work, this study applied multimodal approach, 

using various psychophysiological methods to assess the different aspects of the user's 

response, which are characterized by changes in emotional arousal, valence, visual 

attention, and cognitive load when users encounter a pain point. This aimed to provide a 

more accurate representation of pain points beyond isolated emotional data. This proposed 

that when users encounter a pain point, there will be a distinct psychophysiological 

signature such as by changes in emotional arousal, valence, visual attention, and cognitive 

load.  

Additionally, by using the captured psychophysiological signatures, this study 

aimed to develop predictive models and to examine the reliability of these signatures in 

identifying pain points across similar tasks. This proposed that the psychophysiological 

signature associated with a pain point experienced during a task can be used to identify 

pain points on other similar tasks reliably.  

For this research study, the term "usability pain point (UPP)" referred to the 

usability challenges experienced by users during their interaction with a digital interface, 

which gives rise to automatic psychophysiological responses characterized by abnormal 

changes in emotional arousal, valence, visual attention, and cognitive load. 

3.3 Methods 

This research builds on the novel approach on identifying pain points introduced 

by Giroux-Huppé et al. (2019) by assessing multi-aspect of user’s psychophysiological 

responses.  The aim of this experiment is to evoke psychophysiological responses in users 

when they encounter a pain point to be able to identify distinct psychophysiological 

signatures characterized by changes in emotional arousal, valence, visual attention and 

cognitive load, providing a foundation for developing predictive models to identify pain 

points on other similar tasks reliably. 
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3.3.1 Study Design  

The study design comprises three phases: Phase I employs a mixed-subject design 

to collect psychophysiological data by artificially manipulating the occurrence of pain 

points in the tasks that the users are to perform, Phase II focuses on using the data collected 

on Phase I to train a predictive model to identify pain points, and Phase III evaluates the 

predictive model’s performance and its reliability to identify usability pain points on a 

natural task. The proposed process framework is detailed in Figure 1.  

Figure 1. The proposed process framework  

3.3.2 Participants  

Eighty-six (86) participants were recruited via our institution's panel to participate 

in the study. Recruited participants had an advanced level of French, did not have skin 

allergies or sensitivity, had no astigmatism, did not suffer from epilepsy and had no 

current or prior experience working with the following SaaS enterprise systems: 

ServiceNow, Microsoft Dynamics 365 CRM, and Salesforce Cloud Service.  All 

participants provided signed consent in line with the HEC Montreal research ethics 

committee [Certificate No.: 2024-5933]. Each participant received a compensation of 

$20.  
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The 41 participants were randomly assigned to Condition A, 24 men and 17 

women, ranging from 18 to 45 years old (M=26.5; SD = 6.10). Forty-five (45) participants 

were randomly assigned to Condition B, 24 men and 21 women, ranging from 18 to 59 

years old (M=27.07; SD=8.97). A t-test for age revealed no statistically significant 

difference between the mean ages of Condition A and Condition B (t(84) = -0.332, p = 

.741). Additionally, a chi-square test for gender indicated no significant association 

between gender and condition (χ²(1, N = 86) = 0.072, p = .789). Other details on Condition 

A and B were elaborated in section “3.3.4 Study Conditions and Tasks”. 

3.3.3 Stimuli  

The SaaS software delivery model is becoming popular for enterprises of all types 

and sizes (Haselmann & Vossen, 2011). Software as a Service (SaaS) is a cloud service 

where consumers can access software applications over the internet or "the cloud" (Yusuf 

et al., 2018). According to Gartner, the shift to SaaS fundamentally changes the 

organization's ownership models from owning a software license to paying a third party 

for software usage. In 2022, SaaS spending constituted an average of 11% of total IT 

spending, up from 5% in 2018 (Gartner: Fueling the Future of Business). Canada's 

Software as a Service (SaaS) market is experiencing significant growth due to trends in 

collaboration-focused markets, CRM and HRMS software adoption, customer 

preferences for cloud-based solutions, government support for digital transformation and 

a diverse business landscape such as remote work (Statista). For this research study, three 

SaaS platforms were selected to be the experimental stimuli: Microsoft Dynamics 365 

CRM, Salesforce, and ServiceNow.  

3.3.3.1 Microsoft Dynamics 365 CRM. According to Statista's Market Insights 

Financial Statements of Key Players (updated March 2024), one of the vital players in the 

SaaS market in Canada in 2022 is Microsoft Cloud, making up 17% of the market. 

Microsoft Dynamics 365 CRM is a comprehensive, integrated system designed to 

streamline various business processes related to customer management (Microsoft). The 

trial version of the customer service instance offered by Microsoft was used for this 
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experiment stimuli. Figure 2 presents the homepage the participants see before 

performing the task in Microsoft Dynamics 365 – CRM.  

  

Figure 2. Microsoft Dynamics 365 – CRM Homepage   

 

3.3.3.2 Salesforce. Following Microsoft's lead is Salesforce, comprising 13% of 

the SaaS market in Canada in 2022 (Statista). Salesforce is a leading cloud-based CRM 

platform that provides various applications and services to assist business operations, 

explicitly managing customer relationships and interactions (Salesforce). The institution's 

Salesforce account was used for this stimulus. Figure 3 presents the homepage that the 

participants see before performing the task in Salesforce.   

 

  
Figure 3. Salesforce Homepage  
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3.3.3.3 ServiceNow. Another vital player in the SaaS market is ServiceNow, 

comprising 4% of the SaaS market in Canada in 2022 (Statista). ServiceNow is a cloud-

based platform that offers a group of applications designed to help streamline and 

automate business processes, particularly in IT Service Management (ITSM), IT 

Operations Management (ITOM), and IT Business Management (ITBM) (ServiceNow). 

The sponsoring client provided a developer version of the enterprise system.  Figure 4 

presents the homepage that the participants see before performing the task in 

ServiceNow.  

 
Figure 4. ServiceNow Homepage 

 

 

3.3.4 Study Conditions and Tasks   

3.3.4.1 Study Conditions. Participants were randomly assigned to Condition A or 

B. The two conditions entailed the same three tasks and merely varied in the sequence of 

the systems being used to perform those tasks. For Condition A, participants performed 

Task 1 and 2 using Microsoft Dynamics and Task 3 using ServiceNow. For Condition B, 

participants performed Task 1 and 2 using Salesforce and Task 3 using ServiceNow. The 

goal of Phase I is to collect psychophysiological data by artificially manipulating the 

occurrence of pain points in either Task 1 or Task 2. Assigning each participant to either 

Condition A or B helped generalize the psychophysiological data collected from different 

systems during Task 1 and Task 2. Also, randomizing the manipulated pain point to either 

Task 1 or 2 minimized any potential bias that could arise from participants anticipating or 

adapting to the pain point in a specific task. 



   

 

   

 

3.3.4.2 Task 1: Create a Contact. Participants were given the task of creating a 

new contact file for a new client. Figure 5 explains the step-by-step process that the user 

will perform to accomplish the task. The participants will begin on the assigned stimulus 

homepage. They need to locate and click the “Contacts” tab, which will direct them to the 

contacts form page, where they will fill in the information required for the task. Once 

done, the participants must click the “Save” or “Submit” button.  

Figure 5. Process flow for completing Task 1  

3.3.4.3 Task 2: Create a Case. Participants were tasked with creating a new case 

file for a client. Figure 6 explains the step-by-step process that the user will perform to 

accomplish the task. It is similar to Task 1, but instead of clicking the “Contact” tab, 

participants will have to click the “Case” or “Incidents” tab, which will direct them to the 

case/incident page form. Once the required information is completed, the participants 

must click the “Save” or “Submit” button.  

Figure 6. Process flow for completing Task 2 and Task 3  

3.3.4.4 Task 3: Create a Case. The same steps were used for Task 3 (see Figure 

6) when creating a case. However, participants will be exposed to ServiceNow when 

performing Task 3.  

 

In summary, the use of Conditions A and B and randomly assigning the 

manipulated pain points to either Task 1 or Task 2 enhanced the generalizability of the 

psychophysiological data used in Phase II, which focused on training a predictive model 

to identify pain points. Moreover, Task 3 was the same for Conditions A and B, and no 

artificial pain points were induced. Task 3 data were used in Phase III to evaluate the 

predictive model’s performance and reliability to identify usability pain points on a 

natural task. 
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3.3.5 Stimuli Manipulation   

Configuration errors were randomly induced in either Task 1 or Task 2 in MS 

Dynamics 365 CRM and Salesforce to manipulate the presence of pain points. The 

manipulated errors were placed on the Contacts tab for Task 1 and the Cases/Incidents tab 

for Task 2. Having a similar number of clicks (see Figure 5 and Figure 6 in the previous 

section) before reaching the manipulated section ensured that participants had consistent 

experience across tasks, which helped in isolating the effect of the manipulated pain point 

rather than the differences in task complexity. Also, providing an onboarding video that 

showed the steps to accomplish the tasks standardized the participants' approach, which 

reduced variability in how participants performed the tasks, ensuring that any 

psychophysiological responses were due to the pain point and not differences in task 

understanding or execution. Placing the pain point at a specific interaction (clicking the 

contact or case tab) allowed the study to precisely measure the psychophysiological 

responses to that interaction by extracting the psychophysiological data encompassing 10-

second intervals centered on the manipulated pain point.  

Once the participants clicked the Contacts tab or the Case/Incidents tab where the 

configuration errors were planted, an error message will appear (see Figure 7 & Figure 

8). Although these manipulated errors are aimed at eliciting psychophysiological 

responses, the outcomes may vary among participants. 

 

Figure 7. Error message in Microsoft Dynamics 365          
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Figure 8. Error message in Salesforce  

There will be no manipulated error in Task 3. Task 3 will serve as the natural task 

to test the reliability of the predictive models in identifying usability pain points in Phase 

III (refer to Figure 1).  

3.3.6 Measures  

This study combined eye tracking, EDA, and automated facial expression 

recognition data to measure the psychophysiological response patterns exhibited by users 

when encountering a pain point.  

3.3.6.1 Emotional Arousal. To measure emotional arousal, Electrodermal activity 

(EDA) was used. EDA is a physiological measure relevant to emotion research and is 

commonly used to indicate physiological arousal (Braithwaite et al., 2013). By capturing 

skin conductance, which refers to the electrical properties of the skin changes in response 

to sweat secretion, EDA provides a moment-by-moment measure of arousal (Boucsein, 

2012). Arousal is the "state of being physiologically alert, awake, and attentive, associated 

with sensory stimulation and activation of fibres from the reticular activating system" 

(Beri & K, 2019). A study by Caruella et al., (2019) reviews the use of EDA to assess 

consumer emotions in marketing and consumer research, where the review finds that EDA 
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is a valuable tool for understanding consumer emotions, though the paper also 

recommends combining EDA with other methods to capture both arousal and valence.  

3.3.6.2 Valence. The study utilized a Facial Expression Recognition (FER) 

software to measure the participant’s facial expressions during the experience. The 

hedonic tone of the feeling, referred to as valence (Garbas et al., 2013), is measured 

through facial expression recognition and has been extensively studied in HCI (Yang & 

Sun, 2017). According to Mehrabian's (2017) criterion for emotional expression, humans 

express their emotions through facial expressions by 55%, 7% by language, and 38% by 

voice. Facial Expression Recognition (FER) advancement was supported by Li and 

Deng's (2022) comprehensive review of deep learning techniques applied to FER, which 

discussed the transition of FER from controlled laboratory settings to more challenging 

real-world environments and emphasizing the increasing use of deep neural networks to 

address environmental complexities.   

Facial expression and electrodermal activity effectively measure the two 

dimensions of emotion and comprehensively describe a person's emotional change 

(Russell, 1980; Yang & Sun, 2017).   

 

3.3.6.3 Visual Attention. To measure visual attention, the study used eye tracking 

and a visual search measure, k-coefficient. Eye-tracking (or oculography) is a research 

method that uses an eye-tracking device to track the point of gaze or a user's eye 

movement during task execution (Borys et al., 2017).  A visual search measure has been 

proposed by Krejtz et al. (2016) to characterize two modes of attention – ambient vs. focal 

attention. Coefficient K (k-coefficient) measures visual behaviour fluctuating between 

focal and ambient viewing modes, combining the length of saccades with the duration of 

fixations (Krejtz et al., 2016). 
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3.3.6.4 Cognitive Load. Another psychophysiological measure captured by an 

eye-tracking device is pupil dilation. Pupil dilation measures pupil size changes, 

providing insights into attention, arousal, emotion, and mental workload (Bergstrom et 

al., 2014). Pupil size changes in response to emotionally arousing stimuli (Bradley et al., 

2008). A study by Partala and Surakka (2003) showed that pupil size was significantly 

larger during emotionally negative and positive stimuli than during neutral stimuli. Pupil 

diameter is valuable for real-time cognitive assessment, distinguishing task difficulty with 

larger pupil dilations under challenging tasks (Kreijtz et al., 2018). Biometrics quantify 

task-related cognitive effort and provide temporally specific and non-intrusive 

measurements of cognitive dynamics throughout a task (Wals & Wichary, 2022). This is 

further supported by Gilzentrat et al. (2010) findings that pupil diameter can serve as a 

proxy to the locus coeruleus-norepinephrine (LC-NE) system, which has a vital function 

in regulating cognitive control and provides evidence that the LC-NE system's regulation 

of cognitive control can be monitored non-invasively through pupillometry.  

 

3.3.7 Instrumentation  

The study used non-intrusive tools to capture the user's psychophysiological responses.   

3.3.7.1 Tobii Pro Eye Tracker & Tobii Pro Lab software. Tobii Pro eye tracker 

was used to capture the pupil dilation and gaze entropy of the participant while performing 

the task, and the psychophysiological responses were recorded by the Tobii Pro Lab 

software version 1.217 (Tobii AB, Danderyd, Sweden).   

3.3.7.2 Face Reader v.9. Face Reader (version 9) was used to analyze facial 

expressions and emotions felt by the participant while performing the task. Facial 

expression analysis with FaceReader can recognize several specific properties in facial 

images, including the six universal expressions that infer emotional valence (Noldus 

FaceReader, Wageningen, The Netherlands).   
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3.3.7.3 Media Recorder. In conjunction with the Tobii Pro eye-tracker and 

FaceReader, the Media Recorder is a software application used to capture and synchronize 

various types of data streams, which includes video, audio and biometric data to provide 

a comprehensive view of the participant's interactions and responses (Noldus Media 

Recorder, Wageningen, The Netherlands).   

3.3.7.4 Biopac MP-150 & Acqknowledge software. Using the EDA sensors 

securely placed on the participant's non-dominant hand, mostly the participant's left hand, 

the EDA signal responses were relayed to the Biopac MP-150. BIOPAC MP-150 is a data 

acquisition system which provides intuitive analysis and visualization tools for capturing 

physiological signals, specifically EDA, which is the measure to capture the participant's 

arousal level experienced while performing the tasks (BIOPAC Systems, Inc.). The 

BIOPAC MP-150 works with Acqknowledge software (BIOPAC Systems, Inc.).   

3.3.7.5 Observer XT. Observer XT is a software tool designed to collect, analyze, 

and present observational data from various sources (Tobii Pro Eye-tracker, FaceReader, 

Media Recorder, and Biopac MP-150) (Noldus Observer XT, Wageningen, The 

Netherlands).   

 

3.3.8 Laboratory Setup  

3.3.8.1 Experimental Room Setup. As shown in Figure 9, a dedicated computer 

workstation was provided for participant task completion with a microphone that 

facilitated clear communication with the moderator and a webcam that captured and 

recorded facial expressions. A Tobii Pro eye-tracker was positioned beneath the screen to 

monitor eye movements, and an iPad was used to display the consent form, compensation 

details, onboarding videos, and essential task instructions.  
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Figure 9. Lab setup in the experimental room   

 

3.3.8.2 Observation Room setup. The moderator's workstation shown in Figure 

10, which is composed of three system units and five monitors that display the 

Acknowledge Biopac software (1), Observer XT (2), Media Recorder (3), mirrored 

participant's screen (4), and Tobii Pro (5).  

  

Figure 10. Lab setup in the observation room   
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3.3.8.3 Instrument and Equipment Synchronization setup. Presented in Figure 

11 is the instrument and equipment synchronization setup designed to capture 

physiological and behavioural response data simultaneously. The SyncBox (Noldus) 

synchronized data from the EDA, eye-tracking, and facial expression systems, ensuring 

temporal alignment across all collected measurements.  

Figure 11. Instrument and Equipment Synchronization Setup   

3.3.9 Experimental Procedure  

Following the proposed process framework presented in the earlier section of the 

study (shown in Figure 1), details of each step are elaborated below.  

3.3.9.1 Phase I: Collection of psychophysiological data  

Step 1: Data Collection. As shown in Figure 12, the study experience begins with 

welcoming the participants and providing them the consent form. The participants were 

recruited based on the inclusion and exclusion criteria stated in section 3.3.2 Participants. 

Following the signing of the consent form, participants provided socio-demographic 

information, EDA sensors were then attached to the non-dominant hand, and an eye 

calibration test was conducted.  
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Three tasks were administered. To ensure that the participants responses and 

interactions with the SaaS enterprise systems were unbiased and uninfluenced by previous 

experience, participants who have current and prior experience with ServiceNow, 

Microsoft Dynamics 365 CRM, and Salesforce Cloud Service were not recruited for this 

study. Prior to task commencement, participants viewed an onboarding video on the iPad, 

familiarizing themselves with the assigned system (either MS Dynamics or Salesforce for 

Tasks 1 and 2 and ServiceNow for Task 3) (see Appendix B). Task instructions (see 

Appendix A) were displayed on the monitor, while relevant information was provided on 

the iPad (see Appendix C). The SaaS system instances were presented to the participants' 

screens, where they would perform the tasks. Upon completing all three tasks, participants 

received a compensation form and expressed gratitude for their involvement.  

  

Figure 12. Step-by-step procedure experienced by the participant during the study  
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3.3.9.2 Phase II: Training a predictive model  

Step 2: Data Segmentation. Following the experiment and data collection, UPP 

markers were integrated into the physiological data to correspond with identified usability 

issues. Data segments surrounding UPP events were extracted, encompassing 10-second 

intervals centered on the UPP with a 1-second offset. This temporal window captures 

immediate physiological changes in response to the UPP. For instance, a separate study 

done by Brown et al. (2011) and Kim et al. (2013) used a brief pre- and post-stimulus 

window to accurately evaluate immediate physiological changes which correlates to pain 

such as changes in heart rate, skin conductance, and other autonomic responses. 

Additionally, the study by Brown et al. (2011) utilized a 20-second baseline period before 

each stimulus to establish a reference point for measuring changes in brain activity, 

ensuring that the observed responses were directly attributable to the stimuli. For the 

purpose of this study, 10-second intervals before and after the UPP marker was chosen 

based on the intuition that participants' reactions reach their peak within a few seconds 

and remain strong for a few seconds. The 10-second interval after the stimulus captures 

this peak reaction, while the 10-second interval before the stimulus serves as a comparison 

to accurately assess the changes induced by the usability pain point. 

Step 3: Data Preparation for Cluster Analysis. To prepare the data for cluster 

analysis, the increase in physiological measures (x_aug) following a UPP was calculated 

by subtracting the baseline value (x_before) from the post-UPP value (x_after).  

Hence, the study used the formula x_aug = x_after – x_before for cluster analysis, 

where x = variable.  

Each participant's mean values (x_aug) were calculated and subsequently 

employed as input for cluster analysis using the K-Means algorithm. K-means clustering 

was utilized to identify groups of participants exhibiting similar physiological responses. 

The resulting clusters were then categorized into strong and weak reaction groups.  
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Step 4: Training a Logistic Regression Model. After identifying the clusters, the 

subsequent step was to train a logistic regression model by calculating the cumulative 

averages of the psychophysiological variables (x_ca), which act as baseline "norm" values 

for each participant. The data was then centered by subtracting these cumulative averages 

(x-ca) from the raw data (x), resulting in x_b. This centered data captured individual 

deviations from the "norm."  

Hence, the study used the formula x_b = x – x_ca to train the models, where x = variable.  

Logistic regression models with random intercepts were subsequently trained 

using the centered physiological data (x_b) to detect the likelihood of a pain point. 

Separate models were developed for clusters exhibiting strong reactions to identify 

significant predictors. The dependent variable (DV) was the time before versus after the 

UPP event.  

Step 5: Model Performance Evaluation tested on Task 1 and 2. The trained 

models were subsequently applied to identify pain points within the Task 1 and Task 2 

data, and the performance was evaluated using recall and precision to assess the detection 

of UPPs.  

3.3.9.3 Phase III: Model performance evaluation  

Step 6: Model Performance Evaluation tested on Task 3. In the final step, the 

trained model was applied to Task 3 data to identify pain points. Expert evaluations were 

conducted by analyzing video recordings of participant interactions. Each predicted pain 

point was rated on a 0-3 scale, with 0 indicating "absolutely not a pain point" and 3 

indicating "absolutely a pain point."  
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3.4 Data Analysis and Results 

This section presents the analyses conducted to examine the psychophysiological 

responses to usability pain points and assess the predictive model's reliability in detecting 

pain points in a natural task.   

3.4.1 Manipulation check   

The manipulation check aimed to verify whether the induced configuration errors 

in Task 1 and 2 successfully elicited distinct psychophysiological responses in 

participants characterized by emotional arousal, valence, visual attention and cognitive 

load changes. Results indicated that 61 out of 86 participants showed significant changes 

in these indicators following a usability pain point exposure, confirming that the 

manipulations effectively induced psychophysiological responses characteristic of 

encountering usability obstacles.    

Thus, a final sample of 61 participants with sufficient psychophysiological data 

was used for cluster analysis. By focusing on the psychophysiological data gathered from 

these 61 participants, the study ensured that the cluster analysis was based on reliable and 

meaningful data, which is crucial in Phase II in training a predictive model in identifying 

distinct patterns in psychophysiological responses when users encounter a usability pain 

point. 

3.4.2 Cluster Analysis Results   

K-means clustering was performed to identify groups of participants based on their 

psychophysiological responses to usability pain points. The purpose of this analysis was 

to identify patterns in user reactions. As a result, four distinct clusters were 

identified. Table 2 presents the mean (M) increases in four psychophysiological 

measures—valence, EDA phasic, pupil dilation, and k-coefficient—following a usability 

pain point. 
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Table 2 

 

Mean Increase in Physiological Measures Following a UPP per Cluster  

Cluster   Valence  EDA phasic  Pupil Dilation   K-coefficient  

   M  M  M  M  

Cluster 1   
(N=25)  

0.080   0.372   0.722   -0.393   

Cluster 2   
(N=25)  

-0.558   0.271   -0.728   -0.022   

Cluster 3  
(N=6)   

-0.022   -2.772   0.458   0.549   

Cluster 4  
(N=5)   

2.413   -0.131   -0.519   1.414   

 Note. Total N=61; M = Mean  

Each cluster showed varied patterns of psychophysiological reactions to the 

usability pain point. For example, in Cluster 1, participants responded with a moderate 

increase in arousal (EDA) (0.372), a significant increase in pupil dilation (0.722) and a 

moderate decrease in k-coefficient (-0.393). In contrast, participants in Cluster 2 showed 

significant decrease in valence (-0.558) and pupil dilation (-0.728) when encountering the 

usability pain point. Cluster 3 participants demonstrated a significant decrease in arousal 

(-2.772), along with a moderate increase in pupil dilation (0.458) and k-coefficient 

(0.549). Meanwhile, participants in Cluster 4 showed a significant increase in valence 

(2.413) and k-coefficient (1.414), accompanied by a decrease in arousal (-0.131) and pupil 

dilation (-0.519). 

Notably, most participants displayed responses aligned with the patterns found in 

Clusters 1 (N= 25) and 2 (N= 25). The similarity in response patterns across these 

participants indicates that the majority experienced the UPP as significant disruptions. 

Conversely, only a small subset of participants exhibited different response patterns found 

in Clusters 3 (N= 6) and 4 (N= 5), potentially indicating participants' differences in 

sensitivity to usability disruptions or varied task engagement levels. Clusters 3 and 4 

participants might represent users who are less affected by minor interface issues or who 

adopt different coping mechanisms, such as maintaining focus without exhibiting high 

arousal.   

Overall, the different response patterns support the concept of a 

"psychophysiological signature" when faced with a usability pain point, triggering distinct 
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psychophysiological responses consistent with shifts in emotional arousal, valence, visual 

attention and cognitive load. However, the prominence of patterns found in Clusters 1 and 

2 among participants underscores the robustness of psychophysiological responses as 

indicators of usability pain points. The concentration of participants within these clusters 

strengthens the proposition that a predictable and recognizable response signature exists 

to usability issues, validating the use of these indicators in training the predictive model.  

3.4.3 Logistic Regression Model Training Results   

The following analysis step involved training logistic regression models to identify 

the likelihood of a pain point occurrence based on the observed psychophysiological 

responses. Separate models were created for strong-reaction clusters (Clusters 1 and 2) to 

capture the primary predictors for each cluster. Participants without EDA phasic data were 

excluded from the model training for this analysis. Thus, a final sample of 45 participants 

with complete psychophysiological data was used for logistic regression. As discussed in 

the Procedure section, Step 4 of this study, the centered data (x_b) for variables valence, 

pupil dilation, EDA phasic, and k-coefficient were used for this analysis, where centered 

data for valence represents shifts in emotional valence, centered data for pupil dilation 

represents shifts in cognitive load, centered data for EDA phasic represents changes in 

emotional arousal, and centered data for k-coefficient represents shifts in visual attention.  

3.4.3.1 Predictive Model A (PM-A). Predictive Model A (PM-A) used the 

centered data (x_b) for variables valence, pupil dilation, EDA phasic, and k-coefficient 

from Cluster 1 participants (N=23). The results indicated that the centered data for the k-

coefficient (Estimate = -0.659, SE = 0.244, t(335) = -2.700, p = .007) was significant. 

This suggest that changes in visual scanning behaviour are a strong predictor of usability 

pain points for participants in this cluster. Other predictors, including centered data for 

valence (Estimate = 0.029, SE = 1.294, t(335) = 0.020, p = .981), centered data for pupil 

dilation (Estimate = -0.542, SE = 0.767, t(335) = -0.710, p = .481), and centered data for 

EDA phasic (Estimate = 0.135, SE = 0.254, t( 335) = 0.530, p = .595), were not 

statistically significant.  
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Given the lack of significance for centered data for valence, an alternative model 

excluding this variable was tested. The results for the refined model remained similar, 

with centered data for k-coefficient continuing to be a significant predictor (Estimate = -

0.666, SE = 0.237, t(335) = -2.810; p = .005).  

Hence, the final predictive model A (PM-A) based on Cluster 1 centered data:  

• PM-A: prob_UPP= 1 / (1 + exp(-1 * (0.3252 - 0.572 * pupil_b + 0.1214 * 

phasic_b - 0.6664 * k_b)))   

Where prob_UPP = probability of usability pain point, x = variable (i.e. valence), and x_b 

= centered data of the variable x  

3.4.3.2 Predictive Model B (PM-B). Another model, Predictive Model B (PM-

B), was trained for detecting usability pain point using the centered data from Cluster 2 

(N=22). In this model, the centered data for pupil dilation (Estimate = -25.291, SE = 

2.769, t(345) = -9.130, p<0.001) emerged as a highly significant predictor of usability 

pain point, underscoring the shift in cognitive workload. Other variables, including the 

centered data for valence (Estimate = -3.655, SE = 2.832, t(345) = -1.290, p = .198), the 

centered data for EDA phasic (Estimate = 1.649, SE = 1.395, t(345) = 1.180, p = .238), 

and the centered data for k-coefficient (Estimate = 0.163, SE = 0.528, t(345) = 0.310, p = 

.758), were not significant.  

Hence, the final predictive model B (PM-B) based on Cluster 2 centered data:  

• PM-B: prob_UPP= 1 / (1 + exp(-1 * (-0.3404 - 3.6547 * valence_b - 25.2911 * 

pupil_b + 1.6491 * phasic_b + 0.1626 * k_b)))   

Where prob_UPP = probability of usability pain point, x = variable (i.e. valence), and x_b 

= centered data of the variable x  

In summary, the results partially support the study's second proposal by identifying 

shifts in visual attention and cognitive load, as measured by k-coefficient and pupil 

dilation, respectively, as solid indicators of usability pain points, which are then applied 

to the predictive model.    
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3.4.4 Performance evaluation: PM-A and PM-B tested on Task 1 and Task 2   

In Table 3, the performance of PM-A and PM-B were evaluated based on recall 

and precision metrics for detecting usability pain points on Task 1 and 2 across different 

configurations of cut points, gap durations, and assumed durations.   

Table 3 

 

Performance evaluation of predictive models (PM-A & PM-B) for identifying usability pain points across different 

configurations  

 

Obs   
Cut point  

Gap  
(ms)  

Minimum 

Duration 

(s)  

Assumed 

Duration  
(s)  

Number of 

True 

Positives 

among the 

predicted 

UPP  

Number of 

UPP 

predicted by 

the model  

Number of 

induced UPP  
Recall  Precision  

 
PM-

A  

PM-

B  

         PM-

A  

PM-B  PM-A  PM-B           

1  0.7  0.95  8000  3  20  6  17  104  232  66  0.348  0.068  

1  0.75  0.98  8000  3  20  3  14  25  191  66  0.258  0.079  

1  0.73  0.98  8000  3  20  4  14  46  191  66  0.273  0.076  

1  0.75  0.99  8000  3  20  3  10  25  164  66  0.197  0.069  

1  0.75  0.999

  

8000  3  20  3  3  25  78  66  0.091  0.058  

1  0.75  0.993

  

10000  8  15  1  7  7  99  66  0.121  0.075  

1  0.75  0.993

  

10000  5  15  3  8  17  132  66  0.167  0.074  

1  0.75  0.995

  

10000  5  15  3  6  17  115  66  0.136  0.068  

 

Several configurations were tested to evaluate both model’s performance. Cut 

points were adjusted across different configurations, ranging from 0.7 to 0.75 for PM-A 

and 0.95 to 0.995 for PM-B. A cut point indicates the threshold above which the predicted 

probability is considered a positive prediction (UPP detected). The gap duration, set 

between 8,000 and 10,000 milliseconds (ms), was used to merge neighbouring data points 

within a short time interval, considering them a single pain point. The minimum duration 

for a predicted pain point to be considered valid was either 3 or 5 seconds (s). To specify 

the time interval within which a UPP is detected, the assumed duration was fixed at 20 

seconds for most configurations.  
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Table 4 presents the selected configuration to optimize the prediction performance 

regarding recall and precision, particularly for identifying around 100 distinct UPPs 

without necessarily maximizing these metrics. The selected configuration indicated that 

the models' performance had limited success in identifying true UPPs, with only 10.6% 

of the actual positive cases of UPPs detected (recall = 0.106), and among all predicted 

pain points, only 8% were actual UPPs (precision = 0.080).   

Table 4 

 

The selected configuration aims to predict approximately 100 distinct UPP  

 

Obs   
Cut point  

Gap  
(ms)  

Minimum 

Duration 

(s)  

Assumed 

Duration  
(s)  

Number of 

True 

Positives 

among the 

predicted 

UPP  

Number of 

UPP predicted 

by the model  

Number of 

Induced 

UPP  

Recall  Precision  

  PM-

A  

PM-B    PM-

A  

PM-

B    

PM-

A  

PM-B  PM-A  PM-B  

        

  

1  

  

0.75  

  

0.995  

  

10000  

  

5  

  

10  

  

15  

  

  

3  

  

4  

  

17  

  

71  66  

  

0.106  

  

0.080  

  

 

This finding partially supports the study's second proposal. While the precision 

rate indicated limited accuracy, it suggested that the models have some capacity to 

identify actual pain points but may generate a substantial number of false positives. The 

relatively low recall implies that while some UPPs are detected, the models may not 

identify many actual pain points under the current configuration. However, these initial 

results highlighted the model's potential in detecting usability pain points. The ability to 

identify even a subset of UPPs represented progress toward the study's objective, as it 

showed the feasibility of using psychophysiological measures for real-time UPP 

detection.  

3.4.5 Performance evaluation: PM-A and PM-B tested on Task 3  

PM-A and PM-B trained models were applied to Task 3, where no manipulated 

pain points were induced, to test its ability to detect any spontaneous pain points that 

might naturally occur during user interaction. The models identified 116 pain point events, 

with 42 classified as UPP with k-coefficient as the significant predictor and 74 as UPP 
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with pupil dilation as the significant predictor. While recall and precision are typically 

used to measure model performance, the recall rate could not be calculated because the 

ground truth for the spontaneous pain points is unknown. In this case, precision was 

assessed through expert evaluation, which analyzed each predicted instance to determine 

the likelihood of representing a true pain point.  

Table 5 presents the number of UPP events categorized by the expert as likely to 

be a usability pain point.  

Table 5 

 

Expert's assessment of the predicted pain point  

Assessment Scale  Number of UPP events  

0 = Absolutely not a UPP  21  

1 = Somewhat Like a UPP  39  

2 = Most likely a UPP  33  

3 = Absolutely a UPP  23  

      

 

Following the expert assessment, a frequency analysis was conducted by creating 

a binary variable indicating whether the expert's evaluation (on a scale of 0–3) represented 

a higher likelihood of an actual pain point (>1) or not (≤1).   

Table 6 presents the precision of the predicted UPP based on the expert 

assessment. The expert evaluation provided a precision of 47.6% of the instances 

predicted as UPP with k-coefficient predictor and 48.6% of the UPP with pupil dilation 

predictor, indicating that the expert ratings corroborated nearly half of the model’s 

predicted pain points.   

Table 6 

 

Precision of predicted UPP based on expert assessment  

UPP based on 

significant predictor  

Number of UPP 

events  

Likelihood of an actual UPP 

(>1) based on expert 

assessment  

Precision  

UPP (k-coefficient)  42  20  0.476  

UPP (pupil dilation)  74  36  0.486  
*If expert assessment is >1, then the likelihood of an actual UPP is true (1), otherwise (0)  
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The findings further support the study’s second proposal that, while the predictive 

models have limitations, they can detect spontaneous UPP with reasonable precision, even 

in an unmanipulated task. The moderate precision suggests that the models capture 

genuine instances of user friction that were likely subtle but impactful enough to elicit 

changes in psychophysiological responses when encountering a usability pain point.  

3.5 Discussion 

The study identified psychophysiological signature patterns, defined by changes 

in emotional arousal, valence, visual attention, and cognitive load when users encountered 

usability pain points in enterprise systems. Moreover, using the captured 

psychophysiological data, this study developed predictive models and examined their 

reliability in identifying pain points across similar tasks. Three SaaS platforms were 

selected: Microsoft Dynamics 365 – CRM, Salesforce, and ServiceNow. An artificially 

manipulated pain point was placed randomly in the first or second task to evoke reactions, 

with data collected for model training. The models' reliability was then evaluated on a 

third task, free of manipulation.   

Given the limited research on user behaviour in response to usability pain points, 

this study introduced a novel multimodal approach that uses psychophysiological data to 

identify usability pain points during interaction by assessing users' emotional, cognitive, 

and attentional responses.  

3.5.1 Profiling users’ psychophysiological response to usability pain points  

The study aimed to explore and identify users' distinct psychophysiological 

response patterns when encountering usability issues (RQ1). It successfully revealed 

characteristic profiles characterized by changes in emotional arousal, valence, visual 

attention, and cognitive load, revealing different user experience profiles. The cluster 

analysis identified four distinct user profiles with varied psychophysiological reactions to 

usability pain points (UPPs) during interaction to a digital interface. Two of these user 

profiles, provisionally named "Conventional Reactor A" (Cluster 1) and "Conventional 

Reactor B" (Cluster 2), indicated that the majority of the participants experienced the 

usability pain point as a significant disruption to their interaction with the SaaS interface. 
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Conversely, a small subset of participants responded differently, as found in the other two 

user profiles, provisionally named "Unconventional Reactor A" (Cluster 3) and 

"Unconventional Reactor B" (Cluster 4). However, why do participants exposed to 

identical UPP react differently?   

The differentiation between these user profiles can potentially be interpreted 

through the lens of the fight, flight, freeze, and fawn responses. The fight or flight theory 

describes the physiological reaction that arises when an organism perceives danger or a 

threat to survival (Cannon, 1929). Humans adapt to stressful situations by engaging in 

"fight or flight" behaviour when encountering an impending danger or threat. The fight 

response involves confronting the threat, while the flight response entails escaping from 

it (Cannon, 1929).   

Conventional Reactor A showed a slight positive increase in an emotional state 

after encountering a usability obstacle with heightened physiological arousal, placing the 

emotion felt by the participants in the high arousal/positive valence quadrant (Russell, 

1980); this may suggest that participants were surprised when encountering the usability 

issue. There is a drastic increase in pupil size, which may indicate that participants' LC-

NE system was in tonic mode and may suggest a disengagement in the current task, where 

attention is no longer primarily focused on task-relevant stimuli but also responds to 

irrelevant stimuli and shifting to an exploration strategy (Aston-Jones & Cohen., 2005; 

Gilzenrat et al., 2010). There was a decrease in the k-coefficient, which may indicate that 

the participants switched to ambient visual scanning behaviour (Kreijtz et al., 2016) after 

encountering the usability issue when exploring the SaaS enterprise environment. 

Conventional Reactor A profile possibly reflected a "flight" response when encountering 

the usability obstacle.   

Whereas Conventional Reactor B showed an extremely significant association 

with the drastic decrease in pupil dilation. The drastic decline in pupil dilation may 

indicate that participants' LC-NE system was in phasic mode, which may be associated 

with high task engagement on the current task, where attention is concentrated on task-

relevant stimuli to optimize performance, which may suggest that participants shifted to 
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exploitation strategy upon encountering the usability issue (Aston-Jones & Cohen., 2005; 

Gilzenrat et al., 2010). Participants showed a strong negative emotional response and 

increased arousal, suggesting that the participants may have felt frustrated, distressed or 

annoyed (high arousal/negative valence quadrant) (Russell, 1980) upon encountering the 

usability obstruction. This may also indicate that participants focused on the stimulus 

before switching to ambient scanning behaviour (Kreijtz et al., 2016), where the k-

coefficient exhibited by participants was slightly higher than that of Conventional Reactor 

A participants. Conventional Reactor B's response may be interpreted as a "fight" 

response when encountering a usability issue.   

Additional responses, such as freeze and fawn, have been added to expand the 

fight or flight theory. The freeze response temporarily suspends the fight-or-flight 

response characterized by hyper-focused attention on a perceived threat (Kozlowska et 

al., 2015). The less commonly discussed fawn response involves appeasement behaviours 

aimed at reducing the danger from an aggressor (Owca, 2020).   

Unconventional Reactor A profile exhibited a minimal decrease in emotional 

valence and a significant drop in EDA phasic, which may place the emotion felt by the 

participants in the low arousal/negative emotions quadrant (Russell, 1980), suggesting 

participants may have felt bored or tired. The pupil dilation increased, which may indicate 

that the participants' LC-NE system was in tonic mode and may present an exploration 

strategy (Aston-Jones & Cohen., 2005; Gilzenrat et al., 2010). Despite the exploration 

strategy, the participants exhibited focused attention (increased k-coefficient) (Kreijtz et 

al., 2016) while visually scanning the SaaS enterprise environment. This behaviour can 

potentially be a "fawn" response due to the indifferent emotion felt by the participants and 

disengagement from the current task, quickly diverting their focus to a different stimulus 

that they think might solve the current issue.   

Lastly, the Unconventional Reactor B user profile presented a substantial increase 

in emotional valence, which may indicate a strong positive emotion experienced when 

encountering the usability challenge. However, there was a slight decrease in arousal, 

which may place the emotions felt by the participants in the low arousal/positive valence 
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quadrant (Russell, 1980). This may suggest that the participants felt calm when 

encountering the usability issue. The pupil dilation decreased, which may indicate that the 

participants' LC-NE system was in phasic mode and may present an exploitation strategy 

(Aston-Jones & Cohen., 2005; Gilzenrat et al., 2010) supplemented by a notable increase 

in the k-coefficient, which may indicate focused attention (Kreijtz et al., 2016). This 

response by Unconventional Reactor B potentially represents a "freeze" response due to 

the calm emotions, exploitation strategy, and focused attention on the stimulus. 

It is important to note that this study does not directly focus on the fight-flight-

freeze-fawn responses but on the psychophysiological signature patterns exhibited by the 

participants upon encountering a UPP. The fight-flight-freeze-fawn responses (Cannon, 

1929) were interpreted based on the existing research on information gathering theory 

(Pirolli & Card, 1999), adaptive gain theory (Aston-Jones & Cohen., 2005), arousal-

valence model (Russell, 1980) and psychophysiological theories.  

3.5.2 Assessing predictive models’ performance in usability pain point detection 

The study aimed to evaluate the extent to which a psychophysiological signature 

of a user experiencing usability issues can reliably identify usability pain points in another 

similar task (RQ2). Predictive models were trained using robust indicators—specifically, 

shifts in visual attention and cognitive load, as measured by the k-coefficient and pupil 

dilation found in Conventional Reactor A and Conventional Reactor B user profiles, 

respectively. These models were applied to detect the occurrence of usability pain points, 

with their performance assessed through precision and recall metrics. Although the initial 

performance evaluation results where the predictive models are applied to the pain-point-

induced tasks (Task 1 and 2) showed a low recall of 10.6% and precision of 8%, the 

predictive models highlighted its potential in detecting usability pain points. The ability 

to identify even a subset of UPPs represents progress toward the study's objective, as it 

showed the feasibility of using psychophysiological measures for real-time UPP 

detection.    

To further address RQ2, on the second performance evaluation, the predictive 

models were applied to a natural task – no artificially manipulated pain point – to test its 
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ability to detect any spontaneous pain point that may naturally occur during the 

interaction. The models detected 116 UPP events, which an expert then validated. The 

expert evaluation provided a precision of 47.6% of the instances predicted as UPP with 

k-coefficient predictor and 48.6% of the UPP with pupil dilation predictor, indicating that 

the expert ratings corroborated nearly half of the model's predicted pain points. The results 

showed that while the model is not perfect, it can detect spontaneous usability pain points 

with reasonable precision, even in an unmanipulated task. This capability supported the 

model's utility in real-world scenarios where usability issues arise organically.   

However, the inability to calculate recall due to unknown ground truth for 

spontaneous pain points limits a complete evaluation of the model's performance. Without 

recall, it is difficult to determine how many actual UPPs the models missed. Thus, the 

models should be used cautiously, and an inter-rater expert evaluation is recommended to 

mitigate subjectivity bias. Also, the models may require further refinement to improve 

reliability in detecting true UPPs in similar tasks.  

These mixed results suggest that while psychophysiological data holds promise 

for real-time identification of pain points, individual differences in response intensity 

complicate the model's accuracy. This variation raises questions about the reliability of 

using psychophysiological measures alone for usability assessment, highlighting the need 

to account for response variability in predictive models. From a UX research perspective, 

these findings suggest that psychophysiological data can be a valuable tool for identifying 

pain points but may be more effective when combined with other data sources, such as 

behavioral observations or self-reports. This approach could enhance the interpretability 

of psychophysiological responses and allow for a more comprehensive understanding of 

user experiences. As a result, psychophysiological measures could serve as a 

complementary method in UX research, providing objective insights that help capture 

real-time reactions, but requiring contextualization to ensure accuracy and relevance 

across diverse user profiles and tasks.  
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3.5.3 Contributions  

3.5.3.1 Theoretical Contributions. The study challenged the traditional notion 

that all users react uniformly to usability issues. The study enriched existing UX and HCI 

research theories by identifying distinct psychophysiological response patterns across 

user profiles. It highlighted the importance of individual differences in emotional, 

cognitive, and attentional responses. By demonstrating that specific psychophysiological 

measures, such as pupil dilation and visual attention shifts (k-coefficient), can reliably 

signal usability issues, the study advanced the theoretical understanding of objective, non-

verbal cues as indicators of user experience disruptions. The study provided a 

comprehensive framework for user behaviour analysis regarding usability issues and user 

interactions by integrating psychophysiological measures of emotional arousal, valence, 

cognitive load, and visual attention. This multimodal approach added depth to theoretical 

models, emphasizing the value of combining diverse data streams for richer insights into 

user interactions. The study's application of psychophysiological principles to usability 

assessment linked the fields of psychophysiology and UX, contributing to a novel 

interdisciplinary perspective that lays the groundwork for future theoretical explorations 

that connect physiological responses to user experience metrics. The findings also 

provided empirical evidence linking emotional, cognitive, and visual attention responses 

to usability issues, enriching theoretical discussions on how these factors influence user 

behaviour during complex tasks. 

3.5.3.2 Practical Contributions. This study provided actionable insights for 

improving the usability of enterprise systems by leveraging psychophysiological data, 

predictive modelling, and adaptive design strategies. Incorporating tools like eye tracking, 

EDA sensors, and facial expression recognition software offers more profound insights 

into users' emotional and cognitive states, revealing implicit usability issues. The 

predictive models developed in this study enabled proactive usability management by 

identifying usability challenges in real-time and allowing immediate interventions to 

enhance user experiences. Given the variability in user responses, adaptive interfaces with 

customizable features like task shortcuts and personalized guidance are recommended to 

accommodate diverse user-profiles and minimize user frustration. The study highlighted 

that shifts in pupil dilation and k-coefficient are reliable indicators of usability issues and 
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suggested that high-impact usability adjustments should focus on these indicators. These 

strategies not only improve usability but also enhance user satisfaction, productivity, and 

system adoption.  

 In practice, UX designers could use a data-driven approach to enhance decision-

making by using real-time user insights, complimenting subjective feedback with a more 

objective one. System developers could integrate the predictive models into the backend 

of enterprise platforms to proactively address user challenges, enhancing user experience 

and system robustness. Human factors specialists could utilize the predictive models to 

deeply analyze user-system interactions, leading to evidence-based recommendations for 

improving task efficiency and reducing errors. Human resources and learning 

development experts could incorporate predictive models into their training modules and 

platforms to mitigate users' learning challenges, hence improving employees' training 

experience, particularly in mastering new digital interfaces. Management could leverage 

the predictive model's insights to improve employee productivity, satisfaction, and 

retention, directly supporting organizational success. 

The study highlighted its practical relevance by outlining actionable findings for 

certain professional positions, thereby facilitating the transformation of enterprise systems 

into more user-friendly, efficient, and adaptive environments. In addition, the study could 

empower professionals across disciplines to leverage the findings for meaningful user 

experience enhancements. 

3.5.3.3 Methodological Contributions. This study also contributes 

methodologically by introducing a novel multimodal approach to identifying usability 

pain points by using various psychophysiological methods to assess the different aspects 

of the user's response, which are characterized by changes in emotional arousal, valence, 

cognitive load, and visual attention when users encounter a usability obstruction. In 

addition, by integrating cluster analysis and logistic regression models to predict usability 

challenges, this study demonstrated a robust multimodal approach for analyzing 

psychophysiological data in usability studies. The clustering method enabled us to capture 

meaningful psychophysiological signatures, revealing different user experiences, a factor 
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that enhances the interpretability of psychophysiological data. In addition, through 

logistic regression the study was able to identify significant indicators to usability pain 

points (pupil dilation and k-coefficient) and developed models that were able to detect 

usability pain points on a natural task.  

3.5.4 Limitations and Future Work 

This study adopted a controlled laboratory setting and specific task parameters to 

focus on the feasibility of identifying usability pain points (UPPs) using 

psychophysiological measures. While this approach allowed for rigorous testing and 

analysis of the proposed predictive models, certain aspects were necessarily constrained, 

creating opportunities for future research to extend and refine the findings. 

The modest recall (10.6%) and precision (8%) rates observed in training the 

predictive models reflect the complexity of reliably identifying user pain points. These 

rates highlighted the inherent challenge of capturing the nuanced variability in user 

responses. While recall and precision are typically used to measure model performance, 

the recall rate could not be calculated because the ground truth for the spontaneous pain 

points is unknown. In this case, the decision to use a single expert evaluation for validating 

model precision was a practical choice for this study. However, the reliance on a single 

expert introduced subjectivity that future studies could address by incorporating multi-

rater assessments or alternative validation techniques. 

Although the study introduced a novel perspective by interpreting the link between 

psychophysiological responses to existing theories like the arousal-valence model, 

adaptive gain theory, and theory of visual scanning behaviour, the actual classification of 

user responses into the fight-flight-freeze-fawn categories was not measured and 

validated. The reliance on existing theories to infer these behavioural responses might 

oversimplify the complexity of human reactions, which are influenced by multiple factors 

beyond the psychophysiological measures considered. This study opens avenues for 

future work to validate the interpretation of fight-flight-freeze-fawn response 

categorization by incorporating more direct behavioural or self-reported measures and 
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more advanced psychophysiological measures, providing a richer, nuanced understanding 

of user reactions. 

The controlled environment and specific sample size enabled precise measurement 

of psychophysiological responses, but these factors limit the generalizability of findings 

to broader, real-world contexts. User interactions could be influenced by a variety of 

contextual factors, including workflow complexities, stress levels, and multitasking 

demands. Future studies should extend this work by applying the predictive models in 

real-world scenarios, considering different tasks, other enterprise systems, and diverse 

user groups. This expansion would validate the models' applicability and enhance their 

robustness in identifying usability challenges across varied scenarios. 

Additionally, while this study primarily used k-coefficient and pupil dilation as 

significant indicators in developing the predictive models, future studies could explore 

and employ various indicators, machine learning techniques and other advanced signal 

processing methods that could significantly improve the predictive model's performance. 

The combination of these technical advancements with multi-dimensional 

psychophysiological data would support more accurate, real-time detection of usability 

pain points, enabling more profound insights into user behaviour and enhancing the utility 

of predictive models in UX research. 

Moreover, future studies could explore whether other psychological or 

behavioural frameworks align more closely with the psychophysiological signatures 

observed. Expanding the study to explore additional psychophysiological measures, 

alongside developing the theoretical framework to include more dimensions of emotional 

and cognitive responses, could provide a more comprehensive understanding of users' 

interaction with usability challenges. 

By addressing these avenues, future work can build on the foundation established 

by this study, advancing our understanding of psychophysiological responses to usability 

challenges and improving the tools available for real-time usability assessment. 
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3.6 Conclusion 

This research explored psychophysiological responses to usability pain points in 

digital enterprise environments. It identified distinct psychophysiological signatures when 

users encounter usability issues (RQ1) and determined the extent to which these patterns 

reliably predict pain points in other tasks (RQ2). By integrating a novel multimodal 

approach to psychophysiological measures of emotional arousal, valence, visual attention, 

and cognitive load, the study provided objective, comprehensive insights into user 

experiences when encountering usability challenges.  

Cluster analysis revealed four unique psychophysiological response profiles, 

which indicated users' diverse emotional, attentional, and cognitive responses to usability 

pain points. The study identified shifts in pupil dilation and k-coefficient as reliable 

indicators of usability challenges and utilized these indicators to train predictive models. 

The models demonstrated moderate success in detecting spontaneous usability pain points 

in non-manipulated tasks. The results highlighted the predictive models' real-time 

capability to detect usability challenges. 

This research opened opportunities for expanding the scope of 

psychophysiological applications. Future studies could explore cross-industry 

implementation, refine predictive algorithms for real-world variability, and integrate these 

insights with machine learning to further advance human-computer interaction. By 

linking technology and user experience, this work contributed to a more user-centered and 

practical approach to identifying and predicting usability challenges experienced by users 

in real-time, improving users' experience and enhancing system design in enterprise 

environments. 

In conclusion, this research underscores the value of psychophysiological 

measures in identifying usability challenges beyond traditional methods. By advancing 

predictive models and providing actionable insights, it paves the way for more precise 

and user-centered design in digital enterprise environments, contributing to a future of 

enhanced user satisfaction and system performance.  
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4.1 Introduction  

What if we could understand user frustration in real time and predict usability 

issues before they arise? With the rise of Software as a Service (SaaS) in the digital 

business landscape (Statista; Gartner; Haselmann & Vossen, 2011), the usability of 

enterprise software is crucial. From customer relationship management (CRM) and 

Human Resource Management (HRM) systems to cloud-based platforms, these tools play 

a vital role in an organization’s daily operations (Klaus et al., 2000). However, the 

complexity of these enterprise systems can create significant usability issues, leading to 

frustrated users, reduced productivity, and even higher employee turnover. Traditional 

usability assessment methods, such as post-task questionnaires and interviews, often rely 

on subjective feedback (Bargas-Avila & Hornbæk, 2011; Law et al., 2013; Inan Nur et 

al., 2021; Perrig et al., 2024), which can be limited by social desirability and recall bias 

(Kwak et al., 2021; Vrijheid et al., 2008; Horwitz et al., 2024).   

 

This research addressed the limitations of self-reported assessment by adopting a 

novel, multimodal, data-driven approach to usability assessment. This study provided a 

real-time, objective view of user pain points in SaaS enterprise environments by 

leveraging psychophysiological data from eye tracking metrics, electrodermal activity 

(EDA), and facial expressions. The insights gained from this approach can empower 

managers, system designers and UX professionals to design systems that better meet user 

needs (Klotins et al., 2018; Roto & Kaasinen, 2008), ultimately improving user 
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satisfaction, productivity (Costa et al., 2016), and the organization's return on investment 

(ROI).  

 

4.2 Key Research Question 

The study was guided a primary research question:  

• How can users' psychophysiological response patterns be identified and 

leveraged to reliably detect usability challenges in similar tasks? 

This research aimed to provide a nuanced understanding of how users react to usability 

challenges and how these insights can be used to train predictive models in identifying 

usability pain points in a similar task in real time.  

4.3 Research Methodology  

This experimental study involved 86 participants, each tasked with completing 

interactions on three selected SaaS platforms: Microsoft Dynamics 365 CRM, Salesforce, 

and ServiceNow. Participants were exposed to manipulated usability disruptions designed 

to evoke natural responses to usability pain points, with data collected on their emotional 

arousal, valence, cognitive load, and visual attention. Using a combination of non-

invasive tools—such as an eye tracker, EDA sensors, and Facial Expression Recognition 

(FER)—the study tracked users’ psychophysiological responses in real-time.   

The research followed a multimodal approach, integrating several 

psychophysiological measures to develop predictive models that could accurately detect 

and forecast usability pain points.  A cluster analysis was performed to identify group of 

participants based on their psychological responses. Then, the predictive models were 

trained using logistic regression and evaluated using recall and precision metrics. Lastly, 

the predictive models’ performance was validated through expert evaluation.  

4.4 Findings  

The study uncovered several vital insights that managers can leverage to improve 

the user experience in enterprise software.  
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4.4.1 Diverse User Response Patterns  

The research revealed four unique user profiles, each exhibiting distinct 

psychophysiological responses to usability pain points. For instance, some users showed 

high cognitive load and strong negative emotions, while others remained largely 

unaffected by minor disruptions. These profiles suggest that users react differently based 

on factors like differences in sensitivity to usability disruptions or varied task engagement 

levels. Recognizing that users react to usability pain points in unique ways highlights the 

importance of designing adaptable and customizable interfaces. Systems that offer 

flexibility and adaptability can better accommodate varied user preferences and comfort 

levels.  

4.4.2 Reliable Predictors of Usability Pain Points  

The study found that shifts in pupil dilation and visual scanning behaviour 

(measured by the k-coefficient) were reliable indicators of usability pain points. In 

particular, increased pupil dilation correlated with higher cognitive load, a clear sign of 

user difficulty (Sweller et al., 1998; Kucewicz et al., 2018; Van Der Wel & Van 

Steenbergen, 2018). By monitoring these psychophysiological indicators, managers and 

UX professionals can identify and address specific usability issues that may go unnoticed 

with traditional feedback methods. This allows for proactive problem-solving, reducing 

frustration and enhancing task efficiency.   

4.4.3  Moderate Predictive Model Accuracy  

The predictive models developed in this study demonstrated moderate success in 

detecting usability pain points, achieving a precision rate of approximately 48% in 

identifying usability pain points in natural (unmanipulated) tasks. While not perfect, these 

models represented a step forward in real-time usability pain point detection. The 

developed predictive models can be integrated as an additional layer of usability 

assessment during interaction with the digital enterprise system. Its capability helps detect 

potential usability issues before they escalate, saving time and improving the user 

experience.  
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4.5 Best Practices and Recommendations  

Based on the findings, here are some best practices and recommendations for 

managers and UX professionals seeking to improve the usability of enterprise systems.  

4.5.1 Integrate Psychophysiological Data in Usability Assessment  

While traditional feedback methods are helpful, they may only partially capture 

users' real-time experiences (Law et al., 2013). By incorporating psychophysiological data 

into UX assessments, implicit usability challenges experienced by the users, which they 

may not articulate themselves, can be disclosed. Using non-invasive tools such as eye 

tracking, EDA sensors, and facial recognition software during usability assessment, 

managers and UX professionals can comprehensively view the user's emotional and 

cognitive states during interaction with the enterprise system (Dirican & Goéktiirk, 2011; 

Dair et al., 2023).  

4.5.2 Employ Predictive Models for Proactive Usability Management  

The newly developed predictive models based on psychophysiological data offer 

an objective way to anticipate and address usability pain points proactively. Integrating 

these predictive models into usability evaluations allows for real-time identification of 

usability issues that will enable immediate interventions to improve the user experience.  

4.5.3 Develop Adaptive Interfaces to Accommodate Diverse User Profiles  

The study highlights that not all users react to usability pain points, similarly, 

emphasizing the need for flexible and customizable interfaces. This opens an avenue to 

designing systems with adaptability in mind. Integrating features like task shortcuts and 

personalized guidance can cater to diverse user profiles, thus reducing the likelihood of 

frustration when interacting with the digital enterprise system.  

4.5.4 Enhance UX Training for Psychophysiological Data Interpretation  

To better integrate the use of the psychophysiological data on UX evaluations and 

to use advanced non-invasive tools effectively, it is essential to train UX teams on 

interpreting and applying psychophysiological data insights. By offering workshops or 

training sessions on analyzing psychophysiological data, UX teams can familiarize 

themselves with these measures, allowing them to extract more meaningful insights and 

effectively make data-driven design improvements.  
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4.5.5 Focus on High-Impact Usability Adjustments  

The findings revealed that specific metrics, such as pupil dilation (measure for 

cognitive load) and k-coefficient (measure for visual attention), are exceptionally reliable 

in identifying usability pain points. In coordination with the system designers and UX 

professionals, managers should prioritize design adjustments based on these indicators to 

maximize UX improvements. Use insights from psychophysiological data to make 

targeted adjustments to the most problematic areas within enterprise systems, focusing on 

tasks with high cognitive load or intense user engagement.  

4.6 Discussion  

This research underscored the power of psychophysiological measures to 

transform the way usability is assessed and managed in enterprise systems. For managers 

and UX professionals, integrating these advanced psychophysiological measures into 

usability testing and design processes opens the door to a more accurate, objective 

understanding of user experiences. By adopting these practices, companies can enhance 

productivity, reduce employee turnover, and improve satisfaction with enterprise 

systems.  

Furthermore, these findings highlighted the potential for developing adaptive, 

responsive systems that proactively meet user needs. As enterprise software continues to 

play a pivotal role in organizational success, the insights from this research offer a 

competitive edge, positioning companies to optimize their digital tools for maximum 

usability and impact. Embracing these innovations can provide organizations with a 

strategic advantage, ensuring that their technology investments yield substantial returns 

and contribute positively to employee experience and operational efficiency. 



   

 

   

 

Chapter 5 

Thesis Conclusion 

This research's primary objective was to investigate users' psychophysiological 

signatures when they encounter usability pain points in digital enterprise environments. 

Specifically, the study aimed to identify users' distinct psychophysiological response 

patterns when encountering usability issues (RQ1) and to what extent does these 

psychophysiological signatures identify usability pain points in another similar task 

reliably (RQ2). By exploring these questions, the study enhanced our understanding of 

how psychophysiological measures can be used to offer objective insights into user 

experiences, particularly in the context of usability assessment.  

5.1 Key Findings 

The research revealed several significant findings related to the 

psychophysiological responses to usability pain points. Through cluster analysis, four 

distinct user profiles were identified, each exhibiting unique patterns of emotional arousal, 

valence, visual attention, and cognitive load when exposed to usability challenges. The 

profiles highlighted variability in user responses, suggesting that not all users react 

uniformly to usability issues. Moreover, the study successfully developed predictive 

models that utilized these psychophysiological signatures to identify usability pain points. 

This proved that specific psychophysiological measures particularly shift in pupil dilation 

and k-coefficient, can serve as reliable indicators of disruptions in user experience. 

Despite some limitations in model performance, the results showed that the predictive 

models could find usability pain points with moderate precision, even in tasks that were 

not directly manipulated with usability pain points, highlighting the predictive models’ 

capabilities in detecting usability challenges. 

5.2 Implications for Research and Practice 

The findings of this research have significant implications in UX and HCI 

research. This study challenged the notion that all users respond similarly to usability 
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issues, thus enriching the existing theories in UX research. By demonstrating the diversity 

in psychophysiological responses, the study opened avenues for deeper investigation into 

the psychological and situational factors that may influence individual differences in user 

experiences. From a practical standpoint, the ability to monitor and identify usability pain 

points in real time using psychophysiological measures provides a powerful tool for 

system designers and UX researchers. This could lead to improved software design that 

prioritizes user satisfaction and engagement, ultimately enhancing productivity in 

enterprise settings. The multimodal approach employed in this study contributes to the 

methodological toolkit available for UX researchers. By integrating various 

psychophysiological measures, the research presents a robust framework for capturing 

and analyzing user responses, paving the way for future studies to explore the 

complexities of user behaviour in digital environments further.  

5.3 Limitations and Future Directions 

While this study has made significant strides in understanding 

psychophysiological responses to usability challenges, it has limitations. Given the 

moderate precision and recall achieved, future research could explore advanced machine-

learning algorithms and signal-processing techniques to enhance model accuracy. 

Techniques such as deep learning could provide better generalization and higher accuracy 

in detecting subtle psychophysiological cues. To address the limitations introduced by a 

single expert for validation, future studies should incorporate multi-rater assessments or 

alternative validation techniques, reducing subjectivity and increasing reliability. Also, 

this study was conducted in a controlled laboratory setting, recommending future studies 

to apply the predictive model in real-world settings, with diverse user groups and 

enterprise systems, that would help generalize findings and assess the robustness of the 

model in detecting natural usability pain points under varied conditions. Expanding the 

scope to include other psychophysiological methods, such as heart rate variability or 

brainwave patterns, could offer a more comprehensive understanding of users' cognitive 

and emotional states.  
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Additionally, integrating direct behavioural or self-reported measures could help 

validate the inferred fight-flight-freeze-fawn responses, enhancing the interpretability of 

psychophysiological data. Investigating whether other psychological frameworks align 

more closely with the observed psychophysiological signatures could provide deeper 

insights. Expanding the theoretical framework to incorporate a broader range of emotional 

and cognitive responses could enrich our understanding of user interactions during 

challenging tasks.  

5.4 Practical Recommendations 

Furthermore, the study highlighted the significant potential of incorporating 

psychophysiological data, predictive modelling, and adaptive design strategies to enhance 

the usability of enterprise systems. By integrating tools such as eye tracking, EDA 

sensors, and facial recognition software, organizations can gain deeper insights into users’ 

emotional and cognitive responses, uncovering implicit usability challenges. The use of 

predictive models enables proactive identification and resolution of usability pain points, 

shifting usability management from reactive to anticipatory. Furthermore, designing 

adaptive interfaces tailored to diverse user profiles and training UX teams to interpret 

psychophysiological data ensures targeted and effective system improvements. 

Prioritizing high-impact usability adjustments based on reliable metrics, such as pupil 

dilation and the k-coefficient, further optimizes system design and user satisfaction. 

Collectively, these strategies provide a data-driven approach to usability enhancement, 

offering practical value for improving user experiences and driving system adoption in 

enterprise environments. 

The study offered practical insights to improve the usability of enterprise systems 

for different professional roles. By utilizing the predictive models, UX designers and 

system developers could enhance decision-making based on real-time user insights and 

address usability issues preemptively. Human Resources and learning development 

professionals could utilize these models to improve training programs, facilitating 

employees' acclimatization to new digital tools. Management could leverage these 

insights as a strategic advancement in the competitive digital market to enhance 
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productivity, satisfaction, and retention, increasing the return on investment. This research 

advocates for user-centered, efficient, and adaptable enterprise systems while 

encouraging interdisciplinary collaboration. 

In conclusion, this study demonstrated that psychophysiological measures can 

provide valuable insights into identifying usability pain points that traditional self-

reporting methods may overlook. By developing and validating a multimodal approach 

that combines various physiological signals and assessing different aspects of user's 

response, this research advanced both the theoretical understanding and practical 

application of psychophysiology in UX research. While limitations exist, the findings 

paved the way for future work to refine predictive models and broaden the application of 

psychophysiological data in real-time usability assessment. Ultimately, this research 

contributed to a future where user experiences can be optimized with greater precision, 

transforming enterprise system design and enhancing user satisfaction across digital 

environments.  
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Appendices 

Appendix A – Task Instructions 

Task 1 instructions for both Microsoft Dynamics and Salesforce 

Tâche 1:  

M. John Smith est un nouveau client de l'entreprise.  Votre tâche consiste à ajouter M. 

Smith au système en tant que contact client. 

 

Vous trouverez les informations concernant M. Smith sur l'iPad qui vous a été fourni. 

Utilisez ces informations pour compléter le dossier de contact du client. 

 

Il est fortement recommandé de suivre la procédure standard de création d'un 

contact, comme indiqué dans la courte vidéo d'accueil. Il est bon de noter que le 

système a été conçu pour accomplir la tâche par des voies alternatives. 

 

Veuillez informer le modérateur lorsque vous avez fini de lire les instructions ci-dessus. 

 

Veuillez attendre les instructions suivantes. 

 

Task 2 instructions for Salesforce 

Tâche 2:  

Vous avez reçu un courriel de Mme Jane Doe concernant une demande de 

renseignements sur la machine à café qu'elle vient d'acheter. La machine à café n'a pas 

pu s'allumer. Mme Doe cherche à obtenir de l'aide pour résoudre le problème. Votre 

tâche consiste à créer un dossier requêtes pour Mme Jane Doe.  

 

Vous trouverez les informations concernant le cas de Mme Doe sur l'iPad qui vous a été 

fourni. Utilisez ces informations pour compléter le dossier requêtes du client. 

 

Il est fortement recommandé de suivre la procédure opérationnelle standard pour 

création d'un dossier, comme indiqué dans la courte vidéo d'introduction. Il est bon 

de noter que le système a été conçu pour accomplir la tâche par des voies alternatives. 

 

Veuillez informer le modérateur lorsque vous avez fini de lire les instructions ci-dessus. 

 

Veuillez attendre les instructions suivantes. 
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Task 2 instructions for Microsoft Dynamics 

Tâche 2:  

Vous avez reçu un courriel de Mme Marlène Dumoulin concernant une demande de 

renseignements sur la machine à café qu'elle vient d'acheter. La machine à café n'a pas 

pu s'allumer. Mme Doe cherche à obtenir de l'aide pour résoudre le problème. Votre 

tâche consiste à créer un dossier requêtes pour Mme Marlène Dumoulin.  

 

Vous trouverez les informations concernant le cas de Mme Dumoulin sur l'iPad qui vous 

a été fourni. Utilisez ces informations pour compléter le dossier requêtes du client. 

 

Il est fortement recommandé de suivre la procédure opérationnelle standard pour 

création d'un dossier, comme indiqué dans la courte vidéo d'introduction. Il est bon 

de noter que le système a été conçu pour accomplir la tâche par des voies alternatives. 

 

Veuillez informer le modérateur lorsque vous avez fini de lire les instructions ci-dessus. 

 

Veuillez attendre les instructions suivantes. 

 

Task 3 instructions for ServiceNow 

Tâche 3: 

 

Vous avez reçu un courriel d'une cliente, M. Hector Currie, concernant une demande de 

mise à jour du logiciel de son ordinateur. Le logiciel est obsolète et a besoin d'une mise 

à jour. M. Currie cherche de l'aide pour résoudre le problème. Votre tâche consiste à 

créer un dossier pour M. Currie. 

 

Vous trouverez les informations relatives au dossier de M. Currie sur l'iPad qui vous a 

été fourni. Utilisez ces informations pour compléter le dossier cas du client. 

 

Il est fortement recommandé de suivre la procédure opérationnelle standard pour 

créer un dossier, comme indiqué dans la courte vidéo d'introduction. Il est bon de 

noter que le système a été conçu pour accomplir cette tâche par d'autres voies.  

 

Veuillez informer le modérateur lorsque vous avez fini de lire les instructions ci-dessus. 

 

Veuillez attendre les instructions suivantes. 
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Appendix B – Short Training Video before each Task 

The participants are shown a short training video of the enterprise system they are 

assigned to before they perform the task. 

Microsoft Dynamics Training (French): https://youtu.be/cfYfzPnwUk4 

Salesforce Training Video (French): https://youtu.be/PXLuaznoo-A 

ServiceNow Training Video (French): https://youtu.be/2Auz7ysTSuM 

 

 

Appendix C – Required information to accomplish the task 

The training videos (Appendix B) and the information required (below) to accomplish 

the task are shown on an iPad. 

Group A (Task 1 & Task 2 – Microsoft Dynamics; Task 3 – ServiceNow): 

https://sway.cloud.microsoft/KWgfEQ8FANGSTJXD?ref=Link&loc=play 

 

Group B (Task 1 & Task 2 – Salesforce; Task 3 – ServiceNow): 

https://sway.cloud.microsoft/82mHEGEnSUIZZsoO?ref=Link&loc=play 

 

Information required for Task 1 for both Microsoft Dynamics & Salesforce 

TÂCHE 1: CRÉER UN CONTACT 

Veuillez utiliser les informations ci-dessous pour créer un dossier de 

contact client. 

Formule d'appel (le cas échéant) : Mr 

Prénom : John 

Nom de famille : Smith 

Nom du compte : Café Rouge 

Numéro de Téléphone mobile: 902-330-3388 

Courrier électronique : johnsmith@gmail.com 

Adresse : 3280 Rue Goyer, Montréal, QC H3S 1J1 

Lorsque vous avez terminé la tâche, veuillez en informer le modérateur. 

 

 

https://youtu.be/cfYfzPnwUk4
https://youtu.be/PXLuaznoo-A
https://youtu.be/2Auz7ysTSuM
https://sway.cloud.microsoft/KWgfEQ8FANGSTJXD?ref=Link&loc=play
https://sway.cloud.microsoft/82mHEGEnSUIZZsoO?ref=Link&loc=play
mailto:johnsmith@gmail.com
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Information required for Task 2 for Microsoft Dynamics 

TÂCHE 2: CRÉER UN INCIDENTS 

Veuillez utiliser les informations ci-dessous pour créer un dossier incidents 

client. 

• Nom du client : Marlène Dumoulin 

• Titre de l'affaire : Product Malfunction 

• Type de incidents : Problème 

• Origine: E-mail 

• Sujet : Général 

• Produit : Café Duo 

• Description : La machine à café ne s'allume pas 

Lorsque vous avez terminé la tâche, veuillez en informer le modérateur. 

 

 

Information required for Task 2 for Salesforce 

TÂCHE 2: CRÉER UNE REQUÊTE 

Veuillez utiliser les informations ci-dessous pour créer un dossier requête 

client. 

• Type d'enregistrement : RFI 

• Nom du client : Jane Doe 

• Compte : Coffee Lab 

• Statut : New 

• Origine de la requête :  Email 

• Type : Problem 

• Motif de la requête: New problem 

• Priorité : Medium 

• Objet : Alimentation de la machine à café 

• Description : La machine à café n'arrive pas à se mettre en marche 

Lorsque vous avez terminé la tâche, veuillez en informer le modérateur. 
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Information required for Task 3 for ServiceNow 

TÂCHE 3: CRÉER UN CAS (SERVICENOW) 

Veuillez utiliser les informations ci-dessous pour créer un dossier cas 

client. 

• Type d'affaire : Commander 

• Canal : Email 

• Entreprise : Golddex 

• Contact : Hector Currie 

• Priorité : Moderate 

• Affecté à : Jamie Erwin 

• Courte description : Demande d'un nouveau logiciel ou d'une mise à jour 
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Appendix D – Expert Evaluation Protocol  
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Appendix E – Ethics Certificate  

 




