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Résumé

Les prédicteurs de rendements excédentaires présentent persistence et une variance chan-

geante dans le temps, impliquant la nécessité d’erreurs consistantes à l’hétéroskédasticité et

l’autocorrélation (HAC) dans les tests linéaires d’évaluation d’actif. En utilisant des simula-

tions, nous démontrons que bien qu’ils conduisent à d’importantes améliorations, de telles cor-

rections échouent à fournir des propriétés de taille adéquates sous l’hypothèse nulle d’absence

de rendements anormaux. Même les estimateurs robustes optimalement spécifiés souffrent de

distorsions de taille, impliquant que les meilleurs HAC restent imparfaits. Nous proposons

une standardisation de l’estimateur robuste atténuant le problème, sans le résoudre entière-

ment. Nous trouvons que entre 2006 et 2021, plus de 20% d’une large variété de prédicteurs

de rendement excédentaires diffèrent en statut de significativité au niveau standard de 5%

en comparant cet estimateur à l’OLS, et plus de 30% à un niveau plus restrictif.
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Abstract

Predictors of excess returns exhibit persistence and time-varying variance, implying the

need for heteroskedasticity and autocorrelation-consistent errors (HAC) in linear tests. Using

simulations, we show that although they lead to important improvements, such corrections

fail to provide adequate size properties under the null hypothesis of zero abnormal returns.

Even optimally specified robust estimators suffer from size distortions, implying that the

best HACs remain imperfect. We propose a standardization of the robust estimator that

alleviates the problem, albeit not completely. We find that between 2006 and 2021, more

than 20% of a wide panel of predictors differ in significance status at the standard 5% level

in comparing this estimator to OLS, and more than 30% at a more restrictive level.
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Introduction

Improvements to the statistical methodology associated with linear tests of factor models

in finance have often been directed towards correcting for various biases (B. T. Kelly, Pruitt,

and Su, 2019; Feng, Giglio, and Xiu, 2020; Giglio and Xiu, 2021; Gu, B. Kelly, and Xiu, 2021;

Giglio, B. Kelly, and Xiu, 2022). Recent evidence has shown that predictors of excess returns1

show persistence and time-varying volatility (Christoffersen and Langlois, 2013; Gupta and

B. Kelly, 2019; Arnott, Clements, Kalesnik, and J. Linnainmaa, 2021; Ehsani and J. T.

Linnainmaa, 2022), implying the need for heteroskedasticity and autocorrelation-consistent

(HAC) estimation in asset pricing tests. Although HAC corrections have been the subject

of discussions in the past (Petersen, 2008; Gow, Ormazabal, and Taylor, 2010), empirical

and theoretical advancements in the literature have not been substantial in the last couple

of decades.

We first demonstrate that OLS estimation in the context of linear asset pricing tests falsely

rejects the null hypothesis of no abnormal returns much more often than it should under clas-

sic confidence interval-based tests in the presence of autocorrelation and heteroskedasticity.

We show that this effect leads to widespread incorrect inference in simulated settings due

to the inflated rejection rate of standard asset pricing tests. Furthermore, we show that al-

though robust estimators significantly improve the size properties of these tests in the same

settings, they all fail even at optimal conditions to achieve the theoretically expected rejection

rate. Repercussions are even more serious when considering the multiple hypothesis testing

(MHT) problem that exists in asset pricing, where size distortions have an exponential effect.

Our results also suggest potential implications for other subfields of asset pricing, empirical
1By predictors, we refer to variables constructed in the spirit of Fama and French, 1992, usually closely

related to firms’ fundamentals, price-derived elements and other characteristics that are often utilized in
traditional factor models.



corporate finance and more generally any field of study that conducts inference in linear tests

using HAC estimators.

We simulate predictor returns using multiple econometric models as data-generating pro-

cesses (DGP). We calibrate those models using a panel of predictors obtained from Chen

and Zimmermann, 2021 (CZ), scaled to α = 0. These predictors are estimated using the

models suggested in Christoffersen and Langlois, 2013. By scaling the alpha of predictors

used in estimation to zero, we ensure that any deviations from the expected rejection rate

in linear tests on simulated predictors are solely attributable to their time series character-

istics. We then simulate predictors of excess returns based on those parameters. In this

manner, we allow for robust inference as n → ∞ (where n corresponds to the number of

simulated predictors) for the linear asset pricing tests under simulations generated by real-

istic model assumptions. We then perform linear tests that account for autocorrelation and

heteroskedasticity to determine an optimal yet realistic approach.

Traditional methods in finance to account for heteroskedasticity and autocorrelation in lin-

ear regression usually involve heteroskedasticity and autocorrelation-consistent errors (HAC)

in the spirit of Newey and West (NW) (1986), with flexibility in their two main parameters:

kernel choice and bandwidth (Lazarus, Lewis, Stock, and Watson, 2018). We employ this

framework by conducting a horse race between estimators that incorporate a wide array of

kernel choices and different discretely-valued bandwidths. With traditional OLS, we find

significantly inflated empirical rejection rates for linear asset pricing tests neighboring 7%

and 1.7% at the 5% and 1% levels respectively, for simulated predictors generated by models

allowing for autocorrelation and heteroskedasticity. Although the gains in employing HAC

estimators in such settings are found to be important, we find that no such estimator achieves

the aforementioned expected rejection rates.

We propose the use of an empirically motivated table that recommends a simple modifica-

tion to the threshold t-statistic under the NW estimator with different bandwidths. Although

this is an imperfect solution, we believe that any improvement toward consistency and stan-

dardization in HAC practice is well-warranted. We also present results suggesting that some

settings for HAC errors may worsen the problem, which adds to the value of standardization.

Although our demonstration is empirical rather than formal, we consider it an important
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first step toward solving the problem of autocorrelation and heteroskedasticity in linear asset

pricing tests.

We provide evidence that this minor methodological change has an important impact

on asset pricing test results by applying it to predictors documented in the literature and

collected by Chen and Zimmermann, 2021. To do so, we simply regress the actual predictor

time series one by one on a constant using the optimal estimator found in the table and report

the significance status obtained. To account for alpha-decay, we restrict our sample size to

after 2005 as implied in Chen and Velikov, 2023. When comparing the empirically optimal

estimator to OLS in this period, we find 10 (20.08%) anomalies to differ in significance

status at the p = 0.05 level and 7 (31.81%) at the p = 0.01 level on 48 and 22 respectively.

Additionally, we show that accounting for autocorrelation and heteroskedasticity does not

only affect a few predictors but shifts the whole distribution of their test statistics towards

zero.

3





Literature Review

Factor models in asset pricing have long been important for researchers to try and explain

cross-sectional returns on assets. An essential contribution in such a literature, Sharpe (1965)

and Lintner (1965) Capital Asset Pricing model, sought to explain returns as a linear function

of market risk, scaled by a coefficient idiosyncratic to every asset they obtain by running an

ordinary least squares regression. Strides were made when Fama and French (1992) suggested

two additional factors to the model closely related to firms’ fundamental characteristics of

size and value.

In doing so, they not only expanded on the previous benchmark but instigated a gold

standard for the discovery of new predictors potentially explanatory of excess returns on

assets. Grouping the cross-section of firms by their ranking on some particular feature often

linked to financial ratios or price-related elements, they found that the resulting premium

obtained by subtracting the returns of the conditionally high firms from the conditionally

low firms in terms of this particular variable could potentially be associated with exceeding

returns, and tested for statistical significance.

With this linear methodology based on portfolio sorts, researchers simply had to determine

a particular firm characteristic they thought could be associated with exceeding returns by

setting the null hypothesis as H0 : α = 0 and the alternative as Ha : α ̸= 0, create a predictor

by theoretically buying and selling the appropriate assets and test it using a simple linear

regression.

As the discovery of components explanatory of cross-sectional returns could (and still

can) be associated with the elaboration of successful trading strategies that integrate them,

high incentives combined with a straightforward methodology led to the proliferation of such

components. However initially productive, it became apparent at the start of the millennia



that this quest for clarity in expressing cross-sectional excess returns as functions of firms’

characteristics would rather lead the field astray. As early as 2011, Cochrane (2011) stated

in his presidential address that the effort to understand cross-sectional excess returns by

anomaly research would lead researchers adrift with the explosion of new variables.

Growing concerns about methodological flaws in asset pricing research would also lay

some doubt as to the validity of these past discoveries. Researchers saw applicable to asset

pricing research the multiple hypothesis testing (MHT) problem, by which joint tests of the

same hypothesis would eventually lead to extremely high odds of falsely rejecting the null

(Harvey, Liu, and Saretto, 2020; Chordia, Goyal, and Saretto, 2020; Harvey and Liu, 2020).

While numerous efforts have been made to limit the effects of the MHT concern, such as a

simple increase in the standard threshold t-statistic for significance (Harvey, 2017; Chordia,

Goyal, and Saretto, 2020) or more complex methodological changes (Feng, Giglio, and Xiu,

2020; Giglio and Xiu, 2021), the problem remains at the forefront of asset pricing research.

Specifically, suppose we have m hypotheses, each associated with an asset pricing test

in the spirit of what was discussed previously. Further suppose that each test has the same

null hypothesis H0 and alternative hypothesis Ha, as is the case in anomaly research. In

this setting, the p-value for each hypothesis is the probability of observing a test statistic at

least as extreme as the one obtained, assuming that the null hypothesis is true. Considering

that the number of predictors currently associated with excess returns at the time of writing

surpasses several hundred, one can only imagine how many such tests have been undertaken

historically without being reported. Coupled with a threshold for significance traditionally

set at 0.05, it is evident why such a problem is still widely recognized as one of the most

important for asset pricing research.

Although it represents an important challenge for anomaly research, the MHT problem

is certainly not the only methodological flaw in asset pricing research that arose recently

in the literature. There also have been important efforts oriented towards reducing omitted

variable bias that exists in linear asset pricing tests by introducing summarized versions of

other factors as control sets in addition to the conventional Fama-French specification. Put

simply, any of the aforementioned tests fails to introduce the appropriate controls in its

setting without losing parsimony. As the set of controls should theoretically include all the
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significant predictors (and possibly others that are yet undiscovered) to accurately assess the

marginal significance of the tested predictor, this configuration de facto introduces an omitted

variable bias which affects conclusions drawn from the hypothesis test. Solutions most often

favored to partially solve this concern usually consist in the application of a factorization

method applied to knowingly significant predictors to generate the optimal control set as

a benchmark without losing parsimony of the model (B. T. Kelly, Pruitt, and Su, 2019;

Feng, Giglio, and Xiu, 2020; Gu, B. Kelly, and Xiu, 2021; Giglio and Xiu, 2021). Although

extremely important, this line of research does not consider the possible flaws that could

arise in inference due to the characteristics of the anomaly time series itself, which will be a

significant driver of our contribution.

Other concerns include but are not limited to misleading conclusions due to malpractices

from researchers in response to incentives (Harvey, 2021), idiosyncratic differences in method-

ology amongst the set of researchers (Menkveld, Dreber, Holzmeister, Huber, Johannesson,

Kirchler, Razen, and Weitzel, 2022) and slight but significant dispersion in data employed

(Akey, Robertson, and Simutin, 2022).

All these considerations, in line with the academia-wide concerns surrounding the repli-

cability of scientific research (Ioannidis, 2005; Baker, 2016), led academics in finance to

re-evaluate the validity of previously discovered anomalies and attempt to replicate the re-

sults obtained by past research. Hou, Xue and Zhang (HXZ) (2020) document the existence

of 437 anomaly variables, ranging from accounting measures to price dynamics. Replicating

these anomalies, they maintain that while some do seem to hold the test of significance, most

of them fail to live up to the standard they have been raised at in the literature. Contrarily to

those findings, more recent replicability research by Chen and Zimmerman (2021) finds that

the vast majority of market anomalies issued from past research can be replicated, attribut-

ing the differing results of HXZ to important deviations in methodology, such as removing

micro-cap stocks from their analysis and extending the sample of anomalies to unclear pre-

dictors. Although it is probably the case that practical applications of asset pricing research

might omit micro-caps from their investment universe, Chen and Zimmerman’s analysis em-

phasizes that academic replication should be done by conserving the precise methodology

employed by past researchers. From a conceptual perspective, Chen (2021) also suggests
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that attributing all discovered significant anomalies to p-hacking and data mining might be

misguided with a thought experiment involving simple and intuitive calculations. As dozens

of published and subsequently replicated anomalies t-statistics exceed 6.0, basic statistical

knowledge would indicate that the infinitesimal odds of joint false positives are extremely

unlikely. Chen suggests that such an unlikely scenario would have required 10,000 researchers

to generate 8 factors every day for hundreds of years, which is highly improbable.

Although these recent findings seem favorable toward past anomaly research, there is still

an important degree of doubt in academia as to the future of this strand of inquiry. However,

notwithstanding evidence concerning the validity of market anomalies usually integrated into

factor models, their application in the industry has seen tremendous growth over the years.

Style investing, which we can closely associate with asset allocation according to certain

factors, has gained increasing popularity in the asset management realm, both amongst

institutions (Froot and Teo, 2008), sophisticated investors (Baquero and Verbeek, 2008) and

individual investors (Bender, Briand, Melas, Subramanian, et al., 2013). Questions such

as how to build style portfolios (Israel, Jiang, and Ross, 2017) and how to design optimal

strategies using common factors (Blitz and Vidojevic, 2019) have been prominent in the

literature oriented towards industry applications. Intuitively, style investing requires investors

to buy and sell stocks in the spirit of the Fama and French methodology outlined previously

to capture the premium associated with the resulting long-short portfolio. We suggest that

due to the increasing popularity of factor models, any improvement to anomaly-detection

methodology that is implementable such as the one we suggest is highly warranted.

Although some doubt remains as to the real-world profitability of anomaly-inspired strate-

gies due to trading costs, short sale costs and post-publication decay (Korajczyk and Sadka,

2004; McLean and Pontiff, 2016; Muravyev, Pearson, and Pollet, 2022), such an exercise

lends itself to credible grounds in the context of pragmatic asset allocation. This shift from

considering anomalies as purely statistical artifacts to components suggesting asset allocation

styles for investors with different objectives brought researchers to take a closer look at the

properties of the predictors themselves rather than in the stocks that constitute them. If

anomalies that constitute portfolios held by asset managers were to hold econometric prop-

erties that materially affect how style investing performs, the impact would be significant

8



considering the soar in its popularity. For example, Christoffersen and Langlois (2013) find

important nonlinearities in the joint distribution of Fama-French Factors premia, with im-

portant implications as to the risk implied by holding a portfolio of these diversified factors.

While asset managers may believe that their assets are protected by the apparent lack of

correlation between the components that compose their portfolios, such a belief could be

illusory as the diversification properties of these components fail to live up to expectations

during market turmoil, where diversification benefits are most in demand.

Time series analysis of anomaly premia has also led to important discoveries, such as the

existence of positive autocorrelation in factor returns themselves (Gupta and B. Kelly, 2019;

Arnott, Clements, Kalesnik, and J. Linnainmaa, 2021), which led researchers to suggest

that strategies that employ price momentum are in fact proxying for momentum in firm

fundamentals (Novy-Marx, 2015; Ehsani and J. T. Linnainmaa, 2022). While the existence

of persistence has been well known for individual stock returns (Jegadeesh and Titman,

1993) and mutual funds returns (Carhart, 1997), evidence of such econometric processes for

anomaly portfolios is a lot more recent. An important implication of this concept is that

predictor momentum, rather than the predictor itself, could be the root cause of statistical

significance when tested in linear settings. In our context, falsely attributing significance

to a predictor of exceeding returns due to autocorrelation and heteroskedasticity could lead

practitioners and researchers to draw erroneous conclusions based on inflated t-statistics,

with the most apparent outcome being inadequate investments without knowledge of such.

9





Chapter 1

Methodology

Traditional methodology for anomaly detection in asset pricing usually involves one of two

procedures. One option is the Fama-Macbeth (1973) two-stages least square regression with

the suggested anomaly portfolio time series as the independent variable and accompanying

controls if desired. If the coefficient on the variable of interest is marginally significant given

a confidence level, it suggests that it is priced in the excess returns of the market and hence

can be considered an anomaly. The other option implies sorting the cross-section of stocks on

the desired variable and creating a long-short portfolio that expresses the premia associated

with this variable in the spirit of Fama and French, 1992. The time series is then tested

for non-zero alpha using least square regression with accompanying optional controls at the

researchers’ discretion. If the intercept is significantly different from zero, it suggests that

the variable displays non-zero excess returns above the benchmark and can be considered a

predictor.

As outlined previously, past research has documented that actual predictors exhibit per-

sistence and time-varying variance, which can be directly associated with autocorrelation

and heteroskedasticity. We know that the traditional linear regression method employed

in the portfolio-sorting methodology outlined previously must satisfy the Gauss-Markov as-

sumptions. These assumptions are necessary for the OLS estimator to be the best linear

unbiased estimator (BLUE) of the population parameters. In an anomaly research context,

applying regular OLS in linear tests fails to account for autocorrelation and heteroskedastic-

ity in the dependent variable, breaking the Gauss-Markov assumptions of orthogonality and



homoskedasticity of errors. Violations of these assumptions can lead to biased and inefficient

estimators. We show in future results that this leads to inflated t-statistics estimates.

1.1 Overview of HAC estimators

As predictors of excess returns incorporate autoregressive and heteroskedastic properties,

inference from linear tests on their time series is traditionally conducted with robust estima-

tors to avoid drawing erroneous conclusions, hence their importance. However, as we will

show, correct specification is essential in such estimation and even in the optimal case, HACs

remain estimations that fail to fully correct for size distortions. In finance, approaches reliant

on HACs usually follow the principles established by Newey and West (1986). These methods

offer flexibility through the selection of a suitable kernel and bandwidth. Specifically, NW

first addresses heteroskedasticity by employing the methodology found in White (1980).

To correct for autocorrelation, NW makes use of the Bartlett kernel, a traditional method-

ology to estimate long-run covariance. This kernel remains a popular choice in the financial

literature to correct autocorrelation, as it weighs the covariance of the residuals in a uni-

formly decreasing manner. This configuration generalizes the autoregressive component of a

time series as progressively weaker as one goes further from the observation of interest.

Combining the White matrix and a particular HAC kernel (of which the Bartlett outlined

previously is an example) lends itself to the generalized form of the HAC estimator. The

form can be specified by replacing the weighing function K(x) with other kernels, such as

the ones presented in Table 1 of the Appendix.

Ω̂HAC =
[
X ′ ·diag

(
ϵ̂2
t

)
·X
]

+
l∑

j=1
(K(x)) ·

T∑
t=j+1

(
Xtϵ̂tϵ̂t−jX

′
t−j +Xt−j ϵ̂t−j ϵ̂tX

′
t

)
(1.1)

Where Xt is a N × 1 vector, so Xtϵ̂tϵ̂t−jX
′
t−j = (ϵ̂tϵ̂t−j) · XtX

′
t−j is N × N and l is the

bandwidth, also referred to as truncation lag. Although the Bartlett kernel is known for its

simplicity and is widely utilized in many financial applications, there is currently no empirical

research that ascertains its optimality in an asset pricing context. Literature on kernel density

estimation of long-run covariance has suggested many different weighting schemes, that are
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often ignored (Parzen, 1962; Tukey, 1967; Andrews, 1991). Additionally, there is no definite

standard to select for the bandwidth parameter required in the estimator. Practitioners and

researchers are hence left with employing either an intuitive approximation (i.e. based on the

periodicity of the data, their "domain knowledge" or anything else), a "rule-of-thumb" based

approach taken from a general reference or the default value of their statistical package.

As we show in the next sections, although they have widely been used without precise

justification in financial research, both kernel and bandwidth choice affect inference results

significantly in the context of linear asset pricing tests when data exhibits autocorrelation

and heteroskedasticity. Additionally, while HACs are often considered adequate solutions,

we demonstrate empirically that they remain estimations that fail to fully correct those

biases. Although our analysis is specific to an asset pricing application, it also generalizes

to many areas in financial research where inference might be affected by autocorrelation and

heteroskedasticity, such as mutual funds evaluation, empirical corporate finance and others.

We hope that our research will contribute to raising concerns about the adequate usage of

HAC estimation in financial research and that it will prompt econometricians to seek a better

solution.

To compare and contrast various estimator specifications, we conduct a horse race ap-

plying the possible combinations of kernels and bandwidths, of which the specifics can be

found in Appendix 2.2, on simulated predictors. In comparing with the white noise model,

we are then in a good position to assess the size distortions of our tests. Given the potential

difficulties or impracticality associated with altering kernels and bandwidth parameters, we

also offer a temporary solution to alleviate the problem and standardize HAC estimation. To

do so, we recommend the use of an empirically informed table that suggests a straightfor-

ward adjustment to the threshold t-statistics within the Newey-West framework for varying

bandwidths.

We then show the impact of applying this framework to the knowingly clear predictors

gathered from the CZ database. To do so, we simply regress the predictor time series, one

by one, on a constant using the optimal estimator and report the t-statistics obtained, which

we will show differ largely from the ones obtained originally by CZ.

13



1.2 Data

Our dataset is composed of the time series for the clear predictors replicated by Chen

& Zimmerman (2021) until the end of 2022. Clear predictors are market anomalies that

have been documented in asset pricing literature and are considered as having surpassed the

threshold for statistical significance in-sample both at the time of their finding and after

replication.

First, the authors use the portfolio sorting method outlined previously to construct a

long-short portfolio for each anomaly. Then, they use the OLS estimator to determine the

magnitude and significance of the anomaly’s α̂ by setting its time series as the dependent

variable and a constant as the independent variable. This constant α̂ hence refers to the

estimated mean excess returns of the predictor over the risk-free rate and is conventionally

accompanied by its p-value and t-statistic. Note that while CZ’s replication specifically uses

the in-sample data for each anomaly to compute significance to obtain replicable results of

the original study, we opt for using the available data in its entirety. In other words, while

CZ selects each timeframe according to the original studies, we use each predictor as early

as it is available up to the most recent iteration of the dataset. This is principally done to

obtain the most representative picture of the predictors’ processes. For this same reason, we

omit in our estimation the predictors that exhibit a t-statistic below 1.96 in their full sample,

which shrinks the panel from 207 variables to 173.

Predictor returns are computed monthly as floating values with 6 decimals. We conserve

the monthly frequency as most asset pricing tests are done with this periodicity in the

literature. Although the dataset spans from January 1926 to December 2021 in the current

iteration, most of the anomalies start exhibiting returns between 1940 and 1980 due to

the prior data unavailability in the signal construction stage. As our analysis will require

the estimation of econometric processes on the factors, we must ensure the sample size is

sufficiently large. Out of our 173 factors, all have more than 197 subsequent data points

available, with 152 having more than 500. The mean amount of observations per predictor is

803. Specifics concerning the predictors and extensive details as to how they are constructed

can be found at Open Asset Pricing (Chen and Zimmermann, 2021).
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As mentioned in the introduction, we are specifically interested in assessing the size of

linear-based asset pricing tests using simulations. This requires in the calibration step for

our clear predictors to exhibit an α of 0, which, by definition, is not the case. We address

this problem by employing a similar methodology to what is found in Fama and French’s

landmark study on mutual funds evaluation, where they scale fund returns by subtracting

the time series by their alpha component directly (Fama and French, 2010). That is, they

compute α̂ for every mutual fund via least squares estimation on a constant, and then subtract

the same time series respectively by their estimated α̂. We do a similar procedure on predictor

returns used to estimate models that will generate the simulations, fixing their α to zero.

Doing so ensures that any departure from the conventional rejection rate of our asset pricing

tests is solely an effect of the time series properties of anomaly returns.

Original Scaled
N 787 803
Mean 0.0051 9.78903e-20
Standard Deviation 0.03754 0.03683
Minimum -0.21529 -0.21700
25% -0.01281 -0.01781
Median% 0.00458 -0.00056
75% 0.02229 0.01707
Maximum 0.26288 0.25948

Table 1.1:

Summary Statistics for CZ anomalies. The first column represents the initial set gathered by CZ, while the second
represents the sample of scaled anomalies that are kept to generate the simulated anomalies.

Table 1.1 presents summary statistics for the original and scaled anomalies from CZ. Av-

erage statistics are computed by taking the metrics for every anomaly in each panel (original

and scaled) and averaging those findings. Notably, the rightward column exhibits a signifi-

cantly smaller mean, due to the scaling process discussed previously. The average number of

observations per predictor time series is represented by N .

1.3 Simulation settings

We use six univariate models as DGPs to simulate predictors’ returns. Our main model

draws from the class of univariate processes Christoffersen and Langlois (2013) (CL) use to
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model factor returns. Opting for an iterative approach, they seek to fit the time series of the

three Fama-French and Momentum factors most accurately with popular econometric models

allowing autocorrelation and time-varying variance. By iterative approach, it is meant that

they start with the simplest tests for autocorrelation and heteroskedasticity, quickly exclud-

ing the possibility of the White Noise (WN), GARCH and AR models to accurately fit the

factors in isolation. They then explore the autoregressive conditionally heteroskedastic model

(AR-GARCH), further including nonlinear dynamics (AR-NGARCH) and skewed-t innova-

tions (AR-NGARCH-SKEWT). Studying conditional mean, residuals and autocorrelation

functions, they find that the best model to represent the factors’ time series is a combina-

tion of a mean AR model of order 3, the nonlinear NGARCH of Engle and Ng (1993) and

Hansen’s (1994) skewed-t innovations. Details concerning the skewed-t innovations can be

found in Section 2.2 of the Appendix. This model allows for autoregressive and conditionally

heteroskedastic processes with leverage and skewness, features commonly held to constitute

financial time series and specifically asset returns. Although their analysis is centered on the

FF3 and momentum factors, we suggest that it can be generalized to other predictors.

Mapping our approach to CL, we opt for a step-by-step approach, building the AR-

NGARCH-SKEWT piecewise and providing regression results for simulations generated by

the simplest model to the most complex. Doing so allows us to show the rejection rate of

the OLS estimator for a wide range of processes, including very simple ones. The six (6)

models acting as DGPs are presented in Table 1.2. While the first five are implicit in CL’s

methodology, the last (and most accurate) model can be found directly in Section 2 of their

work.

Model Mean Process Volatility Process
WN yt = µ+σtet Constant
GARCH yt = µ+σtet σ2

t = ω +αϵ2
t−1 +βσ2

t−1
AR yt = µ+ϕ1yt−1 +ϕ2yt−2 +ϕ3yt−3 +σtet Constant
AR-GARCH yt = µ+ϕ1yt−1 +ϕ2yt−2 +ϕ3yt−3 +σtet σ2

t = ω +αϵ2
t−1 +βσ2

t−1
AR-NGARCH yt = µ+ϕ1yt−1 +ϕ2yt−2 +ϕ3yt−3 +σtet σ2

t = ω +ασ2
t−1 (ϵjt−1 − θ)2 +βσ2

t−1
AR-NGARCH-SKEWT yt = µ+ϕ1yt−1 +ϕ2yt−2 +ϕ3yt−3 +σtet σ2

t = ω +ασ2
t−1 (ϵjt−1 − θ)2 +βσ2

t−1

Table 1.2:

Specifics of models calibrated on the sample of predictors and then used for simulations. Note that shocks are normally
distributed in the simulations with a mean of 0 and variance of 1 et ∼ N(0,1), unless they are SKEWT, where they
are et ∼ SKEWT(0,1,λ,ν). Also note that µ is fixed at 0.
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For each model and each predictor, we estimate the parameters on the predictors’ time

series, yielding an array of parameter values for each relevant parameter. Then, we take the

median value of these arrays of parameters and simulate representative anomalies with the

resulting values. For example, our first set of simulations is issued from a WN process with

constant variance ϵt ∼ WN(0,σ2) which constitutes our benchmark when assessing the size

properties of linear tests. As such a model breaks no Gauss-Markov assumptions, we would

expect that it presents an empirical rejection rate with the OLS estimator that is adequate

as the set of tests grows large. Table 1.3 outlines the values for the parameters employed to

simulate predictors by model.

WN GARCH AR AR-GARCH AR-NGARCH AR-NGARCH-SKEWT
µ -5.42101e-20 -0.000507979 3.96889e-06 -0.000488651 1.68979e-17 1.68979e-17
σ 0.00118301 0.00116287
ϕ1 0.0745727 0.0730808 0.078694 0.078694
ϕ2 0.01855 0.0104689 0.0156102 0.0156102
ϕ3 -0.012924 -0.0124273 -0.00667979 -0.00667979
ω 3.89026e-05 3.7322e-05 3.27716e-05 3.27716e-05
α 0.136723 0.120465 0.136734 0.136734
β 0.8 0.819737 0.806392 0.806392
θ -0.138116 -0.138116
λ 1.02049
ν 6.12561

Table 1.3:

Parameters for simulations of predictors by model. Note that the µ parameters are specifically fixed at 0 in the
simulations.

Although all our DGPs are flexible, allowing both choice of sample size and number of

simulations, we use a fixed number of 100,000 simulations for each process with finite sample

sizes of 800 and 200. The important number of simulated predictors is based on the necessity

to allow for generalizable conclusions. The first sample size is set to best mimic our predictors’

time series, of which the N was found to be 803 on average (see Table 1.1), and the second is

to showcase the impact of our analysis on a small sample representing the smallest N , 197.

Table 1.4 outlines summary statistics for simulated predictors returns generated by different

models.
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WN GARCH AR AR-GARCH AR-NGARCH AR-NGARCH-SKEWT
Mean -4.58685e-07 2.30484e-05 -1.94265e-05 8.46778e-06 -5.98989e-06 1.13915e-05
Std 0.034415 0.0247927 0.0342025 0.0250707 0.0246105 0.0238848
Minimum -0.132351 -0.152359 -0.131475 -0.142549 -0.160672 -0.223566
25% -0.0232067 -0.0154762 -0.023094 -0.0158524 -0.0152088 -0.0130129
50% 7.34251e-06 2.09892e-05 -1.82895e-05 1.7104e-05 -3.49784e-05 -0.000214145
75% 0.0232079 0.0155182 0.0230669 0.0158686 0.0151503 0.0128123
Maximum 0.133422 0.1508 0.132016 0.144102 0.164263 0.230665

Table 1.4: Summary statistics for simulated predictors’ returns generated by different models.
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Chapter 2

Discussion

Here we report and discuss the findings associated with the implications of autocorrelation

and heteroskedasticity on linear asset pricing tests while providing empirical grounds for a

related correction. While our analysis starts with simulated processes to reach generalizable

conclusions on simulated predictors, we also show in an empirical exercise the repercussions

of said correction on the actual corpus of significant anomalies gathered by CZ.

2.1 Simulation Results

Figure 2.1 and Figure 2.2 show the effect of the kernel and bandwidth interactions on the

rejection rates of linear asset pricing tests. Throughout the discussion, we invite the reader

to consult Appendix 2.2 for details on the different kernels presented, where we include

graphs and equations on each of them.1 Conventional econometric wisdom suggests that an

increasing bandwidth parameter increases bias and diminishes variance until over-rejections

worsen. However, what occurs is that Ω̂ eventually places the full weight on all the sample

autocovariances, which reduce to zero as n → ∞. This leads the estimators to produce

increasing rejections as bandwidth increases after attaining a minimum.

1For a theoretical discussion on the effect of the bandwidth parameter on the HAC estimator’s vari-
ance/bias tradeoff and its impact on inference, which complements nicely the interpretation of the figures,
we direct the reader to Kiefer and Vogelsang, 2005 at page 1139 to 1141 and S. Ng and Perron, 1996.



Figure 2.1:

Empirical rejection rate of linear-based asset pricing tests for N = 800 and N = 200, at p = 0.05, given the interaction
between kernel and bandwidth parameters. The assumed model for the simulated predictors can be found above
each of the columns. The x axis represents the bandwidth of the estimator while the y axis represents the associated
rejection rate. Kernel specification can be found in the legend, given by different colors, where the specifics surrounding
them can be found in Appendix 2.2. Highlighted zones around the lines are the confidence intervals of our results
based on simulations. Dotted vertical lines of different colors represent the Stock-Watson bandwidth and empirically
determined optimal bandwidths.

Figure 2.2:

Empirical rejection rate of linear-based asset pricing tests for N = 800 and N = 200, at p = 0.01, given the interaction
between kernel and bandwidth parameters. The assumed model for the simulated predictors can be found above
each of the columns. The x axis represents the bandwidth of the estimator while the y axis represents the associated
rejection rate. Kernel specification can be found in the legend, given by different colors, where the specifics surrounding
them can be found in Appendix 2.2. Highlighted zones around the lines are the confidence intervals of our results
based on simulations. Dotted vertical lines of different colors represent the Stock-Watson bandwidth and empirically
determined optimal bandwidths.
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Each row represents a particular sample size, denoted by N , and each column corre-

sponds to a model assumption used as DGP, from simplest to most intricate as described in

Table 1.2. Within each subplot, each line corresponds to the empirical rejection rate obtained

by using a specific estimator outlined in the legend, both at the p = 0.05 and p = 0.01 levels.

Respectively, Default is the least square estimator, White is the heteroskedasticity-robust es-

timator, with HAC estimators being Uniform, Newey-West, Quadratic-Spectral (QS), Parzen

and Tukey-Hanning (TH). Bandwidth is set from 1 to 25, which allows for showing the re-

jection rate of the estimators as this important parameter increases. The highlighted zone

around each line corresponds to the confidence interval of the rejection rates obtained via sim-

ulations for every estimator. We add dotted vertical lines of different colors to represent the

optimal bandwidth parameters obtained by simulations at both levels and the Stock-Watson

suggested bandwidth.

In line with our expectations, a WN process of the predictors being tested results in

an approximately adequate type 1 error rate for OLS and White. For robust estimators

however, the rejection rate worsens significantly with an increasing bandwidth parameter for

both sample sizes, which suggests that HAC estimators do not reduce to the OLS estimator

when autocorrelation and heteroskedasticity are not intended features of the time series

being studied. The size distortions are even more pronounced for the smaller sample size

N = 200, with rejection rates reaching nearly 15% at a bandwidth of 25, while reaching

approximately 7.8% for the larger sample size N = 800. A great deal of caution must therefore

be exercised before applying such corrections if the econometric properties of the data are

unknown. The picture is very similar in the context of processes following GARCH volatility

and constant mean. Both the OLS and White estimators are well specified, with other

estimators worsening with increasing bandwidth parameters. The surprising finding is that

heteroskedasticity in isolation doesn’t seem to create important size distortions in the context

of linear asset pricing tests. As a result, White’s estimator, whose objective is to limit the

effects of heteroskedasticity in such tests, has indistinguishable impact2 on the rejection rate

when compared with the least squares estimator.

2Although the difference is not nil, as shown in our numerical results which are summarized here visually
for readability.
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The other four model assumptions present strikingly different results from the first two,

which is of great interest as they can be most associated with anomaly processes. First and

foremost, there are only small differences in the empirical type 1 error rate curves between

the four model assumptions, which suggests that size distortions occur mostly due to the

autoregressive property of the time series under study. Although the interaction between

mean, volatility and distributional assumptions plays a key role in shaping the moments of

returns, it is clear that the autoregressive component has the most impact on size distortions

of linear asset pricing tests. While this may prove unanticipated, it follows closely with the

previously reported minute impact of White’s covariance matrix on results when the assumed

process is constant GARCH.

For each of the four processes at sample size N = 800 tested at p = 0.05 using OLS, the

false positive rate hovers around 7%, which is 40% above what classic confidence interval-

based testing would suggest for a 95% test. In other words, this finding suggests that for a

hypothetical set of 100 predictors with true α of 0 being tested via least squares, 7 would be

significant on average at the 5% level rather than 5, uniquely due to their unaccounted-for

econometric properties. Tested at p = 0.01, the rate of false positives remains consistently

close to 1.7%, representing an approximate 70% overestimation compared to what conven-

tional confidence interval-based testing would anticipate for a 99% level test. Strikingly, no

HAC succeeds in fully correcting for autocorrelation and heteroskedasticity. That is, the es-

timators and their confidence intervals which provide the least size distortions do not touch

the expected rejection rates, even less yield conservative estimates. The picture is even ex-

acerbated at N = 200, where OLS presents similar false positive rates at both p = 0.01 and

p = 0.05, but where all HAC estimators and their confidence intervals fail to make contact

with the aforementioned levels in an even greater fashion. Supposing that we assume the

benchmark AR-NGARCH-SKEWT model, even employing the empirically optimal Newey-

West estimator would yield a size distortion of approximately 20%, a problem for which we

currently have no solution.

Note that such important distortions in rejection rates result from a relatively weak

autocorrelation as shown in Table 1.3, which renders these findings even more concerning.

Although our approach is general in scope, some particular financial time series exhibit much
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higher levels of autocorrelation, which may affect inference even more pronouncedly. Our

results suggest that much more concern should be directed towards the handling of such

properties using HAC and that doing so should not be considered a fail-safe solution.

Following on the multiple hypothesis problem in anomaly research outlined previously,

such distortions also have implications in the context of joint tests. In Figure 2.3 can be

found the incidence of MHT given a test with an adequate versus distorted rejection rate.

Relatively to the settings with accurate rejection rates, the settings with the inadequate

rejection rate show a probability of type 1 error not only much more important from the

start but increasing in a faster fashion with the number of tests. At p = 0.05, given 10

tests undertaken, the probability of type 1 error for the former setting is 40.12%, while it

is 51.60% for the latter. Given 50 tests, both rise to 92.30% and 97.34% respectively. At

p = 0.01, given 10 tests undertaken, the probability of type 1 error for the adequate setting

is 10.46%, while it is 15.31% for the distorted setting. Given 50 tests, both rise to 40.10%

and 53.73% respectively.

Figure 2.3:

Incidence of the MHT problem given an adequate rejection rate (p = 0.05 and p = 0.01) versus distorted (p = 0.07 and
p = 0.015). The x axis represents the number of tests undertaken and the y axis is the probability of making at least
one type 1 error.

As discussed previously, the MHT problem has been the subject of careful study in asset

pricing due to its important implications on inference. Noticeably, Chordia, Goyal, and

Saretto, 2020 recently found that accounting for this flaw in anomaly-detection methodology

requires an important increase in threshold t-statistics: from 1.96 to 3.8 and 3.4 for time series
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and cross-sectional regressions respectively. They further estimate the expected proportion

of type 1 error that researchers would produce if they failed to account for MHT to be

around 45%. However, as their methodology assumes an adequate rejection rate in the

case of independent tests, which we have shown is not the case due to autocorrelation and

heteroskedasticity, we suggest that their results could be underestimations. Taking into

account the initially inflated rejection rate that results from these properties, one could

expect even stricter thresholds for significance to be required to correct for the multiple

hypothesis testing problem.

However, Figure 2.1 and Figure 2.2 also suggest that a partial correction based on

autocorrelation-robust covariance matrices is possible. Although such a correction does not

aim at solving the multiple hypothesis testing problem, it can help to approach the initial

expected rejection rate. We present the evolution in rejection rate over a series of bandwidth

parameters by model assumption to conclude the validity of HAC estimators paving the way

to a solution. Our first contender is the uniform kernel, which is the only one to fully correct

for autocorrelation and heteroskedasticity in linear asset pricing tests, with only very few

lags. This is due to the uniform kernel fully incorporating the autocorrelation structure of

the residuals within its estimation, with weights initialized at w = 1 until the bandwidth

lag is reached. Although efficient at l = 1, this structure comes at a significant cost, with

a rejection rate increasingly distant from the objective as bandwidth grows due to covari-

ance matrix misspecification. Choosing such a setting would require an unambiguous a priori

knowledge of the true econometric structure of the time series being tested to avoid worsening

the problem, which is often not the case in practice. For the researcher and practitioner, we

suggest that a kernel offering more flexibility would be better suited. Such a candidate could

be the very popular NW estimator, incorporating a Bartlett kernel with linearly decreasing

weights. In all models, the NW significantly improves the type 1 error rate of the tests

given a suitable bandwidth measure. Note that in contrast to its success in popularity over

other non-uniform estimators presented, the NW is often the worst at optimal bandwidth in

terms of approaching the intended 5% and 1% type 1 error rate. All the Quadratic Spectral

(QS), Parzen and Tukey-Hanning (TH) perform better at optimal lags, which indicates that

their weight structures better fit the autoregressive component of the simulated predictors’
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processes. The best estimators under ideal conditions are empirically determined to be the

Parzen and Tukey-Hanning, although we emphasize that the difference between non-uniform

estimators is relatively small in consideration of their significant gains over OLS.

From a practical perspective, we recognize that it is highly unlikely that practitioners and

researchers will have access to a full apparatus to precisely determine the optimal kernel and

bandwidth to use when undertaking linear tests. That is, they will not go through the ordeal

of simulating thousands of time series with multiple models parameterized according to their

series of interests and undergo linear tests with multiple HAC estimators to find the absolute

best interaction of bandwidth and kernel given their context. Also, we acknowledge that

they might not have full versatility in terms of estimators within their technical framework.

Quite noticeably, the leading Python statistical library Statsmodels only includes the uniform

and Newey-West HAC estimators (Seabold and Perktold, 2010). As mentioned previously,

although the NW is not the absolute best at optimal conditions when compared to non-

uniform kernels, we believe that its accessibility and interpretability more than compensate

for its shortfalls. Hence, we suggest as an alternative to a more precise correction, a pragmatic

and empirically informed correction based on this popular estimator.

N = 800 N = 200
Bandwidth p = 0.05 p = 0.01 p = 0.05 p = 0.01
1 2.04734 2.69596 2.06223 2.70031
2 2.01118 2.64627 2.03578 2.66557
3 1.99736 2.62012 2.03047 2.65861
4 1.99066 2.60906 2.03204 2.66687
5 1.98871 2.60349 2.03768 2.67868
6 1.98705 2.59952 2.03874 2.68929
7 1.98691 2.59735 2.04475 2.7125
8 1.9834 2.59473 2.05171 2.72629
9 1.98091 2.59745 2.06071 2.73878
10 1.98264 2.59863 2.07016 2.75414

Table 2.1:

Adequate t-statistic threshold for a p = 0.05 or p = 0.01 test with NW estimator given bandwidth and sample size N .
The assumed model assumption is AR-NGARCH-SKEWT. The most accurate given the specified threshold is shown
in bold.

Table 2.1 reads as follows: given an assumed AR-GARCH-SKEWT model, our benchmark

model, each cell represents the adequate threshold t-statistic required by bandwidth value to

obtain an empirically correct rejection rate of p = 0.01 or p = 0.05 given a set of 100,000 tests
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on simulated series following this given model assumption. For example, testing an anomaly

for significance in a large sample while having established time series properties following

an AR-NGARCH-SKEWT at p = 0.05, the optimal bandwidth would be 9 with a threshold

t-statistic of approximately t = 1.98. A more developed example of employing this table will

be featured in the coming Section 2.2, where it will be used to determine the impact of the

methodological change on a panel of predictors. Corroborating results found in Figure 2.1

and Figure 2.2, the t-statistics initially decrease and then increase after attaining a minima.

Note that none of these bandwidth parameters obtain a conservative nor valid threshold of

t = 1.96 nor t = 2.574 for these models, closely mapping our previous suggestion that such a

solution remains imperfect.

However, we see this framework as a significant improvement in contrast to what is

suggested in the literature and programming documentation, while remaining realistically

implementable. Indeed, if researchers or practitioners are not inclined to use a non-standard

table as suggested by Kiefer (2005), they are prompted to either guess or apply a rule of

thumb derived mathematically. Most-oft suggested rules of thumb corrections respectively

employ the NW estimator with a bandwidth parameter set at 0.75 ·(n1/3) (Stock and Watson,

2003) (SW), or 4 ·
(

n
100

) 2
9 (Wooldridge, 1996), with n representing the number of observations

in the time series.

In our case, such rules of thumb would imply bandwidth parameters of 7 and 6 when

N = 800 and 4 and 5 when N = 200 respectively. While these parameters seem rather ac-

curate given the conclusions drawn previously, doubts can be cast as to their optimality in

all conditions. There are multiple instances of settings, as shown in Figure 2.1 and Fig-

ure 2.2, where these rules fail to corroborate with the empirically found optimal bandwidth.

Figure 2.4 presents the required p-value and their corresponding t-statistics thresholds to

obtain significance based on different model assumptions. As in the previous figure, each row

represents a particular sample size, with each subplot presenting inference results obtained

by the estimators for a particular process versus the expected theoretical rejection rate of

linear tests. Note that the BLUE line refers to the expected rejection rate at a given p,

hence its slope of 1. We add to the OLS estimator the Stock and Watson "rule of thumb"

estimator discussed previously to assess its adequacy. We also add an extreme example,
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the Newey-West estimator with 60 lags (5 years of monthly data), which has been used for

example in an asset pricing context by Frazzini and Pedersen, 2014. By doing so, we seek to

demonstrate the impact of a misspecified robust estimator on rejection rates.

Figure 2.4:

Empirical rejection rate versus expected theoretical rejection rate of certain popular estimators given different model
assumptions. T-statistics are provided on the upper and right axes, while p-values are provided on the lower and left
axes.

Noticeably, adequate threshold statistics to obtain consistent estimates are higher than

the expected t = 1.96 for all estimators. For example, the last subplots of both rows show

that a linear test employing OLS would require a t-statistic of 2.11 (p = 0.035) when N = 800

and 2.16 (p = 0.03) when N = 200 to establish consistent significance at the 5% level for our

assumed benchmark model. This finding suggests that any variable estimated with OLS in the

asset pricing literature with a t-statistic below 2.16 (and not 1.96) should be considered non-

significant at the 5% level. Even the empirically optimal and Stock-Watson estimators require

modification in threshold over the range of p for all four relevant processes at both sample

sizes. These results corroborate the previously demonstrated result that even well-specified

HACs are insufficient to provide adequate size for linear tests. All subplots demonstrate

that employing a misspecified HAC estimator, Newey-West with a bandwidth of 60 in our

example, significantly exacerbates the aforementioned effects. Consistent t-statistics for a 5%
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test approach 2.20 in larger samples (even worse than OLS) and go as far as 2.76 in smaller

samples for an assumed AR-NGARCH-SKEWT model. This can be explained by the same

process outlined in the early part of the methodology: parametrically imposing a weighting

structure on the variance-covariance matrix of the residuals in the estimation stage has the

potential to misspecify the HAC matrix if the bandwidth choice is incorrect and an even

greater degree in a smaller sample. In other words, employing a robust estimator represents

a double-edged sword, as an inconsiderate choice for the bandwidth parameter can also result

in incorrect inference.

As such estimators are often accepted unquestionably and/or without explicit mention

in the literature, one can only imagine the ramifications of such important distortions in the

ratio of false positives. One might infer that this is not only valid for linear asset pricing tests

but also for other applications in empirically oriented research involving financial time series.

Note that this is all in assuming that HACs are perfect tools, which we have shown is not

even the case. Only very few articles in finance exhaustively specify and justify the nature

of the HAC estimators they employ in linear settings they conduct to draw inferences. That

is if they use these robust estimators at all. We now know that such practice is misguided

and has an important impact on conclusions drawn from scientific research. Let this be a

testament to the importance of caution in the choice of bandwidth parameter.

2.2 Empirical exercise

In this section, we seek to determine the impact of our suggested HAC correction found

in Table 2.1 for autocorrelation and heteroskedasticity, on the corpus of significant predictors

gathered by Chen and Zimmermann, 2021. This exercise aims to show the deviations incurred

from using an empirically optimal robust linear regression methodology for inference paired

with an increase in t-statistics thresholds, specifically in an asset pricing context. As we

have previously shown that such an approach remains imperfect, we offer it as a temporary

solution, primarily aimed at standardization of HAC practice. This perspective could be

extended, and such an exercise is also within the scope of other subfields of financial research

that draw inferences from linear tests on time series suspected to have autocorrelation and
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time-varying volatility.

First and foremost, using the full sample provided by CZ until the most recent update of

the database, we note that 173 are significant at t = 1.96 rather than the 207 they advertise

as clear predictors. As mentioned previously in Section 1.2, this is due to some predictors

losing significance while considered in their full sample rather than strictly from the sample

used in the original study. Taking the perspective of a financial researcher interested in

anomaly detection, we employ the bandwidth parameters and thresholds in Table 2.1. Note

that the terms differ and divergent will be used for anomalies that change from significant

to non-significant or the reverse given the specified threshold.

Figure 2.5:

Incidence of HAC correction on predictors of excess returns. The x axes represent the t-statistic obtained by the OLS
estimator, while the y axes represent the t-statistic obtained by the empirically optimal robust estimator. The dotted
45-degree lines represent the equivalency of both estimators, and the plain lines represent the least square fit between
estimators. Anomalies that differ at the p = 0.05 level are shown in red, and at p = 0.01, in orange. Both axes have
been restricted for readability, and as anomalies presenting very high t-statistics are not at risk of differing.

In Figure 2.5 can be found the incidence of our correction on the predictors of excess

returns when taken in their full sample. The x axes represent the t-statistic obtained by

the OLS estimator, while the y axes represent the t-statistic obtained by the empirically

optimal robust estimator. The dotted 45-degree lines would represent the equivalency of

both estimators, and the plain lines represent the least square fit between estimators. We
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show the anomalies that differ at the p = 0.05 level in red, and at p = 0.01 in orange. Both

axes have been restricted for readability, and as anomalies presenting very high t-statistics

are not at risk of differing.

6 anomalies on 173 (3.46%) differ at the 1.96 level when applying the optimal NW cor-

rection with a bandwidth of 9 and a threshold of t = 1.98. 19 anomalies on 151 (12.58%)

differ at the 2.574 level when applying the correction with a bandwidth of 8 and a threshold

of t = 2.594. Based on the OLS fit, there is an empirical ground on which to suggest that

rather than affecting only a few anomalies, HAC corrections shift the whole distribution of

t-statistics downwards for the sample of clear predictors. As this shift is not of great impor-

tance in terms of absolute t-statistics, prior results where divergences do not seem numerous

can be explained by the fact that most significant predictors present t-statistics that are far

superior to the suggested thresholds when analyzed in their full sample. In other words,

when using all available data, predictors when tested for α present t-statistics that are much

above the barriers for significance. Therefore, they are not at risk of differing in significance

status due to this methodological change.

However, we know from recent asset pricing literature that most anomalies are subject

to alpha decay due to publication and increasing possibility of arbitrage (Schwert, 2003;

Marquering, Nisser, and Valla, 2006; Jones and Pomorski, 2017; Guerard and Markowitz,

2018; Jacobs and Müller, 2020; Pénasse, 2022; Chen and Velikov, 2023). There is consensus

in the literature that most predictors of exceeding returns performed extremely well in the

period leading to the golden age of anomaly research and became progressively weaker in the

coming of the second millennia due to crowding arising out of the soar of computationally

and quantitatively oriented investing.

As anomalies weaken with time, we suggest that HAC corrections would become more

influential due to the average t-statistic of the still significant predictors being closer to the

benchmark statistical thresholds for the reasons outlined previously. To test this hypothesis,

we follow Chen and Velikov, 2023 and restrict our time frame between 2006-01-01 and 2022-

01-01, which roughly approximates the size of our small sample N = 200. This reduces

our significant anomalies to 48 at the 1.96 level and 22 at the 2.574 level. Applying the

well-specified Newey-West correction with 3 lags, we respectively find 10 (20.08%) and 7
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anomalies (31.81%) to differ at those levels, using modified thresholds of t = 2.03 and t =

2.658. These findings demonstrate that as the distribution of t-statistics associated with clear

anomalies shifts towards the thresholds naturally with time, correction for autocorrelation

and heteroskedasticity will have increasing importance as small deviations will become more

meaningful.
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Conclusion

Given the recent evidence on predictors’ persistence and time-varying volatility, we demon-

strate empirically that linear asset pricing tests employing least squares estimation are mis-

specified as they do not account for autocorrelation and heteroskedasticity. Using simula-

tions based on the underlying econometric processes of clear predictors of excess returns, we

demonstrate that asset pricing tests based on portfolio sorts and OLS display an inflated

type 1 error rate. Furthermore, we reach the important conclusion that HAC estimators

widely held as standards to correct for such biases fail to provide estimates without size dis-

tortions, which compels for a better approach. To alleviate the problem, we guide the path

towards a temporary standardization of HAC estimation employed in asset pricing. Applying

said correction to clear predictors gathered by Chen & Zimmerman (2021), we demonstrate

that the impact of said correction is significant, particularly considering alpha decay. Our

work not only aligns with the extensive body of literature dedicated to enhancing statistical

methodology in asset pricing but also paves the way for further exploration of scenarios in fi-

nancial research where autocorrelation and heteroskedasticity may pose significant statistical

challenges.





Bibliography

Akey, Pat, Adriana Robertson, and Mikhail Simutin (2022). “Noisy factors”. In: Rotman

School of Management Working Paper Forthcoming.

Andrews, Donald WK (1991). “Heteroskedasticity and autocorrelation consistent covariance

matrix estimation”. In: Econometrica: Journal of the Econometric Society, pp. 817–858.

Arnott, Robert D., Mark Clements, Vitali Kalesnik, and Juhani Linnainmaa (2021). “Factor

momentum”. In: Available at SSRN 3116974.

Baker, Monya (2016). “1,500 scientists lift the lid on reproducibility”. In: Nature 533.7604,

p. 7604.

Baquero, Guillermo and Marno Verbeek (2008). “Style Investing: Evidence from Hedge Fund

Investors”. In: Available at SSRN 1102712.

Bender, Jennifer, Remy Briand, Dimitris Melas, Raman Aylur Subramanian, et al. (2013).

“Foundations of factor investing”. In: Available at SSRN 2543990.

Blitz, David and Milan Vidojevic (2019). “The characteristics of factor investing”. In: The

Journal of Portfolio Management 45.3, pp. 69–86.

Carhart, Mark M. (1997). “On persistence in mutual fund performance”. In: The Journal of

Finance 52.1, pp. 57–82.

Chen, Andrew Y. (2021). “The Limits of p-Hacking: Some Thought Experiments”. In: The

Journal of Finance 76.5, pp. 2447–2480.

Chen, Andrew Y. and Mihail Velikov (2023). “Zeroing in on the expected returns of anoma-

lies”. In: Journal of Financial and Quantitative Analysis 58.3, pp. 968–1004.

Chen, Andrew Y. and Tom Zimmermann (2021). “Open source cross-sectional asset pricing”.

In: Critical Finance Review, Forthcoming.

35



Chordia, Tarun, Amit Goyal, and Alessio Saretto (2020). “Anomalies and false rejections”.

In: The Review of Financial Studies 33.5, pp. 2134–2179.

Christoffersen, Peter and Hugues Langlois (2013). “The joint dynamics of equity market

factors”. In: Journal of Financial and Quantitative Analysis 48.5, pp. 1371–1404.

Cochrane, John H. (2011). “Presidential address: Discount rates”. In: The Journal of Finance

66.4, pp. 1047–1108.

Ehsani, Sina and Juhani T. Linnainmaa (2022). “Factor momentum and the momentum

factor”. In: The Journal of Finance 77.3, pp. 1877–1919.

Engle, Robert F. and Victor K. Ng (1993). “Measuring and testing the impact of news on

volatility”. In: The journal of finance 48.5, pp. 1749–1778.

Fama, Eugene F. and Kenneth R. French (1992). “The cross-section of expected stock re-

turns”. In: The Journal of Finance 47.2, pp. 427–465.

— (2010). “Luck versus skill in the cross-section of mutual fund returns”. In: The journal of

finance 65.5, pp. 1915–1947.

Fama, Eugene F. and James D. MacBeth (1973). “Risk, return, and equilibrium: Empirical

tests”. In: Journal of Political Economy 81.3, pp. 607–636.

Feng, Guanhao, Stefano Giglio, and Dacheng Xiu (2020). “Taming the factor zoo: A test of

new factors”. In: The Journal of Finance 75.3, pp. 1327–1370.

Frazzini, Andrea and Lasse Heje Pedersen (2014). “Betting against beta”. In: Journal of

Financial Economics 111.1, pp. 1–25.

Froot, Kenneth and Melvyn Teo (2008). “Style investing and institutional investors”. In:

Journal of Financial and Quantitative Analysis 43.4, pp. 883–906.

Giglio, Stefano, Bryan Kelly, and Dacheng Xiu (2022). “Factor Models, Machine Learning,

and Asset Pricing”. In: Annual Review of Financial Economics 14, pp. 337–368.

Giglio, Stefano and Dacheng Xiu (2021). “Asset pricing with omitted factors”. In: Journal of

Political Economy 129.7, pp. 1947–1990.

Gow, Ian D., Gaizka Ormazabal, and Daniel J. Taylor (2010). “Correcting for cross-sectional

and time-series dependence in accounting research”. In: The Accounting Review 85.2,

pp. 483–512.

36



Gu, Shihao, Bryan Kelly, and Dacheng Xiu (2021). “Autoencoder asset pricing models”. In:

Journal of Econometrics 222.1, pp. 429–450.

Guerard, John and Harry Markowitz (2018). “The existence and persistence of financial

anomalies: What have you done for me lately?” In: Financial Planning Review 1.3-4,

e1022.

Gupta, Tarun and Bryan Kelly (2019). “Factor momentum everywhere”. In: The Journal of

Portfolio Management 45.3, pp. 13–36.

Hansen, Bruce E. (1994). “Autoregressive conditional density estimation”. In: International

Economic Review, pp. 705–730.

Harvey, Campbell R. (2017). “Presidential address: The scientific outlook in financial eco-

nomics”. In: The Journal of Finance 72.4, pp. 1399–1440.

— (2021). “Be skeptical of asset management research”. In: Available at SSRN 3906277.

Harvey, Campbell R. and Yan Liu (2020). “False (and missed) discoveries in financial eco-

nomics”. In: The Journal of Finance 75.5, pp. 2503–2553.

Harvey, Campbell R., Yan Liu, and Alessio Saretto (2020). “An evaluation of alternative

multiple testing methods for finance applications”. In: The Review of Asset Pricing Studies

10.2, pp. 199–248.

Hou, Kewei, Chen Xue, and Lu Zhang (2020). “Replicating anomalies”. In: The Review of

financial studies 33.5, pp. 2019–2133.

Ioannidis, John PA (2005). “Why most published research findings are false”. In: PLoS

medicine 2.8, e124.

Israel, Ronen, Sarah Jiang, and Adrienne Ross (2017). “Craftsmanship alpha: An application

to style investing”. In: The Journal of Portfolio Management 44.2, pp. 23–39.

Jacobs, Heiko and Sebastian Müller (2020). “Anomalies across the globe: Once public, no

longer existent?” In: Journal of Financial Economics 135.1, pp. 213–230.

Jegadeesh, Narasimhan and Sheridan Titman (1993). “Returns to buying winners and selling

losers: Implications for stock market efficiency”. In: The Journal of Finance 48.1, pp. 65–

91.

Jones, Christopher S. and Lukasz Pomorski (2017). “Investing in disappearing anomalies”.

In: Review of Finance 21.1, pp. 237–267.

37



Kelly, Bryan T., Seth Pruitt, and Yinan Su (2019). “Characteristics are covariances: A unified

model of risk and return”. In: Journal of Financial Economics 134.3, pp. 501–524.

Kiefer, Nicholas M. and Timothy J. Vogelsang (2005). “A new asymptotic theory for heteroskedasticity-

autocorrelation robust tests”. In: Econometric Theory 21.6, pp. 1130–1164.

Korajczyk, Robert A. and Ronnie Sadka (2004). “Are momentum profits robust to trading

costs?” In: The Journal of Finance 59.3, pp. 1039–1082.

Lazarus, Eben, Daniel J. Lewis, James H. Stock, and Mark W. Watson (2018). “HAR in-

ference: Recommendations for practice”. In: Journal of Business & Economic Statistics

36.4, pp. 541–559.

Lintner, John (1965). “Security prices, risk, and maximal gains from diversification”. In: The

journal of finance 20.4, pp. 587–615.

Marquering, Wessel, Johan Nisser, and Toni Valla (2006). “Disappearing anomalies: a dy-

namic analysis of the persistence of anomalies”. In: Applied financial economics 16.4,

pp. 291–302.

McLean, R. David and Jeffrey Pontiff (2016). “Does academic research destroy stock return

predictability?” In: The Journal of Finance 71.1, pp. 5–32.

Menkveld, Albert J., Anna Dreber, Felix Holzmeister, Juergen Huber, Magnus Johannesson,

Michael Kirchler, Michael Razen, and Utz Weitzel (2022). “Non-standard errors”. In.

Muravyev, Dmitriy, Neil D. Pearson, and Joshua Matthew Pollet (2022). “Anomalies and

their Short-Sale Costs”. In: Available at SSRN 4266059. url: https : / / ssrn . com /

abstract=4266059.

Newey, Whitney K. and Kenneth D. West (1986). “A simple, positive semi-definite, het-

eroskedasticity and autocorrelation-consistent covariance matrix estimator and a direct

test for heteroskedasticity”. In: Econometrica: journal of the Econometric Society, pp. 817–

838.

Ng, Serena and Pierre Perron (1996). “The exact error in estimating the spectral density at

the origin”. In: Journal of Time Series Analysis 17.4, pp. 379–408.

Novy-Marx, Robert (2015). “Fundamentally, momentum is fundamental momentum”. In:

National Bureau of Economic Research, No. w20984.

38

https://ssrn.com/abstract=4266059
https://ssrn.com/abstract=4266059


Parzen, Emanuel (1962). “On estimation of a probability density function and mode”. In:

The Annals of Mathematical Statistics 33.3, pp. 1065–1076.

Pénasse, Julien (2022). “Understanding alpha decay”. In: Management Science 68.5, pp. 3966–

3973.

Petersen, Mitchell A (2008). “Estimating standard errors in finance panel data sets: Com-

paring approaches”. In: The Review of financial studies 22.1, pp. 435–480.

Schwert, G. William (2003). “Anomalies and market efficiency”. In: Handbook of the Eco-

nomics of Finance. Vol. 1, pp. 939–974.

Seabold, Skipper and Josef Perktold (2010). “statsmodels: Econometric and statistical mod-

eling with python”. In: 9th Python in Science Conference.

Sharpe, William F. (1965). “Risk-aversion in the stock market: Some empirical evidence”. In:

The Journal of Finance 20.3, pp. 416–422.

Sheppard, Kevin (Mar. 2021). bashtage/arch: Release 4.18. Version v4.18. doi: 10.5281/

zenodo.593254.

Stock, James H. and Mark W. Watson (2003). Introduction to Econometrics. Vol. 104. Boston:

Addison Wesley.

Tukey, J.W. (1967). “An introduction to the calculations of numerical spectrum analysis”.

In: Spectral Analysis of Time Series, pp. 25–46.

White, Halbert (1980). “A heteroskedasticity-consistent covariance matrix estimator and a

direct test for heteroskedasticity”. In: Econometrica: journal of the Econometric Society,

pp. 817–838.

Wooldridge, Jeffrey M. (1996). Introductory Econometrics: A Modern Approach. 3rd.

39

https://doi.org/10.5281/zenodo.593254
https://doi.org/10.5281/zenodo.593254




Appendix A – Hansen’s skewed-t

errors

The density of Hansen’s skewed-t distribution (Hansen, 1994) is given by

g(z | η,λ) =


bc
(

1+ 1
η−2

(
bz+a
1−λ

)2)−(η+1)/2
z < −a/b

bc
(

1+ 1
η−2

(
bz+a
1+λ

)2)−(η+1)/2
z ≥ −a/b

(1)

where 2 < η < ∞, and −1 < λ < 1. The constants a, b, and c are given by

a = 4λc

(
η −2
η −1

)
, (2)

b2 = 1+3λ2 −a2 (3)

c =
Γ
(

η+1
2

)
√

π(η −2)Γ
(

η
2

) (4)

Which composes a proper density function with mean zero and unit variance.
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Appendix B – Kernels

Appendix B.1. Kernel Functions

Kernel Function

Uniform K(x) =

1.0, if j ≤ l

0, otherwise

Bartlett (Newey and West, 1986) K(x) =

1−|z| z ≤ 1
0 z > 1

Quadratic Spectral (Andrews, 1991) K(x) =

1 z = 0
3

x2

(
sinx

x − cosx
)

,x = 6πz
5 z > 0

Parzen (1962) K(x) =


1−6z2(1− z) z ≤ 1

2
2(1− z)3 1

2 < z ≤ 1
0 z > 1

Tukey-Hanning (Tukey, 1967) K(x) =


1
2 + 1

2 cosπz z ≤ 1
0 z > 1

Table 1: Kernel Functions for Density Estimation. Note that z = | j
l |, j = 0,1, . . . , l where l is the bandwidth

parameter (Sheppard, 2021).
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Appendix B.2. Kernel Visualization

Figure 1: Kernel visualization by window type. Reproduced via Matlab Code found in MathWorks HAC
Documentation

Figure 2: Kernel visualization by bandwidth. Reproduced via Matlab Code found in MathWorks HAC
Documentation
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