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Résumé

Les traders font face a une décision cruciale a la mi-journée : déterminer avec quelle
agressivité exécuter les ordres restants sans savoir comment évolueront les prix et la lig-
uidité. Lorsque 1’exécution est en avance ou en retard par rapport au calendrier, les écarts
par rapport au VWAP rendent ce choix particulierement risqué. Des prévisions fiables des
rendements de 1’apres-midi et des pressions latentes de la demande sont donc essentielles
pour améliorer la qualité d’exécution au-dela du simple suivi du VWARP. Cette recherche
évalue la valeur prédictive des indicateurs de marché disponibles a la mi-journée pour
anticiper les rendements et les déséquilibres de flux d’ordres entre 13 h et la cloture.
Dix années de données intrajournalieres issues des principales bourses nord-américaines
sont exploitées, avec trois cibles : le rendement, le déséquilibre du nombre de transac-
tions (TCI) et le déséquilibre du volume de transactions (TVI). Les prédicteurs couvrent
plusieurs catégories, notamment les mesures de prix, les indicateurs transactionnels, la
liquidité, les métriques d’informativité et de volatilité, les attributs liés aux symboles et au
temps, ainsi que les flux d’ordres institutionnels et de détail. Un cadre a fenétre roulante
est appliqué a la régression Lasso et au modele Random Forest pour comparer structures

linéaires et non linéaires.

Les résultats montrent que les mesures de flux d’ordres sont nettement plus prévisibles
que les rendements, le TCI surpassant systématiquement le TVI. La précision s’améliore
avec une stratification par industrie, ce qui met en évidence des schémas microstruc-
turels sectoriels. Le VWAP a un r6le faible et incohérent en Lasso mais améliore nette-
ment la précision dans Random Forest, surtout pour les rendements, révélant des effets
d’interaction non linéaires. L’ analyse de regroupement souligne en outre une hétérogénéité
persistante entre titres. Un backtest sur 2024 montre qu’une stratégie long—short quotidi-
enne génere des ratios de Sharpe élevés et des gains asymétriques. Cette étude propose

un cadre robuste pour la prévision mi-journée—cloture et offre des pistes pour des straté-



gies VWAP adaptatives. Ses limites concernent I’absence de données de carnet d’ordres
complet et de sentiment, ouvrant la voie a des travaux futurs avec des modeles sensibles

aux régimes et des simulations prolongées.

il



Abstract

Traders face a critical decision at midday: how aggressively to complete outstanding or-
ders without knowing how prices and liquidity will evolve. When execution is ahead
or behind schedule, deviations from VWAP make this choice especially risky. Reliable
forecasts of afternoon returns and latent demand pressures are therefore essential for im-
proving execution quality beyond static VWAP tracking. This research examines the
predictive value of midday market indicators for forecasting stock returns and order-flow
imbalances between 1:00 p.m. and the close. Using ten years of intraday data from major
North American exchanges, three targets are considered: return, trade count imbalance
(TCI), and trade volume imbalance (TVI). Predictors span broad categories, including
price and return measures, transaction-based indicators, liquidity measures, informative-
ness and volatility metrics, symbol- and time-related attributes, and retail versus institu-
tional order-flow indicators. A rolling-window framework is applied to Lasso regression

and Random Forest models to compare linear and nonlinear predictive structures.

Results show that order-flow measures are substantially more predictable than returns,
with TCI consistently outperforming TVI. Forecast accuracy improves when models are
stratified by industry, underscoring the value of sector-specific microstructure patterns.
VWAP plays a weak and inconsistent role in the linear framework but significantly im-
proves predictive accuracy in Random Forest, particularly for returns, suggesting nonlin-
ear interaction effects. Clustering analysis further reveals structural heterogeneity across
equities, with midday total size, turnover, and shares outstanding emerging as key differ-
entiators. A 2024 backtest demonstrates that a daily rebalanced long—short strategy built
from the forecasts achieves high Sharpe ratios and asymmetric gains, as long legs deliver
positive returns while short legs generate larger-magnitude losses. The study contributes
a practical framework for noon-to-close forecasting, clarifies when predictive content is

strongest, and offers insights for adaptive VWAP execution. Limitations include the ab-
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sence of full-depth order book features and sentiment data, which future research should

address through regime-aware and live-simulation approaches.
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1 Introduction

In the fast-paced and highly competitive environment of modern financial markets, traders
face the dual challenge of executing orders efficiently and achieving performance bench-
marks that measure execution quality. Among these, the Volume Weighted Average Price
(VWAP) has become a widely adopted yardstick, particularly for institutional investors
executing large trade volumes. Achieving a fill price better than VWAP is considered
a signal of skillful execution, but doing so consistently requires anticipating short-term
market dynamics with precision. Institutional execution strategies must balance market
impact and timing risk, especially during the midday decision point. By 1:00 p.m., a trader
must decide how to complete the remaining portion of the order before market close, with-
out knowing how prices, liquidity, and order flow will evolve during the afternoon. This
decision is complicated by the heterogeneous objectives of market participants, macroe-
conomic announcements, and algorithmic flows, all of which can alter the market state
in ways that affect execution costs. Even small improvements in predicting the direction
and magnitude of price changes between midday and the close can have material financial

consequences for large orders (L. Gao et al. 2018).

VWAP-based execution faces inherent risks due to the uneven intraday distribution
of liquidity. Liquidity is typically concentrated near the market open and close, leaving
a thinner and less predictable environment at midday. This intraday liquidity fragmenta-
tion, driven by inventory management by dealers, portfolio rebalancing, and event-driven
trading, creates conditions in which prices can drift away from VWAP and execution risk
rises (Fallahi 2023). When prices deviate materially from VWAP, the execution challenge
intensifies. If a trader is ahead of schedule, meaning they have executed more of the order
than planned, and the price has moved favorably relative to VWAP, slowing down execu-
tion may risk losing the advantageous price if the market reverts. Conversely, if a trader is

behind schedule and the price has moved unfavorably, the need to “catch up” can require

1



more aggressive trading, increasing market impact and signaling urgency to other partici-
pants. These scenarios imply that the gap between price and VWAP at midday is not just
a descriptive benchmark but a potential indicator of latent demand or supply pressure in
the market. Large deviations, especially when combined with information on order flow
imbalances, can reveal the presence of large hidden orders or the urgency of execution by
other traders. If such latent pressures can be reliably inferred, they could form the basis
for adaptive execution strategies that improve upon static VWAP tracking.

This research builds on that insight by hypothesizing that midday deviations from
VWAP, combined with liquidity and order-flow measures, contain predictive information
about the direction and magnitude of afternoon price movements and trade imbalances.
In other words, the midday state of the market may encode signals about both where
prices are likely to move and how liquidity will evolve in the remaining hours of the
trading day. The primary objective of this thesis is to develop and compare econometric
and machine learning models for forecasting noon-to-close market dynamics using only
information available by midday. The study defines and constructs predictive variables
that capture midday market conditions, including morning trade count imbalance (TCI)
and trade volume imbalance (TVI), relative VWAP, turnover, and intraday momentum.
The prediction targets are the afternoon return from 1 p.m. to close, as well as afternoon
TCI and TVI, which are relevant both for execution quality and for understanding market
microstructure.

Forecasting these measures poses significant methodological challenges. Intraday fi-
nancial data is noisy, high-frequency, and often nonstationary. The interaction of het-
erogeneous market participants, each with different objectives and constraints, further
complicates modeling efforts (Matias and Reboredo 2012). Traditional econometric ap-
proaches, though well-established, may fail to capture nonlinear relationships and adap-
tive dynamics in modern markets. At the same time, machine learning techniques offer
greater flexibility but raise concerns about interpretability, overfitting, and stability in real-
time environments (Huddleston, F. Liu, and Stentoft 2023) This research therefore aims

to provide a thorough comparison between econometric and machine learning approaches
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in effectively capturing latent market pressures under real-world trading conditions.

To address these objectives, the analysis estimates and compares two distinct model-
ing approaches: LASSO regression, selected for its embedded feature selection and inter-
pretability, and Random Forests, chosen for their ability to capture nonlinear interactions
among predictors. The role of VWARP is evaluated through controlled exclusion tests to
quantify its incremental predictive contribution and to determine whether its effect is lin-
ear, as captured by LASSO, or nonlinear, as potentially better captured by Random Forest.
In addition, structural patterns are examined through equity clustering, grouping stocks
with similar predictive profiles to identify whether certain market segments share com-
mon drivers of predictability. Finally, the study evaluates the practical relevance of the
forecasts through backtesting, simulating execution strategies that incorporate the model
outputs to measure potential performance gains over standard VWAP execution.

From a theoretical perspective, this research contributes to the literature on intraday
predictability by isolating the noon-to-close window, a decision point that is operationally
critical but underexplored in predictive modeling. While many existing studies assume
access to full-session data, this thesis deliberately restricts inputs to midday information,
aligning the predictive framework with the constraints faced by real-world traders. From
a practical standpoint, the proposed framework offers the potential to improve VWAP-
based execution strategies. By forecasting not just price direction but also liquidity imbal-
ances, the approach addresses both components of execution quality: price performance
and market impact. The explicit focus on the trader’s relative progress versus execution
schedule, interpreted through the VWAP gap, provides a microstructure-based rationale
for adapting execution speed and aggressiveness in real time.

Forecasting intraday dynamics in this setting involves several methodological chal-
lenges. The data are noisy, high-frequency, and prone to nonstationary patterns and
regime shifts. Stocks differ widely in their liquidity profiles, volatility characteristics, and
sensitivity to order flow, introducing substantial cross-sectional heterogeneity. Further-
more, modeling involves trade-offs between interpretability and flexibility: econometric

models offer transparency and theoretical grounding, while machine learning models can



exploit nonlinearities and interactions at the expense of greater opacity. The methodology
addresses these challenges through rigorous data cleaning, filtering, and feature engineer-
ing to ensure robustness and avoid look-ahead bias, a rolling-window estimation design to
simulate real-time forecasting and capture evolving market structure, and cross-sectional
stratification by security type, size, and industry to measure heterogeneity in predictabil-
ity. Parallel evaluation of LASSO and Random Forest enables a balanced assessment of
interpretability versus predictive power.

In sum, this introduction positions the thesis at the intersection of market microstruc-
ture theory, predictive modeling, and execution strategy design. By linking statistical
predictability to economically meaningful signals, such as the midday VWAP gap and
order-flow imbalances, it aims to provide both an empirical contribution to the study of
intraday market dynamics and a practical tool for institutional execution. The subsequent
chapters develop this framework in detail, beginning with a review of the literature on
econometric and machine learning approaches to intraday forecasting, followed by data
construction, model implementation, and empirical results. The overarching goal is to
bridge the gap between predictive modeling advances and actionable decision support for

traders operating under real-time constraints.



2 Literature Review

2.1 Traditional Econometric Approaches to Intraday

Forecasting

Intraday return forecasting has long been a subject of intense research, primarily due
to its implications for trade execution, market efficiency, and liquidity management. Its
simplicity lies in modeling the relationship between inputs and the target as a straight
line, which provides clear insights into variable influence. Building on this foundation,
penalized extensions such as Least Absolute Shrinkage and Selection Operator (LASSO),
Ridge, and Elastic Net introduce regularization to prevent overfitting and handle high-
dimensional data. LASSO, in particular, is valued for its ability to perform automatic
feature selection by shrinking less relevant coefficients to zero (Rastogi et al. 2021).
Several studies have highlighted the effectiveness of LASSO regression in stock price
forecasting, demonstrating its superior performance over traditional models across diverse
contexts. Roy et al. (2015) introduced a LASSO-based linear regression model that out-
performed both Ridge regression and a Bayesian regularized neural network, achieving
a test Root Mean Square Error (RMSE) of 2.5401 and a Mean Absolute Percentage Er-
ror (MAPE) of 1.4726% for predicting Goldman Sachs stock. Similarly, Rastogi et al.
(2021) applied LASSO to predict the NIFTY 50 index' using Principal Component Anal-
ysis (PCA)-reduced technical indicators and time-lagged features, attaining an RMSE of
14.78 and a MAPE of 2.98% after optimal data preprocessing. Expanding the data scope,
Xu et al. (2023) integrated LASSO with external financial variables and demonstrated its
predictive advantage across three airline stocks, reaching MAPEs as low as 1.94%. In

a more complex architecture, Sheng et al. (2025) combined LASSO-based feature selec-

'The NIFTY 50 is an Indian stock market index that represents the float-weighted average of 50 of the
largest Indian companies listed on the National Stock Exchange.
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tion with the Non-stationary Autoformer model and financial sentiment inputs, improving
MAE by 8.75% over the base model and achieving high stability in 10-step forecasts. Col-
lectively, these studies underscore LASSO’s robust forecasting capability and adaptability
to high-dimensional, and multi-source financial data environments.

Given Elastic Net regression in stock price forecasting, some efforts have been con-
ducted to compare it to other machine learning or penalized regression models. Ding
(2024) evaluated the performance of Elastic Net in predicting Apple Inc.’s stock prices
over a ten-year period, reporting remarkably high accuracy with an R? of 0.998 and a low
MSE of 3.244. A distinctive aspect of this study is its coefficient analysis, which identified
MACD? and EMA503 as the most influential predictors, while indicators such as RSI?,
volume, and True Range had negligible influence. In contrast, Sai et al. (2023) compared
Elastic Net with an Long Short-Term Memory (LSTM) model for forecasting Nifty stock
prices and found Elastic Net to be less effective, with LSTM achieving an R* of 0.990
and a lower Mean Absolute Error (MAE) of 10.72. Together, these studies highlight the
Elastic Net model’s potential for high accuracy and interpretable feature selection in lin-
ear settings, while also revealing its limitations in capturing complex nonlinear dynamics
when benchmarked against deep learning approaches.

Comparative studies offer mixed but insightful evidence on the relative strengths and
limitations of regression-based models in financial forecasting. Schorno (2022) examined
probit models augmented with regularization and found that while Ridge, LASSO, and
Elastic Net improved in-sample predictive performance for the S&P 500, these gains did
not generalize to out-of-sample forecasts, except for the LASSO probit model applied to
large-cap firms, which outperformed standard probit benchmarks. In contrast, X. Wang,
W. Wang, and S. Zhang (2023) conducted a direct performance comparison across four
public companies and concluded that Ridge regression consistently outperformed OLS,
LASSO, and Elastic Net in terms of R and MSE, attributing Ridge’s superiority to its

stable L2 penalty that avoids the over-shrinkage effect observed in LASSO. Meanwhile,
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Neba et al. (2023) identified LASSO as the most effective model for forecasting Netflix’s
adjusted closing prices, outperforming both Ridge and Elastic Net, which ranked second
and third, respectively. Collectively, these studies highlight that LASSO’s capacity for
effective variable selection and model simplification often provides a distinct advantage,
particularly in contexts where overfitting or the inclusion of irrelevant predictors could
otherwise impair predictive performance.

Early approaches to intraday return forecasting predominantly relied on traditional
econometric techniques such as Autoregressive Moving Average (ARMA), Autoregres-
sive Conditional Heteroskedasticity (ARCH), and its extensions like GARCH, EGARCH,
and GJR-GARCH (Engle 1982; Bollerslev 1986; Nelson 1991; Glosten, Jagannathan, and
Runkle 1993). These models effectively captured volatility clustering and time-varying
risk, offering foundational tools for high-frequency return analysis. However, their re-
liance on linear assumptions and inability to adapt to nonlinear dynamics and structural
breaks limited their performance in real-time intraday settings.

While ex-post evaluations based on daily squared returns have often suggested poor
volatility forecast performance, it has been shown that this conclusion largely reflects
noisy measurement rather than model failure. Using realized-volatility measures con-
structed from high-frequency intraday returns (i.e., summing squared intraday returns),
standard ARCH/GARCH models were found to deliver strikingly accurate day-ahead
(daily) volatility forecasts, explaining a large share of latent volatility variation; this also
established the value of high-frequency data for improved ex-post measurement and fore-
cast assessment (Andersen and Bollerslev 1998).

Vector Autoregressive (VAR) models extended this literature by modeling interac-
tions between multiple time series such as prices, order flow, and liquidity (Hasbrouck
1991; Engle and Russell 1998). While VAR and regime-switching models (Hamilton
1989; Tsay 1998) provide greater modelling flexibility by allowing relationships among
variables to evolve over time, they still fall short in capturing self-reinforcing feedback
effects, such as price changes influencing order flow, which in turn further moves prices,

along with liquidity-driven regime shifts and the pronounced nonstationarity that charac-
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terizes intraday markets.

The rise of high-frequency data offered finer resolution for modeling intraday behav-
iors. Studies conducted by Heston, Korajczyk, and Sadka (2010) and L. Gao et al. (2018)
documented predictable return patterns across time intervals, highlighting intraday mo-
mentum effects and institutional trading influence. Yet, these insights were constrained
by evolving liquidity conditions and market noise, motivating a shift toward data-driven
models better suited to dynamic trading environments.

Out-of-sample concerns were partially mitigated by imposing economically motivated
restrictions on predictive regressions (e.g., sign constraints on coefficients and ruling out
negative equity premia), which stabilized forecasts and yielded economically meaningful
gains despite small R2, underscoring the value of theory-guided constraints in real-time
settings (Campbell and Thompson 2008). Subsequent survey evidence highlights that out-
of-sample performance improves when model uncertainty and parameter instability are
addressed via theory-based restrictions, forecast combination, diffusion-index factors, and
regime-shift models, and practical designs directly relevant for short-horizon execution
contexts (Rapach and Zhou 2013). Consistent with these findings, portfolio tests based
on stabilized or combined forecasts better translate modest predictability into utility gains

once frictions are acknowledged.

2.2 Machine Learning and Hybrid Approaches

Unlike statistical models, Machine Learning (ML) algorithms can capture complex non-
linear dependencies, adapt to dynamic market conditions, and process large volumes of
high-frequency data in real time. Notable ML applications in finance focused on neu-
ral networks and Support Vector Machines (SVMs) to model stock price movements. G.
Zhang, Patuwo, and Hu (1998) demonstrated that Artificial Neural Networks (ANNs)
could outperform ARIMA models in short-term forecasting by capturing nonlinear inter-
actions between market variables. Similarly, Kim (2003) applied SVMs to stock return

prediction, showing improved classification accuracy over traditional logistic regression
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models. Illa, Parvathala, and Sharma (2022) found that the Random Forest (RF) model
achieved 81.6% and 83.3% accuracy across two setups, outperforming the SVM, for pre-
dicting whether the price of a stock will be higher than its price on a given day. These
models predicted the short-term trend of the market. Over a long-term period, applying
RF to stock market data yielded consistently high accuracy (85-95%) in predicting stock
price trends—rising, sideways, or falling—for Apple, Samsung, and GE, outperforming
alternatives such as SVM and logistic regression (Zheng et al. 2024).

While these early ML models showed promise, they lacked interpretability and re-
quired extensive parameter tuning, making them difficult to implement in live trading
environments. A major breakthrough came with the introduction of LSTM networks, a
specialized type of Recurrent Neural Network (RNN) designed to handle sequential de-
pendencies in time series data. Huddleston, F. Liu, and Stentoft (2023) demonstrated
that LSTM models significantly outperformed traditional time-series methods in predict-
ing intraday returns, as they effectively captured long-term dependencies and nonlinear
relationships in stock price movements. Similarly, Fischer and Krauss (2018) showed
that deep LSTM architectures, when trained on large financial datasets, could generate
consistent predictive signals, making them attractive for algorithmic trading applications.

In terms of clustering, Bini and Mathew (2016) evaluated hierarchical clustering against
other methods and found it to be a less effective approach for identifying profitable com-
panies, with its performance ranking below partitioning methods such as K-Means. To
address this, Renugadevi et al. (2016) employed Hierarchical Agglomerative Clustering
(HAC) and K-Means clustering to create a portfolio of recommended stocks on a short-
term basis. The hierarchical agglomerative clustering component was specifically used to
create an informative structure from unstructured data. The K-Means algorithm then re-
fined these initial clusters by reducing the sample size, which allowed for a better choice
of centroids. This combined method was used to determine stock prices and provide a
final list of recommended stocks to investors.

Despite these advancements, ML models faced several practical challenges in intra-

day forecasting. One of the most pressing issues was data overfitting, where models per-
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formed well on historical data but failed to generalize to unseen market conditions. This
issue was particularly problematic in high-frequency trading, where market regimes shift
rapidly due to liquidity shocks, news events, and institutional trading flows. Additionally,
the black-box nature of deep learning models made them difficult to interpret, posing a
challenge for institutional traders who require transparency in execution strategies.

To address these concerns, researchers began integrating hybrid models that com-
bined ML algorithms with econometric techniques. Avellaneda and Lee (2010) proposed
a framework where traditional stochastic models were augmented with ML-based fea-
ture selection, allowing for greater adaptability without sacrificing interpretability. Simi-
larly, X. Gao et al. (2021) implemented ensemble learning methods, blending tree-based
models such as RFs and gradient boosting with regression-based approaches to enhance
predictive stability across different market conditions. Chen et al. (2024) proposed a hy-
brid stock price prediction model that combines multi-feature calculation, LASSO feature
selection, and a novel cascaded LSTM (Ca-LSTM) network to enhance forecasting accu-
racy and training efficiency. Their contributions include a focus on data processing by
introducing 57 technical indicators for a richer feature set, from which LASSO selects
the optimal combination. The Ca-LSTM model is shown to be superior to other time-
series prediction models and conventional LSTM approaches, and its integration with an
accumulation-based VMD-LSTM model further enhances forecasting accuracy. These
hybrid approaches provide a balance between accuracy and interpretability, making them
more applicable to institutional trading environments.

A particularly relevant area where these predictive models have been applied is Vol-
ume Weighted Average Price (VWAP) execution strategies, widely used by institutional
traders to minimize slippage and market impact. Given that intraday return predictability
is crucial for optimizing VWAP-based execution, ML models have been explored as tools
for improving trade placement and order execution timing. However, existing ML-based
VWAP models often rely on full-session data, limit their usefulness for traders making
execution decisions at midday without access to end-of-day price movements. This gap

has led to an increased focus on adaptive execution algorithms, where machine learn-
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ing is used not just for forecasting but also for real-time trade execution optimization.
Reinforcement learning (RL) approaches, enable models to dynamically adjust execu-
tion strategies based on evolving market conditions. These RL-based strategies show
promise in minimizing VWAP slippage, yet their reliance on large training datasets and
simulation-based learning makes them difficult to implement in highly frequency trad-
ing environments. While ML has revolutionized intraday forecasting, it has not fully
addressed the practical challenges faced by institutional traders. Existing models often
fail to provide reliable noon-to-close predictions, as they are either trained on static his-
torical patterns or assume access to full intraday data. This limitation underscores the
need for a real-world applicable model that can predict afternoon price movements using
only market information available at noon, a gap that remains largely unaddressed in the

literature.

2.3 Intraday Liquidity, Market Microstructure, and
VWAP Execution Strategies

Against this backdrop of uneven intraday liquidity, Biais, Hillion, and Spatt (1995) pro-
vided foundational evidence on how limit-order book (LOB) states shape short-horizon
price dynamics and liquidity supply in a centralized, computerized market, reinforcing
why intraday execution decisions must condition on contemporaneous book conditions.
They documented that order flow concentrates near the quotes, thin books elicit new or-
ders while thick books trigger trades, and traders rapidly place orders inside the quotes
when spreads or quote depth are large, behaviors consistent with priority incentives and
transient liquidity events. They also showed that bid/ask quotes adjust asymmetrically
after large trades, linking informational shocks to immediate microstructure responses.
Taken together, these LOB regularities motivate our use of midday state variables, specif-
ically TCI/TVI and the VWAP gap, to summarize expected drift and impact over the

noon-to-close horizon and to inform adaptive execution.
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Intraday forecasting is inherently linked to liquidity dynamics and market microstruc-
ture features. VWAP-based execution strategies depend heavily on the timing and inten-
sity of liquidity throughout the trading day. Empirical evidence suggests that liquidity is
not evenly distributed, with concentration at the open and close, and thinner conditions
around midday (Hallam and Olmo 2014). Providing the theoretical foundation for this
U-shaped pattern, Admati and Pfleiderer (2015) showed that clustering of discretionary
liquidity trading endogenously attracts informed traders, concentrating activity at the open
and close and thinning it at midday, which formalizes the intraday liquidity profile ref-
erenced above. These variations introduce execution risk, particularly when traders must
commit to orders without full-day visibility.

A theoretical foundation is provided by Kyle (1985), whose sequential-auction model
shows how private information and noise trading jointly determine market depth, re-
siliency, and the gradual incorporation of information, implying Brownian price paths
with constant volatility, and thereby motivates the use of order-flow—based proxies (depth,
spread, OFI) for short-horizon return prediction and execution risk.

Research conducted by Almgren and Chriss (2000) and Cont, Kukanov, and Stoikov
(2013) demonstrated how order flow and liquidity indicators influence price movements
and execution costs. Subsequent extensions to this framework integrated additional mar-
ket microstructure features, such as spread dynamics, depth imbalance, and trading pres-
sure, which enhanced VWAP execution strategies but often relied on the unrealistic as-
sumption of continuous, high-quality order book data (Hasbrouck 1991; Engle and Rus-
sell 1998). More recent findings by Fallahi (2023) revealed the limitations of such indi-
cators in guiding midday execution under volatile liquidity conditions.

A particularly relevant concept in this domain is Order Flow Imbalance (OFI), also
known as trade imbalance, which measures the net pressure of buyer- and seller-initiated
trades. Typically computed as a normalized difference between buy and sell market order
volumes; OFI serves as a proxy for short-term demand-supply asymmetries and is closely
tied to price movements (Chordia, Roll, and Subrahmanyam 2002; Q. Wang et al. 2021).

Techniques such as Lee and Ready algorithm (1991) are widely used for classifying trade
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direction, though recent innovations such as bivariate Hawkes processes, offering more
nuanced modeling of trade arrivals and self-excitation patterns in high-frequency settings
(Anantha and Jain, 2024).

These microstructure-based indicators offer valuable insights for short-term predic-
tion, especially in the absence of sentiment or macro signals. However, their effectiveness
depends on the quality and frequency of trade and quote data, which may not be available

in all institutional contexts.

2.4 Forecast-Based Portfolio Construction and

Backtesting

Forecast—driven portfolio construction is widely explored in both academic finance and
quantitative investment practice, where predictive signals are integrated into allocation
rules and evaluated through rigorous backtesting. Slusarczyk and Slepaczuk (2025) shows
how ARIMA-GARCH and XGBoost return forecasts can serve as expected—return inputs
to a Markowitz program on DJIA constituents (2007-2022), spanning 152 strategies with
varied estimation windows, rebalancing frequencies, and transaction—cost assumptions.
Under certain parameterizations, especially when targeting the Global Maximum Infor-
mation Ratio, forecast—informed portfolios surpass equal-weight and benchmark port-
folios, albeit with sensitivity to tuning choices. Corberdn-Vallet et al. (2023) departs
from asset-level modeling by forecasting the portfolio value path directly with damped-
trend models; the ensuing mean/variance forecasts feed a bi-objective genetic algorithm,
thereby bypassing explicit covariance estimation and offering an alternative route from
forecasts to actions. Ma and Pohlman (2008) shift attention from point forecasts to con-
ditional return distributions via quantile regression, exploiting distributional asymmetries
to design allocations that better account for tail risks—an idea that is especially pertinent
intraday, where skewness and kurtosis meaningfully shape realized outcomes. At the in-

terface of forecasting and factors, Chauhan, Alberg, and Lipton (2020) predict forward
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fundamentals (e.g., next-year EBIT) with deep networks, transform them into forward-
looking factor scores adjusted for forecast uncertainty, and rank stocks accordingly; an
industrial-grade backtester with costs, slippage, and capacity constraints yields a 17.7%
compound annual return and 0.84 Sharpe, materially above a baseline factor strategy.
Ta, C.-M. Liu, and Tadesse (2020) applies LSTM forecasts within equal-weight, Monte
Carlo, and mean—variance allocation schemes and documents sizable active returns over

an S&P 500 benchmark when forecasts are paired with disciplined rebalancing.

Taken together, this literature establishes three points that guide our design: (i) fore-
casts can be operationalized through multiple allocation paradigms—mean—variance op-
timization, distribution-aware rules, and ranking-based selection; (ii) credible evaluation
requires out-of-sample testing and explicit treatment of frictions; and (iii) realized perfor-
mance is highly contingent on parameter choices and uncertainty management. In con-
trast to predominantly daily-horizon studies, the present thesis operates at the intraday
level, using information observable by 1:00 p.m. to forecast the return to the close. We
leverage microstructure-rich predictors, order-flow imbalances, liquidity/turnover, and a
relative VWAP measure, and translate model scores into cross-sectional rankings imple-
mented as equal-weight decile long—short portfolios. Relative VWARP is treated not only
as an execution benchmark but also as a state variable: when a trader is ahead (behind)
schedule and the price drifts above (below) VWAP, the required catch-up trading can re-
veal latent buying (selling) pressure that is informative about near-term price dynamics.
The ranking approach is deliberately simple and robust for intraday horizons, where full
mean—variance optimization is fragile. Throughout, we emphasize strict time ordering,
rolling estimation, and interpretation of raw backtest metrics as an upper bound pending

explicit cost and feasibility analyses.

Consistent with credible out-of-sample evaluation, data-snooping risk is addressed by
noting that many in-sample ‘significant’ predictors are no longer significant once multi-
ple testing is controlled, with suitable adjustments for predictive regressions provided by

Harvey, Y. Liu, and Zhu (2016).
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2.5 Gaps and Research Contribution

The core gap addressed in this thesis is the measurement of latent demand and supply
pressure at midday and its translation into actionable noon-to-close forecasts. As dis-
cussed in the Introduction, execution risk can pivot around noon as liquidity conditions
and order-flow pressure evolve, yet traders must commit to execution trajectories without
end-of-day visibility. We posit that the price—VWAP gap observed by 1:00 p.m., together
with pre-1:00 p.m. order-flow imbalance, contains information about these hidden forces;
jointly modeling these observables provides a practical route to infer the direction and
intensity of afternoon pressure.

This thesis contributes a deployable, out-of-sample framework that operationalizes
those constructs at 1:00 p.m. and evaluates their informativeness for the remainder of
the session. First, we engineer noon-available predictors centered on relative VWAP and
trade-imbalance metrics (TCI/TVI), alongside liquidity and momentum controls. Sec-
ond, we test their predictive value for the return from 1:00 p.m. to close and for afternoon
trade imbalances; a controlled exclusion design isolates VWAP’s incremental contribu-
tion. Third, we compare sparse linear (LASSO) and nonlinear ensemble (Random Forest)
models under strictly rolling, out-of-sample estimation, examine cross-sectional hetero-
geneity via industry and firm-type stratifications, and use clustering to diagnose struc-
tural commonalities that may underpin predictive differences. Finally, we translate model
scores into equal-weight decile long—short portfolios formed at 1:00 p.m., assess symme-
try across long and short legs using mean, dispersion, Sharpe (total and excess), and annu-
alized return, and interpret raw results as pre-cost upper bounds given transaction costs,
slippage, short-selling frictions, and operational challenges inherent to intraday equal-
weighting. By centering measurement on midday latent pressure and validating noon-
observable proxies (price-VWAP gap and order-flow imbalance) in out-of-sample tests,
the study directly fills the gap identified in the Introduction and advances an execution-

relevant approach to intraday forecasting.
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3 Data

The analysis leverages four datasets sourced from the Wharton Research Data Services
(WRDS) including: (i) Millisecond Intraday Indicators!, (ii) CRSP daily stocks2, (iii)
TAQ - Millisecond Consolidated Trades®, and (iv) WRDS-processed NYSE Matched
Trades and Quotes (WCT)*. The sample spans from January 2015 to December 2024,
covering 10 years of stocks listed across North American Security Exchanges NYSE?,
NASDAQ6, NYSE American (formerly AMEX)’, NYSE ARCA8, and mutual funds (as
quoted by NASDAQ). The final dataset comprises 15,175 stocks across more than 21

million stock-day observations (i.e. datapoints).

3.1 Data Sources

3.1.1 Millisecond Intraday Indicators

This dataset offers more than 190 daily indicators, including liquidity, spread, and
transaction-based metrics calculated at millisecond resolution, capturing real-time mar-
ket microstructure characteristics. Due to the extremely large size of the raw files, all
data were stored in a hierarchical Parquet format. This columnar, compressed struc-

ture—functionally similar in storage efficiency to a .zip archive—substantially reduces

"https://wrds-www.wharton.upenn.edu/pages/get-data/nyse-trade-and-quote/
millisecond-trade-and-quote-daily-product-2003-present-updated-daily/
taq-millisecond-tools/millisecond-intraday-indicators-by-wrds/

https://wrds-www.wharton.upenn.edu/pages/get-data/center-research-security-prices-crsp/
annual-update/stock-security-files/daily-stock-file/

Shttps://wrds-www.wharton.upenn.edu/pages/get-data/nyse-trade-and-quote/
millisecond-trade-and-quote-daily-product-2003-present-updated-daily/
consolidated-trades/

“https://wrds-www.wharton.upenn.edu/pages/about/data-vendors/
nyse-trade-and-quote-taq/

SNew York Stock Exchange

SNational Association of Securities Dealers Automated Quotations

7 American Stock Exchange

8NYSE Archipelago Exchange
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https://wrds-www.wharton.upenn.edu/pages/about/data-vendors/nyse-trade-and-quote-taq/

file size while preserving full data fidelity and enabling efficient querying. For context,
the Parquet archive containing the full ten-year sample of millisecond intraday indica-
tors occupies approximately 40 GB, a fraction of the space that would be required by

more common formats such as CSV or uncompressed tables.

3.1.2 CRSP Intraday Daily File (IDF)

: Provides daily open, high, low, close prices, volumes and share classification codes. This

data has been used to calculate intraday variables such as intraday return and turnover.

3.1.3 TAQ Consolidated Trades

: Contains nanosecond-level trade data, used to compute precise Volume Weighted Aver-
age Price (VWAP) measures up to 1 PM with nanosecond precision for each stock. The
VWAP calculation follows:

Y PO,

VWAP oM =
i1 Qi

(3.1)

where P; and Q; denote the price and size of trade i, respectively. This dataset was
also used to calculate morning (before 1 PM) and afternoon (after 1 pm) values for vari-
ables such as size and volume. Due to the exceptionally large size of the TAQ dataset,
directly loading all trade-level observations into a local environment for VWAP compu-
tation was computationally infeasible. To address this, we implemented an efficient in-
database computation strategy WRDS Jupyterhub: VWAP values were calculated directly
on the WRDS data servers using SQL aggregate queries, ensuring that only the aggregated
results—rather than the full underlying trade data—were extracted and stored. This ap-
proach significantly reduced memory and processing requirements while preserving exact
VWAP values, and it enabled timely processing of the full sample without compromising

accuracy.
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3.1.4 WRDS-processed NYSE Matched Trades and Quotes (WCT)

: This dataset aligns each trade with the most recent National Best Bid and Offer (NBBO)
quote at the time of execution. It includes trade attributes such as price and size, as well
as corresponding quote fields (National Best Bid, National Best Offer, and quote time),
enabling detailed market microstructure analysis. In this study, it is specifically used to

compute trade imbalance, a directional measure of buyer- vs. seller-initiated trades.

Given the extremely large size of the WCT dataset, direct access and manipulation
through conventional local environments were not feasible. Furthermore, due to the
computational complexity of applying the Lee—Ready classification to nanosecond-level
matched trade—quote pairs, even in-database SQL processing on WRDS was insufficient
to handle the required operations. To overcome these limitations, all trade classification
and imbalance calculations were executed using SAS within SAS Studio on the WRDS
servers. This approach leveraged the platform’s optimized processing capabilities and al-
lowed the computations to be performed without downloading the raw dataset. The full
classification and aggregation process required more than 80 hours of continuous com-
putation, underscoring both the scale of the data and the computational intensity of the

task.

Trade imbalance is computed by classifying each trade using the Lee—Ready algo-
rithm, which combines a quote test and, when needed, a tick test. In the first step, the
quote test, each trade price is compared to the midpoint of the prevailing NBBO. A trade
is classified as buyer-initiated if its execution price is above the midpoint, and seller-
initiated if below. When the trade price falls exactly at, or within a small tolerance of,
the midpoint, making the quote test inconclusive, the algorithm applies the tick test. This
test compares the current trade price to the most recent different price: if the price has
increased, the trade is classified as buyer-initiated; if it has decreased, as seller-initiated;
and if it is unchanged from the prior trade, the classification is inherited from the last price
change direction. In this study, two distinct versions of trade imbalance are computed to

capture directional market pressure:
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e Trade Count Imbalance (TCI) is defined in this research as the difference between
the number of buyer- and seller-initiated trades, normalized by the total number of

trades:
Number of Buy Trades — Number of Sell Trades

TCI =
Total Number of Trades

(3.2)

* Trade Volume Imbalance (TVI) also follows a similar structure but uses the ag-

gregated trade volume instead of trade counts:

Volume of Buy Trades — Volume of Sell Trades
Total Trade Volume

TVI = (3.3)

While the count-based version reflects the directional frequency of trades, the volume-
based version captures the directional intensity of trading activity. Both versions are cal-
culated separately for the morning session (9:00 a.m. to 1:00 p.m.) and afternoon session
(1:00 p.m. to 4:00 p.m.), based on trade classification using the Lee—Ready algorithm. It

is notable that the processing time for this procedure was approximately eighty hours.

3.2 Data Preparation

3.2.1 Data Cleaning

To construct the final dataset, the four data sources described above were merged on the
basis of common ticker—date pairs. Given the exceptional scale of the dataset and the
heavy processing requirements, all subsequent preprocessing and modelling steps from
this stage onward were executed on Narval, a high-performance computing (HPC) clus-
ter operated by the Digital Research Alliance of Canada. Narval’s large-memory compute
nodes and long-runtime capabilities allowed for processing datasets of this size without
exceeding memory limits, while its job scheduling system ensured stable execution of
tasks requiring many hours to complete. Jobs were submitted and managed using the
SLURM workload manager, enabling controlled resource allocation, automatic job resump-

tion in case of interruptions, and efficient queue management.
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Data merges were performed in memory-efficient chunks to avoid exceeding node
memory capacity. Redundant columns arising from multiple data sources were identified
and removed, duplicate entries based on ticker and date were eliminated to ensure tem-
poral and cross-sectional uniqueness, and datapoints with missing values in any critical
feature were discarded. This workflow ensured computational feasibility and method-
ological rigour while preserving the integrity of the dataset.

Several preprocessing filters have been applied to ensure data reliability. First, Columns
with more than 5% missing values were removed to avoid sparsity-driven noise. Categor-
ical encoding was applied to structural variables such as exchange codes, share codes,
and industry identifiers. To address extreme values (outliers), two steps were applied: (i)
all numerical variables were winsorized by capping values at the 1st and 99th percentiles,
and (ii) stocks trading below $5 at the market open were excluded to mitigate distortions
caused by penny stocks. It should be noted that the outlier handling steps substantially
improved model performance, increasing the average R from near zero to above 40%.

To avoid look-ahead bias, we restrict inputs to information observable by 1:00 p.m.
on day (t). Any feature that partly or fully depends on afternoon information—e.g., close-
based indicators or any statistic aggregating the full trading day—is replaced by its value
from the previous trading day (t-1). This lagging scheme is illustrated in Figure 3.1: fea-
tures are constructed using data up to 1:00 p.m. on day (t) (blue), while variables that
would otherwise incorporate post-1:00 p.m. observations are shifted back one day; the
model then forecasts the 1:00-4:00 p.m. interval on day (t) (red). As part of feature engi-
neering, we constructed moving-average features at 1-month (21-day), 3-month (63-day),
and 1-year (252-day) horizons for key variables (returns, closing prices), capturing short-
, medium-, and long-term dynamics. Furthermore, Variables exhibiting high skewness
(|skewness| > 2) and positive support were log-transformed to stabilize variance and en-
hance normality. Finally, we examined the correlation matrix and removed variables with
pairwise absolute correlations exceeding 0.90 to avoid multicollinearity in modelling.

A suite of engineered features was developed to extract economically meaningful

information from the raw variables. These include return from 1 PM to market close,

21



Forecast target

Day t-1
e T

I N —~

| - — - - |

4:00 p.m.

Lagged features

Figure 3.1: Lagging scheme to prevent look-ahead bias. Inputs on day ¢ use only information
available by 1:00 p.m. (blue). Any feature requiring afternoon or end-of-day data is replaced by
its value from day ¢ — 1. The model then forecasts the 1:00—4:00 p.m. interval on day ¢ (red).

VWAP-to-Price Ratio, Intraday Momentum and Turnover at 1 PM (defined as the ratio of

dollar trading volume to market capitalization).

3.2.2 Subsampling for Model Comparison

To evaluate model robustness and interpret heterogeneity across firm types and market
structures, the final dataset has been partitioned into several subsamples based on the

following criteria:

1. Equity Type (Common Stocks vs. ETFs)
Equities were divided based on CRSP’s share code: entries with a share code of 10
and 11 were classified as common stocks, while those with a share code of 73 were
labeled as Exchange-Traded Funds (ETFs). This distinction enabled comparative

modeling between traditional equities and passive index-tracking instruments.

2. Market Capitalization (Size-Based Stratification)
At the start of each calendar year, NYSE-listed equities were sorted by market
capitalization as of the first trading day. The 30th and 70th percentiles of this cross-
sectional distribution were recorded as size thresholds for that year. These NYSE-
based thresholds were then applied to all equities across the five markets in the

sample to ensure a consistent size classification framework. Stocks with market
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capitalization below the 30th percentile threshold were labeled small-cap, between
the 30th and 70th percentiles mid-cap, and above the 70th percentile large-cap.
Once assigned, a stock’s size category remained fixed for the remainder of that

year.

3. Industry Classification (Fama-French 12 Sectors)
Using SIC codes” provided in CRSP, we mapped each firm to one of the 12 major
industry sectors as defined by the Fama-French classification.!® This mapping al-
lows for the control of industry-specific return patterns and microstructure behavior

in downstream modeling.

A set of target and predictor variables was constructed to capture the intraday informa-
tional environment relevant for forecasting stock price dynamics. The target variables
comprise the evening return (1 p.m. to market close), the evening trade count imbalance
(TCI) (Eq. 3.2), and the evening trade volume imbalance (TVI) (Eq. 3.3). The predictor
set includes the morning TCI, morning TVI, morning relative VWAP (Eq. 5.1), morning
momentum (see appendix B, Eq. 1), and turnover at 1 p.m. (see appendix B, Eq. 2). These
engineered predictors proved highly informative; all of them were identified among the
top-ranked variables in the clustering analysis of stock price behaviour (see Table 6.1),

underscoring their effectiveness in differentiating trading patterns across equities.

3.3 Final Dataset Characteristics

Table 3.1 presents the descriptive statistics for key continuous variables in the final dataset
after preprocessing and integration of all four WRDS sources. It includes central tendency
measures (mean, median), dispersion metrics (standard deviation, interquartile range),
and extremes (minimum and maximum). Variables such as VWAP, total size, total value,

volume, and order imbalance reflect the primary market microstructure measures used

9Standard Industrial Classification Code (siccd)
19Tndustry definitions are sourced from https://mba.tuck.dartmouth.edu/pages/faculty/ken.
french/Data_Library/det_12_ind_port.html.
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in the study, summarizing their scale and variability across the sample period. This pro-

vides context for interpreting model inputs and assessing the magnitude of market activity

captured in the data.

Table 3.2 summarizes the feature composition of the final dataset by category, listing

the number of variables in each group and example features. Categories span price/return

measures, transaction-based measures, liquidity, informativeness, volatility, temporal at-

tributes, and retail/institutional order flow. This table outlines the breadth of information

available for modelling, clarifies the data’s multidimensional structure, and demonstrates

how different market dimensions are captured for predictive analysis.

Table 3.1: Table 3.1: Descriptive statistics of key variables in the final dataset.

Variable Mean Std Dev Min 25% Median 75% Max

VWAP 40.05 129.09 0.00 8.15 20.85 4431 28,767.30
Total Size 61,290.33 411,106.10 1.00 100.00 1311.00 26,087.00 314,462,300.00
Total Value 50,680,680.76 522,084,400.00 0.00  224,578.57 1,656,404.02  14,624,598.96 168,363,700,000.00
Return 0.00 0.04 -098 -0.01 0.00 0.01 39.73
Volume 958,439.87 5,566,376.00 0.00 18,079.00 106,794.00 512,608.00 2,655,406,000.00
Quoted Spread 0.12 0.28 0.00 0.02 0.05 0.11 5.00
Order Imbalance 0.25 0.26 0.00 0.06 0.14 0.34 1.00

Table 3.2: Overview of feature categories distribution in the final dataset

Categories Number of Variables | Example Features

Price and Return Measures (In- ~50 Closing Price (CRP), Opening

dicators + CRSP) Price (QPR), CRSP Close, CRSP
Return

Transaction: Trade, Volume, ~65 Total Number of Trades, Total

Value (Indicators + TAQ- Volume, VWAP at Ipm, Total

derived) Size by 1pm, Total Value by 1pm

Liquidity Measures (Indica- 24 Quoted Spread (Dollar/Percent),

tors) Effective Spread

Informativeness Measures (In- 5 Order Imbalance, Price Impact

dicators) Lambda

Volatility Measures (Indica- 8 Trade-based Volatility, Quote-

tors) based Volatility

Symbol, Time, and Other At- 24 Date, Symbol, Closing Time,

tributes (Indicators) Trade Sequence Number

Retail and Institutional Order 39 Retail Buys/Sells (Volume and

Flow (Indicators) Value)

Total ~221-228 —
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4 Forecasting Models

4.1 Lasso Modeling

4.1.1 Modeling Framework

To evaluate the predictive content of midday indicators for afternoon stock price move-
ment, a Lasso regression framework is adopted within a rolling-window estimation strat-
egy. This choice is motivated by the methodological requirements of the problem. A sim-
ple OLS regression is unsuitable, as the number of predictors is large relative to the effec-
tive sample size and multicollinearity is substantial. Elastic Net is also avoided because,
in preliminary tests, its combined L;—L; penalty tended to shrink nearly all coefficients to-
ward zero, obscuring the identification of truly persistent predictors. Time-series models
designed for step-ahead forecasting are inappropriate here, as the dataset does not form
a consistent, evenly spaced time series, our focus is solely on forecasting the “evening”
point using midday cross-sectional information. Lasso’s L; regularization directly ad-
dresses these challenges by performing simultaneous coefficient shrinkage and variable
selection, mitigating overfitting, and enhancing interpretability in high-dimensional, noisy
financial settings. These properties are essential for isolating which liquidity and order-
flow measures retain stable explanatory power across time and market segments.
Formally, the Lasso estimator solves the following optimization problem:
A 1 & 2 P
B:argn}gn{;;(yi—){fﬁ) +A]gl|ﬁj|}, @1

where A > 0 controls the amount of ¢ regularization.

A 1 & 2 )4
B = argn;ginﬁ Z (y,' _XiTﬁ) subject to Z 1Bl <1, 4.2)
i=1

Jj=1

where ¢t > 0 determines the /;-norm bound.
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where y; denotes the response variable, X; is the predictor vector for observation i, 8
is the coefficient vector, and A > 0 is the regularization parameter controlling the strength
of the L; penalty. Larger values of A increase the shrinkage applied to the coefficients,

driving more of them to exactly zero and thereby performing implicit variable selection.

4.1.2 Rolling Forecast Procedure

A rigorous rolling forecast has been implemented to reflect the sequential nature of in-
vestment decision-making. The model is trained on a fixed three-year historical window
and tested on the subsequent year, advancing the window in annual increments from 2018
through 2024. This setup ensures that each forecast relies solely on information available
at the time of prediction, thereby eliminating look-ahead bias.

To account for structural heterogeneity, the sample is stratified by equity type, mar-
ket capitalization group, and industry classification. For each subset, the regularization
hyperparameter (A) is re-tuned at the start of each calendar year using five-fold cross-
validation on the preceding three-year training window (rolling-origin), and the selected
A is then held fixed for that subset throughout the year to ensure comparability across
daily test windows. In principle, a fully optimal protocol would re-select A at every
rolling step via CV on the contemporaneous training fold (i.e., nested hyperparameter
search within walk-forward evaluation). However, with daily re-estimation over 2018—
2024, a three-year rolling training span, and k=5 folds, proved computationally infeasible
on the Narval cluster (faced out-of-memory errors). The adopted annual re-tuning thus
represents a tractable, variance-reducing compromise that limits hyperparameter stale-
ness while avoiding leakage, and preserves year-over-year comparability of R? and error
profiles across rolling windows.

Each forecast iteration applies a standardized preprocessing pipeline: (1) mean imputa-
tion for missing values to preserve sample size without distorting distributional properties,
(i1) z-score scaling to place predictors on a comparable scale, and (iii) Lasso regression

using the previously tuned A. Model performance is evaluated using MSE, MAE, and
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out-of-sample R?, allowing for consistent assessment across models and periods.

The pipeline is implemented in Python using the scikit-learn library, ensuring re-
producibility and transparency of the modeling process. Data preprocessing and modeling
steps are encapsulated in modular scripts, enabling consistent execution across all subsets
and windows. Identifier columns and categorical labels are systematically excluded from

the predictor matrix to prevent data leakage.

Beyond point forecasts, the analysis examines the stability of variable selection across
rolling windows, highlighting indicators whose coefficients remain persistently non-zero.
This longitudinal perspective is critical for addressing the research objective of identifying
robust drivers of intraday price behavior. As such, the Lasso results not only serve as a
benchmark for more flexible machine learning methods presented later in this chapter but

also provide economically interpretable insights into market microstructure dynamics.

The adoption of the Lasso regression with a rolling forecast framework directly ad-
dresses the core research questions by rigorously testing whether midday liquidity, order
flow, and VWAP-related indicators possess stable predictive power for subsequent intra-
day returns. The method’s embedded feature selection aligns with the objective of iso-
lating the most informative predictors, while the rolling design ensures temporal validity
and realistic investment applicability. Stratifying by equity type, market capitalization,
and industry enables the analysis to capture cross-sectional heterogeneity, thereby meet-
ing the methodological relevance criterion. The preprocessing, parameter tuning, and
consistent evaluation across multiple subsets and years demonstrate the utmost rigour in
data handling and model estimation. Collectively, these design choices ensure that the
analysis not only delivers accurate forecasts but also produces interpretable results that
fully satisfy the stated objectives and contribute meaningful insights into the drivers of

intraday market movements.
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4.1.3 Lasso Forecasting Results

The out-of-sample R? patterns from the rolling Lasso estimation reveal clear differences
in predictability across the three targets, afternoon return, trade volume imbalance (TVI),
and trade count imbalance (TCI), and across market capitalisation, security type, and in-
dustry classifications. The most striking and consistent finding is the marked disparity
in forecastability between returns and order-flow measures. While TVI and TCI typi-
cally exhibit R? values in the range of 0.50-0.62, indicating substantial and persistent
predictability, the corresponding figures for return are an order of magnitude lower, gen-
erally between 0.06 and 0.18 ( see table 1). This difference holds across all subgroup
definitions and throughout the 2018-2024 evaluation period, underlining that midday in-
formation provides far greater insight into the evolution of afternoon order flow than into
directional price changes. It is notable that the processing time for this procedure was

approximately ten days.

Across time, order-flow predictability appears relatively stable, though not entirely
invariant. Many series exhibit a modest trough around 2020-2021, followed by partial
recovery in 2022-2023. This pattern is observed across size, security type, and industry
groups, and may reflect the influence of broad market-wide factors, potentially including
shifts in liquidity provision and changes in retail participation during the pandemic period,
on the persistence of intraday flow patterns. By 2024, R? values for TVI and TCI remain
high, though slightly below their early-sample peaks, particularly in ETFs. The return
forecasts display a noisier version of the same shape, with a pronounced drop in 2019, a
mild rebound into 2022, and softening thereafter.

Size-based patterns are modest for returns, where all three capitalisation groups cluster
at similarly low R? levels, but are more pronounced for the order-flow measures. Small-
cap stocks tend to post the highest TVI and TCI R? values, especially early in the sample,
consistent with greater persistence in their liquidity imbalances, possibly due to a higher
share of less-informed trading and more concentrated market-making activity. Large and

mid-cap stocks track closely together, with slightly lower but still robust predictability in
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Figure 4.1: Out-of-sample R?> Comparison for Lasso model forecasts of afternoon Return, Trade
Count Imbalance (TCI), and Trade Volume Imbalance (TVI) across stock types, market capital-
ization groups and industries (rolling test years from 2018 to 2024).

TVI and TCI.

Comparing common stocks and ETFs reveals a distinct trajectory. For returns, both
series remain weakly predictable, with minor fluctuations over time. For order-flow mea-
sures, ETFs start the sample with the highest predictability, TCI R* exceeding 0.63 in
2018, before undergoing a gradual, monotonic decline toward the mid-0.50s by 2024.
Common stocks, by contrast, maintain a narrower range with smaller drifts, suggesting
a more stable microstructural environment. The ETF decline may reflect the erosion of
mechanical flow patterns from creation/redemption activity as competition among arbi-

trageurs increased and as execution strategies adapted to post-2020 conditions.

Industry disaggregation confirms the overall ranking of target variables while reveal-

ing some heterogeneity in level. For returns, a handful of sectors, notably Chemicals,
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Durables, Business Equipment, and Manufacturing, occasionally post R* near 0.18-0.19,
especially around 2022, whereas sectors like Financials and Telecom generally sit at the
lower end. In contrast, TVI and TCI are strong across the board, with sectors such as
Business Equipment, Chemicals, Health, Energy, and Other frequently in the upper half
of the range and maintaining values near or above 0.58 for extended periods. Utilities
and Telecom tend toward the lower end, but even here, order-flow predictability remains

materially high.

Taken together, these results demonstrate that the Lasso model consistently extracts
robust predictive signals for intraday order-flow variables, with high R* across time and
market segments. The persistence and stability of TVI and TCI forecasts indicate that
midday liquidity and trade activity patterns carry substantial information about the state
of the market later in the day, even if that information does not translate directly into
predictable returns. The modest time variation, common across segments, suggests that
changes in market-wide conditions can affect the strength of these relationships, but with-
out eliminating them. These findings directly inform the execution problem introduced
in this thesis. The relatively weak predictability of returns, contrasted with the strong
and persistent forecastability of TCI and TVI, implies that the information available by
midday is more reflective of latent trading pressure than of directional price expectations.
In other words, while price changes between noon and close remain largely driven by
stochastic shocks, liquidity and order-flow variables exhibit structured and repeatable be-
havior that traders can exploit. This distinction is central to the hypothesis that midday
VWAP deviations embody execution-relevant information: they do not deterministically
forecast prices, but they proxy for temporary supply—demand imbalances that shape short-
horizon price impact and fill quality. The Lasso framework, by isolating these stable linear
relationships, thus establishes a baseline understanding of how the midday market state
encodes the “urgency” and asymmetry of liquidity that VWAP-based strategies must re-

spond to in real time.
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4.2 Random Forest Modeling

4.2.1 Modeling Framework

As a nonparametric alternative to Lasso, we estimate Random Forest (RF) regressions
to capture nonlinear relationships and interactions among predictors. Random Forests are
ensemble learners that average the predictions of many decorrelated decision trees built on
bootstrap samples and random feature subsets, thereby reducing variance and improving
out-of-sample stability. Formally, for B trees {Tb}fj:1 grown on bootstrap samples, the

RF prediction for a new observation x is
1 B
ﬁRF(X) = — Z Tb(x) (4.3)
B b=1

The randomisation in sampling and feature selection mitigates overfitting and makes

the estimator robust in high-dimensional, noisy settings typical of intraday data.

4.2.2 Rolling Forecast Procedure and Implementation

To ensure full comparability with the Lasso benchmarks, we employ the same rolling-
window design: for each test year from 2018 to 2024, the model is trained on the pre-
ceding three calendar years and evaluated on the following year. All preprocessing and
estimation steps are executed strictly within each fold to avoid look-ahead bias.

The modeling pipeline is implemented in scikit-1learn as a two-step estimator com-
prising mean imputation (calibrated on the training slice only) followed by a Random
Forest regressor. Because decision-tree splits are invariant to monotonic transformations,
no feature scaling is applied. Predictors are restricted to numerical variables; identifier
fields and administrative columns (date, Year, ticker, hsiccd, shrcd, market_cap)
are excluded from the feature matrix to prevent leakage.

Consistent with the code, hyperparameters are fixed ex-ante across all folds and sub-

sets: we use B = 100 trees with parallel fitting (n_jobs=-1) and a fixed random seed
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for reproducibility. Although Random Forest studies often use 500-1000 trees to fur-
ther reduce variance, our dataset’s per-fold memory footprint repeatedly triggered out-of-
memory (OOM) failures on the Narval cluster; we therefore cap the ensemble at B = 100
trees to ensure stable execution. Other tree-growth parameters are left at their library de-
faults. This choice prioritises stability and transparency over fold-by-fold re-tuning and
avoids contaminating the temporal comparison with changing model capacity.

For each subset—year combination we record mean squared error (MSE), mean abso-
lute error (MAE), and out-of-sample R?. In addition, we extract the model’s embedded
impurity-based importances (mean decrease in impurity, MDI) for all predictors in that
fold. Storing these importance vectors across folds enables us to study which variables re-
peatedly contribute to predictive accuracy and whether their relevance shifts across time
and market segments. All metrics and importances are written to structured CSV files,
and a predicted-versus-actual scatter plot is produced per subset and target for visual di-
agnostics.

The RF specification complements the Lasso benchmark by relaxing linearity and
sparsity assumptions and allowing for rich nonlinearities and interaction effects among
liquidity, order-flow, and intraday price variables. Whereas Lasso yields a parsimonious,
interpretable linear signal, the Random Forest probes whether additional structure can
be harnessed for incremental out-of-sample gains. The joint evidence from these two
model classes therefore provides a comprehensive assessment of the predictive content of

midday indicators for afternoon market dynamics.

4.2.3 Random Forest Forecasting Results

The Random Forest (RF) estimates uncover substantial and stable predictability for order-
flow measures and more moderate, yet economically meaningful, predictability for re-
turns. Averaged across all subgroups and years (2018-2024), the out-of-sample R? is
0.771 for trade count imbalance (TCI; range 0.641 to 0.850), 0.659 for trade volume im-
balance (TVI; range 0.541 to 0.758), and 0.168 for the afternoon return (range —0.037 to
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0.246) ( see table 1). These magnitudes indicate that nonlinear structure and interactions
captured by the RF translate into very strong forecasts for the state of order flow and into

nontrivial, albeit smaller, gains for directional returns.
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Figure 4.2: Out-of-sample R* Comparison for Random Forest forecasts of afternoon Return, Trade
Count Imbalance (TCI), and Trade Volume Imbalance (TVI) across stock types, market capital-
ization groups and industries (rolling test years from 2018 to 2024).

Time-series profiles are broadly consistent across targets. For TCI, average yearly R?
peaks in 2019 at 0.794 and trends gently lower thereafter, settling near 0.758 in 2024.
TVI follows a similar path, from 0.686 in 2019 to 0.641 in 2024, with a trough around
2021. Return predictability displays a noisier pattern: a dip in 2019 (0.099) is followed
by a steady improvement through 2021-2022 (about 0.185) and a mild softening in 2024
(0.171). The common movement in order-flow targets suggests regime-level changes
in intraday participation and inventory management, which compress persistence during

2020-2021 without eliminating it.
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Cross-sectional heterogeneity aligns with microstructure intuition. By security type,
ETFs exhibit very high order-flow predictability (mean TCI R?> = 0.816; mean TVI R? =
0.705) but much weaker return forecasts (mean R> = 0.067 with a negative reading in
2019), whereas common stocks sustain comparably strong order-flow predictability (TCI
0.781, TVI 0.677) and materially higher R? (mean R?> = 0.192) that is economically sig-
nificant. This gap suggests that mechanical and arbitrage-related ETF flows are persistent
and thus forecastable as flows, but these patterns translate only weakly into subsequent
price changes at the horizon considered. By market capitalisation, small caps lead in re-
turn forecasting (mean R> = 0.213 versus 0.174 for mid caps and 0.109 for large caps),
consistent with higher frictions and more persistent intraday momentum in the tail of the
size distribution (these R? differences are economically significant). For order flow, lead-
ership splits by measure: TVI is highest in small caps on average (0.685), whereas TCI is
maximised in large caps (0.797), reflecting differences in participation intensity and the
count-versus-volume composition of trading across size buckets.

Industry results preserve the same ranking of targets while revealing informative dis-
persion in levels. For TCI, the highest average R* are observed in Money/Financials
(0.807), Shops (0.782), and Manufacturing (0.779), with Telecom, Utilities, and Non-
durables in the lower part of a still-elevated range (down to about 0.734). TVI peaks in
Money/Financials (0.705), followed by Manufacturing (0.673) and Shops (0.670), and is
relatively lower in Nondurables, Telecom, and the Unknown residual category. For re-
turns, the strongest averages occur in Other (0.200), Business Equipment (0.194), Health
(0.192), and Manufacturing (0.188), while Utilities, Energy, and Money/Financials sit
at the weaker end (roughly 0.146-0.149). The inter-industry R? variations are economi-
cally significant and these sectoral patterns are consistent with differences in the timing
and concentration of news, the structure of liquidity provision, and intra-industry trading
conventions.

Embedded variable-importance diagnostics corroborate the behavioral reading. For
the two order-flow targets, the complementary imbalance measure is the dominant pre-

dictor on average: TCI forecasts load most heavily on the same-period TVI, and TVI
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forecasts load most heavily on TCI, with secondary contributions from buy—sell ratio
metrics and morning-session imbalances. For returns, the most influential signals com-
bine market-wide return factors, intraday momentum measured from the open to 1 p.m.,
and contemporaneous order-flow variables, indicating that nonlinearity arises primarily
through interactions between participation intensity and broader market conditions rather
than through a single stand-alone predictor. Together, these importance patterns explain
why RF gains are concentrated in flow targets and are more modest, but still present, for
returns.

From a practical perspective, the RF results imply that intraday decision rules should
be conditioned on the predicted state of order flow. The high and persistent R> for TCI
and TVI across years, security types, and industries make these forecasts reliable state
variables for sizing and timing. The stronger return predictability in small caps and cer-
tain industries suggests where directional exposure is most likely to pay off, while the
consistently weak return R? for ETFs cautions against applying the same return-oriented
rules to ETF universes. Finally, these findings are not driven by thin subsamples: average
test set sizes per subgroup—year are large, and the rolling design ensures that all estimates
rely strictly on information available at the forecast origin.

In sum, the Random Forest extracts rich nonlinear structure from midday informa-
tion. It delivers very strong forecasts for afternoon order-flow imbalances and nontrivial
predictability for returns, with coherent time variation and economically interpretable
cross-sectional differences. Within the same predictor space, the Random Forest model
extends the linear benchmark by revealing interaction-driven predictability that Lasso
cannot capture. The improvement in accuracy which was economically significant, does
not stem from new information, but from the model’s ability to combine existing vari-
ables—such as the VWAP gap, turnover, and order imbalances—in nonlinear and condi-
tional ways. Interpreted through the execution lens, this means that the market’s response
to a given VWAP deviation depends jointly on liquidity depth and trade imbalance inten-
sity. For example, a positive deviation may lead to reversion when liquidity is thin but

continuation when trading pressure remains buyer-dominant. These results thus support
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the core hypothesis that midday VWAP deviations contain predictive information whose
strength varies with microstructural context, providing a data-driven foundation for adap-

tive VWAP execution rules that adjust to prevailing conditions.
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S VWAP Importance Analysis

5.1 Experimental Design and Metric

To quantify the incremental value of VWAP-related information, we perform a controlled
exclusion test. In the baseline specifications (Sections 4.1 and 4.2), the predictor set

includes a transformed morning VWAP defined as
Relative VWAP = log(VWAP ;,6ming) — 10g(Popen) (5.1)

where VWAP ;,6ming 18 computed from the open to 1:00 p.m. and Fopen is the opening
price. We refer to this variable as Relative VWAP. We then remove Relative VWAP from
the feature set and re-estimate the models with no other change to the rolling design,
preprocessing, or hyperparameters.

To compare forecast accuracy on a consistent scale across years and subgroups, we

compute a relative out-of-sample performance measure:

R2. — R
Rel R2 _ “with RVWI/;g without RVWAP 7 (52)
with RVWAP

so that positive values indicate improvements from including Relative VWAP and neg-
ative values indicate deterioration. Because return R> can be small, we interpret relative
changes alongside the underlying levels and report absolute differences in the supplemen-
tary figures where relevant.

This section directly tests the thesis’s execution-motivated hypothesis by examining
whether midday deviations from VWAP, conditional on liquidity and order-flow informa-
tion, contain forward-looking predictive value for noon-to-close returns and imbalances.
The analysis quantifies VWAP’s incremental contribution to predictive accuracy through
controlled inclusion—exclusion tests within the rolling Lasso and Random Forest frame-

works. This design allows us to determine whether VWAP acts as an actionable state
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variable for adjusting execution aggressiveness at 1:00 p.m. rather than a descriptive

benchmark.

5.2 Lasso: Results and Discussion

The Lasso results indicate that Relative VWAP contributes modestly and heterogeneously
to out-of-sample predictability. For afternoon returns, several industries exhibit small
but systematic gains from including Relative VWAP (Business Equipment, Chemicals,
Durables, Health, and Manufacturing), with intermittent negatives in Telecom, Utilities,
and Nondurables concentrated in 2020 (Figure 10). These patterns suggest that Relative
VWAP carries information that complements intraday momentum and order-flow vari-
ables in sectors where trading is more inventory- or benchmark-driven, while the large
2020 drawdowns are consistent with the pandemic-related microstructure break that al-
tered intraday participation and execution practices.

For order-flow targets, effects are near zero on average and concentrated around the
2019-2021 window. Trade volume imbalance shows mostly negligible changes, with a
few sector-year improvements (e.g., Money/Financials in 2020; Manufacturing in 2024)
and several transient declines in 2020 for Health and Nondurables (Figure 5.4). Trade
count imbalance exhibits a similar picture: small positives in Business Equipment and
Chemicals offset by sizeable negatives in 2020 for Nondurables and Telecom (Figure 5.5).
Taken together, these results imply that Relative VWAP adds limited incremental infor-
mation for forecasting the state of flow once other midday indicators are present, and that
its marginal contribution is sensitive to regime shifts.

Cross-sectional averages by market capitalisation and security type confirm the sec-
tor patterns. The cap-size summary shows modest average gains for returns, with minimal
average impact on the order-flow measures (Figure 5.2). By type, common stocks display
slightly larger relative improvements for return than ETFs, while effects for the flow tar-
gets remain close to zero in both universes (Figure 5.1). This is consistent with Relative

VWAP being more informative when idiosyncratic inventory pressure and benchmark-
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Figure 5.1: Relative out-of-sample R? gain from including VWAP in the Lasso model, disaggre-

gated by security type

(common stock vs. ETF) and target variable (return, trade count imbalance,

trade volume imbalance), for test years 2018-2024.
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41



Industry BusEq

Industry Chems

Industry_Durbl

¥ 014
[
2
g 0.0 L [ e L e |
£
o
~ —0.14
o
[
2
®© —0.21
&
2018 2020 2022 2024 2018 2020 2022 2024 2018 2020 2022 2024
Year Year Year
Industry_Enrgy Industry_Hlth Industry_Manuf
$ 014 1
8 .
g 0.0 ~BASRNNY “haseser - Meseses- JasaaeN - [ T — seeeeee. L
2 0.1
o —0.1| .
- L
2
& -0.2
&
2018 2020 2022 2024 2018 2020 2022 2024 2018 2020 2022 2024
Year Year Year
Industry_Money Industry_NoDur Industry_Other
£ 014 1
[}
o
S 00 - l. . - -
£
o
5 ~0.11 1 . —
[
2
® —0.2
3 L
2018 2020 2022 2024 2018 2020 2022 2024 2018 2020 2022 2024
Year Year Year
_ Industry_Shops Industry_Telcm Industry_Utils
X 0.1
[
2
g 00 [
£
o
~ —0.14
a4
[
2
® -0.2
&
2018 2020 2022 2024 2018 2020 2022 2024 2018 2020 2022 2024
Year Year Year
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Figure 5.5: Relative out-of-sample R? gain from including VWAP in the Lasso model for forecast-
ing Trade Count Imbalance (TCI), disaggregated by industry group, for test years 2018-2024.
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tracking behaviours matter, and less so where mechanical creation/redemption flows dom-
inate.

Overall, the Lasso exclusion test indicates that Relative VWAP provides at most a
small, context-dependent increment for return predictability and adds little to flow pre-
dictability (TCI/TVI) once other midday variables are included. The clustering of nega-
tive contributions in 2020 suggests regime sensitivity of VWAP-based signals. The weak
and unstable VWAP coefficients imply that the link between midday price positioning
and afternoon outcomes is not well captured by additive linear effects. For execution, this
cautions against linear schedule rules keyed solely to the VWAP gap: scaling participa-
tion in proportion to the gap is unlikely to capture the nonlinear feedback among liquidity,

order flow, and execution urgency that drives post-noon performance.

5.3 Random Forest: Results and Discussion

We repeat the exclusion test for the Random Forest model, reporting relative out-of-
sample R” gains from including Relative VWAP by subgroup and year. Since Random
Forest can capture nonlinearities and interactions that Lasso cannot, we expect clearer
and more structured effects if VWAP contributes predictive information beyond order-
flow and momentum indicators.

The corrected Random Forest results show that the incremental contribution of Rela-
tive VWAP is strongest and most stable for return forecasts, but far weaker for order-flow
variables. In Figure 5.6, common stocks consistently display small but positive gains in
returns, while ETFs exhibit volatile patterns: strong negatives in 2019, offset by moder-
ate positives in other years. This contrast suggests that VWAP embeds information more
aligned with the trading dynamics of individual equities than with the aggregated baskets
of ETFs.

By market capitalisation (Figure 5.7), small-cap returns benefit the most, with re-
peated positive gains throughout the period. Mid-cap effects are less pronounced but

remain positive in several years. Large caps show sharp positive impacts early in the
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Figure 5.6: Relative out-of-sample R? gain from including VWAP in the Random Forest model,
disaggregated by security type (common stock vs. ETF) and target variable (return, trade count
imbalance, trade volume imbalance), for test years 2018-2024.
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Figure 5.9: Relative out-of-sample R? gain from including VWAP in the Random Forest model
for forecasting Trade Volume Imbalance (TVI), disaggregated by industry group, for test years
2018-2024.
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sample (2019-2020), though later years are mixed. The stronger VWAP contribution in
smaller firms is intuitive: their prices are more sensitive to intraday order imbalances, and
deviations from VWAP may better capture latent demand pressures in less liquid names.

At the industry level (Figure 5.8), Relative VWAP enhances return forecasts in nearly
all sectors which is economically significant, but the magnitude varies. Financials Money,
Energy, and selected cyclical industries (e.g., Durables, Manufacturing) show especially
large improvements, with some gains exceeding 10% in particular years. In contrast,
defensive sectors such as Utilities and Telecoms exhibit much weaker effects. This pattern
indicates that VWAP-related pressure is most informative in industries prone to larger
intraday swings and liquidity fluctuations.

For trade volume imbalance (Figure 5.9), VWAP provides limited incremental value.
Most industry-year cells are close to zero or even negative, with only scattered positives
(e.g., Utilities and Energy). The results imply that VWAP does not systematically enhance
forecasts of volume-based imbalances once Random Forest already accounts for direct
order-flow measures.

The case of trade count imbalance (Figure 5.10) is similarly mixed. While certain
industries (e.g., Other, Telecom, Shops) display occasional positive gains, many others
record flat or negative contributions, particularly in later years. Unlike for returns, VWAP
appears to add little incremental predictive power to trade count dynamics, and in some
cases it may even introduce noise.

In summary, the Random Forest evidence suggests that VWAP’s incremental value is
more visible in return forecasts, most notably for small-cap names and cyclical/financial
sectors, whereas additions for flow targets (TVI/TCI) are modest and sometimes negative.
Relative to Lasso, where effects were muted or unstable, the pattern appears stronger
when the model can accommodate interactions and state dependence, which may re-
flect thresholds with turnover/imbalance, regime variation (e.g., 2020), or collinearity
that down-weights VWAP in the penalized linear setting.

Taken together, these results indicate that the midday VWAP deviation may carry in-

formation about latent demand or supply that is more consequential for returns than for
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the structure of trade imbalances. This pattern may reflect that the VWAP deviation’s
association with returns and flows is not purely linear and likely operates through inter-
actions and state dependence; models that capture interactions, such as Random Forest,
seem useful for this purpose, while conclusions should be stress-tested across regimes,

feature sets, and transformations before being embedded in adaptive VWAP tactics.
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6 Equity Clustering

To uncover structural similarities among equities and identify the features that differen-
tiate their predictive behavior, stocks are clustered on per-ticker LASSO coefficient pro-
files. The procedure is run separately for each predictive target: (i) the return, (ii) the
trade count imbalance (TCI), and (iii) the trade volume imbalance (TVI). For each target
and ticker, a LASSO model is estimated with a standardized pipeline (mean imputation,
feature scaling, and cross-validated penalization over a logarithmic o grid). The result-
ing coefficients (including the intercept) form a matrix with tickers in rows and features in
columns; equities with insufficient observations or unstable cross-validation are excluded.

For each target, I compute pairwise Euclidean distances on the coefficient matrix and
apply hierarchical agglomerative clustering with average linkage. The dendrogram is
truncated at K = 5 clusters to obtain interpretable groups. I report cluster assignments,
cluster centroids (mean coefficients by cluster), and the top-five features per cluster based
on the average absolute weight. As a quality diagnostic, I compute the silhouette score
using Euclidean distances; values are positive across targets, indicating non-trivial sepa-
ration in coefficient space. Dendrograms and 2-D PCA projections colored by cluster are

provided in the Online Appendix.

6.1 Cross-Target Signals from the Clustering Runs

Table 6.1 summarizes the features most frequently selected by LASSO across all equi-
ties for each target (higher counts indicate broader relevance). Three patterns stand out.
First, total_size_1pm and turnover_1lpm are consistently influential for all targets,
highlighting the central role of midday trading intensity in both price and order-flow dy-
namics. Second, return prediction loads more on price-level indicators (e.g., morning
return wret and log_vwap_price_ratio), whereas imbalance predictions rely more on

microstructure/liquidity variables (e.g., morning_trade_imbalance_count, depth and
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spread measures). Third, many signals are target-specific: variables that matter for return
are often weak for TCI/TVI and vice-versa, implying that predictive archetypes differ by

objective and motivating separate clusterings rather than a single pooled one.

Table 6.1: Heatmap of the most important features in clustering, shown separately for return,
trade count imbalance (TCI), and trade volume imbalance (TVI) targets. Darker cells indicate
features selected more consistently across tickers, highlighting both common predictors (e.g., to-
tal_size_1pm, turnover_1pm) and target-specific signals. Find the variable names and descriptions
in table 2

[ Feature Importance Across Target Variables

total_size_lpm >
turnover_lpm
shrout_lagl
wwretd
log_vwap_price_ratio 4
morning_trade_imbalance_count -
QuotedSpread_Dollar_tw - 0 1 2
BestBidDepth_Share_tw - 0 0
BuyNumTrades_Retail - 0 2 0 3
BestOfrDepth_Share_tw - 0 1 1
[
% BestBidDepth_Dollar_tw - 0 0 2
hd
Intercept - 0 1 1
bs_ratio_num - 0 1 1 =3
BuyVol_Retail - 0 1 0
buy dv Retail - 0 1 0
momentum_open_to_lpm - 1 0 0
DollarRealizedSpread_LR_Ave - 0 1 0 |,
morning_trade_imbalance_volume - 0 0 1
QuotedSpread_Percent_tw - 0 0 1
BestOfrDepth_Dollar_tw - 0 0 1
vwap_lpm - 0 0 1
l l l -0
evening_return imbalance_count imbalance_volume

Target Variable
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6.2 Economic Interpretation of Clusters

Across targets, centroid profiles reveal distinct predictive archetypes. One group is domi-
nated by liquidity and depth variables (microstructure-driven behavior), another by price
level and VWAP-related signals (momentum/price-anchoring dynamics), and others by
mixed intensity measures (turnover and total size). These differences are economically
meaningful and actionable: combining clusters in portfolio construction diversifies expo-
sure to complementary sources of predictability (price-level vs. order-flow signals) and
reduces dependence on any single mechanism.

All inputs (ticker-level betas, cluster assignments, centroids, silhouette diagnostics,
dendrograms, PCA maps, and top-feature tables) are exported by the clustering scripts
and archived with the thesis materials to ensure full replicability.

From the perspective of the midday execution problem, these clusters reveal which
subsets of equities exhibit similar responses to VWAP deviations and order-flow pres-
sures. Stocks grouped by comparable midday turnover, liquidity depth, and share out-
standing characteristics reflect distinct execution environments that a trader confronts
when deciding whether to accelerate or delay completion of an order. In this sense,
the clustering results operationalize the thesis hypothesis by translating statistical hetero-
geneity into execution heterogeneity: equities with persistent high-liquidity or large-cap
signatures tend to display weaker predictive links between VWAP gaps and afternoon
drift, whereas thinly traded or high-turnover clusters show stronger sensitivity. Hence,
the clustering analysis directly connects model-based predictability to the practical ques-
tion of how midday information can guide adaptive VWAP execution, by showing that
equities with similar microstructure signatures share consistent midday-to-close response

patterns.
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7 Backtesting

This chapter evaluates the practical value of the intraday forecasts by simulating daily,
rules-based long—short portfolios over the 2024 calendar year. The design mirrors the
production script used in our experiments and adheres strictly to out-of-sample evalu-
ation with a rolling three-year estimation window. The objective is to assess whether
cross-sectional rankings implied by models trained on midday information translate into
positive payoffs after 1:00 p.m. Specifically, we form daily long and short legs by sorting
stocks on each model’s predicted signal, measure realized performance using the subse-
quent return from 1:00 p.m. to the close, and compare the symmetry of the long and short
legs as well as the performance of the market-neutral spread. This procedure is repeated
across all analysis subsets, security type, capitalization buckets, and industries, and for

each training target: return, TCI, and TVL.

7.1 Methodology and Implementation

The master dataset contains equity—day observations with timestamped features/targets
and identifiers. For backtesting, rows with valid dates, the relevant training target, and the
realized afternoon return are retained. Subsets are constructed using the same logic as in
the empirical analyses: common stocks (shrcd € {10,11}), ETFs (shrcd = 73), capital-
ization buckets via the cap_size attribute, and industry buckets via major_industry.
Observations from unknown or empty categories are excluded. For each (subset, target)
pair, we estimate a Lasso regression within a fixed preprocessing pipeline consisting of
mean imputation, standardization, and a Lasso model with a fixed penalty & taken from
previously optimized summary files, thereby ensuring no hyperparameter tuning on test
data. The daily re-estimation uses a rolling window of the preceding three years, ending
strictly before the test day, with a minimum of 250 training days. Where necessary, up

to four multiplicative bumps of & are applied to ensure convergence while keeping the
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parameter scale close to the original.

On each test day, eligible stocks in the cross section are scored to obtain a Predicted
value, and two legs are formed using symmetric quantile thresholds. Using the default
q = 0.10, the long leg contains stocks in the top decile of scores, while the short leg
contains those in the bottom decile. Equal-weight mean realized afternoon returns are
computed for each leg, and the daily market-neutral spread is defined as the difference
between the long and short returns. When the training target is TCI or TVI, the evalua-
tion still uses realized returns, thus directly testing whether predicted imbalances contain
incremental information about subsequent price movements. Performance is evaluated
using the annualized Sharpe ratio, excess Sharpe ratio relative to a 3.98% annual risk-free
rate, and annualized mean return, with calculations based on daily means and standard
deviations scaled to a 252-day year:

Sharpe = E\/25_2, Excess Sharpe = w V252, Annualized Return =252 1.
o O(x—rs/252)

The implementation adheres to principles designed for rigor and reproducibility: the
master file is loaded once; dates and numeric fields are validated; infinities and missing
values are removed; fixed o values are taken from prior optimization to prevent infor-
mation leakage; models are refit each test day in strict time order; and the predictor set
is rebuilt programmatically by selecting numeric columns and excluding identifiers and
the current target. Quantile legs are reconstructed every day from the test cross section,
with missing predictions or returns dropped for that date. The main parameters follow the
production defaults: a 3.98% annual risk-free rate, decile-based legs, at least 250 training
days, a Lasso iteration cap of 50,000 with tolerance 10~*, and up to four & adjustments
upon convergence warnings.

This backtest operationalizes the midday execution choice: if the VWAP gap at 1:00
p.m. and morning TCI/TVI encode latent afternoon pressure, then forecasts built only
on noon-available inputs should improve the accelerate vs. pace decision for finishing
the schedule. Forming positions at 1:00 p.m. is thus a proxy for moving an execution

trajectory forward when predicted return/imbalance is favorable, and holding back when it
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is not—directly testing whether the noon information set is actionable for VWAP-oriented

execution.

7.2 Results and Performance Analysis

Across all (subset, target) pairs with optimized «, the long—short decile strategy delivers
strikingly strong 1:00 p.m.—to—close performance in 2024. Median spread Sharpe ratios
(annualized) by training target are extremely elevated for TCI and TVI and remain very
high even for the return-trained model, with corresponding median annualized spread re-
turns in the multi-hundred-percent range. In levels, average daily spread means cluster
around one percentage point while median spread standard deviations are substantially
lower, producing very high risk-adjusted scores. The pattern is broad-based: order-flow
targets generally dominate the return target at the subset level, consistent with midday
imbalance signals carrying richer information about near-term price pressure than con-
temporaneous returns. Two segments illustrate the range: diversified common stocks and
several industry buckets record extreme spread Sharpes and annualized spreads, whereas
ETFs show the weakest outcomes, still positive but far more modest.It is notable that the
processing time for this procedure was approximately eight days.

Across the subsets, annualised Sharpe ratios ranged from roughly 6 to 90, and annu-
alised mean returns from about 0.24 to 3.4. While these figures indicate very strong in-
sample risk-adjusted performance, they are unusually high for an intraday market-neutral
setting; potential reasons for these high values are discussed in section 7.3.

The long and short legs are both highly active and contribute meaningfully to the
spread, but the short side is, on average, stronger in magnitude. Median daily long-leg
means are positive while the median absolute short-leg means are slightly larger, and the
absolute short-leg Sharpe typically exceeds the long-leg Sharpe. This mild asymmetry
suggests the signals are not just identifying “winners” but also systematically locating
intraday overvaluation or pressure that corrects into the close. At the cross-sectional

level, industry stratification appears beneficial: most industries show TCI/TVI beating
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the return-targeted model, with only a few exceptions where the return target edges out.
The dispersion across subsets is economically plausible: broad, diversified universes can
generate lower portfolio volatility through cross-sectional averaging, mechanically inflat-
ing Sharpe for a given spread mean, while narrower or more liquid universes such as ETFs
deliver lower but still positive performance.

Viewed through the execution lens, the positive and asymmetric portfolio payoffs in-
dicate that noon VWARP deviations and order-flow signals anticipate the direction of slip-
page: a positive (negative) return or buy-pressure forecast supports front-loading (defer-
ring/being passive) to reduce expected VWAP shortfall. In other words, the statistical lift
converts into a concrete execution rule, map forecast sign and magnitude into aggressive-

ness, closing the loop from prediction to schedule control.

7.3 Practical Considerations and Limitations

The backtest results should be interpreted with caution, as several simplifying assump-
tions likely exaggerate the reported Sharpe ratios and annualised returns. The return
magnitudes are exceptionally high for intraday strategies and should be viewed as upper-
bound estimates rather than attainable real-world outcomes. The following limitations
outline the main reasons for potential inflation in these figures.

The backtest does not include explicit transaction costs, even though each portfolio
leg trades twice per day—once at 1:00 p.m. to open and once at the close to unwind.
Even modest per-trade costs such as commissions, half-spreads, market-impact slippage,
or exchange fees can accumulate rapidly in a high-turnover intraday strategy. To a first
approximation, if ¢ denotes the per-side cost for a single buy or sell (inclusive of execution

slippage), then the net daily spread is
rdA,net ~ 7}% - 2Clong — 2Cshort R Vﬁ —4c,

With raw mean spreads near one percent per day, even a stylised 5 bps per-side cost could

remove roughly 20 bps of daily profit. In smaller-capitalisation equities, costs would
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likely be higher due to limited depth and greater market impact.

The backtest assumes that trades occur exactly at 1:00 p.m. and 4:00 p.m. using
contemporaneous spot prices. In reality, executions depend on queue position, available
liquidity, and market volatility at those times. Achieving perfect fills at those precise
prices is rarely possible. For example, a trader attempting to buy at 1:00 p.m. may
experience price drift or partial fills before the order completes, especially in volatile
names.

Slippage—the difference between the intended and actual execution price—can be
substantial for thinly traded securities. The strategy implicitly assumes full immediacy
and neglects the adverse price movement that often accompanies large trades in less-
liquid names. For instance, submitting a market order to sell a mid-cap stock with a
wide bid—ask spread could push the price down several ticks before completion, reducing
realised profits relative to the modelled outcome.

The simulation presumes that all stocks in the universe are continuously tradeable.
In practice, some securities can become temporarily untradeable due to halts, auction
freezes, or insufficient liquidity. A more realistic backtest would apply a feasibility filter
removing names that fall below minimum thresholds of dollar volume or quoted depth
within the 12:55-1:05 p.m. window.

Prices are treated as if transactions occur at the prevailing spot rate, ignoring the
bid—ask spread. This assumption effectively grants free liquidity to the trader. For ex-
ample, if a stock trades at $100.00 bid and $100.10 ask, the model assumes the trader can
buy at $100.00 and sell at $100.10 without cost—an unrealistic simplification that biases
returns upward.

The strategy treats short selling as frictionless, omitting borrow fees, locate costs, and
regulatory constraints such as uptick rules or inventory scarcity. In reality, some secu-
rities—especially small-cap or hard-to-borrow names—may be only partially shortable
or entirely unavailable. Borrow rates can vary widely and meaningfully reduce the prof-
itability of short positions. Notably, the larger portion of returns in this study arises from

the short leg, which implies that unmodelled borrowing and locate costs could materially
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compress realised performance.

Equal-weighting across top and bottom deciles is operationally challenging at intraday
horizons. Precise dollar neutrality requires fractional shares or frequent re-scaling, and
small deviations can create unintended exposure drift during the afternoon. Moreover,
daily open—close turnover is effectively 200% per position, and the composition of the
deciles can change from day to day, implying high implementation turnover and capacity
limits. Executing large notional volumes across many mid- and small-cap equities near
1:00 p.m. could impose non-trivial market impact.

Although the rolling-window design enforces strict time ordering and uses only pre-
1:00 p.m. information for predictions, subtle optimism biases may remain. These include
survivorship bias in the stock universe, inadvertent leakage through engineered variables,
or predictors indirectly reflecting post 1:00 p.m. information (for example, VWAPs up-
dated intraday). Such effects, while small, could elevate reported forecast accuracy and
performance.

Taken together, these limitations underscore that the headline Sharpe ratios and annu-
alised returns likely represent optimistic upper bounds. The reported magnitudes should
therefore be interpreted as indicative of signal strength rather than achievable profit. In-
corporating realistic transaction-cost debits, liquidity filters, shorting constraints, and bid—
ask spreads would yield more moderate yet still informative estimates. Two immediate
robustness extensions are recommended: (i) a transaction-cost sensitivity study applying
per-trade costs of 3—10 bps and recomputing net Sharpe ratios, and (ii) a feasibility fil-
ter excluding hard-to-borrow or illiquid names. If the relative ranking of predictability—
TCI > TVI > return—remains intact under these adjustments, the qualitative conclusions
would continue to hold while the magnitudes better reflect implementable strategies.

Cumulative spread return plots provide visual diagnostics of performance dynamics.

Placeholders below can be used to include final exhibits once produced:
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Figure 7.1: Cumulative returns for equally weighted long—short portfolios (top 10%, bottom 10%)

over 2024, rebalanced daily. The left panel shows results for Common equities and the right

panel for ETFs, with performance reported for three targets: evening return, evening trade count

imbalance (TCI), and evening trade volume imbalance (TVI).
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Figure 7.2: Cumulative returns for equally weighted long—short portfolios (top 10%, bottom 10%)
over 2024, rebalanced daily. Performance is reported for three market capitalization tiers—small-
cap, mid-cap, and large-cap—using the same three predictive targets: evening return, evening
trade count imbalance (TCI), and evening trade volume imbalance (TVI). The plots cover January
2024 to January 2025, illustrating differences in predictive target performance across capitalization
segments
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Figure 7.3: Cumulative returns for equally weighted long—short portfolios (top 10%, bottom 10%)
over 2024, rebalanced daily. Performance is shown separately for each industry group—BusEq,
Chems, Durbl, Enrgy, Hlth, Manuf, Money, NoDur, Other, Shops, Telcm, and Utils—using three
predictive targets: evening return, evening trade count imbalance (TCI), and evening trade volume
imbalance (TVI). This figure highlights variation in predictive target effectiveness and stability
across industries from January 2024 to January 2025



8 Conclusion

This thesis investigated whether midday market indicators contain useful information for
forecasting afternoon market dynamics, focusing on three specific targets: the return from
1:00 p.m. to the market close, trade count imbalance (TCI), and trade volume imbalance
(TVI). The study also examined how such forecasts can guide the 1:00 p.m. execution
decision, when traders must determine how aggressively to complete remaining orders
under uncertainty. To address this, a rolling out-of-sample forecasting framework was
developed using both Lasso and Random Forest models, incorporating stratifications by
equity type, market capitalization, and industry. The analysis further assessed the incre-
mental role of VWAP through exclusion tests and identified structural similarities among

equities using clustering analysis.

The results show that order-flow variables (TCI and TVI) are considerably more pre-
dictable than returns across most years and subsamples. This difference likely reflects the
underlying persistence of intraday liquidity demand and supply imbalances that evolve
more smoothly than prices themselves. In contrast, price movements incorporate the
cumulative effect of diverse trading motives and external shocks, making them harder
to forecast over short horizons. Therefore, the stronger predictability of TCI and TVI
implies that the statistical structure of order flow carries economically relevant informa-
tion about subsequent market behavior, even when prices appear noisy. TCI showing
a marginal yet consistent advantage over TVI. This small but robust edge suggests that
trade-count asymmetry—reflecting the direction and persistence of trading activity—may
provide a cleaner signal of latent liquidity pressure than size-weighted volume measures,
which can be distorted by block prints or irregular trade sizes. Industry-level stratification
also improved forecast accuracy, suggesting that firms within the same sector share com-
mon liquidity regimes and trading routines that shape their short-term dynamics. This

finding supports the use of industry-aware modeling to reduce noise and exploit recurring
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intraday patterns.

The analysis of VWAP’s predictive role revealed distinct behaviors between mod-
eling frameworks. In the Lasso setting, excluding VWAP produced negligible changes
in R?, indicating weak and inconsistent effects. However, in the Random Forest frame-
work, VWAP added measurable predictive power, particularly for returns. This diver-
gence suggests that VWAP contributes to predictability primarily through nonlinear inter-
actions—for instance, the informativeness of a VWAP deviation may depend on the secu-
rity’s liquidity, turnover, or concurrent imbalance conditions. While linear models cannot
capture such context-dependent effects, ensemble-based methods are more flexible and
can learn threshold-driven relationships. This helps explain why VWAP’s incremental ef-
fect appears only in nonlinear models and varies across years, reflecting changing market
regimes and the evolving nature of algorithmic execution behavior.

The clustering results provided further evidence of structural heterogeneity across eq-
uities. Total size by 1:00 p.m., turnover by 1:00 p.m., and shares outstanding emerged
as the most important features distinguishing equity clusters. These variables capture
stable differences in midday trading intensity and market depth, which, in turn, affect
the predictability of both order flow and prices. Larger, more liquid securities tend to
exhibit smoother intraday liquidity replenishment and lower price sensitivity to tempo-
rary imbalances, whereas smaller or thinner names react more sharply to localized order
shocks. This clustering insight highlights the potential value of conditioning forecasting
models—and by extension, execution strategies—on stock-specific microstructure char-
acteristics rather than treating all securities as homogeneous.

The backtesting analysis linked statistical predictability to economic relevance. Long—
short portfolios constructed from model forecasts generated substantial and persistent ex-
cess returns during the 2024 test period, with Sharpe ratios ranging from approximately 6
to 90 and annualized returns between 0.24 and 3.4 across subsets. These values demon-
strate that, under idealized conditions, forecast signals could translate into economically
meaningful outcomes. However, these figures should be interpreted with caution. Several

simplifying assumptions likely inflate performance: transaction costs were not debited
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despite two trades per day; executions were assumed to occur precisely at 1:00 p.m. and
4:00 p.m. using spot prices; slippage was ignored, particularly for less liquid names; and
the analysis did not consider trade feasibility, bid—ask spreads, or short-selling costs, even
though the short leg contributed most of the excess return. In practice, these factors would
substantially reduce realized profitability, though the relative ranking of signals—TCI out-
performing TVI, both well above returns—is expected to remain valid. After accounting
for frictions, the observed Sharpe ratios and returns likely represent upper bounds rather
than achievable outcomes.

These empirical findings collectively inform how forecasts can be translated into ac-
tionable execution guidance. Noon-to-close forecasts of return or imbalance provide di-
rectional cues for VWAP pacing: positive forecasts imply latent buying pressure and may
justify accelerating when behind schedule, whereas negative forecasts indicate selling
pressure and suggest easing participation when ahead. Because Random Forest models
capture nonlinear dependencies between VWAP deviations, liquidity, and imbalance, they
can identify conditions in which these signals are more reliable. This operational interpre-
tation reconnects the statistical results to the trader’s decision problem: the models serve
not only as forecasting tools but also as decision aids that help calibrate execution speed
to evolving intraday conditions.

Despite encouraging results, several limitations remain. The feature set was deliber-
ately restricted to liquidity, order-flow, and VWAP-related measures observable by mid-
day, excluding other potentially informative variables such as limit-order book depth,
news sentiment, or high-frequency volatility indicators. While Lasso and Random Forest
capture complementary forms of structure, they do not span the full space of modern fore-
casting tools; more advanced nonlinear or hybrid methods—such as gradient boosting,
extremely randomized trees, or recurrent neural networks—could capture additional tem-
poral and cross-sectional dependencies. Although the rolling-window design mitigates
look-ahead bias, it cannot entirely remove optimism from survivorship effects or regime-
specific patterns. Furthermore, capacity and scalability constraints were not explicitly

modeled: executing meaningful notional volumes near 1:00 p.m. in mid- or small-cap eq-
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uities could produce significant market impact. Finally, the backtesting framework, while
informative, remains an initial proof of concept and should be extended to account for
transaction costs, execution constraints, and dynamic position sizing.

Future research could extend this work in several directions. Integrating richer intra-
day data—such as limit-order book depth, real-time imbalance indicators, and volatility
forecasts—would enhance model granularity. Expanding the methodological scope to in-
clude regime-switching or online learning approaches could improve adaptability under
changing market conditions. Incorporating transaction-cost modeling, liquidity filters,
and borrowing costs would yield more realistic assessments of net profitability. Finally,
embedding the forecasting layer directly into a live or simulated VWAP strategy would
enable direct evaluation of execution quality improvements attributable to predictive sig-
nals.

Taken together, this research contributes to both the academic literature on intraday
market predictability and the practical design of algorithmic execution strategies. It sug-
gests that order-flow imbalances are more reliably forecastable than short-term returns,
that industry-aware and cluster-based modeling can improve stability and precision, and
that VWAP’s incremental information is primarily nonlinear and conditional on market
context. Most importantly, it bridges the gap between statistical forecasting and trader
decision-making by showing how midday signals can inform execution pacing in a real-
istic framework. While the reported magnitudes should be interpreted conservatively, the
study demonstrates a consistent connection between measurable intraday predictability

and the economic logic of adaptive VWAP execution.
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Appendix A — Declaration of Generative Al Assistance

I declare that I used OpenAl ChatGPT (Version: GPT-4, [https://chat.openai.com/)
and Google Gemini (Version 2.5, [https://gemini.google.com/) between February
and August 2025 to support various stages of my thesis work. These tools were used
strictly as assistive resources to enhance my understanding, reflection, and writing pro-
cess, in accordance with HEC Montréal’s responsible Al usage guidelines.

Specifically, I used generative Al tools for the following purposes:

* Idea generation and clarification: ChatGPT assisted me in exploring different ways
of framing my research questions, identifying relevant concepts, and stimulating

critical thinking when facing conceptual roadblocks.

* Literature review support: ChatGPT helped me review and extract relevant infor-

mation from academic papers more efficiently.

* Formatting and structure guidance: ChatGPT assisted in organizing the chapters
of my thesis according to HEC Montréal’s academic conventions and formatting

requirements.

* Learning technical tools and languages: ChatGPT supported my learning and mas-
tery of tools and techniques such as SQL, SAS, remote access to SSD environments,

SLURM job scheduling, and working with computing clusters and parallelization.

* Code cleaning and efficiency: ChatGPT and Gemini assisted in identifying ineffi-
ciencies, and improving the structure and performance of my Python scripts used

for modeling and data preprocessing.


[https://chat.openai.com/
[https://gemini.google.com/

* Understanding coding errors and limitations: ChatGPT and Gemini helped me in-

terpret and manage errors and limitations encountered during model development.

* Writing assistance: ChatGPT assisted in improving sentence structure, enhancing
clarity, correcting overlooked spelling errors, and rephrasing parts of my thesis

draft, while ensuring that the final content reflected my personal academic style.

All GenAl-generated content was carefully reviewed, critically evaluated, and revised
to ensure alignment with my own understanding, analytical reasoning, and academic in-
tegrity. No confidential data, personal information, or unpublished research was shared
with these tools at any time. The final content of this thesis represents my original work,

with GenAl tools serving solely as assistants to facilitate my learning and expression.
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Table 1: Performance comparison between Lasso and Random Forest models across all forecasting targets (return, TCI, and TVI) and subsets

(security types, market capitalization groups, and industry groups) over the test years (2018-2024).

Lasso Random Forest
Target | Grouping | Bucket MAE MSE R? MAE MSE R?
. Common | 0.00860567 | 0.000144121 | 0.099656137 | 0.008064547 | 0.000129468 | 0.192133577
Security Type ETF 0.003704785 3.81E-05 | 0.083691472 | 0.003728769 3.89E-05 | 0.067149668
Large Cap | 0.005667953 6.52E-05 | 0.129264079 | 0.005669224 6.68E-05 | 0.109368805
Market Cap | Mid Cap | 0.006994432 9.75E-05 | 0.127108244 | 0.006722482 9.23E-05 | 0.174193033
Small Cap | 0.00626812 9.33E-05 | 0.076738028 | 0.005667722 7.95E-05 | 0.213267852
BusEq 0.007738247 | 0.000118053 | 0.130673907 | 0.007413707 | 0.000109689 | 0.193844167
Chems | 0.006982706 9.63E-05 | 0.145385288 | 0.006835355 9.32E-05 | 0.175626577
Durbl 0.00777174 | 0.000117936 | 0.143221878 | 0.007611594 | 0.000112987 | 0.181149376
Return Enrgy 0.00868018 | 0.000140686 |  0.1178551 | 0.008516161 | 0.00013625 | 0.149260836
Hith 0.008573194 | 0.000144799 | 0.111976988 | 0.008143308 | 0.00013192 | 0.192078094
Industry Manuf | 0.007584997 | 0.000112695 | 0.132348023 | 0.007347197 | 0.000105864 | 0.187616701
Money | 0.004532822 5.34E-05| 0.07809429 | 0.004333286 4.94E-05 | 0.149296026
NoDur  |0.007200492 | 0.00010564 | 0.104820002 | 0.006952968 9.87E-05 | 0.165331267
Other 0.009761633 | 0.000179873 | 0.078788038 | 0.008895661 | 0.000156294 | 0.200158916
Shops 0.007932379 0.000123 | 0.11304541 | 0.007663856 | 0.00011551 | 0.16882566
Telem 0.006607834 9.16E-05 | 0.116600083 | 0.006376402 8.59E-05 | 0.172298105
Utils 0.005906981 7.19E-05 | 0.117241243 | 0.00581703 6.96E-05 | 0.146327426
. Common | 0.079264822 | 0.017469997 | 0.574093582 | 0.046367323 | 0.00899254 | 0.78089457
Security Type ETF 0.187975768 | 0.065973392 | 0.574343913 | 0.105932839 | 0.028491728 | 0.815845044
Large Cap | 0.041659115 | 0.004056269 | 0.569378053 | 0.02344407 | 0.001931305 | 0.796619409
Market Cap | Mid Cap |0.067471714 | 0.01026879 | 0.545922774 | 0.042799985 | 0.005603362 | 0.752222089
Small Cap | 0.153836249 | 0.046724907 | 0.583930757 | 0.103439613 | 0.027308926 | 0.757577721
BusEq 0.065436187 | 0.011463039 | 0.554676404 | 0.038472428 | 0.005742467 | 0.775203238
TCI

Industry




Al

Lasso Random Forest
Target | Grouping | Bucket MAE MSE R? MAE MSE R?
Chems | 0.056426331 | 0.007677147 | 0.578294196 | 0.034529958 | 0.004238945 | 0.767324836
Durbl 0.063956326 | 0.01019607 | 0.579608076 | 0.040173396 | 0.005731034 | 0.764906836
Enrgy 0.062335078 | 0.009871988 | 0.557547454 | 0.03926528 | 0.005239637 | 0.764298268
Hith 0.067265546 | 0.011876609 | 0.554217523 | 0.039594213 | 0.006161793 | 0.768578506
Manuf | 0.070450602 | 0.013360818 | 0.576899003 | 0.042113001 | 0.006963201 | 0.77871999
Money  |0.162711175 | 0.053704257 | 0.576553516 | 0.09458074 | 0.024412088 | 0.807259352
NoDur 0.07199569 | 0.014433091 | 0.543934849 | 0.046231619 | 0.008314448 | 0.734271653
Other 0.096326795 | 0.024695671 | 0.587718712 | 0.059392475 | 0.013728399 | 0.772271943
Shops 0.062556715 | 0.01031503 | 0.573703194 | 0.03702229 | 0.005251042 | 0.781963353
Telcm 0.067674523 | 0.011272607 | 0.554537109 | 0.044184953 | 0.006190424 | 0.754700232
Utils 0.056345557 | 0.007768887 | 0.553277084 | 0.03519185 | 0.004208727 | 0.757764752
. Common |0.099330139 | 0.028072318 | 0.55299821 | 0.074202729 | 0.020296686 | 0.677320313
Security Type ETF 0.240474118 | 0.115171034 | 0.557719109 | 0.177418079 | 0.076831505 | 0.704833066
Large Cap | 0.055426936 | 0.007993688 | 0.514932692 | 0.041114288 | 0.005610758 | 0.657664347
Market Cap | Mid Cap | 0.08551132| 0.01700311 |0.512565078 | 0.063774052 | 0.011939449 | 0.657212071
Small Cap | 0.180639279 | 0.065261275 |  0.5746234 | 0.141530292 | 0.048674462 | 0.685488083
BusEq 0.084030421 | 0.019798163 | 0.523820922 | 0.063602179 | 0.014295451 | 0.655675649
Chems | 0.073677497 | 0.01353045 | 0.539520228 | 0.056380112 | 0.010109619 | 0.656434906
Durbl 0.0813261 | 0.016740431 | 0.549856773 | 0.064031767 | 0.012949176 | 0.652104942
TVI Enrgy 0.079549567 | 0.016720487 | 0.527354895 | 0.061722545 | 0.012540184 | 0.646164935
Hith 0.087396499 | 0.020954822 | 0.522839702 | 0.067523823 | 0.015796715 | 0.640349713
Industry Manuf | 0.088789402 | 0.021519483 | 0.552008893 | 0.067226127 | 0.015697014 | 0.672744175
Money | 0.204594085 | 0.089764556 | 0.560565771 | 0.150567959 | 0.060239555 | 0.70502522
NoDur  |0.093416658 | 0.02503156 | 0.516329173 | 0.074110479 | 0.01957291 | 0.621704271
Other 0.117962333 | 0.038466148 | 0.573971508 | 0.092908852 | 0.030181265 | 0.668369054
Shops 0.079795307 | 0.017606256 | 0.543637917 | 0.060241931 | 0.012745202 | 0.669553656




Lasso

Random Forest

Target | Grouping | Bucket MAE MSE R? MAE MSE R?
Telem 0.08529584 | 0.01919738 | 0.51887447 | 0.067245239 | 0.014851393 | 0.627993049
Utils 0.073510316 | 0.013623427 | 0.509337117 | 0.056338476 | 0.010151377 | 0.633340707




Table 2: Summary of variables and their explanations

Variable Name Type Description

total_size_1lpm Int Total volume of trades from market open to 1 p.m.

turnover_1pm Float Turnover from market open to 1 p.m.

shrount_lag1 Float Shares Outstanding, lagged by 1 day

vwret Float Value-Weighted Return including dividends

log_vwap_price_ratio Float Relative VWAP from market open to 1 p.m. (Eq 5.1)

morning_trade_imbalance _count Float Trade count imbalance from market open to 1 p.m. (Eq 3.2)

QuotedSpread_Dollar_tw Float Time-Weighted Dollar Quoted Spread (During Market
Hours)

BestBidDepth_Share_tw Float Time-Weighted Best Bid Share Depth (During Market
Hours)

BuyNumTrades_Retail Int Total Number of Retail Buys (During Market Hours)

BestOffDepth_Share_tw Float Time-Weighted Best Offer Share Depth (During Market
Hours)

BestBidDepth_Dollar_tw Float Time-Weighted Best Bid Dollar Depth (During Market
Hours)

intercept Float Estimated intercept of the model

bs_ratio_num Int Absolute Percent Order Imbalance - Num of Trades

BuyVol_Retail Float Sum of Retail Buys, Volume in Shares (During Market
Hours)

momentum_open_to_lpm Float Momentum from market open to 1 p.m. (Eq 1)

DollarRealizedSpread _LR_Ave Float Simple Averaged Dollar Realized Spread (Lee Ready)

morning_trade_imbalance _volume Float Trade Volume Imbalance from market open to 1 p.m.
(Eq3.3)

QuotedSpread_Percent_tw Float Time-Weighted Percent Quoted Spread (During Market
Hours)

BestOfrDepth_Dollar_tw Float Time-Weighted Best Offer Dollar Depth (During Market
Hours)

vwap_lpm Float Volume Weighted Average Price from market open to 1 p.m.

(Eq3.1)

Table 3: Fama—French 12 Industry Classification Descriptions

Industry Name

Description

NoDur

Consumer Nondurables — Food, Tobacco, Textiles, Apparel, Leather, Toys

Vi



Industry Name

Description

Durbl
Manuf

Enrgy
Chems
BusEq
Telcm
Utils
Shops
Hith
Money
Other

Consumer Durables — Cars, TVs, Furniture, Household Appliances

Manufacturing — Machinery, Trucks, Planes, Office Furniture, Paper, Commercial Print-
ing

Oil, Gas, and Coal Extraction and Products

Chemicals and Allied Products

Business Equipment — Computers, Software, and Electronic Equipment

Telephone and Television Transmission

Utilities

Wholesale, Retail, and Some Services (Laundries, Repair Shops)

Healthcare, Medical Equipment, and Drugs

Finance

Other — Mines, Construction, Building Materials, Transportation, Hotels, Business Ser-

vices, Entertainment

Graphs

vii



Common ETF
0.14 —e— Common 1 —e— ETF
0.121 ]
0.101 ]
£
35 N 4 4
2 xoos
o
0.061 ]
0.041 ]
0.021 ]
2018 2020 2022 2024 2018 2020 2022 2024
Year Year
Common ETF
—e— Common —e— ETF
0.621 ]
0.601 ]
_ 0.581 ]
g x
0.56 1
0.541 ]
0.521 ]
2018 2020 2022 2024 2018 2020 2022 2024
Year Year
Common ETF
0.64+ —e— Common 1 —e— ETF
0.621 ]
0.601 ]
P ox
0.581 1
0.561 ]
0.541 ]
2018 2020 2022 2024 2018 2020 2022 2024
Year Year

Figure 1: Out-of-sample R?> comparison in the Lasso model, across security types (common stock
vs. ETF) and target variables (return, trade count imbalance, trade volume imbalance), for test

years 2018-2024.
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Figure 2: Out-of-sample R?> comparison in the Lasso model, across market capitalization groups
(small, mid and large cap) and target variables (return, trade count imbalance, trade volume im-

balance), for test years 2018-2024.
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Figure 3: Out-of-sample R? comparison in the Lasso model for forecasting returns, disaggregated
by industry groups, for test years 2018-2024.
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Figure 4: Out-of-sample R?> comparison in the Lasso model for forecasting Trade Volume Imbal-
ance (TVI), disaggregated by industry groups, for test years 2018-2024.
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Figure 5: Out-of-sample R?> comparison in the Lasso model model for forecasting Trade Count
Imbalance (TCI), disaggregated by industry groups, for test years 2018-2024.
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Figure 6: Out-of-sample R?> comparison in the Random Forest model, across security types (com-
mon stock vs. ETF) and target variables (return, trade count imbalance, trade volume imbalance),

for test years 2018-2024.

Xiii



CapSize_Large Cap

CapSize_Mid Cap

CapSize_Small Cap

—e— CapSize_Large Cap
0.20 1
0.151 |
£
S o~ 1
2 o 0.10
o
0.05
0.00 1
—e— CapSize_Mid Cap —e— CapSize_Small Cap
2018 2020 2022 2024 2018 2020 2022 2024 2018 2020 2022 2024
Year Year Year
CapSize_Large Cap CapSize_Mid Cap CapSize_Small Cap
0.74 —e— CapSize_Large Cap —e— CapSize_Mid Cap —e— CapSize_Small Cap
0.721
0.70
E % 0.68
0.66 1
0.641
0.62
2018 2020 2022 2024 2018 2020 2022 2024 2018 2020 2022 2024
Year Year Year
CapSize_Large Cap CapSize_Mid Cap CapSize_Small Cap
0.821 —e— CapSize_Mid Cap —e— CapSize_Small Cap
0.80
0.781
O ~N
2 xo76
0.741
0.721
—e— CapSize_Large Cap
2018 2020 2022 2024 2018 2020 2022 2024 2018 2020 2022 2024
Year Year Year

Figure 7: Out-of-sample R? comparison in the Random Forest model, across market capitalization
groups (small, mid and large cap) and target variables (return, trade count imbalance, trade volume

imbalance), for test years 2018-2024.
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Figure 8: Out-of-sample R?> comparison in the Random Forest model for forecasting returns, dis-
aggregated by industry groups, for test years 2018-2024.
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Figure 9: Out-of-sample R?> comparison in the Random Forest model for forecasting Trade Volume
Imbalance (TVI), disaggregated by industry groups, for test years 2018-2024.
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Out-of-sample R? comparison in the Random Forest model model for forecasting Trade
Count Imbalance (TCI), disaggregated by industry groups, for test years 2018-2024.
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