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Résumé

Ce mémoire examine 'utilisation de la Programmation Dynamique Stochastique
Duale (SDDP) et de I'’Apprentissage par Renforcement (RL) pour la gestion dy-
namique de la production d’énergie dans des systémes multi-réservoirs hydroélec-
triques, dans le but de minimiser les cotits opérationnels tout en gérant les incerti-
tudes liées aux apports d’eau. En utilisant une sous-région du réseau hydroélectrique
du Québec comme étude de cas, SDDP a démontré de solides performances dans
la résolution de problémes d’optimisation stochastique multi-étapes, bien que son
temps de calcul augmente exponentiellement avec la complexité du probléme. En
revanche, les algorithmes de RL offre une évolutivité nettement meilleure pour les
problémes a plusieurs étapes. REINFORCE donne une solution trés proche a la so-
lution optimale de SDDP tout en nécessitant un temps de calcul considérablement
réduit. Ces résultats soulignent le potentiel de l'apprentissage par renforcement
comme alternative efficace sur le plan computationnel aux méthodes d’optimisation

traditionnelles dans les scénarios de gestion dynamique et incertaine de l’énergie.
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Abstract

This thesis investigates the use of Stochastic Dual Dynamic Programming (SDDP)
and Reinforcement Learning (RL) for dynamic energy dispatch in multi-hydro-
reservoir systems, with the goal of minimizing operational costs while managing
uncertain water inflows. Using a sub-region of Quebec’s hydroelectric grid as a case
study, SDDP demonstrated strong performance in solving multi-stage stochastic
optimization problems, though its computational time increased exponentially with
problem complexity. To address this limitation, the RL algorithms was evaluated
for its scalability and efficiency. REINFORCE closely approximated SDDP’s opti-
mal solutions while requiring significantly less computational time. These results
emphasize RL’s potential as a computationally efficient and scalable alternative to
traditional optimization methods for managing dynamic and uncertain energy sys-

tems.
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Introduction

The energy sector is crucial in combating climate change, as it accounts for approx-
imately three-quarters of current greenhouse gas emissions (Climate Watch [11]).
The transition to low-carbon and renewable energy sources is critical for mitigating
global warming and achieving net-zero CO2 emissions. To limit global warming to
2°C or below, almost all electricity by 2050 should come from zero or low-carbon
sources such as renewable energies or fossil fuels with carbon capture and storage
(IPCC [19]). Given the excessive burning of fossil fuels and the global rise in tem-
peratures (which is a major threat to climate, and in turn has many consequences,
notably on public health, economic stability, agriculture, etc.), reducing greenhouse

gas emissions is essential to limiting global warming.

Human-caused climate change brought new weather extremes and drought sea-
sons affecting particularly the hydro-energy usage. On one hand, the atypically
rising temparatures in the spring accelerated snowmelt which led to a significant re-
duction in hydropower ressources. On the other hand, various regions encountered
drought conditions, with British Columbia, Canada’s second-largest hydropower-
producing province, experiencing especially severe droughts (International Energy
Agency [18]). In fact, during the winter season of 2023/2024 (December through
February), Canada’s national average temperature was recorded at 5.2°C above the
baseline average, which is established based on the 1961-1990 reference period. This
temperature rise represents the highest nationwide winter temperature since records

began in 1948. Moreover, the 2023/2024 winter’s average temperature exceeded the



previous record, set in the 2009/2010 winter, by 1.1°C (Environment and Climate
Change Canada [16]). This unprecedented warmth underscores significant deviations
from historical climate norms, illustrating a marked increase in winter temperatures.

The generation of electricity in Canada in 2023 was dominated by hydropower,
which represented 58.0% of the total electricity generation, as shown in Figure 0.1.
Nuclear energy was the second largest contributor, accounting for 14.3% of total
generation, followed closely by natural gas at 13.6%. Wind energy represented 6.0%
of the generation mix, while coal’s contribution was minimal at 4.3%. Other sources,
such as biofuels, solar energy, and oil, played a smaller role. The energy sources
of Canada in 2023 highlight its heavy reliance on renewable energy, particularly

hydropower, with notable contributions from nuclear and wind energy.

Electricity generation sources, Canada, 2023

Coal Natural gas Nuclear Hydro Wind
4.3% 13.6% 14.3% 58.0% 6.0%
@ Coal o Oil © Natural gas O Nuclear
@ Hydro @ Biofuels ® Waste @ Wind

O Solar PV © Other sources

Source: International Energy Agency. Licence: CC BY 4.0

Figure 0.1: Generation Mix for Canada for electric utilities, 2023.

In Quebec, hydroelectric power is even more predominant, accounting for about
71% of the province’s total energy production, with wind and biomass contributing
roughly 14.5% each (Whitmore et al. [52]). The critical importance of managing the
energy dispatch problem in Quebec arises from its heavy reliance on hydroelectric
power, where energy dispatch involves determining the optimal allocation of water

resources to meet electricity demand while minimizing costs and ensuring reliability.



Poor energy dispatch decisions, such as overestimating water availability or under-
estimating demand, can lead to wasted resources, increased costs, or even electricity
shortages.

To address the dispatching problem in energy planning, we primarily utilize two
approaches: Stochastic Dual Dynamic Programming (SDDP) and Reinforcement
Learning (RL). SDDP is widely recognized as the state-of-the-art algorithm for
solving multistage stochastic programming problems, particularly in the context of
hydropower management. It effectively handles the uncertainty inherent in future
water inflows by considering multiple scenarios over a planning horizon. On the other
hand, Reinforcement Learning is an emerging method that deals with sequential
decision-making problems, where the decisions made at each step influence the future
state of the environment. RL is particularly useful for problems where the model of
the environment is not fully known and needs to be learned through interaction.

This thesis conducts a comparative analysis of Stochastic Dual Dynamic Pro-
gramming and Reinforcement Learning algorithms for energy planning in Québec,
with a particular focus on optimizing hydropower generation. Québec’s energy sys-
tem benefits from its vast network of hydroelectric reservoirs, which enable flexible
and controllable energy dispatch. This flexibility is critical in managing the uncer-
tainties associated with water inflows, which are highly variable and influence gen-
eration capacity. Unlike renewable sources such as wind, which cannot be stored,
hydropower plays a central role in balancing supply and demand by adjusting water
levels in the reservoirs which can be seen as storage facilities.

Energy dispatch in Québec involves navigating multiple factors, including local
electricity generation, imports and exports of power through interconnections, and
the activation of demand response programs. These elements must be carefully
coordinated to meet demand reliably while minimizing costs and ensuring system
stability. However, this thesis primarily focuses on the reservoirs management for
electricity generation because it serves as the foundation for all other dispatch deci-

sions. Efficient generation planning is critical for managing hydroelectric reserves,



ensuring cost-effective energy production, and minimizing the reliance on external
sources. Furthermore, generation decisions have a cascading impact on the feasibil-
ity and efficiency of imports, exports, and demand response strategies. Suboptimal
generation planning could result in inefficient resource utilization, higher operational
costs, or an inability to meet demand reliably.

By evaluating the performance of SDDP and RL under diverse scenarios, this the-
sis aims to determine which approach offers more robust and efficient solutions. The
findings are expected to contribute to improved strategies for managing Québec’s
renewable energy system, ensuring both economic and operational efficiency in the
face of uncertainties.

This thesis is structured as follows. We start by a literature review, which sets
the groundwork for the research conducted in this study. Chapter 1 includes an in-
depth look at SDDP, covering its underlying principles and related techniques like
stochastic programming and dynamic programming. The chapter also introduces
Reinforcement Learning, offering a broader perspective on alternative approaches
beyond SDDP. Chapter 2 shifts to the hydropower management problem in Québec,
outlining the specific challenges faced in managing hydroelectric generation. It ex-
plains the system’s constraints, how uncertainties like water inflows are modeled,
and the mathematical structure of the problem. The chapter also discusses how RL
is structured to address these challenges and the criteria used to ensure both RL
and SDDP methods converge to a solution. In Chapter 3, the computational results
are presented. This chapter provides a detailed overview of the test cases, including
the specific characteristics of Québec’s hydro-power grid and how the RL and SDDP
methods perform under various scenarios. It highlights key findings from a 12-stage
problem and compares the two methods in terms of efficiency. The thesis concludes
by summarizing the insights gained and their implications for energy dispatch in

Québec, focusing on the contributions of this research to hydro-power management.



Literature Review

Energy dispatch

Economic energy dispatch refers to the process of determining how much electricity
each available power generation resource, such as hydropower plants, thermal plants,
or renewable energy sources, should produce at any given time to meet electricity
demand. The goal is to minimize the total cost of production while respecting opera-
tional constraints, such as generator capacity limits, system reliability requirements,
and environmental considerations. In the context of hydroelectric power, this in-
volves allocating water resources across various reservoirs and turbines to balance
demand and supply efficiently. This problem is pivotal in power system manage-
ment, especially given the growing integration of renewable energy sources, such as
hydro-power, which is a primary focus of this thesis. The increasing complexity
of modern power grids has spurred the development of diverse methodologies to

address the energy dispatch problem effectively.

One of the earliest and most widely adopted techniques was Linear Programming
(LP), which provides a framework for solving energy dispatch problems with linear
cost functions and constraints. Its computational efficiency has made it well-suited
for systems with well-defined parameters. For instance, Mixed Integer Linear Pro-
gramming (MILP) has been successfully applied in studies such as Pan et al. [33],
Tenfen et al. [50], and Pan et al. [32] to optimize energy dispatch.

As the scale and complexity of ED problems grew, metaheuristic methods gained

traction. For instance, Particle Swarm Optimization (PSO) (Kennedy et al. [22]),



which is inspired by the social behavior of swarms, has been applied in Coelho et al.
[12], Park et al. [35], and Chen et al. |9], Whale Optimization Algorithm (WOA)
(Mirjalili et al. [27]), which mimics the social behavior of humpback whales, was
used in Azizivahed et al. [2] and Nazari-Heris et al. [31], Genetic Algorithms (Chun
et al. [10]) was used in Kalakova et al. [21] and Yeh et al. [56]

Another solution is the use of Dynamic Programming (Bellman [3]) and its stochastic
extension Stochastic Dynmamic Programming (SDP) ( Bertsekas et al. [6]) which is
a widely recognized approach for solving multi-stage decision-making problems un-
der uncertainty. SDP divides the problem into stages and leverages the principle of
optimality to optimize decisions at each stage based on current states and stochastic
inputs. For instance, SDP was used in Moazeni et al. [30] to solve the multi-stage
optimization problem of energy hub optimal dispatch, with an approach that allows
a risk-sensitive energy hub operator to consider a non-differentiable risk measure and
various constraints, such as minimum uptime and downtime requirements. Similarly,
Saadat et al. [44] present a Feasibility Improved Stochastic Dynamic Programming
(FISDP) model for optimizing reservoir operation. The authors address the common
issue of infeasibility in SDP by adjusting reservoir volume interval indices to trans-
form infeasible policies into feasible ones. Despite its success, SDP faces the "curse
of dimensionality" (Bellman [3]), which limits its applicability to high-dimensional,
long-horizon problems. To address this challenge, Stochastic Dual Dynamic Pro-
gramming (SDDP) was developed as a scalable alternative.

In the context of Québec’s hydro-power-dominated energy dispatch system, op-
timally managing reservoirs is critical. Québec benefits from the ability to import
and export electricity to neighboring regions, and studies such as Mitjana et al. [2§]
have explored the role of cooperative management among NPCC members to meet
carbon emission goals. Meanwhile, Coté et al. [13] evaluated a Sampling Stochas-
tic Dynamic Programming algorithm for managing Hydro-Québec’s hydroelectric
power plants on the Manicouagan and Outardes Rivers. Similarly, Séguin et al.

[46] investigated short-term planning of three power plants in Quebec owned by Rio
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Tinto under uncertain water inflows using scenario trees generated from historical

and weather data to optimize water usage and turbine operations.

Stochastic Dual Dynamic Programming

Stochastic Dual Dynamic Programming (SDDP) (Pereira et al. [36]) is widely re-
garded as the preeminent algorithm for power management, particularly in the do-
main of hydro-power systems. SDDP was specifically developed to address the inher-
ent complexities of hydro-power optimization, including multi-stage decision-making
under uncertainty and the challenge of managing reservoirs over extended tempo-
ral horizons. By employing piecewise linear approximations of the value function,
SDDP effectively mitigates the curse of dimensionality that traditionally hampers
Stochastic Dynamic Programming. While SDP is constrained by its computational
intractability when the dimensionality of the state space increases, SDDP capital-
izes on problem-specific decompositions and iterative solution techniques to achieve
tractability in high-dimensional settings. SDDP has been applied to short-term en-
ergy dispatch, as demonstrated in Chabar et al. [§], Ding et al. [14], and Papavasil-
iou et al. [34], and to medium-term operational planning for horizons spanning one
to two years, as in Philpott et al. [39] and Rebennack [42]. Notably, its principal
strength lies in addressing long-term operational challenges, where planning horizons
extend over multiple years, necessitating the simultaneous consideration of imme-
diate and long-term trade-offs in generation and dispatch decisions. For example,
SDDP has been utilized in Maceira et al. [26] and Pinto et al. [40] for the Brazilian
hydrothermal system, in Rotting et al. [43| for the Norwegian power system, and in
Philpott et al. [38] for the New Zealand hydropower system.

The major drawback of SDDP is its exponential growth in computational com-
plexity with respect to both the planning horizon and the state dimension (Fiillner
et al. [17]). This limitation becomes particularly challenging in large-scale, high-
dimensional problems. Many solutions such as the Batch Learning and Experience

Replay (Avila et al. [1]) and Alternative Upper/Lower bound computation tech-
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niques (Lan et al. [24]) have been proposed to speed up SDDP computation time,
but the computation time remains considerable. Consequently, exploring the poten-
tial of Al-based approaches to overcome the computational bottlenecks of SDDP is
the primary goal of this thesis.

For a comprehensive review of SDDP and its applications, we refer the reader to

Fiillner et al. [17].

Reinforcement Learning

Reinforcement Learning (Sutton et al. [49] and Bertsekas et al. [6]) introduces a
data-driven approach to energy dispatch, enabling the derivation of optimal poli-
cies without the need for explicit system modeling. This methodological shift has
broadened the scope of optimization techniques in energy management by offering
flexibility and adaptability to complex, dynamic systems. RL can be seen as an
extension to the traditional Dynamic Programming by using a new approach to
approximate value functions even when we do not have an explicit model of the
environemnt.

RL has been applied in various energy dispatch contexts, highlighting its ver-
satility. For instance, Kuznetsova et al. [23]| utilized Q-learning to optimize the
energy management of a microgrid comprising a consumer, a wind turbine, battery
storage, and a grid connection. Their approach focused on improving operational
efficiency by leveraging learned policies. Similarly, Yang et al. [55] employed a
deep reinforcement learning (DRL) technique to address the dynamic dispatch of
a hydro-photovoltaic-pumped hydro storage (PHS) integrated power system. This
approach aimed to maximize economic benefits while minimizing fluctuations in
power supply and grid connection points, showcasing the potential of DRL in han-
dling integrated renewable energy systems. Furthermore, Xu et al. [54] proposed a
multi-agent reinforcement learning framework for optimal reactive power dispatch
in power systems. They introduced a consensus-based global information discovery

algorithm to compute global reward signals, enabling distributed Q-learning agents



to learn and optimize their actions effectively.

The growing interest in RL stems from its ability to scale efficiently with problem
complexity and its capacity to discover policies in systems where explicit modeling
is challenging. This flexibility positions RL as a promising alternative to traditional

methods in energy dispatch, particularly for addressing the limitations of algorithms

like SDDP.






Chapter 1

Theoretical framework

1.1 Theory behind SDDP

1.1.1 Sequential decision making under uncertainty

Sequential decision problems involve a continuous cycle of observations and deci-
sions, where each observation informs the subsequent decision. When the sequence
of decisions ends after a fixed number of steps, the problem is referred to as a Finite
Horizon problem, otherwise, it is known as an Infinite Horizon problem.

The sequential decision problems are assumed to be temporally-dependent and
therefore, the decision maker gathers information through observations over time,
using it to make informed decisions, aiming to achieve a determined objective.
When future observations are uncertain or cannot be predicted from the initial
time, the problem is referred to as a Stochastic problem. Such problems present a
significant challenge for researchers, as constructing an accurate model of the envi-
ronment is often difficult or even impossible. The uncertainty is typically modelled
as a stochastic process, with its values revealed over time.

To address this, it is essential to formally define the underlying probabilistic frame-
work: we consider a filtered probability space (€2, F,P), where € denotes the sample

space containing all possible realizations of the stochastic processes under consid-



eration. The filtration F = (Fy, Fa,...,Fr) is a family of o-algebras such that
F1 C Fy C ... C Fpr, modelling the accumulation of information over time. Specifi-
cally, F; represents the information available up to and including time ¢. The mea-
sure PP is a probability measure defined on the measurable space (2, F), assigning
probabilities to events in a manner consistent with the probability theory.
Intuitively, the stochastic process that models the uncertainty should be F-adapted.
Additionally, we assume that the random variables within the stochastic process are
independent of one another.

We can, now, write formally the optimization problem as the minimization of

the expected value of the future costs:

T—1
in E L K 1.1
113611142 tz; t(xy, up) + K (o) (1.1)

subject to the linear transition function of some state variable x; € X :

Ti41 = ft(xtvutaft) (1‘2>
and a number of linear constraints for each ¢ < T
Atxt S bt (13)

Where u; € U is the control, & represents the random disturbance, L; is the stage
cost, K is the terminal cost, A; for all ¢ < T is the constraints matrix and b; is
a constant vector whose elements represent the upper bound for the corresponding

constraint.

Assumption 1 The functions L; and K are assumed to be convex, and f; is affine

m xy and uy.

1.1.2 Nested Benders decomposition

Benders decomposition (Benders [4]) is one of the widely used exact algorithms in
stochastic programming. Its core idea is to split large problems into easier subprob-

lems that are much quicker to solve. The Nested Benders Decomposition (NBD)

12



(Birge [7]) method extends the Benders Decomposition approach by applying it
recursively to multi-stage stochastic problems.

We shall give here a brief idea about NBD because it will be used in defining
the SDDP algorithm. We will give a description of the approach for a two-stage
optimizaproblem but the result of NBD is general to any finite number of periods.
Consider a two-stage version of the optimization problem (1.1)-(1.3). The NBD

algorithm involves the following steps:

1. First Stage Decomposition: The first stage problem involves making decisions

ug based on the expected future costs. This can be formulated as:

min E | Lo(zo, ug) + min E[Ly (21, uy) + K(x1) | 2o, ug] (1.4)

ugEUp u1 €EUL

where x; is the state variable at the second stage, dependent on zy and wuy,

and the expectation is over the random disturbances &, and &;.

2. Second Stage Subproblem: For each fixed ug, solve the second stage subprob-

lem:
illléIZ/l{E [Ly(z1,u1) + K(x1) | o, uo) (1.5)
subject to:
z1 = f1(2o, to, &) (1.6)
Ay < by (1.7)

3. Recursion: The NBD algorithm iteratively refines the first stage decisions ug
based on the solutions of the second stage subproblems. As new information
about & and & becomes available, the solutions of the second stage problem

adjust the first stage problem, updating the cost estimates and constraints.

1.1.3 Stochastic Dynamic Progamming

Stochastic Dynamic Programming (SDP) proposes another approach to solve multi-

stage stochastic optimization problems where decisions are made sequentially over
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time under uncertainty that is revealed over time. Recall that we are using a filtred
probability space (€2, F,P) where the evolution of the information available until
time ¢ is modelled as F;. Therefore, the problem can be rewritten dynamically

using the value functions V; for all t <'T" defined by

T-1
Vi) := min Ly(z,, u) + E > Lz, u,) + K(ar) | F (1.8)
t s=t+1
subject to the state transition dynamics:
Top1 = fo(@e, u; Fr) (1.9)

That is knowing the observations up to time ¢, we want to find the best current
control u; that minimizes the current cost plus the expected coming cost.

We can rewrite the equation 1.8 by integrating V;;:

T-1
Vilwe) = min Ly(zy, up) + B | Le(fo(ar, e, &), wein) + Z Ly(xs, us) + K(2r) | E]

ueUy
L s=t+2

T—1
= géglLt(xt, Ut) +E Lt(ft(xhutaft)a Ut+1) +E ( Z Lt(x57us> + K(JJT) | ~7:t+1) | «E]
¢ s=t+2

=min L;(z, u) + E Vi1 (fi(z,u, &) | F

uEUL

(1.10)
Now we define the final condition to complete the definition of the SDP reformula-
tion:

Putting equations 1.11 and 1.10 together defines the Bellman Equation

K(x) ift="T,
Vi(z) = (1.12)
min {Ly(z, u) + E Ve (folz,w, &)} it <T.
The Bellman equation constitutes the core of the Stochastic Dynamic Programming.

The way SDP solves the problem is through state discretization.

14



State discretization involves dividing the state space into a finite set of discrete
states to make the problem computationally manageable. SDP computes the value
functions at each point of the grid starting from the final condition. It moves back-
wards to constitute a discrete representation of the value function.

Under certain compactness and Lipschitz continuity assumptions, Bertsekas [5]

proved that the discrete schemes converges to the solution of the continuous problem.

Remark 1 We know from the theory of numerical analysis that the finer the dis-

cretization, the better the approximation of the value functions.

A policy is constructed by moving backward and using the Bellman principle in
the equation 1.12. We use interpolation and extrapolation techniques to find the
value function at points that do not coincide with points of the grid.

As the number of state variables increases, the number of discrete states grows
exponentially, leading to an explosion in the computational and memory require-
ments. This known as the curse of dimensionnality, as stated by Bellman himself,
and many approaches have been introduced in order to solve this issue (Powell [41],

Luus [25]).

1.1.4 SDDP

Stochastic Dual Dynamic Programming addresses the computational infeasibility
of classical dynamic programming for large-scale problems by breaking them into
smaller subproblems. Each stage of the problem represents a time period, with deci-
sions made sequentially under uncertainty. The dual decomposition technique facil-
itates the iterative solution of these subproblems, combining them to form a global
solution. If the support of the random events is finite, also known as the Finitely
Supported Noise assumption, SDDP converges almost-surely in a finite number of
iterations (Philpott et al. [37]).

SDDP effectively combines the principles SDP and NBD. Specifically, it approxi-

mates the value functions using a set of linear functions, or "cuts," generated through
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NBD, which are derived iteratively through forward and backward passes.

The algorithm proceeds as follows

Initialization Initialize the value function approximations Vt(o) (x) with a lower

bound for each stage ¢.

Forward Pass The forward pass involves simulating sample paths of the uncer-
tainty and computing the corresponding state and control trajectories. For a given

T
scenario of the uncertainty, denoted as {ft(k)} , the forward problem at each stage

t=1
t is to determine the control ugk) that minimizes the sum of the immediate cost and
the approximated future cost-to-go, subject to the system dynamics. Mathemati-
cally, this is formulated as:

ugk) = arg min [Lt <$§k)7u> + Vt(f% (ft <$§k)7 U>ft(k)>>} (1.13)

ueUy

Backward Pass In the backward pass, for each stage ¢ (from 7' — 1 to 0), and
for each state xﬁk) visited during the forward pass, linear subproblems are solved to
update the value function approximations. These subproblems generate optimality
and feasibility cuts that refine the value function approximations.

Formally, starting for the stage T'— 1 to the stage 0, for each state xik) and scenario

gk), we determine the expected cost-to-go ng) (x¢) given by:

(o) = min { Lu(s, ) + B [VE e n.6))] | (1.14)

u€EUL

Then, we update the value function approximation Vt(kﬂ)(aj) by adding a new cut:
VD (@) = max {VO (), @ (2) + AP (@ - o) } (1.15)

where )\gk) represents the dual variables associated with the subproblem, defining

the slope of the new cut. This process iteratively improves the approximation of

Vi(z).
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Remark 2 (Importance of Cuts) Cuts play a crucial role in SDDP by approzimating

the value functions. There are two main types of cuts:

e Feasibility Cuts: These ensure that the solution remains feasible with respect
to the constraints of the problem. They prevent the state from wviolating any

constraints by adding necessary bounds.

e Optimality Cuts: These are derived from the dual solutions of the subprob-
lems and help approximate the value function more accurately. They ensure
that the value function is a lower bound to the true value function and improve

the solution’s optimality.

Formally, the algorithm can be written as follows:

Algorithm 1 Stochastic Dual Dynamic Programming (SDDP) Algorithm

1:
2:
3:

10:
11:
12:
13:
14:
15:

Initialization: Set k = 0. Initialize V,* (x) for all .
repeat
Forward Pass:
for each scenario ft(k) do
Solve forward problem (1.13) to get {xgk), uik)} for all t.
end for
Backward Pass:
for each stage t from T'— 1 to 0 do
for each state xik) from forward pass do
Solve linear subproblem to compute ng)(xt).
Update Vt(kﬂ)(x) with new cut.
end for
end for
Increment k.
until convergence criterion is met

We note that we use the Julia implementation of SDDP in the SDDP.jl package
(Dowson et al. [15])
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1.2 Reinforcement Learning: beyond SDDP

1.2.1 Introduction to Reinforcement Learning

Reinforcement Learning (RL) is a computational framework designed to model
and solve sequential decision-making problems under uncertainty. Unlike super-
vised learning, where the model learns from labeled input-output pairs, RL focuses
on learning an optimal policy through interactions with an environment. This is
achieved by observing the consequences of actions and receiving scalar feedback,
referred to as rewards.

The core components of RL are defined by the Markov Decision Process (MDP)
framework, which comprises a state space S, an action space A, a transition prob-
ability function P(s'|s,a), and a reward function R(s,a). A critical feature of the
MDP framework is the Markov property, which states that the future state s’ de-
pends only on the current state s and action a, and is conditionally independent of

all previous states and actions. Formally, the Markov property is expressed as:

P(St+1|8t7 Aty Stg—1,At—15 - - -, S0, aO) - P(St+1’8t7 at)'

This property is particularly important for the theoretical formalism of Reinforce-
ment Learning because it allows academics to use the classical theory of Dynamic
Programming (Bellman [3]) (discussion in Chapter 1) and Stochastic processes (Sut-
ton [48], Watkins et al. [51]). Furthermore, Sutton et al. [49] argue that it is in
practice useful for some problems to consider that the current state is sufficient to
summarize the information needed to take actions.

The agent is an autonomous decision-maker that learns to select actions based
on observations of the environment, with the objective of maximizing cumulative
rewards over time. The environment represents the system or process the agent
interacts with, and its dynamics evolve in response to the agent’s actions.

At any given time ¢, the environment is described by a state s; € S, where S
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is the set of all possible states. A state encapsulates all relevant information about
the system necessary for decision-making. The agent observes the current state and
selects an action a; € A, where A is the set of feasible actions available to the agent.
The selected action influences the state of the environment, leading to a transition
to a new state s;,1, determined by the environment’s dynamics, often modeled as a
stochastic process governed by the transition probability function P(s;1|ss, ar).
After the transition, the environment provides feedback to the agent in the form
of a scalar reward r, € R, computed using a reward function R(s;,a;). The reward
quantifies the immediate utility of the chosen action in the current state, guiding
the agent toward its objective. The interaction between the agent and environment
continues over a sequence of time steps, resulting in a trajectory of states, actions,

and rewards:

{(507 agp, TO)a <817 ay, 7ﬁl)a R (ST> ar, TT)}-

The goal of the agent is to learn a policy 7(als), which maps states to actions,
such that the expected cumulative reward, known as the return, is maximized. The

return is typically expressed as:

where v € [0,1] is the discount factor that determines the relative importance of
future rewards compared to immediate rewards.

A fundamental challenge in Reinforcement Learning is balancing exploration and
exploitation. Exploration involves the agent selecting actions that may not yield im-
mediate rewards but can help discover potentially better policies by gathering new
information about the environment. In contrast, exploitation focuses on selecting
actions that maximize the expected reward based on the agent’s current knowledge.
Striking the right balance is crucial: excessive exploration may lead to inefficient
learning, while premature exploitation may cause the agent to converge to subopti-

mal policies.
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The classical method for model-based algorithms is Dynamic Programming (DP)
(Bertsekas et al. [6]), widely applied when the environment dynamics are fully
known. DP relies on Bellman equations (Bellman [3]) to iteratively compute the
value functions and derive an optimal policy. The Bellman equation for the state-

value function V (s) is expressed as:

V(s) = max R(s,a) +7 ) _ P(s|s,a)V(s)| . (1.16)

where R(s,a) represents the immediate reward for taking action a in state s, 7y is
the discount factor, and P(s|s, a) denotes the transition probability to state s’ from
state s given action a.

While DP provides a theoretical foundation for optimal decision-making, its practical
applicability is limited due to its reliance on a perfect model and its computational
infeasibility in large state spaces (curse of dimensionality).

In contrast, model-free algorithms estimate value functions and/or policies using
sampled episodes, making them suitable for environments where a model is un-
available or too complex to construct. These methods include Monte Carlo (MC)
and Temporal Difference (TD) learning. MC methods estimate value functions by

averaging the returns G; over multiple episodes, where:

Gi=> VRipsr. (1.17)
k=0

TD learning, on the other hand, updates value estimates incrementally using
both observed returns and predictions from previously learned values. A common

TD update rule for the state-value function V'(s) is:

V(s) < V(s)+ a[R1 +7V(s) =V (s)], (1.18)

where « is the learning rate, and Ry 1 + vV (s') is the TD target.
Within this framework, model-free algorithms can be categorized into value-based

methods and policy-based methods. Value-based methods, such as Deep Q-Learning
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(Mnih et al. [29]) and SARSA (Sutton et al. [49]), combine DP principles with
TD learning. These methods aim to approximate the optimal action-value function

(Q)(s,a), which satisfies the Bellman optimality equation:

Q(s,a) = R(s,a) +~ Z P(s'|s,a) max Q(s',d). (1.19)

S

By using TD updates, value-based methods can efficiently learn directly from
raw experience without needing a model. For instance, SARSA updates Q(s,a)

using:

Q(s,a) < Q(s,a) + a[Ru +7Q(s,a') — Q(s, a)] (1.20)

where a' is the action taken in the next state s’. While these methods are data-
efficient, they can exhibit higher variance and bias, potentially affecting learning

stability.

1.2.2 Policy Gradient methods

Policy gradient methods are a class of algorithms in RL that optimizes policies
directly by adjusting the parameters of a policy function to maximize cumula-
tive rewards. Unlike value-based methods, which estimate value functions to guide
decision-making, policy gradient methods parameterize the policy itself and adjust
its parameters to improve performance.

The Policy Gradient Theorem provides the foundation for policy gradient meth-
ods. It states that the gradient of the expected return J(6) with respect to the

policy parameters 6 can be expressed as:

T
VoJ(0) = Er, | > Vologmo(ar]s)Q" (s, ar) (1.21)

t=0
Here, Q" (s, a;) is the action-value function, representing the expected return start-

ing from state s;, taking action a;, and thereafter following the policy 7. This theo-
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rem is fundamental because it allows the direct computation of the policy gradient
without needing to differentiate the state distribution under the policy.
REINFORCE (Williams [53]), the simplest policy gradient method, updates the
policy parameters in the direction that increases expected returns. While straightfor-
ward, REINFORCE can suffer from high variance in gradient estimates. A solution
to the high variance was the introduction of a baseline. Natural Policy Gradi-
ent (NPG) (Kakade [20]) methods improve upon REINFORCE by incorporating
second-order information, leading to more stable and efficient updates. Deep Deter-
ministic Policy Gradient (DDPG) (Silver et al. [47]) combines the strengths of policy
gradients and deterministic policies, enabling the learning of continuous actions in
high-dimensional spaces. Trust Region Policy Optimization (TRPO) (Schulman et
al. [45]) further enhances stability by ensuring policy updates stay within a trust

region, preventing drastic policy changes that can destabilize learning.

1.2.3 The REINFORCE Algorithm

REINFORCE is one of the most fundamental policy gradient methods. The core
idea behind REINFORCE is to optimize the expected return of a policy by following
the gradient of the expected return with respect to the policy parameters.

Given a policy my(als) parameterized by 6, the objective is to maximize the

expected return J(6):

J(m = Eﬂe

> ’ytrt] (1.22)

where v € [0, 1) is the discount factor, r; is the reward at time step ¢, and T is the
episode length.
The REINFORCE algorithm estimates the gradient of the objective function

using the following expression:

T
Z Vo log ma(as|s:) Gy

t=0

VoJ(0) = E,, (1.23)
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Here, G; represents the return, or the sum of discounted rewards, from time step ¢

onwards:

Gr=>Y +'n (1.24)

Theory Behind REINFORCE

The theory behind REINFORCE is grounded in the likelihood ratio method, which
allows the gradient of the expected return to be expressed in terms of the policy’s
log-probability. This is achieved by recognizing that the expectation of the return
can be differentiated using the log-likelihood trick:

VoJ(0) = VoEr, [Gi] = Er, [G: Vg log ma(ar|st)] (1.25)

This gradient is then used to perform stochastic gradient ascent on the policy pa-
rameters:

0« 0+ aVeJ(0) (1.26)

where « is the learning rate.

The key insight of REINFORCE is that by increasing the probability of actions
that yield high returns, the policy is improved over time. Conversely, the probability
of actions leading to lower returns is decreased. This process, although simple, is

effective in a wide range of reinforcement learning problems.

Variance Reduction and Baselines

One of the challenges with REINFORCE is the high variance in gradient estimates,
which can lead to unstable learning. To mitigate this, a baseline function b(s)
can be subtracted from the return without introducing bias, resulting in a variance

reduction. The gradient update then becomes:

VoJ(0) = Er, | Vologmg(ails,) (Gi — b(s1)) (1.27)

t=0
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A common choice for the baseline is the value function V" (s;), which represents the

expected return from state s; under the current policy .
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Chapter 2

The hydro-power management

problem

2.1 Electricity generation in Québec

We present here the optimization problem we studied. We consider minimizing the
cost of electricity generation while satisfying the demand at each time step. We
present the different constraints of the model as well as the mathematical formu-
lation of the problem. Our model is a simplification of the model presented in
[28] where they studied a multi-stage stochastic optimization problem to determine
cost-effective, net-zero emission expansion plans for the power sector by 2050 for five
Northeastern North American regions (Québec, Ontario, New York, New England
and the Atlantic provinces of Canada) using more than one source of electricity (Hy-
dropower, Nuclear, Solar, ..etc). In our case, we only consider electricity generation

problem in one region (Québec) using one source which is hydropower.

2.1.1 Constraints

The optimization model for energy dispatch in the hydrogird system is subject to

several physical constraints that ensure feasibility and adherence to system relia-



bility. These constraints govern the production of energy, water management, and
resource utilization, and are critical for obtaining a feasible solution. We present at
first the sets, variables and parameters

We consider three types of hydroplants in our analysis: large reservoir hy-
droplants, intra-day reservoir hydroplants, and run-of-the-river hydroplants. Large
reservoir hydroplants are equipped with significant storage capacities, enabling long-
term water management and providing flexibility to adapt to seasonal demand and
inflow variations. In contrast, intra-day reservoir hydroplants have smaller reser-
voirs, allowing for limited water storage within a single day to address short-term
demand fluctuations. Run-of-the-river hydroplants, on the other hand, have neg-
ligible or no storage capacity and depend directly on the immediate river flow for

energy generation.

Remark 3 For simplicity, we treat run-of-the-river and intra-day reservoir hy-
droplants equivalently in our analysis, assuming that water storage is only feasible
i large reservoirs. We also treat ROR hydroplants as intra-day reservoirs with no

storage capacity.

Releases of water from reservoirs occur through two distinct processes: turbining
or non-turbining releases. In the first process, water is passed through turbines,
generating electricity before being released downstream. In the second process,
water is released without being turbined. This is done either to manage reservoir
levels, adhere to operational constraints, or support downstream needs. However,
this non-turbined water remains within the hydro system and can potentially be
utilized by downstream reservoirs for power generation.

A key feature of the system is the time lag in water movement between reservoirs.
Specifically, water released from an upstream reservoir at stage t does not instantly
reach the next reservoir; instead, it arrives in the downstream reservoir during period

t+ 1.
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Sets

LR
IDRoR
ResRiv
Prev(1)
(i)

Large reservoirs hydropower plants

Intra-day reservoirs hydropower plants and Run-of-the-river hydropower plants
Set of hydroplants directly associated with rivers

Reservoirs upstream of reservoir 7, Vi € LR U IDRoR

The rivers associated with the hydroplant ¢, Vi € ResRiv

Exogenous Variables

demandy | Energy demand at time ¢ [MW]|

inflow;; | Water inflow to reservoir i, Vi € LRU IDRoR at time t [m?|

Decision Variables

hCIi,t
WW; ¢
Wdi,t
wav; ¢

U

WS;t

Energy produced by hydroplant ¢, Vi € LR U IDRoR at time ¢ [MWh/hour]
Water released but not turbined from reservoir 4, Vi € LR at time t [m? /5]
Turbined water in m?® from reservoir i, Vi € LR U IDRoR at time t [m® /s
Available water in m® in reservoir i, Vi € LR U IDRoR at time t [m? /]
Lost load at time ¢ [MWHh]|

Water level in large reservoir i, Vi € LR at time ¢ [hm”]
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Parameters

cu Cost of unsatisfied energy demand (lost load) [$/MWh]

i Unit production cost for hydroplant i, Vi € LR U IDRoR [$/MWHh|

Prod; Production factor for hydroplant i, ¥i € LRU IDRoR [MWh per m?/s]
WS,,WS; | Lower and upper bounds for water levels in large reservoir i, Vi € LR [hm3]
ws; o Initial water level in large reservoir i, Vi € LR [hm?]

wav; o Initial water for reservoir i, Vi € LR U IDRoR [m?/s]

WW,; Upper limit for non-turbined water release from large hydroplant i, Vi € LR [m?/s
CF Conversion coefficient for flows from m?/h to hm?®

Cap; The turbine capacity for the hydroplant i, Vi € LR U IDRoR [MW]|

k Penalty coefficient [$/MWh]

N Total number of hydroplants

M Number of rivers

T Number of stages

Remark 4 The ratio Ca

is reffered to as the maximum turbining capacity (or
roa;

discharge) of the hydroplant i Yi € LRUIDRoR

Below, we present and explain the key constraints that govern the behavior of

the system:

Energy production We approximate the production function that converts the
water turbined to energy. The production function is approximated as the product

of the water turbined and a production factor specific for each hydroplant:

hq;y = wd;y X Prod; Vi € LRUIDRoR, YVt <T (2.1)

IDR and ROR Hyroplants not directly connected to rivers production

For intra-day reservoirs hydroplants and run-of-the-river (ROR) reservoirs hydroplants
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that are not connected directly to rivers, the amount of water turbined must not
exceed the available water coming from the upstream hydroplants at the previous

stage:

wd;y < wavyy Vi € IDRoR — ResRiv,Vt <T (2.2)

IDR and ROR Hyroplants directly connected to rivers production Wa-
ter turbined from IDR and ROR reservoir hydroplants that are directly linked to
rivers must not exceed the sum of the inflows coming for the upstream reservoirs
at the previous stage and the water inflows coming from the river associated to the

hydroplant:

wd;; < wavyy + inflowyy, Vi € IDRoRN ResRiv,Vt < T (2.3)

Water transition between reservoirs Water dynamics between upstream and
downstream reservoirs are modeled by this constraint, which ensures that the avail-
able water at any reservoir depends on the water turbined and released by previous
reservoirs:

Wav; 41 = g wdjy + ww;jy
je€Prev(i)NLR

+ g wav;

j€Prev(i)N(ROR—ResRiv)

+ > wav;; + inflow;; Yi € LRUIDRoR, ¥t <T
j€Prev(i)N(RORNResRiv)
(2.4)

In particular, the water inflows might come from large reservoirs which are charac-
terized by their storing capacity, and from run-of-river reservoirs which pass all the

water available to the downstream reservoirs.

Upper limit for non-turbined water Each reservoir has a maximum allowable

quantity of water that can be released without generating electricity (non-turbined
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water). This constraint is expressed as:
ww,, <WW,; Vie LR, Vt<T (2.5)

Remark 5 We need an upper bound for water released but not turbined because we
use it as a component in defining the states (see section 2.3) and we need all the

inputs of the neural networks to be between 0 and 1 (see section 2.3).

Water level dynamics in large reservoirs The dynamics governing the water
levels in large reservoir hydroplants are represented by the following constraint,
which ensures that water levels are updated based on inflows, outflows, and the

capacity:
WS+ < ws; +CF (w(wi,t +inflowy) — wd;; — wwi,t) Vie LRVt <T (2.6)

The gap between the RHS and LHS can be interpreted as water that exceeds the
reservoir’s capacity and is thus "out of the system". To prevent overflow and ensure
storage capacity is met, excess water that surpasses the storage capacity is treated as
being redirected out of the system (release capacity for water to stay in the system

is limited).

Remark 6 If the option to redirect water out of the system were not considered,
scenarios could arise where water accumulates in a reservoir such that, at a certain
stage, it becomes impossible to release sufficient water to satisfy the reservoir’s stor-
age capacity constraints. Typically, this issue is resolved by adding feasibility cuts
to the optimization process. However, since SDDP.jl does not provide this function-
ality, we addressed the problem by allowing excess water to be redirected out of the
system as needed. This approach ensures compliance with the relatively complete
recourse assumption while enabling the algorithms to learn strategies that minimize

water losses from the system.
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Energy demand balance The total energy generated by all reservoirs at each
time step must meet the energy demand to ensure system reliability. If the energy
production falls short of the demand, the unmet portion is referred to as the lost
load. This represents the amount of energy demand that cannot be satisfied due to
generation constraints, leading to potential interruptions in power supply.
N
U+ hgiy = demand, Wt <T (2.7)
i=1
For SDDP, both ll; and hgq_, are decision variables. However, for RL, we only decide

the energy we generate from each hydroplant (see section 2.3 for the definition of
N

the actions of the RL agent). Overproduction occurs when Z hqi+ > demand,. In
i=1
such cases, the constraint (2.7) cannot hold, as it would imply 1/, < 0, violating the
non-negativity condition (2.11) on ll;. To prevent this issue, we should manually set
ll; to be 0 when there is an overproduction.
N
ll; + max{demand; — Z hgi+,0} V<T (2.8)
i=1
Generation upper bound of the reservoirs The total energy produced by each

reservoir must be limited by its maximum generating capacity:

hgis < Cap; Vi € LRUIDRoR, V¢ < T (2.9)

Water level bounds in large reservoirs The water level in each large reservoir
is subject to upper and lower bound physical constraints, which must be respected

at every time step:

WS, <ws;y <WS; VieLR V#<T (2.10)

Non-negativity constraints All decision variables, including the amount of wa-
ter turbined, released, and available in each reservoir, must be non-negative. This

constraint ensures that there is no negative water flow or energy production:
hg >0, wd >0, wav >0, ww >0, Il >0 (2.11)
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2.1.2 Mathematical formulation of the energy transition

problem

The optimization problem under study addresses the management of a multi-reservoir
hydropower system over a multi-period finite horizon, taking into account uncertain
water inflows. This multi-stage stochastic optimization framework aims to balance
energy production, demand satisfaction, and long-term reservoir sustainability. The
objective is to minimize the total cost over the planning horizon. This includes two

components:

1. The cost of unsatisfied energy demand (or lost load) at each period ¢, weighted

by the penalty ¢, to ensure demand is met where possible.

2. The cost of energy production by each reservoir i, weighted by the unit pro-

duction cost ¢;..

The cost of lost load is, intuitively, higher than the cost of electricity production to
prioritize demand satisfaction and minimize lost load.

At the terminal period T, the function incentivizes a desirable final state:

e A reward/penalty is assigned based on the final water levels ws. r compared to

initial levels ws_ o, weighted by the reservoir-specific production factors Prod.

e This ensures reservoirs are left in a state beneficial for future operations where
the productivity of the water available at the large reservoirs is close to the

productivity of the initial state.

The optimization framework is based on Dynamic Programming, where the
decision-making process is decomposed over discrete time periods t. The objec-
tive function uses the Bellman Fquation, which represents the minimum expected

cost from period ¢ onward, reflecting the temporal nature of reservoir operations.
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Formally, the problem can be represented as follows:

( N
min {cll x Ul + Z cihqis + Vigr; s.t. constraints (2.1)—(2.11)} NVt< T
i=1

‘/%:

\k X (ws_p —ws_g, Prod) t=T

where:

e V is the value function at time ¢, representing the minimum cost from time ¢

onward.
e Vr is the terminal value function, rewarding favorable reservoir states.

e k is a scaling factor to adjust the importance of the terminal reward as defined

previously.
e (.,.) denotes the scalar product.

The reward at T' prevents over-depletion of reservoirs, encouraging strategic reserve

of water for future energy production.

2.2 Uncertainty modelling

In modelling the uncertainty of water inflows, we employ a Multivariate Gaussian
distribution. For simplicity, we assume that there is no correlation between the
inflows of different rivers, an assumption that allows each river’s inflow to be treated
as an independent variable.

We analyzed a dataset (obtained from an internal ressource) of historical daily av-
erage water inflows, measured in m?/s for each river in Québec’s hydro-grid. The
dataset represents time series of daily inflows for each river over multiple years.

To model the variability of inflows of each river, we divided each river’s time series

into groups based on the calendar day. Specifically, we aggregated all historical
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inflow observations of each river for each day of the year (e.g., all January 1st in-
flows, all January 2nd inflows, etc.), resulting in 366 batches of data to account for
leap years. Next, we fitted a multivariate normal distribution to the inflow data
for each calendar day for each river which provided a probabilistic estimate of the
distribution of daily average inflows for each river for each specific day of the year.
The result of this process is a stochastic process in flow, which can be described

as

inflow = (inflow_y,inflow a, ... inflow se5), (2.13)

where, for each 0 < ¢ < 366, the random variable in flow ; is represented by the

vector

inflows ¢

mn flows
inflow , = T N (e, 2e) (2.14)

inflownsy
with M denoting the number of rivers under consideration, p; is the mean vector
and Y; denotes the covariance matrix. Each component of this vector represents the
inflow for a particular river at time ¢, with the overall process capturing the joint

distribution of inflows across all rivers.

Remark 7 [t is important to note that this thesis does not consider inter-temporal
dependencies in the inflow dynamics. While such relationships could potentially
enhance the accuracy of the inflow models, they are beyond the scope of this study.
The primary focus here is on the optimization aspects of the problem, for which the

simplified assumption of independence across time and rivers is sufficient.

2.3 Reinforcement Learning Structure

This section details the structure of the Reinforcement Learning framework used in

this study. The RL framework is designed to solve the energy dispatch problem by
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modeling it as a sequential decision-making process. The primary components of
the RL framework are the environment, states, actions, and reward function, which

are described below.

States The state space includes all variables that describe the current status of
the hydroelectric system at a given time step. These variables are critical for making

informed decisions. The state s; at time ¢ includes:
t , t
e Stage t represented by cos(27r?) and sm(27rf)

e Water levels in each reservoir in stage ¢t ws_; that are normalized by min-max

normalization

e Water inflows to the reservoirs in stage ¢: inflow ;, that are normalized by

min-max normalization.

e Available water at each reservoir in stage t: wav_, that is normalized by divid-

ing it by the maximum water that we can have at the reservoir i. Specefically:

wav; 4

Vi <TVie LRUIDRoR
ZjEPTeU(i) Oapj/PTOdj + ZjEPrev(i)ﬂLR WWJ

This normalization reflects the sum of the maximum water that can be tur-
bined (Cap;/Prod;) and the maximum water that can be released without

being turbined (WW ) for each uptream reservoir of the reservoir i.

Actions The action space defines the set of possible decisions the agent can make
at each time step. At time ¢, the action a; = (wd , ,ww_;) is a vector consisting of

the following components:
e wd;;, the amount of water turbinated by reservoir ¢ at time ¢, and

e ww;,, the amount of water released without generating electricity for each

large reservoir hydroplant ¢ € LR at time ¢.
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Each component of the action vector corresponds to an independent decision vari-
able. To enable the agent to learn the optimal decisions while maintaining explo-
ration, we represent each component of the action vector as a random variable.
Specifically, the mean of the random variable encodes the optimal action, and its
variance controls the level of exploration.

The action space is continuous because the amounts of water release can take any
value within the system’s operational constraints.

We model the policy 7(a;|s;) as a multivariate normal distribution parameterized by
a mean vector y(s;;6) and a diagonal covariance matrix o?(s;; §). These parameters
depend on the current state s; and the policy’s learned parameters 6. Formally, the

action at each time step is sampled as:
a; ~ N (1u(ss;0), diag(o?(s; 6))) (2.15)

where p(sy;0) represents the most likely action (or the "greedy" decision), and
o(sy;0) determines the exploration scale.

As training progresses, the mean vector pu(s;; ) converges to the optimal action
for each state, while the covariance matrix o?(s,; 6) gradually shrinks. This reduction
in variance decreases the randomness in the agent’s decisions over time, ensuring
that the policy becomes increasingly deterministic. This dynamic trade-off between
exploration and exploitation is essential for learning an effective policy while avoiding
suboptimal local solutions.

Taking actions using (2.15) cannot ensure that constraints (2.2)-(2.11) can be
satisfied. Therefore an alternative method is used. At first, we consider the uncon-

ditional action a; by sampling from
glt ~ N(M(St, 0), diag(UQ(st; 9))) (216)

Then, we transform a; to have a value between 0 and 1 by applying a sigmoid
function and obtain

(5?1,Jtda 5%0) = Sigmoid(ay) (2.17)
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Next, we determine the upper bound for the discharge for each hydroplant denoted
Wu for all reservoirs i € LR U IDRoR.

For larger reservoir hydroplants, the upper bound is the difference between the water
that can be discharged and the lower level of the reservoir that cannot be surpassed.
The water that can be discharged is the sum of the water already in the reservoir,
the water inflows coming from the river directly associated with the reservoir, and
the water coming from the upstream reservoir. To ensure that water level in the

large reservoirs does not go below the lower level we subtract the minimum water

—=1

that must stay in the reservoir which is given by . This yields to the following

CF
formula for the upper bound for the discharge for large reservoirs:
DD i . WS, ,
TURB;, = Iésﬁf i flow,y, +wav, — == Vi€ LR (2.18)

For IDR and ROR reservoir hydroplants that are not directly connected to a river,

the upper bound is given by the water coming from the upstream reservoirs:
TURB;; = wavi,t Yi € IDRoR — ResRiv (2.19)

For IDR and ROR reservoir hydroplants that are directly connected to a river, the
upper bound is given by the water coming from the upstream reservoirs and the

water inflows:
TURB;,; = wavi,t + inflow,;, Vi€ ResRiv (2.20)
We can compute the water discharged then as follows:
wd;y =€} TURB;; Vi€ LRUIDRoR (2.21)

This quantity must also satisfy the constraints (2.9) and (2.1) therefore the discharge
must not exceed the turbine capacity. We must modify the previous equation as

follows:

) 8§”td TURB;; .
wd; ; = min ’P—d, Cap; Vie LRUIDRoR (2.22)
roa;

'We need to convert the lower bound for water levels to m3
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For the amount of water released without generating electricity (ww;;), we need to
determine the upper bound of the release WW,. To determine the maximum feasible
release for the each large reservoir hydroplant, we compute the available water that
can be released as the difference between the water that can be discharged and the

water that has been turbined

ws; , WS, .
C’]; +inflow,), + wavy; — E —wd;; Vi€ LR (2.23)

Then, we determine the water released from each large reservoir as

WWZ'J -

ww;y =€y WWi, Vi€ LR (2.24)

We sum up how we sample feasible actions in the following algorithm

Algorithm 2 Taking actions
1: Sample G; from N (u(ss; 0), diag(o?(s¢; 0)))

2: Determine (e}, €/}") using (2.17)

3: Determine the upper bounds for the water that can be turbined TU RB_; using
(2.18)-(2.21)

4: Determine water turbined wd ; using (2.22)

5: Determine the upper bound for water released (non turbined) using WW _; (2.23)

6: Determine the water released (non turbined) ww_; using (2.24)

Reward Function The reward function quantifies the immediate benefit or cost
of an action taken by the agent at time ¢. It is designed to guide the agent toward
optimal decision-making by balancing energy production, operational costs, and

system reliability. The reward R; is defined as:

(

N
- (c” A+ Y e hqi7t> V< T
i=1

R, = - (2.25)

\k X (ws.p —ws g, Prod) t=T
The negative sign ensures the maximization of the reward aligns with minimizing
costs. The reward function encourages the agent to satisfy energy demand while

minimizing production costs and penalties for lost load.
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2.4 Convergence criterion

2.4.1 Reinforcement Learning convergence

For the RL training phase, we use a fixed number of gradient steps and evaluate the
Out-of-Sample (OOS) performance every 100 episodes. This approach is motivated
by the need to balance computational efficiency with effective performance moni-
toring. Evaluating at regular intervals allows us to track the agent’s progression
without incurring excessive computational overhead. Furthermore, since the policy
is unlikely to change significantly within a small number of gradient steps, selecting
an interval strikes a tradeoff between capturing meaningful updates and maintaining
efficiency. A fixed number of gradient steps also facilitates consistent comparisons
across experimental setups while ensuring training completes within a reasonable
timeframe. This methodology offers a practical balance between thorough evalua-

tion and computational feasibility.

2.4.2 SDDP

As in [15], we avoid using the conventional convergence criteria based on the gap be-
tween the deterministic bound and the simulation bound. We combine two criterion

and stop when the first of them is met:

1. We give SDDP.jl a maximum time to generate cuts and converge

2. We use the default SDDP.jl stopping rule based on the stabilization of the
deterministic bound and the oos simulations convergence within a specified

tolerance.

For more explanation on why we do not use the conventional criteria, we refer
the reader to SDDP.jl documentation (https://sddp.dev/stable/apireference/
#SDDP . OutOf SampleMonteCarlo)
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To speed up computation, we use parallel computing on 40 cores, leveraging the

inherently parallelizable nature of SDDP.
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Chapter 3

Computational results

3.1 Test case presentation

3.1.1 Québec’s hydro-grid considered in the study

We consider a fraction of the hydro-grid in Québec given in the figure (3.1). Our
systme is composed of multiple reservoirs and multiple hydroplants. We have 3
types of hydroplants: Large Reservoir, Intra-Day and Run-of-the-River.

The hydroplants P1, P5 and P9-P10 are associated with large reservoirs. The hy-
droplants P3 and P4 are associated with intra-day reservoirs. The rest of the hy-
droplants (P2 and P11) are run-of-the-river. The run-of-the-river hydroplant P11 is
not directly connected to a river but rather receives water coming from the P9-P10.
The run-of-the-river P2 is directly connected to the river R2. The hydroplant P4
is associated with an intra-day reservoir which directly connected to the river R3.
However, the plant P3 isassociated with an intra-day reservoir which is not directly
connected to a river but rather we have inflows coming to P2 then to P3.

Therefore, the sets defined in chapter 1 can be determined as follows:
e LR ={P1,P5 P9 — P10}

e IDRoR = {P2, P3, P4, P11}



e ResRiv = {P2, P4}

Remark 8 The names of each reservoir and river is in the Appendiz A

Flow

Hydropower plant
(in reservoir)

Hydropower plant
(run-of-the-river)

Intra-day reservoir

Large reservoir

Figure 3.1: Québec’s hydro-grid considered

3.1.2 RL structure

We consider the REINFORCE algorithm with a baseline, where the baseline is im-

plemented as a neural network. In this setup, the neural network approximates the
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value function, providing an estimate of the expected return from a given state.
The neural network is trained alongside the policy, adjusting its parameters to im-
prove the accuracy of the baseline and, consequently, the performance of the policy

gradient updates.

Policy Network The policy network takes the state of the environment as input
and outputs the parameters of a Gaussian distribution, specifically the mean and
standard deviation, which are then used to sample actions. The network consists
of three layers: the input layer, the hidden layer, and the output layer. The input
to the network is the state of the environment, represented by a vector of the same
dimensionality as the state vector. The hidden layer has 48 units with a tanh
activation function. The output layer is divided into two parts: the first half of
the output corresponds to the logarithm of the standard deviation of the Gaussian
distribution, which is then transformed using an exponential function to obtain the
actual standard deviation. The second half of the output represents the mean of the

Gaussian distribution.

Value Network The value network is designed to estimate the expected return,
or value, of a given state, and serves as a baseline to reduce the variance of the
policy gradient estimates. This network also takes the state representation as input,
similar to the policy network. The hidden layer consists of 32 units with a ReLU
activation function. The output layer provides a scalar value that estimates the

expected return for the given state.

Remark 9 We studied multiple architectures of the neural networks considered. In
particle, we tried architectures with more layers and neurons but it we found that

the current architecture ensures good performance and computational effiency.

Learning rate We try multiple learning rates for both the value network and the

policy network and choose the one ensuring the best performance and the fastest
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convergence. Figure (3.2) shows the convergence of the REINFORCE algorithm un-
der different learning rates values for both the value network and the policy network.
Notably, a high policy network learning rate results in a loss of convergence and ex-
hibits chaotic behavior. Conversely, while reducing the policy network learning rate
enhances stability, it also slows convergence when the value network learning rate
is held constant. The impact of the value network learning rate on convergence is
comparatively less pronounced, primarily influencing the rate of convergence rather
than stability.

Through this analysis, we found that the best learning rate for the policy network

is be — 4 and the best learning rate for the value network is 0.5.

200000

175000 1

150000

125000

Performance

100000

75000 -

50000 -

25000 4

0 2500 5000 7500 10000 12500 15000 17500 20000
Epochs

—— Ir=0.005, vir = 0.5 --- Ir=0.005,vlr=0.05 - Ir = 0.005, vir = 0.005
Ir = 0.0005, vir = 0.5 Ir = 0.0005, vir = 0.05 Ir = 0.0005, vir = 0.005
— Ir =5e-05, vir = 0.5 --- Ir=5e-05vir=0.05 - Ir = 5e-05, vIr = 0.005

Figure 3.2: Convergence of the REINFORCE algorithm under different combina-
tions of value learning rates (vlr) and policy learning rate (Ir)
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3.2 Results

In this section, we evaluate and compare the performance of SDDP and RL applied
to the energy dispatch problem described in the previous chapter. Both methods
are assessed using the parameter configurations outlined earlier. The evaluation
focuses on two main aspects. First, we analyze a specific instance of the problem
with 12 time periods (stages) to gain insights into the policies generated by the
two algorithms and their operational characteristics. Second, we compare the two
methods across multiple planning horizons, highlighting differences in computational
efficiency and achieved optimal values.

In the following experiments, we use the following numerical values:
o ¢y =18/MWh

e ¢; =0.001$/MWh ¥ie LRUIDRoR

o k=13/MWh

o ws;o=0.8WS,;+02WS, VieLR

Cap;
® wav;y = O.SP:LZ‘

This means that the available water already in the system initially is 80% of

Vie LRUIDRoR

the maximum turbine capacity
o WW,=60000MWh

e All other numerical values are available in the Appendix A

3.2.1 12-stage Problem

We study the problem (2.12) with 12-stage to illustrate how SDDP and RL generate
policies and handle the underlying decision-making process. This simplified problem
size allows for a more granular examination of the policy decisions at each stage

and helps to isolate specific behavioral differences between the two methods. We
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analyze the water releases, energy production of both SDDP and RL. Through this
case study, we aim to offer an intuitive understanding of the decision processes of
each algorithm under a finite planning horizon.

Remember that uncertainty comes from water inflows to the system via the 5
rivers considered. The training phase simulates scenarios of water inflows and lets
the agent explore various decisions by interacting with the simulated environment.
As mentionned in the chapter 2, we allow the agent to explore for high number of

iterations and observe the oos performance on simulated data.

We observe in figure 3.3 the convergence of both algorithms. For SDDP, con-

— 120000
80000

100000

60000 80000

Cost
Mean OOS cost

40000 60000

40000
20000

20000 r\

—_—T=12

0.25 0.50 0.75 1.00 1.25 1.50 0 5000 10000 15000 20000 25000
Time (s) Episode

(a) Convergence of SDDP (b) Convergence of RL
Figure 3.3: A figure with two subfigures

vergence is observed when the gap between the upper and lower bounds diminishes
over time. Initially, the upper bound fluctuates significantly, reflecting uncertainty
in the cost estimates during the early stages. However, as the iterations progress,
these oscillations reduce, and the upper bound approaches the lower bound, indicat-
ing the algorithm’s ability to stabilize around a near-optimal policy. On the other
hand, the convergence of RL is demonstrated by the evolution of the mean oos cost
over episodes. At the start of training, the oos cost is high, showcasing the ini-

tial inefficiency of the policy. Over time, this cost decreases steadily and stabilizes
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Figure 3.4: Out-of-sample tests RL vs SDDP. The relative gap is Relgap = 0.3%

after approximately 10,000 episodes, suggesting that the RL model has learned a
policy that generalizes well to unseen scenarios. Although a spike in the oos cost is
observed around 20,000 episodes, it resolves quickly, with no long-term impact on
convergence.

Now, we compare both algorithms in terms of oos mean cost to evaluate their
performance under unseen scenarios. Figure (3.4) illustrates the distribution of oos
costs obtained for both approaches. It is evident that SDDP slightly outperformed

RL in terms of mean cost, with a relative performance gap, defined as

COStRL - COStSDDp

RelGap = (3.1)

COStSDDp

being less than 1%. This indicates that while the average costs for both methods are
nearly equivalent, SDDP holds a marginal advantage. One improvement brought
by RL lies in the reduction of the cost variability. The standard deviation of oos
costs was significantly reduced from 90.73 under SDDP to 58.68 under RL. This
reduction implies that RL produces more consistent and reliable policies, making it

better suited for scenarios where minimizing risk and variability is crucial.

47



Let’s analyze the operational policies of the two algorithms through a specific
hydropower scenario. Figures (3.6) and (3.5) show a consistent trend in energy
production across the hydroplants over the time horizon. However, Figure (3.7)
highlights a distinct difference in the management of non-turbined water releases
between the two policies.

Both algorithms demonstrate a shared strategy to maximize energy output by
taking advantage of the cascading structure of the hydropower system. Specifically,
they prioritize water accumulation in the most downstream reservoir, La Grande 2,
to capitalize on the opportunity to generate energy multiple times as the same water
volume passes through upstream turbines before reaching the final reservoir.

To ensure that the reservoirs reach a state comparable to their productive initial
conditions by the end of the planning horizon, both algorithms direct significant
volumes of water to La Grande 2, which is filled to its maximum capacity at the
terminal period. The two other large reservoirs—La Grande 3 and La Grande 1—are
gradually depleted during the process, reflecting their role in prioritizing multi-stage

water utilization.

10 m—— — — — — — — — — — —— — — — — —— — — — — — — — — ———— — — ——

08

06

CleIyy Fiouuceu

04

02 BR

0.0

. . .
1 3 5 7 9 11
Time Periods

Figure 3.5: SDDP: Contribution of each hydroplant in satisfying the demand

The primary difference between RL and SDDP lies in how water is managed dur-
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Figure 3.6: RL: Contribution of each hydroplant in satisfying the demand

ing intermediate periods. RL exhibits a policy of consistent water release throughout
the planning horizon, maintaining stable reservoir dynamics and evenly distributing
energy production. In contrast, SDDP adopts a more concentrated release strategy
by temporarily accumulating water in La Grande 3 (directly upstream of La Grande
2) before releasing it into La Grande 2 in the final time step. This behavior indi-
cates that SDDP places a higher emphasis on maximizing terminal-period flexibility
and energy generation at the expense of steadier production throughout the earlier
periods.

The divergence in water release patterns shows the difference in how each algo-
rithm optimizes operational objectives. RL aims for balanced temporal dynamics,
while SDDP, emphasizes end-of-horizon objectives, particularly through pre-emptive

water accumulation upstream.

3.2.2 RL and SDDP comparison

We compare the performance of the algorithms across planning horizons of {4, 12, 20,
28,36, 44, 52} periods, where each period corresponds to one hour of planning. These

horizons are chosen to capture a range of short- to long-term planning scenarios,
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Figure 3.7: Comparison of the evolution of the water level in the large reservoirs
between both algorithms

enabling an assessment of how the algorithms adapt to varying time scales and
the computational challenges associated with each. This comparison highlights the
trade-offs between computational efficiency and solution quality as the problem size

increases.

To determine the convergence time of RL, we do two steps. At first, we let the
agent train for a high number of episodes and we observe the oos performance every
100 training episodes. This will help determining the lowest number of training
episodes needed for the convergence. The second step, is to remove the oos tests at
every 100 training episodes and redo the training (from scratch). This will help de-

termining the minimal number of training episodes needed and the time the training
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Figure 3.8: Training time for both algorithms for different problems

phase takes.

Figure (3.8) illustrates the training times for SDDP and RL across the problem
set, which includes problems up to 52 periods. As expected, SDDP exhibits an
exponential increase in training time as the problem size grows, consistent with
its theoretical computational complexity. This exponential growth arises from its
iterative backward-forward process, where an increasing number of state and decision
variables demand greater computational resources. In contrast, RL demonstrates
considerably lower training times even as problem complexity increases. This makes
RL a computationally efficient alternative, particularly for scenarios where time and
resources are constrained.

Figure (3.9) and figure (3.10) compare the relative performance of SDDP and RL
in terms of the optimal value achieved. While SDDP generally attains slightly better
solutions, the relative gap between the two algorithms remains within 3%, even for
the largest problems considered. Notably, RL’s ability to maintain this level of
performance with significantly lower training time becomes especially advantageous
in large-scale problems. The results suggest that RL can provide solutions close
to those of SDDP, but with a fraction of the computational effort, making it a

compelling choice for tackling large-scale problems efficiently.
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Conclusion

In this thesis, we presented a detailed comparison between Stochastic Dual Dy-
namic Programming (SDDP) and Reinforcement Learning (RL), specifically the
REINFORCE algorithm, for addressing a Dynamic Energy Dispatch problem in the
context of multi-hydro-reservoirs management. Using a sub-region of the hydroelec-
tric grid in Quebec as a case study, we analyzed the performance of both algorithms

in managing energy dispatch with stochastic water inflows.

SDDP, recognized as the state-of-the-art algorithm for multi-stage stochastic
optimization in hydropower management, demonstrated a slight advantage over the
REINFORCE algorithm in terms of achieving the theoretical optimal solution. This
is consistent with the inherent design of SDDP, which is optimized to converge to the
theoretical solution by exploiting the stochastic structure of the problem. However,
REINFORCE, a simple policy gradient algorithm within the reinforcement learning
framework, showed its significant advantage in computational efficiency. Despite
requiring less training time, REINFORCE was able to approximate the optimal
value provided by SDDP, even in large-scale problems, suggesting its potential as a

practical alternative when computational resources are constrained.

It is important to note that we tested both algorithms under the assumption
of intertemporally independent water inflows, meaning that a high inflow at time ¢
does not necessarily imply a high inflow at time £+ 1. This assumption excludes the
phenomenon of seasons of high rainfall and low rainfal. Our findings confirm that

RL, particularly the REINFORCE algorithm, is indeed capable of approximating



the solution provided by SDDP, posing an interesting challenge to the traditional
approach in hydropower optimization.

A natural extension of this work would involve relaxing the assumption of inde-
pendent water inflows by considering a more realistic model incorporating Markovian
Noise, which acknowledges the temporal correlation between inflows at different time
steps. Future work could explore how this adjustment impacts the performance of
SDDP and whether its advantage over RL remains under these more complex con-
ditions. This exploration would further validate the potential of RL as a viable
alternative to SDDP in dynamic energy dispatch problems and contribute to the
ongoing evolution of optimization techniques for renewable energy systems. A fur-
ther extension direction is the inclusion of additional exogenous variables in the state
definition for Reinforcement Learning (RL). By incorporating these variables, RL
algorithms can gain valuable insights and adapt to complex dynamics more effec-
tively. This flexibility is a significant advantage of RL, as it enables the algorithm to
infer relationships and dependencies from data without requiring explicit specifica-
tion of the informational structure. In contrast, SDDP relies on predefined models
of exogenous variables, and its performance is contingent on the accuracy of this
explicit modeling. This limitation of SDDP makes it less adaptable in scenarios
where the precise informational dependencies of exogenous variables are unknown

or challenging to define.
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Appendix A

Code ‘ Name ‘ Abbreviation
R1 Caniapiscau Can
R2 Laforge Laf
R3 La Grande Lag
R4 De Pontois Dep
R5 Sakami Sak

Table 1: List of the rivers considered in this thesis

Code ‘ Name ‘ Abbreviation
P1 Brisay BR

P2 Laforge 2 LEF2

P3 Laforge 1 LF1

P4 La Grande 4 LG4

P5 La Grande 3 LG3

P9 La Grande 2-A *x

P10 La Grande 2 LG2

P11 La Grande 1 LG1

Table 2: List of hydroplants and their corresponding code and abbreviation used in

this thesis

Remark 10 P9 and P10 are treated as one unique hydroplant with capacity equals
to the sum of both hydroplants’ capacities.



Code | Name | Discharge (m?®/s) | Generation (MW)

P1 Brisay 1130 469
P2 | Laforge 2 784 319
P3 | Laforge 1 1693 878
P4 La Grande 4 2783 2779
P5 La Grande 3 3439 2417
P9 La Grande 2-A 1620 2106
P10 | La Grande 2 4300 5616
P11 | La Grande 1 5950 1436

Table 3: Discharge and generation capacity of represented hydropower plants

Number | Name | Min. (Billion m*) | Max. (Billion m?®)
1 Caniapiscau 39.0 52.6
4 La Grande 3 25.2 60.0
5) Robert Bourassa 19.4 61.7

Table 4: Storage capacity of large reservoirs considered in this thesis
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